WO2006135194A1 - Non-agile channelization method for multichannel mac - Google Patents

Non-agile channelization method for multichannel mac Download PDF

Info

Publication number
WO2006135194A1
WO2006135194A1 PCT/KR2006/002275 KR2006002275W WO2006135194A1 WO 2006135194 A1 WO2006135194 A1 WO 2006135194A1 KR 2006002275 W KR2006002275 W KR 2006002275W WO 2006135194 A1 WO2006135194 A1 WO 2006135194A1
Authority
WO
WIPO (PCT)
Prior art keywords
agile
channel
operation mode
multichannel
channelization method
Prior art date
Application number
PCT/KR2006/002275
Other languages
French (fr)
Inventor
Sung-Won Lee
Rakesh Taori
Jun-Seo Lee
Young-Gon Choi
Original Assignee
Samsung Electronics Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020060052517A external-priority patent/KR101234900B1/en
Application filed by Samsung Electronics Co., Ltd. filed Critical Samsung Electronics Co., Ltd.
Publication of WO2006135194A1 publication Critical patent/WO2006135194A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • H04W74/0816Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA carrier sensing with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Abstract

A non-agile channelization method for multichannel medium access control (MAC) is provided, in which an available channel is categorized as an agile or non-agile channel, an operation mode of the channel categorized as the non-agile channel is selected, and multichannel switching is performed according to the selected operation mode. The non-agile channelization method for multichannel MAC enables non-agile channel switching to create a connected network, and allows agile and non-agile channel switching to coexist to avoid a change in existing hardware.

