WO2006135053A1 - Optical pickup device, reproducing device and birefringence correction plate - Google Patents

Optical pickup device, reproducing device and birefringence correction plate Download PDF

Info

Publication number
WO2006135053A1
WO2006135053A1 PCT/JP2006/312146 JP2006312146W WO2006135053A1 WO 2006135053 A1 WO2006135053 A1 WO 2006135053A1 JP 2006312146 W JP2006312146 W JP 2006312146W WO 2006135053 A1 WO2006135053 A1 WO 2006135053A1
Authority
WO
WIPO (PCT)
Prior art keywords
birefringence
correction plate
light
optical pickup
birefringence correction
Prior art date
Application number
PCT/JP2006/312146
Other languages
French (fr)
Japanese (ja)
Inventor
Toshinori Sugiyama
Original Assignee
Hitachi Maxell, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell, Ltd. filed Critical Hitachi Maxell, Ltd.
Priority to CN200680021334.0A priority Critical patent/CN101199010B/en
Priority to JP2007521362A priority patent/JPWO2006135053A1/en
Publication of WO2006135053A1 publication Critical patent/WO2006135053A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • G11B7/1367Stepped phase plates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0085Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with both a detector and a source

Definitions

  • the in-plane birefringence amount is
  • the recording surface of the information recording medium having the light transmitting medium is irradiated with a light beam through the light transmitting medium, and the reflected light of the recording surface is received.
  • An optical pickup device comprising: a light source; an objective lens for condensing a light beam emitted from the light source on the recording surface; and polarized light disposed on an optical path between the light source and the objective lens.
  • the difference between the refractive index in the fast axis direction and the refractive index in the direction perpendicular to the fast phase axis and in the in-plane direction (slow axis) is It becomes the amount of birefringence. That is, the amount of birefringence of the birefringence correction plate is the amount of birefringence in the in-plane direction.
  • the numerical aperture of the objective lens is preferably 0.6 or more.
  • the optical pickup apparatus of the present invention is suitable as an apparatus for high recording density media such as HD DVD.
  • NA 0.6
  • NA 0.65
  • a recording surface of a disk-shaped information recording medium having a light transmitting medium is irradiated with a light beam through the light transmitting medium, and the recording surface of the disk
  • An optical pickup device according to any one of the first to fourth aspects, which is a reproduction device for receiving information and receiving reflected light, and a rotation device for rotationally driving the disc-shaped information recording medium.
  • FIG. 15 is for HD DVD sectional birefringence amount is 2 X 10- 4, Example 1 light pit It is a figure showing change of the degree of modulation of 3T mark to the amount of in-plane birefringence at the time of applying a Kuup device.
  • optical pickup device the optical pickup device, the reproducing device, and the birefringence correction plate of the present invention will be specifically described by way of Examples, but the present invention is not limited thereto.
  • the phase difference generated in the central region is almost zero. That is, in the birefringence correction plate 6 of this example, the in-plane distribution of the phase difference between the two polarization components generated for the light beam 32 passing through the birefringence correction plate 6 is rotated with respect to the center of the light beam 32. It becomes symmetrical.
  • a laser beam 30 (a light beam of linear polarization) emitted from the semiconductor laser 1 is converted into a parallel beam 31 by the collimator lens 2 and is incident on the composite prism 3.
  • the collimated light 31 is converted into a substantially circular light beam by being refracted by the composite prism 3.
  • the polarization functional film 3a is equalized, it is transmitted through the ⁇ 4 plate 4 and converted into a circularly polarized light beam 32.
  • the light beam 32 is changed its optical path by the rising mirror 5 and passes through the birefringence correction plate 6.
  • the light beam reflected by the recording surface 21 of the disk-shaped information recording medium 20 is again converted into substantially parallel light by the objective lens 8, and the birefringence correction plate 6, the rising mirror 5, the ⁇ 4 plate 4
  • the light enters the composite prism 3 through the Next, the light beam incident on the composite prism 3 is reflected by the polarization function film 3 a of the composite prism 3, passes through the cylindrical lens 9 and the condenser lens 10, and reaches the light detector 11.
  • the light detector 11 is configured as shown in FIG. 7 and is the same as the known light detector configuration. That is, the photodetector 11 is divided into four, and has a configuration capable of detecting a focus error signal according to the astigmatism method and a tracking error according to the push method. Further, the push-pull signal is a known signal, that is, a sum signal. It is configured to obtain a DPP signal (Divided Push Pull signal) that is normalized.
  • the cross-sectional birefringence of the transparent substrate of the disk-shaped information recording medium manufactured by the molding process is n ⁇ n> 0 (the refractive index n in the thickness direction of the transparent substrate is the average refraction in the in-plane direction) Because the index clawza is smaller), the refractive index NS of the transparent substrate becomes an elliptical distribution extending in the in-plane direction as shown in the upper drawing of FIG. Therefore, the refractive index N2 in the transparent substrate on the plane perpendicular to the reflection direction of the light L2 is elliptical as shown in the upper drawing of FIG.
  • the direction of the slow axis of the transparent substrate and the direction of the fast axis of the birefringence correction plate are substantially equal to the light obliquely reflected to the surface of the transparent substrate.

Abstract

An optical pickup device is provided with a light source; an objective lens for focusing an optical beam emitted from the light source on a recording plane; a polarizing beam splitter arranged on an optical path between the light source and the objective lens; and a birefringence correction plate arranged on an optical path between the objective lens and the polarizing beam splitter for giving a phase difference between two polarization components of the entered optical beam which are orthogonally intersecting each other. In the optical pickup device, the phase difference generated by the birefringence correction plate differs, depending on a position within the plane of the birefringence correction plate. Thus, influence of birefringence is more effectively reduced by using the simpler optical element, and a margin for birefringence fluctuation of an information recording medium is widened.

