WO2006134898A1 - Temperature controller - Google Patents

Temperature controller Download PDF

Info

Publication number
WO2006134898A1
WO2006134898A1 PCT/JP2006/311806 JP2006311806W WO2006134898A1 WO 2006134898 A1 WO2006134898 A1 WO 2006134898A1 JP 2006311806 W JP2006311806 W JP 2006311806W WO 2006134898 A1 WO2006134898 A1 WO 2006134898A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
reaction vessel
molecule
temperature
solid phase
Prior art date
Application number
PCT/JP2006/311806
Other languages
French (fr)
Japanese (ja)
Inventor
Chikako Hakii
Mitsugu Usui
Original Assignee
Eisai R & D Management Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eisai R & D Management Co., Ltd. filed Critical Eisai R & D Management Co., Ltd.
Publication of WO2006134898A1 publication Critical patent/WO2006134898A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • G01N2035/00356Holding samples at elevated temperature (incubation)
    • G01N2035/00366Several different temperatures used

Abstract

It is intended to provide a temperature controller by which a reaction between molecules immobilized to a solid phase and molecules in a liquid phase can be efficiently carried out and the detection sensitivity can be remarkably elevated in analyzing a sample such as an antigen, an antibody or a polynucleotide by using the above reaction. A temperature controller having a part containing a reactor in which molecules immobilized to a solid phase are reacted with molecules in a liquid phase, a means of heating a part of the reactor, and a means of cooling a site of the reactor differing from the heating site as mentioned above, wherein a difference in temperature is given in the reaction solution in the reactor by using the heating means and the cooling means.