Description

NON-AGILE CHANNELIZATION METHOD FOR MULTICHANNEL MAC
BACKGROUND OF THE INVENTION
Field of the Invention
The present invention relates generally to a channelization method for multichannel Medium Access Control (MAC). More particularly, the present invention relates to a non-agile channelization method for multichannel MAC.
Description of the Related Art
The latest Common Channel Framework (CCF) introduced in the Institute of Electrical and Electronics Engineers (IEEE) 802.11s standard is designed to support an agile or dynamic multichannel operation. However, a non-agile multichannel operation is also very useful when channel switching is performed for a fixed time. In many cases, however, the non-agile switching has difficulty in defining a boundary of the channel switching, although it is expected that the non-agile switching will provide a heterogeneous hardware capability in unmanaged networks. In addition, even though a cluster based multichannel operation is beneficial, channel switching of a mesh point (MP) group is not supported in the agile channel switching. Accordingly, there is a demand for supporting non-agile channelization in the CCF.
That is, in the multichannel MAC, there is a need to enable non-agile channel switching, and determine how to make the network connected. In addition, there is a need to determine how to make agile and non-agile channel switching coexist, and how to avoid a change in hardware.
SUMMARY OF THE INVENTION
An aspect of exemplary embodiments of the present invention is to address at least the above problems and/or disadvantages and to provide at least the advantages described below. Accordingly, an aspect of exemplary embodiments of the present invention is to provide a non-agile channelization method for multichannel MAC, for enabling non-agile channel switching to create a connected network.
It is another object of exemplary embodiments of the present invention to provide a non-agile channelization method for multichannel MAC, for making agile and non-agile channel switching coexist, to avoid a change in the existing hardware.
According to an aspect of exemplary embodiments of the present invention, there is provided a non-agile channelization method for multichannel medium access control (MAC), in which an available channel is categorized as an agile or non-agile channel; an operation mode of the channel categorized as the non-agile channel is selected; and multichannel switching is performed according to the selected operation mode.
Other objects, advantages, and salient features of the invention will become apparent to those skilled in the art from the following detailed description, which, taken in conjunction with the annexed drawings, discloses exemplary embodiments of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
The above and other objects, features and advantages of certain exemplary embodiments of the present invention will be more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which:
FIG. 1 is a diagram illustrating an agile channel switching scenario according to an exemplary embodiment of the present invention;
FIG. 2 is a diagram illustrating a Basis Service Set (BSS)-Heavy scenario of a BSS-Heavy mode among non-agile channelization operation modes according to an exemplary embodiment of the present invention;
FIG. 3 is a diagram illustrating a Wireless Distribution System (WDS)- Heavy scenario of a WDS-Heavy mode among non-agile channelization operation modes according to an exemplary embodiment of the present invention;
FIG. 4 is a flowchart illustrating a non-agile channelization method for multichannel MAC according to an exemplary embodiment of the present invention; and FIG. 5 is a diagram illustrating a topology used for a BSS-Heavy traffic scenario according to an exemplary embodiment of the present invention.
DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
The matters defined in the description such as a detailed construction and elements are provided to assist in a comprehensive understanding of the embodiments of the invention. Accordingly, those of ordinary skill in the art will recognize that various changes and modifications of the embodiments described herein can be made without departing from the scope and spirit of the invention. Also, descriptions of well-known functions and constructions are omitted for clarity and conciseness.
FIG. 1 is a diagram illustrating an agile channel switching scenario according to an exemplary embodiment of the present invention. Referring to FIG. 1, 5 nodes represent MPs or mesh access points
(MAPs), a solid-line link represents a common channel, and a dotted-line link represents a dynamically selected channel. The nodes operate according to a concept of Channel Coordination Window (CCW) introduced in Common Channel Framework (CCF) designed to support the agile or dynamic multichannel operation. The CCW is repeated at a period P, and CCW duration generally corresponds to a part of the period P.
At the start of CCW, all MPs are tuned in the common channel, enabling particular MPs to establish communication with each other. In addition, the channel occupied state is reset, and the MPs select available channels. Once a channel is selected by one MP, the channels selected by other MPs are marked as 'unavailable'.
During or after CCW, MPs can select different data channels, and simultaneously transmit data over the selected channels. That is, the selected channels can support multiple data transmission in an on-demand fashion. Better performance is expected as the number of available data channels increases. Also, point-to-point communication is supported.
After CCW, CCF handles channelization between Basic Service Set (BSS) and Wireless Distribution System (WDS) traffics in the MAP that can switch to a BSS channel. In this manner, the MAP can handle both the BSS and WDS traffics. - A -
Available channels are categorized as follows in a configuration step.
That is, the available channels are categorized into agile switching channels and non-agile switching channels, all of which are managed by a channel utilization vector U. To facilitate the channel selection, MPs use an N-channel utilization vector U, and the channel utilization vector U is defined as
U = [W1, U2,..., UN] (1) where ut e {0,l}, for i= 1, 2, ... N, ut = 0 indicates that a channel ut is available, and U1 = 1 indicates that a channel U1 is in use.
There are two modes of switching operation in non-agile channelization. One is a BSS-Heavy mode and another is a WDS-Heavy mode. The selection of the operation modes is up to an individual MP, and the selection is unmanaged and distributed.
FIG. 2 is a diagram illustrating a BSS-Heavy scenario of a BSS-Heavy mode among non-agile channelization operation modes according to an exemplary embodiment of the present invention.
Referring to FIG. 2, a wireless mesh network includes more than one
MAP. During CCW, all MPs are given a chance to communicate with each other.
That is, stations (STAs) may not be connected to their MAPs temporarily by allocating Network Allocation Vectors (NAVs) by CTS (Clear-To-Send)-TO- SELF.
After CCW, the selected MAPs handle BSS traffics in parallel. That is, multiple channels are allocated to BSS which are different from the common channel. In this manner, multiple BSS traffics can be accommodated simultaneously, increasing aggregate network throughput. In the BSS-Heavy mode, a MAP should tune to the common channel at the start of CCW. The MAP sends CTS-TO-SELF to its STAs. The MP should tune to its BSS channel after CCW.
FIG. 3 is a diagram illustrating a WDS-Heavy scenario of a WDS- Heavy mode among non-agile channelization operation modes according to an exemplary embodiment of the present invention.
Referring to FIG. 3, MPs are dynamically clustering during CCW by exchanging management frames. As a result, the clustering leads to a temporary ad-hoc cluster after CCW. As the number of contentious MPs decreases, increased throughput is expected. MPs that remain on the common channel form another ad-hoc cluster. After CCW, STAs associated to the MAPs that join ad-hoc clusters allocate NAVs by CTS-TO-SELF. As a result, multiple ad-hoc clusters operating in parallel increase the aggregate throughput.
In the WDS-Heavy mode, an MP should tune to the common channel at the start of CCW. The MP sends 'Request for Ad-hoc Clustering' through a management frame. That is, a channel index is provided, and there is no realtime constraint such as Short Inter Frame Space (SIFS) in response time.
In addition, an MP who wants to join the ad-hoc cluster replies with
'Clear for Ad-hoc Clustering' through a management frame. That is, multiple MPs can reply to the same Request for Ad-hoc Clustering (RAC) frame. In an exemplary implementation, MPs who agree to form ad-hoc clusters should switch the channel after CCW.
FIG. 4 is a flowchart illustrating a non-agile channelization method for multichannel MAC according to an exemplary embodiment of the present invention.
Referring to FIG. 4, in step 400, a MAP of a wireless mesh network categorizes available channels as agile or non-agile channels. In step 410, the MAP selects an operation mode for the channels categorized as the non-agile channels. In step 420, if the selected operation mode is a BSS-Heavy mode, the MAP performs a traffic handling operation according to a BSS-Heavy scenario of the BSS-Heavy mode described in FIG. 2 (that is, performs scheduling to perform a multichannel operation). In step 430, if the selected operation mode is a WDS-Heavy mode, the MP performs a traffic handling operation according to a WDS-Heavy scenario of the WDS-Heavy mode described in FIG. 3 (that is, exchanges management frames to perform a multichannel operation). In step 440, the MAP performs multichannel switching according to the selected operation mode.
FIG. 5 is a diagram illustrating a topology used for a BSS-Heavy traffic scenario according to an exemplary embodiment of the present invention. Referring to FIG. 5, a condition set for simulating the BSS-Heavy mode is as follows. In an exemplary implementation, there are 1 or 2 MAPs, 2 or 4 STAs per MAP, the MAPs switch channels only after CCW, and the simulation is performed with/without (virtual) CTS-TO-SELF.
Under this condition, the simulation results on the change in throughput as the channels increase based on the network topology of FIG. 5 in each of IEEE 802.11a (ICh: 16.05Mbit/s) and 802.11b (ICh: 4.76Mbit/s), are shown in Table 1 and Table 2 below. Table 1
Figure imgf000008_0001
Table 2
Figure imgf000008_0002
In summarizing the simulations, from the simulation results of Table 1 and Table 2, multiple BSS channels are effective for the increase in throughput of legacy STAs. That is, multiple WDS channels are effective for the increase in throughput of MPs. The two operation modes coexist with the existing agile channel switching, as they can be handled in parallel.
As can be understood from the foregoing description, certain exemplary embodiments of the present invention provide a non-agile channelization method for multichannel MAC, for enabling non-agile channel switching to make the network connected. In addition, the present invention provides a non-agile channelization method for multichannel MAC, for making agile and non-agile channel switching coexist, to avoid a change in the existing hardware.
While the invention has been shown and described with reference to certain exemplary embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.

Claims

WHAT IS CLAIMED IS:
1. A non-agile channelization method for multichannel medium access control (MAC), the method comprising the steps of: categorizing an available channel as at least one of an agile and non- agile channel; selecting an operation mode of the channel categorized as the non-agile channel; and performing multichannel switching according to the selected operation mode.
2. The non-agile channelization method of claim 1, wherein the available channel is managed by a channel utilization vector.
3. The non-agile channelization method of claim 2, wherein the channel utilization vector is expressed as \J = [uu u2,..., uN] where ut e {0,l }, i= 1, 2, ... N, ui = 0 indicates that a channel U1 is available, and ιιt — 1 indicates that a channel ut is in use.
4. The non-agile channelization method of claim 1, wherein the selection of the operation mode is individually achieved for every mesh point.
5. The non-agile channelization method of claim 1, wherein the operation mode comprises at least one of a basic service set (BSS)-heavy operation mode and a wireless distribution system (WDS)-heavy operation mode.
6. The non-agile channelization method of claim 5, wherein the BSS-heavy operation mode comprises a scheduling step for performing a multichannel operation.
7. The non-agile channelization method of claim 6, wherein the scheduling step comprises: tuning, by a mesh access point (MAP), to a common channel at a start of a channel coordination window (CCW); transmitting, by the MAP, Clear-To-Send (CTS)-TO-SELF to stations during CCW; and tuning, by the MAP, to BSS channel after CCW.
8. The non-agile channelization method of claim 5, wherein the
WDS-heavy operation mode comprises a management frame exchanging step for performing a multichannel operation.
9. The non-agile channelization method of claim 8, wherein the exchanging step comprises: dynamically achieving, by mesh points (MPs), a cluster by exchanging the management frame during CCW; and allocating after CCW, by stations, network allocation vectors (NAVs) by CTS-TO-SELF, thereby associating with a MAP that joins the dynamic cluster.
PCT/KR2006/002275 2005-06-14 2006-06-14 Non-agile channelization method for multichannel mac WO2006135194A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US69015205P 2005-06-14 2005-06-14
US60/690,152 2005-06-14
KR1020060052517A KR101234900B1 (en) 2005-06-14 2006-06-12 Non-agile channelelization method for multi-channel medium access control
KR10-2006-0052517 2006-06-12

Publications (1)

Publication Number Publication Date
WO2006135194A1 true WO2006135194A1 (en) 2006-12-21

Family

ID=37532504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2006/002275 WO2006135194A1 (en) 2005-06-14 2006-06-14 Non-agile channelization method for multichannel mac

Country Status (1)

Country Link
WO (1) WO2006135194A1 (en)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KYOUNGHWAN LEE AND YENER A.: "On the achievable rate of three-node cognitive hybrid wireless networks", WIRELESS NETWORKS, COMMUNICATIONS AND MOBILE COMPUTING, 2005 INTERNATIONAL CONFERENCE, vol. 2, 13 June 2005 (2005-06-13), pages 1313 - 1318, XP010888150 *
LOYOLA L. ET AL.: "A Multi-channel infrastructure based on DCF access mechanism for Wireless LAN Mesh Networks compliant with IEEE 802.11", COMMUNICATIONS, 2005 ASIA-PACIFIC CONFERENCE, 3 October 2005 (2005-10-03) - 5 October 2005 (2005-10-05), pages 497 - 501, XP010860831 *
RANIWALA A. AND TZI-CKER CHIUEH: "Architecture and algorithms for an IEEE 802.11-based multi-channel wireless mesh network", INFOCOM 2005. 24TH ANNUAL JOINT CONFERENCE OF THE IEEE COMPUTER AND COMMUNICATIONS SOCIETIES. PROCEEDINGS IEEE, vol. 3, March 2005 (2005-03-01), pages 2223 - 2234, XP010829112 *

Similar Documents

Publication Publication Date Title
JP6712297B2 (en) Wireless communication device, wireless communication system, and wireless communication method
KR100877410B1 (en) Wireless network channel allocation method and multi-hop wireless network system using the same
CN111741459B (en) Multilink terminal and address allocation method thereof, network access equipment and medium
JP5256344B2 (en) Inter-node communication method in wireless network
US7920991B2 (en) Characterizing the capacity region in multi-channel, multi-radio mesh networks
Das et al. WLC30-4: static channel assignment in multi-radio multi-channel 802.11 wireless mesh networks: issues, metrics and algorithms
US20080240026A1 (en) Distributed channel allocation method and wireless mesh network therewith
TW201842799A (en) Channel selection constraints in a network having multiple access points
Shojafar et al. Improving channel assignment in multi-radio wireless mesh networks with learning automata
US20080159316A1 (en) Channel allocation for wireless mesh networks
WO2017031636A1 (en) Method and apparatus for establishing wireless backhaul connection
US7672333B2 (en) Non-agile channelization method for multichannel MAC
RU2598293C1 (en) Method and apparatus for transmitting standard configuration data of improved system of selecting a transmitting protocol
CN106559887B (en) Method for configuring resources and network equipment
CN111194088B (en) Dynamic time slot allocation method for mobile network based on subnet division
CN114451006A (en) Method, device and system for configuring wireless resource allocation strategy
CN104754589A (en) Traffic awareness based dynamic networking method
WO2006135194A1 (en) Non-agile channelization method for multichannel mac
KR101332940B1 (en) Cognitive radio network, and method for selecting gateway node of the network
CN102056304B (en) Channel allocating method for multichannel fixed wireless network
CN111586880A (en) Dynamic hybrid access method and system suitable for TDMA
Min et al. Cross-layer design and performance analysis for maximizing the network utilization of wireless mesh networks in cloud computing
Zhang et al. Enabling symbiotic coexistence of heterogeneous cognitive radio networks
CN115996430B (en) Access control method and device based on node connection information
KR20140013379A (en) Apparatus and method for changing channel in wireless mesh network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06747508

Country of ref document: EP

Kind code of ref document: A1