Description

明 細 書  Specification
光ピックアップ装置、再生装置及び複屈折補正板  Optical pickup device, reproduction device and birefringence correction plate
技術分野  Technical field
[0001] 本発明は、光透過性媒質を有した情報記録媒体の記録面に光を照射し、該記録 面からの反射光を受光する光ピックアップ装置、再生装置、及び、これらの装置に用 いられる複屈折補正板に関する。  The present invention relates to an optical pickup device, a reproducing device, and an optical pickup device which irradiate light to a recording surface of an information recording medium having a light transmitting medium and receive reflected light from the recording surface. A birefringence correction plate.
背景技術  Background art
[0002] 情報記録媒体の技術分野では、記録密度の向上がますます重要な技術的課題に なっており、従来、情報トラックに沿った線記録密度の改善と、トラックピッチの狭小化 による面記録密度の改善の両面から、記録密度の向上が図られている。  In the technical field of information recording media, improvement in recording density has become an increasingly important technical issue, and conventionally, improvement in linear recording density along information tracks and area recording by narrowing the track pitch The recording density has been improved in terms of both the improvement of the density.
[0003] 情報記録媒体の一つである DVDでは、レーザ波長を 650nm、対物レンズの開口 数 NAを 0. 6すること〖こより、 CDサイズで 4. 7GBの面密度を実現している。また、現 在開発が進められている HD DVDでは、レーザ波長 405nm、開口数 NAO. 65を 採用することにより面密度の向上が図られ、 CDサイズで 15GBの容量が実現されて いる。  [0003] A DVD, which is one of the information recording media, achieves a surface density of 4.7 GB in CD size by setting the laser wavelength to 650 nm and the numerical aperture NA of the objective lens to 0.6. In addition, in the HD DVD currently under development, the area density is improved by adopting a laser wavelength of 405 nm and a numerical aperture NAO. 65, and a capacity of 15 GB in CD size has been realized.
[0004] ところで、一般に、情報記録媒体に用いられる透明基板は、量産性の優れた射出 成形で作製されることが多ぐ前述した DVDや HD DVDの場合も同様である。 DV Dや HD DVDは円板形状であるので、射出時に溶融樹脂の流れが内周から外周 に向力つて同心円状に広がるため、成形後の透明基板に発生する複屈折の主軸は ディスクの半径方向と、それに直交する周方向と、基板の厚み方向となる。半径方向 の主軸に対応する屈折率を n、周方向の主軸に対応する屈折率を n、基板の厚み 方向に対応する屈折率を nとすると、 CDや DVDで最もよく使われているポリカーボ  Generally, a transparent substrate used for an information recording medium is the same as in the case of the above-described DVD and HD DVD, which are often produced by injection molding with excellent mass productivity. Since the DVD and HD DVD have a disk shape, the flow of molten resin spreads concentrically from the inner circumference to the outer circumference at the time of injection, so the principal axis of birefringence generated on the transparent substrate after molding is the radius of the disk The direction, the circumferential direction orthogonal to that, and the thickness direction of the substrate. Assuming that the refractive index corresponding to the main axis in the radial direction is n, the refractive index corresponding to the main axis in the circumferential direction is n, and the refractive index corresponding to the thickness direction of the substrate is n, the polycarbonate most commonly used in CDs and DVDs
z  z
ネート成形基板では、その面内方向の複屈折量 n— n (以下、面内複屈折量ともいう )及び厚み方向の複屈折量 n -n (以下、断面複屈折量ともいう。ただし、 n = (n +  In the case of a molded substrate, the amount of birefringence in the in-plane direction n− n (hereinafter also referred to as in-plane birefringence) and the amount of birefringence in the thickness direction n−n (hereinafter referred to as cross-sectional birefringence). = (n +
a z a t n ) /2)はそれぞれ次のような値となる。  Each of a z a t n) / 2 has the following values.
-4 X 10"5≤n n≤4 X 10"5 -4 x 10 " 5 ≤ nn 4 x 10" 5
n n =4 X 10_4〜7 X 10—4 [0005] 上記面内方向の屈折率 nと nの大小関係は成形のプロセス条件で異なる力 厚さ t r nn = 4 x 10 _ 4 to 7 x 10-4 The magnitude relationship between the refractive indices n and n in the in-plane direction is different depending on the molding process conditions.
方向の屈折率 nと面内方向の屈折率 nとの大小関係は、 n >nすなわち n , η >η ζ a a ζ r t ζ となるのが一般的である。また、これらの屈折率の値は、成形に用いる榭脂でも変化 するが、材料コスト、成形性、成形基板機械特性等々の情報記録媒体の基板材料と して満たすべき条件をバランス良く具備して 、る材料は、現在のところポリカーボネー ト榭脂以外には存在しない。それゆえ、今のところ、情報記録媒体の高密度化が図ら れたとしても、用いる基板が変わることは考え難いので、基板で発生する複屈折 (複 屈折量)は従来と変わらない。従って、高密度化による記録容量の増大に伴い、許容 できる複屈折量の範囲 (複屈折量の変動に対するマージン)が狭まくなり、記録再生 に支障をきたすおそれがある。  The magnitude relationship between the refractive index n in the direction and the refractive index n in the in-plane direction is generally n> n, that is, n, >> η ζ a a ζ r t ζ. These refractive index values also change with resins used for molding, but the conditions to be satisfied as substrate materials of information recording media such as material cost, moldability, molded substrate mechanical characteristics, etc. are well balanced. There are currently no other materials besides polycarbonate resin. Therefore, at present, even if the density of the information recording medium is increased, it is unlikely that the substrate to be used will change, so the birefringence (the amount of birefringence) generated in the substrate remains the same as before. Therefore, as the recording capacity is increased due to the increase in density, the range of allowable birefringence (the margin for the fluctuation of the birefringence) becomes narrow, which may cause problems in recording and reproduction.
[0006] 上述のような記録容量の増大(高記録密度化)に伴う複屈折量の許容範囲の縮小 の課題を解決するために、従来、例えば、媒体で発生する複屈折の影響を補正する ための液晶補正素子を備えたピックアップ装置が提案されて 、る (例えば、特許文献 1参照)。 In order to solve the problem of reducing the allowable range of the amount of birefringence due to the increase in recording capacity (higher recording density) as described above, conventionally, for example, the influence of birefringence generated in the medium is corrected A pickup device provided with a liquid crystal correction element for the purpose is proposed (see, for example, Patent Document 1).
[0007] また、情報記録媒体では、上述したプロセス条件以外に、媒体が高速で回転すると きに伴う遠心力に起因する応力によっても複屈折が発生する。それゆえ、遠心力によ る半径方向応力を σ、周方向応力を σとすると、回転時に情報記録媒体に発生す る全複屈折量 (η -η )は、遠心力に起因する応力により発生する複屈折量と、 t— sum r— sum  Further, in the information recording medium, in addition to the above-mentioned process conditions, birefringence is also generated by a stress caused by a centrifugal force accompanying the rotation of the medium at a high speed. Therefore, assuming that radial stress due to centrifugal force is σ and circumferential stress is σ, the total amount of birefringence (η-) generated in the information recording medium during rotation is generated due to the stress caused by the centrifugal force. Amount of birefringence and t—sum r—sum
上述したプロセスで発生する複屈折量との和で表され、下式で表される。  It is represented by the sum of the amount of birefringence generated in the above-described process, and is represented by the following equation.
(n n )=C X — σ ) + (n— n )  (n n) = C X — σ) + (n— n)
t— sum r— sum t r t r  t—sum r—sum t r t r
上式の右辺の第一項が、遠心力により発生する複屈折量であり、第 2項が基板成形 プロセスで発生する複屈折量に相当する。ここで、 Cは光弾性常数と呼ばれる係数で 、ポリカーボネート榭脂の場合、 C = 7. 2 X 10_11 [Pa_1]という値が知られている。 The first term on the right side of the above equation is the amount of birefringence generated by centrifugal force, and the second term corresponds to the amount of birefringence generated in the substrate molding process. Here, C is a coefficient called a photoelastic constant, and in the case of polycarbonate resin, a value of C = 7.2 × 10 — 11 [Pa — 1 ] is known.
[0008] 従来、情報記録媒体の回転による半径位置での複屈折量の違いを補正する手段と して、半径位置による複屈折量の違 、を補正するための波長板を備えたピックアップ 装置が提案されている (例えば、特許文献 2参照)。  Conventionally, as a means for correcting the difference in the amount of birefringence at the radial position due to the rotation of the information recording medium, a pickup device provided with a wave plate for correcting the difference in the amount of birefringence at the radial position has been proposed. It has been proposed (see, for example, Patent Document 2).
[0009] 特許文献 1:特開 2000— 268398号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2000-268398
特許文献 2:特開 2004— 245957号公報 発明の開示 Patent Document 2: Japanese Patent Application Laid-Open No. 2004-245957 Disclosure of the invention
発明が解決しょうとする課題  Problem that invention tries to solve
[0010] 現在開発が進められている HD DVDの規格では、上述のように、レーザ波長 405 nm、開口数 0. 65を採用することにより面密度の向上が図られている。それゆえ、上 述のような複屈折の課題については、現在の光ディスクの主製品である DVDに比べ より大きな課題となり、 HD DVDの規格では、基板における複屈折量の変動に対す るマージンはより一層狭まくなることが予想される。  [0010] In the HD DVD standard currently under development, as described above, the surface density is improved by adopting a laser wavelength of 405 nm and a numerical aperture of 0.65. Therefore, the problem of birefringence as described above is a bigger problem than the DVD, which is the main product of the present optical disc, and the HD DVD standard makes the margin for the fluctuation of the birefringence amount in the substrate more It is expected to be narrower.
[0011] 本発明者らが HD DVDにおける複屈折の影響について検証したところ、 HD D VD規格では、レーザ波長の短波長化及び開口数向上 (0. 6→0. 65)により面密度 の向上が図れたが、その反面、情報記録媒体の情報記録面と光ピックアップ装置の 対物レンズとの間に存在する情報記録媒体の光透過性媒質、すなわち、透明基板 の複屈折の影響が大きくなり、透明基板の面内複屈折量の変動に対する信号変調 度の変動が大きくなることが分力つた。すなわち、 HD DVDでは、透明基板の複屈 折の影響が大きくなり、許容できる面内複屈折量の範囲 (面内複屈折量の変動に対 するマージン)が狭まくなることが分力つた。この検証内容を以下に具体的に説明す る。  The inventors of the present invention verified the influence of birefringence in HD DVD. According to the HD DVD standard, the area density is improved by shortening the laser wavelength and improving the numerical aperture (0.6 → 0.65). On the other hand, the effect of the birefringence of the light transmitting medium of the information recording medium, ie, the transparent substrate, existing between the information recording surface of the information recording medium and the objective lens of the optical pickup device It was necessary to increase the fluctuation of the signal modulation degree with respect to the fluctuation of the in-plane birefringence of the transparent substrate. That is, in the case of HD DVD, it has been found that the influence of double refraction of the transparent substrate becomes large, and the range of allowable in-plane birefringence (the margin for fluctuation of the amount of in-plane birefringence) narrows. The contents of this verification will be explained concretely below.
[0012] 本発明者らの検証実験では、 DVDと HD DVDの面内複屈折量に対する 3Tピッ ト(短マーク)及びトラッキングエラー信号(DPP : Divided Push Pull signal)の信 号振幅変化 (変調度変化)を、偏光効果を考慮した再生信号解析により計算した。そ の結果を図 8及び 9に示す。図 8は DVDの面内複屈折量に対する 3T短マーク及び DPP信号の変調度変化の評価結果であり、横軸に面内複屈折量 n -n (n:基板の 周方向の屈折率、 n:基板の半径方向の屈折率)をとり、縦軸には各信号の変調度を とった。また、図 9は HD DVDの面内複屈折量に対する 3T短マーク及び DPP信号 の変調度変化の評価結果である。また、 HD DVDにおける回転数に対する面内複 屈折量 n— nの変化特性についても評価し、その結果を図 10に示す。  In the verification experiments of the present inventors, the signal amplitude change (degree of modulation) of 3T pit (short mark) and tracking error signal (DPP: Divided Push Pull signal) with respect to the in-plane birefringence amount of DVD and HD DVD Changes) were calculated by analysis of the reproduced signal taking into account the polarization effect. The results are shown in Figures 8 and 9. Fig. 8 shows the evaluation results of modulation degree change of 3T short mark and DPP signal with respect to in-plane birefringence amount of DVD. In-plane birefringence amount n-n (n: refractive index in circumferential direction of substrate, n : The refractive index of the substrate in the radial direction) was taken, and the degree of modulation of each signal was taken on the vertical axis. Also, FIG. 9 shows the evaluation results of the modulation degree change of the 3T short mark and the DPP signal with respect to the in-plane birefringence amount of the HD DVD. In addition, the change characteristics of the in-plane birefringence amount n− n with the rotation speed in the HD DVD are also evaluated, and the results are shown in FIG.
[0013] 図 8及び 9から明らかなように、 DVDでは面内複屈折量 n— nが ±6 X 10_5程度 ばらついても 3T短マークの変調度や DPP信号の変動がわずかであるのに対して、 HD DVDでは面内複屈折量に対する 3T短マークの変調度や DPP信号の変動が DVDの場合より大きくなる。図 8及び 9の結果から、現在の情報記録媒体の記録再 生システムの性能を考慮すると、 HD DVDにおいて安定動作を確保するためには 、 HD DVDの面内複屈折量の変動を ± 3 X 10—5以下に抑える必要があることが分 かった。 As apparent from FIGS. 8 and 9, in the DVD, although the in-plane birefringence amount n−n varies by about ± 6 × 10 — 5 , although the modulation degree of the 3T short mark and the fluctuation of the DPP signal are slight. On the other hand, in HD DVD, the modulation of 3T short marks and the fluctuation of DPP signal with respect to the in-plane birefringence amount Larger than in the case of DVD. From the results of FIGS. 8 and 9, in consideration of the performance of the recording and reproducing system of the present information recording medium, in order to ensure stable operation in the HD DVD, the fluctuation of the in-plane birefringence amount of the HD DVD is ± 3 × that there is a need to keep the 10-5 or less was bought minute.
[0014] し力しながら、射出成形による榭脂基板の量産の段階において、面内複屈折量が  At the stage of mass production of a resin substrate by injection molding, the in-plane birefringence amount is
±4 X 10_5程度ばらつくことが知られており、更には、情報記録媒体を記録再生装 置の限界である lOOOOrpm程度で高速回転させると、図 10に示すように、面内複屈 折量が 5 X 10_5程度増加する。従って、射出成形により発生する面内複屈折量のば らつき及び高速回転で使用した際の面内複屈折量の変化量を考えると、 HD DVD において、面内複屈折量の変動を ± 3 X 10_5以下に抑えることは実質不可能である ± 4 X 10 _5 is known to vary the degree, even when rotated at high speed information recording medium in lOOOOrpm about the limit of the recording and reproducing equipment, as shown in FIG. 10, the in-plane Fuku屈Oriryou There is increased by about 5 X 10_ 5. Therefore, considering the variation of the in-plane birefringence amount generated by injection molding and the variation amount of the in-plane birefringence amount when used at high speed rotation, the variation of the in-plane birefringence amount is ± 3 in HD DVD. It is practically impossible to keep it below X 10 5
[0015] そこで、本発明は上記課題を解決するためになされたものであり、本発明の目的は 、より簡易な構成の光学素子を用いて複屈折の影響をより効果的に低減し、面内複 屈折量の変動に対するマージンを広くすることができる光ピックアップ装置、再生装 置 (または記録再生装置)並びに複屈折補正板を提供することである。 Therefore, the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to reduce the influence of birefringence more effectively by using an optical element having a simpler configuration, It is an object of the present invention to provide an optical pickup device, a reproducing device (or a recording and reproducing device), and a birefringence correction plate capable of widening the margin for the fluctuation of the amount of internal birefringence.
課題を解決するための手段  Means to solve the problem
[0016] 本発明の第 1の態様に従えば、光透過性媒質を有する情報記録媒体の記録面に 該光透過性媒質を介して光ビームを照射し、該記録面力 の反射光を受光する光ピ ックアップ装置であって、光源と、上記光源から出射された光ビームを上記記録面に 集光する対物レンズと、上記光源と上記対物レンズとの間の光路上に配置された偏 光ビームスプリッタと、上記対物レンズと上記偏光ビームスプリッタとの間の光路上に 配置され、入射された光ビームの互いに直交する 2つの偏光成分間に位相差を与え る複屈折補正板とを備え、上記複屈折補正板で生じる上記位相差が上記複屈折補 正板の面内の位置により異なることを特徴とする光ピックアップ装置が提供される。  According to the first aspect of the present invention, the recording surface of the information recording medium having the light transmitting medium is irradiated with a light beam through the light transmitting medium, and the reflected light of the recording surface is received. An optical pickup device comprising: a light source; an objective lens for condensing a light beam emitted from the light source on the recording surface; and polarized light disposed on an optical path between the light source and the objective lens. A beam splitter, and a birefringence correction plate disposed on an optical path between the objective lens and the polarization beam splitter, for providing a phase difference between two orthogonal polarization components of an incident light beam; An optical pickup device is provided, wherein the phase difference generated by the birefringence correction plate differs depending on the position in the plane of the birefringence correction plate.
[0017] 本発明の第 1の態様に従う光ピックアップ装置では、上記複屈折補正板の光ビーム が入射される面内の上記位相差の分布力 入射される光ビームの中心に対して回転 対称であることが好ましい。  In the optical pickup device according to the first aspect of the present invention, the distribution force of the phase difference in the plane on which the light beam of the birefringence correction plate is incident is rotationally symmetric with respect to the center of the incident light beam. Is preferred.
[0018] 本発明者らは、上述した情報記録媒体の透明基板における複屈折の影響を低減さ せるため鋭意検討を行った。本発明者らの検証によると、複屈折は基板に対して、厚 み方向、半径方向及び周方向(トラック方向)の 3成分の影響を受けており、この中で も特に、厚み方向の複屈折 (断面複屈折)が信号の変調度に大きく影響を与えてい ることが分力つた。すなわち、透明基板の断面複屈折量 n— n (ただし、 n = (n +n The present inventors have reduced the influence of birefringence in the transparent substrate of the above-mentioned information recording medium. In order to make them According to the verification of the present inventors, the birefringence is affected by three components of the thickness direction, radial direction and circumferential direction (track direction) with respect to the substrate. It was necessary that refraction (cross-sectional birefringence) greatly affects the degree of modulation of the signal. That is, the cross-sectional birefringence of the transparent substrate n − n (where n = (n + n)
a z a t r a z a t r
) Z2、 n:基板の厚み方向の屈折率)を低減させることにより、面内複屈折量 n— n z t r の変動に対する信号変調度の変動を小さくすることができることが分力つた。ただし、 断面複屈折量 n— nの値は、量産性が良好な射出成形プロセスでは、材料によりほ ) Z2, n: The refractive index of the substrate in the thickness direction) is reduced to reduce the variation of the signal modulation degree with respect to the variation of the in-plane birefringence amount n−n z tr. However, the value of the cross-sectional birefringence n-n is different depending on the material in the injection molding process with good mass productivity.
a z  a z
ぼ決まってしまうので、成形プロセスの改良による断面複屈折量の大幅な低減は難し い。  It is difficult to significantly reduce the amount of cross-sectional birefringence due to the improvement of the molding process.
[0019] ここで、透明基板の断面複屈折量 n— nによる信号変調度への影響について説明  Here, the influence on the signal modulation degree due to the cross-sectional birefringence amount n−n of the transparent substrate will be described.
a z  a z
する。本発明者らの検証によると、情報記録媒体からの反射光のうち、情報記録媒体 の表面に対してほぼ垂直に反射する光は、透明基板の断面複屈折の影響を受けな い。しかしながら、情報記録媒体力もの反射光のうち、情報記録媒体の表面に対して 斜め方向に反射する光は透明基板の断面複屈折の影響を大きく受けることが分かつ た。  Do. According to the verification of the present inventors, of the reflected light from the information recording medium, light reflected almost perpendicularly to the surface of the information recording medium is not affected by the cross-sectional birefringence of the transparent substrate. However, it was found that the light reflected in the oblique direction with respect to the surface of the information recording medium, among the reflected light of the information recording medium, was greatly affected by the cross-sectional birefringence of the transparent substrate.
[0020] 通常、情報記録媒体で用いられる透明基板では、透明基板の厚み方向の屈折率 n が面内方向の屈折率 nより小さい(断面複屈折が存在する)ので、情報記録媒体の z a  In general, in a transparent substrate used in an information recording medium, the refractive index n in the thickness direction of the transparent substrate is smaller than the refractive index n in the in-plane direction (cross sectional birefringence exists).
表面に対して斜め反射する光に対する透明基板内の屈折率分布は楕円形状となる 。この場合、楕円状の屈折率分布の長径方向が情報記録媒体の表面に対して斜め 反射する光に対して遅相軸となる(短径方向は進相軸となる)。それゆえ、情報記録 媒体の表面に対して斜め反射する光の長径方向の偏光成分と短径方向の偏光成分 との間に位相差が生じる (複屈折が生じる)。  The refractive index distribution in the transparent substrate for light obliquely reflected to the surface has an elliptical shape. In this case, the major axis direction of the elliptical refractive index distribution is the slow axis with respect to light obliquely reflected to the surface of the information recording medium (the minor axis direction is the fast axis). Therefore, a phase difference occurs (birefringence occurs) between the polarization component in the major axis direction and the polarization component in the minor axis direction of the light obliquely reflected to the surface of the information recording medium.
[0021] 上述のような透明基板の表面に対して斜め方向に反射する光の複屈折が存在する と、 3T短マークの変調度や DPP信号の変動が大きくなる。特に、 HD DVDのような 高密度記録された情報記録媒体では、対物レンズの開口数が大きくなるので、光ビ ームの絞り量が大きくなり、透明基板の表面に対して斜め方向に反射する光の複屈 折の影響 (断面複屈折の影響)が大きくなる。そこで、本発明の光ピックアップ装置で は、複屈折補正板を通過する光ビームのうち、透明基板の表面に対して斜め反射す る光に対して、所定の位相差を生じさせ、その斜め反射する光の複屈折を補償する 複屈折補正板を光ピックアップ装置に設けた。 When birefringence of light reflected in the oblique direction with respect to the surface of the transparent substrate as described above is present, the degree of modulation of the 3T short mark and the fluctuation of the DPP signal become large. In particular, in the case of an information recording medium recorded at high density such as HD DVD, the numerical aperture of the objective lens becomes large, so the aperture of the light beam becomes large and it is reflected obliquely to the surface of the transparent substrate. The effect of double refraction of light (the effect of cross-sectional birefringence) increases. Therefore, in the optical pickup device of the present invention, the light beam passing through the birefringence correction plate is obliquely reflected to the surface of the transparent substrate. The optical pickup device is provided with a birefringence correction plate that generates a predetermined phase difference with respect to the incident light and compensates for the birefringence of the obliquely reflected light.
[0022] 本発明の第 2の態様に従えば、光透過性媒質を有する情報記録媒体の記録面に 該光透過性媒質を介して光ビームを照射し、該記録面力 の反射光を受光する光ピ ックアップ装置であって、光源と、上記光源から出射された光ビームを上記記録面に 集光する対物レンズと、上記光源と上記対物レンズとの間の光路上に配置された偏 光ビームスプリッタと、上記対物レンズと上記偏光ビームスプリッタとの間の光路上に 配置され、入射された光ビームの互いに直交する 2つの偏光成分間に位相差を与え る複屈折補正板とを備え、上記複屈折補正板が、中央領域と、該中央領域を取り囲 むように設けられた外縁領域とを有し、該中央領域の複屈折量と該外縁領域の複屈 折量とが異なること特徴とすることを特徴とする光ピックアップ装置が提供される。  According to the second aspect of the present invention, the recording surface of the information recording medium having the light transmitting medium is irradiated with a light beam through the light transmitting medium, and the reflected light of the recording surface is received. An optical pickup device comprising: a light source; an objective lens for condensing a light beam emitted from the light source on the recording surface; and polarized light disposed on an optical path between the light source and the objective lens. A beam splitter, and a birefringence correction plate disposed on an optical path between the objective lens and the polarization beam splitter, for providing a phase difference between two orthogonal polarization components of an incident light beam; The birefringence correction plate has a central region and an outer edge region provided so as to surround the central region, and the birefringence amount of the central region is different from the birefringence amount of the outer edge region. An optical pickup device characterized by It is subjected.
[0023] また、本発明の第 2の態様に従う光ピックアップ装置では、上記外縁領域の進相軸 が上記中央領域を周回する方向に向 、て 、ることが好ま 、。  Further, in the optical pickup device according to the second aspect of the present invention, it is preferable that the fast axis of the outer edge region is directed in the direction of circling the central region.
[0024] 本発明の第 2の態様に従う光ピックアップ装置では、上記外縁領域が上記中央領 域を周回する方向に 4つの領域に等分割されていることが好ましい。し力しながら、本 発明はこれに限定されず、外縁領域を上記中央領域を周回する方向に 5つ以上の 領域に分割しても良い。後述する断面複屈折の補償原理からすると、複屈折補正板 の外縁領域の進相軸は、理想的には入射される光ビームの周方向になることが好ま LV、ので、外縁領域の分割数はより多 、方が好ま 、。  In the optical pickup device according to the second aspect of the present invention, it is preferable that the outer edge area is equally divided into four areas in the direction of circling the central area. However, the present invention is not limited to this, and the outer edge area may be divided into five or more areas in the direction of circling the central area. According to the principle of compensation for cross-sectional birefringence described later, the phase advance axis of the outer edge region of the birefringence correction plate is ideally ideally in the circumferential direction of the incident light beam LV, so the number of divisions of the outer edge region There are more, more preferred.
[0025] 本発明の第 2の態様に従う光ピックアップ装置では、上記中央領域が正方形状で あり、上記外縁領域の進相軸が上記中央領域の外縁に沿った方向を向いていること が好ましい。  In the optical pickup device according to the second aspect of the present invention, preferably, the central area is square, and the fast axis of the outer edge area is directed along the outer edge of the central area.
[0026] 本発明の第 2の態様に従う光ピックアップ装置では、上記複屈折補正板が、基板と 、基板上に設けられた複屈折補正片とを有し、該複屈折補正片が上記外縁領域に 設けられて 、ることが好ま U、。  In the optical pickup device according to the second aspect of the present invention, the birefringence correction plate has a substrate and a birefringence correction piece provided on the substrate, and the birefringence correction piece has the outer edge region. It is preferable to be provided U ,.
[0027] 上述のように、本発明者らの検証によると、情報記録媒体からの反射光のうち、透 明基板の表面に対して斜め方向に反射する光は透明基板の断面複屈折の影響を 受けることが分力つている。それに対して、第 2の態様に従う光ピックアップ装置では 、対物レンズと偏光ビームスプリッタとの間の光路上に配置する複屈折補正板として、 通過光に対して複屈折がほとんど生じない (位相差がほぼ 0となる)中央領域と、該中 央領域を取り囲むように設けられた通過光に対して複屈折を生じさせる (位相差を生 じさせる)外縁領域とを有し、該外縁領域の進相軸が中央領域をほぼ周回する方向 に向いている複屈折補正板を用いた。なお、ここでいう中央領域で複屈折がほとんど 生じないとは、複屈折補正板の中央領域における複屈折量が外縁領域における複 屈折量の約 1Z5以下となるような状態をいう。また、本明細書でいう「複屈折量」とは 、進相軸方向の屈折率と、遅相軸方向の屈折率の差のことをいう。例えば、複屈折補 正板の外縁領域では、進相軸方向の屈折率と、進相軸に垂直な方向で且つ面内方 向 (遅相軸)の屈折率との差が、外縁領域の複屈折量となる。すなわち、複屈折補正 板の複屈折量とは、面内方向の複屈折量のことである。 As described above, according to the verification of the present inventors, among the reflected light from the information recording medium, the light reflected in the oblique direction with respect to the surface of the transparent substrate is affected by the cross-sectional birefringence of the transparent substrate. It is essential to receive the On the other hand, in the optical pickup device according to the second aspect A birefringence correction plate disposed on an optical path between the objective lens and the polarization beam splitter, wherein the central region has almost no birefringence with respect to passing light (the phase difference is almost 0); And an outer edge area which causes birefringence (generates a phase difference) with respect to passing light provided to surround the light source, and the fast axis of the outer edge area is directed in the direction of substantially circling the central area. Used a birefringence correction plate. As used herein, “little birefringence occurs in the central region” means that the amount of birefringence in the central region of the birefringence correction plate is about 1 Z5 or less of the amount of birefringence in the outer edge region. Further, the “birefringence amount” as used herein refers to the difference between the refractive index in the fast axis direction and the refractive index in the slow axis direction. For example, in the outer edge region of the birefringence correction plate, the difference between the refractive index in the fast axis direction and the refractive index in the direction perpendicular to the fast phase axis and in the in-plane direction (slow axis) is It becomes the amount of birefringence. That is, the amount of birefringence of the birefringence correction plate is the amount of birefringence in the in-plane direction.