Description

明 細 書  Specification
温度制御装置  Temperature control device
技術分野  Technical field
[0001] 本発明は、固相に固定化された分子と液相にある分子とを反応させる反応容器中 の反応溶液の温度を制御する温度制御装置に関し、より詳しくは該反応容器の中の 反応溶液中に温度差を形成させるための温度制御装置に関する。  The present invention relates to a temperature control device that controls the temperature of a reaction solution in a reaction vessel that reacts molecules immobilized on a solid phase with molecules in a liquid phase, and more specifically, in the reaction vessel. The present invention relates to a temperature control device for forming a temperature difference in a reaction solution.
背景技術  Background art
[0002] 従来、核酸やタンパク質等の生化学的試料の分析において、ハイブリダィゼーショ ン反応や抗原抗体反応等の各種反応は反応温度を均一に制御し、反応させる方法 が一般的であり、恒温槽等の反応溶液全体を均一に制御するための反応装置が用 いられてきた。  [0002] Conventionally, in the analysis of biochemical samples such as nucleic acids and proteins, various reactions such as hybridization reactions and antigen-antibody reactions are generally performed by uniformly controlling the reaction temperature. In addition, a reaction apparatus for uniformly controlling the entire reaction solution such as a thermostatic chamber has been used.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] 本発明者らは、従来行われてきた一定の温度条件とは逆に、ハイブリダィゼーショ ン反応や抗原抗体反応等の生体高分子反応を、温度差を形成させた反応溶液中で 行うことにより、反応を効率的に行わせることができ、該反応を用いた試料の検出に おいて検出感度を著しく高めることができることを見いだした。 [0003] The present inventors have proposed a reaction solution in which a biopolymer reaction such as a hybridization reaction or an antigen-antibody reaction is formed with a temperature difference, as opposed to a constant temperature condition conventionally performed. It was found that the reaction can be carried out efficiently by carrying out the reaction in the inside, and the detection sensitivity can be remarkably increased in the detection of the sample using the reaction.
[0004] 本発明は、固相に固定化された分子と液相にある分子との反応を効率的に行わせ ること力 Sでき、また、該反応を利用した抗原、抗体又はポリヌクレオチド等の試料の分 祈において検出感度を著しく高めることができる温度制御装置を提供することを目的 とする。 [0004] The present invention is capable of efficiently carrying out a reaction between a molecule immobilized on a solid phase and a molecule in a liquid phase, and an antigen, an antibody, a polynucleotide, and the like using the reaction. It is an object of the present invention to provide a temperature control device capable of significantly increasing the detection sensitivity in the sample praying.
課題を解決するための手段  Means for solving the problem
[0005] 上記課題を解決するために、本発明の温度制御装置は、固相に固定化された分子 と液相にある分子とを反応させる反応容器中の反応溶液の温度制御を行うための温 度制御装置であって、固相に固定化された分子と液相にある分子とを反応させる反 応容器の収納部と、前記反応容器の一部を加熱する加熱手段と、前記反応容器の 前記加熱部位とは異なる部位を冷却する冷却手段とを有し、前記加熱手段及び前 記冷却手段を用いて前記反応容器の中の反応溶液中に温度差を形成し得るように したことを特徴とする。 [0005] In order to solve the above problems, a temperature control device of the present invention is for controlling the temperature of a reaction solution in a reaction vessel in which a molecule immobilized on a solid phase reacts with a molecule in a liquid phase. A temperature control device, a storage part of a reaction container for reacting molecules immobilized on a solid phase with molecules in a liquid phase, heating means for heating a part of the reaction container, and the reaction container Cooling means for cooling a portion different from the heating portion, and the heating means and the front It is characterized in that a temperature difference can be formed in the reaction solution in the reaction vessel using the cooling means.
[0006] 前記加熱手段及び前記冷却手段のいずれか一方は、前記反応容器の固相から離 間しており、前記液相を加熱あるいは冷却するように配置されることが好ましい。また 、前記加熱手段が前記反応容器の下部を加熱するように配置され且つ前記冷却手 段が前記反応容器の上部を冷却するように配置されており、前記温度差を前記反応 溶液中の上下に形成し得るようにすることが好適である。  [0006] Either one of the heating means and the cooling means is preferably separated from the solid phase of the reaction vessel and arranged to heat or cool the liquid phase. Further, the heating means is arranged to heat the lower part of the reaction vessel, and the cooling means is arranged to cool the upper part of the reaction vessel, and the temperature difference is increased and lowered in the reaction solution. It is preferable that it can be formed.
[0007] 前記固相に固定化された分子が抗体であり、前記液相にある分子が抗原である、 あるいは前記固相に固定化された分子が抗原であり、前記液相にある分子が抗体で あることが好ましい。または、前記固相に固定化された分子、及び前記液相にある分 子が共にポリヌクレオチドであることが好適である。  [0007] The molecule immobilized on the solid phase is an antibody, the molecule in the liquid phase is an antigen, or the molecule immobilized on the solid phase is an antigen, and the molecule in the liquid phase is It is preferably an antibody. Alternatively, it is preferable that both the molecule immobilized on the solid phase and the molecule in the liquid phase are polynucleotides.
[0008] 前記反応容器としては、特に限定されないが、マイクロプレート又はマイクロアレイ が好ましい。  [0008] The reaction vessel is not particularly limited, but a microplate or a microarray is preferable.
発明の効果  The invention's effect
[0009] 本発明によれば、簡便に固相に固定された分子と液相にある分子との反応を効率 的に行わせることができ、また、該反応を利用した核酸、抗原又は抗体等の試料の分 析において検出感度を著しく高めることができる。  [0009] According to the present invention, a reaction between a molecule immobilized on a solid phase and a molecule in a liquid phase can be efficiently performed, and a nucleic acid, an antigen, an antibody, or the like using the reaction can be performed. The detection sensitivity can be remarkably increased in the analysis of samples.
図面の簡単な説明  Brief Description of Drawings
[0010] [図 1]本発明の温度制御装置の一例を示す断面概略説明図である。  FIG. 1 is a schematic cross-sectional explanatory view showing an example of a temperature control device of the present invention.
[図 2]本発明の温度制御装置により温度制御される反応容器の一例を示す断面概略 説明図である。  FIG. 2 is a schematic sectional view showing an example of a reaction vessel whose temperature is controlled by the temperature control device of the present invention.
[図 3]実施例 1及び比較例 1の結果を示すグラフである。  FIG. 3 is a graph showing the results of Example 1 and Comparative Example 1.
[図 4]実施例 2及び比較例 2の結果を示すグラフである。  FIG. 4 is a graph showing the results of Example 2 and Comparative Example 2.
[図 5]実施例 3及び比較例 3の結果を示すグラフである。  FIG. 5 is a graph showing the results of Example 3 and Comparative Example 3.
符号の説明  Explanation of symbols
[0011] 10 :本発明の温度制御装置、 12 :収納部、 14 :加熱手段、 16 :冷却手段、 18 :基 台、 19 :収納部の側壁、 20 :反応容器、 22 :マイクロプレート、 24 :ゥエル、 26 :蓋体、 28 :固相、 32 :第 1の分子(固相に固定化された分子)、 34 :第 2の分子 (液相にある 分子)、 36 :液相(反応溶液)。 [0011] 10: temperature control device of the present invention, 12: storage section, 14: heating means, 16: cooling means, 18: base, 19: side wall of storage section, 20: reaction vessel, 22: microplate, 24 : Well, 26: lid, 28: solid phase, 32: first molecule (molecule immobilized on solid phase), 34: second molecule (in liquid phase) Molecule), 36: liquid phase (reaction solution).
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 以下に本発明の実施の形態を添付図面に基づいて説明するが、図示例は例示的 に示されるもので、本発明の技術思想から逸脱しない限り種々の変形が可能なことは レ、うまでもない。 [0012] Embodiments of the present invention will be described below with reference to the accompanying drawings, but the illustrated examples are illustrative only, and various modifications can be made without departing from the technical idea of the present invention. Needless to say.
[0013] 図 1は、本発明の温度制御装置の一例を示す断面概略説明図である。図 1におい て、符号 10は、本発明の温度制御装置で、固相に固定化された分子と液相にある分 子とを反応させる反応容器中の反応温度を制御するものである。該温度制御装置 10 は、該反応容器を収納する収納部 12と、該反応容器を加熱する加熱手段 14と、該 反応容器を冷却する冷却手段 16とを有している。図 1において、 18は基台であり、 該基台 18の上面に前記加熱手段 14が設けられている。該加熱手段 14の上部には 前記収納部 12及び該収納部の側壁 19が設けられており、前記収納部 12の上部に は冷却手段 16が設けられている。  FIG. 1 is a schematic cross-sectional explanatory view showing an example of a temperature control device of the present invention. In FIG. 1, reference numeral 10 denotes a temperature control device of the present invention, which controls the reaction temperature in a reaction vessel in which molecules immobilized on a solid phase react with molecules in a liquid phase. The temperature control device 10 includes a storage unit 12 that stores the reaction vessel, a heating unit 14 that heats the reaction vessel, and a cooling unit 16 that cools the reaction vessel. In FIG. 1, reference numeral 18 denotes a base, and the heating means 14 is provided on the upper surface of the base 18. The storage unit 12 and the side wall 19 of the storage unit are provided at the upper part of the heating unit 14, and the cooling unit 16 is provided at the upper part of the storage unit 12.
[0014] 前記収納部 12の形状は反応容器が収納可能なものであればよぐ特に限定されな レ、。なお、本発明において収納とは、載置及び設置等も含まれるものである。例えば 、反応容器は本発明装置の使用時に収納部 12に載置してもよぐあるいは収納部 1 2に設置してもよい。収納部 12に反応容器を設置する場合は、着脱自在に設けても よぐ収納部 12に固定装着されていてもよい。  [0014] The shape of the storage section 12 is not particularly limited as long as the reaction container can be stored. In the present invention, storage includes placement and installation. For example, the reaction vessel may be placed in the storage unit 12 when the apparatus of the present invention is used, or may be installed in the storage unit 12. When installing the reaction vessel in the storage unit 12, it may be detachably provided or fixedly mounted on the storage unit 12.
[0015] 本発明において、前記加熱手段 14と前記冷却手段 16はそれぞれ反応容器の異 なる部位を加熱又は冷却するように配置されている。なお、図 1においては、上部に 冷却手段 16を設け、下部に加熱手段 14を設けた場合の例を示したが、本発明にお いて前記加熱手段 14及び前記冷却手段 16の配置は温度制御する反応容器及び 形成すべき反応溶液中の温度差に応じて適宜選択すればよく特に限定されないも のである。反応溶液中に効果的に温度差を形成させるために、前記加熱手段 14及 び前記冷却手段 16のいずれか一方は、反応容器の固相から離間しており、液相(反 応溶液)を加熱あるいは冷却するように配置されることが好ましぐ前記加熱手段 14 が固相を加熱するように配置され、且つ前記冷却手段 16が固相から離間しており、 液相を冷却するように配置されることがより好ましい。なお、本発明において反応容器 の固相とは、反応容器中の分子が固定化された部位を意味する。 [0015] In the present invention, the heating means 14 and the cooling means 16 are arranged so as to heat or cool different portions of the reaction vessel, respectively. Although FIG. 1 shows an example in which the cooling means 16 is provided in the upper part and the heating means 14 is provided in the lower part, in the present invention, the arrangement of the heating means 14 and the cooling means 16 is controlled by temperature. The reaction vessel to be formed and the temperature difference in the reaction solution to be formed may be appropriately selected without particular limitation. In order to effectively form a temperature difference in the reaction solution, one of the heating means 14 and the cooling means 16 is separated from the solid phase of the reaction vessel, and the liquid phase (reaction solution) is changed. Preferably, the heating means 14 arranged to heat or cool is arranged to heat the solid phase, and the cooling means 16 is spaced from the solid phase to cool the liquid phase. More preferably, it is arranged. In the present invention, the reaction vessel The solid phase means a site where molecules in the reaction vessel are immobilized.
[0016] 具体的には、固相が反応容器の上部又は下部に位置する場合、前記加熱手段 14 と前記冷却手段 16のいずれか一方を反応容器の上部を温度制御するように配置し 且つ他方を反応容器の下部を温度制御するように配置し、反応溶液の上下に温度 差を形成し得るようにすることが好ましい。また、固相が反応容器の側壁等の一側部 に位置する場合、前記加熱手段 14と前記冷却手段 16のいずれか一方を反応容器 の右部を温度制御するように配置し且つ他方を反応容器の左部を温度制御するよう に配置し、反応溶液の左右に温度差を形成し得るようにすることが好ましい。特に、 反応容器として底部に分子を固定化したマイクロプレートを用いる場合、図 1に示し た如ぐ反応容器の下部を加熱し且つ上部を冷却することにより、前記反応容器内の 反応溶液の上下に温度差を形成させ、反応溶液の上部を下部よりも低温に設定する ことが好適である。  [0016] Specifically, when the solid phase is located in the upper part or the lower part of the reaction vessel, either the heating means 14 or the cooling means 16 is arranged so as to control the temperature of the upper part of the reaction vessel, and the other Is preferably arranged so that the temperature of the lower part of the reaction vessel is controlled so that a temperature difference can be formed between the upper and lower sides of the reaction solution. In addition, when the solid phase is located on one side of the reaction vessel, such as a side wall, either one of the heating means 14 or the cooling means 16 is arranged so as to control the temperature of the right side of the reaction vessel and the other is reacted. It is preferable to arrange the left part of the container so as to control the temperature so that a temperature difference can be formed between the left and right sides of the reaction solution. In particular, when a microplate having molecules immobilized on the bottom is used as a reaction vessel, the lower portion of the reaction vessel and the upper portion are cooled as shown in FIG. It is preferable to form a temperature difference and set the upper part of the reaction solution at a lower temperature than the lower part.
[0017] 前記加熱手段 14を、収納される反応容器の下部を加熱可能な位置に設ける場合 、例えば、反応容器の下面や下方側面等に設けることができるが、図 1に示した如ぐ 反応容器の下面と接するように設けられていることが好ましい。加熱手段 14の形状は 特に限定されず、適用する反応容器に応じて選択すればよいが、反応容器としてマ イク口プレートを用いる場合は、図 1に示した如ぐ平面でマイクロプレートと接触する 構造であることが好ましい。前記加熱手段 14は温度を制御できることが好ましぐぺ ルティェ素子を用いることがより好ましレ、。  [0017] In the case where the heating means 14 is provided at a position where the lower part of the reaction vessel accommodated can be heated, for example, the heating means 14 can be provided on the lower surface or the lower side surface of the reaction vessel. It is preferable to be provided in contact with the lower surface of the container. The shape of the heating means 14 is not particularly limited, and may be selected according to the reaction container to be applied. However, when a micro-mouth plate is used as the reaction container, it contacts the microplate on a plane as shown in FIG. A structure is preferred. It is more preferable to use a Peltier element that preferably controls the temperature of the heating means 14.
[0018] 前記冷却手段 16を、収納される反応容器の上部を冷却可能な位置に設ける場合 、例えば、反応容器の上面や上方側面等に設けることができるが、反応容器の上面 と接するように設けられていることが好ましい。冷却手段 16の形状は特に限定されず 、適用する反応容器に応じて選択すればよいが、反応容器としてマイクロプレートを 用いる場合は、図 1に示した如ぐ平面でマイクロプレートの蓋体と接触する構造であ ることが好ましい。前記冷却手段 16は温度を制御できることが好ましぐペルティエ素 子を用いることがより好ましい。  [0018] When the cooling means 16 is provided at a position where the upper portion of the reaction vessel to be stored can be cooled, for example, the cooling means 16 can be provided on the upper surface or upper side surface of the reaction vessel. It is preferable to be provided. The shape of the cooling means 16 is not particularly limited and may be selected according to the reaction container to be applied. However, when a microplate is used as the reaction container, it contacts the microplate lid on a plane as shown in FIG. It is preferable that the structure be The cooling means 16 is more preferably a Peltier element that preferably controls the temperature.
[0019] 本発明の温度制御装置によれば、前記加熱手段及び前記冷却手段を用いて、反 応容器の一部を加熱し且つ前記反応容器の前記加熱部位とは異なる部位を冷却す ることにより、前記反応容器内の反応溶液中に温度差を形成させた状態で所定の反 応を行うことができる。本発明装置を用いて行われる反応は、固相に固定化された分 子と液相にある分子との反応を含むものであれば特に限定されない。 According to the temperature control apparatus of the present invention, the heating unit and the cooling unit are used to heat a part of the reaction container and cool a part different from the heating part of the reaction container. Thus, a predetermined reaction can be performed in a state where a temperature difference is formed in the reaction solution in the reaction vessel. The reaction performed using the apparatus of the present invention is not particularly limited as long as it includes a reaction between a molecule immobilized on a solid phase and a molecule in a liquid phase.
[0020] 次に本発明の温度制御装置により温度制御される反応容器について説明する。図 2は、本発明の温度制御装置により温度制御される反応容器の一例を示す断面概略 説明図である。図 2において符号 20は反応容器であり、反応容器としてマイクロプレ ート 22を用いた場合の例を示した。前記マイクロプレート 22は 1又は複数のゥヱル( 穴) 24を有する。前記ゥエル 24は、その底部(固相) 28に第 1の分子 32が固定化さ れており、且つその内部に、第 2の分子 34を含む又は含む可能性のある反応溶液( 液相) 36が添加されている。前記マイクロプレート 22の上部には蓋体 26が設けられ ている。前記反応容器の蓋体 26は、ゴム等の弾性体(図示せず)を上面に有し、該 弾性体を介して加熱手段 14又は冷却手段 16と接することが好ましい。  Next, a reaction vessel whose temperature is controlled by the temperature control device of the present invention will be described. FIG. 2 is a schematic cross-sectional view illustrating an example of a reaction vessel whose temperature is controlled by the temperature control device of the present invention. In FIG. 2, reference numeral 20 denotes a reaction vessel, and an example in which a microplate 22 is used as the reaction vessel is shown. The microplate 22 has one or more tools (holes) 24. The well 24 is a reaction solution (liquid phase) in which the first molecule 32 is immobilized on the bottom (solid phase) 28 and the second molecule 34 may or may be contained therein. 36 has been added. A lid body 26 is provided on the microplate 22. The lid 26 of the reaction vessel preferably has an elastic body (not shown) such as rubber on the upper surface, and is in contact with the heating means 14 or the cooling means 16 via the elastic body.
[0021] なお、図 2は反応容器としてマイクロプレートを用いた場合の例を示したが、前記反 応容器 20としては、固相に固定化された分子と液相にある分子とを反応させることが 可能な反応器具であれば特に限定されなレ、ものである。前記反応容器 20としては、 例えば、ポリスチレンプレート等のマイクロプレートやマイクロアレイを用いることが好 ましい。  [0021] Although FIG. 2 shows an example in which a microplate is used as a reaction vessel, the reaction vessel 20 reacts molecules immobilized on a solid phase with molecules in a liquid phase. The reaction device is not particularly limited as long as it can be used. As the reaction vessel 20, for example, a microplate such as a polystyrene plate or a microarray is preferably used.
[0022] 前記第 1の分子(固相に固定化された分子) 32及び前記第 2の分子 (液相にある分 子) 34としては、前記第 1の分子 32と前記第 2の分子 34とが反応し得るものであれば 特に限定はないが、両者が特異的に結合するものが好ましい。例えば、前記第 1の 分子 32及び前記第 2の分子 34の一方を抗原とし、他方を該抗原に対する抗体とし て、本発明の温度制御装置により温度差を設けた反応溶液中で抗原抗体反応を行 うことが好ましい。抗体又は抗原を固定化した固相を用いた免疫測定法において、本 発明の温度制御装置を用いて抗原抗体反応を行うことにより、検出感度を著しく向上 させること力できる。  [0022] The first molecule 32 (molecule immobilized on a solid phase) 32 and the second molecule (molecule in a liquid phase) 34 include the first molecule 32 and the second molecule 34. As long as they can react with each other, there is no particular limitation, but those that specifically bind to each other are preferable. For example, one of the first molecule 32 and the second molecule 34 is used as an antigen, and the other is used as an antibody against the antigen, and an antigen-antibody reaction is performed in a reaction solution provided with a temperature difference by the temperature controller of the present invention. It is preferable to do so. In an immunoassay using a solid phase on which an antibody or antigen is immobilized, the detection sensitivity can be significantly improved by performing an antigen-antibody reaction using the temperature control apparatus of the present invention.
[0023] また、前記固相に固定化された分子 32及び前記液相にある分子 34として、共にポ リヌクレオチドを用いて、本発明の温度制御装置により温度差を設けた反応溶液中で ハイブリダィゼ一シヨン反応を行うことが好ましい。ハイブリダィゼ一シヨン反応を利用 したターゲット遺伝子の検出方法において、本発明の温度制御装置を用いてハイブ リダィゼーシヨン反応を行うことにより、遺伝子の検出感度を著しく向上させることがで きる。前記ハイブリダィゼーシヨン反応としては、特に限定はないが、 PALSAR法を 利用したシグナル増幅反応(特許第 3267576号公報、特許第 3310662号公報、国 際公開第 02/31192号公報、特開 2002— 355081号公報、国際公開第 03/02 9441号公報等参照。 )が特に遺伝子の検出感度の向上が著しく好適である。 [0023] Further, both the molecule 32 immobilized on the solid phase and the molecule 34 in the liquid phase are both hybridized in a reaction solution using a polynucleotide and having a temperature difference by the temperature controller of the present invention. It is preferable to carry out a single reaction. Utilizing the hybridization reaction In the target gene detection method, the detection sensitivity of the gene can be remarkably improved by performing a hybridization reaction using the temperature controller of the present invention. The hybridization reaction is not particularly limited, but is a signal amplification reaction using the PALSAR method (Patent No. 3267576, Patent No. 3310662, International Publication No. 02/31192, JP 2002 — See 355081 publication, WO 03/02 9441 publication etc.)) is particularly suitable for improving the detection sensitivity of genes.
[0024] 本発明において、固定化とは、分子を直接固相に固定してもよぐ分子をその他の 分子等を介して間接的に固相に固定してもよい。分子を固定化させる固相としては、 特に限定されないが、反応容器の下部、側部の一方、又は上部に設けることが好ま しぐ図 2に示した如ぐマイクロプレート等の反応容器の底部がより好ましい。また、 反応容器としてマイクロアレイを用レ、る場合、基板表面に分子を固定化した基板を、 該固定化された分子が反応溶液と接触するように温度制御装置の収納部に配置す ればよい。 In the present invention, the term “immobilization” refers to immobilizing a molecule directly to a solid phase indirectly via another molecule or the like. The solid phase for immobilizing the molecule is not particularly limited, but the bottom of the reaction vessel such as a microplate as shown in FIG. 2 is preferably provided on the lower side, one side or the upper side of the reaction vessel. More preferred. In addition, when using a microarray as a reaction vessel, a substrate with molecules immobilized on the substrate surface may be placed in the storage unit of the temperature controller so that the immobilized molecules are in contact with the reaction solution. .
[0025] 本発明において、加熱手段及び冷却手段の設定温度は、反応溶液中で行われる 反応に応じて適宜設定すればよく特に限定されないが、冷却手段の設定温度をカロ 熱手段の設定温度より 10°C以上低く設定し、反応溶液中に温度差を設けることが好 ましぐ反応溶液の上下に温度差、例えば温度勾配を設けることがより好ましい。例え ば、抗原抗体反応を行う場合は、加熱手段を 25°C〜55°Cに設定し、冷却手段を 0 °C〜25°Cに設定することが好ましい。また、ハイブリダィゼーシヨン反応を行う場合、 加熱手段を 40°C〜80°Cに設定し、冷却手段を 0°C〜20°Cに設定することが好ましく 、 PALSAR法を利用したハイブリダィゼーシヨン反応を行う場合、加熱手段を 55°C 〜65°Cに設定することがより好ましい。  [0025] In the present invention, the set temperatures of the heating means and the cooling means are not particularly limited as long as they are appropriately set according to the reaction performed in the reaction solution, but the set temperature of the cooling means is higher than the set temperature of the calorie heat means. It is more preferable to set the temperature lower by 10 ° C or more, and to provide a temperature difference in the reaction solution. It is more preferable to provide a temperature difference, for example, a temperature gradient, above and below the reaction solution. For example, when carrying out an antigen-antibody reaction, it is preferable to set the heating means to 25 ° C to 55 ° C and the cooling means to 0 ° C to 25 ° C. In addition, when performing a hybridization reaction, it is preferable to set the heating means to 40 ° C. to 80 ° C. and the cooling means to 0 ° C. to 20 ° C. The hybridizer using the PALSAR method is preferably used. In the case of carrying out the isomerization reaction, it is more preferable to set the heating means to 55 ° C to 65 ° C.
実施例  Example
[0026] 以下に実施例をあげて本発明をさらに具体的に説明するが、これらの実施例は例 示的に示されるもので限定的に解釈されるべきでないことはいうまでもない。  [0026] The present invention will be described more specifically with reference to the following examples, but it goes without saying that these examples are shown by way of illustration and should not be construed in a limited manner.
[0027] (実施例 1) [0027] (Example 1)
市販の血清中のシアル化糖鎖抗原 KL 6測定用キット(三光純薬 (株)製、商品名 :エイテスト(エーザィ (株)の登録商標) KL-6)を用いて、反応温度条件以外はキッ ト添付の操作法に準じてサンドイッチ型酵素免疫測定法により下記の如く測定を行つ た。 Using a commercially available serum sialylated glycan antigen KL 6 measurement kit (manufactured by Sanko Junyaku Co., Ltd., trade name: Eitest (registered trademark of Eisai Co., Ltd.) KL-6), except for reaction temperature conditions Kid According to the attached operation method, the measurement was carried out by the sandwich enzyme immunoassay as follows.
[0028] 反応用溶液(正常ゥサギ血清を含むトリス緩衝液) 100 β Lを分注した抗体コート力 ップ(ポリスチレン製カップに抗 KL— 6マウスモノクローナル抗体を固相化したマイク 口プレート、以下、カップと称する。 )に、各濃度の標準抗原 (KL— 6抗原を 0, 1, 2. 5, 5, 10又は 20U/mL含むトリス緩衝液)を各 20 z L注入し、よく混和した。 [0028] The reaction solution (normal Tris buffer containing Usagi serum) 100 beta L and dispensed antibody coated force-up (a polystyrene cup anti KL-6 mouse monoclonal antibody immobilized microphone port plate, below 20 ml of each concentration of standard antigen (Tris buffer solution containing 0, 1, 2, 5, 5, 10 or 20 U / mL of KL-6 antigen) in each concentration and mixed well. .
[0029] 前記カップにアルミシールをし、該アルミシールの上面にゴム弾性体を載せた後、 図 1と同様の装置を用レ、て該装置内に前記カップを収納し、加熱手段を 37°C、冷却 手段を 10°Cに設定した条件下で第 1反応を 2時間行った。  [0029] After sealing the cup with an aluminum seal and placing a rubber elastic body on the upper surface of the aluminum seal, the apparatus similar to that shown in FIG. The first reaction was carried out for 2 hours under the conditions of ° C and the cooling means set at 10 ° C.
[0030] 前記第 1反応後のカップ内を洗浄液(ポリオキシエチレンソルビタンモノラウレートを 含む生理食塩水)で洗浄後、酵素標識抗体液(西洋わさびペルォキシダーゼ標識抗 KL— 6マウスモノクローナル抗体を含む液)を 100 μ L加えてアルミシールをし、図 1 と同様の装置を用い、加熱手段を 37°C、冷却手段を 10°Cに設定した条件下で第 2 反応を 1時間行った。  [0030] After the first reaction, the inside of the cup is washed with a washing solution (saline containing polyoxyethylene sorbitan monolaurate) and then an enzyme-labeled antibody solution (a solution containing horseradish peroxidase-labeled anti-KL-6 mouse monoclonal antibody). ) Was added and sealed with aluminum, and the second reaction was carried out for 1 hour using the same equipment as in Fig. 1 with the heating means set to 37 ° C and the cooling means set to 10 ° C.
[0031] 発色剤(2, 2 '—アジノービス(3—ェチルベンゾチアゾリンー6—スルホン酸)を含 む凍結乾燥品) 1バイアルに精製水 12mLを加えて溶解し、酵素基質(日局ォキシド ール)を 30 μ L加え、基質液を調製した。  [0031] Coloring agent (freeze-dried product containing 2, 2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid)) Add 1 mL of purified water to 1 vial and dissolve to dissolve enzyme substrate (Nippon Oxide) 30 μL) was added to prepare a substrate solution.
前記第 2反応後のカップ内を洗浄液で洗浄後、基質液を 100 μ L加えてアルミシー ルし、 25°Cで第 3反応を 30分行った後、反応停止液(アジ化ナトリウム液)を 100 Ai L カロえて、 405nmの吸光度測定を行った。結果を図 3に示す。  After washing the inside of the cup after the second reaction with a washing solution, add 100 μL of the substrate solution and seal it with aluminum. After the third reaction at 25 ° C for 30 minutes, stop the reaction solution (sodium azide solution). Absorbance was measured at 405 nm. The results are shown in Figure 3.
[0032] (比較例 1) [0032] (Comparative Example 1)
第 1反応及び第 2反応を 37。Cのインキュベーター(ァズワン (株)製、 IC— 150MA )内で行った以外は実施例 1と同様に測定を行った。結果を図 3に示す。  37 for the first and second reactions. The measurement was performed in the same manner as in Example 1 except that the measurement was performed in a C incubator (IC-150MA, manufactured by AZONE Corporation). The results are shown in Figure 3.
[0033] 図 3に示した如ぐ本発明の温度制御装置を用いた抗原抗体反応を利用した免疫 測定法を行った実施例 1は、従来のインキュベーターを用いた比較例 1に比べて感 度が向上した。 [0033] Example 1 in which an immunoassay using an antigen-antibody reaction using the temperature controller of the present invention as shown in Fig. 3 was performed was more sensitive than Comparative Example 1 using a conventional incubator. Improved.
[0034] (実施例 2)  [0034] (Example 2)
〈各溶液の調製〉 黄色ブドウ球菌(Staphylococcus aureus)の rRNAと同じ配列を有するターゲットオリ ゴヌクレオチドを用いて、該ターゲットオリゴヌクレオチドが各濃度(0, 50, 100, 200 , 400, 800又は 1600fmol/mL)となるようにトリス緩衝液で希釈した測定用試料を 調製した。 <Preparation of each solution> Use target oligonucleotides with the same sequence as the Staphylococcus aureus rRNA so that the target oligonucleotide is at each concentration (0, 50, 100, 200, 400, 800 or 1600 fmol / mL). A sample for measurement diluted with Tris buffer was prepared.
ターゲットオリゴヌクレオチドの塩基配列(配列番号 1)  Base sequence of target oligonucleotide (SEQ ID NO: 1)
5' - TTCGGGAAACCGGAGCTAATA CCGGATAATATTTTGAACCGC ATGGT TC AAAAGTGAAAGAC G GTCTTGCTGTCACTTATAGAT GTTGGTAAGGTAA CGGCTTAC -3'  5 '-TTCGGGAAACCGGAGCTAATA CCGGATAATATTTTGAACCGC ATGGT TC AAAAGTGAAAGAC G GTCTTGCTGTCACTTATAGAT GTTGGTAAGGTAA CGGCTTAC -3'
[0035] 前記ターゲットオリゴヌクレオチドに相補的な配列を含むアシストプローブを用いて 、該アシストプローブを 24pmolZmL含むように第 1ハイブリダィゼーシヨン溶液 [4XS SC、 0.2%SDS、 l%Blocking reagent (Roche製)、 20%ホノレムアミド、 Salmon sperm DN Α(10 μ g/mL)]に添加し、第 1ハイブリダィゼーシヨン反応溶液を調製した。  [0035] Using an assist probe containing a sequence complementary to the target oligonucleotide, the first hybridization solution [4XS SC, 0.2% SDS, l% Blocking reagent (Roche And 20% honremamide, Salmon sperm DN (10 μg / mL)] to prepare a first hybridization reaction solution.
アシストプローブの塩基配列(配列番号 2)  Assist probe base sequence (SEQ ID NO: 2)
5' - CATGTCTCGTGTCTTGCATC CTGCTACAGTGAACACCATC GTTCTCG ACATAGACCAGTC ATCTATAAGTGACAGCAAGAC _3,  5 '-CATGTCTCGTGTCTTGCATC CTGCTACAGTGAACACCATC GTTCTCG ACATAGACCAGTC ATCTATAAGTGACAGCAAGAC _3,
[0036] 前記アシストプローブに相補的な配列を有し、且つ 5'末端をアタリジニゥムエステ ル (AE)で標識した標識オリゴヌクレオチドを作製した。アタリジニゥムエステル標識 は 200201 Acridinium Protein Labeling Kit (Cayman社製)を用いて行った。該標識ォ リゴヌクレオチドを 200pmoL/mL含むように第 2ハイブリダィゼーシヨン溶液 [4XSS C、 0.2%SDS、 l%Blocking reagent (Roche製)]に添加し、第 2ハイブリダィゼーシヨン 反応溶液を調製した。  [0036] A labeled oligonucleotide having a sequence complementary to the assist probe and labeled at the 5 'end with attalizinum ester (AE) was prepared. Ataridinium ester labeling was performed using 200201 Acridinium Protein Labeling Kit (Cayman). Add the labeled oligonucleotide to the second hybridization solution [4XSS C, 0.2% SDS, l% Blocking reagent (Roche)] so that it contains 200 pmoL / mL, and then add the second hybridization reaction solution. Was prepared.
標識オリゴヌクレオチドの塩基配列(配列番号 3)  Base sequence of labeled oligonucleotide (SEQ ID NO: 3)
AE-5' - GATGCAAGACACGAGACATG GATGGTGTTCACTGTAGCAG GACTG GTCTATGTCGAGAAC _3,  AE-5 '-GATGCAAGACACGAGACATG GATGGTGTTCACTGTAGCAG GACTG GTCTATGTCGAGAAC _3,
[0037] 〈マイクロプレートの調製〉  <Preparation of microplate>
前記ターゲットオリゴヌクレオチドに相補的な配列を有するキヤプチヤープローブ( 下記塩基配列を有する核酸プローブ)を各々ストリップウェルタイブの 96ウェルマイク 口プレート上に固定し、実験に用いた。 キヤプチヤープローブの塩基配列(配列番号 4) A capillary probe having a sequence complementary to the target oligonucleotide (nucleic acid probe having the following base sequence) was immobilized on a 96-well microphone plate of a strip well type and used for the experiment. The base sequence of the capillary probe (SEQ ID NO: 4)
5' - CGTCTTTCACTTTTGAACCAT- 3,- Amino link  5 '-CGTCTTTCACTTTTGAACCAT-3,-Amino link
[0038] 〈反応及び検出方法〉 <Reaction and detection method>
前記キヤプチヤープローブを固相化したマイクロプレートに、前記各濃度の測定用 試料 50 しと、前記第 1ハイブリダィゼーシヨン反応溶液 50 x Lを順次加え、図 1と同 様の装置を用いて、加熱手段を 45°C、冷却手段を 20°Cに設定した条件下で第 1反 応を 2時間行った。  To the microplate on which the capillary probe is immobilized, 50 samples of the first hybridization reaction solution and 50 x L of the first hybridization reaction solution are sequentially added, and an apparatus similar to that shown in FIG. The first reaction was carried out for 2 hours under the conditions of 45 ° C for the heating means and 20 ° C for the cooling means.
[0039] その後、ゥヱル中の反応液を捨て、洗浄液 [50mM Tris、 0.3M NaCl、 0.01% Triton X_100、 pH7.6]で 3回洗った後、前記第 2ハイブリダィゼーシヨン反応溶液 100 z Lを カロえた。図 1と同様の装置を用いて、加熱手段を 55°C、冷却手段を 20°Cに設定した 条件下で第 2反応を 30分間行った。  [0039] Thereafter, the reaction solution in the tool was discarded, and after washing three times with a washing solution [50 mM Tris, 0.3 M NaCl, 0.01% Triton X_100, pH 7.6], the second hybridization reaction solution 100 z I got L. Using the same apparatus as in Fig. 1, the second reaction was performed for 30 minutes under the conditions that the heating means was set to 55 ° C and the cooling means was set to 20 ° C.
[0040] ゥエル中の反応液を捨て、洗浄液で 3回洗った後、発光試薬 A[0.1%H 0、 0.001N  [0040] After discarding the reaction solution in the well and washing 3 times with the washing solution, Luminescent Reagent A [0.1% H 0, 0.001N
2 2 twenty two
HNO ] 50 / Lと発光試薬 B [1N NaOH] 50 μ Lを加えた。その後、直ちにルミノメータHNO] 50 / L and Luminescent Reagent B [1N NaOH] 50 μL were added. Immediately after that, the luminometer
3 Three
一(Berthold社製、 Centra LB-960)で発光強度 (RLU)を測定した。結果を図 4に示す 。なお、発光強度はターゲットオリゴヌクレオチドの濃度 0の測定結果をバックグラウン ドとして差し弓 [レヽた数値を示した。  Luminescence intensity (RLU) was measured with one (Berthold, Centra LB-960). The results are shown in Fig. 4. The luminescence intensity is a numerical value that is shown in the background with the measurement result of the target oligonucleotide concentration 0 as the background.
[0041] (比較例 2) [0041] (Comparative Example 2)
恒温槽 (アナテック (株)製、 Cool STAT Modeト 5520a)を用いて第 1反応 (設定温度 45°C)及び第 2反応 (設定温度 55°C)を行った以外は実施例 2と同様に測定を行つ た。結果を図 4に示す。  The same as Example 2 except that the first reaction (set temperature 45 ° C) and the second reaction (set temperature 55 ° C) were performed using a thermostat (Anatech Co., Ltd., Cool STAT Mode 5520a). Measurements were taken. The results are shown in Fig. 4.
[0042] 図 4に示した如ぐ本発明の温度制御装置を用いてハイブリダィゼーシヨン反応を 行うことにより、該ハイブリダィゼーシヨン反応を利用したターゲット遺伝子の検出にお いて、検出感度が向上した。  [0042] By performing a hybridization reaction using the temperature control apparatus of the present invention as shown in FIG. 4, the detection sensitivity in the detection of the target gene using the hybridization reaction is detected. Improved.
[0043] (実施例 3)  [0043] (Example 3)
第 2反応で用いる第 2ハイブリダィゼーシヨン反応溶液を下記の如く調製した以外 は実施例 2と同様に測定を行った。結果を図 5に示す。  The measurement was performed in the same manner as in Example 2 except that the second hybridization reaction solution used in the second reaction was prepared as follows. The results are shown in FIG.
実施例 2記載の標識オリゴヌクレオチド (HCP— 1、配列番号 3記載の塩基配列)及 びオリゴヌクレオチドプローブ(以下、 HCP— 2と称する。)を各 200pmolZmLとなる ように第 2ハイブリダィゼーシヨン溶液 [4XSSC、 0.2%SDS、 1 % Blocking reagent (Roch e製)]に添加し、第 2ハイブリダィゼーシヨン反応溶液を調製した。なお、 HCP— 2は 、前記標識オリゴヌクレオチド (HCP— 1)と自己集合体形成が可能な塩基配列を有 し、 HCP— 2と HCP—1の 5 '側領域、中央領域、及び 3'側領域はそれぞれ相補的 塩基配列からなる。 The labeled oligonucleotide described in Example 2 (HCP-1, base sequence described in SEQ ID NO: 3) and oligonucleotide probe (hereinafter referred to as HCP-2) are each 200 pmolZmL. As described above, the mixture was added to the second hybridization solution [4XSSC, 0.2% SDS, 1% Blocking reagent (manufactured by Roche)] to prepare a second hybridization reaction solution. HCP-2 has a base sequence capable of forming a self-assembly with the labeled oligonucleotide (HCP-1). The 5 ′ side region, the central region, and the 3 ′ side of HCP-2 and HCP-1 Each region consists of a complementary base sequence.
HCP— 2の塩基配列(配列番号 5)  HCP-2 base sequence (SEQ ID NO: 5)
5' - CATGTCTCGTGTCTTGCATC CTGCTACAGTGAACACCATC GTTCTCG ACATAGACCAGTC _3'  5 '-CATGTCTCGTGTCTTGCATC CTGCTACAGTGAACACCATC GTTCTCG ACATAGACCAGTC _3'
[0044] (比較例 3) [0044] (Comparative Example 3)
恒温槽 (アナテック (株)製、 Cool STAT Modeト 5520a)を用いて第 1反応 (設定温度 45°C)及び第 2反応 (設定温度 55°C)を行った以外は実施例 3と同様に測定を行つ た。結果を図 5に示す。  Same as Example 3 except that the first reaction (set temperature 45 ° C) and the second reaction (set temperature 55 ° C) were performed using a thermostat (Anatech Co., Ltd., Cool STAT Mode 5520a). Measurements were taken. The results are shown in FIG.
[0045] 図 5に示した如ぐ本発明の温度制御装置を用いて PALSAR法を利用した自己集 合反応を含むハイブリダィゼーシヨン反応を行うことにより、該ハイブリダィゼーシヨン 反応を利用したターゲット遺伝子の検出において、検出感度が向上した。  [0045] The hybridization reaction including the self-assembly reaction using the PALSAR method is performed by using the temperature control device of the present invention as shown in FIG. 5, thereby utilizing the hybridization reaction. The detection sensitivity was improved in the detection of the target gene.

Claims

請求の範囲 The scope of the claims
[1] 固相に固定化された分子と液相にある分子とを反応させる反応容器の収納部と、 前記反応容器の一部を加熱する加熱手段と、前記反応容器の前記加熱部位とは異 なる部位を冷却する冷却手段とを有し、前記加熱手段及び前記冷却手段を用いて 前記反応容器の中の反応溶液中に温度差を形成し得るようにしたことを特徴とする 反応溶液の温度制御を行うための温度制御装置。  [1] A container for a reaction vessel for reacting molecules immobilized on a solid phase with molecules in a liquid phase, heating means for heating a part of the reaction vessel, and the heating part of the reaction vessel A cooling means for cooling different parts, and a temperature difference can be formed in the reaction solution in the reaction vessel using the heating means and the cooling means. A temperature control device for performing temperature control.
[2] 前記加熱手段及び前記冷却手段のいずれか一方は、前記反応容器の固相から離 間しており、前記液相を加熱あるいは冷却するように配置されることを特徴とする請求 項 1記載の温度制御装置。  [2] One of the heating means and the cooling means is separated from the solid phase of the reaction vessel, and is arranged to heat or cool the liquid phase. The temperature control device described.
[3] 前記加熱手段が前記反応容器の下部を加熱するように配置され且つ前記冷却手 段が前記反応容器の上部を冷却するように配置されており、前記温度差を前記反応 溶液中の上下に形成し得るようにしたことを特徴とする請求項 1又は 2記載の温度制 御装置。  [3] The heating means is arranged to heat the lower part of the reaction vessel, and the cooling means is arranged to cool the upper part of the reaction vessel, and the temperature difference is increased and decreased in the reaction solution. The temperature control device according to claim 1 or 2, wherein the temperature control device can be formed as follows.
[4] 前記固相に固定化された分子が抗体であり、前記液相にある分子が抗原である、 あるいは前記固相に固定化された分子が抗原であり、前記液相にある分子が抗体で あることを特徴とする請求項 1〜3のいずれ力、 1項記載の温度制御装置。  [4] The molecule immobilized on the solid phase is an antibody, the molecule in the liquid phase is an antigen, or the molecule immobilized on the solid phase is an antigen, and the molecule in the liquid phase is The temperature control device according to any one of claims 1 to 3, wherein the temperature control device is an antibody.
[5] 前記固相に固定化された分子、及び前記液相にある分子が共にポリヌクレオチドで あることを特徴とする請求項 1〜3のいずれ力、 1項記載の温度制御装置。  5. The temperature control apparatus according to any one of claims 1 to 3, wherein the molecule immobilized on the solid phase and the molecule in the liquid phase are both polynucleotides.
[6] 前記反応容器がマイクロプレートであることを特徴とする請求項 1〜5のいずれか 1 項記載の温度制御装置。  6. The temperature control device according to any one of claims 1 to 5, wherein the reaction vessel is a microplate.
PCT/JP2006/311806 2005-06-15 2006-06-13 Temperature controller WO2006134898A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-175031 2005-06-15
JP2005175031 2005-06-15

Publications (1)

Publication Number Publication Date
WO2006134898A1 true WO2006134898A1 (en) 2006-12-21

Family

ID=37532258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311806 WO2006134898A1 (en) 2005-06-15 2006-06-13 Temperature controller

Country Status (1)

Country Link
WO (1) WO2006134898A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030077599A1 (en) * 2001-10-23 2003-04-24 Nikon Research Corporation Of America Methods and devices for hybridization and binding assays using thermophoresis
JP2003339375A (en) * 2002-05-24 2003-12-02 Hitachi Ltd Hybridization method and apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030077599A1 (en) * 2001-10-23 2003-04-24 Nikon Research Corporation Of America Methods and devices for hybridization and binding assays using thermophoresis
JP2003339375A (en) * 2002-05-24 2003-12-02 Hitachi Ltd Hybridization method and apparatus

Similar Documents

Publication Publication Date Title
JP5419993B2 (en) Method and apparatus for immunoassay using nucleotide conjugates
JP4526609B2 (en) Improved nucleic acid assay
US6682648B1 (en) Electrochemical reporter system for detecting analytical immunoassay and molecular biology procedures
EP1580269A1 (en) Method of detecting gene mutation
EP1488000B1 (en) Signal amplification by hybrid capture
JP2009540290A (en) Microelectronic sensor device for DNA detection
JP2014533107A (en) Bifunctional oligonucleotide probes for universal real-time multi-analyte detection
EP1301628B1 (en) Improved capture and detection of target nucleic acid in dipstick assays
EP1436420B1 (en) Test strip assay system and method for the detection of specific nucleic acid sequences
KR102458825B1 (en) A method to detect nucleic acids
US10443085B2 (en) Method for detecting nucleic acid and nucleic acid detection kit
WO1999007879A1 (en) Electrochemical reporter system for detecting analytical immunoassay and molecular biology procedures
JP2011524002A (en) Serum markers for type II diabetes
KR101862439B1 (en) Immunoassay for detection of specific nucleic acid sequences such as mirnas
WO2006134898A1 (en) Temperature controller
JPH0751099A (en) Method for examining sequence of nucleic acid and examination apparatus
KR20060015668A (en) Method for the detection and analysis of pathogenic microbes nucleotide sequence using membrane lateral flow, and kit for the same
JP2007303827A (en) Container and liquid treatment method using it
US7763424B2 (en) Method of removing air bubbles from hybridization solution of microarray-coverslip assembly and microarray kit for the same
JP2000125874A (en) Detection of porphyromonas gingivalis and kit for detection
EP3321376A1 (en) Electrochemical dna detection
WO1989009281A1 (en) Method for amplifying and detecting nucleic acid in a test liquid
JP4079808B2 (en) Probe-immobilized reaction array capable of nucleic acid amplification and hybridization detection
WO2007108378A1 (en) Method for formation of signal probe polymer
US20050239078A1 (en) Sequence tag microarray and method for detection of multiple proteins through DNA methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06766618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP