WO2006137797A1 - Novel 2-azetidinone derivatives as cholesterol absorption inhibitors for the treatment of hyperlipidaemic conditions - Google Patents
Novel 2-azetidinone derivatives as cholesterol absorption inhibitors for the treatment of hyperlipidaemic conditions Download PDFInfo
- Publication number
- WO2006137797A1 WO2006137797A1 PCT/SE2006/000766 SE2006000766W WO2006137797A1 WO 2006137797 A1 WO2006137797 A1 WO 2006137797A1 SE 2006000766 W SE2006000766 W SE 2006000766W WO 2006137797 A1 WO2006137797 A1 WO 2006137797A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alkyl
- solvate
- formula
- compound
- pharmaceutically acceptable
- Prior art date
Links
- 0 CC(*)(C(O)=O)N(*)C(C(*)NC(COc1ccc([C@]([C@](C2=O)S)N2c2ccc(*)cc2)cc1)=O)=O Chemical compound CC(*)(C(O)=O)N(*)C(C(*)NC(COc1ccc([C@]([C@](C2=O)S)N2c2ccc(*)cc2)cc1)=O)=O 0.000 description 16
- VNWGYBSNEXXOOH-UHFFFAOYSA-N C=NCC1=CC1 Chemical compound C=NCC1=CC1 VNWGYBSNEXXOOH-UHFFFAOYSA-N 0.000 description 1
- JQONXSUKPKGHDG-UHFFFAOYSA-N CC(C)(CN=O)CO Chemical compound CC(C)(CN=O)CO JQONXSUKPKGHDG-UHFFFAOYSA-N 0.000 description 1
- QDMNNMIOWVJVLY-MRVPVSSYSA-N O=C1OC[C@H](c2ccccc2)N1 Chemical compound O=C1OC[C@H](c2ccccc2)N1 QDMNNMIOWVJVLY-MRVPVSSYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/12—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/397—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having four-membered rings, e.g. azetidine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/06—Antihyperlipidemics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
Definitions
- Novel 2-azetidinone derivatives as cholesterol absorption inhibitors for the treatment of hyperlipidaemic conditions Novel 2-azetidinone derivatives as cholesterol absorption inhibitors for the treatment of hyperlipidaemic conditions
- This invention relates to 2-azetidinone derivatives, or pharmaceutically acceptable salts, solvates, solvates of such salts and prodrugs thereof.
- These 2-azetidinones possess cholesterol absorption inhibitory activity and are accordingly of value in the treatment of disease states associated with hyperlipidaemic conditions. They are therefore useful in methods of treatment of a warm-blooded animal, such as man.
- the invention also relates to processes for the manufacture of said 2-azetidinone derivatives, to pharmaceutical compositions containing them and to their use in the manufacture of medicaments to inhibit cholesterol absorption in a warm-blooded animal, such as man.
- a further aspect of this invention relates to the use of the compounds of the invention in the treatment of dyslipidemic conditions.
- Atherosclerotic coronary artery disease is a major cause of death and morbidity in the western world as well as a significant drain on healthcare resources. It is well-known that hyperlipidaemic conditions associated with elevated concentrations of total cholesterol and low density lipoprotein (LDL) cholesterol are major risk factors for cardiovascular atherosclerotic disease (for instance "Coronary Heart Disease: Reducing the Risk; a Worldwide View” Assman G., Carmena R. Cullen P. et al; Circulation 1999, 100, 1930-1938 and "Diabetes and Cardiovascular Disease: A Statement for Healthcare Professionals from the American Heart Association" Grundy S, Benjamin L, Burke G., et al; Circulation, 1999, 100, 1134-46).
- LDL low density lipoprotein
- Sitosterolemia is a lipid storage disorder characterised by increased levels of sitosterol and other plant sterols in the plasma and other tissues due to increased non-selective intestinal absorption of sterols and decreased hepatic removal. Sitosterolemia can result in accelerated atherosclerosis and other cardiovascular diseases. See WO 02/058696.
- the concentration of plasma cholesterol depends on the integrated balance of endogenous and exogenous pathways of cholesterol metabolism.
- cholesterol is synthesized by the liver and extra hepatic tissues and enters the circulation as lipoproteins or is secreted into bile.
- cholesterol from dietary and biliary sources is absorbed in the intestine and enters the circulation as component of chylomicrons. Alteration of either pathway will affect the plasma concentration of cholesterol.
- the precise mechanism by which cholesterol is absorbed from the intestine is however not clear.
- the major options to regulate plasma cholesterol include (i) blocking the synthesis of cholesterol by agents such as HMG-CoA reductase inhibitors, for example statins such as simvastatin and fluvastatin, which also by up-regulation of LDL-receptors will promote the cholesterol removal from the plasma; (ii) blocking the bile acid reabsorption by specific agents resulting in increased bile acid excretion and synthesis of bile acids from cholesterol with agents such as bile acid binders, such as resins e.g.
- High density lipoprotein (HDL) elevating agents such as fibrates and nicotinic acid analogues have also been employed.
- the present invention is based on the discovery that certain 2-azetidinone derivatives surprisingly inhibit cholesterol absorption. Such properties are expected to be of value in the treatment of disease states associated with hyperlipidaemic conditions.
- the compounds of the present invention are not disclosed in any of the above applications and we have surprisingly found that the compounds of the present invention possess beneficial efficacious, metabolic and toxicological profiles that make them particularly suitable for in vivo administration to a warm blooded animal, such as man.
- certain compounds of the present invention have a low degree of absorption compared to compounds of the prior art whilst retaining their ability to inhibit cholesterol absorption.
- X -CH 2 -, - CH 2 CH 2 -, - CH 2 CH 2 CH 2 -;
- R 1 H, C 1-6 alkyl, C 3-6 cycloalkyl or aryl;
- R 2 and R 3 is hydrogen, a branched or unbranched Ci -6 alkyl, C 3-6 cycloalkyl or aryl; wherein said C 1-6 alkyl may be optionally substituted by one or more hydroxy, amino, guanidino, carbamoyl, carboxy, C 1-6 alkoxy, (C1-C4 iV,iV-(Ci- 6 alkyl) 2 amino, C 1-6 alkylS(O) a wherein a is 0-2, C 3-6 cycloalkyl or aryl; and wherein any aryl group may be optionally substituted by one or two substituents selected from halo, hydroxy, cyano, C 1-6 alkyl or C 1-6 alkoxy; R 4 is hydrogen, C 1-6 alkyl, or arylCi- 6 alkyl; wherein R 3 and R 2 may form a ring with 3-7 carbon atoms and wherein R 4 and R 2 may form a ring with 2-6 carbon
- R 5 is selected from hydrogen, halo, nitro, cyano, hydroxy, carboxy, carbamoyl, sulphamoyl, C 1-6 alkyl, C 1-6 alkoxy, Ci-ealkanoyl, C ⁇ alkanoyloxy, N-(C 1-6 alkyl)amino, iV,N-(C 1-6 alkyl) 2 amino, C 1- ⁇ 5 alkanoylamino, iNKQ ⁇ alkytycarbamoyl, AT,iV-(C 1-6 alkyl) 2 carbamoyl, C 1-6 alkylS(O) a wherein a is 0 to 2, Ci -6 alkoxycarbonyl, N-(Ci -6 alkyl)sulphamoyI and A/,A/ r -(C 1-6 alkyl) 2 sulphamoyl; and wherein n is 0, 1, 2 or 3.
- alkyl includes both straight and branched chain alkyl groups but references to individual alkyl groups such as “propyl” are specific for the straight chain version only.
- C 1-6 alkyl and C 1-4 alkyl include propyl, isopropyl and t-butyl.
- references to individual alkyl groups such as 'propyl' are specific for the straight chained version only and references to individual branched chain alkyl groups such as 'isopropyl' are specific for the branched chain version only.
- a similar convention applies to other radicals, for example "phenylC 1-6 alkyl” would include benzyl, 1-phenylethyl and 2-phenylethyl.
- halo refers to fluoro, chloro, bromo and iodo.
- aryl refers to a 4-10 membered aromatic mono or bicyclic.ring containing
- aryls include phenyl, pyrrolyl, furanyl, imidazolyl, triazolyl, tetrazolyl, pyrazinyl, pyrimidinyl, pyridazinyl, pyridyl, isoxazolyl, oxazolyl, 1,2,4 oxadiazolyl, isothiazolyl, thiazolyl, 1,2,4-triazolyl, thienyl, naphthyl, benzofuranyl, benzimidazolyl, benzthienyl, benzthiazolyl, benzisothiazolyl, benzoxazolyl, benzisoxazolyl, 1,3-benzodioxolyl, indolyl, pyridoimidazolyl, pyrimidoimidazolyl, quinolyl, isoquinolyl, quinoxaliny
- aryl refers to phenyl, thienyl, pyridyl, imidazolyl or indolyl.
- the term"aryl” includes both unsubstituted and substituted aromatic rings.
- Examples of "C 1-6 alkoxy” include methoxy, ethoxy and propoxy. Examples of
- C ⁇ alkylSCCO a wherein a is 0 to 2 include methyl thio, ethylthio, methylsulphinyl, ethylsulphinyl, mesyl and ethylsulphonyl.
- Examples of "iV-(C 1-6 alkyl)amino” include methylamino and ethylamino.
- Examples of "N,N-(C 1-6 alkyl) 2 amino” include di-iV-methylamino, di-(iV-ethyl)amino and N-ethyl-N-methylamino.
- Cs- ⁇ cycloalkyl refers to cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
- a suitable pharmaceutically acceptable salt of a compound of the invention, or other compounds disclosed herein is, for example, an acid-addition salt of a compound of the invention which is sufficiently basic, for example, an acid-addition salt with, for example, an inorganic or organic acid, for example hydrochloric, hydrobromic, sulphuric, phosphoric, trifluoroacetic, citric, acetate or maleic acid.
- an inorganic or organic acid for example hydrochloric, hydrobromic, sulphuric, phosphoric, trifluoroacetic, citric, acetate or maleic acid.
- a suitable pharmaceutically acceptable salt of a compound of the invention which is sufficiently acidic is an alkali metal salt, for example a sodium or potassium salt, an alkaline earth metal salt, for example a calcium or magnesium salt, an ammonium salt or a salt with an organic base which affords a physiologically-acceptable cation, for example a salt with methylamine, dimethylamine, triraethylamine, piperidine, morpholine or tris-(2-hydroxyethyl)amine.
- the compounds of the formula (I), or other compounds disclosed herein, may be administered in the form of a pro-drug which is broken down in the human or animal body to give a compound of the formula (I).
- pro-drugs include in vivo hydrolysable esters and in vivo hydrolysable amides of a compound of the formula (I).
- An in vivo hydrolysable ester of a compound of the formula (I), or other compounds disclosed herein, containing carboxy or hydroxy group is, for example, a pharmaceutically acceptable ester which is hydrolysed in the human or animal body to produce the parent acid or alcohol.
- Suitable pharmaceutically acceptable esters for carboxy include C 1-6 alkoxymethyl esters for example methoxymethyl, Q-galkanoyloxymethyl esters for example pivaloyloxymethyl, phthalidyl esters, C 3-8 cycloalkoxycarbonyloxyC 1-6 alkyl esters for example 1-cyclohexylcarbonyloxyethyl; l,3-dioxolen-2-onylmethyl esters for example 5-methyl-l,3-dioxolen-2-onylmethyl; and C 1-6 alkoxycarbonyloxyethyl esters for example 1-methoxycarbonyloxyethyl and may be formed at any carboxy group in the compounds of this invention.
- An in vivo hydrolysable ester of a compound of the formula (I), or other compounds disclosed herein, containing a hydroxy group includes inorganic esters such as phosphate esters and ⁇ -acyloxyalkyl ethers and related compounds which as a result of the in vivo hydrolysis of the ester breakdown to give the parent hydroxy group.
- inorganic esters such as phosphate esters and ⁇ -acyloxyalkyl ethers and related compounds which as a result of the in vivo hydrolysis of the ester breakdown to give the parent hydroxy group.
- ⁇ -acyloxyalkyl ethers include acetoxymethoxy and 2,2-dimethyIpropionyloxy-methoxy.
- a selection of in vivo hydrolysable ester forming groups for hydroxy include alkanoyl, benzoyl, phenylacetyl and substituted benzoyl and phenylacetyl, alkoxycarbonyl (to give alkyl carbonate esters), dialkylcarbamoyl and N-(dialkylaminoethyl)-N-alkylcarbamoyl (to give carbamates), dialkylaminoacetyl and carboxyacetyl.
- substituents on benzoyl include morpholino and piperazino linked from a ring nitrogen atom via a methylene group to the 3- or 4- position of the benzoyl ring.
- a suitable value for an in vivo hydrolysable amide of a compound of the formula (I), or other compounds disclosed herein, containing a carboxy group is, for example, a N-C ⁇ alkyl or iV,iV-di-C 1-6 alkyl amide such as iV-methyl, iV-ethyl, iV-propyl, ⁇ iV-dimethyl, N-ethyl-N-methyl or ⁇ iV-diethyl amide.
- Some compounds of the formula (I) may have chiral centres and/or geometric isomeric centres (E- and Z- isomers), and it is to be understood that the invention encompasses all such optical, diastereoisomers and geometric isomers that possess cholesterol absorption inhibitory activity.
- the invention relates to any and all tautomeric forms of the compounds of the formula (I) that possess cholesterol absorption inhibitory activity. It is also to be understood that certain compounds of the formula (I) can exist in solvated as well as unsolvated forms such as, for example, hydrated forms. It is to be understood that the invention encompasses all such solvated forms which possess cholesterol absorption inhibitory activity.
- Another aspect of the present invention provides a process for preparing a compound of formula (I) or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof which process (wherein variable groups are, unless otherwise specified, as defined in formula (I)) comprises of: Process 1) reacting a compound of formula (II):
- L is a displaceable group, suitable values for L are for example, a halogeno or sulphonyloxy group, for example a chloro, bromo, methanesulphonyloxy or toluene-4-sulphonyloxy group.
- C(O)OR is an ester group
- suitable values for C(O)OR are methoxycarbonyl, ethoxycarbonyl, t-butoxycarbonyl and benzyloxycarbonyl.
- the starting materials used in the present invention can be prepared by modifications of the routes described in EP O 792264 Bl. Alternatively they can be prepared by the following reactions.
- Alcohols of formula (II) may be reacted with compounds of formula (III) in the presence of a base for example an inorganic base such as sodium carbonate, or an organic base such as Hunigs base, in the presence of a suitable solvent such as acetonitrile, dichloromethane or tetrahydrofuran at a temperature in the range of O 0 C to reflux, preferably at or near reflux.
- a base for example an inorganic base such as sodium carbonate, or an organic base such as Hunigs base
- a suitable solvent such as acetonitrile, dichloromethane or tetrahydrofuran at a temperature in the range of O 0 C to reflux, preferably at or near reflux.
- group C(O)OR is an ester group; and thereafter if necessary or desirable: i) converting a compound of the formula (12) into another compound of the formula (12); ii) removing any protecting groups; iii) forming a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug; or iv) separating two or more enantiomers.
- L is a displaceable group, suitable values for L are for example, a halogeno or sulphonyloxy group, for example a chloro, bromo, methanesulphonyloxy or toluene-4-sulphonyloxy group.
- C(O)OR is an ester group
- suitable values for C(O)OR are methoxycarbonyl, ethoxycarbonyl, t-butoxycarbonyl and benzyloxycarbonyl.
- the starting materials used in the present invention can be prepared by modifications of the routes described in EP O 792 264 Bl. Alternatively they can be prepared by the following reactions.
- Alcohols of formula (112) may be reacted with compounds of formula (III) in the presence of a base for example an inorganic base such as sodium carbonate, or an organic base such as Hunigs base, in the presence of a suitable solvent such as acetonitrile, dichloromethane or tetrahydrofuran at a temperature in the range of 0°C to reflux, preferably at or near reflux.
- a base for example an inorganic base such as sodium carbonate, or an organic base such as Hunigs base
- a suitable solvent such as acetonitrile, dichloromethane or tetrahydrofuran at a temperature in the range of 0°C to reflux, preferably at or near reflux.
- Compounds of formula (112) may be prepared according to the following scheme:
- a compound of formula (XV) may be reduced to a compound of formula (IV) or a compound of formula (XV) may be reacted with a compound of formula (V):
- a compound of formula (XV2) may be reduced to a compound of formula (IV2) or a compound of formula (XV2) may be reacted with a compound of formula (V)
- Acids and amines may be coupled together in the presence of a suitable coupling reagent.
- Standard peptide coupling reagents known in the art can be employed as suitable coupling reagents, for example carbonyldiimidazole and dicyclohexyl-carbodiimide, optionally in the presence of a catalyst such as dimethylaminopyridine or 4-pyrrolidinopyridine, optionally in the presence of a base for example triethylamine, pyridine, or 2,6-di- ⁇ Zfcy/-pyridines such as 2,6-lutidine or 2,6-di-tert-butylpyridine.
- Suitable solvents include dimethylacetamide, dichloromethane, benzene, tetrahydrofuran and dimethylformamide.
- the coupling reaction may conveniently be performed at a temperature in the range of
- Suitable activated acid derivatives include acid halides, for example acid chlorides, and active esters, for example pentafluorophenyl esters.
- the reaction of these types of compounds with amines is well known in the art, for example they may be reacted in the presence of a base, such as those described above, and in a suitable solvent, such as those described above.
- the reaction may conveniently be performed at a temperature in the range of -40 to 40°C.
- Acids of formula (IV) and (VI) may be prepared from compounds of formula (II) by reacting them with the appropriate, optionally protected, side chain using the conditions of Process 1). Alternatively, acids of formula (IV) and (VI) may be prepared by a modification of Scheme I.
- Amines of formula (V) and (VII) are commercially available compounds, or they are known in the literature, or they are prepared by standard processes known in the art.
- Compounds of formula (VIII) can be prepared from compounds of formula (III), by deprotecting the benzyl group and performing Process 1.
- compound (Ilk) could be debenzylated, Process 1 could be performed and the resulting compound deprotected to reveal the ketone.
- a base for example an inorganic base such as sodium carbonate, or an organic base such as Hunigs base
- a suitable solvent such as acetonitrile, dichloromethane or tetrahydrofuran at a temperature in the range of 0°C to reflux, preferably at or near reflux.
- Esters of formula (XIII) may be deprotected under standard conditions such as those described below, for example a methyl or ethyl ester may be deprotected with sodium hydroxide in methanol at room temperature.
- Compounds of formula (XIII) may be prepared by a modification of any of the processes described herein for the preparation of compounds of formula (I). It will be appreciated that certain of the various ring substituents in the compounds of the present invention may be introduced by standard aromatic substitution reactions or generated by conventional functional group modifications either prior to or immediately following the processes mentioned above, and as such are included in the process aspect of the invention. Such reactions and modifications include, for example, introduction of a substituent by means of an aromatic substitution reaction, reduction of substituents, alkylation of substituents and oxidation of substituents. The reagents and reaction conditions for such procedures are well known in the chemical art.
- aromatic substitution reactions include the introduction of a nitro group using concentrated nitric acid, the introduction of an acyl group using, for example, an acyl halide and Lewis acid (such as aluminium trichloride) under Friedel Crafts conditions; the introduction of an alkyl group using an alkyl halide and Lewis acid (such as aluminium trichloride) under Friedel Crafts conditions; and the introduction of a halogeno group.
- modifications include the reduction of a nitro group to an amino group by for example, catalytic hydrogenation with a nickel catalyst or treatment with iron in the presence of hydrochloric acid with heating; oxidation of alkylthio to alkylsulphinyl or alkylsulphonyl.
- a suitable protecting group for an amino or alkylamino group is, for example, an acyl group, for example an alkanoyl group such as acetyl, an alkoxycarbonyl group, for example a methoxycarbonyl, ethoxycarbonyl or t-butoxycarbonyl group, an arylmethoxycarbonyl group, for example benzyloxycarbonyl, or an aroyl group, for example benzoyl.
- the deprotection conditions for the above protecting groups necessarily vary with the choice of protecting group.
- an acyl group such as an alkanoyl or alkoxycarbonyl group or an aroyl group may be removed for example, by hydrolysis with a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide.
- a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide.
- an acyl group such as a t-butoxycarbonyl group may be removed, for example, by treatment with a suitable acid as hydrochloric, sulphuric or phosphoric acid or trifluoroacetic acid and an arylmethoxycarbonyl group such as a benzyloxycarbonyl group may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon, or by treatment with a Lewis acid for example boron tris(trifluoroacetate).
- a suitable alternative protecting group for a primary amino group is, for example, a phthaloyl group which may be removed by treatment with an alkylamine, for example dimethylaminopropylamine, or with hydrazine.
- a suitable protecting group for a hydroxy group is, for example, an acyl group, for example an alkanoyl group such as acetyl, an aroyl group, for example benzoyl, or an arylmethyl group, for example benzyl.
- the deprotection conditions for the above protecting groups will necessarily vary with the choice of protecting group.
- an acyl group such as an alkanoyl or an aroyl group may be removed, for example, by hydrolysis with a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide.
- a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide.
- an arylmethyl group such as a benzyl group may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon.
- a suitable protecting group for a carboxy group is, for example, an esterifying group, for example a methyl or an ethyl group which may be removed, for example, by hydrolysis with a base such as sodium hydroxide, or for example a t-butyl group which may be removed, for example, by treatment with an acid, for example an organic acid such as trifluoroacetic acid, or for example a benzyl group which may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon.
- the protecting groups may be removed at any convenient stage in the synthesis using conventional techniques well known in the chemical art.
- the invention further provides for a compound of the formula (XVI) or hydrolysable esters or amides thereof:
- R 7 is an hydroxy group or a C 1-4 alkoxy group.
- R 1 is as defined above regarding formula (I).
- a compound of formula (XVI) may be an intermediate to formula (I).
- the invention further provides for a compound of the formula (XVI2) or hydrolysable esters or amides thereof:
- R 7 is an hydroxy group or a C 1-3 alkoxy group.
- R 1 is as defined above regarding formula (I).
- a compound of formula (XVI2) may be an- intermediate to formula (12).
- the compounds defined in the present invention possess cholesterol absorption inhibitory activity. These properties may be assessed, using the following biological tests.
- mice C57BL/6 female mice were maintained on regular chow diet and housed in individual cages to collect faeces. Mice were fasted for 3 hours and then gavaged with vehicle or compound. One to ten hours later the mice were gavaged with radiolabeled cholesterol. Six hours after the 14 C-cholesterol gavage blood sample was taken via the tail and plasma prepared to determine how much cholesterol was absorbed. 24 hours after the gavage of 14 C- cholesterol the mice were bled and plasma analysed for radioactivity. Faeces were also collected for 24 hours to assess absorption efficiency. References
- Example 1 Administration of 0.2 ⁇ mol/kg of Example 1 gave 61% inhibition of 14 C-cholesterol absorption (procedure A). Administration of 0.2 ⁇ mol/kg of Example 3 gave 67% inhibition of 14 C-cholesterol absorption (procedure A).
- a pharmaceutical composition which comprises a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, as defined hereinbefore in association with a pharmaceutically-acceptable diluent or carrier.
- the composition may be in a form suitable for oral administration, for example as a tablet or capsule, for parenteral injection (including intravenous, subcutaneous, intramuscular, intravascular or infusion) as a sterile solution, suspension or emulsion, for topical administration as an ointment or cream or for rectal administration as a suppository.
- parenteral injection including intravenous, subcutaneous, intramuscular, intravascular or infusion
- a sterile solution, suspension or emulsion for topical administration as an ointment or cream or for rectal administration as a suppository.
- the above compositions may be prepared in a conventional manner using conventional excipients.
- the compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, will normally be administered to a warm-blooded animal at a unit dose within the range of approximately 0.02-100 mg/kg, preferably 0.02 -50 mg/kg, and this normally provides a therapeutically-effective dose.
- a daily dose in the range of 1-50 mg/kg, particularly 0.1-10 mg/kg is employed.
- a daily dose in the rage of 0.01-20 mg/kg is employed.
- the daily dose of a compound of formula (I) is less than or equal to 100 mg.
- the daily dose will necessarily be varied depending upon the host treated, the particular route of administration, and the severity of the illness being treated. Accordingly the optimum dosage may be determined by the practitioner who is treating any particular patient.
- a unit dose form such as a tablet or capsule will usually contain, for example 1-250 mg of active ingredient.
- the compounds defined in the present invention are effective cholesterol absorption inhibitors, and accordingly have value in the treatment of disease states associated with hyperlipidaemic conditions.
- a compound of the formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, as defined hereinbefore for use as a medicament there is provided the use of a compound of the formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, as defined hereinbefore in the manufacture of a medicament for use in the production of a cholesterol absorption inhibitory effect in a warm-blooded animal, such as man.
- this relates to the treatment of hyperlipidaemic conditions in a warm-blooded animal, such as man. Additionally is relates to the treatment of dyslipidemic conditions and disorders such as hyperlipidaemia, hypertrigliceridemia, hyperbetalipoproteinemia (high LDL), hyperprebetalipoproteinemia (high VLDL), hyperchylomicronemia, hypolipoproteinemia, hypercholesterolemia, hyperlipoproteinemia and hypoalphalipoproteinemia (low HDL) in a warm-blooded animal, such as man.
- dyslipidemic conditions and disorders such as hyperlipidaemia, hypertrigliceridemia, hyperbetalipoproteinemia (high LDL), hyperprebetalipoproteinemia (high VLDL), hyperchylomicronemia, hypolipoproteinemia, hypercholesterolemia, hyperlipoproteinemia and hypoalphalipoproteinemia (low HDL) in a warm-blooded animal, such as man.
- cardiovascular diseases vascular dysfunction, endothelial dysfunction, heart failure, coronary heart diseases, cardiovascular diseases, myocardial infarction, angina pectoris, peripheral vascular diseases, inflammation of cardiovascular tissues such as heart, valves, vasculature, arteries and veins, aneurisms, stenosis, restenosis, vascular plaques, vascular fatty streaks, leukocytes, monocytes and/or macrophage infiltration, intimal thickening, medial thinning, infectious and surgical trauma and vascular thrombosis, stroke and transient ischaemic attacks in a warm-blooded animal, such as man.
- cardiovascular tissues such as heart, valves, vasculature, arteries and veins, aneurisms, stenosis, restenosis, vascular plaques, vascular fatty streaks, leukocytes, monocytes and/or macrophage infiltration, intimal thickening, medial thinning, infectious and surgical trauma and vascular thrombosis,
- the production of a cholesterol absorption inhibitory effect or a cholesterol lowering effect also relates to a method of treating and/or preventing atherosclerotic lesions, a method of preventing plaque rupture and a method of promoting lesion regression.
- a method of inhibiting monocytes-macrophage accumulation in atherosclerotic lesions a method of inhibiting expression of matrix metalloproteinases in atherosclerotic lesions, a method of inhibiting the destabilization of atherosclerotic lesions, a method for preventing atherosclerotic plaque rupture and a method of treating unstable angina.
- the production of a cholesterol absorption inhibitory effect or a cholesterol lowering effect also relates to a method of treating sitosterolemia.
- Compounds of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof may also have value in the treatment or prevention of Alzheimer's Disease (see for example WO 02/096415). Therefore in a further aspect of the invention, there is provided a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, for use in the treatment or prevention of Alzheimer's Disease.
- Compounds of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof may also have value in the treatment or prevention cholesterol associated tumors. Therefore in a further aspect of the invention, there is provided a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, for use in the treatment or prevention of cholesterol associated tumors.
- Compounds of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof may also have value in the treatment or prevention of vascular inflammation (see for example WO 03/026644). Therefore in a further aspect of the invention, there is provided a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, for use in the treatment or prevention of vascular inflammation.
- a method for producing a cholesterol absorption inhibitory effect in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
- the cholesterol absorption inhibitory activity defined hereinbefore may be applied as a sole therapy or may involve, in addition to a compound of the invention, one or more other substances and/or treatments. Such conjoint treatment may be achieved by way of the simultaneous, sequential or separate administration of the individual components of the treatment.
- a pharmaceutical product comprising a compound of the formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, as defined hereinbefore and an additional cholesterol absorption inhibitory substance as defined hereinbefore and an additional hypolipidaemic agent for the conjoint treatment of hyperlipidaemia.
- the compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof may be administered in association with cholesterol biosynthesis inhibitors, or pharmaceutically acceptable salts, solvates, solvates of such salts or prodrugs thereof.
- Suitable cholesterol biosynthesis inhibitors include HMG Co-A reductase inhibitors, squalene synthesis inhibitors and squalene epoxidase inhibitors.
- Suitable squalene synthesis inhibitors are e.g squalestatin 1, TAK 475 and compounds described in WO2005012284.
- a suitable squalene epoxidase inhibitor is NB- 598.
- the compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof may be administered in association with an HMG Co-A reductase inhibitor, or pharmaceutically acceptable salts, solvates, solvates of such salts or prodrugs thereof.
- HMG Co-A reductase inhibitors, pharmaceutically acceptable salts, solvates, solvates of such salts or prodrugs thereof are statins well known in the art.
- statins are fluvastatin, lovastatin, pravastatin, simvastatin, atorvastatin, cerivastatin, bervastatin, dalvastatin, mevastatin and rosuvastatin, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
- a further particular statin is pitavastatin, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
- a particular statin is atorvastatin, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
- a more particular statin is atorvastatin calcium salt.
- a further particular statin is rosuvastatin, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
- a preferable particular statin is rosuvastatin calcium salt.
- a method for producing a cholesterol lowering effect in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof in simultaneous, sequential or separate administration with an effective amount of an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
- a pharmaceutical composition which comprises a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, in association with a pharmaceutically acceptable diluent or carrier.
- kits comprising a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
- kits comprising: a) a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, in a first unit dosage form; b) an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof; in a second unit dosage form; and c) container means for containing said first and second dosage forms.
- a compound of formula (I) or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, in a first unit dosage form
- an HMG Co-A reductase inhibitor or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof
- container means for containing said first and second dosage forms.
- kits comprising: a) a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, together with a pharmaceutically acceptable diluent or carrier, in a first unit dosage form; b) an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, in a second unit dosage form; and c) container means for containing said first and second dosage forms.
- a combination treatment comprising the administration of an effective amount of a compound of the formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, optionally together with a pharmaceutically acceptable diluent or carrier, with the simultaneous, sequential or separate administration of an effective amount of an HMG Co-A reductase inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, optionally together with a pharmaceutically acceptable diluent or carrier to a warm-blooded animal, such as man in need of such therapeutic treatment.
- a combination treatment comprising the administration of an effective amount of a compound of the formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, optionally together with a pharmaceutically acceptable diluent or carrier, with the simultaneous, sequential or separate administration of a matrix metalloproteinase inhibitor.
- the compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof may be administered in association with an ileal bile acid (IBAT) inhibitor or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
- IBAT ileal bile acid
- Suitable compounds possessing EBAT inhibitory activity for use in combination with compounds of the present invention have been described, see for instance the compounds described in WO 93/16055, WO 94/18183, WO 94/18184, WO 94/24087, WO 96/05188, WO 96/08484, WO 96/16051, WO 97/33882, WO 98/07749,WO 98/38182, WO 98/40375, WO 98/56757, WO
- IBAT inhibitors for use in combination with compounds of the present invention are the benzothiepines, 1,2-benzothiazepines, 1,4-benzothiazepines and 1,5-benzothiazepines.
- a further suitable class of IBAT inhibitors is the 1,2,5- benzothiadiazepines.
- One particular suitable compound possessing IBAT inhibitory activity for use in combination with compounds of the present invention is (3i?,5/?)-3-butyl-3-ethyl-l,l-dioxido- 5-phenyl-2,3,4,5-tetrahydro-l,4-benzothiazepin-8-yl beta-D-glucopyranosiduronic acid (EP 864582).
- a further suitable compound possessing DBAT inhibitory activity for use in combination with compounds of the present invention is S-8921 (EP 597 107) and BARI- 1741.
- a further suitable IBAT inhibitor for use in combination with compounds of the present invention is the compound:
- a particular IBAT inhibitor for use in combination with compounds of the present invention is selected from any one of Examples 1-120 of WO 02/50051, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and the compounds of Examples 1-120 are incorporated herein by reference. Claims 1-15 of WO 02/50051 are also incorporated herein by reference.
- a particular IBAT inhibitor selected from WO 02/50051 for use in combination with compounds of the present invention is selected from any one of: l,l-dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N- ⁇ (R)-l'-phenyl-r-[iV'-(carboxymethyl) carbamoyl]methyl ⁇ carbamoylmethoxy)-2,3,4,5-tetrahydro-l,5-benzothiazepine; l,l-dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N- ⁇ (R)- ⁇ -[iV'-(carboxymethyl)carbamoyl]-4- hydroxybenzyl ⁇ carbamoylmethoxy)-2,3,4,5-tel ⁇ ahydro-l,5-benzothiazepine; l,l-dioxo-3,3-dibutyl-5-pheny
- a particular BBAT inhibitor for use in combination with compounds of the present invention is selected from any one of Examples 1-44 of WO 03/020710, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and the compounds of
- a particular DBAT inhibitor selected from WO 03/020710 for use in combination with compounds of the present invention is selected from any one of: l,l-dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(A/ r - ⁇ (R)- ⁇ -[N'-(2-(S)-3-(R)-4-(R)-5-(R)- 2,3,4,5,6-pentahydroxyhexyl)carbamoyl]benzyl ⁇ carbamoylmethoxy)-2,3,4,5-tetrahydro-l,5- benzothiazepine; l,l-dioxo-3-butyl-3-ethyl-5-phenyl-7-methylthio-8-(iV- ⁇ (R)- ⁇ -[-V-(2-(S)-3-(R)-4-(R
- a particular IBAT inhibitor for use in combination with compounds of the present invention is selected from any one of Examples 1-7 of WO 03/022825, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and the compounds of
- a particular BBAT inhibitor selected from WO 03/022825 for use in combination with compounds of the present invention is selected from any one of: l,l-dioxo-3(R)-3-butyl-3-ethyl-5-(R)-5-phenyl-8-[N-((R)- ⁇ -carboxybenzyl) carbamoylmethoxy]-2,3,4,5-tetrahydro-l,4-benzothiazepine; l,l-dioxo-3(S)-3-butyl-3-ethyl-5-(S)-5- ⁇ henyl-8-[iV-((R)- ⁇ -carboxybenzyl) carbamoylmethoxy]-2,3,4,5-tetrahydro-l,4-benzothiazepine; l,l-dioxo-3(R)-3-but
- a particular IBAT inhibitor for use in combination with compounds of the present invention is selected from any one of Examples 1-4 of WO 03/022830, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and the compounds of Examples 1-4 are incorporated herein by reference. Claims 1-8 of WO 03/022830 are also incorporated herein by reference.
- a particular IBAT inhibitor selected from WO 03/022830 for use in combination with compounds of the present invention is selected from any one of: l.l-dioxo-S-butyl-S-ethyl ⁇ -hydroxy-S-phenyl-T-CN-fC ⁇ - ⁇ -tN-
- a particular IBAT inhibitor for use in combination with compounds of the present invention is selected from any one of Examples 1-39 of WO 03/022286, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and the compounds of
- a particular IBAT inhibitor selected from WO 03/022286 for use in combination with compounds of the present invention is selected from any one of: l,l-dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N- ⁇ (R)- ⁇ -[iV-((R)-l-carboxy-2-methylthio- ethyl)carbamoyl]-4-hydroxybenzyl ⁇ carbamoylmethoxy)-2,3,4,5-tetrahydro-l,2,5- benzothiadiazepine; l,l-dioxo-3,3-dibutyl-5- ⁇ henyl-7-methylthio-8-(N- ⁇ (R)- ⁇ -[N-((S)-l-carboxy-2-(R)- hydroxypropyl)carbamoyl]-4-
- a particular EBAT inhibitor for use in combination with compounds of the present invention is selected from any one of Examples 1-7 of WO 03/091232, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and the compounds of Examples 1-7 are incorporated herein by reference. Claims 1-10 of WO 03/091232 are also incorporated herein by reference.
- a particular IBAT inhibitor selected from WO 03/091232 for use in combination with compounds of the present invention is selected from any one of: l,l-Dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N- ⁇ (R)- ⁇ -[iV-(2-(S)-3-(R)-4-(R)-5-(R)- 2,3,4,5,6-pentahydroxyhexyl)carbamoyl]benzyl ⁇ carbamoylmethoxy)-2,3,4,5-tetrahydro- 1 ,2,5-benzothiadiazepine; l,l-Dioxo-3,3-dibutyl-5- ⁇ henyl-7-methylthio-8-(N- ⁇ (R)- ⁇ -[N-(2-(S)-3-(R)-4-(R)-5-(R)- 2,3,4,5,6-pentahydroxyhexyl)carbamoyl]-4-hydroxybenzyl ⁇
- Suitable IBAT inhibitors having the above structure for use in combination with compounds of the present invention are selected from any one of: lJ-dioxo-S.S-dibutyl-S-phenyl ⁇ -methylthio- ⁇ -CN-K ⁇ - ⁇ -tN'-Cr ⁇ -l-carboxyethyl) carbamoyl]benzyl ⁇ carbamoylmethoxy)-2,3,4,5-tetrahydro-l,5-benzothiazepine; l,l-dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(N- ⁇ (i?)- ⁇ -[N'-((5)-l-carboxypropyl) carbamoyl]benzyl ⁇ carbamoylmethoxy)-2,3,4,5-tetrahydro-l,5-benzothiazepine; 1 ,l-dioxo-3,3-dibutyl-5- ⁇ henyl
- an DBAT inhibitor or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof is an IB AT inhibitor or a pharmaceutically acceptable salt thereof. Therefore in an additional feature of the invention, there is provided a combination of a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof and an IBAT inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
- a method for producing a cholesterol lowering effect in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof in simultaneous, sequential or separate administration with an effective amount of an IBAT inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
- a pharmaceutical composition which comprises a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and an IBAT inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, in association with a pharmaceutically acceptable diluent or carrier.
- kits comprising a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and an IBAT inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
- kits comprising: a) a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, in a first unit dosage form; b) an IBAT inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof; in a second unit dosage form; and c) container means for containing said first and second dosage forms.
- kits comprising: a) a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, together with a pharmaceutically acceptable diluent or carrier, in a first unit dosage form; b) an IBAT inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, in a second unit dosage form; and c) container means for containing said first and second dosage forms.
- a combination treatment comprising the administration of an effective amount of a compound of the formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, optionally together with a pharmaceutically acceptable diluent or carrier, with the simultaneous, sequential or separate administration of an effective amount of an IB AT inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, optionally together with a pharmaceutically acceptable diluent or carrier to a warmblooded animal, such as man in need of such therapeutic treatment.
- a combination treatment comprising the administration of an effective amount of a compound of the formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, optionally together with a pharmaceutically acceptable diluent or carrier, with the simultaneous, sequential or separate administration of an effective amount of an IBAT inhibitor, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, optionally together with a pharmaceutically acceptable diluent or carrier to a warm- blooded animal, such as man in need of such therapeutic treatment.
- the compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof may be administered in association with a PPAR alpha and/or gamma and/or delta agonist, or pharmaceutically acceptable salts, solvates, solvates of such salts or prodrugs thereof.
- a PPAR alpha and/or gamma and/or delta agonist or pharmaceutically acceptable salts, solvates, solvates of such salts or prodrugs thereof.
- Suitable PPAR alpha and/or gamma and/or delta agonists, pharmaceutically acceptable salts, solvates, solvates of such salts or prodrugs thereof are well known in the art.
- a PPAR alpha and/or gamma and/or delta agonist refers to muraglitazar (BMS 298585), rivoglitazone (CS-OIl), netoglitazone (MCC- 555), balaglitazone (DRF-2593, NN-2344), clofibrate, fenofibrate, bezafibrate, gemfibrozil , ciprofibrate, beclofibrate, etofibrate, gemcabene, pioglitazone, rosiglitazone, edaglitazone, LY-293111, MBX-2044, AVE-0847, AVE-8134, CLX-0921, DRF-10945, DRF-4832, LY- 518674, naveglitazar (LY-818), LY-929, 641597, GW-590735, GW-677954, GW-501516, metaglidazen (B
- a PPAR alpha and/or gamma and/or delta agonist refers to (S)-2-ethoxy-3-[4-(2- ⁇ 4-methanesulphonyloxyphenyl ⁇ ethoxy) phenyl]propanoic acid (tesaglitazar) and pharmaceutically acceptable salts thereof.
- a method for producing a cholesterol lowering effect in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof in simultaneous, sequential or separate administration with an effective amount of a PPAR alpha and/or gamma and/or delta agonist, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
- a pharmaceutical composition which comprises a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and a PPAR alpha and/or gamma and/or delta agonist, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, in association with a pharmaceutically acceptable diluent or carrier.
- kits comprising a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and a PPAR alpha and/or gamma and/or delta agonist, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
- kits comprising: a) a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, in a first unit dosage form; b) a PPAR alpha and/or gamma and/or delta agonist, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof; in a second unit dosage form; and c) container means for containing said first and second dosage forms.
- kits comprising: a) a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, together with a pharmaceutically acceptable diluent or carrier, in a first unit dosage form; b) a PPAR alpha and/or gamma and/or delta agonist, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, in a second unit dosage form; and c) container means for containing said first and second dosage forms.
- a combination treatment comprising the administration of an effective amount of a compound of the formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, optionally together with a pharmaceutically acceptable diluent or carrier, with the simultaneous, sequential or separate administration of an effective amount of a PPAR alpha and/or gamma and/or delta agonist, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, optionally together with a pharmaceutically acceptable diluent or carrier to a warm-blooded animal, such as man in need of such therapeutic treatment.
- a combination treatment comprising the administration of an effective amount of a compound of the formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, optionally together with a pharmaceutically acceptable diluent or carrier, with the simultaneous, sequential or separate administration of an -agonists to the receptor HM74A (nicotinic acid receptor).
- HM74A receptor agonists may be nicotine acid derivates.
- HM74A receptor agonists may be nicotine acid derivates.
- HM74A receptor agonists may be nicotine acid derivates.
- HM74A receptor agonists may be nicotine acid derivates.
- HM74A receptor agonists may be nicotine acid derivates.
- HM74A receptor agonists may be nicotine acid derivates.
- HM74A receptor agonists may be nicotine acid derivates.
- nicotinic acid derivative means a compounds comprising a pyridine-3-carboxylate structure or a
- HM74A receptor agonists may be anthranilic acid derivatives described in WO-2005016867 and WO-2005016870.
- nicotinic receptor agonists are for example compounds described in WO2005011677, WO2004032928 and WO2004033431.
- a method for producing a cholesterol lowering effect in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof in simultaneous, sequential or separate administration with an effective amount of a HM74A receptor agonists, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
- a pharmaceutical composition which comprises a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and a HM74A receptor agonists, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, in association with a pharmaceutically acceptable diluent or carrier.
- a combination treatment comprising the administration of an effective amount of a compound of the formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, optionally together with a pharmaceutically acceptable diluent or carrier, with the simultaneous, sequential or separate administration of a mediator of reverse cholesterol transport i.e. a peptide ( Apo A-I mimetic peptides) or small molecule mediator of reverse cholesterol transport e.g. those described in Circ. 2002;105:290, Circ. 2004.109:3215, Curr.Opinion in Lipidology 2004,15:645 or in WO2004094471.
- a mediator of reverse cholesterol transport i.e. a peptide ( Apo A-I mimetic peptides) or small molecule mediator of reverse cholesterol transport e.g. those described in Circ. 2002;105:290, Circ. 2004.109:3215, Curr.Opinion in Lipidology 2004,15:645 or in WO2004
- the compound of formula I, or a pharmaceutically acceptable salt or solvate thereof, or a solvate of such a salt may be administered in association with an anti-obesity compound, or pharmaceutically acceptable salts, solvates, solvates of such salts or prodrugs thereof, for example a pancreatic lipase inhibitor e.g.
- orlistat EP 129,748 or an appetite (satiety) controlling substance for example sibutramine (GB 2,184,122 and US 4,929,629), a cannabinoid 1 (CBl) antagonist or inverse agonist, or pharmaceutically acceptable salts, solvates, solvates of such salts or prodrugs thereof, for example rimonabant (EP 656354 ) and as described in WO01/70700 or a melanin concentrating hormone (MCH) antagonist, or pharmaceutically acceptable salts, solvates, solvates of such salts or prodrugs thereof, for example as described in WO 04/004726.
- sibutramine GB 2,184,122 and US 4,929,629
- CBDl cannabinoid 1
- MCH melanin concentrating hormone
- the compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof may be administered in association with a bile acid sequestrant or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
- Suitable bile acid sequestrants include cholestyramine, cholestipol and cosevelam hydrochloride.
- a method for producing a cholesterol lowering effect in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof in simultaneous, sequential or separate administration with an effective amount of a bile acid sequestrant, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
- a pharmaceutical composition which comprises a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and a bile acid sequestrant, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, in association with a pharmaceutically acceptable diluent or carrier.
- the compound of formula I may be administered in association with a cholesteryl ester transfer protein (CETP) inhibitor, or pharmaceutically acceptable salts, solvates, solvates of such salts or prodrugs thereof, for example JTT-705, torcetrapib (CP-529414), Bay 194789 and those referenced and described in WO05033082 or WO 00/38725 page 7 line 22 - page 10, line 17 which are incorporated herein by reference.
- CETP cholesteryl ester transfer protein
- the compound of formula I may be administered in association with a acyl coenzymA: cholesterol O-acyltransferase (ACAT) inhibitor, or pharmaceutically acceptable salts, solvates, solvates of such salts or prodrugs thereof, for example pactimibe (CS-505), eflucimibe (F-12511) and SMP-797, avasimibe or K604.
- ACAT cholesterol O-acyltransferase
- pharmaceutically acceptable salts, solvates, solvates of such salts or prodrugs thereof for example pactimibe (CS-505), eflucimibe (F-12511) and SMP-797, avasimibe or K604.
- the compound of formula I association with modulators for example GW-4064 and INT-747of nuclear receptors such as farnesoid or a pharmaceutically acceptable salt or solvate thereof, or a solvate of such a salt, may be administered in X receptor (FXR), or pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof
- FXR X receptor
- the compound of formula I, or a pharmaceutically acceptable salt or solvate thereof, or a solvate of such a salt may be administered in association with a phytosterol compound, or pharmaceutically acceptable salts, solvates, solvates of such salts or prodrugs thereof, for example stanols.
- a phytosterol compound or pharmaceutically acceptable salts, solvates, solvates of such salts or prodrugs thereof, for example stanols.
- An example of phytosterol analogs is FM- VP4.
- the compound of formula I may be administered in association with other therapies for the treatment of metabolic syndrome or type 2 diabetes and its associated complications, these include biguanide drugs, for example metformin, phenformin and buformin, insulin (synthetic insulin analogues, amylin) and oral antihyperglycemics (these are divided into prandial glucose regulators and alpha-glucosidase inhibitors).
- biguanide drugs for example metformin, phenformin and buformin
- insulin synthetic insulin analogues, amylin
- oral antihyperglycemics these are divided into prandial glucose regulators and alpha-glucosidase inhibitors.
- An example of an alpha-glucosidase inhibitor is acarbose or voglibose or miglitol.
- a prandial glucose regulator is repaglinide or nateglinide.
- the compound of formula I, or a pharmaceutically acceptable salt or solvate thereof, or a solvate of such a salt may be administered in association with a sulfonylurea for example: glimepiride, glibenclamide (glyburide), gliclazide, glipizide, gliquidone, chloropropamide, tolbutamide, acetohexamide, glycopyramide, carbutamide, glibonuride, glisoxepid, glybuthiazole, glibuzole, glyhexamide, glymidine, glypinamide, phenbutamide, tolcylamide and tolazamide.
- a sulfonylurea for example: glimepiride, glibenclamide (glyburide), gliclazide, glipizide, gliquidone, chloropropamide, to
- the sulfonylurea is glimepiride or glibenclamide (glyburide). More preferably the sulfonylurea is glimepiride. Therefore the present invention includes administration of a compound of the present invention in conjunction with one, two or more existing therapies described in this paragraph.
- the doses of the other existing therapies for the treatment of type 2 diabetes and its associated complications will be those known in the art and approved for use by regulatory bodies for example the FDA and may be found in the Orange Book published by the FDA. Alternatively smaller doses may be used as a result of the benefits derived from the combination.
- a combination treatment comprising the administration of an effective amount of a compound of the formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, optionally together with a pharmaceutically acceptable diluent or carrier, with the simultaneous, sequential or separate administration one or more of the following agents selected from Group X:
- an antihypertensive compound for example althiazide, benzthiazide, captopril, carvedilol, chlorothiazide sodium, clonidine hydrochloride, cyclothiazide, delapril hydrochloride, dilevalol hydrochloride, doxazosin mesylate, fosinopril sodium, guanfacine hydrochloride, methyidopa, metoprolol succinate, moexipril hydrochloride, monatepil maleate, pelanserin hydrochloride, phenoxybenzemine hydrochloride, prazosin hydrochloride, primidolol, quinapril hydrochloride, quinaprilat, ramipril, terazosin hydrochloride, candesartan, candesartan cilexetil, telmisartan, amlodipine besylate, amlodipine maleate and be
- angiotensin ⁇ receptor antagonist for example candesartan, candesartan cilexetil, losartan, valsartan, irbesartan, tasosartan, telmisartan and eprosartan
- an andrenergic blocker for example bretylium tosylate, dihydroergotamine so mesylate, phentolamine mesylate, solypertine tartrate, zolertine hydrochloride, carvedilol or labetalol hydrochloride
- an alpha andrenergic blocker for example fenspiride hydrochloride, labetalol hydrochloride, proroxan and alfuzosin hydrochloride
- a beta andrenergic blocker for example acebutolol, acebutolol hydrochloride, alprenolol hydrochloride, atenolol, bunolol hydrochloride,
- an andrenergic stimulant for example combination product of chlorothiazide and methyldopa, the combination product of methyidopa hydrochlorothiazide and methyldopa, clonidi ⁇ e hydrochloride, clonidine, the combination product of chlorthalidone and clonidine hydrochloride and guanfacine hydrochloride
- > channel blocker for example a calcium channel blocker (for example clentiazem maleate, amlodipine besylate, isradipine, nimodipine, felodipine, nilvadipine, nifedipine, teludipine hydrochloride, diltiazem hydrochloride, belfosdil, verapamil hydrochloride or fostedil);
- ⁇ a diuretic for example the combination product of hydrochlorothiazide and spironolactone and the combination product of hydrochloro
- anti-anginal agents for example amlodipine besylate, amlodipine maleate, betaxolol hydrochloride, bevantolol hydrochloride, butoprozine hydrochloride, carvedilol, cinepazet maleate, metoprolol succinate, molsidomine, monatepil maleate, primidolol, ranolazine hydrochoride, tosifen or verapamil hydrochloride); > vasodilators for example coronary vasodilators (for example fostedil, azaclorzine hydrochloride, chromonar hydrochloride, clonitrate, diltiazem hydrochloride, dipyridamole, droprenilamine, erythrityl tetranitrate, isosorbide dinitrate, isosorbide mononitrate, lidoflazine, mioflazine hydrochloride, mixidine, molsidomine
- antithrombotic agents for example anagrelide hydrochloride, bivalirudin, cilostazol, dalteparin sodium, danaparoid sodium, dazoxiben hydrochloride, efegatran sulfate, enoxaparin sodium, fluretofen, ifetroban, ifetroban sodium, lamifiban, lotrafiban hydrochloride, napsagatran, orbofiban acetate, roxifiban acetate, sibrafiban, tinzaparin sodium, trifenagrel, abciximab and zolimomab aritox); > ⁇ fibrinogen receptor antagonists (for example roxifiban acetate, fradafiban, orbofiban, lotrafiban hydrochloride, tirofiban, xemilofiban, monoclonal antibody 7E3 and sibrafiban)
- antithrombotic agents for example anagrelide
- ⁇ platelet inhibitors for example cilostezol, clopidogrel bisulfate, epoprostenol, epoprostenol sodium, ticlopidine hydrochloride, aspirin, ibuprofen, naproxen, sulindae, indomethacin, mefenamate, droxicam, diclofenac, sulfinpyrazone and piroxicam, dipyridamole);
- platelet aggregation inhibitors for example acadesine, beraprost, beraprost sodium, ciprostene calcium, itezigrel, Hfarizine, lotrafiban hydrochloride, orbofiban acetate, oxagrelate, fradafiban, orbofiban, tirofiban and xemilofiban
- y hemorrheologic agents for example pentoxifylline
- lipoprotein associated coagulation inhibitors for example acadesine, beraprost, beraprost sodium, ciprostene calcium, itezigrel, Hfarizine, lotrafiban hydrochloride, orbofiban acetate, oxagrelate, fradafiban, orbofiban, tirofiban and xemilofiban
- y hemorrheologic agents for example pentoxifylline
- > lipoprotein associated coagulation inhibitors for example acadesine, berapros
- WO00224632 WO00103705, WO02090375 and WO00054759 (claim 1 and the named examples of these four application are incorporated herein by reference); P microsomal triglyceride transfer protein inhibitors for example implitapide ,CP-
- ApoAl expression inducer for example those described in WO2005032559 or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, optionally together with a pharmaceutically acceptable diluent or carrier to a warm-blooded animal, such as man in need of such therapeutic treatment.
- a method for producing a cholesterol lowering effect in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof in simultaneous, sequential or separate administration with an effective amount of a compound from Group X, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
- a pharmaceutical composition which comprises a compound of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, and a compound from Group X, or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, in association with a pharmaceutically acceptable diluent or carrier.
- the compounds of formula (I), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof are also useful as pharmacological tools in the development and standardisation of in vitro and in vivo test systems for the evaluation of the effects of inhibitors of cholesterol absorption in laboratory animals such as cats, dogs, rabbits, monkeys, rats and mice, as part of the search for new therapeutic agents.
- compound (12) What has been described above regarding the combination therapy with a compound of formula (I), and the use of a compound of formula (I) for the treatment or prophylaxis of various diseases and conditions also apply for compound (12).
- a pharmaceutical composition which comprises a compound of formula (XVI), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof in association with a pharmaceutic ally-acceptable diluent or carrier.
- a compound of the formula (XVI), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof for use in a method of prophylactic or therapeutic treatment of a warm-blooded animal, such as man.
- a compound of the formula (VI), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof for use as a medicament.
- a compound of the formula (XVI), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof in the manufacture of a medicament for use in the production of a cholesterol absorption inhibitory effect in a warm-blooded animal, such as man.
- a compound of the formula (XVI) or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof in the manufacture of a medicament for use in the treatment of hyperlipidaemic conditions in a warm-blooded animal, such as man.
- a method for producing a cholesterol absorption inhibitory effect in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (XVI), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
- a method of treating hyperlipidemic conditions in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (XVI), or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof.
- Buffers containing 10 mM ammonium acetate or 5 mM ammonium formiate/5mM formic acid were used.
- UV spectra were collected by a Aglent 1100 PDA or Waters 2996 DAD and the evaporative light scattering
- ELS Sedere Sedex 55 or 75.
- HPLC high performance liquid chromatography
- the reaction mixture was stirred for 90 min after which glycyl-3-cyclohexyl-D-alanine (Method 9) (0.012 g, 0.035 mmol) was added.
- the mixture was stirred for 20 h before the reaction was quenched by the addition of water (1 ml).
- the mixture was diluted with methanol (2 ml) and then ⁇ aBH4 (0.028 g, 0.740 mmol) was added. After 15 min the reaction was quenched by the addition of an aqueous solution of hydrochloric acid (IM, 1 ml) and most of the methanol was removed under reduced pressure.
- IM hydrochloric acid
- the reaction mixture was stirred for 60 min after which glycyl-3-methyl-D- valine (Method 10) (0.003 g, 0.016 mraol) was added.
- the mixture was stirred for 4 h before the solution was purified by preparative HPLC using a gradient of 20-60% MeCN in a 0.1M ammonium acetate buffer as eluent. Freeze-drying of the pure fractions gave the desired product.
- ⁇ , ⁇ -dimethyl-D- phenylalanine trifluoroacetate (10.2 mg, 0.033 mmol) was added and the mixture was stirred at ambient temperature overnight.
- the solution was purified with preparative HPLC on a C8 column, UV 240/260 nm. A gradient from 20 to 45 % MeCN in 0.1 M NH 4 OAc buffer was used as eluent. The pure fractions were collected and the MeCN was removed under reduced pressure. The remaining water solution was acidified to pH 1 with HCl (IM) and extracted with DCM. The organic phase was passed through a phase separator and concentrated under reduced pressure. The residue was dissolved in MeCN and water. After lyophilisation, the title compound was obtained.
- iV-(tert-butoxycarbonyl)glycine 2.0 g, 11.4 mmol
- DIPEA 4.0 g, 31 mmol
- TBTU 4.1 g, 12.8 mmol
- 3-cyclohexyl-D-alanine 2.1 g, 12.2 mmol
- the reaction mixture was transferred to a separation funnel and was then extracted with a water/acetic acid solution (100ml 5% acetic acid). The organic layer was separated and evaporated under reduced pressure.
- Tetraisopropyl orthotitanate (2.74 mL, 9.3 mmol) was added to a solution OfTiCl 4 (IM in CH 2 Cl 2 , 27.8 mL, 27.8 mmol) in CH 2 Cl 2 (150 mL) held at O 0 C under inert atmosphere.
- N,O-Bis(trimethylsilyl)acetamide (BSA, 20.1 mL, 82.1 mmol) was added and the mixture was stirred at 9O 0 C for one hour. The mixture was then given 45 0 C and tetrabutylammonium fluoride trihydrate (TBAF, cat., 1 g) was added and the mixture was stirred at 45 0 C for 1 hour. The mixture was then concentrated under reduced pressure and purified by flash-chromatography (heptane : EtOAc 5:1). This afforded 10.0 g (56 %) of the title compound as a white solid.
- BSA N,O-Bis(trimethylsilyl)acetamide
- tert-Butyl (4-formylphenoxy)acetate (93.7 g, 0.40 mol) was dissolved in dry toluene (200 mL), added 4-fluoroaniline (38.1 mL, 0.40 mol) and j?-toluene sulfonic acid (cat, ⁇ lg). The mixture was refluxed in a Dean-Stark apparatus for 2 hours, cooled at an icebath and a precipitate was formed. The precipitate was filtered, washed with cold heptane and dried to afford the title compound.
- Tetraisopropyl orthotitanate (0.21 mL, 0.72 mmol) was added to a solution OfTiCl 4 (IM in CH 2 Cl 2 , 2.16 mL, 2.16 mmol) in CH 2 Cl 2 (40 mL) held at O 0 C under inert atmosphere. The mixture was stirred for ten minutes, then (4S) ⁇ 3-[( ⁇ [2-(l,3-benzodioxol-5-yl)-5,5-dimethyl-
- N,O-Bis(trimethylsilyl)acetamide (BSA, 1.50 mL, 6.10 mmol) was added and the mixture was stirred at 9O 0 C for one hour. The mixture was then given 45 0 C and tetrabutylammonium fluoride (TBAF, cat., 0.1 g) was added and the mixture was stirred at 45 0 C for 19 hours. The mixture was then concentrated under reduced pressure and purified by flash-chromatography (heptane : EtOAc 4:1). This afforded the title compound.
- BSA N,O-Bis(trimethylsilyl)acetamide
- N-(tert-butoxycarbonyl)-b,b-dimethyl-D-phenylalanine f ⁇ rt-butyl ammonium salt (51.2 mg, 0.14 mmol) was dissolved in DCM (15 ml). Water (10 ml) was added and the mixture was acidified to pH 1 with HCl (IM). The organic phase was washed with water (3x10 ml) and the water phase extracted with DCM (3x10 ml). The solvent was removed under reduced pressure. The residue was dissolved in DCM (4 ml) and TFA (2.5 ml) was added and the mixture was stirred for 2 hours. The solvent was removed under reduced pressure and the residue was dried under vacuum overnight. The title compound was obtained. M/z: 194.18 (M+l).
- N,O- Bis(trirnethylsilyl)acetamide (BSA, 2.4 mL, 9.8 mmol) was added and the mixture was stirred at 9O 0 C for one hour. The mixture was then given 45 0 C and tetrabutylammonium fluoride (TBAF, 0.2 g) was added. The mixture was stirred at 45 0 C for 2 hours. After cooling, the mixture was concentrated under reduced pressure and purified by flash-chromatography (Heptane : EtOAc 4:1). This afforded the title compound.
- BSA N,O- Bis(trirnethylsilyl)acetamide
- the reaction was quenched by addition of 0.4ml MeOH.
- the aq-phase was extracted with 100 ml diethyl ether and the combined organic phases were washed with ca 2% NaHCO3 followed by brine.
- the organic phase was dried with MgSO4 and concentrated to yield the title compound.
- Triphenyl phosphine (0.105 g, 0.400 mmol) was added to a solution of ⁇ 4-[(2R,3R)-l-(4- fluoro-phenyl)-3 -(3 -nitro-pyridin-2-yldisulf anyl)-4-oxo-azetidin-2-yl] -phenoxy ⁇ -acetic acid (0.180 g, 0.359 mmol) in acetone/water (4 mL/1 mL) at RT. The mixture was stirred for 15 min before the solvent was removed under reduced pressure. The residue was dissolved in DMF (5 mL).
- Triethylamine (0.20 mL, 1.4 mmol) and (R or S)-2-bromo-l-(2,3-dihydro- benzo[l,4]dioxin-6-yl)-ethanol (0.220 g, 0.849 mmol) were added and the solution was stirred at room temperature for 2 h.
- the reaction was quenched by the addition of NH4OAc (aq, 0.1 M, 3 mL) and the resulting mixture was purified by preparative HPLC using a gradient of 20- 70% MeCN in a 0.1M ammonium acetate buffer as eluent. Freeze-drying of the pure fractions gave of the desired product.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Hospice & Palliative Care (AREA)
- Obesity (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Urology & Nephrology (AREA)
- Diabetes (AREA)
- Hematology (AREA)
- Vascular Medicine (AREA)
- Psychiatry (AREA)
- Epidemiology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
Claims
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2007016398A MX2007016398A (en) | 2005-06-22 | 2006-06-21 | Novel 2-azetidinone derivatives as cholesterol absorption inhibitors for the treatment of hyperlipidaemic conditions. |
JP2008518088A JP2008546774A (en) | 2005-06-22 | 2006-06-21 | Compound VI |
US11/993,463 US7906502B2 (en) | 2005-06-22 | 2006-06-21 | 2-azetidinone derivatives as cholesterol absorption inhibitors for the treatment of hyperlipidaemic conditions |
BRPI0612109A BRPI0612109A2 (en) | 2005-06-22 | 2006-06-21 | compound, methods of treating or preventing a disease, pharmaceutical formulation, and process for preparing a compound |
AU2006259898A AU2006259898B2 (en) | 2005-06-22 | 2006-06-21 | Novel 2-azetidinone derivatives as cholesterol absorption inhibitors for the treatment of hyperlipidaemic conditions |
EP06747955A EP1896459A4 (en) | 2005-06-22 | 2006-06-21 | Novel 2-azetidinone derivatives as cholesterol absorption inhibitors for the treatment of hyperlipidaemic conditions |
CA002610036A CA2610036A1 (en) | 2005-06-22 | 2006-06-21 | Novel 2-azetidinone derivatives as cholesterol absorption inhibitors for the treatment of hyperlipidaemic conditions |
NO20076138A NO20076138L (en) | 2005-06-22 | 2007-11-28 | New 2-azetidinone derivatives as cholesterol absorption inhibitors for the treatment of hyperlipidemic conditions |
IL187741A IL187741A0 (en) | 2005-06-22 | 2007-11-28 | Novel 2-azetidinone derivatives as cholesterol absorption inhibitors for the treatment of hyperlipidaemic conditions |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE0501464 | 2005-06-22 | ||
SE0501464-2 | 2005-06-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006137797A1 true WO2006137797A1 (en) | 2006-12-28 |
Family
ID=37570735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/SE2006/000766 WO2006137797A1 (en) | 2005-06-22 | 2006-06-21 | Novel 2-azetidinone derivatives as cholesterol absorption inhibitors for the treatment of hyperlipidaemic conditions |
Country Status (20)
Country | Link |
---|---|
US (1) | US7906502B2 (en) |
EP (1) | EP1896459A4 (en) |
JP (1) | JP2008546774A (en) |
KR (1) | KR20080017475A (en) |
CN (1) | CN101243076A (en) |
AR (1) | AR057072A1 (en) |
AU (1) | AU2006259898B2 (en) |
BR (1) | BRPI0612109A2 (en) |
CA (1) | CA2610036A1 (en) |
EC (1) | ECSP078051A (en) |
IL (1) | IL187741A0 (en) |
MX (1) | MX2007016398A (en) |
MY (1) | MY148538A (en) |
NO (1) | NO20076138L (en) |
RU (1) | RU2409572C2 (en) |
SA (1) | SA06270197B1 (en) |
TW (1) | TW200728302A (en) |
UY (1) | UY29613A1 (en) |
WO (1) | WO2006137797A1 (en) |
ZA (1) | ZA200710604B (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008017381A1 (en) | 2006-08-08 | 2008-02-14 | Sanofi-Aventis | Arylaminoaryl-alkyl-substituted imidazolidine-2,4-diones, processes for preparing them, medicaments comprising these compounds, and their use |
WO2009021740A2 (en) | 2007-08-15 | 2009-02-19 | Sanofis-Aventis | Substituted tetrahydronaphthalenes, process for the preparation thereof and the use thereof as medicaments |
DE102007063671A1 (en) | 2007-11-13 | 2009-06-25 | Sanofi-Aventis Deutschland Gmbh | New crystalline diphenylazetidinone hydrates, medicaments containing these compounds and their use |
WO2010003624A2 (en) | 2008-07-09 | 2010-01-14 | Sanofi-Aventis | Heterocyclic compounds, processes for their preparation, medicaments comprising these compounds, and the use thereof |
WO2010068601A1 (en) | 2008-12-08 | 2010-06-17 | Sanofi-Aventis | A crystalline heteroaromatic fluoroglycoside hydrate, processes for making, methods of use and pharmaceutical compositions thereof |
WO2010100255A1 (en) | 2009-03-06 | 2010-09-10 | Lipideon Biotechnology Ag | Pharmaceutical hypocholesterolemic compositions |
US7842684B2 (en) | 2006-04-27 | 2010-11-30 | Astrazeneca Ab | Diphenylazetidinone derivatives possessing cholesterol absorption inhibitor activity |
US7863265B2 (en) | 2005-06-20 | 2011-01-04 | Astrazeneca Ab | 2-azetidinone derivatives and their use as cholesterol absorption inhibitors for the treatment of hyperlipidaemia |
US7871998B2 (en) | 2003-12-23 | 2011-01-18 | Astrazeneca Ab | Diphenylazetidinone derivatives possessing cholesterol absorption inhibitory activity |
US7893048B2 (en) | 2005-06-22 | 2011-02-22 | Astrazeneca Ab | 2-azetidinone derivatives as cholesterol absorption inhibitors for the treatment of hyperlipidaemic conditions |
WO2011023754A1 (en) | 2009-08-26 | 2011-03-03 | Sanofi-Aventis | Novel crystalline heteroaromatic fluoroglycoside hydrates, pharmaceuticals comprising these compounds and their use |
US7906502B2 (en) | 2005-06-22 | 2011-03-15 | Astrazeneca Ab | 2-azetidinone derivatives as cholesterol absorption inhibitors for the treatment of hyperlipidaemic conditions |
WO2011157827A1 (en) | 2010-06-18 | 2011-12-22 | Sanofi | Azolopyridin-3-one derivatives as inhibitors of lipases and phospholipases |
WO2012120055A1 (en) | 2011-03-08 | 2012-09-13 | Sanofi | Di- and tri-substituted oxathiazine derivates, method for the production thereof, use thereof as medicine and drug containing said derivatives and use thereof |
WO2012120052A1 (en) | 2011-03-08 | 2012-09-13 | Sanofi | Oxathiazine derivatives substituted with carbocycles or heterocycles, method for producing same, drugs containing said compounds, and use thereof |
WO2012120054A1 (en) | 2011-03-08 | 2012-09-13 | Sanofi | Di- and tri-substituted oxathiazine derivates, method for the production thereof, use thereof as medicine and drug containing said derivatives and use thereof |
WO2012120056A1 (en) | 2011-03-08 | 2012-09-13 | Sanofi | Tetrasubstituted oxathiazine derivatives, method for producing them, their use as medicine and drug containing said derivatives and the use thereof |
WO2012120053A1 (en) | 2011-03-08 | 2012-09-13 | Sanofi | Branched oxathiazine derivatives, method for the production thereof, use thereof as medicine and drug containing said derivatives and use thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008108486A1 (en) * | 2007-03-06 | 2008-09-12 | Teijin Pharma Limited | 1-biarylazetidinone derivatives |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996016037A1 (en) * | 1994-11-18 | 1996-05-30 | Schering Corporation | Sulfur-substituted azetidinone compounds useful as hypocholesterolemic agents |
WO2004005247A1 (en) * | 2002-07-05 | 2004-01-15 | Astrazeneca Ab | Diphenylazetidinone derivatives for treating disorders of the lipid metabolism |
Family Cites Families (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
LT3300B (en) * | 1992-12-23 | 1995-06-26 | Schering Corp | Combination of a cholesterol biosynhtesis inhibitor and a beta- lactam cholesterol absorbtion inhibitor |
TWI337083B (en) | 2001-01-26 | 2011-02-11 | Schering Corp | Combinations of peroxisome proliferator-activated receptor (ppar) activator(s) and sterol absorption inhibitor(s) and treatments for vascular indications |
TWI291957B (en) | 2001-02-23 | 2008-01-01 | Kotobuki Pharmaceutical Co Ltd | Beta-lactam compounds, process for repoducing the same and serum cholesterol-lowering agents containing the same |
ATE345793T1 (en) | 2001-09-21 | 2006-12-15 | Schering Corp | TREATMENT OF XANTHOMA USING AZETIDINONE DERIVATIVES AS STEROL ABSORPTION INHIBITORS |
US7053080B2 (en) * | 2001-09-21 | 2006-05-30 | Schering Corporation | Methods and therapeutic combinations for the treatment of obesity using sterol absorption inhibitors |
CN1556700A (en) * | 2001-09-21 | 2004-12-22 | ���鹫˾ | Methods for treating or preventing vascular inflammation using sterol absorption inhibitor(s) |
US6761509B2 (en) * | 2002-07-26 | 2004-07-13 | Jan Erik Jansson | Concrete module for retaining wall and improved retaining wall |
US6960047B2 (en) * | 2002-08-02 | 2005-11-01 | Innovative Technology Application, Inc. | Protection barrier apparatus |
US20040092499A1 (en) | 2002-11-06 | 2004-05-13 | Schering Corporation | Methods and therapeutic combinations for the treatment of autoimmune disorders |
ATE406364T1 (en) | 2003-03-07 | 2008-09-15 | Schering Corp | SUBSTITUTED AZETIDINONE DERIVATIVES, THEIR PHARMACEUTICAL FORMULATIONS AND THEIR USE IN THE TREATMENT OF HYPERCHOLESTEROLEMIA |
CN1805926A (en) | 2003-05-05 | 2006-07-19 | 兰贝克赛实验室有限公司 | Process for the preparation of trans-isomers of diphenylazetidinone derivatives |
US20040259179A1 (en) | 2003-05-30 | 2004-12-23 | Gerd Assmann | Sterol markers as diagnostic tools in the prevention of atherosclerotic diseases and as tools to aid in the selection of agents to be used for the prevention and treatment of atherosclerotic disease |
US7002008B2 (en) * | 2003-06-16 | 2006-02-21 | Bomi Patel Framroze | Process for the preparation of 1-(4-fluorophenyl)-4(S)-(4-hydroxyphenyl)-azetidin-2-one |
JP2005015434A (en) | 2003-06-27 | 2005-01-20 | Kotobuki Seiyaku Kk | Serum cholesterol-lowering agent or prophylactic or therapeutic agent for atherosclerosis |
US20070072812A1 (en) | 2003-08-25 | 2007-03-29 | Microbia, Inc. | Quaternary salt derivatives of 1,4-diphenylazetidin-2-ones |
US20070161577A1 (en) | 2003-08-28 | 2007-07-12 | Martinez Eduardo J | Tethered dimers and trimers of 1,4-diphenylazetidin-2-ones |
EP1522541A1 (en) | 2003-10-07 | 2005-04-13 | Lipideon Biotechnology AG | Novel hypocholesterolemic compounds |
AU2004286838A1 (en) | 2003-10-30 | 2005-05-19 | Merck & Co., Inc. | 2-azetidinones as anti-hypercholesterolemic agents |
WO2005042692A2 (en) | 2003-10-31 | 2005-05-12 | Forbes Medi-Tech Inc. | A method of inhibiting the expression of genes which mediate cellular cholesterol influx in animal cells and inhibiting the production of proteins resulting from the expression of such genes using cholesterol absorption inhibitors |
US20050096307A1 (en) * | 2003-11-05 | 2005-05-05 | Schering Corporation | Combinations of lipid modulating agents and substituted azetidinones and treatments for vascular conditions |
DK1682499T3 (en) | 2003-11-10 | 2008-01-02 | Microbia Inc | 4-biarylyl-1-phenylazetidin-2-ones |
EP1687287A1 (en) | 2003-11-24 | 2006-08-09 | Hetero Drugs Limited | A novel process for ezetimibe intermediate |
JPWO2005058316A1 (en) | 2003-12-17 | 2007-07-12 | 大日本住友製薬株式会社 | Combinations and combinations |
CN100471835C (en) * | 2003-12-23 | 2009-03-25 | 默克公司 | Anti-hypercholesterolemic compounds |
WO2005062897A2 (en) | 2003-12-23 | 2005-07-14 | Dr. Reddy's Laboratories Ltd. | Polymorphs of ezetimibe and processes for the preparation thereof |
GB0329778D0 (en) * | 2003-12-23 | 2004-01-28 | Astrazeneca Ab | Chemical compounds |
BRPI0418004A (en) * | 2003-12-23 | 2007-04-17 | Astrazeneca Ab | compound or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof, methods for treating or preventing hyperlipidemic conditions, atherosclerosis, alzheimer's disease, and cholesterol-associated tumors, pharmaceutical formulation, combination, and process for preparing a compound or a pharmaceutically acceptable salt, solvate, solvate of such a salt or a prodrug thereof |
WO2005066120A2 (en) | 2003-12-30 | 2005-07-21 | Ranbaxy Laboratories Limited | Process for asymmetric synthesis of hydroxy-alkyl substituted azetidinone derivatives |
JP4590417B2 (en) | 2004-01-16 | 2010-12-01 | メルク・シャープ・エンド・ドーム・コーポレイション | NPC1L1 (NPC3) and method for identifying this ligand |
AP2006003832A0 (en) | 2004-01-20 | 2006-12-31 | Panacea Biotec Ltd | Pharmaceutical compositions comprising higher primary alcohols and ezetimibe and process of preparation thereof |
KR100725758B1 (en) * | 2004-03-30 | 2007-06-08 | 삼성광주전자 주식회사 | An electric blower and a supercharger for an automobile |
DK1756049T3 (en) | 2004-05-21 | 2008-02-25 | Sanofi Aventis Deutschland | Process for Preparation of 1,4-Diphenylazetidinone Derivatives |
DE102004025072A1 (en) | 2004-05-21 | 2005-12-15 | Sanofi-Aventis Deutschland Gmbh | Process for the preparation of diphenyl-azetidinone derivatives |
WO2006017257A2 (en) | 2004-07-12 | 2006-02-16 | Phenomix Corporation | Azetidinone derivatives |
US20060046996A1 (en) * | 2004-08-31 | 2006-03-02 | Kowa Co., Ltd. | Method for treating hyperlipidemia |
EP1807070A1 (en) * | 2004-09-29 | 2007-07-18 | Schering Corporation | Combinations of substituted azetidinones and cb1 antagonists |
US20060160785A1 (en) | 2004-12-03 | 2006-07-20 | Judith Aronhime | Ezetimibe polymorphs |
US20060135755A1 (en) | 2004-12-20 | 2006-06-22 | Schering Corporation | Process for the synthesis of azetidinones |
IL166149A0 (en) | 2005-01-05 | 2006-01-15 | Hadasit Med Res Service | Use of ezetimibe and amiodarone in protection against beta-amyloid neurotoxicity |
US20090005321A1 (en) | 2005-02-09 | 2009-01-01 | Microbia, Inc. | Phenylazetidinone Derivatives |
US20090186834A1 (en) | 2005-03-24 | 2009-07-23 | Microbia, Inc. | Diphenylheterocycle cholesterol absorption inhibitors |
US8361999B2 (en) | 2005-04-04 | 2013-01-29 | Pontificia Universidad Catolica De Chile | Methods of treating cholesterol gallstone disease with ezetimibe |
EP1877067A1 (en) | 2005-04-26 | 2008-01-16 | Microbia, Inc. | 4-biarylyl-1-phenylazetidin-2-one glucuronide derivatives for hypercholesterolemia |
EP1877373A2 (en) | 2005-05-05 | 2008-01-16 | Microbia, Inc. | Biphenylazetidinone cholesterol absorption inhibitors |
EP1879860A2 (en) | 2005-05-10 | 2008-01-23 | Microbia Inc. | 1,4-diphenyl-3-hydroxyalkyl-2-azetidinone derivatives for treating hypercholestrolemia |
KR20080017345A (en) | 2005-05-11 | 2008-02-26 | 마이크로비아 인코포레이티드 | Process for production of phenolic 4-biphenylylazetidin-2-ones |
WO2006124713A2 (en) | 2005-05-13 | 2006-11-23 | Microbia, Inc. | 4-biarylyl-1-phenylazetidin-2-ones |
CN101222950A (en) | 2005-05-25 | 2008-07-16 | 迈克罗比亚公司 | Processes for production of 4-(biphenylyl)azetidin-2-one phosphonic acids |
WO2006134604A1 (en) | 2005-06-15 | 2006-12-21 | Hetero Drugs Limited | Combination composition of cholesterol absorption inhibitor and 3-hydroxy-3-methylglutaryl-coenzyme a (hmg-coa) reductase inhibitor |
JP2008543837A (en) | 2005-06-15 | 2008-12-04 | メルク エンド カムパニー インコーポレーテッド | Anti-hypercholesterolemic compound |
UY29607A1 (en) | 2005-06-20 | 2007-01-31 | Astrazeneca Ab | CHEMICAL COMPOUNDS |
AR054482A1 (en) | 2005-06-22 | 2007-06-27 | Astrazeneca Ab | DERIVATIVES OF AZETIDINONE FOR THE TREATMENT OF HYPERLIPIDEMIAS |
AR057072A1 (en) | 2005-06-22 | 2007-11-14 | Astrazeneca Ab | CHEMICAL COMPOUNDS DERIVED FROM 2-AZETIDINONE, PHARMACEUTICAL FORMULATION AND A COMPOUND PREPARATION PROCESS |
AR057383A1 (en) * | 2005-06-22 | 2007-12-05 | Astrazeneca Ab | CHEMICAL COMPOUNDS DERIVED FROM 2-AZETIDINONE, PHARMACEUTICAL FORMULATION AND A COMPOUND PREPARATION PROCESS |
CA2613239A1 (en) | 2005-06-22 | 2006-12-28 | Manne Satyanarayana Reddy | Improved process for the preparation of ezetimibe |
AR056866A1 (en) | 2005-06-22 | 2007-10-31 | Astrazeneca Ab | CHEMICAL COMPOUNDS DERIVED FROM 2-AZETIDINONE, A PHARMACEUTICAL FORMULATION AND A COMPOSITE PREPARATION PROCESS |
AR057380A1 (en) * | 2005-06-22 | 2007-11-28 | Astrazeneca Ab | CHEMICAL COMPOUNDS DERIVED FROM 2-AZETIDINONE AND THERAPEUTIC USE OF THE SAME |
SA06270191B1 (en) * | 2005-06-22 | 2010-03-29 | استرازينيكا ايه بي | Novel 2-Azetidinone Derivatives as Cholesterol Absorption Inhibitors for the Treatment of Hyperlipidaemic Conditions |
EP1741427A1 (en) | 2005-07-06 | 2007-01-10 | KRKA, D.D., Novo Mesto | Pharmaceutical composition comprising simvastatin and ezetimibe |
WO2007008541A2 (en) | 2005-07-08 | 2007-01-18 | Kalypsys, Inc. | Cellular cholesterol absorption modifiers |
WO2007008529A2 (en) | 2005-07-08 | 2007-01-18 | Kalypsys, Inc | Celullar cholesterol absorption modifiers |
JP2009503049A (en) | 2005-08-01 | 2009-01-29 | ワーナー−ランバート カンパニー リミテッド ライアビリティー カンパニー | Novel substituted azetidinones |
WO2007016643A2 (en) | 2005-08-01 | 2007-02-08 | Mount Sinai School Of Medicine Of New York University | A method for extending longevity using npc1l1 antagonists |
WO2007017705A1 (en) | 2005-08-09 | 2007-02-15 | Glenmark Pharmaceuticals Limited | Process for the preparation of azetidinones |
US20070049748A1 (en) * | 2005-08-26 | 2007-03-01 | Uppala Venkata Bhaskara R | Preparation of ezetimibe |
CA2616058A1 (en) | 2005-09-08 | 2007-03-15 | Vinod Kumar Kansal | Processes for the preparation of (3r,4s)-4-((4-benzyloxy)phenyl)-1-(4-fluorophenyl)-3-((s)-3-(4-fluorophenyl)-3-hydroxypropyl)-2-azetidinone, an intermediate for the synthesis of ezetimibe |
TW200806623A (en) * | 2005-10-05 | 2008-02-01 | Merck & Co Inc | Anti-hypercholesterolemic compounds |
AR057575A1 (en) | 2005-11-15 | 2007-12-05 | Takeda Pharmaceutical | METHOD TO TREAT HYPERLIPIDEMIA |
DE102005055726A1 (en) | 2005-11-23 | 2007-08-30 | Sanofi-Aventis Deutschland Gmbh | Hydroxy-substituted diphenylazetidinones, processes for their preparation, medicaments containing these compounds and their use |
US7498431B2 (en) * | 2005-12-01 | 2009-03-03 | Bomi Patel Framroze | Process for the preparation of chiral azetidinones |
HU0501164D0 (en) | 2005-12-20 | 2006-02-28 | Richter Gedeon Vegyeszet | New industrial process for the production of ezetimibe |
MX2008008340A (en) | 2005-12-21 | 2008-09-03 | Schering Corp | Treatment of nonalcoholic fatty liver disease using cholesterol lowering agents and h3 receptor antagonist/inverse agonist. |
AR060623A1 (en) * | 2006-04-27 | 2008-07-02 | Astrazeneca Ab | COMPOUNDS DERIVED FROM 2-AZETIDINONE AND A PREPARATION METHOD |
WO2008033431A1 (en) * | 2006-09-15 | 2008-03-20 | Schering Corporation | Spirocyclic azetidinone derivatives for the treatment of disorders of lipid metabolism, pain, diabetes and other disorders |
WO2008108486A1 (en) * | 2007-03-06 | 2008-09-12 | Teijin Pharma Limited | 1-biarylazetidinone derivatives |
-
2006
- 2006-06-20 AR ARP060102611A patent/AR057072A1/en not_active Application Discontinuation
- 2006-06-20 MY MYPI20062928A patent/MY148538A/en unknown
- 2006-06-21 WO PCT/SE2006/000766 patent/WO2006137797A1/en active Application Filing
- 2006-06-21 UY UY29613A patent/UY29613A1/en unknown
- 2006-06-21 CN CNA2006800294761A patent/CN101243076A/en active Pending
- 2006-06-21 SA SA6270197A patent/SA06270197B1/en unknown
- 2006-06-21 KR KR1020087001032A patent/KR20080017475A/en not_active Application Discontinuation
- 2006-06-21 JP JP2008518088A patent/JP2008546774A/en active Pending
- 2006-06-21 MX MX2007016398A patent/MX2007016398A/en not_active Application Discontinuation
- 2006-06-21 BR BRPI0612109A patent/BRPI0612109A2/en not_active IP Right Cessation
- 2006-06-21 CA CA002610036A patent/CA2610036A1/en not_active Abandoned
- 2006-06-21 EP EP06747955A patent/EP1896459A4/en not_active Withdrawn
- 2006-06-21 RU RU2007147340/04A patent/RU2409572C2/en not_active IP Right Cessation
- 2006-06-21 AU AU2006259898A patent/AU2006259898B2/en not_active Ceased
- 2006-06-21 US US11/993,463 patent/US7906502B2/en not_active Expired - Fee Related
- 2006-06-22 TW TW095122513A patent/TW200728302A/en unknown
-
2007
- 2007-11-28 NO NO20076138A patent/NO20076138L/en not_active Application Discontinuation
- 2007-11-28 IL IL187741A patent/IL187741A0/en unknown
- 2007-12-05 ZA ZA200710604A patent/ZA200710604B/en unknown
- 2007-12-26 EC EC2007008051A patent/ECSP078051A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996016037A1 (en) * | 1994-11-18 | 1996-05-30 | Schering Corporation | Sulfur-substituted azetidinone compounds useful as hypocholesterolemic agents |
US5744467A (en) * | 1994-11-18 | 1998-04-28 | Schering Corporation | Sulfur-substituted azetidinone compounds useful as hypocholesterolemic agents |
WO2004005247A1 (en) * | 2002-07-05 | 2004-01-15 | Astrazeneca Ab | Diphenylazetidinone derivatives for treating disorders of the lipid metabolism |
Non-Patent Citations (2)
Title |
---|
MCKITTRICK B.A. ET AL.: "Synthesis of C3 Heteroatom-Substituted Azetidinones That Display Potent Cholesterol Absorption Inhibitory Activity", J. MED. CHEM., vol. 41, 1998, pages 752 - 759, XP002986102 * |
See also references of EP1896459A4 * |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7871998B2 (en) | 2003-12-23 | 2011-01-18 | Astrazeneca Ab | Diphenylazetidinone derivatives possessing cholesterol absorption inhibitory activity |
US7863265B2 (en) | 2005-06-20 | 2011-01-04 | Astrazeneca Ab | 2-azetidinone derivatives and their use as cholesterol absorption inhibitors for the treatment of hyperlipidaemia |
US7893048B2 (en) | 2005-06-22 | 2011-02-22 | Astrazeneca Ab | 2-azetidinone derivatives as cholesterol absorption inhibitors for the treatment of hyperlipidaemic conditions |
US7906502B2 (en) | 2005-06-22 | 2011-03-15 | Astrazeneca Ab | 2-azetidinone derivatives as cholesterol absorption inhibitors for the treatment of hyperlipidaemic conditions |
US7842684B2 (en) | 2006-04-27 | 2010-11-30 | Astrazeneca Ab | Diphenylazetidinone derivatives possessing cholesterol absorption inhibitor activity |
WO2008017381A1 (en) | 2006-08-08 | 2008-02-14 | Sanofi-Aventis | Arylaminoaryl-alkyl-substituted imidazolidine-2,4-diones, processes for preparing them, medicaments comprising these compounds, and their use |
WO2009021740A2 (en) | 2007-08-15 | 2009-02-19 | Sanofis-Aventis | Substituted tetrahydronaphthalenes, process for the preparation thereof and the use thereof as medicaments |
DE102007063671A1 (en) | 2007-11-13 | 2009-06-25 | Sanofi-Aventis Deutschland Gmbh | New crystalline diphenylazetidinone hydrates, medicaments containing these compounds and their use |
WO2010003624A2 (en) | 2008-07-09 | 2010-01-14 | Sanofi-Aventis | Heterocyclic compounds, processes for their preparation, medicaments comprising these compounds, and the use thereof |
WO2010068601A1 (en) | 2008-12-08 | 2010-06-17 | Sanofi-Aventis | A crystalline heteroaromatic fluoroglycoside hydrate, processes for making, methods of use and pharmaceutical compositions thereof |
WO2010100255A1 (en) | 2009-03-06 | 2010-09-10 | Lipideon Biotechnology Ag | Pharmaceutical hypocholesterolemic compositions |
US9212175B2 (en) | 2009-03-06 | 2015-12-15 | Lipideon Biotechnology Ag | Pharmaceutical hypocholesterolemic compositions |
WO2011023754A1 (en) | 2009-08-26 | 2011-03-03 | Sanofi-Aventis | Novel crystalline heteroaromatic fluoroglycoside hydrates, pharmaceuticals comprising these compounds and their use |
WO2011157827A1 (en) | 2010-06-18 | 2011-12-22 | Sanofi | Azolopyridin-3-one derivatives as inhibitors of lipases and phospholipases |
WO2012120055A1 (en) | 2011-03-08 | 2012-09-13 | Sanofi | Di- and tri-substituted oxathiazine derivates, method for the production thereof, use thereof as medicine and drug containing said derivatives and use thereof |
WO2012120052A1 (en) | 2011-03-08 | 2012-09-13 | Sanofi | Oxathiazine derivatives substituted with carbocycles or heterocycles, method for producing same, drugs containing said compounds, and use thereof |
WO2012120054A1 (en) | 2011-03-08 | 2012-09-13 | Sanofi | Di- and tri-substituted oxathiazine derivates, method for the production thereof, use thereof as medicine and drug containing said derivatives and use thereof |
WO2012120056A1 (en) | 2011-03-08 | 2012-09-13 | Sanofi | Tetrasubstituted oxathiazine derivatives, method for producing them, their use as medicine and drug containing said derivatives and the use thereof |
WO2012120053A1 (en) | 2011-03-08 | 2012-09-13 | Sanofi | Branched oxathiazine derivatives, method for the production thereof, use thereof as medicine and drug containing said derivatives and use thereof |
Also Published As
Publication number | Publication date |
---|---|
AU2006259898B2 (en) | 2010-08-05 |
MX2007016398A (en) | 2008-03-05 |
UY29613A1 (en) | 2007-01-31 |
US20100168039A1 (en) | 2010-07-01 |
EP1896459A4 (en) | 2010-03-10 |
KR20080017475A (en) | 2008-02-26 |
EP1896459A1 (en) | 2008-03-12 |
TW200728302A (en) | 2007-08-01 |
SA06270197B1 (en) | 2010-06-20 |
AR057072A1 (en) | 2007-11-14 |
NO20076138L (en) | 2008-02-27 |
ECSP078051A (en) | 2008-01-23 |
MY148538A (en) | 2013-04-30 |
JP2008546774A (en) | 2008-12-25 |
AU2006259898A1 (en) | 2006-12-28 |
ZA200710604B (en) | 2008-12-31 |
RU2409572C2 (en) | 2011-01-20 |
IL187741A0 (en) | 2008-03-20 |
CN101243076A (en) | 2008-08-13 |
RU2007147340A (en) | 2009-07-27 |
CA2610036A1 (en) | 2006-12-28 |
BRPI0612109A2 (en) | 2016-09-06 |
US7906502B2 (en) | 2011-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7906502B2 (en) | 2-azetidinone derivatives as cholesterol absorption inhibitors for the treatment of hyperlipidaemic conditions | |
US7893048B2 (en) | 2-azetidinone derivatives as cholesterol absorption inhibitors for the treatment of hyperlipidaemic conditions | |
US7842684B2 (en) | Diphenylazetidinone derivatives possessing cholesterol absorption inhibitor activity | |
US20100048529A1 (en) | New 2-Azetidinone Derivatives Useful In The Treatment Of Hyperlipidaemic Conditions | |
US20100048530A1 (en) | New 2-Azetidinone Derivatives As Cholesterol Absorption Inhibitors For The Treatment Of Hyperlipidaemic Conditions | |
US20100152156A1 (en) | 2-Azetidinone Derivatives For The Treatment Of Hyperlipidaemic Diseases | |
US20100168075A1 (en) | Novel 2-Azetidinone Derivatives As Cholesterol Absorption Inhibitors For The Treatment Of Hyperlipidaemic Conditions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200680029476.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref document number: 2610036 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 187741 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 564236 Country of ref document: NZ |
|
WWE | Wipo information: entry into national phase |
Ref document number: 9689/DELNP/2007 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/a/2007/016398 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006259898 Country of ref document: AU Ref document number: 12007502887 Country of ref document: PH Ref document number: 07134241 Country of ref document: CO |
|
ENP | Entry into the national phase |
Ref document number: 2008518088 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11993463 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006747955 Country of ref document: EP Ref document number: 1020087001032 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007147340 Country of ref document: RU |
|
ENP | Entry into the national phase |
Ref document number: 2006259898 Country of ref document: AU Date of ref document: 20060621 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2006259898 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: PI0612109 Country of ref document: BR Kind code of ref document: A2 Effective date: 20071221 |