[0028] 複屈折補正板の中央領域は、通過光に対して複屈折がほとんど生じないようにす るために、面内方向の屈折率が等方性である材料で形成することが好ましい。そのよ うな材料としては、例えば、溶融石英、光学ガラス等が用い得る。  The central region of the birefringence correction plate is preferably formed of a material having an isotropic refractive index in the in-plane direction so that birefringence does not occur substantially with respect to passing light. As such a material, for example, fused quartz, optical glass or the like can be used.
[0029] また、本明細書でいう複屈折補正板の「周回する方向」とは、複屈折補正板の面内 方向で且つ中央領域を取り巻く方向のことである。ただし、周回する方向には、中央 領域の外縁に沿う方向だけでなぐ次のような場合も含まれる。例えば、図 3に示した 複屈折補正板 6では、中央領域 (光路差調整板 61が形成された領域)を正方形状で 形成し、中央領域の外縁の沿う方向 (周回する方向)に外縁領域 (複屈折補正片 62 a〜62dが形成された領域)の進相軸 63が向いている力 図 3に示した複屈折補正 板 6において中央領域を円形状で形成した場合、すなわち、進相軸 63の方向が中 央領域の外縁の沿う方向に向 、て 、な 、領域が存在する場合であっても、外縁領域 の進相軸 63は複屈折補正板の面内方向で且つ中央領域を取り巻く方向に向いてい るので、このような場合も進相軸の方向は中央領域を周回する方向に含まれる。  Further, the “rotational direction” of the birefringence correction plate as referred to in the present specification is the direction in the in-plane direction of the birefringence correction plate and surrounding the central region. However, the direction of orbiting includes the following cases, which are only along the outer edge of the central region. For example, in the birefringence correction plate 6 shown in FIG. 3, the central region (region where the optical path difference adjustment plate 61 is formed) is formed in a square shape, and the outer edge region is in the direction along the outer edge of the central region Force in which the fast axis 63 of (a region in which the birefringence correction pieces 62a to 62d are formed) is facing When the central region is formed in a circular shape in the birefringence correction plate 6 shown in FIG. Even when the direction of the axis 63 is along the outer edge of the central region, even if there is a region, the fast axis 63 of the outer region is the in-plane direction of the birefringence correction plate and the central region In this case as well, the direction of the fast axis is included in the direction of circling the central region.
[0030] 本発明の第 2の態様に従う光ピックアップ装置に用いる複屈折補正板では、中央領 域の幅が通過する光ビームの径より小さくしているので、情報記録媒体の表面に対し て垂直方向に反射される光は複屈折補正板の中央領域を通過し、情報記録媒体の 表面に対して斜め方向に反射される光は、複屈折補正板の外縁領域を通過するよう な構成となっている。従って、本発明の第 2の態様に従う光ピックアップ装置に用いる 複屈折補正板では、情報記録媒体の基板表面に対して斜め方向に反射される光だ けが複屈折補正板で位相補正される。それゆえ、透明基板の断面複屈折の影響を 低減することができる。 In the birefringence correction plate used for the optical pickup device according to the second aspect of the present invention, the width of the central region is smaller than the diameter of the passing light beam, and therefore perpendicular to the surface of the information recording medium. The light reflected in the direction passes through the central area of the birefringence correction plate, and the light reflected in the oblique direction with respect to the surface of the information recording medium passes through the outer edge area of the birefringence correction plate. The configuration is as follows. Therefore, in the birefringence correction plate used in the optical pickup device according to the second aspect of the present invention, only the light reflected in the oblique direction with respect to the substrate surface of the information recording medium is phase corrected by the birefringence correction plate. Therefore, the influence of cross-sectional birefringence of the transparent substrate can be reduced.
[0031] ここで、本発明の第 2の態様の光ピックアップ装置により透明基板の断面複屈折の 影響が低減できる原理につ!、て簡単に説明する。  Here, the principle by which the influence of the cross-sectional birefringence of the transparent substrate can be reduced by the optical pickup device of the second aspect of the present invention will be briefly described.
[0032] 通常、射出成形プロセスで作成される円板状透明基板の断面複屈折量は n— n a zUsually, the cross-sectional birefringence of the disc-like transparent substrate produced by the injection molding process is n−n az
>0となる。すなわち、透明基板の厚み方向の屈折率 nが面内方向の平均屈折率 n z a より小さいので、透明基板の屈折率は、例えば、図 5中の分布 NSのように透明基板 の面内方向に伸びた楕円体状の分布となる。それゆえ、例えば、図 5中の光 L2のよ うに、透明基板の半径方向に斜め反射する光に対して垂直な面内の屈折率は図 6 ( b)の上図のように楕円分布 N2となる。 It becomes> 0. That is, since the refractive index n in the thickness direction of the transparent substrate is smaller than the average refractive index nza in the in-plane direction, the refractive index of the transparent substrate is, for example, elongated in the in-plane direction of the transparent substrate as distribution NS in FIG. Distribution in the shape of an ellipsoid. Therefore, for example, as in the light L2 in FIG. 5, the refractive index in the plane perpendicular to the light obliquely reflected in the radial direction of the transparent substrate has an elliptical distribution N2 as shown in the upper drawing of FIG. It becomes.
[0033] 透明基板の半径方向に斜め反射する光 L2に垂直な面の透明基板の屈折率分布 N2では、図 6 (b)の上図に示すように、その長径方向の屈折率は透明基板の周方向 の屈折率 nとなるが、周方向に垂直な方向(短径方向)の屈折率 n 'は透明基板の周 方向の屈折率 nより小さくなる。それゆえ、透明基板の半径方向に斜め反射する光 L 2に対しては、透明基板の遅相軸は周方向(図 6 (b)の分布 N2の長径方向)になる。 従って、光 L2が透明基板を通過する際には、光 L2の周方向の偏光成分の位相がそ れに垂直な方向の偏光成分に対して遅れ、光 L2の互いに直交する偏光成分間に位 相差が生じる。 In the refractive index distribution N2 of the transparent substrate on the surface perpendicular to the light L2 obliquely reflected in the radial direction of the transparent substrate, as shown in the upper drawing of FIG. 6 (b), the refractive index in the major axis direction is the transparent substrate The refractive index n in the circumferential direction is smaller than the refractive index n in the circumferential direction of the transparent substrate in the direction (short diameter direction) perpendicular to the circumferential direction. Therefore, for light L2 that is obliquely reflected in the radial direction of the transparent substrate, the slow axis of the transparent substrate is in the circumferential direction (the major axis direction of the distribution N2 in FIG. 6B). Therefore, when the light L2 passes through the transparent substrate, the phase of the polarization component in the circumferential direction of the light L2 is delayed with respect to the polarization component in the direction perpendicular to that, and the light L2 is polarized between the mutually orthogonal polarization components. A difference occurs.
[0034] 本発明の第 2の態様の光ピックアップ装置では、上述のように 2つの偏光成分間に 位相差が生じた光 L2は対物レンズを介して複屈折補正板の外縁領域に入射される 。本発明の第 2の態様の光ピックアップ装置では、複屈折位相板の外縁領域の進相 軸は複屈折補正板の中央領域を周回する方向に向いており、透明基板の半径方向 に斜め反射する光 L2が外縁領域を通過する際の外縁領域の進相軸の方向は透明 基板の周方向と同じ方向となる、すなわち、光 L2が透明基板を通過する際の光 L2 に対する透明基板の遅相軸と、光 L2が複屈折位相板の外縁領域を通過する際の光 L2に対する複屈折位相板の遅相軸とが同じ方向となる。それゆえ、透明基板を通過 したことで 2つの偏光成分間に位相差が生じた光 L2が複屈折補正板の外縁領域を 通過すると、透明基板を通過した際に位相が遅れた光 L2の偏光成分の位相が、そ の垂直な偏光成分 (透明基板を通過した際に位相が進む偏光成分)に対して進む。 その結果、透明基板を通過した際に生じた光 L2の互いに直交する偏光成分間の位 相差が、複屈折補正板で補正することができる。これにより、透明基板の半径方向に 斜め反射する光 L2の複屈折を補償することができ、等価的に透明基板の断面複屈 折量を低減することができる。また、図 5中の光 L3のように透明基板の周方向に斜め 反射する光に対しても同様の原理で複屈折を補償することができる。すなわち、本発 明の第 2の態様に従う光ピックアップ装置では、上述のように、透明基板に斜め入射 する光に対して、透明基板の遅相軸の方向と複屈折補正板の進相軸の方向とをほ ぼ一致させることにより、透明基板に斜め入射する光の複屈折を補償して透明基板 の断面複屈折の影響を低減させる。 In the optical pickup device according to the second aspect of the present invention, the light L2 in which the phase difference is generated between the two polarization components as described above is incident on the outer edge region of the birefringence correction plate through the objective lens. . In the optical pickup device according to the second aspect of the present invention, the fast axis of the outer edge region of the birefringence phase plate is directed in the direction of circling the central region of the birefringence correction plate and obliquely reflected in the radial direction of the transparent substrate. The direction of the phase advance axis of the outer edge area when the light L2 passes through the outer edge area is the same as the circumferential direction of the transparent substrate, that is, the retardation of the transparent substrate relative to the light L2 when the light L2 passes through the transparent substrate The axis and the slow axis of the birefringent phase plate for the light L2 when the light L2 passes through the outer edge region of the birefringent phase plate are in the same direction. Therefore, it passes through the transparent substrate When light L2 having a phase difference between the two polarization components passes through the outer edge area of the birefringence correction plate, the phase of the polarization component of the light L2 whose phase is delayed when passing through the transparent substrate is It proceeds with respect to the vertical polarization component (polarization component whose phase advances when passing through the transparent substrate). As a result, the phase difference between the mutually orthogonal polarization components of the light L 2 generated when passing through the transparent substrate can be corrected by the birefringence correction plate. Thereby, the birefringence of the light L2 obliquely reflected in the radial direction of the transparent substrate can be compensated, and the cross-sectional birefringence of the transparent substrate can be equivalently reduced. The birefringence can also be compensated for light which is obliquely reflected in the circumferential direction of the transparent substrate as shown by light L3 in FIG. 5 according to the same principle. That is, in the optical pickup device according to the second aspect of the present invention, as described above, with respect to light obliquely incident on the transparent substrate, the direction of the slow axis of the transparent By making the directions approximately coincide with each other, the birefringence of light obliquely incident on the transparent substrate is compensated to reduce the influence of the cross-sectional birefringence of the transparent substrate.
[0035] 本発明では、複屈折補正板の位相補正量 (複屈折補正板で生じる偏光成分間の 光路差)は、使用する情報記録媒体の光透過性媒質 (透明基板)の断面複屈折に応 じて適宜設定可能であるが、現在最も使用されているポリカーボネート製の成形基板 では 10〜40nm程度とすることが好ましぐ特に 15〜25nm程度とすることが好まし い。この範囲の位相補正量に設定することにより、現在最も使用されているポリカー ボネート製の成形基板に対して、断面複屈折の影響を十分低減することができ、現 在の記録再生装置でも安定動作が確保することができる。  In the present invention, the phase correction amount of the birefringence correction plate (the optical path difference between the polarization components generated by the birefringence correction plate) corresponds to the cross-section birefringence of the light transmitting medium (transparent substrate) of the information recording medium used. Accordingly, although it can be set appropriately, it is preferable to set the thickness to about 10 to 40 nm, particularly about 15 to 25 nm, for polycarbonate molded substrates that are most used at present. By setting the phase correction amount within this range, the influence of the cross-sectional birefringence can be sufficiently reduced with respect to the polycarbonate molded substrate that is most used at present and stable operation is possible even with the current recording and reproducing apparatus. Can be secured.
[0036] また、本発明では、複屈折補正板の中央領域の寸法は、入射される光ビームの径 、対物レンズの開口数、情報記録媒体の光透過性媒質 (透明基板)の材料等応じて 適宜設定可能である。なお、 HD DVDの仕様で、光透過性媒質として従来のポリ力 ーボネート成形基板を用いた場合には、中央領域の幅を複屈折補正板に入射され る光ビームの径の半分程度とすることにより、断面複屈折の影響を十分低減されるこ とが、本発明者らの検証実験により確認されている。  In the present invention, the dimensions of the central region of the birefringence correction plate depend on the diameter of the incident light beam, the numerical aperture of the objective lens, the material of the light transmitting medium (transparent substrate) of the information recording medium, etc. It can be set appropriately. When the conventional polycarbonate polycarbonate molded substrate is used as the light transmitting medium in the specification of HD DVD, the width of the central region should be about half the diameter of the light beam incident on the birefringence correction plate. As a result, it has been confirmed by the present inventors' verification experiments that the influence of cross-sectional birefringence can be sufficiently reduced.
[0037] 上述した本発明の第 2の態様に従う光ピックアップ装置では、従来の液晶補正素子 や波長板等の補正機構を備えた光ピックアップ装置のように、駆動中の光ディスクに 対して補正機構により複屈折の補正値を変更しながら記録再生を行う必要がなぐ予 め所定の位相補正量を有する複屈折補正板を設けるだけで、透明基板の断面複屈 折の影響を低減でき、光ディスクの面内複屈折量の変動に対するマージンを実質上 広げることができる。 [0037] In the optical pickup device according to the second aspect of the present invention described above, the correction mechanism for the optical disc being driven is used as in the conventional optical pickup device provided with a correction mechanism such as a liquid crystal correction element or a wave plate. It is not necessary to perform recording and playback while changing the birefringence correction value. Therefore, the influence of the cross-sectional birefringence of the transparent substrate can be reduced and the margin for the fluctuation of the in-plane birefringence of the optical disc can be substantially expanded only by providing the birefringence correction plate having a predetermined phase correction amount.
[0038] 本発明の第 3の態様に従えば、光透過性媒質を有する情報記録媒体の記録面に 該光透過性媒質を介して光ビームを照射し、該記録面力 の反射光を受光する光ピ ックアップ装置であって、光源と、上記光源から出射された光ビームを上記記録面に 集光する対物レンズと、入射された光ビームの互いに直交する 2つの偏光成分間に 位相差を与える複屈折補正板とを備え、上記複屈折補正板が上記対物レンズの上 記情報記録媒体側に配置されていることを特徴とする光ピックアップ装置が提供され る。  According to the third aspect of the present invention, the recording surface of the information recording medium having the light transmitting medium is irradiated with a light beam through the light transmitting medium, and the reflected light of the recording surface is received. A light source, an objective lens for condensing a light beam emitted from the light source on the recording surface, and a phase difference between two mutually orthogonal polarization components of the incident light beam. An optical pickup device is provided, characterized by comprising: a birefringence correction plate, and the birefringence correction plate is disposed on the information recording medium side of the objective lens.
[0039] 本発明の第 4の態様に従えば、光透過性媒質を有する情報記録媒体の記録面に 該光透過性媒質を介して光ビームを照射し、該記録面力 の反射光を受光する光ピ ックアップ装置であって、光源と、上記光源から出射された光ビームを上記記録面に 集光する対物レンズと、上記対物レンズの上記情報記録媒体側に配置され、入射さ れた光ビームの互いに直交する 2つの偏光成分間に位相差を与える複屈折補正板 とを備え、上記複屈折補正板の遅相軸が複屈折補正板の厚さ方向に向いていること を特徴とする光ピックアップ装置が提供される。  According to the fourth aspect of the present invention, the recording surface of the information recording medium having the light transmitting medium is irradiated with a light beam through the light transmitting medium, and the reflected light of the recording surface is received. A light source, an objective lens for condensing a light beam emitted from the light source on the recording surface, and an incident light disposed on the information recording medium side of the objective lens. And a birefringence correction plate for giving a phase difference between two polarization components orthogonal to each other of the beam, wherein the slow axis of the birefringence correction plate is oriented in the thickness direction of the birefringence correction plate. An optical pickup device is provided.
[0040] 第 4の態様に従う光ピックアップ装置における複屈折の補償原理を図 21及び図 22 を用いて簡単に説明する。  The compensation principle of birefringence in the optical pickup device according to the fourth aspect will be briefly described with reference to FIGS. 21 and 22.
[0041] 上記本発明の第 2の態様の光ピックアップ装置における複屈折の補正原理で説明 したように、通常、射出成形プロセスで作製される円板状透明基板の断面複屈折量 は n— n >0となるので、透明基板の屈折率の分布は図 21 (a)に示すように、面内 a z  As described in the birefringence correction principle in the optical pickup device according to the second aspect of the present invention, the cross-sectional birefringence of the disc-like transparent substrate produced by the injection molding process is usually n−n Since it becomes> 0, the distribution of the refractive index of the transparent substrate is in-plane az as shown in FIG. 21 (a).
方向に伸びた楕円体状の分布 NSとなる。  It is an ellipsoidal distribution NS extending in the direction.
[0042] それゆえ、透明基板の半径方向に斜め反射する光 L2に垂直な面の透明基板の屈 折率は、図 22 (b)の上図に示すように、楕円状の分布 N2となり、その長径方向の屈 折率は透明基板の周方向の屈折率 nとなるが、周方向に垂直な方向(第 3方向)の 屈折率 n 'は透明基板の周方向の屈折率 nより小さくなる。それゆえ、透明基板の半 径方向に斜め反射する光 L2に対しては、透明基板の遅相軸は周方向(図 22 (b)の 分布 NS2の長径方向)になる。従って、光 L2が透明基板を通過する際には、光 L2 の周方向の偏光成分の位相がそれに垂直な方向の偏光成分に対して遅れ、光 L2 の互 、に直交する偏光成分間に位相差が生じる。 Therefore, the refractive index of the transparent substrate in the plane perpendicular to the light L 2 obliquely reflected in the radial direction of the transparent substrate is an elliptical distribution N 2 as shown in the upper drawing of FIG. 22 (b), The refractive index in the major axis direction is the refractive index n in the circumferential direction of the transparent substrate, but the refractive index n ′ in the direction (third direction) perpendicular to the circumferential direction is smaller than the refractive index n in the circumferential direction of the transparent substrate . Therefore, for the light L2 reflected obliquely in the radial direction of the transparent substrate, the slow axis of the transparent substrate is in the circumferential direction (FIG. 22 (b)). Distribution NS2). Therefore, when the light L2 passes through the transparent substrate, the phase of the circumferential polarization component of the light L2 is delayed with respect to the polarization component in the direction perpendicular thereto, and the phase between the polarization components of the light L2 is orthogonal to each other. A difference occurs.
[0043] 本発明の第 4の態様の光ピックアップ装置では、上述のように 2つの偏光成分間に 位相差が生じた光 L2が、対物レンズと情報記録媒体との間に設けられた複屈折補 正板に入射される。この際、光 L2は、図 21 (a)に示すように、複屈折補正板の第 1方 向(透明基板の半径方向)から斜め入射する。本発明の第 4の態様の光ピックアップ 装置では、複屈折補正板は、その厚み方向が遅相軸となる、すなわち、複屈折補正 板の厚み方向の屈折率 nが面内方向の平均屈折率 η (η , η )より大きいので、複 In the optical pickup device according to the fourth aspect of the present invention, as described above, the light L 2 in which the phase difference is caused between the two polarization components is a birefringence provided between the objective lens and the information recording medium. It is incident on the compensation plate. At this time, as shown in FIG. 21A, the light L2 is obliquely incident from the first direction (the radial direction of the transparent substrate) of the birefringence correction plate. In the optical pickup device of the fourth aspect of the present invention, the birefringence correction plate has a slow axis in the thickness direction, that is, the refractive index n in the thickness direction of the birefringence correction plate is the average refractive index in the in-plane direction. Because it is larger than η (η, η),
3 0 1 2  3 0 1 2
屈折補正板の屈折率は図 21 (b)に示すように、厚さ方向に伸びた楕円体状の分布 NPとなる。  As shown in FIG. 21 (b), the refractive index of the refraction correction plate is an ellipsoidal distribution NP extending in the thickness direction.
[0044] それゆえ、複屈折補正板の第 1方向(透明基板の半径方向)から斜め入射した光 L 2に対して垂直な面の複屈折補正板の屈折率は図 22 (b)の下図のような楕円状の 分布 NP2となり、第 2方向(透明基板及の周方向に対応する)の屈折率 nがそれに  Therefore, the refractive index of the birefringence correction plate in the plane perpendicular to the light L 2 obliquely incident from the first direction (the radial direction of the transparent substrate) of the birefringence correction plate is the lower side of FIG. 22 (b). An elliptical distribution NP2 like the following, and the refractive index n in the second direction (corresponding to the transparent substrate and the circumferential direction) is
2 垂直な方向(図 22 (b)中の第 1 '方向)の屈折率 n 'より小さくなる。それゆえ、透明基 板からその半径方向に反射される光 L2が複屈折補正板に入射されると、その光 L2 に対して複屈折補正板の進相軸は第 2方向になる。この場合、光 L2が透明基板を通 過する際の光 L2に対する透明基板の遅相軸と、光 L2が複屈折位相板を通過する 際の光 L2に対する複屈折位相板の進相軸とが同じ方向となる。  2 Lower than the refractive index n 'in the vertical direction (the 1' direction in Fig. 22 (b)). Therefore, when the light L2 reflected in the radial direction from the transparent substrate is incident on the birefringence correction plate, the phase advance axis of the birefringence correction plate is in the second direction with respect to the light L2. In this case, the slow axis of the transparent substrate with respect to the light L2 when the light L2 passes through the transparent substrate, and the fast axis of the birefringent phase plate with respect to the light L2 when the light L2 passes through the birefringent phase plate Same direction.
[0045] 従って、 2つの偏光成分間に位相差が生じた光 L2が複屈折補正板を通過すると、 透明基板を通過した際に位相が遅れた光 L2の第 2方向の偏光成分の位相が、その 垂直な偏光成分 (透明基板を通過した際に位相が進む偏光成分)に対して進む。そ の結果、透明基板を通過した際に生じた光 L2の互いに直交する偏光成分間の位相 差が、複屈折補正板で補正することができる。これにより、透明基板の半径方向に斜 め反射する光 L2の複屈折を補償することができ、等価的に透明基板の断面複屈折 量を低減することができる。また、本発明の複屈折補正板では、図 21 (a)中の光 L3 のように透明基板の周方向に斜め反射する光に対しても同様の原理で複屈折を補 償することができる。すなわち、本発明の第 4の態様に従う光ピックアップ装置では、 上述のように、透明基板に斜め入射する光に対して、透明基板の遅相軸の方向と複 屈折補正板の進相軸の方向とを一致させることにより、透明基板に斜め入射する光 の複屈折を補償して透明基板の断面複屈折の影響を低減させている。 Therefore, when the light L 2 having a phase difference between the two polarization components passes through the birefringence correction plate, the phase of the polarization component in the second direction of the light L 2 whose phase is delayed when passing through the transparent substrate , Advanced with respect to its vertical polarization component (polarization component whose phase advances when passing through the transparent substrate). As a result, the phase difference between the mutually orthogonal polarization components of the light L 2 generated when passing through the transparent substrate can be corrected by the birefringence correction plate. Thereby, the birefringence of the light L2 reflected obliquely in the radial direction of the transparent substrate can be compensated, and the cross-sectional birefringence of the transparent substrate can be equivalently reduced. Further, in the birefringence correction plate of the present invention, birefringence can be compensated for the light which is obliquely reflected in the circumferential direction of the transparent substrate as light L3 in FIG. 21 (a) according to the same principle. . That is, in the optical pickup device according to the fourth aspect of the present invention, As described above, with respect to light obliquely incident on the transparent substrate, the direction of the slow axis of the transparent substrate and the direction of the fast axis of the birefringence correction plate are made to coincide with each other. The birefringence is compensated to reduce the influence of the cross-section birefringence of the transparent substrate.
[0046] それゆえ、本発明の第 4の態様に従う光ピックアップ装置においても、従来の液晶 補正素子や波長板等の補正機構を備えた光ピックアップ装置のように、駆動中の光 ディスクに対して補正機構により複屈折の補正値を変更しながら記録再生を行う必要 がなぐ予め複屈折補正板の厚さ方向に遅相軸が向くようにするだけで、透明基板の 断面複屈折の影響を低減でき、光ディスクに対する面内複屈折量のマージンを実質 上広げることができる。  Therefore, also in the optical pickup device according to the fourth aspect of the present invention, with respect to the optical disc being driven, as in the optical pickup device provided with the correction mechanism such as the conventional liquid crystal correction element or wave plate. It is not necessary to perform recording / reproduction while changing the birefringence correction value by the correction mechanism. The effect of cross-sectional birefringence of the transparent substrate can be reduced simply by orienting the slow axis in the thickness direction of the birefringence correction plate in advance. It is possible to substantially expand the margin of the in-plane birefringence amount with respect to the optical disc.
[0047] 本発明の第 4の態様に光ピックアップ装置では、上記複屈折補正板が、基板と、基 板上に設けられた複屈折板とを有し、該複屈折板の厚さ方向の屈折率と面内方向の 屈折率との差を Δ ηとし、該複屈折板の厚さを tとしたとき、 180nm≤ A nX t≤300n mを満たすことが好ま 、。パラメータ Δ n X t値の範囲を上記範囲に設定することに より、現在最も使用されているポリカーボネート製の成形基板に対して、十分に断面 複屈折の影響を低減することができ、現在の記録再生装置でも安定動作が確保され る。  In an optical pickup device according to a fourth aspect of the present invention, the birefringence correction plate includes a substrate and a birefringence plate provided on the substrate, and the birefringence plate in the thickness direction Assuming that the difference between the refractive index and the refractive index in the in-plane direction is Δη and the thickness of the birefringence plate is t, it is preferable to satisfy 180 nm≤A nX t≤300 nm. By setting the range of the parameter Δ n X t value to the above range, the influence of the cross-sectional birefringence can be sufficiently reduced with respect to the polycarbonate molded substrate currently most used at present, and the current recording Stable operation is ensured even with the playback device.
[0048] 本発明の光ピックアップ装置では、上記光源から出射される光ビームの波長が 430 nm以下であることが好ましい。本発明に用いる光源としては、青色波長以下の短波 長を有する光を射出する光源が好ましい。なお、現在、巿場に提供されている青色レ 一ザの中で、最も長い波長は 430nm程度である。  In the optical pickup device of the present invention, the wavelength of the light beam emitted from the light source is preferably 430 nm or less. As a light source used in the present invention, a light source that emits light having a short wavelength equal to or less than the blue wavelength is preferable. Among the blue lasers currently provided in the field, the longest wavelength is about 430 nm.
[0049] 本発明の光ピックアップ装置では、上記対物レンズの開口数が 0. 6以上であること が好ましい。本発明の光ピックアップ装置は、 HD DVDのように高記録密度の媒体 の装置として好適であり、そのような装置では、記録密度の増大とともに対物レンズの 開口数 NAも大きくなることが一般的である。従来の DVDの仕様では NA = 0. 6であ る力 HD DVDの仕様では NA=0. 65である。今後更なる高記録密度化が図られ れば、さらに対物レンズの開口数 NAも大きくなることが予測される。  In the optical pickup device of the present invention, the numerical aperture of the objective lens is preferably 0.6 or more. The optical pickup apparatus of the present invention is suitable as an apparatus for high recording density media such as HD DVD. In such an apparatus, it is general that the numerical aperture NA of the objective lens increases as the recording density increases. is there. For conventional DVD specifications, NA = 0.6 The power HD DVD specifications for NA = 0.65. If the recording density is further increased in the future, it is predicted that the numerical aperture NA of the objective lens will be further increased.
[0050] 本発明の光ピックアップ装置では、上記光透過性媒質の面内方向の屈折率 nと厚 a み方向の屈折率 nとの差 n -nが 2 X 10_4以上の値であることが好ましい。特に、上 z a z 記光透過性媒質がポリカーボネート製の成形基板であることが好ましい。 In the optical pickup device of the present invention, the difference n−n between the refractive index n in the in-plane direction of the light transmitting medium and the refractive index n in the thickness a direction is a value of 2 × 10 — 4 or more. Is preferred. In particular, on zaz The light transmitting medium is preferably a molded substrate made of polycarbonate.
[0051] 本発明の第 5の態様に従えば、光透過性媒質を有する円板状情報記録媒体の記 録面に該光透過性媒質を介して光ビームを照射し、該記録面からの反射光を受光し て情報を再生装置であって、上記第 1〜第 4の態様のいずれかに従う光ピックアップ 装置と、上記円板状情報記録媒体を回転駆動するための回転装置とを備える再生 装置が提供される。  According to the fifth aspect of the present invention, a recording surface of a disk-shaped information recording medium having a light transmitting medium is irradiated with a light beam through the light transmitting medium, and the recording surface of the disk An optical pickup device according to any one of the first to fourth aspects, which is a reproduction device for receiving information and receiving reflected light, and a rotation device for rotationally driving the disc-shaped information recording medium. An apparatus is provided.
[0052] なお、本明細書でいう「再生装置」とは、再生動作のみを行う装置に限らず、再生及 び記録動作を行う装置のことを意味する。  Note that “reproduction device” as used in the present specification means not only a device that performs only the reproduction operation, but also a device that performs the reproduction and recording operations.
[0053] 本発明の再生装置では、上記回転装置の最高回転数が 6000rpm以上であること が好ましい。本発明の再生装置を用いて、円板状情報記録媒体の最高回転数が 60 OOrpm以上とした場合には、高転送レートの再生が可能となる。また、本発明者らの 検証によると、媒体が回転した際の遠心力による面内複屈折量の変化の影響が無視 できなくなる回転数の下限が回転数 6000rpmであり、この回転数以下では、遠心力 による面内複屈折量の変化は、成形プロセスにより発生する面内複屈折量に対して 無視できる程度になる。  In the reproduction apparatus of the present invention, it is preferable that the maximum number of revolutions of the above-mentioned rotation device is 6000 rpm or more. When the maximum number of revolutions of the disk-shaped information recording medium is set to 60 OO rpm or more by using the reproducing apparatus of the present invention, reproduction of high transfer rate becomes possible. Moreover, according to the inventors' verification, the lower limit of the number of rotations at which the influence of the change in the amount of in-plane birefringence due to the centrifugal force when the medium rotates can not be neglected is the number of rotations of 6000 rpm. The change in in-plane birefringence due to centrifugal force is negligible with respect to the in-plane birefringence generated by the molding process.
[0054] 本発明の第 6の態様に従えば、入射された光ビームの互いに直交する 2つの偏光 成分間に位相差を与える複屈折補正板であって、中央領域と、上記中央領域を取り 囲むように設けられた外縁領域とを備え、上記中央領域の複屈折量と上記外縁領域 の複屈折量とが異なることを特徴とする複屈折補正板が提供される。  [0054] According to a sixth aspect of the present invention, there is provided a birefringence correction plate for providing a phase difference between two polarization components orthogonal to each other of an incident light beam, which has a central region and the central region. There is provided a birefringence correction plate comprising: an outer peripheral area provided so as to surround the two, wherein the birefringence of the central area is different from the birefringence of the outer peripheral area.
[0055] 本発明の第 6の態様に従う複屈折補正板では、上記外縁領域の進相軸が上記中 央領域を周回する方向に向 、て 、ることが好ま 、。  [0055] In the birefringence correction plate according to the sixth aspect of the present invention, it is preferable that the fast axis of the outer edge region is directed in the direction of circling the central region.
[0056] 本発明の第 6の態様に従う複屈折補正板では、上記中央領域の幅が入射される光 ビームの径の半分であることが好ましい。また、本発明の第 6の態様に従う複屈折補 正板では、上記外縁領域が上記中央領域を周回する方向に 4つの領域に等分割さ れていることが好ましい。さらに、本発明の第 6の態様に従う複屈折補正板では、上 記中央領域が正方形状であり、上記外縁領域の進相軸が上記中央領域の外縁に沿 つた方向を向 、て 、ることが好まし 、。  [0056] In the birefringence correction plate according to the sixth aspect of the present invention, the width of the central region is preferably half the diameter of the light beam to be incident. In the birefringence correction plate according to the sixth aspect of the present invention, it is preferable that the outer edge area is equally divided into four areas in the direction of circling the central area. Furthermore, in the birefringence correction plate according to the sixth aspect of the present invention, the central region is square, and the fast axis of the outer edge region is directed in the direction along the outer edge of the central region. Is preferred.
[0057] 本発明の第 6の態様に従う複屈折補正板では、上記複屈折補正板が、基板と、基 板上に設けられた複屈折板とを備え、該複屈折板が上記外縁領域に設けられて ヽる ことが好ましい。また、本発明の第 6の態様に従う複屈折補正板では、上記複屈折板 が水晶であることが好まし 、。 [0057] In the birefringence correction plate according to the sixth aspect of the present invention, the birefringence correction plate includes a substrate, Preferably, a birefringent plate is provided on the plate, and the birefringent plate is provided in the outer edge region. Further, in the birefringence correction plate according to the sixth aspect of the present invention, the birefringence plate is preferably quartz.
[0058] 本発明の第 7の態様に従えば、入射された光ビームの互いに直交する 2つの偏光 成分間に位相差を与える複屈折補正板において、上記複屈折補正板の遅相軸が複 屈折補正板の厚さ方向に向いていることを特徴とする複屈折補正板が提供される。  According to the seventh aspect of the present invention, in the birefringence correction plate for giving a phase difference between two polarization components orthogonal to each other of the incident light beam, the slow axis of the birefringence correction plate is a complex. A birefringence correction plate is provided, characterized in that it is oriented in the thickness direction of the refraction correction plate.
[0059] 本発明の第 7の態様に従う複屈折補正板では、上記複屈折補正板が、基板と、基 板上に設けられた複屈折板とを備え、該複屈折板の厚さ方向の屈折率と面内方向の 屈折率との差を Δ ηとし、該複屈折板の厚さを tとしたとき、 180nm≤ A nX t≤300n mを満たすことが好ましい。また、本発明の第 7の態様に従う複屈折補正板では、上 記複屈折板が水晶であることが好ま 、。  In a birefringence correction plate according to a seventh aspect of the present invention, the birefringence correction plate includes a substrate and a birefringence plate provided on the substrate, and the birefringence plate in the thickness direction of the birefringence plate Assuming that the difference between the refractive index and the refractive index in the in-plane direction is Δη and the thickness of the birefringence plate is t, it is preferable to satisfy 180 nm≤A nX t≤300 nm. Further, in the birefringence correction plate according to the seventh aspect of the present invention, the birefringence plate is preferably quartz.
発明の効果  Effect of the invention
[0060] 上述のように、本発明の光ピックアップ装置、再生装置及び複屈折補正板では、予 め複屈折補正板の外縁領域の屈折率を適宜調整するだけで、あるいは、複屈折補 正板の遅相軸を厚さ方向に向けるだけで、透明基板に対して斜め入射する光及び 斜め反射する光の複屈折を補償して透明基板の断面複屈折の影響を低減させるこ とができ、光ディスクの面内複屈折量の変動に対するマージンを広げることができる。  As described above, in the optical pickup device, the reproducing device, and the birefringence correction plate of the present invention, it is necessary to adjust the refractive index of the outer edge region of the birefringence correction plate only appropriately in advance or It is possible to compensate the birefringence of light incident obliquely to the transparent substrate and light reflected obliquely to reduce the influence of the cross-sectional birefringence of the transparent substrate by simply orienting the slow axis of the light source in the thickness direction. It is possible to widen the margin for the fluctuation of the in-plane birefringence amount of the optical disc.
[0061] また、本発明の光ピックアップ装置、再生装置及び複屈折補正板は、予め複屈折 補正板の外縁領域の屈折率を適宜調整するだけで、あるいは、複屈折補正板の遅 相軸を厚さ方向に向けるだけで、透明基板に対して斜め入射する光及び斜め反射 する光の複屈折を補償して透明基板の断面複屈折の影響を低減させることができる ので、従来の光ピックアップ装置のように液晶補正素子や波長板等の補正機構で複 屈折を無くす方向に位相差の補正値を変更しながら記録再生を行う必要がないので 、より簡易な構成にすることができる。  In the optical pickup device, the reproducing device, and the birefringence correction plate of the present invention, the retardation axis of the birefringence correction plate may be set by simply adjusting the refractive index of the outer edge region of the birefringence correction plate in advance. Since the birefringence of light obliquely incident on the transparent substrate and light obliquely reflected can be compensated for by reducing the effect of cross-sectional birefringence of the transparent substrate only by pointing in the thickness direction, the conventional optical pickup device Since it is not necessary to perform recording / reproduction while changing the correction value of the phase difference in the direction of eliminating birefringence by a correction mechanism such as a liquid crystal correction element or a wave plate as in the above, the configuration can be simplified.
[0062] また、本発明の再生装置において、円板状情報記録媒体の最高回転数が 6000rp m以上とした場合には、高転送レートの記録再生が可能となる。  Further, in the reproducing apparatus of the present invention, when the maximum number of revolutions of the disk-shaped information recording medium is set to 6000 rpm or more, high transfer rate recording and reproduction become possible.
図面の簡単な説明  Brief description of the drawings
[0063] [図 1]図 1は、実施例 1で用いた光ピックアップ装置の概略構成を示した側面図であり 、図 2中の B— B断面を示した図である。 [FIG. 1] FIG. 1 is a side view showing a schematic configuration of an optical pickup device used in Example 1. FIG. 3 is a view showing a cross section B-B in FIG.
[図 2]図 2は、実施例 1で用いた光ピックアップ装置の概略構成を示した上面図であり [FIG. 2] FIG. 2 is a top view showing a schematic configuration of the optical pickup device used in Example 1.
、図 1中の A— A断面を示した図である。 FIG. 2 is a view showing a cross section A-A in FIG.
[図 3]図 3は、実施例 1で用いた複屈折補正板の斜視図である。  FIG. 3 is a perspective view of a birefringence correction plate used in Example 1.
[図 4]図 4は、実施例 1で用いた複屈折補正板の上面図である。  [FIG. 4] FIG. 4 is a top view of a birefringence correction plate used in Example 1.
[図 5]図 5は、実施例 1で用いた複屈折補正板で複屈折を補償する原理を説明する ための図である。  FIG. 5 is a view for explaining the principle of compensating birefringence with the birefringence correction plate used in Example 1.
[図 6]図 6 (a)〜 (c)は、実施例 1で用いた複屈折補正板で複屈折を補償する原理を 説明するための図である。  6 (a) to 6 (c) are diagrams for explaining the principle of compensating birefringence with the birefringence correction plate used in Example 1. FIG.
[図 7]図 7は、実施例 1で用いた光検出器の回路図である。  [FIG. 7] FIG. 7 is a circuit diagram of a photodetector used in Example 1.
[図 8]図 8は、従来の DVD検出光学系における複屈折による信号振幅特性である。  [FIG. 8] FIG. 8 shows signal amplitude characteristics due to birefringence in the conventional DVD detection optical system.
[図 9]図 9は、従来の HD DVD検出光学系における複屈折による信号振幅特性で ある。 [FIG. 9] FIG. 9 shows signal amplitude characteristics due to birefringence in the conventional HD DVD detection optical system.
[図 10]図 10は、 HD DVDにおける遠心力の面内複屈折量への影響を示した図で ある。  [Fig. 10] Fig. 10 is a view showing the influence of centrifugal force on the in-plane birefringence amount in HD DVD.
[図 11]図 11は、断面複屈折量が 6 X 10—4の HD DVDに対して、実施例 1の光ピッ クアップ装置を適用した場合の面内複屈折量に対する 3Tマークの変調度の変化を 示した図である。 [11] FIG. 11 is for HD DVD sectional birefringence amount is 6 X 10- 4, a 3T mark of the modulation degree for the in-plane birefringence in the case of applying the optical pickup apparatus of Example 1 It is the figure which showed the change.
[図 12]図 12は、断面複屈折量が 6 X 10—4の HD DVDに対して、実施例 1の光ピッ クアップ装置を適用した場合の面内複屈折量に対する DPP信号の変調度の変化を 示した図である。 FIG. 12 is for HD DVD sectional birefringence amount is 6 X 10- 4, the modulation degree of the DPP signal to the in-plane birefringence in the case of applying the optical pickup apparatus of Example 1 It is the figure which showed the change.
[図 13]図 13は、断面複屈折量が 4 X 10—4の HD DVDに対して、実施例 1の光ピッ クアップ装置を適用した場合の面内複屈折量に対する 3Tマークの変調度の変化を 示した図である。 [13] FIG. 13 is for HD DVD sectional birefringence amount is 4 X 10- 4, a 3T mark of the modulation degree for the in-plane birefringence in the case of applying the optical pickup apparatus of Example 1 It is the figure which showed the change.
[図 14]図 14は、断面複屈折量が 4 X 10—4の HD DVDに対して、実施例 1の光ピッ クアップ装置を適用した場合の面内複屈折量に対する DPP信号の変調度の変化を 示した図である。 FIG. 14 is for HD DVD sectional birefringence amount is 4 X 10- 4, the modulation degree of the DPP signal to the in-plane birefringence in the case of applying the optical pickup apparatus of Example 1 It is the figure which showed the change.
[図 15]図 15は、断面複屈折量が 2 X 10—4の HD DVDに対して、実施例 1の光ピッ クアップ装置を適用した場合の面内複屈折量に対する 3Tマークの変調度の変化を 示した図である。 FIG. 15 is for HD DVD sectional birefringence amount is 2 X 10- 4, Example 1 light pit It is a figure showing change of the degree of modulation of 3T mark to the amount of in-plane birefringence at the time of applying a Kuup device.
[図 16]図 16は、断面複屈折量が 2 X 10—4の HD DVDに対して、実施例 1の光ピッ クアップ装置を適用した場合の面内複屈折量に対する DPP信号の変調度の変化を 示した図である。 FIG. 16 is for HD DVD sectional birefringence amount is 2 X 10- 4, the modulation degree of the DPP signal to the in-plane birefringence in the case of applying the optical pickup apparatus of Example 1 It is the figure which showed the change.
[図 17]図 17は、実施例 2で用いた光ピックアップ装置の概略構成を示した側面図で あり、図 18中の Β'—Β'断面を示した図である。  [FIG. 17] FIG. 17 is a side view showing a schematic configuration of the optical pickup device used in Example 2, and is a view showing a cross section taken along line '-' in FIG.
[図 18]図 18は、実施例 2で用いた光ピックアップ装置の概略構成を示した上面図で あり、図 17中の A'— A'断面を示した図である。  [FIG. 18] FIG. 18 is a top view showing a schematic configuration of the optical pickup device used in Example 2, and is a view showing a cross section A'-A 'in FIG.
[図 19]図 19は、実施例 2で用いた複屈折補正板の斜視図である。  FIG. 19 is a perspective view of a birefringence correction plate used in Example 2.
[図 20]図 20は、実施例 2で用いた複屈折補正板の断面図である。  FIG. 20 is a cross-sectional view of a birefringence correction plate used in Example 2.
[図 21]図 21 (a)及び (b)は、実施例 2で用いた複屈折補正板で複屈折を補償する原 理を説明するための図である。  21 (a) and 21 (b) are diagrams for explaining the principle of compensating birefringence with the birefringence correction plate used in Example 2. FIG.
[図 22]図 22 (a)〜 (c)は、実施例 2で用いた複屈折補正板で複屈折を補償する原理 を説明するための図である。  22 (a) to 22 (c) are diagrams for explaining the principle of compensating birefringence with the birefringence correction plate used in Example 2. FIG.
[図 23]図 23は、断面複屈折量が 6 X 10—4の HD DVDに対して、実施例 2の光ピッ クアップ装置を適用した場合の面内複屈折量に対する 3Tマークの変調度の変化を 示した図である。 FIG. 23 is for HD DVD sectional birefringence amount is 6 X 10- 4, a 3T mark of the modulation degree for the in-plane birefringence in the case of applying the optical pickup apparatus of Example 2 It is the figure which showed the change.
[図 24]図 24は、断面複屈折量が 6 X 10—4の HD DVDに対して、実施例 2の光ピッ クアップ装置を適用した場合の面内複屈折量に対する DPP信号の変調度の変化を 示した図である。 FIG. 24 is for HD DVD sectional birefringence amount is 6 X 10- 4, the modulation degree of the DPP signal to the in-plane birefringence in the case of applying the optical pickup apparatus of Example 2 It is the figure which showed the change.
[図 25]図 25は、断面複屈折量が 4 X 10—4の HD DVDに対して、実施例 2の光ピッ クアップ装置を適用した場合の面内複屈折量に対する 3Tマークの変調度の変化を 示した図である。 FIG. 25 is for HD DVD sectional birefringence amount is 4 X 10- 4, a 3T mark of the modulation degree for the in-plane birefringence in the case of applying the optical pickup apparatus of Example 2 It is the figure which showed the change.
[図 26]図 26は、断面複屈折量が 4 X 10—4の HD DVDに対して、実施例 2の光ピッ クアップ装置を適用した場合の面内複屈折量に対する DPP信号の変調度の変化を 示した図である。 FIG. 26 is for HD DVD sectional birefringence amount is 4 X 10- 4, the modulation degree of the DPP signal to the in-plane birefringence in the case of applying the optical pickup apparatus of Example 2 It is the figure which showed the change.
[図 27]図 27は、断面複屈折量が 2 X 10—4の HD DVDに対して、実施例 2の光ピッ クアップ装置を適用した場合の面内複屈折量に対する 3Tマークの変調度の変化を 示した図である。 FIG. 27 is for HD DVD sectional birefringence amount is 2 X 10- 4, Example 2 Light pitch It is a figure showing change of the degree of modulation of 3T mark to the amount of in-plane birefringence at the time of applying a Kuup device.
[図 28]図 28は、断面複屈折量が 2 X 10—4の HD DVDに対して、実施例 2の光ピッ クアップ装置を適用した場合の面内複屈折量に対する DPP信号の変調度の変化を 示した図である。 FIG. 28 is for HD DVD sectional birefringence amount is 2 X 10- 4, the modulation degree of the DPP signal to the in-plane birefringence in the case of applying the optical pickup apparatus of Example 2 It is the figure which showed the change.
符号の説明  Explanation of sign
[0064] 1 光源 1 light source
2 コリメートレンズ  2 collimate lens
3 複合プリズム  3 compound prism
4 λ Ζ4板  4 λ Ζ 4 board
5 立ち上げレンズ  5 Start-up lens
6, 6' 複屈折補正板  6, 6 'birefringence correction plate
7 レンズホノレダ一  7 Lens Honorable One
8 対物レンズ  8 Objective lens
9 シリンドリカノレレンズ  9 Cylindrical Norens
10 集光レンズ  10 condenser lens
11 光検出器  11 light detector
20 円板状情報記録媒体  20 disc-shaped information recording medium
21 記録面  21 Recording surface
61 光路差調整板  61 Optical path difference adjustment plate
62a, 62b, 62c, 62d 複屈折補正片  62a, 62b, 62c, 62d birefringence correction pieces
62' 複屈折板  62 'birefringent plate
63 進相軸  63 Advanced axis
100, 200 光ピックアップ装置  100, 200 optical pickup device
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0065] 以下に、本発明の光ピックアップ装置、再生装置及び複屈折補正板について、具 体的に実施例を挙げて説明するが、本発明はこれに限定されない。 Hereinafter, the optical pickup device, the reproducing device, and the birefringence correction plate of the present invention will be specifically described by way of Examples, but the present invention is not limited thereto.
実施例 1 [0066] [光ピックアップ装置] Example 1 [Optical Pickup Device]
実施例 1の光ピックアップ装置の概略構成を図 1及び 2に示した。なお、図 1は、図 2 中の B— B断面を示した図であり、図 2は、図 1中の A— A断面を示した図である。  The schematic configuration of the optical pickup device of Example 1 is shown in FIGS. 1 is a view showing a cross section B-B in FIG. 2, and FIG. 2 is a view showing a cross section A-A in FIG.
[0067] 実施例 1の光ピックアップ装置 100は、図 1及び 2に示すように、主に、波長 405nm の光ビームを射出する半導体レーザ 1 (光源)と、コリメートレンズレンズ 2と、複合プリ ズム 3 (偏光ビームスプレツタ)と、 λ Ζ4板 4と、立ち上げミラー 5と、複屈折補正板 6と 、対物レンズ 8と、対物レンズを保持するレンズホルダー 7と、シリンドリカルレンズ 9と 、集光レンズ 10と、光検出器 11とから構成される。この例では、複屈折補正板 6は、 図 1に示すように、複合プリズム 3と対物レンズ 8との間の光路上に配置され、レンズホ ルダー 7で支持されている。なお、複屈折補正板 6以外の構成素子及び装置は、従 来の光ピックアップ装置で使用されるものと同じものを用いた。それゆえ、ここでは、 複屈折補正板 6以外の構成素子及び装置の説明は省略する。  As shown in FIGS. 1 and 2, the optical pickup device 100 of Example 1 mainly includes a semiconductor laser 1 (light source) that emits a light beam with a wavelength of 405 nm, a collimating lens lens 2, and a compound prism. 3 (polarization beam splitter), λΖ 4 plate 4, raising mirror 5, birefringence correction plate 6, objective lens 8, lens holder 7 for holding the objective lens, cylindrical lens 9, focusing It comprises a lens 10 and a light detector 11. In this example, as shown in FIG. 1, the birefringence correction plate 6 is disposed on the optical path between the compound prism 3 and the objective lens 8 and supported by the lens holder 7. The components and devices other than the birefringence correction plate 6 were the same as those used in the conventional optical pickup device. Therefore, the explanation of the components and devices other than the birefringence correction plate 6 is omitted here.
[0068] この例の複屈折補正板 6の概略構成を図 3及び 4に示した。複屈折補正板 6は、図 3に示すように、正方形状の板状部材である基板 60と、基板 60の一方の表面に設け られた光路差調整板 61及び 4つの複屈折補正片 62a〜62dとから構成した。基板 6 0は、溶融石英で形成し、その厚さは lmmとした。そして、光路差調整板 61及び 4つ の複屈折補正片 62a〜62dは、水晶で形成した。また、図 3に示すように、光路差調 整板 61の表面形状は正方形とし、各複屈折補正片の表面形状は全て同じとし、台 形とした。そして、各複屈折補正片の進相軸 63が各複屈折補正片の長手方向に向 くように形成した。なお、複屈折補正片としては、水晶以外に、ニオブ酸リチウム、高 分子膜 (例えば、圧延で作製されたポリイミドフィルム)等が用い得る。  The schematic configuration of the birefringence correction plate 6 of this example is shown in FIGS. As shown in FIG. 3, the birefringence correction plate 6 includes a substrate 60 which is a square plate-like member, an optical path difference adjustment plate 61 provided on one surface of the substrate 60, and four birefringence correction pieces 62a to 62a. And 62d. The substrate 60 was formed of fused quartz and had a thickness of 1 mm. The optical path difference adjusting plate 61 and the four birefringence correction pieces 62a to 62d are formed of quartz. Further, as shown in FIG. 3, the surface shape of the optical path difference adjusting plate 61 is a square, and the surface shapes of the birefringence correction pieces are all the same, and are trapezoidal. Then, the fast axis 63 of each birefringence correction piece was formed in the longitudinal direction of each birefringence correction piece. As the birefringence correction piece, lithium niobate, a high molecular weight film (for example, a polyimide film produced by rolling) or the like can be used other than quartz.
[0069] この例では、光路差調整板 61及び各複屈折補正片 62a〜62dを、形状が同じで且 つ進相軸の方向が互いに直交する 2枚の水晶板を貼り合わせることにより形成した。 具体的には、次のようにして光路差調整板 61及び各複屈折補正片 62a〜62dを作 製した。まず、 1軸異方性を有する人工合成石英結晶を、異方性軸に沿って、厚み 0 . 31mm,縦横それぞれ 10mm、 40mmなるように石英板を切り出した。次いで、切り 出した石英板をその厚みが 0. 30mmになるまで研磨した。次いで、研磨した石英板 を一片が約 10mm角になるように 4等分し、 4枚の水晶板を作製した。 [0070] 次いで、切り出した 4枚のうち 2枚の水晶板を異方性軸が互いに直交するように貼り 合わせた。次いで、貼り合わせた水晶板の位相補正量力Onm (複屈折量がほぼ 0)と なるように、既知の複屈折測定装置で計測しながら、貼り合わせた水晶板の片面を研 磨した。次いで、研磨済みの貼り合わせ水晶板力 一片が 1. 6mmの正方形状の板 状部材を切り出した。これにより、この例の光路差調整板 61を得た。 In this example, the optical path difference adjusting plate 61 and the birefringence correction pieces 62a to 62d are formed by bonding two quartz plates having the same shape and in which the directions of the fast axes are orthogonal to each other. . Specifically, an optical path difference adjusting plate 61 and birefringence correction pieces 62a to 62d were produced as follows. First, a quartz plate was cut out so as to have a thickness of 0.31 mm and a length of 10 mm and a length of 10 mm, respectively, along an anisotropic axis, of an artificial synthetic quartz crystal having uniaxial anisotropy. Then, the cut quartz plate was polished to a thickness of 0.30 mm. Next, the polished quartz plate was divided into four equal pieces of about 10 mm square to prepare four quartz plates. Next, two out of the four cut out quartz plates were pasted so that the anisotropic axes were orthogonal to each other. Next, while measuring with a known birefringence measuring device, one side of the bonded quartz plate was polished so as to obtain a phase correction amount Onm (birefringence amount is almost 0) of the bonded quartz plate. Next, a square plate member having a bonded laminated plate force of 1.6 mm was cut out. Thus, the optical path difference adjusting plate 61 of this example was obtained.
[0071] また、切り出した 4枚のうち残りの 2枚の水晶板を用いて、各複屈折補正片 62a〜6 2dを次のようにして作製した。まず、 2枚の水晶板を異方性軸が互いに直交するよう に貼り合わせた。次いで、貼り合わせた水晶板の位相補正量が 20nm (複屈折量が 0 . 00956 :後述する図 6 (b)及び(c)の下図中の n '— n及び n '— nに対応)となる  Each of the birefringence correction pieces 62a to 62d was manufactured as follows using the remaining two quartz plates out of the four cut out sheets. First, two quartz plates were bonded so that the anisotropic axes were orthogonal to each other. Next, the phase correction amount of the bonded crystal plate is 20 nm (birefringence amount is 0. 009596: corresponding to n'- n and n'- n in the lower diagrams of FIGS. 6B and 6C described later) Become
1 2 2 1  1 2 2 1
ように、既知の複屈折測定装置で計測しながら、貼り合わせた水晶板の片面を研磨 した。より具体的には、貼り合わせた 2枚の水晶板の厚さ差が約 2 m程度となるよう に研磨した。次いで、研磨済みの貼り合わせ水晶板から上底 1. 6mm,下底 4. 8m m、高さ 1. 6mmでかつ進相軸が台形の上底及び下底と平行なるような板状部材を 少なくとも 4枚以上に切り出した。これにより、この例の複屈折補正片 62a〜62dを得 た。  Thus, while measuring with a known birefringence measuring device, one side of the bonded crystal plate was polished. More specifically, polishing was performed so that the difference in thickness between two bonded quartz plates was about 2 m. Then, from the polished bonded crystal plate, a plate-like member having an upper base 1.6 mm, a lower base 4.8 mm and a height 1.6 mm and the fast axis parallel to the trapezoidal upper base and the lower base I cut out at least four or more. Thereby, birefringence correction pieces 62a to 62d of this example were obtained.
[0072] 次いで、上述のようにして作製された 4つの複屈折補正片 62a〜62dを、図 3に示 すように、複屈折補正片の長手方向の端部同士が接触するように基板 60上に設け た。そして、 4つの複屈折補正片 62a〜62dで画成された正方形状の領域に光路差 調整板 61を嵌め込んだ。なお、この例では、光学用 UV接着剤により光路差調整板 61及び複屈折補正片 62a〜62dを基板 60上に取り付けた。その結果、図 3に示すよ うに、複屈折補正板 6の中央には、光路差調整板 61により複屈折量がほぼ 0である 中央領域が形成され、その周囲には複屈折補正片 62a〜62dからなる外縁領域が 形成される。このようにして、中央領域と外縁領域とで複屈折量が異なる複屈折補正 板 6を作製した。さらに、この例では、外縁領域の位相補正量が 40nm (複屈折量力 SO . 01912)となる複屈折補正板 6も上記作製方法と同様にして作製した。  Next, as shown in FIG. 3, the four birefringence correction pieces 62a to 62d manufactured as described above are formed so that the longitudinal ends of the birefringence correction pieces are in contact with each other. It was installed on top. Then, the optical path difference adjustment plate 61 is fitted in a square area defined by the four birefringence correction pieces 62a to 62d. In this example, the optical path difference adjusting plate 61 and the birefringence correction pieces 62a to 62d are mounted on the substrate 60 by an optical UV adhesive. As a result, as shown in FIG. 3, at the center of the birefringence correction plate 6, a central region with almost zero birefringence is formed by the optical path difference adjustment plate 61, and birefringence correction pieces 62a to 62 An outer edge area consisting of 62d is formed. In this way, birefringence correction plates 6 having different birefringence amounts in the central region and the outer edge region were produced. Furthermore, in this example, the birefringence correction plate 6 in which the phase correction amount of the outer edge region is 40 nm (birefringence power: SO 0. 01912) was produced in the same manner as the above-mentioned production method.
[0073] なお、外縁領域を構成する各複屈折補正片の進相軸 63は各複屈折補正片の長 手方向に向いているので、この例の複屈折補正板 6では、図 3に示すように、外縁領 域の進相軸 63が中央領域 (光路差調整板 61)の外縁に沿う方向、すなわち、中央 領域を周回する方向に向く。なお、複屈折補正板 6の外縁領域を通過する光ビーム は複屈折により、光ビームの互いに直交する 2つの偏光成分間に所定の位相差が生 じるが、中央領域には位相補正量力 SOnmの光路差調整板 61が設けられているので 、中央領域で生じる位相差はほぼ 0になる。すなわち、この例の複屈折補正板 6では 、複屈折補正板 6を通過する光ビーム 32に対して生じる 2つの偏光成分間の位相差 の面内分布は、光ビーム 32の中心に対して回転対称となる。 Incidentally, since the fast axis 63 of each birefringence correction piece constituting the outer edge region is directed in the longitudinal direction of each birefringence correction piece, the birefringence correction plate 6 of this example is shown in FIG. Thus, the direction of the fast axis 63 of the outer edge region along the outer edge of the central region (optical path difference adjustment plate 61), ie, the center Turn around the area. Although the light beam passing through the outer edge region of the birefringence correction plate 6 has a predetermined phase difference between two polarization components orthogonal to each other of the light beam due to birefringence, a phase correction amount SOnm is generated in the central region. Since the optical path difference adjusting plate 61 is provided, the phase difference generated in the central region is almost zero. That is, in the birefringence correction plate 6 of this example, the in-plane distribution of the phase difference between the two polarization components generated for the light beam 32 passing through the birefringence correction plate 6 is rotated with respect to the center of the light beam 32. It becomes symmetrical.
[0074] また、この例では、図 4に示すように、複屈折補正板 6の中央領域の幅 aが、複屈折 補正板 6に入射される光ビーム 32の径(2a)の半分となるようにした。より具体的には 、この例では、複屈折補正板 6に入射される光ビーム 32の径は 3. 2mm程度である ので、複屈折補正板 6の中央領域の幅 aが、 1. 6mmとなるように光路差調整板 61及 び 4つの複屈折補正片 62a〜62dを形成した。  Further, in this example, as shown in FIG. 4, the width a of the central region of the birefringence correction plate 6 is half the diameter (2a) of the light beam 32 incident on the birefringence correction plate 6. I did it. More specifically, in this example, since the diameter of the light beam 32 incident on the birefringence correction plate 6 is about 3.2 mm, the width a of the central region of the birefringence correction plate 6 is 1.6 mm. Thus, the optical path difference adjusting plate 61 and the four birefringence correction pieces 62a to 62d were formed.
[0075] また、この例の光路差調整板 61は、外縁領域と中央領域とを通過する光間の光路 差を無くすために設けられたものであり、中央領域と外縁領域の表面高さが同じにな るようにした。さらに、この例の複屈折補正板 6では、水分の影響を避けるために、複 屈折補正片 62a〜62dが形成されている側の面上にガラス基板を設けても良い。  Further, the optical path difference adjusting plate 61 in this example is provided to eliminate the optical path difference between the light passing through the outer edge area and the central area, and the surface height of the central area and the outer edge area is I tried to be the same. Furthermore, in the birefringence correction plate 6 of this example, in order to avoid the influence of moisture, a glass substrate may be provided on the surface on which the birefringence correction pieces 62a to 62d are formed.
[0076] [光ピックアップ装置の動作]  [Operation of Optical Pickup Device]
次に、この例の光ピックアップ装置 100の動作を説明する。半導体レーザ 1から出 射したレーザ光 30 (直線偏光の光ビーム)はコリメートレンズ 2で平行光 31に変換さ れ複合プリズム 3に入射される。平行光 31は複合プリズム 3で屈折されることによりほ ぼ円形の光ビームに変換される。その後、偏光機能膜 3aを等価した後、 λ Ζ4板 4を 透過し、円偏光の光ビーム 32に変換される。その後、光ビーム 32は、立ち上げミラー 5により光路を変更され、複屈折補正板 6を透過する。  Next, the operation of the optical pickup device 100 of this example will be described. A laser beam 30 (a light beam of linear polarization) emitted from the semiconductor laser 1 is converted into a parallel beam 31 by the collimator lens 2 and is incident on the composite prism 3. The collimated light 31 is converted into a substantially circular light beam by being refracted by the composite prism 3. Thereafter, after the polarization functional film 3a is equalized, it is transmitted through the λ 4 plate 4 and converted into a circularly polarized light beam 32. Thereafter, the light beam 32 is changed its optical path by the rising mirror 5 and passes through the birefringence correction plate 6.
[0077] そして、複屈折補正板 6を透過した光ビーム 32は、対物レンズ 8により、円板状情報 記録媒体 20の記録面 21に集光される。なお、対物レンズ 8は、従来の光ピックアップ 装置と同様に、レンズホルダー 7により支持されており、レンズホルダー 7を電磁力( 不図示)で駆動され、円板状情報記録媒体 20の記録面 21の所定の位置にレーザー スポットが集光するようにレンズ位置が制御される。なお、この際、複屈折補正板 6が レンズホルダー 7に支持されて 、るので、複屈折補正板 6も対物レンズ 8と一緒に移 動する。 Then, the light beam 32 transmitted through the birefringence correction plate 6 is condensed by the objective lens 8 on the recording surface 21 of the disk-shaped information recording medium 20. The objective lens 8 is supported by the lens holder 7 as in the conventional optical pickup device, and the lens holder 7 is driven by an electromagnetic force (not shown), and the recording surface 21 of the disk-shaped information recording medium 20 The lens position is controlled so that the laser spot is focused at a predetermined position of. At this time, since the birefringence correction plate 6 is supported by the lens holder 7, the birefringence correction plate 6 is also moved together with the objective lens 8. Move.
[0078] 円板状情報記録媒体 20の記録面 21で反射された光ビームは、対物レンズ 8で再 び略平行光に変換され、複屈折補正板 6、立ち上げミラー 5、 λ Ζ4板 4を経て複合 プリズム 3に入射される。次いで、複合プリズム 3に入射された光ビームは、複合プリ ズム 3の偏光機能膜 3aで反射されシリンドリカルレンズ 9、集光レンズ 10を経て、光検 出器 11に至る。光検出器 11は図 7で示される様な構成になっており、既知の光検出 器の構成と同じである。すなわち、光検出器 11は、 4分割されており、非点収差方式 によりフォーカスエラー信号、プッシュ方式によりトラッキングエラーが検出可能な構 成となっており、さらに既知の構成すなわち和信号でプッシュプル信号を正規ィ匕する DPP信号(Divided Push Pull signal)を得る構成となっている。  The light beam reflected by the recording surface 21 of the disk-shaped information recording medium 20 is again converted into substantially parallel light by the objective lens 8, and the birefringence correction plate 6, the rising mirror 5, the λΖ 4 plate 4 The light enters the composite prism 3 through the Next, the light beam incident on the composite prism 3 is reflected by the polarization function film 3 a of the composite prism 3, passes through the cylindrical lens 9 and the condenser lens 10, and reaches the light detector 11. The light detector 11 is configured as shown in FIG. 7 and is the same as the known light detector configuration. That is, the photodetector 11 is divided into four, and has a configuration capable of detecting a focus error signal according to the astigmatism method and a tracking error according to the push method. Further, the push-pull signal is a known signal, that is, a sum signal. It is configured to obtain a DPP signal (Divided Push Pull signal) that is normalized.
[0079] [複屈折の補正原理]  [0079] [Principle of correcting birefringence]
次に、本実施例の複屈折補正板 6による複屈折の補正原理を、図 5及び 6を参照し ながら説明する。なお、下記説明では、透明基板からの反射光に対して複屈折が補 正される原理を説明するが、透明基板への入射光に対しても同様の原理で複屈折 が補正される。  Next, the principle of correction of birefringence by the birefringence correction plate 6 of the present embodiment will be described with reference to FIGS. In the following description, the principle of correcting birefringence with respect to light reflected from a transparent substrate will be described, but birefringence is also corrected with the same principle with respect to light incident on the transparent substrate.
[0080] 図 5は、複屈折補正板 6と円板状情報記録媒体 20との間を往来する光ビームと、円 板状情報記録媒体 20の透明基板の屈折率との関係を示した図であり、図 5中の上 図に示した楕円体 NSは、円板状情報記録媒体 20の透明基板 (ポリカーボネート基 板)内の屈折率の分布を示している。通常、射出成形プロセスで作製されるポリカー ボネート製の透明基板では、半径方向の屈折率 nと周方向の屈折率 nとは、ほぼ同 じ値 (n ^η )となり、透明基板の厚み方向の屈折率 ηは、面内方向の平均屈折率 η r t z a FIG. 5 is a diagram showing the relationship between the light beam passing between the birefringence correction plate 6 and the disk-shaped information recording medium 20 and the refractive index of the transparent substrate of the disk-shaped information recording medium 20. The ellipsoid NS shown in the upper part of FIG. 5 indicates the distribution of the refractive index in the transparent substrate (polycarbonate substrate) of the disk-shaped information recording medium 20. In general, in a transparent substrate made of polycarbonate manufactured by an injection molding process, the refractive index n in the radial direction and the refractive index n in the circumferential direction have substantially the same value (n ^), and the thickness direction of the transparent substrate The refractive index η is the average refractive index in the in-plane direction 面 rtza
(= ( +nt) Z2)より小さくなるので、透明基板の屈折率は、図 5の上図に示すように 透明基板の面内方向に延びた楕円体状の分布 NSとなる。 Since the refractive index of the transparent substrate is smaller than (= (+ nt ) Z2, the refractive index of the transparent substrate becomes an ellipsoidal distribution NS extending in the in-plane direction of the transparent substrate as shown in the upper drawing of FIG.
[0081] また、図 5中の下図の複屈折補正板 6に記載した第 1方向は、透明基板及び対物レ ンズ 8の半径方向に対応する方向であり、第 2方向は透明基板及び対物レンズ 8の周 方向(トラック方向)に対応する。 Further, the first direction described in the birefringence correction plate 6 in the lower view in FIG. 5 is a direction corresponding to the radial direction of the transparent substrate and the objective lens 8, and the second direction is the transparent substrate and the objective lens. Corresponds to the circumferential direction of 8 (track direction).
[0082] 最初に、透明基板の表面に対してほぼ垂直に反射される光 L1について説明する。 First, the light L1 reflected substantially perpendicularly to the surface of the transparent substrate will be described.
まず、光 L1は、透明基板の表面に対してほぼ垂直な方向に反射されるので、光 L1 の反射方向に垂直な面の透明基板内の屈折率 Nlは、図 6 (a)のようになる。この場 合、光 L1に対する透明基板の屈折率 N1では、図 6 (a)に示すように、半径方向の屈 折率 nと周方向の屈折率 nとはほぼ同じ値 (n =n )となるので、光 L1が透明基板を 通過した際には、光 L1の半径方向の偏光成分と周方向の偏光成分との間に位相差 がほとんど生じない。なお、ここでいう位相差がほとんど生じないとは、後述する光 L2 に対して発生する位相差に比べて位相差が小さいという意味であり、透明基板の成 形条件により半径方向の屈折率 nと周方向の屈折率 nとの差が多少発生し、それに より多少位相差が発生する場合も含む意味である。 First, since the light L1 is reflected in a direction substantially perpendicular to the surface of the transparent substrate, the light L1 is The refractive index Nl in the transparent substrate in the plane perpendicular to the reflection direction of is as shown in FIG. 6 (a). In this case, in the refractive index N1 of the transparent substrate for the light L1, as shown in FIG. 6A, the refractive index n in the radial direction and the refractive index n in the circumferential direction have substantially the same value (n = n). Therefore, when the light L1 passes through the transparent substrate, there is almost no phase difference between the radial polarization component and the circumferential polarization component of the light L1. Here, the fact that the phase difference hardly occurs means that the phase difference is smaller than the phase difference generated with respect to the light L 2 described later, and the refractive index n in the radial direction according to the forming condition of the transparent substrate This is a meaning including the case where there is a slight difference between the refractive index n and the circumferential refractive index n, and that a slight phase difference thereby occurs.
[0083] 次いで、透明基板の表面に対してほぼ垂直に反射された光 L1は、図 5に示すよう に、対物レンズ 8の中央を通過して複屈折補正板 6の中央領域に入射される。中央 領域に設けられた光路差調整板 61ではほとんど複屈折が生じない (複屈折量 O) ので、光 L1が複屈折補正板 6を通過した際には、光 L1の第 1方向(透明基板の周方 向に対応)の偏光成分と第 2方向 (透明基板の半径方向に対応)の偏光成分との間 に位相差は生じない。すなわち、透明基板の表面に対してほぼ垂直に反射される光 L1に対しては、複屈折は生じない。  Next, light L 1 reflected substantially perpendicularly to the surface of the transparent substrate passes through the center of objective lens 8 and is incident on the central region of birefringence correction plate 6 as shown in FIG. . The optical path difference adjusting plate 61 provided in the central region hardly generates birefringence (birefringence amount O), so when the light L1 passes through the birefringence correction plate 6, the first direction of the light L1 (transparent substrate (transparent substrate) There is no phase difference between the polarization component in the second direction (corresponding to the radial direction of the transparent substrate) and the polarization component in the second direction (corresponding to the radial direction of the transparent substrate). That is, no birefringence occurs to the light L1 reflected substantially perpendicularly to the surface of the transparent substrate.
[0084] 次に、透明基板力もその半径方向に斜め反射する光 L2について説明する。上述 のように、成形プロセスで作製される円板状情報記録媒体の透明基板の断面複屈折 量は n— n >0となる (透明基板の厚み方向の屈折率 nが面内方向の平均屈折率 n a z z a より小さい)ので、透明基板の屈折率 NSは、図 5の上図に示したように面内方向に延 びた楕円体状の分布となる。それゆえ、光 L2の反射方向に垂直な面の透明基板内 の屈折率 N2は、図 6 (b)の上図に示すように、楕円状となり長径方向(周方向)の屈 折率は透明基板の周方向の屈折率 nとなるが、周方向に垂直な方向(図 6 (b)上図 中の第 3方向)の屈折率 n 'は透明基板の半径方向の屈折率 nより小さくなる。それ ゆえ、透明基板の半径方向に斜め反射する光 L2に対しては、透明基板の遅相軸は 周方向になる。従って、光 L2が透明基板を通過する際には、光 L2の周方向の偏光 成分の位相が、それに垂直な方向(第 3方向)の偏光成分に対して遅れ、光 L2の互 いに直交する 2つの偏光成分間に位相差が生じる。  Next, the light L 2 which is also obliquely reflected in the radial direction of the transparent substrate force will be described. As described above, the cross-sectional birefringence of the transparent substrate of the disk-shaped information recording medium manufactured by the molding process is n−n> 0 (the refractive index n in the thickness direction of the transparent substrate is the average refraction in the in-plane direction) Because the index nazza is smaller), the refractive index NS of the transparent substrate becomes an elliptical distribution extending in the in-plane direction as shown in the upper drawing of FIG. Therefore, the refractive index N2 in the transparent substrate on the plane perpendicular to the reflection direction of the light L2 is elliptical as shown in the upper drawing of FIG. 6 (b), and the refractive index in the major axis direction (circumferential direction) is transparent. The refractive index n in the circumferential direction of the substrate is obtained, but the refractive index n 'in the direction perpendicular to the circumferential direction (third direction in the upper figure in FIG. 6B) is smaller than the refractive index n in the radial direction of the transparent substrate . Therefore, for the light L2 obliquely reflected in the radial direction of the transparent substrate, the slow axis of the transparent substrate is in the circumferential direction. Therefore, when the light L2 passes through the transparent substrate, the phase of the circumferential polarization component of the light L2 is delayed with respect to the polarization component in the direction (third direction) perpendicular thereto, and the light L2 is orthogonal to each other. A phase difference occurs between the two polarization components.
[0085] 次いで、 2つの偏光成分間に位相差が生じた光 L2は、図 5に示すように、対物レン ズ 8を介して複屈折補正板 6の外縁領域の複屈折補正片 62aに入射される。この際、 光 L2は複屈折補正板 6の表面に対してほぼ垂直に入射される。この例の複屈折補 正板 6では、入射光に対する外縁領域の進相軸 63は、複屈折補正板 6の中央領域 を周回する方向に向!ヽて ヽるので、外縁領域の複屈折補正片 62aに入射される光 L 2に対する進相軸 63の方向は、光 L2が透明基板を通過する際の透明基板の遅相 軸の方向(周方向)と同じ方向となる。従って、透明基板で 2つの偏光成分間に位相 差が生じた光 L2が複屈折補正板 6の外縁領域の複屈折補正片 62aを通過すると、 透明基板を通過した際に位相が遅れた光 L2の偏光成分の位相が、その垂直な偏光 成分 (透明基板を通過した際に位相が進んでいる偏光成分)に対して進む。その結 果、透明基板を通過した際に生じた光 L2の互いに直交する偏光成分間の位相差が 、複屈折補正板 6で補正することができる。これにより、透明基板の半径方向に斜め 反射する光 L2の複屈折を補償することができ、等価的に透明基板の断面複屈折量 を低減することができる。 Then, as shown in FIG. 5, light L 2 in which a phase difference has occurred between the two polarization components is an objective lens. It is incident on the birefringence correction piece 62 a in the outer edge region of the birefringence correction plate 6 through the lens 8. At this time, the light L 2 is incident substantially perpendicularly to the surface of the birefringence correction plate 6. In the birefringence correction plate 6 of this example, the fast axis 63 of the outer edge region with respect to incident light is directed in the direction of circling around the central region of the birefringence correction plate 6, so birefringence correction of the outer edge region is performed. The direction of the fast axis 63 with respect to the light L2 incident on the piece 62a is the same as the direction (circumferential direction) of the slow axis of the transparent substrate when the light L2 passes through the transparent substrate. Therefore, when light L2 having a phase difference between two polarization components on the transparent substrate passes through the birefringence correction piece 62a in the outer edge region of the birefringence correction plate 6, light L2 whose phase is delayed when passing through the transparent substrate The phase of the polarized light component advances with respect to the perpendicular polarized light component (the polarized light component whose phase advances when passing through the transparent substrate). As a result, the phase difference between the mutually orthogonal polarization components of the light L 2 generated when passing through the transparent substrate can be corrected by the birefringence correction plate 6. This makes it possible to compensate for the birefringence of the light L2 obliquely reflected in the radial direction of the transparent substrate, and to equivalently reduce the cross-sectional birefringence of the transparent substrate.
[0086] 次に、透明基板力もその周方向に斜め反射する光 L3について説明する。上述のよ うに、成形プロセスで作製される円板状情報記録媒体の透明基板の屈折率は、図 5 の上図に示すように、面内方向に延びた楕円体状の分布 NSとなる。それゆえ、光 L 3の反射方向に垂直な面の透明基板内の屈折率は、図 6 (c)の上図に示すように、 楕円状となり長径方向(半径方向)の屈折率は透明基板の半径方向の屈折率 nとな るが、半径方向に垂直な方向(図 6 (c)上図中の第 4方向)の屈折率 n 'は透明基板 の周方向の屈折率 nより小さくなる。それゆえ、透明基板の周方向に斜め反射する 光 L3に対しては、透明基板の遅相軸は半径方向になる。従って、光 L3が透明基板 を通過する際には、光 L3の半径方向の偏光成分の位相がそれに垂直な方向(第 4 方向)の偏光成分に対して遅れ、光 L3の互いに直交する 2つの偏光成分間に位相 差が生じる。 Next, the light L 3 which is also reflected obliquely in the circumferential direction will be described. As described above, the refractive index of the transparent substrate of the disk-shaped information recording medium manufactured by the forming process becomes an ellipsoidal distribution NS extending in the in-plane direction, as shown in the upper drawing of FIG. Therefore, the refractive index in the transparent substrate in the plane perpendicular to the reflection direction of the light L 3 is elliptical as shown in the upper view of FIG. 6C, and the refractive index in the major axis direction (radial direction) is the transparent substrate The refractive index n 'in the radial direction of the transparent substrate is smaller than the refractive index n in the circumferential direction of the transparent substrate in the direction perpendicular to the radial direction (the fourth direction in FIG. 6C). . Therefore, for the light L3 that is obliquely reflected in the circumferential direction of the transparent substrate, the slow axis of the transparent substrate is in the radial direction. Therefore, when the light L3 passes through the transparent substrate, the phase of the polarization component in the radial direction of the light L3 is delayed with respect to the polarization component in the direction (fourth direction) perpendicular to that. A phase difference occurs between the polarization components.
[0087] 次いで、 2つの偏光成分間に位相差が生じた光 L3は、図 5に示すように、対物レン ズ 8を介して複屈折補正板 6の外縁領域の複屈折補正片 62dに入射される。この際、 光 L3は複屈折補正板 6の表面に対してほぼ垂直に入射される。この際、外縁領域の 複屈折補正片 62dに入射される光 L3に対する外縁領域の進相軸 63の方向は、光 L 3が透明基板を通過する際の透明基板の遅相軸の方向(半径方向)と同じ方向となる 。従って、透明基板で 2つの偏光成分間に位相差が生じた光 L3が複屈折補正板 6 の外縁領域の複屈折補正片 62dを通過すると、透明基板を通過した際に位相が遅 れた光 L3の偏光成分の位相が、その垂直な偏光成分 (透明基板を通過した際に位 相が進んでいる偏光成分)に対して進む。その結果、透明基板を通過した際に生じ た光 L3の互いに直交する偏光成分間の位相差が、複屈折補正板 6で補正すること ができる。これにより、透明基板の半径方向に斜め反射する光 L3の複屈折を補償す ることができ、等価的に透明基板の断面複屈折量を低減することができる。 Then, as shown in FIG. 5, light L 3 having a phase difference between the two polarization components is incident on birefringence correction piece 62 d of the outer edge region of birefringence correction plate 6 through objective lens 8. Be done. At this time, the light L 3 is incident substantially perpendicularly to the surface of the birefringence correction plate 6. At this time, the direction of the fast axis 63 of the outer edge area with respect to the light L 3 incident on the birefringence correction piece 62 d of the outer edge area is the light L 3 is in the same direction as the direction (radial direction) of the slow axis of the transparent substrate when passing through the transparent substrate. Therefore, when light L3 having a phase difference between the two polarization components on the transparent substrate passes through the birefringence correction piece 62d in the outer edge region of the birefringence correction plate 6, the light whose phase is delayed when passing through the transparent substrate The phase of the polarization component of L3 advances with respect to the perpendicular polarization component (the polarization component in which the phase advances when passing through the transparent substrate). As a result, the phase difference between mutually orthogonal polarization components of the light L 3 generated when passing through the transparent substrate can be corrected by the birefringence correction plate 6. This makes it possible to compensate for the birefringence of the light L3 obliquely reflected in the radial direction of the transparent substrate, and to equivalently reduce the cross-sectional birefringence of the transparent substrate.
[0088] 本実施例では、上述のように、透明基板の表面に対して斜め反射する光に対して、 透明基板の遅相軸の方向と複屈折補正板の進相軸の方向とをほぼ一致させることに より、透明基板の表面に対して斜め反射する光の複屈折を補償して透明基板の断面 複屈折の影響を低減して ヽる。  In the present embodiment, as described above, the direction of the slow axis of the transparent substrate and the direction of the fast axis of the birefringence correction plate are substantially equal to the light obliquely reflected to the surface of the transparent substrate. By matching, the birefringence of light obliquely reflected to the surface of the transparent substrate is compensated, thereby reducing the influence of the birefringence of the cross section of the transparent substrate.
[0089] [評価実験]  [Evaluation experiment]
この例の評価実験では、まず、種々の断面複屈折量を有する HD DVDを本実施 例の光ピックアップ装置に装着した場合の面内複屈折量に対する 3T短ピット変調度 の変化及び DPP信号の変調度変化を偏光解析により計算した。  In the evaluation experiment of this example, first, the change of the 3T short pit modulation degree with respect to the in-plane birefringence amount and the modulation of the DPP signal when the HD DVD having various cross-sectional birefringence amounts is attached to the optical pickup device of this embodiment. The change in degree is calculated by ellipsometry.
[0090] 断面複屈折量 6 X 10—4を有する HD DVDに対する評価結果を図 11及び 12に示 した。また、断面複屈折量 4 X 10—4を有する HD DVDに対する評価結果を図 13及 び 14に示した。さらに、断面複屈折量 2 X 10—4を有する HD DVDに対する評価結 果を図 15及び 16に示した。なお、図 11〜16中の実線で示した特性が、複屈折補正 板を用いなかった場合の結果であり、一点鎖線で示した特性が複屈折補正板での位 相補正量を 20nmとした場合 (複屈折補正板の外縁領域の複屈折量を 0. 00956と した場合)の結果であり、そして、破線で示した特性が複屈折補正板での位相補正 量を 40nmとした場合 (複屈折補正板の外縁領域の複屈折量を 0. 01912とした場 合)の結果である。また、図 11, 13及び 15が面内複屈折量に対する 3T短ピット変調 度の変化を表した図であり、図 12, 14及び 16が面内複屈折量に対する DPP信号の 変調度変化を表した図である。なお、図 11〜16中の横軸にとった面内複屈折量に は、遠心力による面内複屈折量の変化量は含まれて 、な 、。 [0091] 図 11〜16の結果から明らかなように、本実施例の複屈折補正板を対物レンズと複 合プリズム ( λ Ζ4板)の間の光路上に設けることにより、面内複屈折量が変化したと きの 3Τ短ピット変調度の変化および DPP信号の変調度変化を低減することができる ことが分力つた。すなわち、本実施例の複屈折補正板を用いて、透明基板の表面に 対して斜め反射 (または入射)する光の複屈折を補正することにより、透明基板の断 面複屈折の影響を低減することができ、許容できる面内複屈折量の変動のマージン を実質上広げることができることが分力つた。 [0090] and shows the evaluation results of HD DVD having a cross-sectional birefringence 6 X 10- 4 to 11 and 12. Further, the evaluation results for the HD DVD having a cross-sectional birefringence 4 X 10- 4 to 13及beauty 14. Furthermore, showed evaluation results for HD DVD having a cross-sectional birefringence 2 X 10- 4 to 15 and 16. The characteristics shown by the solid line in FIGS. 11 to 16 are the results when the birefringence correction plate is not used, and the characteristics shown by the alternate long and short dash line set the phase correction amount of the birefringence correction plate to 20 nm. In the case where the birefringence amount of the outer peripheral region of the birefringence correction plate is 0. 0095, and the characteristic shown by the broken line is 40 nm when the phase correction amount of the birefringence correction plate is This is the result of the case where the birefringence amount of the outer edge region of the refraction correction plate is 0. 01912). Figures 11, 13 and 15 show the changes in 3T short pit modulation with respect to the in-plane birefringence, and Figures 12, 14 and 16 show changes in the modulation of the DPP signal with the in-plane birefringence. FIG. The amount of in-plane birefringence taken along the horizontal axis in FIGS. 11 to 16 includes the amount of change in the amount of in-plane birefringence due to centrifugal force. As apparent from the results in FIGS. 11 to 16, the in-plane birefringence amount can be obtained by providing the birefringence correction plate of the present example on the optical path between the objective lens and the compound prism (λ / 4 plate). It is important to be able to reduce the change in the degree of short pit modulation and the change in the degree of modulation of the DPP signal when H changes. That is, by using the birefringence correction plate of this embodiment, the birefringence of light obliquely reflected (or incident) to the surface of the transparent substrate is corrected to reduce the influence of the cross-birefringence of the transparent substrate. It has been possible to substantially expand the margin of fluctuation of the allowable in-plane birefringence amount.
[0092] また、図 11〜16の結果から明らかなように、複屈折補正板の位相補正量を 20nm 程度にすることにより、断面複屈折量 2 X 10一4〜 6 X 10—4のいずれの HD DVDに 対しても、複屈折補正板の位相補正量を変えることなぐ 3T短ピット変調度の変化お よび DPP信号の変調度変化を十分低減することができることが分力 た。従って、本 実施例の構成の光ピックアップ装置では、その構成をより簡易な構成にすることがで き、また、本実施例の構成の光ピックアップ装置を採用することにより、幅広く様々な 情報記録媒体 (様々な面内複屈折量を有する情報記録媒体)に適応可能な光情報 記録再生システムが構築出来ることが分力つた。 Further, as apparent from the results in FIGS. 11 to 16, by setting the phase correction amount of the birefringence correction plate to about 20 nm, any of the cross-sectional birefringence amounts of 2 × 10 1 to 4 × 6 10 4 In the case of the HD DVD, it is possible to sufficiently reduce the change in the degree of 3T short pit modulation and the change in the modulation of the DPP signal, which can change the phase correction amount of the birefringence correction plate. Therefore, in the optical pickup device of the configuration of the present embodiment, the configuration can be made simpler, and by adopting the optical pickup device of the configuration of the present embodiment, a wide variety of information recording media can be obtained. We have been able to construct an optical information recording and reproducing system that can be applied to (information recording media having various in-plane birefringence amounts).
[0093] また、この例では、断面複屈折量が約 2 X
Figure imgf000027_0001
4 X 10_4及び 6 X 10_4となる HD
Also, in this example, the cross-sectional birefringence amount is about 2 ×
Figure imgf000027_0001
4 X 10_ is 4 and 6 X 10_ 4 HD
DVDを実際にそれぞれ作製し、さら〖こ、各断面複屈折量の HD DVDにおいて、 内周から外周にかけて面内複屈折量を約 4. 0 X 10一5〜 4. 0 X 10—5に変化させ た HD DVDを作製した。すなわち、断面複屈折量と面内複屈折量の組み合わせの 異なる種々の HD DVDを作製した。なお、透明基板の断面複屈折量は射出成形 時の金型温度を調整することと、その後の基板ベータ温度を変えることにより調整し た。また、面内複屈折量は射出成形時の溶融樹脂の射出速度、金型保持時間を調 節することにより調整した。 Indeed each to prepare a DVD, further 〖this, the HD DVD of the respective cross-sectional birefringence amount, the in-plane birefringence from the inner periphery to the outer periphery to about 4. 0 X 10 one 5 ~ 4. 0 X 10- 5 A modified HD DVD was produced. That is, various HD DVDs having different combinations of cross sectional birefringence amount and in-plane birefringence amount were produced. The cross-sectional birefringence of the transparent substrate was adjusted by adjusting the mold temperature at the time of injection molding and by changing the substrate beta temperature thereafter. The in-plane birefringence was adjusted by adjusting the injection speed of the molten resin at the time of injection molding and the mold holding time.
[0094] 上述のようにして作製した種々の HD DVDをこの例の光ピックアップ装置に装着 して面内複屈折量に対する 3T短ピット変調度の変化及び DPP信号の変調度変化を 測定した。なお、この実験は、上記偏光解析と同様に、複屈折補正板を用いない場 合、複屈折補正板の位相補正量を 20nmとした場合、そして、複屈折補正板の位相 補正量を 40nmとした場合についてそれぞれ行った。また、この実験では、 HD DV Dの回転数は 600rpm〜1800rpmとし、遠心力に起因する面内複屈折量の変動が ほとんど無視できる条件で実験を行った。この測定結果も図 11〜 16中に示した。図 11〜16中の白抜き丸印が、複屈折補正板を用いなかった場合の結果であり、白抜 き三角印が複屈折補正板での位相補正量を 20nmとした場合の結果であり、そして、 白抜き四角印が複屈折補正板での位相補正量を 40nmとした場合の結果である。 The various HD DVDs produced as described above were mounted on the optical pickup device of this example, and changes in the degree of 3T short pit modulation and changes in the modulation of the DPP signal with respect to the amount of in-plane birefringence were measured. In this experiment, as in the polarization analysis, when the birefringence correction plate is not used, the phase correction amount of the birefringence correction plate is 20 nm, and the phase correction amount of the birefringence correction plate is 40 nm. We went about each case. Also, in this experiment, HD DV The experiment was performed under the conditions where the rotation speed of D was set to 600 rpm to 1800 rpm, and the fluctuation of the in-plane birefringence amount caused by the centrifugal force was almost negligible. The measurement results are also shown in FIGS. The white circles in FIGS. 11 to 16 are the results when the birefringence correction plate is not used, and the white triangles are the results when the phase correction amount of the birefringence correction plate is 20 nm. The white squares indicate the results when the phase correction amount of the birefringence correction plate is 40 nm.
[0095] 図 11〜16の結果から明らかなように、実際に作製した HD DVDの測定点は、偏 光解析により得られた特性上(図 11〜16の実線、一点鎖線及び破線上)にほぼ乗つ ている。すなわち、偏光解析 (シミュレーション解析)及び実際に作製した HD DVD の測定結果の両方の評価結果から、本実施例の複屈折補正板を用いることにより、 透明基板の断面複屈折の影響を低減することができ、許容できる面内複屈折量の変 動のマージンを実質上広げることができることが確認できた。  As apparent from the results of FIGS. 11 to 16, the measurement points of the actually manufactured HD DVD have characteristics (solid lines, dashed dotted lines and dashed lines in FIGS. 11 to 16) obtained by polarization analysis. It is almost riding. That is, from the evaluation results of both the polarization analysis (simulation analysis) and the measurement results of the actually manufactured HD DVD, the influence of the cross-section birefringence of the transparent substrate is reduced by using the birefringence correction plate of this example. It has been confirmed that it is possible to substantially expand the margin of variation of the allowable in-plane birefringence amount.
[0096] また、本実施例の上記評価結果力も明らかなように、面内複屈折量が ±6 X 10_5 程度変化しても、 3T短ピット変調度の変化および DPP信号の変調度変化が小さい ので、円板状情報記録媒体を回転数 6000rpm以上で回転させて遠心力により面内 複屈折量が 2 X 10_5程度変動しても問題無く使用可能である。実際に、 HD DVD を 6000rpm以上の回転数で回転させても、問題なく情報の記録再生が可能であつ た。 Further, as is clear from the evaluation results of this example, even if the in-plane birefringence amount changes by about ± 6 × 10 — 5, the change in the degree of 3T short pit modulation and the change in the modulation of the DPP signal are Since it is small, it can be used without any problem even if the in-plane birefringence amount fluctuates by about 2 × 10 — 5 by centrifugal force by rotating the disc-like information recording medium at a rotational speed of 6000 rpm or more. In fact, even if the HD DVD was rotated at a rotational speed of 6000 rpm or more, the information could be recorded and reproduced without any problem.
[0097] 上記実施例 1では、複屈折補正板 6の中央領域 (光路差調整板 61)を正方形状と したが、本発明はこれに限定されず、中央領域の形状を、例えば、円形、多角形等 にしても良い。また、上記実施例 1では、複屈折補正板 6の外縁領域を 4つの複屈折 補正片 62a〜62dで形成した例、すなわち、外縁領域を中央領域を周回する方向に 4分割した例を説明したが、本発明はこれに限定されず、 5分割以上に分割しても良 い。  Although the central region (optical path difference adjustment plate 61) of the birefringence correction plate 6 is square in the first embodiment, the present invention is not limited to this, and for example, the shape of the central region may be circular, It may be a polygon or the like. Further, in the first embodiment, an example in which the outer edge area of the birefringence correction plate 6 is formed by four birefringence correction pieces 62a to 62d, that is, an example in which the outer edge area is divided into four in the direction around the central area However, the present invention is not limited to this, and may be divided into five or more.
[0098] また、上記実施例 1では、基板上に複屈折補正片を設けた複屈折補正板の例を説 明したが、本発明はこれに限定されない。基板自体に中央領域と外縁領域を設け、 外縁領域の進相軸が中央領域を周回する方向に向 、て 、るような構造の複屈折補 正板を用いても良い。このような複屈折補正板は、例えば、次のようにして作製するこ とが可能である。まず、透明基板の成形プロセスで、溶融榭脂を周方向に射出成形 して周方向に進相軸が向いた透明基板を成形し、その後、透明基板の中央部をくり ぬき、くりぬかれた部分に複屈折の小さい透明部材 (例えば、ガラス部材、アクリル部 材等)を嵌め込むことにより、上述のような構成の複屈折補正板を得ることができる。 実施例 2 Further, although the example of the birefringence correction plate in which the birefringence correction piece is provided on the substrate has been described in the first embodiment, the present invention is not limited to this. A central region and an outer edge region may be provided on the substrate itself, and a birefringent correction plate may be used in which the fast axis of the outer edge region is directed in the direction of circling the central region. Such a birefringence correction plate can be produced, for example, as follows. First, injection molding of molten resin in the circumferential direction in the transparent substrate molding process Then, the transparent substrate with its fast axis directed in the circumferential direction is formed, and then the central portion of the transparent substrate is hollowed out, and a transparent member with small birefringence in the hollowed portion (for example, a glass member, an acrylic member, etc.) Can be obtained to obtain a birefringence correction plate having the above-mentioned configuration. Example 2
[0099] [光ピックアップ装置] [Optical Pickup Device]
実施例 2の光ピックアップ装置の概略構成を図 17及び 18に示した。なお、図 17は 、図 18中の B'—B'断面を示した図であり、図 18は、図 17中の A'—A'断面を示し た図である。  The schematic configuration of the optical pickup device of Example 2 is shown in FIGS. FIG. 17 is a view showing a cross section B'-B 'in FIG. 18, and FIG. 18 is a view showing a cross section A'-A' in FIG.
[0100] 実施例 2の光ピックアップ装置 200は、図 17及び 18に示すように、主に、波長 405 nmの光ビームを射出する半導体レーザ 1 (光源)と、コリメートレンズレンズ 2と、複合 プリズム 3 (偏光ビームスプレツタ)と、 λ Ζ4板 4と、立ち上げミラー 5と、複屈折補正 板 6'と、対物レンズ 8と、対物レンズ 8を保持するレンズホルダー 7と、シリンドリカルレ ンズ 9と、集光レンズ 10と、光検出器 11とから構成される。この例では、複屈折補正 板 6'は、図 17に示すように、対物レンズ 8と円板状情報記録媒体 20との間の光路上 に配置され、レンズホルダー 7で支持されている。なお、複屈折補正板 6'以外の構 成素子及び装置は、従来の光ピックアップ装置で使用されるものと同じものを用いた 。それゆえ、ここでは、複屈折補正板 6'以外の構成素子及び装置の説明は省略する  As shown in FIGS. 17 and 18, the optical pickup apparatus 200 of Example 2 mainly includes a semiconductor laser 1 (light source) that emits a light beam with a wavelength of 405 nm, a collimating lens 2, and a compound prism. 3 (polarization beam splitter), λΖ4 plate 4, rising mirror 5, birefringence correction plate 6 ', objective lens 8, lens holder 7 for holding objective lens 8, cylindrical lens 9 and , A condenser lens 10, and a light detector 11. In this example, as shown in FIG. 17, the birefringence correction plate 6 ′ is disposed on the optical path between the objective lens 8 and the disk-shaped information recording medium 20, and is supported by the lens holder 7. The elements and devices other than the birefringence correction plate 6 ′ were the same as those used in the conventional optical pickup device. Therefore, the description of the components and devices other than the birefringence correction plate 6 'is omitted here.
[0101] この例の複屈折補正板 6,の概略構成を図 19及び 20に示した。この例の複屈折補 正板 6'は、図 19に示すように、正方形状の板状部材である基板 60'と、基板 60'の 一方の表面に設けられた複屈折板 62'とから構成した。基板 60'には、厚み 0. 3mm の複屈折の小さな光学ガラスを用いた。複屈折板 62'には水晶を用い、図 20に示す ように、接着剤 64 (光学用 UV接着剤)を介して基板 60'上に貼り付けた。 The schematic configuration of the birefringence correction plate 6 of this example is shown in FIGS. As shown in FIG. 19, the birefringence correction plate 6 ′ of this example is formed of a substrate 60 ′ which is a square plate member and a birefringence plate 62 ′ provided on one surface of the substrate 60 ′. Configured. As the substrate 60 ', a small birefringence optical glass with a thickness of 0.3 mm was used. Quartz was used for the birefringent plate 62 ', and as shown in FIG. 20, it was attached onto the substrate 60' via an adhesive 64 (UV adhesive for optics).
[0102] この例の複屈折板 62'では、図 19に示すように、面内の第 1方向(後述するように、 この方向は円板状情報記録媒体 20の半径方向に対応する)の屈折率 nと、面内の 第 2方向(後述するように、この方向は円板状情報記録媒体 20の周方向に対応する )の屈折率 nがほぼ同じであり、厚み方向(図 19中の第 3方向)の屈折率 nが面内方  In the birefringence plate 62 ′ of this example, as shown in FIG. 19, the in-plane first direction (as will be described later, this direction corresponds to the radial direction of the disk-shaped information recording medium 20) The refractive index n and the in-plane second direction (the direction corresponds to the circumferential direction of the disc-like information recording medium 20 as described later) are substantially the same, and the thickness direction (in FIG. 19) Index of refraction n in the third direction of
2 3 向の平均屈折率 n (= (n +n ) Z2)より大きくなる水晶板を用いた。すなわち、遅相 軸が厚み方向に向 、て 、る(1軸異方性)の水晶板を用いた。このような水晶板は、 人工合成石英の結晶の異方性軸が水晶板の表面と垂直になるように切り出し、その 後研磨することにより作製することができる。なお、複屈折板 62'としては、水晶以外 に、ニオブ酸リチウムの結晶、フッ化マグネシウムの結晶等が用い得る。 A quartz plate having a larger average refractive index n (= (n + n) Z2) in the 2 3 directions was used. That is, lagging A quartz plate with a uniaxial (one-axis anisotropy) axis was used in the direction of thickness. Such a quartz plate can be manufactured by cutting out so that the anisotropic axis of the artificial synthetic quartz crystal is perpendicular to the surface of the quartz plate and then polishing it. Besides the crystal, a crystal of lithium niobate, a crystal of magnesium fluoride or the like can be used as the birefringent plate 62 '.
[0103] この例の複屈折補正板 6'は次のようにして作製した。まず、遅相軸が厚み方向に 向いている(1軸異方性)の複屈折板 62'を上述した方法により作製して用意した。な お、この例では、波長 405nmにおいて厚み方向の屈折率 nが 1. 5667であり、面内 The birefringence correction plate 6 ′ of this example was produced as follows. First, a birefringent plate 62 'having a slow axis directed in the thickness direction (uniaxial anisotropy) was prepared and prepared by the method described above. In this example, the refractive index n in the thickness direction at a wavelength of 405 nm is 1.5667, and in-plane
3  3
方向の屈折率 η (η , η )が 1. 55714である水晶板を複屈折板 62'として用いた。そ  A quartz plate having a refractive index η (η,) of 1. 55714 in the direction was used as a birefringent plate 62 ′. That
0 1 2  0 1 2
れゆえ、複屈折板 62'の厚み方向の屈折率 ηと面内の平均屈折率 ηとの差、すなわ  Therefore, the difference between the refractive index η in the thickness direction of the birefringence plate 62 ′ and the average refractive index η in the plane,
3 0  3 0
ち、複屈折補正片 62'の断面複屈折の大きさ Δ η (断面複屈折量)は 0. 00956とな る。次いで、複屈折板 62'を光学ガラス 60'上に接着剤 64で貼り付けた後、複屈折 板 62,を研磨して、複屈折板 62,の厚み tを約 25 mとした。それゆえ、この例の複 屈折板 62,では、位相補正パラメータ Δ n X t値は 240nmとなる。  That is, the magnitude Δ η (the amount of cross-sectional birefringence) of the cross-sectional birefringence of the birefringence correction piece 62 ′ is 0.00956. Then, after the birefringence plate 62 ′ was adhered onto the optical glass 60 ′ with the adhesive 64, the birefringence plate 62 was polished to make the thickness t of the birefringence plate 62 about 25 m. Therefore, in the birefringent plate 62 of this example, the phase correction parameter Δ n X t value is 240 nm.
[0104] なお、本実施例では、複屈折板 62'の位相補正パラメータ Δ n X tは、 180ηπ!〜 30 Onmで有ることが好ましい。 A n X t値が 180nmより小さいと、情報記録媒体の基板 材料として量産性の優れたポリカーボネートを用いた場合、断面複屈折の補正が充 分でなぐその結果、情報記録媒体の面内複屈折の影響を受けやすくなり、情報記 録媒体の再生マージンが減少する。一方、 A n X t値が 300nmより大きい場合、情報 記録媒体の基板材料として比較的断面複屈折量の小さ 、ポリオレフイン等を用いた 場合、断面複屈折の補正が過補正となる。それゆえ、 A nX t値が上記範囲にない場 合には光ピックアップ装置の種々の情報記録媒体に対する互換性が損なわれる。そ の根拠にっ ヽては後述する。  In the present embodiment, the phase correction parameter Δ n X t of the birefringent plate 62 ′ is 180 ππ! It is preferable that it is -30 Onm. When the An x t value is smaller than 180 nm, when polycarbonate having excellent mass productivity is used as a substrate material of the information recording medium, the correction of the cross-sectional birefringence is not sufficiently completed. As a result, the in-plane birefringence of the information recording medium And the reproduction margin of the information recording medium is reduced. On the other hand, when the A n X t value is larger than 300 nm, the cross-sectional birefringence correction is over-corrected when the cross-sectional birefringence is relatively small as the substrate material of the information recording medium, and polyolefin is used. Therefore, if the AnxT value is not in the above range, the compatibility of the optical pickup device with various information recording media is lost. The basis for that will be described later.
[0105] [光ピックアップ装置の動作]  [Operation of Optical Pickup Device]
次に、この例の光ピックアップ装置 200の動作を図 17及び 18を参照しながら説明 する。半導体レーザ 1から出射したレーザ光 30 (直線偏光の光ビーム)はコリメ一トレ ンズ 2で平行光 31に変換され複合プリズム 3に入射される。平行光 31は複合プリズム 3で屈折されることによりほぼ円形の光ビームに変換される。その後、偏光機能膜 3a を透過した後、 λ Ζ4板 5を透過し、円偏光の光ビーム 32に変換される。その後、光 ビーム 32は、立ち上げミラー 5により光路を変更され、対物レンズ 8に入射される。そ して、対物レンズ 8により集束された光ビームは複屈折補正板 6'を介して円板状情報 記録媒体 20の記録面 21に集光される。なお、対物レンズ 8は、従来の光ピックアップ 装置と同様に、レンズホルダー 7により支持されており、レンズホルダー 7を電磁力( 不図示)で駆動され、円板状情報記録媒体 20の記録面 21の所定の位置にレーザー スポットが集光するようにレンズ位置が制御される。なお、この際、複屈折補正板 6'は レンズホルダー 7に支持されているので、複屈折補正板 6'も対物レンズ 8と一緒に移 動する。 Next, the operation of the optical pickup device 200 of this example will be described with reference to FIGS. A laser beam 30 (a linearly polarized light beam) emitted from the semiconductor laser 1 is converted into a collimated beam 31 by the collimator lens 2 and is incident on the composite prism 3. The collimated light 31 is converted into a substantially circular light beam by being refracted by the composite prism 3. Thereafter, the light is transmitted through the polarizing film 3a, and then transmitted through the λ 4 plate 5 to be converted into a circularly polarized light beam 32. Then the light The beam 32 is changed its optical path by the raising mirror 5 and is incident on the objective lens 8. Then, the light beam focused by the objective lens 8 is focused on the recording surface 21 of the disk-shaped information recording medium 20 via the birefringence correction plate 6 ′. The objective lens 8 is supported by the lens holder 7 as in the conventional optical pickup device, and the lens holder 7 is driven by an electromagnetic force (not shown), and the recording surface 21 of the disk-shaped information recording medium 20 The lens position is controlled so that the laser spot is focused at a predetermined position of. At this time, since the birefringence correction plate 6 ′ is supported by the lens holder 7, the birefringence correction plate 6 ′ is also moved together with the objective lens 8.
[0106] 円板状情報記録媒体 20の記録面 21で反射された光ビームは、複屈折補正板 6' を介して対物レンズ 8に入射され、その反射光は、対物レンズ 8で再び略平行光に変 換され、立ち上げミラー 5、 λ Ζ4板 4を経て、複合プリズム 3に入射される。次いで、 複合プリズム 3に入射された光ビームは、複合プリズム 3の偏光機能膜 3aで反射され 、シリンドリカルレンズ 9、集光レンズ 10を経て、光検出器 11に至る。光検出器 11は 図 7で示される様な構成になっており、既知の光検出器の構成と同じである。  The light beam reflected by the recording surface 21 of the disk-shaped information recording medium 20 is incident on the objective lens 8 through the birefringence correction plate 6 ′, and the reflected light is re-parallelized by the objective lens 8 again. The light is converted into light, and the light is incident on the composite prism 3 through the raising mirror 5 and the λΖ4 plate 4. Then, the light beam incident on the composite prism 3 is reflected by the polarization functional film 3 a of the composite prism 3, passes through the cylindrical lens 9 and the condenser lens 10, and reaches the light detector 11. The photodetector 11 is configured as shown in FIG. 7 and is the same as the known photodetector configuration.
[0107] [複屈折の補正原理]  [0107] [Principle of correcting birefringence]
次に、本実施例の複屈折補正板 6'による複屈折の補正原理を、図 21及び 22を参 照しながら説明する。なお、下記説明では、透明基板からの反射光に対して複屈折 が補正される原理を説明するが、透明基板への入射光に対しても同様の原理で複 屈折が補正される。  Next, the principle of correction of birefringence by the birefringence correction plate 6 'of this embodiment will be described with reference to FIGS. In the following description, the principle of correcting birefringence with respect to light reflected from a transparent substrate is described, but birefringence is also corrected with the same principle with respect to light incident on the transparent substrate.
[0108] 図 21 (a)は、複屈折補正板 6'と円板状情報記録媒体 20との間を往来する光ビー ムと、円板状情報記録媒体 20の透明基板の屈折率との関係を示した図であり、図 21 (a)中の上図の楕円体 NSは、円板状情報記録媒体 20の透明基板 (ポリカーボネー ト基板)内の屈折率の分布を示している。通常、射出成形プロセスで作製されるポリ力 ーボネート製の透明基板では、半径方向の屈折率 nと周方向の屈折率 nとは、ほぼ 同じ値 (n ^η )となり、透明基板の厚み方向の屈折率 ηは、面内方向の平均屈折率  FIG. 21 (a) shows the relationship between the light beam passing between the birefringence correction plate 6 ′ and the disk-shaped information recording medium 20 and the refractive index of the transparent substrate of the disk-shaped information recording medium 20. FIG. 21A is a diagram showing the relationship, and the ellipsoid NS in the upper diagram in FIG. 21A shows the distribution of the refractive index in the transparent substrate (polycarbonate substrate) of the disk-shaped information recording medium 20. In general, in the case of a transparent substrate made of polycarbonate made of a polycarbonate-based injection molding process, the refractive index n in the radial direction and the refractive index n in the circumferential direction have substantially the same value (n ^), and the thickness direction of the transparent substrate The refractive index η is the average refractive index in the in-plane direction
r t z  r t z
n (= (n +n ) Z2)より小さくなるので、透明基板の屈折率 NSは、図 21 (a)の上図 a r t  Since the refractive index is smaller than n (= (n + n) Z 2), the refractive index NS of the transparent substrate is shown in the upper drawing of FIG. 21 (a) a r t
に示すように面内方向に延びた楕円体状の分布となる。なお、図 21 (a)中の下図の 複屈折補正板 6'に示した第 1方向は、透明基板の半径方向に対応する方向であり、 第 2方向は透明基板の周方向(トラック方向)に対応する。 As shown in the figure, it becomes an ellipsoidal distribution extending in the in-plane direction. The first direction shown in the lower part of the birefringence correction plate 6 'in FIG. 21 (a) is the direction corresponding to the radial direction of the transparent substrate, The second direction corresponds to the circumferential direction (track direction) of the transparent substrate.
[0109] また、図 21 (b)は、複屈折補正板 6,と対物レンズ 8との間を往来する光ビームと、複 屈折補正板 6'の複屈折板 62'内の屈折率との関係を示した図であり、図 21 (b)中の 上図の楕円体 NPは、複屈折補正板 6'の複屈折板 62'内の屈折率の分布を示して いる。この例の複屈折補正板 6'の複屈折板 62'は、上述のように、遅相軸が厚さ方 向に向いている(厚さ方向の屈折率 nが面内方向の屈折率 η , nより大きい)ので、 Further, FIG. 21 (b) shows the relationship between the light beam passing between the birefringence correction plate 6, and the objective lens 8 and the refractive index in the birefringence plate 62 'of the birefringence correction plate 6'. FIG. 21B is a diagram showing the relationship, and the ellipsoid NP in the upper diagram in FIG. 21 (b) shows the distribution of the refractive index in the birefringence plate 62 ′ of the birefringence correction plate 6 ′. As described above, the retardation plate 62 'of the birefringence correction plate 6' of this example has the slow axis directed in the thickness direction (the refractive index n in the thickness direction is the refractive index η in the in-plane direction). , n) because
3 1 2  3 1 2
複屈折板 62'内の屈折率 NPは図 21 (b)中の上図に示すように、厚さ方向(第 3方向 )に延びた楕円体状の分布となる。  The refractive index NP in the birefringence plate 62 'is an ellipsoidal distribution extending in the thickness direction (third direction), as shown in the upper drawing in FIG. 21 (b).
[0110] 最初に、透明基板の表面に対してほぼ垂直に反射される光 L1について説明する。  First, the light L1 reflected substantially perpendicularly to the surface of the transparent substrate will be described.
まず、光 L1は、透明基板の表面に対してほぼ垂直な方向に反射されるので、光 L1 の反射方向に垂直な面の透明基板内の屈折率 NS1は、図 22 (a)の上図のようにな る。この場合、光 L1に対する透明基板の屈折率 NS1では、図 22 (a)の上図に示す ように、半径方向の屈折率 nと周方向の屈折率 nとはほぼ同じ値 (n n )となるので 、光 L1が透明基板を通過した際には、光 L1の半径方向の偏光成分と周方向の偏光 成分との間に位相差がほとんど生じない。なお、ここでいう位相差がほとんど生じない とは、後述する光 L2に対して発生する位相差に比べて位相差が小さいという意味で あり、透明基板の成形条件により半径方向の屈折率 nと周方向の屈折率 nとの差が 多少発生し、それにより多少位相差が発生する場合も含む意味である。  First, since the light L1 is reflected in a direction substantially perpendicular to the surface of the transparent substrate, the refractive index NS1 in the transparent substrate of the plane perpendicular to the reflection direction of the light L1 is the upper view of FIG. become that way. In this case, in the refractive index NS1 of the transparent substrate for the light L1, as shown in the upper part of FIG. 22 (a), the refractive index n in the radial direction and the refractive index n in the circumferential direction have substantially the same value (nn) Therefore, when the light L1 passes through the transparent substrate, almost no phase difference occurs between the radial polarization component and the circumferential polarization component of the light L1. Here, the fact that the phase difference hardly occurs means that the phase difference is smaller than the phase difference generated with respect to the light L2 described later, and the refractive index n in the radial direction according to the forming condition of the transparent substrate There is a meaning including the case where a difference with the circumferential refractive index n is somewhat generated, and thereby a phase difference is generated.
[0111] 次いで、透明基板の表面に対してほぼ垂直に反射された光 L1は、複屈折補正板 6 ,に入射される。この際、光 L1は、図 21 (a)に示すように、複屈折補正板 6'に対して ほぼ垂直に入射される。この場合、光 L1に対する複屈折板 62'の屈折率 NP1では、 図 22 (a)の下図に示すように、第 1方向(透明基板の半径方向に対応)の屈折率 nと 第 2方向(透明基板の周方向に対応)の屈折率 nとはほぼ同じ値となるので、光 L1  Next, the light L 1 reflected substantially perpendicularly to the surface of the transparent substrate is made incident on the birefringence correction plate 6. At this time, as shown in FIG. 21A, the light L1 is incident substantially perpendicularly to the birefringence correction plate 6 ′. In this case, in the refractive index NP1 of the birefringent plate 62 'for the light L1, as shown in the lower part of FIG. 22 (a), the refractive index n in the first direction (corresponding to the radial direction of the transparent substrate) Since the refractive index n of the transparent substrate (corresponding to the circumferential direction) has almost the same value, the light L
2  2
が複屈折補正板 6'を通過した際には、光 L1の第 1方向の偏光成分と第 2方向の偏 光成分との間に位相差がほとんど生じない。すなわち、透明基板の表面に対してほ ぼ垂直に反射 (または入射)される光 L1に対しては、複屈折は生じな!/、。  When the light passes through the birefringence correction plate 6 ′, there is almost no phase difference between the polarization component in the first direction of the light L1 and the polarization component in the second direction. That is, no birefringence occurs for light L1 reflected (or incident) almost perpendicularly to the surface of the transparent substrate!
[0112] 次に、透明基板力 その半径方向に斜め反射する光 L2について説明する。上述 のように、成形プロセスで作製される円板状情報記録媒体の透明基板の屈折率は、 図 21 (a)の上図に示すように、面内方向に延びた楕円体状の分布 NSになる。それ ゆえ、光 L2の反射方向に垂直な面の透明基板内の屈折率 NS2は、図 22 (b)の上 図に示すように、楕円状となり長径方向(周方向)の屈折率は透明基板の周方向の 屈折率 nとなるが、周方向に垂直な方向(図 22 (b)上図中の第 3方向)の屈折率 n ' は透明基板の半径方向の屈折率 nより小さくなる。それゆえ、透明基板の半径方向 に斜め反射する光 L2に対しては、透明基板の遅相軸は周方向になる。従って、光 L 2が透明基板を通過する際には、光 L2の周方向の偏光成分の位相がそれに垂直な 方向(第 3方向)の偏光成分に対して遅れ、光 L2の互いに直交する 2つの偏光成分 間に位相差が生じる。 Next, the light L 2 reflected obliquely in the radial direction of the transparent substrate force will be described. As described above, the refractive index of the transparent substrate of the disk-shaped information recording medium produced by the molding process is As shown in the upper part of Fig. 21 (a), it becomes an ellipsoidal distribution NS extending in the in-plane direction. Therefore, the refractive index NS2 in the transparent substrate in the plane perpendicular to the reflection direction of the light L2 becomes elliptical as shown in the upper drawing of FIG. 22 (b), and the refractive index in the major axis direction (circumferential direction) is the transparent substrate The refractive index n ′ in the circumferential direction is smaller than the refractive index n in the radial direction of the transparent substrate in the direction perpendicular to the circumferential direction (third direction in FIG. 22B). Therefore, for the light L2 obliquely reflected in the radial direction of the transparent substrate, the slow axis of the transparent substrate is in the circumferential direction. Therefore, when the light L2 passes through the transparent substrate, the phase of the circumferential polarization component of the light L2 is delayed with respect to the polarization component in the direction (third direction) perpendicular thereto, and the light L2 is orthogonal to each other 2 A phase difference occurs between two polarization components.
[0113] 次いで、 2つの偏光成分間に位相差が生じた光 L2が複屈折補正板 6 'に入射され る。この際、光 L2は、図 22 (a)に示すように、複屈折補正板 6'の表面に対して斜め 方向(第 1方向)から入射する。この例の複屈折板 62'の遅相軸は厚み方向に向いて いるので、光 L2の入射方向に垂直な面の複屈折板 62'内の屈折率 NP2は、図 22 ( b)の下図に示すように、楕円状となり、第 2方向(透明基板の周方向に対応)の屈折 率 nがそれに垂直な方向(図 22 (b)中の第 1 '方向:透明基板の第 3方向に対応)の Next, the light L2 in which a phase difference has occurred between the two polarization components is incident on the birefringence correction plate 6 ′. At this time, as shown in FIG. 22 (a), the light L2 is incident on the surface of the birefringence correction plate 6 ′ from an oblique direction (first direction). Since the slow axis of the birefringent plate 62 'in this example is directed in the thickness direction, the refractive index NP2 in the birefringent plate 62' in the plane perpendicular to the incident direction of the light L2 is as shown in the lower view of FIG. As shown in the figure, it is elliptical, and the refractive index n in the second direction (corresponding to the circumferential direction of the transparent substrate) is perpendicular to that (the 1 'direction in FIG. 22 (b): the third direction of the transparent substrate). Corresponding)
2 2
屈折率 n 'より小さくなる。それゆえ、複屈折補正板 6 'に入射される光 L2に対する進 相軸の方向は、第 2方向となり、光 L2が透明基板を通過する際の透明基板の遅相軸 の方向(周方向)と同じ方向となる。従って、透明基板で 2つの偏光成分間に位相差 が生じた光 L2が複屈折補正板 6'を通過すると、透明基板を通過した際に位相が遅 れた光 L2の偏光成分の位相が、その垂直な偏光成分 (透明基板を通過した際に位 相が進んでいる偏光成分)に対して進む。その結果、透明基板を通過した際に生じ た光 L2の互いに直交する偏光成分間の位相差が、複屈折補正板 6'で補正すること ができる。これにより、透明基板の半径方向に斜め反射する光 L2の複屈折を補償す ることができ、等価的に透明基板の断面複屈折量を低減することができる。  It becomes smaller than the refractive index n '. Therefore, the direction of the fast axis with respect to the light L2 incident on the birefringence correction plate 6 'is the second direction, and the direction (circumferential direction) of the slow axis of the transparent substrate when the light L2 passes through the transparent substrate. In the same direction. Therefore, when the light L2 having a phase difference between the two polarization components on the transparent substrate passes through the birefringence correction plate 6 ′, the phase of the polarization component of the light L2 whose phase is delayed when passing through the transparent substrate is It advances with respect to the perpendicular polarization component (polarization component in which the phase advances when passing through the transparent substrate). As a result, the phase difference between the mutually orthogonal polarization components of the light L2 generated when passing through the transparent substrate can be corrected by the birefringence correction plate 6 '. Thereby, the birefringence of the light L2 obliquely reflected in the radial direction of the transparent substrate can be compensated, and the cross-sectional birefringence amount of the transparent substrate can be equivalently reduced.
[0114] 次に、透明基板力もその周方向に斜め反射する光 L3について説明する。上述のよ うに、成形プロセスで作製される円板状情報記録媒体の透明基板の屈折率は、図 21 (a)の上図に示すように、面内方向に延びた楕円体状の分布 NSになる。それゆえ、 光 L3の反射方向に垂直な面の透明基板内の屈折率 NS3は、図 22 (c)の上図に示 すように、楕円状となり長径方向(半径方向)の屈折率は透明基板の半径方向の屈 折率!^となるが、半径方向に垂直な方向(図 22 (c)上図中の第 4方向)の屈折率 nt' は透明基板の周方向の屈折率 nより小さくなる。それゆえ、透明基板の周方向に斜 め反射する光 L3に対しては、透明基板の遅相軸は半径方向になる。従って、光 L3 が透明基板を通過する際には、光 L3の半径方向の偏光成分の位相がそれに垂直 な方向(第 4方向)の偏光成分に対して遅れ、光 L3の互いに直交する 2つの偏光成 分間に位相差が生じる。 Next, the light L 3 which is also reflected obliquely in the circumferential direction will be described. As described above, the refractive index of the transparent substrate of the disk-shaped information recording medium manufactured by the molding process is an ellipsoidal distribution NS extending in the in-plane direction as shown in the upper drawing of FIG. 21 (a). become. Therefore, the refractive index NS3 in the transparent substrate in the plane perpendicular to the reflection direction of the light L3 is shown in the upper figure of FIG. 22 (c). Thus, it becomes elliptical and the refractive index in the major axis direction (radial direction) is the refractive index in the radial direction of the transparent substrate! However, the refractive index n t 'in the direction perpendicular to the radial direction (the fourth direction in FIG. 22C) becomes smaller than the refractive index n in the circumferential direction of the transparent substrate. Therefore, for the light L3 reflected obliquely in the circumferential direction of the transparent substrate, the slow axis of the transparent substrate is in the radial direction. Therefore, when the light L3 passes through the transparent substrate, the phase of the polarization component in the radial direction of the light L3 is delayed with respect to the polarization component in the direction (fourth direction) perpendicular to that. A phase difference occurs between the polarization components.
[0115] 次いで、 2つの偏光成分間に位相差が生じた光 L3が複屈折補正板 6 'に入射され る。この際、光 L3は、図 22 (a)に示すように、複屈折補正板 6'の表面に対して斜め 方向(第 2方向)から入射する。この例の複屈折板 62'の遅相軸は厚み方向に向いて いるので、光 L3の入射方向に垂直な面の複屈折板 62'内の屈折率 NP3は、図 22 ( c)の下図に示すように、楕円状となり、第 1方向(透明基板の半径方向に対応)の屈 折率 nがそれに垂直な方向(図 22 (c)中の第 2 '方向:透明基板の第 4方向に対応) の屈折率 n 'より小さくなる。それゆえ、複屈折補正板 6'に入射される光 L3に対する Next, light L 3 in which a phase difference has occurred between the two polarization components is incident on the birefringence correction plate 6 ′. At this time, as shown in FIG. 22 (a), the light L3 is incident on the surface of the birefringence correction plate 6 ′ from an oblique direction (second direction). Since the slow axis of the birefringent plate 62 'in this example is directed in the thickness direction, the refractive index NP3 in the birefringent plate 62' in the plane perpendicular to the incident direction of the light L3 is as shown in the lower view of FIG. As shown in Fig. 22, it becomes elliptical, and the refractive index n in the first direction (corresponding to the radial direction of the transparent substrate) is perpendicular to that (the 2 'direction in FIG. 22 (c): the fourth direction of the transparent substrate). Smaller than the index of refraction n 'of Therefore, for the light L3 incident on the birefringence correction plate 6 '
2  2
進相軸の方向は、第 1方向となり、光 L3が透明基板を通過する際の透明基板の遅相 軸の方向(半径方向)と同じ方向となる。従って、透明基板で 2つの偏光成分間に位 相差が生じた光 L3が複屈折補正板 6'を通過すると、透明基板を通過した際に位相 が遅れた光 L3の偏光成分の位相が、その垂直な偏光成分 (透明基板を通過した際 に位相が進んでいる偏光成分)に対して進む。その結果、透明基板を通過した際に 生じた光 L3の互いに直交する偏光成分間の位相差が、複屈折補正板 6'で補正す ることができる。これにより、透明基板の半径方向に斜め反射する光 L3の複屈折を補 償することができ、等価的に透明基板の断面複屈折量を低減することができる。  The direction of the fast axis is the first direction, and is the same as the direction (radial direction) of the slow axis of the transparent substrate when the light L 3 passes through the transparent substrate. Therefore, when light L3 having a phase difference between two polarization components on the transparent substrate passes through the birefringence correction plate 6 ', the phase of the polarization component of the light L3 whose phase is delayed when passing through the transparent substrate is It proceeds with respect to the vertical polarization component (polarization component whose phase advances when passing through the transparent substrate). As a result, the phase difference between the mutually orthogonal polarization components of the light L 3 generated when passing through the transparent substrate can be corrected by the birefringence correction plate 6 ′. This makes it possible to compensate for the birefringence of the light L3 obliquely reflected in the radial direction of the transparent substrate, and to equivalently reduce the cross-sectional birefringence of the transparent substrate.
[0116] 本実施例では、上述のように、透明基板の表面に対して斜め反射 (または入射)す る光に対して、透明基板の遅相軸の方向と複屈折補正板の進相軸の方向とを一致さ せることにより、透明基板の表面に対して斜め反射 (または入射)する光の複屈折を 補償して透明基板の断面複屈折の影響を低減して ヽる。  In the present embodiment, as described above, the direction of the slow axis of the transparent substrate and the phase advance axis of the birefringence correction plate with respect to light obliquely reflected (or incident) to the surface of the transparent substrate. By compensating the birefringence of light obliquely reflected (or incident) to the surface of the transparent substrate to reduce the influence of the cross-sectional birefringence of the transparent substrate.
[0117] [評価実験]  [Evaluation experiment]
この例の評価実験では、実施例 1と同様にして、まず、種々の断面複屈折量を有す る HD DVDを本実施例の光ピックアップ装置に装着した場合の面内複屈折量に対 する 3T短ピット変調度の変化及び DPP信号の変調度変化を偏光解析により計算し た。 In the evaluation experiment of this example, as in Example 1, first, various cross-sectional birefringence amounts are provided. The change in the degree of 3T short pit modulation and the change in the degree of modulation of the DPP signal with respect to the in-plane birefringence amount when the HD DVD was attached to the optical pickup device of this example was calculated by polarization analysis.
[0118] 断面複屈折量 6 X 10—4を有する HD DVDに対する評価結果を図 23及び 24に示 した。また、断面複屈折量 4 X 10—4を有する HD DVDに対する評価結果を図 25及 び 26に示した。さらに、断面複屈折量 2 X 10—4を有する HD DVDに対する評価結 果を図 27及び 28に示した。なお、図 23〜28中の実線で示した特性が、複屈折補正 板を用いなかった場合の結果であり、一点鎖線で示した特性が本実施例の複屈折 補正板を用いた場合の結果である。また、図 23, 25及び 27が面内複屈折量に対す る 3T短ピット変調度の変化を表した図であり、図 24, 26及び 28が面内複屈折量に 対する DPP信号の変調度変化を表した図である。なお、図 23〜28中の横軸にとつ た面内複屈折量には、遠心力による面内複屈折量の変化量は含まれて 、な 、。 [0118] and shown in Figure 23 and 24 the evaluation results for the HD DVD having a cross-sectional birefringence 6 X 10- 4. Further, the evaluation results for the HD DVD having a cross-sectional birefringence 4 X 10- 4 to 25及beauty 26. Furthermore, showed evaluation results for HD DVD having a cross-sectional birefringence 2 X 10- 4 to 27 and 28. The characteristics shown by the solid line in FIGS. 23 to 28 are the results when the birefringence correction plate is not used, and the characteristics shown by the alternate long and short dash line are the results when the birefringence correction plate of this embodiment is used. It is. 23, 25 and 27 show the change in the degree of 3T short pit modulation with respect to the in-plane birefringence, and FIGS. 24, 26 and 28 show the modulation of the DPP signal with respect to the in-plane birefringence. It is a figure showing change. The amount of in-plane birefringence along the horizontal axis in FIGS. 23 to 28 includes the amount of change in the amount of in-plane birefringence due to centrifugal force.
[0119] 図 23〜28の結果から明らかなように、本実施例の複屈折補正板を対物レンズと円 板状情報記録媒体との間の光路上に設けることにより、面内複屈折量が変化したとき の 3T短ピット変調度の変化および DPP信号の変調度変化を低減することができるこ とが分力つた。すなわち、本実施例の複屈折補正板を用いて、透明基板の表面に対 して斜め反射 (または入射)する光の複屈折を補正することにより、透明基板の断面 複屈折の影響を低減することができ、許容できる面内複屈折量の変動のマージンを 実質上広げることができることが分力つた。  As apparent from the results of FIGS. 23 to 28, by providing the birefringence correction plate of the present example on the optical path between the objective lens and the disc-shaped information recording medium, the in-plane birefringence amount can be increased. The ability to reduce changes in the 3T short pit modulation degree and the DPP signal modulation degree at the time of the change is a force. That is, by using the birefringence correction plate of the present embodiment, the birefringence of light obliquely reflected (or incident) to the surface of the transparent substrate is corrected to reduce the influence of the birefringence of the cross section of the transparent substrate. It has been possible to substantially expand the margin of fluctuation of the allowable in-plane birefringence amount.
[0120] また、図 23〜28の結果から明らかなように、この例の複屈折補正板の補正パラメ一 タ Δ n X tを 240nm程度にすることにより、断面複屈折量 2 X 10一4〜 6 X 10_4の!、ず れの HD DVDに対しても、複屈折補正板の補正パラメータ (位相補正量)を変える ことなぐ 3T短ピット変調度の変化および DPP信号の変調度変化を十分低減するこ とができることが分力つた。従って、本実施例の構成の光ピックアップ装置においても 、実施例 1と同様に、その構成をより簡易な構成にすることができ、また、本実施例の 構成の光ピックアップ装置を採用することにより、幅広く様々な媒体に適応可能な光 情報記録再生システムが構築出来ることが分力つた。 [0120] Further, as is clear from the results of FIG. 23-28, by the correction parameter one capacitor delta n X t of the birefringence compensation plate in this example about 240 nm, cross-sectional birefringence 2 X 10 one 4 Change the correction parameter (phase correction amount) of the birefringence correction plate even for HD DVDs of ~ 6 X 10 4 ! Change in 3T short pit modulation degree and DPP signal modulation degree sufficiently. It is important to be able to reduce it. Therefore, also in the optical pickup device of the configuration of the present embodiment, the configuration can be simplified as in the first embodiment, and by adopting the optical pickup device of the configuration of the present embodiment. The ability to construct an optical information recording / reproduction system that can be adapted to a wide variety of media is essential.
[0121] また、この例では、実施例 1と同様に、断面複屈折量が約 2 X 10_4、 4 X 10_4及び 6 X 10_4となる HD DVDを実際にそれぞれ作製し、さらに、各断面複屈折量の HD DVDにおいて、内周力 外周にかけて面内複屈折量を約—4 X 10_5〜4 X 10_5 に変化させた HD DVDを作製した。すなわち、断面複屈折量と面内複屈折量の組 み合わせの異なる種々の HD DVDを作製した。なお、透明基板の断面複屈折量 及び面内複屈折量は、実施例 1と同様にして調整した。 Further, in this example, as in Example 1, the cross-sectional birefringence amount is about 2 × 10 4 , 4 × 10 4 and Indeed each to prepare a HD DVD as a 6 X 10_ 4, further, in the HD DVD of the respective cross-sectional birefringence amount, the in-plane birefringence toward the inner circumferential force periphery to about -4 X 10 _5 ~4 X 10_ 5 A modified HD DVD was produced. That is, various HD DVDs having different combinations of cross sectional birefringence amount and in-plane birefringence amount were produced. The cross sectional birefringence amount and the in-plane birefringence amount of the transparent substrate were adjusted in the same manner as in Example 1.
[0122] 上述のようにして作製した種々の HD DVDをこの例の光ピックアップ装置に装着 して面内複屈折量に対する 3T短ピット変調度の変化及び DPP信号の変調度変化を 測定した。なお、この実験は、上記偏光解析と同様に、複屈折補正板を用いない場 合及び複屈折補正板を用いた場合について行った。また、この実験では、 HD DV Dの回転数は 600rpm〜1800rpmとし、遠心力に起因する面内複屈折量の変動が ほとんど無視できる条件で実験を行った。この測定結果も図 23〜28中に示した。図 23〜16中の白抜き丸印が、複屈折補正板を用いなかった場合の結果であり、白抜 き四角印が複屈折補正板を用いた場合の結果である。  The various HD DVDs manufactured as described above were mounted on the optical pickup device of this example, and changes in the degree of 3T short pit modulation and changes in the modulation of the DPP signal with respect to the amount of in-plane birefringence were measured. This experiment was conducted in the case where no birefringence correction plate was used and in the case where a birefringence correction plate was used, as in the polarization analysis. Moreover, in this experiment, the rotation speed of HD DVD was set to 600 rpm to 1800 rpm, and the experiment was performed under the condition that the fluctuation of the in-plane birefringence amount due to the centrifugal force can be almost ignored. The measurement results are also shown in FIGS. The white circles in FIGS. 23 to 16 are the results when the birefringence correction plate is not used, and the white squares are the results when the birefringence correction plate is used.
[0123] 図 23〜28の結果から明らかなように、実際に作製した HD DVDの測定点は、偏 光解析により得られた特性上(図 23〜28の実線及び一点鎖線上)にほぼ乗っている 。それゆえ、偏光解析 (シミュレーション解析)及び実際に作製した HD DVDの測定 結果の両方の評価結果から、本実施例の複屈折補正板を用いることにより、透明基 板の断面複屈折の影響を低減することができ、許容できる面内複屈折量の変動のマ 一ジンを実質上広げることができることが確認できた。  As apparent from the results of FIGS. 23 to 28, the measurement points of the actually produced HD DVD are substantially on the characteristics (on the solid line and the dashed dotted line in FIGS. 23 to 28) on the characteristics obtained by polarization analysis. ing . Therefore, from the evaluation results of both the polarization analysis (simulation analysis) and the measurement results of the actually produced HD DVD, the influence of the cross-sectional birefringence of the transparent substrate is reduced by using the birefringence correction plate of this example. It has been confirmed that it is possible to substantially expand the amount of variation in allowable in-plane birefringence amount.
[0124] また、本実施例の上記評価結果力も明らかなように、面内複屈折量が ±6 X 10_5 程度変化しても、 3T短ピット変調度の変化および DPP信号の変調度変化が小さい ので、円板状情報記録媒体を回転数 6000rpm以上で回転させて遠心力により面内 複屈折量が 2 X 10_5程度変動しても問題無く使用可能である。実際に、 HD DVD を 6000rpm以上の回転数で回転させても、問題なく情報の記録再生が可能であつ た。 Further, as is clear from the evaluation results of this example, even if the in-plane birefringence amount changes by about ± 6 × 10 — 5, the change in the degree of 3T short pit modulation and the change in the modulation of the DPP signal are Since it is small, it can be used without any problem even if the in-plane birefringence amount fluctuates by about 2 × 10 — 5 by centrifugal force by rotating the disc-like information recording medium at a rotational speed of 6000 rpm or more. In fact, even if the HD DVD was rotated at a rotational speed of 6000 rpm or more, the information could be recorded and reproduced without any problem.
[0125] また、この例では、複屈折板 62'の位相補正パラメータ Δ n X tの好適な範囲を求め るために次のような解析実験を行った。位相補正パラメータ A n X tが 180nm及び 30 Onmの複屈折板を有する複屈折補正板を用いて、種々の断面複屈折量を有する H D DVDにおける面内複屈折量に対する DPP信号の変調度変化を偏光解析により 計算した。なお、ここでは、断面複屈折量が 2 X 10_4及び 6 X 10_4となる HD DVD に対して偏光解析を行った。すなわち、比較的断面複屈折量の小さい HD DVDと 、断面複屈折量の大きい HD DVDに対して偏光解析を行った。その結果を、図 24 及び 28に示した。図 24及び 28中の破線の特性が AnXtが 180nmの複屈折板を 有する複屈折補正板を用いた場合の結果であり、二点鎖線の特性が AnXtが 300η mの複屈折板を有する複屈折補正板を用いた場合の結果である。 Further, in this example, the following analysis experiment was performed to obtain a suitable range of the phase correction parameter Δ n X t of the birefringent plate 62 ′. Phase correction parameters A n X t have birefringence amounts of 180 nm and 30 O nm using birefringence correction plates having different cross-sectional birefringence amounts H The modulation degree change of the DPP signal with respect to the in-plane birefringence amount in D DVD was calculated by ellipsometry. Here, was ellipsometry against HD DVD that cross birefringence amount is 2 X 10_ 4 and 6 X 10_ 4. That is, polarization analysis was performed on an HD DVD having a relatively small amount of cross-sectional birefringence and an HD DVD having a large amount of cross-sectional birefringence. The results are shown in Figures 24 and 28. The characteristic of the broken line in FIGS. 24 and 28 is the result in the case of using a birefringence correction plate having a birefringence plate with AnXt of 180 nm, and the characteristic of the two-dot chain line has a birefringence plate with a birefringence plate of AnXt of 300ηm. It is a result at the time of using a correction board.
[0126] 図 24から明らかなように、断面複屈折量が比較的大きい場合 (6X10_4)、 AnXt 力 、さくなると、面内複屈折量に対する DPP信号の変調度の変動が大きくなる。これ は、 AnXtが小さくなると、位相補正量が十分でなくなるためである。そして、 AnXt 力 Sl80nmの場合には、面内複屈折量 ±6 X 10_5の範囲内における DPP信号の変 調度の最大値と最小値の比が 2近くなつており、この結果力 すると、 AnXt力 l80n mより小さくなると、面内複屈折量 ±6 X 10一5の範囲内における DPP信号の変調度 の最大値と最小値の比は 2以上となる。 DPP信号の変調度の最大値と最小値の比は 2以上となると、光ピックアップ装置のトラック追従性能が悪ィ匕するという悪影響がある As apparent from FIG. 24, when the cross-sectional birefringence amount is relatively large (6 × 10 4 ), the AnXt force decreases, and the fluctuation of the modulation of the DPP signal with respect to the in-plane birefringence amount increases. This is because the phase correction amount becomes insufficient as AnXt becomes smaller. And, in the case of AnXt force Sl 80nm, the ratio of the maximum value to the minimum value of the DPP signal modulation degree in the range of the in-plane birefringence amount ± 6 x 10_ 5 is close to 2, and as a result, When the force is smaller than 180 nm, the ratio of the maximum value to the minimum value of the modulation of the DPP signal in the range of in-plane birefringence amount ± 6 × 10 5 is 2 or more. When the ratio of the maximum value to the minimum value of the modulation of the DPP signal is 2 or more, there is an adverse effect that the track following performance of the optical pickup device is deteriorated.
[0127] また、図 28から明らかなように、断面複屈折量が比較的小さい場合 (2Χ10_4)、 Δ nXtが大きくなると、面内複屈折量に対する DPP信号の変調度の変動が大きくなる 。これは、 AnXtが大きくなると、過補正になってしまうためである。そして、 AnXt力 S 300nmの場合には、面内複屈折量 ±6 X 10_5の範囲内における DPP信号の変調 度の最大値と最小値の比が 2近くなつており、この結果力 すると、 ΔηΧΐ^300ηπι より大きくなると、面内複屈折量 ±6 X 10_5の範囲内における DPP信号の変調度の 最大値と最小値の比は 2以上となる。それゆえ、図 24及び 28の結果から、この例の 複屈折補正板の位相補正パラメータ AnXtの好適な範囲は、 180nm≤ AnXt≤3 OOnmであることが分かった。 [0127] Further, as apparent from FIG. 28, when cross-sectional birefringence amount is relatively small (2Χ10 _4), the delta nXt increases, variations in the modulation degree of the DPP signal for plane birefringence amount increases. This is because when AnXt becomes large, it becomes overcorrection. And in the case of AnXt force S 300 nm, the ratio of the maximum value to the minimum value of the modulation of the DPP signal in the range of the in-plane birefringence amount ± 6 × 10 — 5 is close to 2, and as a result, When it becomes larger than ΔΧΐΧΐ300ηπι, the ratio of the maximum value to the minimum value of the modulation degree of the DPP signal in the range of the in-plane birefringence amount ± 6 × 10 — 5 becomes 2 or more. Therefore, from the results of FIGS. 24 and 28, it was found that the preferable range of the phase correction parameter AnXt of the birefringence correction plate of this example is 180 nm≤AnXt≤3 OO nm.
[0128] 上記実施例 1及び 2では、光源が一つの光ピックアップ装置について説明したが、 本発明はこれに限定されず、 DVD— CDドライブ等の媒体互換性のある記録再生装 置のように、複数の波長の光源を有する光ピックアップ装置に対しても同様に適用可 能である。 In the above-described first and second embodiments, the optical pickup apparatus having one light source has been described. However, the present invention is not limited to this, and it may be a recording and reproducing apparatus compatible with a medium such as a DVD-CD drive. The same applies to optical pickup devices having light sources of multiple wavelengths. It is
[0129] 上記実施例 1及び 2では、光源から出射される光ビームの波長が 405nmの場合に ついて説明したが、本発明はこれに限定されず、本発明は、高密度記録に用いられ る波長が 430nm以下の光ビームに対しても同様に適用可能である。実際、本発明 者らは、波長が 430nm以下の種々の波長を有する光源を用いて実施例 1及び 2と同 様の検証実験を行ったところ、実施例 1及び 2と同様の結果が得られた。  In the first and second embodiments, the case where the wavelength of the light beam emitted from the light source is 405 nm has been described, but the present invention is not limited to this, and the present invention is used for high density recording. The same is applicable to light beams having a wavelength of 430 nm or less. In fact, when the same verification experiments as in Examples 1 and 2 were conducted using light sources having various wavelengths of 430 nm or less, the present inventors obtained the same results as in Examples 1 and 2. The
産業上の利用可能性  Industrial applicability
[0130] 本発明の複屈折補正板、並びに、それを用いた光ピックアップ装置及び再生装置 ( または記録再生装置)を用いると、複屈折補正板の位相補正量を変えることなく種々 の断面複屈折量の有する情報記録媒体に対して複屈折を補償することができる。そ れゆえ、本発明の複屈折補正板、並びに、それを用いた光ピックアップ装置及び再 生装置は、媒体互換性に優れた複屈折補正板、並びに、それを用いた光ピックアツ プ装置及び再生装置であり、幅広く様々な情報記録媒体に適応可能な複屈折補正 板、並びに、それを用いた光ピックアップ装置及び再生装置として好適である。 [0130] With the birefringence correction plate of the present invention, and the optical pickup device and the reproduction device (or the recording and reproduction device) using the same, various cross-sectional birefringence can be obtained without changing the phase correction amount of the birefringence correction plate. Birefringence can be compensated for the information recording medium of the quantity. Therefore, the birefringence correction plate of the present invention, and the optical pickup device and reproduction device using the same, the birefringence correction plate excellent in medium compatibility, and the optical pickup device and reproduction using the same. It is an apparatus, and is suitable as a birefringence correction plate applicable to a wide variety of information recording media, and an optical pickup apparatus and a reproduction apparatus using the same.

Claims

請求の範囲 The scope of the claims
[1] 光透過性媒質を有する情報記録媒体の記録面に該光透過性媒質を介して光ビー ムを照射し、該記録面からの反射光を受光する光ピックアップ装置であって、 光源と、  [1] An optical pickup device for irradiating a light beam onto a recording surface of an information recording medium having a light transmitting medium via the light transmitting medium, and receiving reflected light from the recording surface, comprising: ,
上記光源から出射された光ビームを上記記録面に集光する対物レンズと、 上記光源と上記対物レンズとの間の光路上に配置された偏光ビームスプリッタと、 上記対物レンズと上記偏光ビームスプリッタとの間の光路上に配置され、入射され た光ビームの互いに直交する 2つの偏光成分間に位相差を与える複屈折補正板とを 備え、  An objective lens for condensing a light beam emitted from the light source on the recording surface, a polarization beam splitter disposed on an optical path between the light source and the objective lens, the objective lens, and the polarization beam splitter And a birefringence correction plate for providing a phase difference between two mutually orthogonal polarization components of the incident light beam.
上記複屈折補正板で生じる上記位相差が上記複屈折補正板の面内の位置により 異なることを特徴とする光ピックアップ装置。  An optical pickup device characterized in that the phase difference generated by the birefringence correction plate is different depending on the in-plane position of the birefringence correction plate.
[2] 上記複屈折補正板の光ビームが入射される面内の上記位相差の分布が、入射さ れる光ビームの中心に対して回転対称であることを特徴とする請求項 1に記載の光ピ ックアップ装置。 [2] The distribution of the phase difference in the plane where the light beam of the birefringence correction plate is incident is rotationally symmetric with respect to the center of the incident light beam. Optical pickup device.
[3] 光透過性媒質を有する情報記録媒体の記録面に該光透過性媒質を介して光ビー ムを照射し、該記録面からの反射光を受光する光ピックアップ装置であって、 光源と、  [3] An optical pickup device for irradiating a light beam to a recording surface of an information recording medium having a light transmitting medium via the light transmitting medium and receiving reflected light from the recording surface, comprising: ,
上記光源から出射された光ビームを上記記録面に集光する対物レンズと、 上記光源と上記対物レンズとの間の光路上に配置された偏光ビームスプリッタと、 上記対物レンズと上記偏光ビームスプリッタとの間の光路上に配置され、入射され た光ビームの互いに直交する 2つの偏光成分間に位相差を与える複屈折補正板とを 備え、  An objective lens for condensing a light beam emitted from the light source on the recording surface, a polarization beam splitter disposed on an optical path between the light source and the objective lens, the objective lens, and the polarization beam splitter And a birefringence correction plate for providing a phase difference between two mutually orthogonal polarization components of the incident light beam.
上記複屈折補正板が、中央領域と、該中央領域を取り囲むように設けられた外縁 領域とを有し、該中央領域の複屈折量と該外縁領域の複屈折量とが異なること特徴 とすることを特徴とする光ピックアップ装置。  The birefringence correction plate has a central region and an outer edge region provided so as to surround the central region, and the birefringence amount of the central region is different from the birefringence amount of the outer edge region. An optical pickup device characterized by
[4] 上記外縁領域の進相軸が上記中央領域を周回する方向に向 、て 、ることを特徴と する光ピックアップ装置。  [4] An optical pickup device characterized in that the phase advance axis of the outer edge area is directed in the direction of circling the central area.
[5] 上記外縁領域が上記中央領域を周回する方向に 4つの領域に等分割されているこ とを特徴とする請求項 4に記載の光ピックアップ装置。 [5] The outer edge area is equally divided into four areas in the direction of circling the central area. The optical pickup device according to claim 4, characterized in that
[6] 上記中央領域が正方形状であり、上記外縁領域の進相軸が上記中央領域の外縁 に沿った方向を向 、て 、ることを特徴する請求項 5に記載の光ピックアップ装置。 [6] The optical pickup device according to [5], wherein the central region has a square shape, and the fast axis of the outer edge region extends in a direction along the outer edge of the central region.
[7] 上記複屈折補正板が、基板と、基板上に設けられた複屈折補正片とを有し、該複 屈折補正片が上記外縁領域に設けられて 、ることを特徴とする請求項 3〜6の ヽず れか一項に記載の光ピックアップ装置。 [7] The birefringence correction plate includes a substrate and a birefringence correction piece provided on the substrate, and the birefringence correction piece is provided in the outer edge region. 3. The optical pickup device according to any one of 3 to 6.
[8] 光透過性媒質を有する情報記録媒体の記録面に該光透過性媒質を介して光ビー ムを照射し、該記録面からの反射光を受光する光ピックアップ装置であって、 光源と、 [8] An optical pickup device for irradiating a light beam onto a recording surface of an information recording medium having a light transmitting medium via the light transmitting medium, and receiving reflected light from the recording surface, comprising: ,
上記光源から出射された光ビームを上記記録面に集光する対物レンズと、 入射された光ビームの互いに直交する 2つの偏光成分間に位相差を与える複屈折 補正板とを備え、  An objective lens for condensing the light beam emitted from the light source on the recording surface; and a birefringence correction plate for providing a phase difference between two orthogonal polarization components of the incident light beam.
上記複屈折補正板が上記対物レンズの上記情報記録媒体側に配置されていること を特徴とする光ピックアップ装置。  An optical pickup device, wherein the birefringence correction plate is disposed on the information recording medium side of the objective lens.
[9] 光透過性媒質を有する情報記録媒体の記録面に該光透過性媒質を介して光ビー ムを照射し、該記録面からの反射光を受光する光ピックアップ装置であって、 光源と、 [9] An optical pickup device for irradiating a light beam onto a recording surface of an information recording medium having a light transmitting medium via the light transmitting medium, and receiving reflected light from the recording surface, comprising: ,
上記光源から出射された光ビームを上記記録面に集光する対物レンズと、 上記対物レンズの上記情報記録媒体側に配置され、入射された光ビームの互!、に 直交する 2つの偏光成分間に位相差を与える複屈折補正板とを備え、  An objective lens for condensing the light beam emitted from the light source on the recording surface, and two polarization components disposed on the information recording medium side of the objective lens and orthogonal to each other of the incident light beams And a birefringence correction plate that gives a phase difference to the
上記複屈折補正板の遅相軸が複屈折補正板の厚さ方向に向いていることを特徴と する光ピックアップ装置。  An optical pickup device characterized in that the slow axis of the birefringence correction plate is directed in the thickness direction of the birefringence correction plate.
[10] 上記複屈折補正板が、基板と、基板上に設けられた複屈折板とを有し、該複屈折 板の厚さ方向の屈折率と面内方向の屈折率との差を Δ nとし、該複屈折板の厚さを t としたとき、 180nm≤ A n X t≤300nmを満たすことを特徴とする請求項 9に記載の 光ピックアップ装置。 [10] The birefringence correction plate includes a substrate and a birefringence plate provided on the substrate, and the difference between the refractive index in the thickness direction of the birefringence plate and the refractive index in the in-plane direction is Δ The optical pickup device according to claim 9, characterized in that 180 nm 、 An x t t 300 nm is satisfied, where n is the thickness of the birefringence plate t.
[11] 上記光源から出射される光ビームの波長が 430nm以下であることを特徴とする請 求項 1〜10のいずれか一項に記載の光ピックアップ装置。 [11] The optical pickup device according to any one of claims 1 to 10, wherein the wavelength of the light beam emitted from the light source is 430 nm or less.
[12] 上記対物レンズの開口数が 0. 6以上であることを特徴とする請求項 1〜: L 1のいず れか一項に記載の光ピックアップ装置。 [12] The optical pickup device according to any one of [1] to [1], wherein the numerical aperture of the objective lens is not less than 0.6.
[13] 上記光透過性媒質の面内方向の屈折率 nと厚み方向の屈折率 nとの差 n— nが a z a z[13] The difference n−n between the refractive index n in the in-plane direction of the light transmitting medium and the refractive index n in the thickness direction is a z a z
2 X 10_4以上の値であることを特徴とする請求項 1〜12のいずれか一項に記載の光 ピックアップ装置。 The optical pickup device according to any one of claims 1 to 12, which has a value of 2 X 10-4 or more.
[14] 上記光透過性媒質がポリカーボネート製の成形基板であることを特徴とする請求項 [14] The above-mentioned light transmitting medium is a molded substrate made of polycarbonate.
13に記載の光ピックアップ装置。 The optical pick-up apparatus of Claim 13.
[15] 光透過性媒質を有する円板状情報記録媒体の記録面に該光透過性媒質を介して 光ビームを照射し、該記録面からの反射光を受光して情報を再生装置であって、 請求項 1〜14のいずれか一項に記載の光ピックアップ装置と、 [15] A recording surface of a disk-shaped information recording medium having a light transmitting medium is irradiated with a light beam through the light transmitting medium, and light reflected from the recording surface is received to reproduce information. An optical pickup device according to any one of claims 1 to 14;
上記円板状情報記録媒体を回転駆動するための回転装置とを備える再生装置。  And a rotating device for rotationally driving the disk-shaped information recording medium.
[16] 上記回転装置の最高回転数が 6000rpm以上であることを特徴とする請求項 15に 記載の再生装置。 [16] The playback device according to Claim 15, wherein the maximum rotation speed of the rotating device is 6000 rpm or more.
[17] 入射された光ビームの互いに直交する 2つの偏光成分間に位相差を与える複屈折 補正板であって、  [17] A birefringence correction plate for providing a phase difference between two polarization components of an incident light beam, which are orthogonal to each other,
中央領域と、  With the central region,
上記中央領域を取り囲むように設けられた外縁領域とを備え、  An outer edge area provided to surround the central area;
上記中央領域の複屈折量と上記外縁領域の複屈折量とが異なることを特徴とする 複屈折補正板。  A birefringence correction plate characterized in that a birefringence amount of the central region and a birefringence amount of the outer edge region are different.
[18] 上記外縁領域の進相軸が上記中央領域を周回する方向に向 、て 、ることを特徴と する請求項 17に記載の複屈折補正板。  [18] The birefringence correction plate according to claim 17, wherein the fast axis of the outer edge area is directed in the direction of circling the central area.
[19] 上記中央領域の幅が入射される光ビームの径の半分であることを特徴とする請求 項 17または 18に記載の複屈折補正板。 [19] The birefringence correction plate according to claim 17 or 18, wherein the width of the central region is half the diameter of the incident light beam.
[20] 上記外縁領域が上記中央領域を周回する方向に 4つの領域に等分割されているこ とを特徴とする請求項 17〜 19のいずれか一項に記載の複屈折補正板。 [20] The birefringence correction plate according to any one of claims 17 to 19, characterized in that the outer edge area is equally divided into four areas in the direction of circling the central area.
[21] 上記中央領域が正方形状であり、上記外縁領域の進相軸が上記中央領域の外縁 に沿った方向を向!ヽて ヽることを特徴する請求項 20に記載の複屈折補正板。 [21] The central region is square, and the fast axis of the outer edge region is directed along the outer edge of the central region! 21. The birefringence correction plate according to claim 20, which is characterized in that
[22] 上記複屈折補正板が、基板と、基板上に設けられた複屈折補正片とを備え、該複 屈折補正片が上記外縁領域に設けられていることを特徴とする請求項 17〜21のい ずれか一項に記載の複屈折補正板。 [22] The birefringence correction plate includes a substrate and a birefringence correction piece provided on the substrate, The birefringence correction plate according to any one of claims 17 to 21, wherein a refraction correction piece is provided in the outer edge region.
[23] 上記複屈折補正片が水晶であることを特徴とする請求項 22に記載の複屈折補正 板。 [23] The birefringence correction plate according to claim 22, wherein the birefringence correction piece is quartz.
[24] 入射された光ビームの互いに直交する 2つの偏光成分間に位相差を与える複屈折 補正板において、  [24] A birefringence correction plate for giving a phase difference between two mutually orthogonal polarization components of an incident light beam,
上記複屈折補正板の遅相軸が複屈折補正板の厚さ方向に向いていることを特徴と する複屈折補正板。  A birefringence correction plate characterized in that the slow axis of the birefringence correction plate is directed in the thickness direction of the birefringence correction plate.
[25] 上記複屈折補正板が、基板と、基板上に設けられた複屈折板とを備え、該複屈折 板の厚さ方向の屈折率と面内方向の屈折率との差を Δ nとし、該複屈折板の厚さを t としたとき、 180nm≤ A n X t≤300nmを満たすことを特徴とする請求項 24に記載 の複屈折補正板。  [25] The birefringence correction plate includes a substrate and a birefringence plate provided on the substrate, and the difference between the refractive index in the thickness direction of the birefringence plate and the refractive index in the in-plane direction is Δ n The birefringence correction plate according to claim 24, wherein 180 nm ≤ An x t ≤ 300 nm is satisfied, where t is the thickness of the birefringence plate.
[26] 上記複屈折板が水晶であることを特徴とする請求項 25に記載の複屈折補正板。  [26] The birefringence correction plate according to claim 25, wherein the birefringence plate is quartz.
PCT/JP2006/312146 2005-06-17 2006-06-16 Optical pickup device, reproducing device and birefringence correction plate WO2006135053A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200680021334.0A CN101199010B (en) 2005-06-17 2006-06-16 Optical pickup device and birefringence correction plate
JP2007521362A JPWO2006135053A1 (en) 2005-06-17 2006-06-16 Optical pickup device, reproducing device, and birefringence correction plate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-177573 2005-06-17
JP2005177573 2005-06-17
JP2005-190155 2005-06-29
JP2005190155 2005-06-29

Publications (1)

Publication Number Publication Date
WO2006135053A1 true WO2006135053A1 (en) 2006-12-21

Family

ID=37532406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312146 WO2006135053A1 (en) 2005-06-17 2006-06-16 Optical pickup device, reproducing device and birefringence correction plate

Country Status (3)

Country Link
JP (1) JPWO2006135053A1 (en)
CN (1) CN101199010B (en)
WO (1) WO2006135053A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008117642A1 (en) * 2007-03-28 2008-10-02 Nec Corporation Optical head device and optical information recorder/reproducer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105122366A (en) * 2013-01-28 2015-12-02 乌克兰国家科学院信息记录研究所 Data readout system from optical media

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62248151A (en) * 1986-04-21 1987-10-29 Hitachi Ltd Magneto optical reproducing device
JPH05151591A (en) * 1991-06-04 1993-06-18 Internatl Business Mach Corp <Ibm> Optical data memory device and data generating method from this device
JPH0963140A (en) * 1995-08-22 1997-03-07 Hitachi Ltd Magnetooptical disk device
JPH09306054A (en) * 1996-05-20 1997-11-28 Hitachi Ltd Magneto-optical disk device
JPH10312576A (en) * 1997-05-09 1998-11-24 Nec Corp Disk apparatus
JP2001216662A (en) * 2000-02-01 2001-08-10 Pioneer Electronic Corp Pickup device and information recording/reproducing device
JP2005216430A (en) * 2004-01-30 2005-08-11 Asahi Glass Co Ltd Optical head device
JP2005332435A (en) * 2004-05-18 2005-12-02 Nec Corp Optical head device and optical information recording and reproducing apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07318862A (en) * 1994-05-20 1995-12-08 Hitachi Ltd Method for decreasing wave front aberration of optical recording medium as well as optical head and optical disk device
CN100524481C (en) * 2004-04-23 2009-08-05 松下电器产业株式会社 Optical disk apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62248151A (en) * 1986-04-21 1987-10-29 Hitachi Ltd Magneto optical reproducing device
JPH05151591A (en) * 1991-06-04 1993-06-18 Internatl Business Mach Corp <Ibm> Optical data memory device and data generating method from this device
JPH0963140A (en) * 1995-08-22 1997-03-07 Hitachi Ltd Magnetooptical disk device
JPH09306054A (en) * 1996-05-20 1997-11-28 Hitachi Ltd Magneto-optical disk device
JPH10312576A (en) * 1997-05-09 1998-11-24 Nec Corp Disk apparatus
JP2001216662A (en) * 2000-02-01 2001-08-10 Pioneer Electronic Corp Pickup device and information recording/reproducing device
JP2005216430A (en) * 2004-01-30 2005-08-11 Asahi Glass Co Ltd Optical head device
JP2005332435A (en) * 2004-05-18 2005-12-02 Nec Corp Optical head device and optical information recording and reproducing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008117642A1 (en) * 2007-03-28 2008-10-02 Nec Corporation Optical head device and optical information recorder/reproducer

Also Published As

Publication number Publication date
CN101199010A (en) 2008-06-11
JPWO2006135053A1 (en) 2009-01-08
CN101199010B (en) 2010-11-10

Similar Documents

Publication Publication Date Title
US6320699B1 (en) Aberration correcting apparatus and optical apparatus using the same
KR100667790B1 (en) Liquid crystal device for compensating birefringence and optical pickup and optical recording and/or reproducing apparatus employing it
US7599276B2 (en) Optical head device and optical information recording/reproduction apparatus
JP2002109775A (en) Optical pickup unit and object lens
US20070273986A1 (en) Objective lens, lens drive mechanism, optical pickup apparatus, and method for assembling the same
US20100067356A1 (en) Optical element for optical pickup device, optical pickup device and method for assembling optical pickup device
JP4941670B2 (en) Optical head device and optical information recording / reproducing device
JP4396294B2 (en) Optical head device
WO2006135053A1 (en) Optical pickup device, reproducing device and birefringence correction plate
JP5071316B2 (en) Broadband wave plate and optical head device
JP2011150755A (en) Optical pickup device and method for manufacturing the same
US20070013984A1 (en) Active compensation device, and compatible optical pickup and optical recording and/or reproducing apparatus employing the active compensation device
JP4345002B2 (en) Optical pickup device assembly method and optical pickup device
TWI383389B (en) Optical pickup and optical information processing device
JP2004259328A (en) Optical pickup and information reproducing apparatus having the same
US20040202088A1 (en) Polarizing optical element, diffractive optical element, optical element unit, optical pickup apparatus, and optical disk drive apparatus
JP2003338070A (en) Optical head apparatus
JP2006066011A (en) Hologram laser unit and optical pickup device
JP2010250925A (en) Optical pickup device and objective lens
JP4462384B2 (en) Optical head device
JP2004192679A (en) Information recording method, recording type optical disk, and information recording/reproducing apparatus
JP2010073267A (en) Method of manufacturing optical head device
JP2002342956A (en) Optical pickup device and optical disk driving
JP2604381B2 (en) Magneto-optical recording device
JP2000331382A (en) Optical disk, light pickup and optical disk device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680021334.0

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007521362

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06766834

Country of ref document: EP

Kind code of ref document: A1