WO2006134670A1 - Cement admixture and cement composition - Google Patents

Cement admixture and cement composition Download PDF

Info

Publication number
WO2006134670A1
WO2006134670A1 PCT/JP2005/011203 JP2005011203W WO2006134670A1 WO 2006134670 A1 WO2006134670 A1 WO 2006134670A1 JP 2005011203 W JP2005011203 W JP 2005011203W WO 2006134670 A1 WO2006134670 A1 WO 2006134670A1
Authority
WO
WIPO (PCT)
Prior art keywords
cement
anhydrous gypsum
natural anhydrous
dissolution rate
cement admixture
Prior art date
Application number
PCT/JP2005/011203
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshiharu Watanabe
Kazuhiro Aizawa
Original Assignee
Denki Kagaku Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo Kabushiki Kaisha filed Critical Denki Kagaku Kogyo Kabushiki Kaisha
Priority to PCT/JP2005/011203 priority Critical patent/WO2006134670A1/en
Priority to KR1020077029330A priority patent/KR100947808B1/en
Priority to JP2007521176A priority patent/JP4954068B2/en
Priority to PCT/JP2006/307258 priority patent/WO2006134711A1/en
Priority to CN2006800210003A priority patent/CN101198562B/en
Priority to MYPI20062128A priority patent/MY163157A/en
Priority to TW095121117A priority patent/TWI403484B/en
Publication of WO2006134670A1 publication Critical patent/WO2006134670A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • C04B28/16Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements containing anhydrite, e.g. Keene's cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/2038Resistance against physical degradation
    • C04B2111/2053Earthquake- or hurricane-resistant materials

Definitions

  • the present invention relates to a cement admixture and a cement composition, and more particularly, to a cement admixture mainly composed of natural anhydrous gypsum with a defined dissolution rate and a cement composition using the admixture.
  • Anhydrite is widely used as an admixture for atmospheric steam curing.
  • Anhydrous gypsum varies greatly depending on its heat treatment conditions and formation process, and natural anhydrous gypsum, depending on the production area.
  • Patent Document 1 Japanese Patent No. 1 2 2 1 2 8 1
  • natural anhydrous gypsum has a high dissolution rate, so there are inconveniences such as false coagulation when it is used in combination with naphthenic or melamine high-performance water reducing agents used in the production of high-strength concrete.
  • natural anhydrous gypsum from Thailand when 100 g of 0.05% Na2HPO 4 aqueous solution was contacted with 1 g of natural anhydrous gypsum for 1 hour, the dissolved amount of S04 ion concentration in the aqueous solution was 0.15 to 1.5% by mass.
  • Patent Document 2 There has also been proposed a concrete in which what is shown is blended together with a polycarboxylate-based water reducing agent having a setting delay, and a method for producing a high-strength concrete molded body using the same (see Patent Document 2).
  • Patent Document 2 Patent No. 3 3 4 3 1 6 3
  • silica flour sica fume
  • silicate white clay silicate white clay
  • fly ash etc.
  • a cement admixture has also been proposed (see Patent Document 3).
  • Patent Document 3 Japanese Patent No. 1 2 3 4 4 4 8
  • hydrofluoric acid-generated by-product anhydrous gypsum was found to be the cause of chlorofluorocarbon gas breaking down the ozone layer, and an alternative technology was developed to suppress the production of hydrofluoric acid and produce by-product hydrofluoric acid by-product. There is a problem that the amount of raw anhydrous gypsum is drastically decreasing, making it difficult to use.
  • natural anhydrite basically has a high dissolution rate, and the dissolution rate varies depending on the origin, the depth of the veins, and the impurities contained, and the solubility varies greatly depending on the powder conditions, ensuring stable high strength performance. It is a problem that is difficult to achieve, and it is not shown by the strength development performance at a lower level than hydrous acid generation by-product anhydrous gypsum.
  • the dissolution rate and reactivity differ depending on the temperature, so even if used in combination with a polystrength sulfonated water reducing agent, there are problems such as the occurrence of false coagulation and sudden slump loss depending on the type and amount of addition. Is inherent.
  • the present invention is a cement admixture that can improve the pseudo-caking property due to the high dissolution rate of natural anhydrous gypsum without limiting the type of water reducing agent, and can stably ensure high strength development performance. And to provide a cement composition using the admixture. Means for solving the problem
  • the present invention employs the following means.
  • the natural anhydrous gypsum is 0.05 at 20 ° C.
  • the S0 4 ion concentration in the aqueous solution shows a dissolution rate of 2.7 to 30 mass% Z hr. It is a cement admixture characterized by being.
  • the cement admixture according to (2) or (3) above which contains at least 80% by mass of one or more selected from clay minerals, fly ash, slaked lime, and quicklime.
  • a cement composition wherein the cement admixture according to any one of (1) to (4) is added to cement.
  • the part and% which show the mixture ratio and addition amount which are used by this invention are a mass unit.
  • the anhydrous gypsum used in the present invention is natural anhydrous gypsum.
  • S0 4 ion concentration in the aqueous solution are those shows the dissolution rate of 4-30 mass% Z hr.
  • the dissolution rate exceeds 30% by mass Zhr, it is not preferable because the concrete kneading temperature exhibits pseudo-coagulation even at a temperature of 10 ° C or less, and the high strength development performance is reduced. If the dissolution rate is less than 4% by mass Zhr, false coagulation is not shown even if the temperature is high, but the degree of fineness becomes too small and unreacted natural anhydrous gypsum remains, resulting in a decrease in high strength development performance. It is.
  • a preferable dissolution rate is 4 to 20% by mass.
  • the present inventor has found that calcined clay minerals, clay minerals, and fly ash have no strength enhancement effect due to their own pozzolanic activity, but they suppress the dissolution rate of natural anhydrous gypsum. It has been found that a high strength is obtained as a result. In the case of slaked lime and quicklime, the effect of suppressing the dissolution rate of natural anhydrous gypsum was recognized, and as a result, it was found that high strength was obtained. In addition, it has been found that when one or more kinds selected from calcined clay minerals, clay minerals, and fly ash are used in combination with slaked lime and Z or quick lime, the dissolution rate is further suppressed and higher strength is obtained. Is more preferable.
  • the calcined clay mineral of the present invention is an earthy clay mainly composed of aluminosilicates such as acid clay, activated clay (acid-treated acid clay), bentonite, kaolinite, chlorite, sericite, and rhodolite.
  • Clay minerals are aluminosilicates such as acid clay, activated clay (acid clay treated with acid), bentonite, kaolinite, chlorite, sericite, and rhodolite. It is a soil-like mixture containing as a main component. Fly ash is collected from the flue of the pulverized coal fired thermal power plant and contains a large amount of silicic acid and alumina.
  • the amount of one or more admixture components selected from calcined clay minerals, clay minerals, fly ash, slaked lime, and quick lime is preferably 80 parts or less in a total of 100 parts of natural anhydrous gypsum and these admixture components, 10 to 70 parts are more preferred. Even if it exceeds 80 parts, the effect of suppressing the dissolution rate of natural anhydrous gypsum reaches its peak, and the high strength development performance may not change, and in addition, the blending ratio of natural anhydrous gypsum decreases, so that the same strength In order to achieve this, the amount of cement admixture added to the cement increases, which is economically undesirable.
  • the amount of the cement admixture of the present invention is preferably 15 parts or less, more preferably 2 to 10 parts in terms of natural anhydrous gypsum, with respect to 100 parts of cement. Even if it exceeds 15 parts, the strength effect may reach its peak.
  • the curing method may be a conventional method and is not particularly limited. In this case, it is preferable to hold at the maximum temperature of 40 to 90 ° C for 4 to 6 hours, and the time from the start of steam curing to the stop of steam curing is preferably 5 to 10 hours.
  • a necessary amount of a high-performance water reducing agent or a high-performance AE water reducing agent is used in combination.
  • What is marketed as a high-performance water reducing agent is mainly composed of any one of polyalkylarylsulfonate, aromatic aminosulfonate, and melamine formalin resin sulfonate. One or more of them are used.
  • Polyalkylaryl sulfonate-based high-performance water reducing agents include methylnaphthalene sulfonic acid formalin condensate, naphthalene sulfonic acid formalin condensate, anthracene sulfonic acid formalin condensate and so on.
  • Setting delay is a small water reducing agent.
  • the amount of the above-mentioned high-performance water reducing agent added is preferably 4% by mass or less, more preferably 1.0 to 3.0% by mass with respect to cement in the form of a commercial product.
  • High-performance AE water reducing agents include improved types of high-performance water reducing agents, which can also be used, but as commonly called polycarboxylate-based water reducing agents, unsaturated power ruponic acid A copolymer containing a monomer as a component or a salt thereof, such as a polyalkylene glycol monoacrylate, a polyalkylene glycol monomethacrylate, a maleic anhydride and a styrene. Salt copolymers and copolymers derived from monomers copolymerizable with these monomers are the mainstream, and the water reduction rate is large with less addition than the high-performance water reducing agent system. In addition, it has air entrainment properties and large delay in setting and curing, but it has the property of having slump retention.
  • polycarboxylate-based water reducing agents unsaturated power ruponic acid A copolymer containing a monomer as a component or a salt thereof, such as a polyalkylene glycol monoacrylate
  • the amount of the high-performance AE water reducing agent added as described above is preferably 4% by mass or less, more preferably 0.7 to 3.0% by mass, based on cement in the form of a commercial product.
  • the cement used in the present invention is usually a mixture of various Portland cements such as early strong, moderately hot, low heat, sulfate resistance, white, or a mixture of blast furnace slag and fly ash. Ordinary, early strong, moderately hot, low heat, sulfate resistant, white cement, cement mixed with mixed cement, or cement with blast furnace slag or fly ash mixed with early strong poled land cement. Yo Yes.
  • the method for adding the admixture of the present invention is not particularly limited.
  • a mixture of natural anhydrous gypsum or natural anhydrous gypsum and calcined clay mineral, etc., and a mixture of powdered and mixed powder may be added together with other mortar or concrete materials. These components may be added separately.
  • a cement composition may be added.
  • the mixing method does not require a special method, and a conventional mixing method is sufficient.
  • Meteorite Meteorite from Himekawa, Niigata Prefecture (13-5mm)
  • Water reducing agent Polyalkylaryl sulfonate high-performance water reducing agent (liquid)
  • Calcinated clay mineral A Clay mineral, acid clay ground product, Blaine specific surface area 7520cm 2 / g .
  • Calcinated clay mineral B baked clay mineral, activated clay after cooking edible oil is baked at 800 ° C Powdered rice cake, Blaine specific surface area 5510cm 2 / g
  • Calcined clay minerals C Fly ash, further mixed with cement admixture produced as a by-product in coal-fired thermal power plant, Blaine specific surface area 5060cm 2 / g
  • Calcined clay minerals D quick lime, gas baked quick lime, purity 99%, ground product, Blaine specific surface area 8550cm 2 / g
  • Calcined clay mineral E Slaked lime, calcined clay mineral D digested and powdered, brain specific surface area 10000cm 2 / g or more
  • Natural anhydrous gypsum was adjusted by adjusting the powder level while changing the feed amount with a vibratory mill with two cylinders (inner diameter of 15 cm). In addition, when blending calcined clay minerals, etc., Combined.
  • Table 1 shows the physical properties such as the dissolution rate of cement admixtures based on the natural anhydrous gypsum of the present invention that has been pulverized.
  • the concrete was mixed at 10 or less to reduce false setting.
  • the basic composition of concrete is: unit cement amount 450 kg / m 3 , water amount 130 kg m 3 , fine aggregate amount 710 kg m 3 , coarse aggregate amount 1150 kg / m 3 , water reducing agent amount 9 kg / m 3 (internal allocation to water) a Caro), cement admixture to 31.5 kg m 3 (7 parts by weight per 100 parts by weight cement) replaced with fine aggregate to prepare a concrete slump 1 ⁇ 8 cm, were molded specimen.
  • Table 2 shows the results of gradual cooling in a steam curing tank and measuring the compressive strength of the material one day.
  • Table 2 shows that even if the natural anhydrous gypsum has a large plain specific surface area and a high dissolution rate, and even if the plain specific surface area is small and the dissolution rate is slow, the high strength development performance is lost.
  • the dissolution rate is 4 to 30% by mass hr, and the strength enhancement effect is recognized, and it is preferably 4 to 20% by mass / hr. It was also found that when the dissolution rate exceeds 30% by mass hr, pseudo-condensation was exhibited even at low temperatures, resulting in poor workability.
  • Table 3 shows the dissolution rate of the cement admixture obtained by mixing the cement admixture in Table 1 with 70:30 parts by mass of calcined clay. Table 3 shows that the dissolution rate of natural anhydrous gypsum decreases when calcined clay minerals are added.
  • Table 5 shows cement admixtures in which the dissolution rate was adjusted by mixing calcined clay, etc., in the sample No. 4 in Table 1 at an arbitrary ratio.
  • the dissolution rate of natural anhydrous gypsum is Table 5 shows that the higher the blended amount of baked clay, etc.
  • Figures in parentheses are parts by weight of natural anhydrous gypsum relative to 100 parts by weight of cement.
  • the ratio of natural anhydrous gypsum to calcined clay mineral is 30 Z 70 and 20/80, the strength reaches its peak, so even if natural anhydrous gypsum is less than 20 parts by mass, no increase in strength can be expected (Experiment No. 3 -10 to No.3-ll).
  • the ratio of natural anhydrous gypsum and calcined clay minerals shows a strength effect from 95 Z 5, but as the ratio of calcined clay minerals increases, the strength gradually increases and becomes remarkable from 90/10 (Experiment No.3-1 to No.3-10). Therefore, the blending ratio of the natural anhydrous gypsum Z calcined clay mineral of the present invention is 95 Z 5-20 / 80, more preferably 90 Z 10-30 Z 70.
  • the component in the calcined clay mineral is quick lime or slaked lime (Experiment No.3- 12 ⁇ No. 3-17) shows a tendency for strength to be higher than that of calcined clay minerals due to the effect of accelerated setting of cement by quick lime and slaked lime and the effect of increasing hydration.
  • Natural anhydrous gypsum Z The ratio of natural anhydrous gypsum added to cementite is changed to 50/50 at a constant ratio of calcined clay mineral (Experiment No.3-19 to No.3-25). The improvement is noticeable at 2% by mass or more, but even if added over 10 to 15% by mass, the strength reaches its peak, and if it is less than 1% by mass, the strength enhancement effect is expected to be small. Therefore, the addition amount of the cement admixture of the present invention is 15% by mass or less in terms of natural anhydrous gypsum, and preferably 2 to 10% by mass.
  • Table 7 shows the dissolution rates of two or more types of calcined clay mixed with cement admixture sample No. 5 in Table 1. Also in this case, it is shown that the dissolution rate of natural anhydrous gypsum decreases as the blending ratio of baked clay increases.
  • Example 9 A test similar to Example 4 was performed using the cement admixture of Table 7. However, the type of water reducing agent was changed from the polyalkylaryl sulfonate water reducing agent, which is a high performance water reducing agent, to the polycarboxylate water reducing agent, which is a high performance AE water reducing agent, and the amount added was 5.85. kg m 3 (slump of 1 to 8 cm is obtained with this addition amount). The results are shown in Table 9. Table 9
  • Table 9 shows that even when polycarboxylate-based water reducing agents are used, the same strength is obtained as when polyalkylaryl sulfonate-based water reducing agents are used, and the higher the content of baked clay minerals, the higher the strength. As shown, the strength tends to decrease when the absolute amount of natural anhydrous gypsum decreases even if the amount is too much, and the ratio of natural hydrous gypsum Z calcined clay mineral, etc. A strength increase effect is shown in the range of 60 (Experiment No. 5-4 to No. 5-11). Industrial applicability
  • the present invention is a cement admixture mainly composed of natural anhydrous gypsum whose dissolution rate is defined as described above, or the natural anhydrous gypsum and calcined clay mineral, viscosity; fc mineral, fly ash, slaked lime, and quick lime. It is a cement admixture containing one or more of the above, and it is a cement composition that can achieve high strength using these admixtures, so it is possible to increase the strength of civil engineering structures, concrete piles, poles, fume Used for pipes and other concrete products produced by steam curing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

This invention provides a cement admixture, which, without limiting the kind of a water reducing agent, can improve a false setting property attributable to a high dissolution rate of natural anhydrous gypsum and can stably ensure high-strength developing properties, and a cement composition using the admixture. The cement admixture is characterized by comprising a natural anhydrous gypsum which, when 1 g of a natural anhydrous gypsum is brought into contact with 100 g of a 0.05% aqueous Na2HPO4 solution of 20ºC for one hr, the dissolution rate is 4 to 30% by mass/hr in terms of the concentration of SO4 ion in the aqueous solution. There is also provided a cement admixture composed mainly of a natural anhydrous gypsum and at least one member selected from fired clay minerals, clay minerals, fly ash, slaked lime, and quick lime and characterized in that, when 1 g of the natural anhydrous gypsum in the cement admixture is brought into contact with 100 g of a 0.05% aqueous Na2HPO4 solution of 20ºC for one hr, the dissolution rate is 2.7 to 30% by mass/hr in terms of the concentration of SO4 ion in the aqueous solution. The cement composition is characterized by comprising the above cement admixture added to cement.

Description

セメント混和材及びセメン卜組成物 技術分野  Cement admixture and cement soot composition Technical Field
本発明は、 セメント混和材及ぴセメント組成物、 詳しくは、 溶解速度を規定し た天然無水石膏を主成分とするセメント混和材及びその混和材を用いたセメント 組成物に関する。 背景技術  The present invention relates to a cement admixture and a cement composition, and more particularly, to a cement admixture mainly composed of natural anhydrous gypsum with a defined dissolution rate and a cement composition using the admixture. Background art
無水石膏は常圧蒸気養生用の混和材として一般に普及している。 無水石膏はそ の熱処理条件や生成過程及び天然無水石膏では産地によっても大きく溶解速度が 異なる。  Anhydrite is widely used as an admixture for atmospheric steam curing. Anhydrous gypsum varies greatly depending on its heat treatment conditions and formation process, and natural anhydrous gypsum, depending on the production area.
また、 常圧蒸気養生用の高強度混和材としての無水石膏の溶解速度は小さい方 が良いことも知られている。  It is also known that the rate of dissolution of anhydrous gypsum as a high-strength admixture for atmospheric steam curing is better.
このような性質に着目して、 0.05%Na2HPO4水溶液 100gに対して lgのフッ酸 発生副生無水石膏を 1時間接触させたとき、 該水溶液中の S04イオン濃度が 0.02 〜 0.14%の溶解量を呈するものが高強度化に卓効を示すとして、 これを用いた高 強度コンクリ一ト又はモルタル部材の製造方法が提案されている(特許文献 1参 照)。 Focusing on these properties, when 100 g of 0.05% Na2HPO 4 aqueous solution is contacted with 1 g of hydrofluoric acid-generated by-product anhydrous gypsum for 1 hour, the S0 4 ion concentration in the aqueous solution is 0.02 to 0.14%. A method for producing a high-strength concrete or mortar member using this has been proposed (see Patent Document 1).
特許文献 1 :特許第.1 2 2 1 2 8 1号公報  Patent Document 1: Japanese Patent No. 1 2 2 1 2 8 1
また、 天然無水石膏は溶解速度が速いので高強度コンクリ一卜の製造に使用さ れるナフ夕レン系やメラミン系の高性能減水剤との併用では偽凝結性が生じるな どの不都合が生ずるとして、 タイ産の天然無水石膏を用いて、 0.05%Na2HPO4水 溶液 100gに対して lgの天然無水石膏を 1時間接触させたとき、 該水溶液中の S04イオン濃度が 0.15〜 1.5質量%の溶解量を示すものを凝結遅延性のあるポリ カルボン酸塩系減水剤と一緒に配合するコンクリート及びこれを用いた高強度コ ンクリート成形体の製造方法も提案されている(特許文献 2参照)。 ' 特許文献 2 :特許第 3 3 4 3 1 6 3号公報 さらに、 フッ酸発生副生無水石膏を用いて常圧蒸気養生したコンクリー卜強度 をより増大させるために、 フッ酸発生副生無水石膏とシリカフラワー(シリカフ ユーム)、 珪酸白土、 フライアッシュ等を配合するセメント混和材も提案されて いる(特許文献 3参照)。 In addition, natural anhydrous gypsum has a high dissolution rate, so there are inconveniences such as false coagulation when it is used in combination with naphthenic or melamine high-performance water reducing agents used in the production of high-strength concrete. Using natural anhydrous gypsum from Thailand, when 100 g of 0.05% Na2HPO 4 aqueous solution was contacted with 1 g of natural anhydrous gypsum for 1 hour, the dissolved amount of S04 ion concentration in the aqueous solution was 0.15 to 1.5% by mass. There has also been proposed a concrete in which what is shown is blended together with a polycarboxylate-based water reducing agent having a setting delay, and a method for producing a high-strength concrete molded body using the same (see Patent Document 2). 'Patent Literature 2: Patent No. 3 3 4 3 1 6 3 Furthermore, in order to further increase the strength of the concrete clay cured by hydrostatic acid-generated by-product anhydrous gypsum and hydrofluoric acid-generated by-product anhydrous gypsum, silica flour (silica fume), silicate white clay, fly ash, etc. A cement admixture has also been proposed (see Patent Document 3).
特許文献 3 :特許第 1 2 3 4 4 4 8号公報  Patent Document 3: Japanese Patent No. 1 2 3 4 4 4 8
しかしながら、 フッ酸発生副生無水石膏はフロンガスがオゾン層を破壌する原 因であることが判明してから代替技術が開発され、 フッ酸の製造が抑制されると 共に副生するフッ酸副生無水石膏の発生量が激減しているという課題があり、 利 用することが困難となっている。  However, hydrofluoric acid-generated by-product anhydrous gypsum was found to be the cause of chlorofluorocarbon gas breaking down the ozone layer, and an alternative technology was developed to suppress the production of hydrofluoric acid and produce by-product hydrofluoric acid by-product. There is a problem that the amount of raw anhydrous gypsum is drastically decreasing, making it difficult to use.
また、 天然無水石膏は基本的に溶解速度が速く、 産地や鉱脈の深さ、 含まれる 不純物によっても溶解速度は異なり、 また、 粉碎条件によっても大きく溶解度は 異なるので安定した高強度発現性能が確保でき難いのが課題であり、 フッ酸発生 副生無水石膏と比較しても一段低いレベルの強度発現性能より示されない。また、 温度によつても溶解速度や反応性が異なるのでポリ力ルポン酸塩系減水剤と併用 しても、 その種類や添加量によっては偽凝結性や急なスランプロスが生ずるなど の課題は内在している。  In addition, natural anhydrite basically has a high dissolution rate, and the dissolution rate varies depending on the origin, the depth of the veins, and the impurities contained, and the solubility varies greatly depending on the powder conditions, ensuring stable high strength performance. It is a problem that is difficult to achieve, and it is not shown by the strength development performance at a lower level than hydrous acid generation by-product anhydrous gypsum. In addition, the dissolution rate and reactivity differ depending on the temperature, so even if used in combination with a polystrength sulfonated water reducing agent, there are problems such as the occurrence of false coagulation and sudden slump loss depending on the type and amount of addition. Is inherent.
さらに、 シリカフューム、 珪酸白土、 フライアッシュ等を配合するセメント混 和材の場合は、元々溶解速度の小さいフッ酸発生副生無水石膏と使用するために、 シリカフューム、 珪酸白土、 フライアッシュ等の常圧蒸気養生によるポゾラン反 応を期待するものであり、 本発明のような溶解速度の大きい天然無水石膏の溶解 速度をコント口一ルして無水石膏による強度増進という発明思想は入つていな し、 効果も示されていないものである。 発明の開示  In addition, in the case of cement-mixed materials containing silica fume, silicate white clay, fly ash, etc., normal pressure such as silica fume, silicate white clay, fly ash, etc. is used for use with hydrofluoric acid by-product anhydrous gypsum which originally has a low dissolution rate. It expects a pozzolanic reaction by steam curing, and does not include the inventive idea of increasing the strength with anhydrous gypsum by controlling the dissolution rate of natural anhydrous gypsum with a high dissolution rate like the present invention, The effect is not shown either. Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
本発明は、 減水剤の種類を限定することなく、 天然無水石膏の溶解速度が速い ことに起因する偽凝結性を改善し、 高強度発現性能を安定して確保することがで きるセメント混和材及びその混和材を用いたセメント組成物を提供することを課 題とする。 課題を解決するための手段 The present invention is a cement admixture that can improve the pseudo-caking property due to the high dissolution rate of natural anhydrous gypsum without limiting the type of water reducing agent, and can stably ensure high strength development performance. And to provide a cement composition using the admixture. Means for solving the problem
本発明は、 上記課題を解決するために、 以下の手段を採用する。  In order to solve the above problems, the present invention employs the following means.
( 1 ) 20 の 0.05%Na2HPO4水溶液 100gに対して lgの天然無水石膏を 1時間接 触させたとき、 該水溶液中の S04イオン濃度が 4〜 30質量%Z hrの溶解速度を 示す天然無水石膏を含有することを特徴とするセメント混和材である。 (1) When a 20 0.05% Na 2 HPO 4 natural anhydrite of lg relative solution 100g of was come in contact for one hour, natural is S0 4 ion concentration in the aqueous solution shows the dissolution rate of 4-30 mass% Z hr A cement admixture characterized by containing anhydrous gypsum.
( 2 ) 天然無水石膏と、 焼成粘土鉱物、 粘土鉱物、 フライアッシュ、 消石灰、 及 ぴ生石灰から選ばれる一種以上を主成分とするセメント混和材において、 前記天 然無水石膏が、 20 °Cの 0.05%Νθ2ΗΡΟ4水溶液 100gに対して前記セメント混和材 中の lgの天然無水石膏を 1時間接触させたとき、 該水溶液中の S04イオン濃度 が 2.7〜 30質量%Z hrの溶解速度を示すものであることを特徴とするセメント 混和材である。 (2) In a cement admixture mainly composed of one or more selected from natural anhydrous gypsum and calcined clay minerals, clay minerals, fly ash, slaked lime, and quick lime, the natural anhydrous gypsum is 0.05 at 20 ° C. When lg natural anhydrous gypsum in the cement admixture is brought into contact with 100 g of% 水溶液 θ2Ν 4 aqueous solution for 1 hour, the S0 4 ion concentration in the aqueous solution shows a dissolution rate of 2.7 to 30 mass% Z hr. It is a cement admixture characterized by being.
( 3 ) 焼成粘土鉱物、 粘土鉱物、 及びフライアッシュから選ばれる一種以上と消 石灰及び/又は生石灰を組み合わせて含有することを特徴とする前記 (2 ) のセ メント混和材である。  (3) The cement admixture according to (2) above, which contains a combination of one or more selected from calcined clay minerals, clay minerals, and fly ash and slaked lime and / or quicklime.
( 4 ) 焼成粘土鉱物、。粘土鉱物、 フライアッシュ、 消石灰、 及び生石灰から選ば れる一種以上を 80質量%以下含有することを特徴とする前記 (2 ) 又は (3 ) のセメント混和材である。  (4) calcined clay minerals. The cement admixture according to (2) or (3) above, which contains at least 80% by mass of one or more selected from clay minerals, fly ash, slaked lime, and quicklime.
( 5 ) セメントに前記 (1 ) 〜 (4 ) のいずれか一項のセメント混和材を添カロす ることを特徴とするセメント組成物である。  (5) A cement composition, wherein the cement admixture according to any one of (1) to (4) is added to cement.
( 6 )セメント 100質量部に対して、前記セメント混和材を天然無水石膏換算で 15 質量部以下添加することを特徴とする前記 ( 5 ) のセメント組成物である。 発明の効果  (6) The cement composition according to (5), wherein 15 parts by mass or less of the cement admixture is added to 100 parts by mass of cement in terms of natural anhydrous gypsum. The invention's effect
本発明のセメント混和材を使用することによって、 特に蒸気養生で容易に高強 度が得られるので高い軸力の高強度コンクリートパイルやポール、 推進管等のコ ンクリート製品が製造できる、 脱型時に高い強度が得られるのでプレテンション 方式及びボストテンション方式を問わず、 大きなプレストレスが導入できるので 耐震性ゃ高靱性が得られる、 並びに、 一回の常圧蒸気養生で、 蒸気養生と、 10 気圧、 180 °Cのオートクレープ養生と併用した場合と同等の強度が得られるので、 経済的であると同時に環境に対する負荷も軽減するなどの効果を奏する。 発明を実施するための最良の形態 By using the cement admixture of the present invention, high strength can be easily obtained especially by steam curing, so that high-strength concrete piles, poles, propulsion pipes and other concrete products can be manufactured. Since strong strength can be obtained regardless of pre-tension method or post-tension method, large pre-stress can be introduced, so earthquake resistance can provide high toughness, and steam-curing can be achieved with a single atmospheric steam curing. The strength is the same as when combined with autoclave curing at atmospheric pressure and 180 ° C, so it is economical and reduces the burden on the environment. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を詳しく説明する。  Hereinafter, the present invention will be described in detail.
なお、 本発明で使用する配合割合や添加量を示す部や%は質量単位である。 本発明で使用する無水石膏は天然無水石膏であり、 20での O.OS^Na^O水溶 液 100gに対して lgの天然無水石膏を沈殿しない程度に撹拌しながら 1時間接触 させたとき、 該水溶液中の S04イオン濃度が 4〜 30質量%Z hrの溶解速度を示 すものである。 溶解速度が 30質量%Z hrを超えるとコンクリートの練り上がり 温度が 10 °C以下でも偽凝結性を呈して高強度発現性能も低下するので好ましく ない。 溶解速度を 4質量%Z hr未満では温度が高くても偽凝結性は示されない が、 粉末度が小さくなり過ぎて未反応の天然無水石膏が残存するようになり高強 度発現性能は低下するものである。 好ましい溶解速度は 4〜 20質量%である。 また、 後述する実施例に示されるように、 天然無水石膏に焼成粘土鉱物などを 配合すると天然無水石膏の溶解速度は小さくなるから、 その場合には、 焼成粘土 鉱物などを配合した混和材中の lgの天然無水石膏を 20での 0.05%Na2HP(¾水溶 液 100gに対して 1時間接触させたとき、該水溶液中の SOイオン濃度が 2.7〜 30 質量%Z hrの溶解速度を示す天然無水石膏を使用することが好ましい。 In addition, the part and% which show the mixture ratio and addition amount which are used by this invention are a mass unit. The anhydrous gypsum used in the present invention is natural anhydrous gypsum. When 100 g of O.OS ^ Na ^ O aqueous solution at 20 g was contacted for 1 hour with stirring to such an extent that lg natural anhydrous gypsum did not precipitate, S0 4 ion concentration in the aqueous solution are those shows the dissolution rate of 4-30 mass% Z hr. When the dissolution rate exceeds 30% by mass Zhr, it is not preferable because the concrete kneading temperature exhibits pseudo-coagulation even at a temperature of 10 ° C or less, and the high strength development performance is reduced. If the dissolution rate is less than 4% by mass Zhr, false coagulation is not shown even if the temperature is high, but the degree of fineness becomes too small and unreacted natural anhydrous gypsum remains, resulting in a decrease in high strength development performance. It is. A preferable dissolution rate is 4 to 20% by mass. In addition, as shown in the examples described later, since the dissolution rate of natural anhydrous gypsum decreases when natural anhydrous gypsum is blended with natural anhydrous gypsum, in that case, in the admixture containing the calcined clay mineral etc. when the natural anhydrite of lg 1-hour contact against 0.05% Na2HP (¾ aqueous solution 100 g of 20, natural anhydrous the SO ion concentration in the aqueous solution shows the dissolution rate of 2.7 to 30 wt% Z hr It is preferable to use gypsum.
なお、 s イオンの定量方法は、 セメント混和材中の天然無水石膏の CaS04が lg となるようにサンプルを採取し、 前記溶解操作を行った後、 No.5A濾紙を用 いて吸引濾過し、 その濾液を純水で 200ml に希釈する。 時計皿で蓋をして煮沸 状態にする。 塩化バリウム水溶液(lOOg/1)を撹拌しながら過剰に滴下して BaS04 として沈殿させながら煮沸を 30分継続する。 その後、 3時間熟成してから No.6A 濾紙で濾過して温水で 8〜 10回洗浄してから重量既知のルツポに濾紙毎入れ、 電気炉で 1000 で 30分加熱して取り出し冷却して重量を測定する。 SO*イオン 溶解量は =強熱残分 (g) X 0.411 X 100 (%)で計算する。 Incidentally, method of quantifying s ions, a sample was taken as CAS0 4 natural anhydrite in the cement admixture is lg, after the dissolution operation, suction filtered have use a No.5A filter paper, Dilute the filtrate to 200 ml with pure water. Cover with a watch glass and bring to a boil. Excessively added dropwise to cause boiling is continued for 30 minutes while precipitating as BaS0 4 by stirring the aqueous solution of barium chloride (lOOg / 1). Then, after aging for 3 hours, filter with No. 6A filter paper, wash with warm water 8-10 times, put the filter paper into a ruppo with known weight, heat at 1000 for 30 minutes in an electric furnace, cool and weight Measure. SO * ion Dissolution amount is calculated as = ignition residue (g) x 0.411 x 100 (%).
本発明者は、 焼成粘土鉱物、 粘土鉱物、 フライアッシュは、 それら自身のポゾ ラン活性による強度増進効果は認められないが、 天然無水石膏の溶解速度を抑制 する作用効果が認められ、 結果として高い強度が得られることを知見したもので ある。 また、 消石灰及び生石灰の場合も天然無水石膏の溶解速度を抑制する作用 効果が認められ、 結果として高い強度が得られることを知見したものである。 かつ、 焼成粘土鉱物、 粘土鉱物、 及びフライアッシュから選ばれる一種以上と 消石灰及び Z又は生石灰を併用すると、 さらに溶解速度は抑制され、 より高い強 度が得られることも知見したものであり、 これらの併用はより好ましい。 The present inventor has found that calcined clay minerals, clay minerals, and fly ash have no strength enhancement effect due to their own pozzolanic activity, but they suppress the dissolution rate of natural anhydrous gypsum. It has been found that a high strength is obtained as a result. In the case of slaked lime and quicklime, the effect of suppressing the dissolution rate of natural anhydrous gypsum was recognized, and as a result, it was found that high strength was obtained. In addition, it has been found that when one or more kinds selected from calcined clay minerals, clay minerals, and fly ash are used in combination with slaked lime and Z or quick lime, the dissolution rate is further suppressed and higher strength is obtained. Is more preferable.
本発明の焼成粘土鉱物は、 酸性白土、活性白土(酸性白土を酸処理したもの)、 ベントナイト、 カオリナイト類、 緑泥石類、 絹雲母、 ロウ石などのアルミノ珪酸 塩を主成分とする土状混合物を焼成したものであり、 粘土鉱物は、 焼成しない酸 性白土、 活性白土 (酸性白土を酸処理したもの)、 ベントナイト、 カオリナイト 類、 緑泥石類、 絹雲母、 ロウ石などのアルミノ珪酸塩を主成分とする土状混合物 である。 また、 フライアッシュは微粉炭焚火力発電所の煙道から捕集されるアツ シュであり、 珪酸分とアルミナ分を多く含むものである。  The calcined clay mineral of the present invention is an earthy clay mainly composed of aluminosilicates such as acid clay, activated clay (acid-treated acid clay), bentonite, kaolinite, chlorite, sericite, and rhodolite. Clay minerals are aluminosilicates such as acid clay, activated clay (acid clay treated with acid), bentonite, kaolinite, chlorite, sericite, and rhodolite. It is a soil-like mixture containing as a main component. Fly ash is collected from the flue of the pulverized coal fired thermal power plant and contains a large amount of silicic acid and alumina.
焼成粘土鉱物、 粘土鉱物、 フライアッシュ、 消石灰、 及び生石灰から選ばれる 一種以上の混和材成分の使用量は、 天然無水石膏とこれらの混和材成分との合計 100部中、 80部以下が好ましく、 10〜70部がより好ましい。 80部を超えて配合 しても天然無水石膏の溶解速度を抑える効果は頭打ちとなり、 高強度発現性能も 変わらなくなる場合があり、 加えて、 天然無水石膏の配合率が少なくなるので、 同様の強度を得るためにはセメントに対するセメント混和材の添加量が多くな り、 経済的にも好ましくない。  The amount of one or more admixture components selected from calcined clay minerals, clay minerals, fly ash, slaked lime, and quick lime is preferably 80 parts or less in a total of 100 parts of natural anhydrous gypsum and these admixture components, 10 to 70 parts are more preferred. Even if it exceeds 80 parts, the effect of suppressing the dissolution rate of natural anhydrous gypsum reaches its peak, and the high strength development performance may not change, and in addition, the blending ratio of natural anhydrous gypsum decreases, so that the same strength In order to achieve this, the amount of cement admixture added to the cement increases, which is economically undesirable.
天然無水石膏と、 焼成粘土鉱物、 粘土鉱物、 及びフライアッシュから選ばれる 一種以上と消石灰及び Z又は生石灰とを組合わせる場合は、 天然無水石膏を 40 〜 80部、 焼成粘土鉱物、 粘土鉱物、 及びフライアッシュから選ばれる一種以上 を 30〜 10部、 並びに、 消石灰及ぴ Z又は生石灰を 30〜 10部とすることが好ま しい。  When natural anhydrous gypsum and one or more selected from calcined clay minerals, clay minerals, and fly ash are combined with slaked lime and Z or quick lime, 40-80 parts of natural anhydrous gypsum, calcined clay minerals, clay minerals, and It is preferable that at least one selected from fly ash is 30 to 10 parts, and slaked lime and Z or quick lime is 30 to 10 parts.
本発明のセメント混和材の使用量は、 セメント 100部に対して、 天然無水石膏 換算で 15部以下が好ましく、 2〜 10部がより好ましい。 15部を超えて使用し ても強度的効果は頭打ちとなる場合がある。  The amount of the cement admixture of the present invention is preferably 15 parts or less, more preferably 2 to 10 parts in terms of natural anhydrous gypsum, with respect to 100 parts of cement. Even if it exceeds 15 parts, the strength effect may reach its peak.
養生方法は、 通常行われている方法で良く、 特に制限は受けないが、 蒸気養生 する場合は 40〜 90 °Cの最高温度で 4〜 6時間保持することと、 蒸気養生開始か ら蒸気養生を止めるまでの時間は 5〜 10時間が好ましい。 The curing method may be a conventional method and is not particularly limited. In this case, it is preferable to hold at the maximum temperature of 40 to 90 ° C for 4 to 6 hours, and the time from the start of steam curing to the stop of steam curing is preferably 5 to 10 hours.
本発明において高性能減水剤や高性能 A E減水剤を必要量を併用する。  In the present invention, a necessary amount of a high-performance water reducing agent or a high-performance AE water reducing agent is used in combination.
高性能減水剤として市販されているものはポリアルキルァリルスルホン酸塩 系、 芳香族アミノスルホン酸塩系、 及びメラミンホルマリン樹脂スルホン酸塩系 のいずれかを主成分とするものであり、 これらのうちの一種又は二種以上を使用 されるものである。  What is marketed as a high-performance water reducing agent is mainly composed of any one of polyalkylarylsulfonate, aromatic aminosulfonate, and melamine formalin resin sulfonate. One or more of them are used.
ポリアルキルァリルスルホン酸塩系高性能減水剤にはメチルナフ夕レンスルホ ン酸ホルマリン縮合物、 ナフタレンスルホン酸ホルマリン縮合物、 アントラセン スルホン酸ホルマリン縮合物などがあり、 減水率が大きくて空気連行性がなく、 凝結遅延性は小さい減水剤である。  Polyalkylaryl sulfonate-based high-performance water reducing agents include methylnaphthalene sulfonic acid formalin condensate, naphthalene sulfonic acid formalin condensate, anthracene sulfonic acid formalin condensate and so on. , Setting delay is a small water reducing agent.
上記のような高性能減水剤の添加量は、 市販品の形でセメントに対して 4質量 %以下が好ましく、 より好ましくは 1.0〜 3.0質量%である。  The amount of the above-mentioned high-performance water reducing agent added is preferably 4% by mass or less, more preferably 1.0 to 3.0% by mass with respect to cement in the form of a commercial product.
高性能 A E減水剤の市販品には高性能減水剤の改良型もあり、 これらも使用可 能であるが、 通常はポリカルボン酸塩系減水剤とも呼称されるように、 不飽和力 ルポン酸モノマーを一成分として含む共重合体又はその塩であり、 例えばポリァ ルキレングリコ一ルモノアクリル酸エステル、 ポリアルキレングリコ—ルモノメ タクリル酸エステル、 無水マレイン酸及びスチレンの.共重合体ゃァクリル酸ゃメ タクリル酸塩の共重合体及びこれらの単量体と共重合可能な単量体から導かれた 共重合体などが主流であり、 高性能減水剤系よりも少ない添加量で減水率は大き い。 そして空気連行性を有し、 凝結硬化の遅延性も大きい反面、 スランプ保持性 を有するという性質がある。  Commercially available products of high-performance AE water reducing agents include improved types of high-performance water reducing agents, which can also be used, but as commonly called polycarboxylate-based water reducing agents, unsaturated power ruponic acid A copolymer containing a monomer as a component or a salt thereof, such as a polyalkylene glycol monoacrylate, a polyalkylene glycol monomethacrylate, a maleic anhydride and a styrene. Salt copolymers and copolymers derived from monomers copolymerizable with these monomers are the mainstream, and the water reduction rate is large with less addition than the high-performance water reducing agent system. In addition, it has air entrainment properties and large delay in setting and curing, but it has the property of having slump retention.
上記のような高性能 A E減水剤の添加量は、 市販品の形でセメントに対して 4 質量%以下が好ましく、 より好ましくは 0.7〜 3.0質量%である。  The amount of the high-performance AE water reducing agent added as described above is preferably 4% by mass or less, more preferably 0.7 to 3.0% by mass, based on cement in the form of a commercial product.
本発明で使用されるセメントは普通、 早強、 中庸熱、 低熱、 耐硫酸塩性、 白色 などの各種ポルトランドセメント又は高炉スラグやフライアッシュを混合した混 合セメントゃェコセメントである。 また、 普通、 早強、 中庸熱、 低熱、 耐硫酸塩 性、 白色セメント、 混合セメントを任意に配合したセメントでもよいし、 早強ポ ル卜ランドセメントに高炉スラグやフライアッシュを配合したセメントでもよ い。 The cement used in the present invention is usually a mixture of various Portland cements such as early strong, moderately hot, low heat, sulfate resistance, white, or a mixture of blast furnace slag and fly ash. Ordinary, early strong, moderately hot, low heat, sulfate resistant, white cement, cement mixed with mixed cement, or cement with blast furnace slag or fly ash mixed with early strong poled land cement. Yo Yes.
本発明の混和材の添加方法は特に制限されない。 モルタル又はコンクリートの 練り混ぜ時に他のモルタル又はコンクリート材料と一緒に、 天然無水石膏又は天 然無水石膏と焼成粘土鉱物などを混合したもの及び混合して粉碎したものを添加 してもよいし、 それぞれの成分を別々に添加してもよい。 又、 セメント組成物に したものを添加してもよいものである。  The method for adding the admixture of the present invention is not particularly limited. When kneading mortar or concrete, a mixture of natural anhydrous gypsum or natural anhydrous gypsum and calcined clay mineral, etc., and a mixture of powdered and mixed powder may be added together with other mortar or concrete materials. These components may be added separately. In addition, a cement composition may be added.
練り混ぜ方法も特別な方法は必要でなく、 通常行われている練り混ぜ方法で良 い。  The mixing method does not require a special method, and a conventional mixing method is sufficient.
以下、本発明を実施例にて詳細に説明するが、これらに限られるものではない。 本発明の実施例で使用する材料と試験項目とその方法を以下にまとめて示す。 ぐ使用材料 >  EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, it is not restricted to these. The materials, test items and methods used in the examples of the present invention are summarized below. Materials Used>
セメント :普通ポルトランドセメント Cement: Ordinary Portland cement
砂 :新潟県姫川産川砂 (5mm下) Sand: River sand from Himekawa, Niigata (5mm below)
碎石 :新潟県姫川産碎石 (13〜 5mm) Meteorite: Meteorite from Himekawa, Niigata Prefecture (13-5mm)
減水剤 :ポリアルキルァリルスルホン酸塩系高性能減水剤 (液体) Water reducing agent: Polyalkylaryl sulfonate high-performance water reducing agent (liquid)
天然無水石膏: 5 mm下に粗碎したもの、 CaS04純度 98 % Natural anhydrous gypsum: Coarse under 5 mm, CaS0 4 purity 98%
焼成粘土鉱物類 A:粘土鉱物、 酸性白土粉砕品、 ブレーン比表面積 7520cm2/g. 焼成粘土鉱物類 B :焼成粘土鉱物、 食用油を濾過した後の活性白土を 800 °Cで焼 成したものの粉碎品、 ブレーン比表面積 5510cm2/g Calcinated clay mineral A: Clay mineral, acid clay ground product, Blaine specific surface area 7520cm 2 / g . Calcinated clay mineral B: baked clay mineral, activated clay after cooking edible oil is baked at 800 ° C Powdered rice cake, Blaine specific surface area 5510cm 2 / g
焼成粘土鉱物類 C:フライアッシュ、 石炭焚き火力発電所で副生するセメント混 和材用を更に粉碎したもの、 ブレーン比表面積 5060cm2/g Calcined clay minerals C: Fly ash, further mixed with cement admixture produced as a by-product in coal-fired thermal power plant, Blaine specific surface area 5060cm 2 / g
焼成粘土鉱物類 D:生石灰、 ガス焼き生石灰、 純度 99 %、 粉砕品、 ブレーン比 表面積 8550cm2/g Calcined clay minerals D: quick lime, gas baked quick lime, purity 99%, ground product, Blaine specific surface area 8550cm 2 / g
焼成粘土鉱物類 E:消石灰、 焼成粘土鉱物類 Dを消化し、 粉碎したもの、 ブレー ン比表面積 10000cm2/g以上 Calcined clay mineral E: Slaked lime, calcined clay mineral D digested and powdered, brain specific surface area 10000cm 2 / g or more
ぐ試験項目とその方法 > Test Items and Methods>
(1)天然無水石膏の溶解速度の調節方法  (1) Method for adjusting the dissolution rate of natural anhydrous gypsum
天然無水石膏を 2筒(筒の内径 15cm)式振動ミルでフィード量を変えながら粉 末度を調整することで行った。 また、 焼成粘土鉱物などを配合する場合は単に混 合した。 Natural anhydrous gypsum was adjusted by adjusting the powder level while changing the feed amount with a vibratory mill with two cylinders (inner diameter of 15 cm). In addition, when blending calcined clay minerals, etc., Combined.
(2)ブレーン比表面積の測定  (2) Measurement of Blaine specific surface area
JIS R 5201による。  According to JIS R 5201.
(3)圧縮強度の測定  (3) Measurement of compressive strength
JIS A 1132, HS A 1108に準じた。 なお、 コンクリートの練り混ぜは、 セメ ント、 セメント混和材、 細骨材、 粗骨材を 20秒間空練りした後、 水に減水剤を 溶解した練り混ぜ水を添加して 3分間、 二軸強制練りミキサで練り混ぜた。 実施例 1  Conforms to JIS A 1132, HS A 1108. For concrete mixing, cement, cement admixture, fine aggregate, and coarse aggregate are kneaded for 20 seconds, then mixed with water-reducing agent dissolved in water and mixed for 3 minutes. Kneaded with a kneading mixer. Example 1
: 粉砕調整した本発明の天然無水石膏を主成分としたセメント混和材の溶解速度 などの物性値を表 1に示す。  Table 1 shows the physical properties such as the dissolution rate of cement admixtures based on the natural anhydrous gypsum of the present invention that has been pulverized.
表 1  table 1
Figure imgf000009_0001
Figure imgf000009_0001
表 1の天然無水石膏のみの溶解速度を調整したセメント混和材を用いて偽凝結 が軽減される 10 以下でコンクリートを練り混ぜた。 コンクリートの基本配合 は、 単位セメント量 450kg/m3、、 水量 130kg m3、 細骨材量 710kg m3、 粗骨材量 1150kg/m3、減水剤量 9kg/m3 (水に内割り添カロ)であり、セメント混和材は 31.5kg m3 (セメント 100質量部に対して 7質量部)を細骨材と置き換えて、 スランプ 1 〜 8cmのコンクリートを作製し、 供試体を成形した。 成形した供試体を 10での室 温で凝結始発程度に硬化するまで前置きした後、 昇温速度 20 X /biで 65でまで 上げて、 そのまま 4時間保持してから蒸気バルブを止めて翌日まで蒸気養生槽中 で徐冷し、 材齢 1日の圧縮強度を測定した結果を表 2に示す。 表 2 Using a cement admixture with adjusted dissolution rate of only natural anhydrous gypsum in Table 1, the concrete was mixed at 10 or less to reduce false setting. The basic composition of concrete is: unit cement amount 450 kg / m 3 , water amount 130 kg m 3 , fine aggregate amount 710 kg m 3 , coarse aggregate amount 1150 kg / m 3 , water reducing agent amount 9 kg / m 3 (internal allocation to water) a Caro), cement admixture to 31.5 kg m 3 (7 parts by weight per 100 parts by weight cement) replaced with fine aggregate to prepare a concrete slump 1 ~ 8 cm, were molded specimen. Pre-mold the molded specimen until it hardens to the beginning of condensation at a room temperature of 10, then raise it to 65 at a heating rate of 20 X / bi, hold it for 4 hours, and then stop the steam valve until the next day Table 2 shows the results of gradual cooling in a steam curing tank and measuring the compressive strength of the material one day. Table 2
Figure imgf000010_0001
Figure imgf000010_0001
(註) ※:コンクリートは偽凝結気味  (註) *: Concrete has a false setting
表 2より、 天然無水石膏のプレーン比表面積が大きく溶解速度が速くても、 ま た、 プレーン比表面積が小さく溶解速度が遅くても高強度発現性能は失われるこ とが分かる。  Table 2 shows that even if the natural anhydrous gypsum has a large plain specific surface area and a high dissolution rate, and even if the plain specific surface area is small and the dissolution rate is slow, the high strength development performance is lost.
そして、 溶解速度が 4〜 30質量%hrで強度増進効果が認められ、好ましくは 4 〜 20質量%/hrであることが示される。 また、 溶解速度が 30質量%hrを超える と低温でも偽凝結性が示され、 作業性が悪くなることも分かつた。 実施例 2  And, the dissolution rate is 4 to 30% by mass hr, and the strength enhancement effect is recognized, and it is preferably 4 to 20% by mass / hr. It was also found that when the dissolution rate exceeds 30% by mass hr, pseudo-condensation was exhibited even at low temperatures, resulting in poor workability. Example 2
表 1のセメント混和材に焼成粘土を 70:30質量部に混合したセメント混和材の 溶解速度を表 3に示す。 表 3より、 焼成粘土鉱物を配合すると天然無水石膏の溶 解速度は小さくなることが示される。  Table 3 shows the dissolution rate of the cement admixture obtained by mixing the cement admixture in Table 1 with 70:30 parts by mass of calcined clay. Table 3 shows that the dissolution rate of natural anhydrous gypsum decreases when calcined clay minerals are added.
表 3  Table 3
Figure imgf000010_0002
表 3のセメント混和材を用いて 20ででコンクリートを練り混ぜた。 コンクリ —卜の基本配合は実施例 1と同様とし、 セメント混和材は天然無水石膏の量が 31.5kg/m3一定となるように 45kg m3を細骨材と置き換えて添加し、 実施例 1と同 様の試験を行った。なお、 前置き養生は 20 tとし、 比較のために焼成粘土のみを 13.5kg m3添加したコンクリートも加えた。 その結果を表 4に示す。
Figure imgf000010_0002
Concrete was kneaded at 20 using the cement admixture from Table 3. The basic composition of Concret-Koji is the same as in Example 1, and the cement admixture is added by replacing 45 kg m 3 with fine aggregate so that the amount of natural anhydrous gypsum is constant at 31.5 kg / m 3. A similar test was conducted. In addition, the pre-curing was set at 20 t, and for comparison, concrete containing 13.5 kg m 3 alone of calcined clay was also added. The results are shown in Table 4.
表 4  Table 4
Figure imgf000011_0001
Figure imgf000011_0001
(註) ※:コンクリートは偽凝結気味  (註) *: Concrete has a false setting
表 4より、 焼成粘土鉱物粉末を添加した場合でも、 溶解速度が速くても遅くて も高強度発現性能は失われることが分かる。 特に、 溶解速度が 1.0質量%/hrと遅 くても天然無水石膏の粉末度が小さいと、 より反応量は少なくなるので強度増進 効果が認められなくなることが示される(実験 No.2- 10)。 また、 焼成粘土鉱物単 独 (Bのみ) では強度増進効果は僅か(実験 No.2- 1 と実験 No.2_2の比較)である が、 天然無水石膏との併用では粉末度と溶解速度が適度であれば相乗的な強度増 進も示される(例えば、 実験 Νο.14,Νο.1-5,Νο.1- 7と実験 Νο.2-5,Νο.2·6,Νο.2~8の比 較)。 なお、 溶解速度が 30質量%/hr を超えると焼成粘土鉱物が含まれていても 偽凝結性が示され、 作業性が悪くなることも分かった。 実施例 3  From Table 4, it can be seen that even when the calcined clay mineral powder is added, the high strength development performance is lost whether the dissolution rate is fast or slow. In particular, even if the dissolution rate is as low as 1.0% by mass / hr, if the natural anhydrous gypsum powder is small, the reaction amount will be smaller and the effect of strength enhancement will not be observed (Experiment No. 2-10). ). In addition, the strength enhancement effect of calcined clay mineral alone (only B) is slight (comparison between Experiment No.2-1 and Experiment No.2_2), but when used in combination with natural anhydrous gypsum, the degree of fineness and dissolution rate are moderate. If this is the case, a synergistic strength increase will be shown (for example, Experiment Νο.14, Νο.1-5, Νο.1-7 and Experiment Νο.2-5, Νο.2 · 6, Νο.2 ~ 8 comparison). It was also found that when the dissolution rate exceeded 30% by mass / hr, false coagulation was exhibited even if calcined clay minerals were included, and workability deteriorated. Example 3
表 1のサンプル No.4のセメント混和材に焼成粘土などを任意の割合で混合し て溶解速度を調整したセメント混和材を表 5に示す。 天然無水石膏の溶解速度は 焼成粘土などの配合量が多くなるほど抑制されることが示される 表 5 Table 5 shows cement admixtures in which the dissolution rate was adjusted by mixing calcined clay, etc., in the sample No. 4 in Table 1 at an arbitrary ratio. The dissolution rate of natural anhydrous gypsum is Table 5 shows that the higher the blended amount of baked clay, etc.
Figure imgf000012_0001
Figure imgf000012_0001
表 5のセメント混和材を用いて 20 でコンクリ一卜を練り混ぜた。 コンクリ —卜の基本配合は実施例 1と同様とし、 セメント混和材はセメント 100質量部に 対して任意の割合で細骨材と置き換えて添加し、 実施例 1と同様の試験を行った (伹し、 前置き養生は 20で)。 その結果を表 6に示す。  Using a cement admixture in Table 5, the concrete was kneaded at 20. The basic composition of Concret-Koji was the same as in Example 1, and the cement admixture was added at an arbitrary ratio to 100 parts by mass of cement, replacing with fine aggregate, and the same test as in Example 1 was conducted (伹And the pre-curing is 20). The results are shown in Table 6.
表 6  Table 6
Figure imgf000012_0002
実験 サンプル No.と配合量 練り上り 圧縮強度
Figure imgf000012_0002
Experiment Sample No. and blending amount Kneaded Compressive strength
. o. (kg m3) 温度 (で) (N/mm2) 備考o. (kg m 3 ) Temperature (in) (N / mm 2 ) Remarks
3-12 No27 35.0 (7.0) 20 76.3 発明例3-12 No27 35.0 (7.0) 20 76.3 Invention example
3-13 No.28 39.4 (7.0) 23 79.1 発明例3-13 No.28 39.4 (7.0) 23 79.1 Invention example
3-14 No 9 48.5 (7.0) 20 80.0 発明例3-14 No 9 48.5 (7.0) 20 80.0 Invention example
3 - 15 No30 63.0 (7.0) 21 80.4 発明例3-15 No30 63.0 (7.0) 21 80.4 Invention example
3-16 No31 78.8 (7.0) 22 81.6 発明例3-16 No31 78.8 (7.0) 22 81.6 Invention example
3-17 No32 105.0 (7.0) 23 80 発明例3-17 No32 105.0 (7.0) 23 80 Invention example
3-18 無添加 20 60.9 比較例3-18 No additive 20 60.9 Comparative example
3-19 No.22 9 (1.0) 20 62.0 参考例3-19 No.22 9 (1.0) 20 62.0 Reference example
3-20 Νο·22 18 (2.0) 20 65.7 発明例3-20 22ο 22 18 (2.0) 20 65.7 Invention example
3 - 21 No.22 36 (4.0) 20 73 発明例3-21 No.22 36 (4.0) 20 73 Invention example
3-22 Νο·22 72 (8.0) 21 79.8 発明例3-22 22ο 22 72 (8.0) 21 79.8 Invention example
3-23 Νο·22 90 (10.0) 21 81.9 発明例3-23 Νο 22 90 (10.0) 21 81.9 Invention example
3-24 No.22 135 (15.0) 22 83.0 発明例3-24 No.22 135 (15.0) 22 83.0 Invention example
3-25 No.22 153 (17.0) 23 83.5 発明例3-25 No.22 153 (17.0) 23 83.5 Invention example
3-26 No.30 18 (2.0) 20 66.8 発明例3-26 No.30 18 (2.0) 20 66.8 Invention example
3-27 No 0 36 (4.0) 20 75.7 発明例3-27 No 0 36 (4.0) 20 75.7 Invention example
3-28 No.30 72 (8.0) 20 83.8 発明例3-28 No.30 72 (8.0) 20 83.8 Invention example
3-29 No 0 90 (10.0) 21 85.0 発明例 3-29 No 0 90 (10.0) 21 85.0 Invention example
)内数値はセメント 100質量部に対する天然無水石膏の質量部。  Figures in parentheses are parts by weight of natural anhydrous gypsum relative to 100 parts by weight of cement.
表 6より、 本発明の混和材をセメン卜 100質量部に対する天然無水石膏換算量 が 7質量と一定になるように添加した場合 (実験 No.3-1〜 No.3- 17) は、 焼成粘 土鉱物などの中の成分が焼成粘土鉱物、 粘土鉱物、 フライアッシュではポゾラン 活性が低くボゾラン反応による強度増進効果は短期材齢では認められないことか ら、 天然無水石膏の溶解速度の小さい方が高い強度を示している。  From Table 6, when the admixture of the present invention was added so that the amount of natural anhydrous gypsum equivalent to 100 parts by mass of cement was constant at 7 masses (Experiment No.3-1 to No.3-17), In the clay clay minerals, clay minerals, and fly ash, the components of clay clay minerals are low in pozzolanic activity, and the strength-increasing effect due to the bozolan reaction is not observed in short-term ages. Indicates high strength.
そして、 天然無水石膏と焼成粘土鉱物などの比率が 30 Z 70と 20 / 80の比較 では強度は頭打ちとなるので天然無水石膏は 20質量部未満としても強度の伸び は期待できない (実験 No.3-10〜No.3-ll)。 また、 天然無水石膏と焼成粘土鉱物 などの比率が 95 Z 5から強度的効果は示されるが、 焼成粘土鉱物などの比率を 大きくしていくと順次強度は増進し、 90 / 10から顕著となる (実験 No.3- 1 ~ No.3-10)。したがつて、本発明の天然無水石膏 Z焼成粘土鉱物などの配合比率は 95 Z 5〜 20 / 80であり、 より好ましくは 90 Z 10〜30 Z 70である。  And when the ratio of natural anhydrous gypsum to calcined clay mineral is 30 Z 70 and 20/80, the strength reaches its peak, so even if natural anhydrous gypsum is less than 20 parts by mass, no increase in strength can be expected (Experiment No. 3 -10 to No.3-ll). In addition, the ratio of natural anhydrous gypsum and calcined clay minerals shows a strength effect from 95 Z 5, but as the ratio of calcined clay minerals increases, the strength gradually increases and becomes remarkable from 90/10 (Experiment No.3-1 to No.3-10). Therefore, the blending ratio of the natural anhydrous gypsum Z calcined clay mineral of the present invention is 95 Z 5-20 / 80, more preferably 90 Z 10-30 Z 70.
なお、 焼成粘土鉱物などの中の成分が生石灰や消石灰の場合 (実験 No.3- 12 ~ No.3-17) では、 生石灰や消石灰によるセメントの凝結促進及び水和量の増大効 果から焼成粘土鉱物よりも強度は高くなる傾向が示される。 If the component in the calcined clay mineral is quick lime or slaked lime (Experiment No.3- 12 ~ No. 3-17) shows a tendency for strength to be higher than that of calcined clay minerals due to the effect of accelerated setting of cement by quick lime and slaked lime and the effect of increasing hydration.
天然無水石膏 Z焼成粘土鉱物などの配合比率を 50 / 50と一定にしてセメン卜 に対する天然無水石膏の添加量を変えていく (実験 No.3-19 ~ No.3-25) と、 強 度の向上は 2質量%以上で顕著となるが、 10〜 15質量%を超えて添加しても強 度は頭打ちとなり、 1質量%未満では強度増進効果は小さいことが予測される。 したがって、 本発明のセメント混和材の添加量は天然無水石膏換算で 15質量% 以下であり、 好ましくは 2〜 10質量%であることが示される。 実施例 4  Natural anhydrous gypsum Z The ratio of natural anhydrous gypsum added to cementite is changed to 50/50 at a constant ratio of calcined clay mineral (Experiment No.3-19 to No.3-25). The improvement is noticeable at 2% by mass or more, but even if added over 10 to 15% by mass, the strength reaches its peak, and if it is less than 1% by mass, the strength enhancement effect is expected to be small. Therefore, the addition amount of the cement admixture of the present invention is 15% by mass or less in terms of natural anhydrous gypsum, and preferably 2 to 10% by mass. Example 4
表 1のセメント混和材サンプル No.5 に焼成粘土などを 2種以上混合した溶解 速度を表 7に示す。 この場合も焼成粘土など配合比率が多くなるほど天然無水石 膏の溶解速度は小さくなることが示される。  Table 7 shows the dissolution rates of two or more types of calcined clay mixed with cement admixture sample No. 5 in Table 1. Also in this case, it is shown that the dissolution rate of natural anhydrous gypsum decreases as the blending ratio of baked clay increases.
表 7 -  Table 7-
Figure imgf000014_0001
表 7のセメント混和材を用いて 30 でコンクリートを練り混ぜた。 コンクリ 一卜の基本配合は実施例 1と同様とし、 セメン卜混和材は 45kg m3—定量を細骨 材と置き換えて添加して実施例: Lと同様の試験を行った(但し、前置き養生は 30 )。 その結果を表 8に示す。 表 8
Figure imgf000014_0001
Concrete was mixed at 30 using the cement admixtures in Table 7. The basic composition of the concrete was the same as in Example 1, and the cement admixture was 45 kg m 3 -the same amount as in Example: L was added, replacing the fixed amount with fine aggregate. 30). The results are shown in Table 8. Table 8
Figure imgf000015_0001
Figure imgf000015_0001
表 8より、 本発明の混和材をセメント 100質量部に対して 10質量部と一定に なるように添加した場合は、 焼成粘土鉱物などの配合率が多くなると天然無水石 膏の溶解速度も小さくなることから、 配合率が多くなるほど高い強度を示すが、 多くなりすぎても天然無水石膏の絶対量が少なくなると強度は低下する傾向を示 し、 3成分系では、特に、天然無水石膏 Z焼成粘土鉱物などの比率が 80 Z 20〜 40 / 60の範囲が顕著に強度増進効果が示される (実験 〜 No.4-11)。 実施例 5  From Table 8, when the admixture of the present invention is added to 10 parts by mass with respect to 100 parts by mass of cement, the dissolution rate of natural anhydrous gypsum decreases as the blending ratio of calcined clay minerals increases. Therefore, the higher the blending ratio, the higher the strength, but even if it is too much, the strength tends to decrease when the absolute amount of natural anhydrous gypsum decreases. When the ratio of clay minerals is in the range of 80 Z 20-40 / 60, the strength enhancement effect is remarkably shown (Experiment No.4-11). Example 5
表 7のセメント混和材を使用して、 実施例 4と同様の試験を行った。 但し、 減 水剤の種類を、 高性能減水剤であるポリアルキルァリルスルホン酸塩系減水剤か ら高性能 A E減水剤であるポリカルボン酸塩系減水剤に変更し、 その添加量を 5.85kg m3 (この添加量でスランプ 1〜 8cmが得られる) とした。 その結果を表 9に示す。 表 9 A test similar to Example 4 was performed using the cement admixture of Table 7. However, the type of water reducing agent was changed from the polyalkylaryl sulfonate water reducing agent, which is a high performance water reducing agent, to the polycarboxylate water reducing agent, which is a high performance AE water reducing agent, and the amount added was 5.85. kg m 3 (slump of 1 to 8 cm is obtained with this addition amount). The results are shown in Table 9. Table 9
Figure imgf000016_0001
Figure imgf000016_0001
表 9より、 ポリカルボン酸塩系減水剤を使用した場合にも、 ポリアルキルァリ ルスルホン酸塩系減水剤を使用した場合と同等の強度が得られ、 焼成粘土鉱物な どの含有率が多くなるほど高い強度を示すが、 多くなりすぎても天然無水石膏の 絶対量が少なくなると強度は低下する傾向を示し、 3成分系では、 特に、 天然無 水石膏 Z焼成粘土鉱物などの比率が 80 / 20〜 40 Z 60の範囲が顕著に強度増進 効果が示される (実験 No.5-4〜 No.5- 11)。 産業上の利用可能性  Table 9 shows that even when polycarboxylate-based water reducing agents are used, the same strength is obtained as when polyalkylaryl sulfonate-based water reducing agents are used, and the higher the content of baked clay minerals, the higher the strength. As shown, the strength tends to decrease when the absolute amount of natural anhydrous gypsum decreases even if the amount is too much, and the ratio of natural hydrous gypsum Z calcined clay mineral, etc. A strength increase effect is shown in the range of 60 (Experiment No. 5-4 to No. 5-11). Industrial applicability
本発明は、 以上のように溶解速度を規定した天然無水石膏を主成分とするセメ ント混和材、 又は該天然無水石膏と焼成粘土鉱物、 粘; fc鉱物、 フライアッシュ、 消石灰、 及び生石灰から選ばれる一種以上を含有するセメント混和材であり、 並 びにそれらの混和材を用いた高強度を達成し得るセメント組成物であるから、 土 木建築構造物の高強度化やコンクリートパイルやポール、 ヒューム管、 その他の 蒸気養生によって製造されるコンクリート製品に使用される。  The present invention is a cement admixture mainly composed of natural anhydrous gypsum whose dissolution rate is defined as described above, or the natural anhydrous gypsum and calcined clay mineral, viscosity; fc mineral, fly ash, slaked lime, and quick lime. It is a cement admixture containing one or more of the above, and it is a cement composition that can achieve high strength using these admixtures, so it is possible to increase the strength of civil engineering structures, concrete piles, poles, fume Used for pipes and other concrete products produced by steam curing.

Claims

請求の範囲 The scope of the claims
1 . 20。じの 0.05%Na2HPO4水溶液 100gに対して lgの天然無水石膏を 1時間接蝕 させたとき、 該水溶液中の S04ィオン濃度が 4〜 30質量%Z hrの溶解速度を示 す天然無水石膏を含有することを特徴とするセメント混和材。 1.20. When an lg of natural anhydrous gypsum is in contact with 100 g of 0.05% Na2HPO 4 aqueous solution for 1 hour, the natural anhydrous gypsum shows a dissolution rate of 4 to 30% by mass of S0 4 ion concentration in the aqueous solution. A cement admixture characterized by containing.
2 . 天然無水石膏と、 焼成粘土鉱物、 粘土鉱物、 フライアッシュ、 消石灰、 及び 生石灰から選ばれる一種以上を主成分とするセメント混和材において、 前記天然 無水石膏が、 20での 0.05%Na2HPO4水溶液 100gに対して前記セメント混和材中 の lgの天然無水石膏を 1時間接触させたとき、 該水溶液中の S04イオン濃度が 2.7〜 30質量%/ hrの溶解速度を示すものである とを特徴とするセメント混 和材。 2. A cement admixture mainly composed of one or more selected from natural anhydrous gypsum and calcined clay minerals, clay minerals, fly ash, slaked lime, and quick lime, wherein the natural anhydrous gypsum is a 0.05% Na2HPO 4 aqueous solution at 20. when the natural anhydrite of lg in the cement admixture relative to 100g 1-hour contact, wherein a is S0 4 ion concentration in the aqueous solution shows a dissolution rate of 2.7 to 30 wt% / hr Cement-mixed material.
3 . 焼成粘土鉱物、 粘土鉱物、 及びフライアッシュから選ばれる一種以上と消石 灰及び 又は生石灰を組み合わせて含有することを特徴とする請求の範囲第 2項 に記載のセメント混和材。  3. The cement admixture according to claim 2, containing at least one selected from calcined clay minerals, clay minerals, and fly ash and slaked ash and / or quicklime.
4 . 焼成粘土鉱物、 粘土鉱物、 フライアッシュ、 消石灰、 及び生石灰から選ばれ る一種以上を 80質量%以下含有することを特徴とする請求の範囲第 2項又は第 3項に記載のセメント混和材。  4. The cement admixture according to claim 2 or 3, characterized by containing at least 80% by mass of one or more selected from calcined clay minerals, clay minerals, fly ash, slaked lime, and quick lime. .
5 . セメントに請求の範囲第 1項〜第 4項のいずれか一項に記載のセメント混和 材を添加することを特徴とするセメント組成物。  5. A cement composition, wherein the cement admixture according to any one of claims 1 to 4 is added to the cement.
6 . セメント 100質量部に対して、 前記セメント混和材を天然無水石膏換算で 15 質量部以下添加することを特徴とする請求の範囲第 5項に記載のセメント組成 物。  6. The cement composition according to claim 5, wherein 15 parts by mass or less of the cement admixture in terms of natural anhydrous gypsum is added to 100 parts by mass of cement.
PCT/JP2005/011203 2005-06-14 2005-06-14 Cement admixture and cement composition WO2006134670A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2005/011203 WO2006134670A1 (en) 2005-06-14 2005-06-14 Cement admixture and cement composition
KR1020077029330A KR100947808B1 (en) 2005-06-14 2006-03-30 Cement additive, cement composition, and mortar or concrete product
JP2007521176A JP4954068B2 (en) 2005-06-14 2006-03-30 Cement admixture, cement composition, and method for producing mortar or concrete product
PCT/JP2006/307258 WO2006134711A1 (en) 2005-06-14 2006-03-30 Cement additive, cement composition, and process for producing mortar or concrete product
CN2006800210003A CN101198562B (en) 2005-06-14 2006-03-30 Cement additive, cement composition, and process for producing mortar or concrete product
MYPI20062128A MY163157A (en) 2005-06-14 2006-05-09 Cement admixture, cement composition and manufacturing method of mortar or concrete product
TW095121117A TWI403484B (en) 2005-06-14 2006-06-14 Cement admixture, cement composition and mortar or concrete product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/011203 WO2006134670A1 (en) 2005-06-14 2005-06-14 Cement admixture and cement composition

Publications (1)

Publication Number Publication Date
WO2006134670A1 true WO2006134670A1 (en) 2006-12-21

Family

ID=37532042

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2005/011203 WO2006134670A1 (en) 2005-06-14 2005-06-14 Cement admixture and cement composition
PCT/JP2006/307258 WO2006134711A1 (en) 2005-06-14 2006-03-30 Cement additive, cement composition, and process for producing mortar or concrete product

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307258 WO2006134711A1 (en) 2005-06-14 2006-03-30 Cement additive, cement composition, and process for producing mortar or concrete product

Country Status (5)

Country Link
KR (1) KR100947808B1 (en)
CN (1) CN101198562B (en)
MY (1) MY163157A (en)
TW (1) TWI403484B (en)
WO (2) WO2006134670A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2470401A (en) * 2009-05-22 2010-11-24 Bpb Ltd Calcium sulphate-based products having enhanced water resistance
JP4954068B2 (en) * 2005-06-14 2012-06-13 電気化学工業株式会社 Cement admixture, cement composition, and method for producing mortar or concrete product
CN103880374A (en) * 2014-03-13 2014-06-25 安徽理工大学 Novel cement mixing pile made from desulfurized gypsum and polypropylene fiber
RU2586893C2 (en) * 2010-11-23 2016-06-10 Сэн-Гобэн Плако Сас Product based on calcium sulphate and method for preparation thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010275157A (en) * 2009-05-29 2010-12-09 Sumitomo Osaka Cement Co Ltd Method for producing cement-hardened body
CN102172979A (en) * 2011-02-12 2011-09-07 嘉兴学院管桩应用技术研究所 Method for improving concrete strength of cement product
DE102015118391A1 (en) * 2015-10-28 2017-05-04 Thyssenkrupp Ag Process for the preparation of a cement clinker substitute consisting primarily of calcined clay
CN106007649A (en) * 2016-05-25 2016-10-12 句容联众科技开发有限公司 Acid-proof cement admixture
TWI700258B (en) * 2019-04-23 2020-08-01 王武添 Composition of dry ready mixed powders
TWI700264B (en) * 2019-04-23 2020-08-01 王武添 Powders of pre-cast building materials
JP2020183339A (en) * 2019-05-09 2020-11-12 宇部興産株式会社 Admixture for mortar concrete, cement composition, mortar composition and concrete composition containing the same, and method for producing mortar cured product and concrete cured product
JP7444619B2 (en) * 2020-01-23 2024-03-06 デンカ株式会社 cement admixture
CN111410488A (en) * 2020-04-25 2020-07-14 遂宁安通商品混凝土有限公司 C80 high-strength concrete and preparation method thereof
CN113800789B (en) * 2021-11-19 2022-02-25 山东绿达建设发展集团有限公司 Retarding cement for highway subgrade and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640104B2 (en) * 1976-10-15 1981-09-18
JPH0920545A (en) * 1995-07-05 1997-01-21 Denki Kagaku Kogyo Kk Cement composition, cement cured material using the same and its production
JPH09156977A (en) * 1995-12-11 1997-06-17 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JPH11171628A (en) * 1997-12-05 1999-06-29 Kawasaki City Cement composition using burnt ash of sewage sludge, use of the same cement composition and formed product and structure using the same composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649606B2 (en) * 1989-08-10 1994-06-29 大阪セメント株式会社 Cement composition
KR950007707B1 (en) * 1992-04-23 1995-07-14 덴끼가가꾸고오교 가부시끼가이샤 Cement admixture and cement composition containing the same
JP3343163B2 (en) * 1993-12-27 2002-11-11 太平洋セメント株式会社 Concrete and method for producing high-strength concrete compact using the same
JP3390076B2 (en) * 1994-01-25 2003-03-24 電気化学工業株式会社 Cement admixture and cement composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640104B2 (en) * 1976-10-15 1981-09-18
JPH0920545A (en) * 1995-07-05 1997-01-21 Denki Kagaku Kogyo Kk Cement composition, cement cured material using the same and its production
JPH09156977A (en) * 1995-12-11 1997-06-17 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JPH11171628A (en) * 1997-12-05 1999-06-29 Kawasaki City Cement composition using burnt ash of sewage sludge, use of the same cement composition and formed product and structure using the same composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4954068B2 (en) * 2005-06-14 2012-06-13 電気化学工業株式会社 Cement admixture, cement composition, and method for producing mortar or concrete product
GB2470401A (en) * 2009-05-22 2010-11-24 Bpb Ltd Calcium sulphate-based products having enhanced water resistance
WO2010133898A1 (en) 2009-05-22 2010-11-25 Bpb Limited Calcium sulphate-based products having enhanced water resistance
US9127166B2 (en) 2009-05-22 2015-09-08 Bpb Limited Calcium sulphate-based products having enhanced water resistance
RU2586893C2 (en) * 2010-11-23 2016-06-10 Сэн-Гобэн Плако Сас Product based on calcium sulphate and method for preparation thereof
CN103880374A (en) * 2014-03-13 2014-06-25 安徽理工大学 Novel cement mixing pile made from desulfurized gypsum and polypropylene fiber

Also Published As

Publication number Publication date
WO2006134711A1 (en) 2006-12-21
MY163157A (en) 2017-08-15
CN101198562A (en) 2008-06-11
TW200710061A (en) 2007-03-16
CN101198562B (en) 2012-10-17
KR20080025680A (en) 2008-03-21
TWI403484B (en) 2013-08-01
KR100947808B1 (en) 2010-03-15

Similar Documents

Publication Publication Date Title
WO2006134670A1 (en) Cement admixture and cement composition
JP4392765B2 (en) Cement additive and cement composition
JP3607291B2 (en) Coagulation and curing accelerators for silica based hydraulic binders
KR101701673B1 (en) Binder compositions for concrete, concrete compositions comprising the same, and concrete structure manufactured by the same
CN103717549A (en) Mortar or concrete composition using coal ash, and usage thereof
JP2009227574A (en) Cement composition and method for producing the same
JP2014148434A (en) Hydraulic composition
JP7267802B2 (en) Polymer cement grout mortar for filling repair
JP4954068B2 (en) Cement admixture, cement composition, and method for producing mortar or concrete product
RU2452703C2 (en) Ash-cement binder (zolcit) based on acid ashes of thermal power plants
JP4171173B2 (en) Concrete using slag aggregate
JP5336881B2 (en) Water reducing agent composition and mortar or concrete using the same
JP2009227549A (en) Cement additive and cement composition
JP4157662B2 (en) Cement clinker and cement composition
EP2760805A1 (en) Method for the production of a building material
JP4164240B2 (en) Cement clinker and cement composition
KR20180020021A (en) Mortar composition not containing sand and use thereof
JP4538108B2 (en) High performance water reducing agent composition and cement composition
JP2003171161A (en) Heat resisting, high strength concrete, and production method therefor
JP4786220B2 (en) Wood cement board and manufacturing method thereof
KR100474964B1 (en) The composition for height-intensity compound of cement
JP4335424B2 (en) Cement admixture and cement composition
RU2658416C1 (en) Composite bonding
JP4338884B2 (en) Cement admixture and cement composition
JP4574817B2 (en) Cement admixture and cement composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WA Withdrawal of international application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE