WO2006133648A1 - Capteur de déplacement numérique en mode commuté et son application - Google Patents

Capteur de déplacement numérique en mode commuté et son application Download PDF

Info

Publication number
WO2006133648A1
WO2006133648A1 PCT/CN2006/001347 CN2006001347W WO2006133648A1 WO 2006133648 A1 WO2006133648 A1 WO 2006133648A1 CN 2006001347 W CN2006001347 W CN 2006001347W WO 2006133648 A1 WO2006133648 A1 WO 2006133648A1
Authority
WO
WIPO (PCT)
Prior art keywords
grid
strip
displacement
width
loop
Prior art date
Application number
PCT/CN2006/001347
Other languages
English (en)
French (fr)
Inventor
Lun Chen
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CNB2005100119558A external-priority patent/CN1327189C/zh
Priority claimed from CNB2005100121859A external-priority patent/CN100371685C/zh
Priority claimed from CNB2005100866077A external-priority patent/CN100365390C/zh
Priority claimed from CNB2005100866062A external-priority patent/CN100365389C/zh
Application filed by Tsinghua University filed Critical Tsinghua University
Publication of WO2006133648A1 publication Critical patent/WO2006133648A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B3/00Measuring instruments characterised by the use of mechanical techniques
    • G01B3/20Slide gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains

Definitions

  • the present invention relates to a sensor for measuring the displacement of an object and an application thereof, and more particularly to a switch type digital displacement sensor and its application. current technology
  • sensing devices that measure displacement. These displacement sensing devices can be divided into analog and digital types, mainly including potentiometers, resistance strain gauges, capacitive, inductive, eddy current, photoelectric and grating, inductive synchronizer and magnetic grid. . These sensing device technologies are relatively mature, and their products can meet the test requirements in a suitable working environment.
  • a common potentiometer is a simple and practical displacement sensor. Its basic principle is to use a brush to slide on the resistance. According to the change of resistance in the circuit, the position of the brush is judged according to the displacement of the brush and the resistance. Get the displacement of the object.
  • the resistance of the resistor in the potentiometer varies with the temperature and humidity environment, the signal transmission line resistance and its change with temperature may also cause errors, and the brush (ie, the object) is judged according to the change of the resistance in the circuit. The accuracy of the displacement is also limited, so the application of the potentiometer has a large limitation.
  • a switch type digital displacement sensor which has a grid strip (B) which is fixed on an object which generates a relative displacement, and the grid strip (B)
  • the upper grid is a conductive grid, wherein each grid is connected in series in a power loop, the power loop is disconnected at the location of the grid; and further includes a fixed relative displacement a switch component on another object that is capable of moving to a grid on the grid strip (B) as the relative displacement of the two objects is generated, such that the loop in which the grid is located is turned on, and from An electrical signal is output on the loop, and the electrical signal is processed to indicate the relative displacement of the two objects.
  • each grid (B) has the same width, the same net spacing between each two grids, and the grid spacing is equivalent to the net spacing between the grids;
  • One side of the grid strip (B) is further fixed with a conductive electrode (C) insulated from the grid strip (B), and the conductive strip is connected to one pole of the power source, the grid strip (B)
  • Each of the grids is connected to a data processing system via a respective wire (L) that forms a disconnected power loop with the grid and data processing system; a conductive material slide (D) capable of simultaneously contacting the grid on the grid strip (B) and the conductive electrode (C) with relative movement between objects
  • the loop in which the grid is located is turned on, and the electrical signal on the loop is output to the relative displacement of the two objects processed in the data processing circuit.
  • another grid strip (A) is further fixed on the other side of the conductive electrode (C) and insulated from the conductive strip; the grid on the grid strip (A) The sum of the width of the grid and the net spacing between the grids is an even multiple of the grid width on the grid strip (B), and the distance between the grids is much smaller than the width of the grid and smaller than the grid ( The width of B); each grid on the grid strip (A) is also connected to the data processing system by a respective wire, the conductive electrode (C) and the grid on the grid strip (A) And the data processing system also forms a broken loop; the conductive material slide (D) can simultaneously contact the grid on the grid strip (B), the conductive electrode (C) with relative movement between the objects And the grid on the grid strip (A), so that the loop where the contacted grid is turned on, and the electrical signal output by the loop where the grid on the grid strip (A) is processed is processed to obtain a displacement measurement value.
  • the width of the conductive material slider (D) is twice the width of the grid on the grid strip (B).
  • the grid is a grid of photoelectric materials, each grid has the same width, and the net spacing between each two grids is also the same, and the grid width and the grid are Equivalent between the net spacing;
  • a conductive electrode (C) is connected to one side of the grid strip (B), and the conductive electrode (C) is connected to one pole of the power supply, and each of the grid strips (B)
  • the other end of the grid is connected with a conductive block (S), and each of the conductive blocks (S) is connected to the data processing system through respective wires, and the grid on the conductive electrode (C) and the grid strip (B) a grid, a conductive block (S) and a data processing system form a broken loop;
  • the switch component is an illuminating light source, the light source emitting as the object moves relative to each other The light can be illuminated to the grid such that the illuminated grid is electrically conductive, the loop in which the grid is located is turned on, and the electrical signal output on the loop
  • the grid on the grid strip (B) is divided into a plurality of units, each unit includes n grids, n is greater than or equal to 3, and the grid of each unit is from the same direction Numbered in the same order, numbered from 1 to n, all grids with the same number are connected to the same conductor through their conductive blocks (S) and input to the signal processing circuit.
  • n grid strips n is greater than or equal to 3, and each of the upper and lower sides of the grid strip is respectively connected with a conductive electrode, one of which is connected to a high/low level, and the other input a signal processing circuit; the n grid strips are arranged in parallel to form a grid strip group, and the grid strip group is divided into a plurality of units having the same grid distribution condition along the length direction, and each unit includes n grids.
  • the n grids are uniformly distributed on the n grid strips and are equally spaced along the length of the grid strip group.
  • the above-mentioned switch type digital displacement sensor further comprises a grid strip (A) representing a large scale, the grid strip (A) is arranged in parallel with the above-mentioned grid strip set, and the grid on the grid strip (A)
  • the number is equal to the number of cells divided by the grid strip group, and the sum of the width of the grid on the grid strip (A) and the net spacing between the grids is the grid on the grid strip (B)
  • An even multiple of the grid width, and the distance between the grids is much smaller than the width of the grid and less than the width of the grid (B).
  • n grid strips In the above switch type digital displacement sensor, it has n grid strips, n is greater than or equal to 3, and each strip has two conductive electrodes connected to each side; one of them is connected to high/low level, and the other input signal is Processing circuit; the n grid strips are distributed in parallel to form a grid strip group, and the grid strip group is divided into a plurality of units with uniform grid distribution along the length direction, and the grids are along the length direction of the grid strip group Isometric distribution; in each unit, the grid at different positions of the grid strip group is electrically conductive and the input signal processing circuit signals form different codes; there is also a grid strip (A) representing a large scale, the grid strip (A) arranged in parallel with the grid strip set, the number of grids on the grid strip (A) is equal to the number of cells divided by the grid strip, and the width of the grid on the grid strip (A) is The sum of the net spacing between the grids is an even multiple of the grid width on the grid strip (B), and the distance between the
  • another grid strip (A) is further connected to the other side of the conductive electrode (C);
  • the grid on the grid strip (A) is a grid of photovoltaic materials And the sum of the width of the grid and the net spacing between the grids is an even multiple of the width of the grid on the grid strip (B), the distance between the grids is much smaller than the width of the grid, and smaller than the grid (B) width;
  • the other end of each grid on the grid strip (A) is connected to a conductive block (0), each of the conductive blocks (0) are passed through respective wires (L) and data Processing system connection, the conductive electrode (C), the grid on the grid strip (A), conductive The block (0) and the data processing system also form a broken loop; as the relative movement between the objects, the light emitted by the light source can simultaneously illuminate the grid strip (B) and the grid strip (A)
  • the grid is such that the illuminated grid is electrically conductive, the loop in which the grid is located is turned on, and the electrical
  • the light source is a laser emitter.
  • the width of the light emitted by the light source is twice the width of the grid on the grid strip (B).
  • the invention provides a switch type digital displacement sensor using displacement amplification, comprising: a displacement guide bar (U), one end of which is connected with an object that generates a relative displacement, and the displacement guide bar (U) is engraved with a tooth pattern; a gear amplifying mechanism that converts the displacement of the displacement bar with the movement of the object into an angular displacement; the axis (X) is fixed on another object that generates a relative displacement, and the light source (T) is mounted thereon, the axis X
  • the gear amplifying mechanism meshing with the displacement bar (U), rotating under the displacement of the displacement bar (U); a ring-shaped grid strip ( ⁇ ), the grid on the grid strip ( ⁇ ) is a photoelectric material Grid, set with the axis (X) as the center, the width of each grid above the ring grid is the same, the net spacing between each two grids is the same, and the grid width and grid
  • the net spacing equivalent between the two sides of the grid strip ( ⁇ ) is connected to a ring conduct
  • the gear amplifying mechanism includes a shaft (V) that meshes with the displacement guide bar, and a gear that is fixed to the shaft (V) with a shaft (V) as a center.
  • the disc (W), the gear disc (W) meshes with the shaft (X).
  • a circle-shaped grid strip (A) representing a large scale is surrounded by the axis (X), and the grid on the grid strip (A) is photoelectric
  • the grid of material, grid (A) is separated by a slit at regular intervals, the center distance of the slit shall be an even multiple of the grid width on the grid (B), and the width of the grid (A) shall be Equal to the grid (B)—the total width of the cells minus the net spacing between the grids (A).
  • the net spacing between the grids (A) should be narrower and should be much smaller than the width of the grid (A).
  • one side of the grid strip (A) is connected to the circular guide Body (C), the other end of each grid on the grid strip (A) is connected with a conductive block (0), and the grid on the grid strip (A) passes through the loop conductor (C) And the conductive block (0) is connected in series in the power circuit; the light emitted by the light source (T) can simultaneously scan the grid on the grid strip (A) and the grid strip (B), so that the scanned grid is conductive
  • the loop where the grid is located is turned on, and the electrical signal outputted by the loop on the grid strip (A) is processed to obtain a large scale value of the displacement of the object, and the loop output of the grid on the grid strip (B) The electrical signal is processed to obtain a small scale value of the displacement of the object.
  • a circle-shaped grid strip (A) representing a large scale is surrounded by the axis (X), and the grid on the grid strip (A) is photoelectric
  • the grid of material the width of which is an even multiple of the width of the grid on the grid strip (B), and the distance between the grids is much smaller than the width of the grid; one side of the grid strip (A) connects the loop conductor (C), the other end of each grid on the grid strip (A) is connected with a conductive block (0) through which the grid on the grid strip (A) passes and The conductive block (0) is connected in series in the power supply loop; the light emitted by the light source (T) can simultaneously scan the grid on the grid strip (A) and the grid strip (B) so that the scanned grid is conductive.
  • the loop where the grid is located is turned on, and the electrical signal outputted by the loop on the grid strip (A) is processed to obtain a large scale value of the displacement of the object, and the loop of the grid on the grid strip (B) is output.
  • the electrical signal is processed to obtain a small scale value of the displacement of the object;
  • a gear disc (Y) is also fixed on the shaft (V),
  • the said axis (X) further has another set of gears of the gear plate with a plate (Upsilon) engaging ( ⁇ ), provided with a light source ( ⁇ ') on the gear plate ([zeta]); to the axis (X
  • the center of the circle is also surrounded by a circular grid strip ( ⁇ '), the grid on the grid strip ( ⁇ ,) is a grid of photovoltaic materials, connected on one side of the looped strip ( ⁇ ,) a ring conductor (C') connected to one pole of the power source, and the other end of each grid on the grid strip ( ⁇ ') is connected
  • the invention provides a switch type digital angular displacement sensor, which comprises a light source ( ⁇ ) rotating coaxially with an object generating an angular displacement, and an annular grid strip ( ⁇ ) is surrounded by the axis of the light source, the grid Each grid above the strip ( ⁇ ) has the same width, the net spacing between each grid is the same, and the grid width is equal to the net spacing between the grids.
  • the grid is a grid of photovoltaic materials.
  • one side of the grid strip ( ⁇ ) is connected with a ring conductor (C)
  • the other side of the grid strip (B) is connected with a conductive block (S) on the other side
  • the grid passes through
  • the ring conductor (C) and the conductive block (S) are connected in series in the power circuit; the width of the light emitted by the light source (T) is greater than the width of the grid on the ring grid strip (B);
  • the light source (T) is rotated, and the light emitted by the light source (T) scans the grid on the grid strip (B), so that the scanned grid is conductive, and the loop of the grid is turned on,
  • the electrical signal output on the loop is processed to obtain the angular displacement of the object.
  • the invention also provides a digital caliper using a switch type digital displacement sensor, which comprises a main sliding ruler and a secondary ruler, a displacement guide bar (U) is mounted on the main ruler, and a shaft (X) is mounted on the auxiliary ruler (K).
  • the shaft (X) is equipped with a light source (T), and a circular grid strip ( ⁇ ) is surrounded by the axis X.
  • Each grid has the same width, and the net spacing between each two grids is also The same, and the grid width is equivalent to the net spacing between the grids,
  • the grid is a grid of photovoltaic materials, and one side of the grid strip ( ⁇ ) is connected with a loop conductor (C), the grid strip ( B) The other side of each grid is connected with a conductive block (S), which is connected in series in the power supply loop through the ring conductor (C) and the conductive block (S); the light source (T) emits The width of the light is greater than the width of the grid on the annular grid strip (B); it also includes a gear amplifying mechanism that includes a shaft (V) that meshes with the displacement bar (U), the shaft (V) a gear plate (W) that is engaged with the shaft (X); a relative between the main ruler and the secondary ruler When moving, the displacement bar (U) moves, and the shaft (X) is rotated by a gear amplifying mechanism to rotate the light source (T) on the shaft (X
  • the invention also provides an electronic theodolite using a switch type digital angular displacement sensor, characterized in that: the vertical axis (R) of the theodolite is generated, and the light source (T) is mounted on the vertical axis (R), The grid strip ( ⁇ ) is centered on the vertical axis (R), and when the vertical axis (R) is rotated, the light source ( ⁇ ) is scanned to scan the grid strip ( ⁇ ).
  • the angular displacement is the vertical axis (R) of the theodolite, and the circular grid band (B) is set at the center of the vertical axis (R).
  • the vertical shaft (R) is sleeved with a sleeve gear (X) rotatable about the vertical shaft (R), and the sleeve gear (X) is provided with a light source (T), the vertical shaft (R)
  • the sleeve gear (X) is rotated by a gear amplifying mechanism to amplify the angular displacement of the rotation of the light source ( ⁇ ).
  • the gear amplifying mechanism includes a gear plate (W) fixed to the vertical shaft (R), the gear plate (W) and another shaft (Z) Engaging, the shaft (Z) is fixed with a gear disc (Y) meshing with the vertical shaft (S), the vertical shaft (R) rotating, sequentially driving the gear disc (W), the shaft (Z), The gear disc (Y) and the telescopic gear 00 rotate, so that the angular displacement of the rotation of the light source (T) is amplified.
  • the invention also provides an azimuth measuring instrument using a switch type digital angular displacement sensor,
  • a geomagnetic needle (M) that rotates with the axis (X) as the axis is generated, and a light source (T) is mounted on the geomagnetic needle (M), and the annular grid band ( ⁇ ) is the axis (X) Set for the center of the circle.
  • the light source ( ⁇ ) is scanned to scan the grid strip ( ⁇ ).
  • the invention also provides an inclination measuring instrument using a switch type digital angular displacement sensor, wherein the angular displacement is a solid pendulum (G) rotating with the axis (X) as an axis, and the light source is mounted on the solid pendulum (G) ( T), the annular grid strip ( ⁇ ) is set at a center of the axis (X), and when the solid pendulum (G) rotates under the force of gravity, the light source ( ⁇ ) is scanned to scan the grid strip ( ⁇ ).
  • the angular displacement is a solid pendulum (G) rotating with the axis (X) as an axis
  • the light source is mounted on the solid pendulum (G) ( T)
  • the annular grid strip ( ⁇ ) is set at a center of the axis (X)
  • the light source ( ⁇ ) is scanned to scan the grid strip ( ⁇ ).
  • the angular displacement is a solid pendulum (G) rotating with the axis (X) as the axis, and the annular grid band (B) is the other axis.
  • G solid pendulum
  • B annular grid band
  • W For the center of the circle, a light source (T) is mounted on the shaft O0, and the solid pendulum (G) rotates the shaft (W) by a set of gear amplifying mechanism to enlarge the angular displacement of the rotation of the light source (T).
  • the gear amplifying mechanism includes a shaft (Y) engaged with the solid pendulum (G), and one fixed to the shaft (Y) and the shaft ( W) Engaged gear disc (V), which rotates the shaft (Y), the gear disc (V) and the shaft (W) in sequence as the solid pendulum (G) rotates.
  • the present invention has the following advantages due to the above design:
  • the displacement sensing circuit of the displacement sensor provided by the present invention involves only a simple on and off relationship.
  • the displacement of the object causes the sliding body to slide on the motherboard attached to the grid.
  • the sliding body will give different switching signals at different positions on the motherboard grid, thereby judging the sliding body on the motherboard grid.
  • Position the displacement of the detected object is obtained.
  • the circuit signal is a simple digital signal that is turned on or off, this sensing device is called a switching digital sensing device.
  • the sensing device can adapt to harsh working environments, has high reliability, good stability, and low cost.
  • FIG. 1 is a view showing an embodiment of a switch type digital displacement sensor of a row of conductor grid strips
  • FIG. 2 is a view showing an embodiment of a switch type digital displacement sensor of a row of photovoltaic material grid strips; and FIG. 3 is a view showing an embodiment of a row of photoelectric material grids with a switch type digital displacement sensor;
  • Figure 4 is a view showing an embodiment of a switch type digital displacement sensor in which a row of photovoltaic material grids are arranged in multiple rows;
  • Figure 5 is a diagram showing an embodiment of a switch-type digital displacement sensor of a double-row conductor grid strip
  • FIG. 6 is a view showing an embodiment of a switch-type digital displacement sensor of a double-row photovoltaic material grid strip
  • FIG. 7 is an embodiment of a double-row photovoltaic material grid with a multi-row arrangement of a shut-off type digital displacement sensor Figure
  • FIG. 8 is a diagram showing an embodiment of a switch-type digital displacement sensor in which a double-row photovoltaic material grid is arranged in a plurality of rows;
  • FIG. 9 is a block diagram showing the data processing of the switch digital displacement sensor
  • Figure 10a is a schematic view of a switching digital displacement sensor using displacement amplification
  • Figure 10b is a schematic cross-sectional view of Figure 10a
  • Figure 11 is a diagram showing an embodiment of a switch-type digital grid strip of three rows of photovoltaic materials
  • Figure 12a is an embodiment of a switch-type digital displacement sensor using a three-row grid strip with displacement amplification
  • Figure 12b is a schematic cross-sectional view of Figure 12a
  • Figure 13 is a schematic diagram of a switch type digital electronic caliper
  • Figure 14a is a schematic diagram of a switch type digital electronic theodolite angle measuring instrument
  • Figure 14b is a schematic cross-sectional view of Figure 14a
  • Figure 15 is a schematic cross-sectional view of the switch digital electric azimuth sensor
  • Figure 16 is a cross-sectional view showing the structure of the tilt sensor model
  • Figure 17a is a schematic cross-sectional view showing the structure of the tilt sensor model for amplifying the angular displacement
  • Figure 17b is a schematic cross-sectional view of Figure 17a. Best mode for carrying out the invention
  • the displacement sensing device is composed of two parts, one part is a grid belt fixed on one object, and the other part is fixed on another object which generates relative displacement.
  • the switch component the movement of the object drives the sliding body (ie, the switch component) to slide on the grid belt, and the sliding body will give different switching signals at different positions on the grid belt, thereby judging the sliding body in the grid belt.
  • the position above gives the displacement of the detected object.
  • the grid strip is attached to the mother board, and the material used for the grid may be a metal conductor, and the corresponding conductive material slide also uses a metal conductor; the grid may also use a photoelectric material, and the corresponding conductive material slide is used.
  • Light source replacement As shown in Fig. 1, a switching digital displacement sensor embodiment using only one row of grids, the grid in this embodiment is a conductive material.
  • a row of conductive grids B and a conductor C are plated on the elongated non-conductive mother board, the shaded portions represent electrical conductors, and the non-shaded portions are insulators.
  • Grid strip B is fixed with the mother board to produce relative displacement On an object, each grid has the same width, the same net spacing between each two grids, and the grid width is equal to the net spacing between the grids.
  • C is the entire conductor, located in the ⁇ of the grid strip B, connected to the high level (or low level), but not in contact with the grid.
  • D is a metal slider having a width twice that of the B-row grid, which is in good contact with the grid B and the conductor C.
  • the B rows of grids are respectively connected to the low level (or high level) through the necessary processing of the wires, so that the grids and DC power sources on the rows of the conductors C and B constitute a plurality of loops, and each loop is in the grid and The gap between the conductors C is broken.
  • the initial state displacement is zero
  • the left side of the slider D is aligned with the left side of the first grid on the right side.
  • the displacement is detected, the slider D moves with the movement of the object.
  • the loop of the grid is turned on, an electrical signal is generated in the loop, and the signal is output to the data processing circuit for processing. Knowing the position of the slider D on the motherboard, the distance over which the slider D slides is the displacement generated by the object.
  • the width of the grid B and the net spacing between the grids can be appropriately adjusted according to actual needs. It is better to ensure that the width of each grid B is equal, the net spacing between the grids is equal, and the grid width is adjusted. Equivalent to the net spacing.
  • the slider D must be in contact with the grid B. If the width of the slider D is smaller than the clear spacing between the grids B, the non-conductive position of the slider D in the interval of the grid B may occur, and the slider D cannot give the grid B at this time. The signal is such that the measurement result cannot be given. Therefore, the slider D width should be greater than the net spacing of the grid B. When the width of the slider D is larger than the spacing of the grid B, the slider D may hit two or more grids B at the same time, and then the two (or several) grids B may be combined. Determine the position of the slide D.
  • the slider D it is most convenient to make the contact width of the slider D and the grid twice as large as the grid B pitch (the equal width of the grid B is equal). Because the width of the slider D is equal to twice the spacing of the grid B under the condition that the width of the grid B is equal to the width of the grid B, the slider D simultaneously hits two grids (representing the slider D between the two grids) The probability of the position of the vacancy is equal to the probability that the slider D only touches a grid (representing the position of the slider D at the grid), then the scale of the "scale" of the grid B is linear. Uniform, this is very convenient D.
  • the "scale” of the grid B is “read” by the slider D. "It is not necessarily linear, even, although it is still possible to identify with data processing methods, but it is not convenient, so it is not desirable.
  • the conductor C of the entire strip shape can also be replaced by other means for ensuring that the slider D is kept in communication with one pole of the power source, for example, a pole of the power source is connected to the slider D by a wire.
  • a pole of the power source is connected to the slider D by a wire.
  • the grid in the embodiment of Fig. 2 is an optoelectronic material.
  • the B row grid conductive material in Fig. 1 is replaced with a photoelectric material. Photoelectric materials are illuminated when exposed to light The resistance is very small, and the resistance is large when there is no light, so it is relatively conductive when illuminated, and relatively insulated when there is no light.
  • the conductor C should be in contact with the B row grid, and the other end of the B grid is connected with the conductive block S, and the rest are consistent with the connection manner of the grid using the conductive material in Fig. 1, and the data processing method is still not measured when measuring the displacement. change.
  • the slide D is replaced by a light source T, the light source can be selected with a laser emitter, and the laser emitter has a stable light source.
  • the width of the light is twice the width of the grid.
  • the light source ⁇ is not in direct contact with each grid, and the size of the photovoltaic material grid can be small, the reliability and measurement accuracy of the sensor can be greatly improved.
  • each grid ⁇ leads out a single wire. If the sensor has a large range and the number of ⁇ grids is large, the number of wires may be too large.
  • Figure 3 shows a laser digital displacement sensor as an example. The wiring of the grid ⁇ in Figure 2 is grouped to reduce the number of wires.
  • is a grid of photovoltaic material grids (where the shaded parts of the sand dots are photoelectric materials), each grid has the same width, and the net spacing between each two grids is the same, and the grid
  • the equivalent of the net spacing between the width and the grid numbered 1, 2, 3;
  • C is the conductor C of the common conductive material connected to the ⁇ , and connected to the high level (or low level);
  • S blocks are also numbered 1, 2, 3, and correspond one-to-one with the number of the grid.
  • All the numbered outlets on the entire grid are connected together, that is, all the numbered 1 leads are connected together, all the numbered 2 leads are connected together, and all the numbered 3 leads are also connected. Together (not shown in Figure 3).
  • These three sets of leads are collectively referred to as L, and are respectively connected to the three pins of the single chip microcomputer.
  • T is the laser beam.
  • the B grid block to which the beam T is irradiated will generate a current, and the circuit in which it is located is in a conductive state, the corresponding MCU pin will get a high level (or low level) signal; and the unilluminated B
  • the grid block does not generate current (or the current is relatively small), and its circuit is relatively insulated, so the corresponding microcontroller pin will get a low (or high) signal.
  • the three signal input pins of the microcontroller will receive a sequence of signals that alternate between high and low levels.
  • the cyclic sequence of the number of the B-grid blocks in which the high-level B-grid blocks are sequentially generated is as follows:
  • This cyclic sequence of level signals can be conveniently identified by a single chip microcomputer. Since the cyclic sequence of the level signals is different when the light beam moves to the left and right, the moving direction of the light beam can be distinguished according to the arrangement of the level signal sequences. For example: If the B grid block numbered 2 is now illuminated by the beam, then the photoelectric grid block will be in a conducting state, then its lead line is high (assuming C is connected to the ⁇ level), ie high level The B grid block of the state is numbered 2.
  • the next illuminated B grid block will be "3" or "1" when the beam is moving. If the beam width is twice the grid width, it will be "2 and 3" or The state in which "2 and 1" are simultaneously illuminated, that is, the next B-grid block that appears to be in a high state is "2 and 3" or "2 and 1". If the beam moves in the left-hand direction, the next high-level grid block that appears next is "2 and 3"; conversely, if the beam moves to the right-hand direction, the next high-level grid block that appears next For "2 and 1". A sequence or a displacement amount of a level signal in the memory history is stored using a register or the like.
  • the single chip computer compares the current signal according to the historical signal memorized in the register, and can determine the direction of the beam scanning according to the predetermined law. If the left hand is the positive direction of the displacement, then when the beam T is scanned on the B grid strip, the position of the beam T is shifted by the width of a B grid block, and the level signal is abruptly changed.
  • Direction of movement of the beam T If the level signal of the history is compared, the MCU determines that the beam T is shifted to the left by one frame, adding a width of the B grid to the previous displacement, and vice versa, subtracting a B grid. The width of the grid, resulting in a new amount of displacement. This new displacement, and its current level signal, is then stored and stored for use in determining the next displacement increment (positive or negative).
  • the principle of the above measurement is the principle of the counter: By determining the direction in which the beam T moves, the addition and subtraction relationship at the time of counting, that is, the sign of the increment is determined, and the increment is added to the original number to obtain the latest value. Therefore, this structure can ensure that the sign of the increment can be recognized, that is, the direction of movement of the beam T can be judged.
  • the determination of the direction of movement of the beam T can be achieved by using three different numbers of photovoltaic material grid blocks. Of course, the same purpose can be achieved by using three or more different numbers of photovoltaic material grid blocks.
  • This counter principle incremental measurement method makes it very convenient to use when measuring. At the same time, simplification in construction and manufacturing processes contributes to improved reliability and accuracy.
  • This counter-type sensor is only suitable for situations where power is not being applied during measurement or when the data processing system has data memory function during power failure.
  • Figure 4 shows a single-row grid with a multi-row counter-displacement sensor.
  • the scheme actually only disassembles the 1, 2, 3 grids arranged in a row in Figure 3 and arranges them into a 3-row grid to form a grid strip group. All grids numbered 1 are listed in the grid strip B1. On the top, all the grids numbered 2 are listed on the grid strip B2, all grids numbered 3 are listed on the grid strip B3, and the grid is laterally The position is unchanged, just staggering one line down.
  • each unit 4 is also divided into a plurality of units, and the distribution of each unit grid is the same, each unit contains 3 grids, and is evenly distributed on the 3 rows of grid strips. Since the grids with the same number are input to the same signal input end of the single chip microcomputer, two rows of conductors are respectively connected on both sides of each row of the grid strip in FIG. 4, and one is connected to the high (or low) level, as shown in FIG. As shown, the other one is input to the microcontroller as a signal terminal, as shown by Cl, C2, and C3 in Figure 4. Among them, Bl, B2 can share a conductor 0 to connect high (or low) level.
  • Such a grid distribution method can combine the wires of each grid connection into conductive strips Cl, C2, C3, which makes the structure simpler and easier to implement, and the photoelectric grid can be made more precise, which is beneficial to the resolution of the sensor. Rate and reliability.
  • the length of the laser is the same as the length of the grid strip set, covering three strips at the same time.
  • a switch-type digital displacement sensor using a double-row grid strip is a displacement sensor using a conductive material for the grid.
  • a row of conductor grids A are placed on the strip-shaped non-conductive mother board, and the grid A is located on the other side of the conductor C.
  • Each grid A is individually connected in series in the loop.
  • each unit consists of 5 grids.
  • the distance between the center of the split of the grid A should be the width of one unit of the B grid.
  • the position judgment of the slide is divided into two parts, one part represents the relative large number of the slide position (representing which unit the slide is located), and the other part represents the relative decimal position of the slide position (the slide is located on the specific unit)
  • the sensing device determines the relative large and relative decimal positions of the sliders, respectively, and together determines the position of the slider. Then, depending on the position of the slider, the displacement of the object is displayed by the data processing system and the digital meter.
  • each bit consists of one, ten, one hundred, one thousand... a specific number; when the number of grid strips is increased, the one level of the grid strip (such as A) lowers it by one level.
  • the grid strip (such as B) is divided into several similar units, so that the grid strips of each level form a regular carry structure.
  • B is equivalent to representing a single digit
  • A can represent ten digits.
  • the carry-over relationship between B and A is determined by the structure of the grid, and is not necessarily decimal.
  • the coding principle of the multi-level grid described above is that when encoding, the relationship between the high and low levels is a carry relationship.
  • the grid A is separated by a slit at regular intervals, and the center distance of the slit should be an even multiple of the grid width on the B grid.
  • the width of the A-row grid should be equal to the total width of one unit of the B-row grid minus the net spacing between grids A.
  • the net spacing between each grid A should be relatively narrow and should be much smaller than the width of grid A and less than the net spacing between grids B. This is to ensure that the slider D can at least touch one of the two adjacent grids A while sliding over two adjacent A grids. According to the position of the slide D on the grid A, combined with the position of the slide D on the grid B, the exact position of the slide D can be judged by the single chip microcomputer.
  • the width of the grid B is 1 awake, the net spacing is also 1mm, and the B-row grid contains 5 grids B.
  • the slider D In the initial state, the slider D is displaced to zero, and the left side of the slider is aligned with the left side of the first B grid on the right.
  • Lead wires from the A-row grid and the B-row grid are connected to the input pins of the MCU.
  • the microcontroller can determine the level signal on the lead.
  • the slider D slides on the motherboard, it will cover the grid at the same position on A and B.
  • the loops of the two grids are turned on, and the terminal F is connected in the loop.
  • the leader line is high.
  • the MCU obtains the level signal of the corresponding lead wire, and then judges the position of the slider D on the A grid and the B grid according to the internal program, and then obtains the sliding displacement of the slider D on the motherboard.
  • the single-chip microcomputer can be directly implanted into the sensor, and only the power supply from the outside of the sensor is provided, and the data processed by the single-chip microcomputer is output through the interface of the sensor.
  • FIG. 6 Another embodiment can be obtained by replacing the A and B rows of grid conductor materials in Figure 5 with an optoelectronic material, see Figure 6.
  • This solution also adds a grid strip A on the basis of FIG.
  • the conductor C should be in contact with the B row grid
  • the conductive block 0 is connected at the other end of the A grid
  • the conductive block S is connected to the other end of the B grid
  • the rest are connected with the grid sensor of FIG.
  • the method is consistent, and the data processing method remains unchanged when measuring displacement. In this way, a range of photovoltaic materials corresponding to Figure 5 can be obtained. Larger wiring and signal processing is a simpler solution.
  • Fig. 7 is a view showing a scheme in which the B-grid strips arranged in a row in the grid strip shown in Fig. 6 are changed to a 5-row arrangement to improve the reliability of the sensor structure.
  • the principle that the B grid strips are changed from one row to five rows is the same as the principle of changing the row B grids in Fig. 3 to the three rows in Fig. 4, and will not be described again.
  • Figure 7 the B-grid is divided into 5 rows, and different arrangement and combination can also be performed.
  • Figure 8 is an arrangement of various permutations and combinations of B-grid distributions, which are actually combined between the internal grids of the first-level grid strip B to expand the length of one unit of this level. .
  • the arrangement shown in Figure 8 can be obtained by arranging and combining the grids in the first-level grid strip group (grid strip B, the lower five rows of grid strips in Figure 7) in Figure 7.
  • a grid on the grid strip A corresponds to a unit N of the grid strip group.
  • the beam T contains the encoding of the lower 5 rows of grid strips at the same position, and the 5 signals output by the laser scanning position. Formed a code.
  • the signal received by the single-chip microcomputer can be regarded as "01100" from top to bottom, and the position code on the left side of T is regarded as "01010", and the position code on the right side of T is regarded as "10001".
  • the length of the unit composed of the 5-row grid of the first-stage grid strip B in FIG. 7 is greatly increased, so that the number of the second-stage grid strip A can be reduced, and the number of lead-out lines of the grid strip A can be reduced. , to achieve a simplified structure and improve system reliability. If the grids inside the grid strips are similarly combined, the number of leads can be greatly reduced and the number of microcontroller interfaces can be reduced.
  • the microcontroller can be used for signal analysis and processing.
  • 9 is a schematic diagram of the data processing system of each grid output terminal connected to the single chip in FIG. 5, L is a sensor lead line, F is a terminal block in the loop, H is a single chip data processing system, I is a digital display device, and the PC is a microcomputer. .
  • the present invention also provides a switching digital displacement sensor using displacement amplification. This sensor is used to measure the line displacement of an object. In order to improve the resolution of the sensor, the line displacement can be physically amplified and then measured. Through the gear transmission amplification system, the displacement of the line to be measured can be converted into a large angular displacement, and then the angular displacement is measured.
  • This gear drive amplification system is similar to a dial gauge, a minute gauge, and the like.
  • a displacement-amplified switching digital displacement sensor is used for a row of grid strips.
  • the displacement bar in the present invention is a metal strip U (like a metal rod which can be extended and retracted on the dial gauge), and other materials such as non-metal materials can also be used, and only U has to have appropriate strength, rigidity and Durability and reliable transmission of the displacement to be measured to the gear V.
  • the straight metal strip U-side and the gear shaft V are engraved with precision ridges, the U-tooth meshes mesh with the V-grooves, and the gear shaft V is fixed with a larger diameter.
  • the gear shaft X is also engraved with precision ridges and meshes with the ribs of the gear plate W.
  • a laser beam T having a constant beam width.
  • a circular photoelectric strip with a certain radius is placed at the center of the axis of the gear shaft X.
  • the circular grid tape ⁇ is expanded into strips, as shown in Figure 2.
  • the grid strips of Figures 3 and 4 can also be used.
  • the grid strip of Figure 1 can also be used if the laser beam is replaced by a conductive slider.
  • the gear shaft V (and the gear disc W) is driven to rotate, and then the gear shaft X is rotated, and the laser beam ⁇ is scanned on the photovoltaic material grid.
  • the grid strip will give a coded signal of different circuit on or off, and the coded signal can be processed by a single chip microcomputer to determine the position of the laser beam ⁇ on the grid strip, and then The displacement to be measured is obtained. That is to say, the grid is connected in series in the power circuit. When there is no beam, the power circuit is disconnected.
  • the grid is conductive, and the power loop of the grid is turned on. The electrical signal in the loop is output to an external data processing circuit, and the position of the laser beam on the grid strip and the distance scanned on the grid strip can be judged, that is, the displacement of the metal strip u is obtained.
  • the signal analysis processing by the single chip microcomputer can determine the number of turns that the beam ⁇ sweeps when scanning on the ring grid, so that the cyclic grid belt can be repeatedly recycled, thereby obtaining a large Range.
  • a grid strip can be added to the side of the grid strip in Fig. 2 with the axis X as the center. After the annular grid strip is expanded into strips, as shown in Figure 6.
  • the grid strip ⁇ shares the loop conductor C with the grid strip B.
  • the grid on A is also connected to a conductive block 0 on the other side, and is connected in series through 0, the laser beam T covers the grid on the grid strips B and A at the same time, and the grid loop irradiated by the laser beam T Turning on, the level signal output from the loop where the B grid and the A grid are located is processed to obtain the position of the beam, and then the displacement to be measured is obtained.
  • the grid of Fig. 6 can also be replaced with the grid of Fig. 7 and Fig. 8.
  • the above method cannot accurately determine the number of turns of the beam scanned on the ring grid, because the beam is scanned to a specific position for the first time and thereafter.
  • the resulting signals are the same.
  • a third row of annular photoelectric grids A' may be disposed on one side of the two rows of annular grids for identifying the circle of the laser beam T sweeping through the grids B and A. number.
  • gears Y and Z are mounted at the same height of the shaft V and the shaft X, wherein the gear Y is fixed on the shaft V; and the gear Z is sleeved on the shaft X, but is not fixed, that is, the gear Z and the shaft X can be rotated relative to each other; adjusting the radius relationship between the gears Y and Z, the multiple of the angular displacement of the shaft X and the angular displacement of the gear Z can be adjusted.
  • a laser emitter T' is mounted on the gear Z to scan the third row of photovoltaic grids A'.
  • Adjusting the gear drive system magnification and the width of the grid A, etc. ensures that the beam T scans a full circle, and the beam ⁇ just scans the width of one grid on the photoelectric grid A'.
  • an optoelectronic grid A' is additionally added to one side of the two rows of photoelectric grids, and the grid A'-side is a loop conductor C', and C' is connected to a high level (or a low level), and the grid The other side of A' is connected to the conductive block 0', and is connected to the data processing circuit through the lead line L, thereby forming a loop which is in an off state without laser irradiation, and operates in the same manner as the grid strips B and A.
  • the number of turns of the light T sweep can be read, and the position of the light T on the ring photoelectric grid can be read, so that the displacement of the light ⁇ sweep can be judged.
  • the displacement of the object can then be obtained.
  • the width of the grid on the grid strip A' can be determined as needed.
  • the principle is that the width of each grid is equal; the laser beam T, the number of grids scanned on A, the grid, is equal to the number of turns of the T beam illuminated on the A grid; A' grid In the sum of the widths of the grids plus the total spacing between the grids, not greater than A, the circumference of the circumference of the grid strip. If it is necessary to measure the number of turns of the beam T on the grid A, the width of each A' grid is smaller, so that more grids A can be arranged in a range of circumferences. On the other hand, if the number of turns scanned by the measuring beam T on the grid A is relatively small, the width of each A' grid can be larger.
  • the width of the grid A' should be equal to or less than one tenth of the circumference of the circumference of the A' grid; If the maximum measurement is required to illuminate the T-beam on the grid A for 15 turns, the width of the grid A' should be equal to or less than one-fifth of the circumference of the circumference of the grid A'.
  • the spacing between the grids is the same as that of the A grid, that is, the spacing between the grids on the grid strip A should be much smaller than the width of the grid A' and significantly smaller than the beam ⁇
  • the width may be taken as 0. 5ran, to effectively prevent misjudgment.
  • the width of the beam T' must be greater than the net spacing between the grids of the grid strip A', so as to avoid the fact that all the beams ⁇ are only irradiated in the gap between the grids, so that it is impossible to judge the beam illuminating. Position; and the width of the beam ⁇ should be smaller than the width of the grid A', so as to avoid the situation that the beam ⁇ is simultaneously irradiated on the three grids A, which increases the difficulty of data processing.
  • the high and low level signals are processed by the single chip microcomputer, and the signal line transmission level signals are extracted from the loops where the respective grids are located.
  • the signals outputted by the B grid strips and the A grid strips can be combined to determine the laser beam T on the ring grid.
  • the specific position of the A' grid strip output determines the number of turns of the laser beam T swept over the ring grid (the ring grid), and the microcontroller processes these level signals according to the set logic decision rules. To the displacement to be tested, and can control the digital display device to display relevant data, and can easily communicate with the computer. See Figure 9.
  • the light source uses a laser emitter, or other light-emitting devices such as light-emitting diodes, etc., as long as the light source can ensure that the light-emitting material can produce a significant light-guiding effect.
  • the metal strip U-side and the gear shaft V have a tooth pattern of 0.5 mm per circumference on the circumference of the gear shaft V, and the radius of the gear W is five times the radius of the gear shaft V.
  • the gear shaft X and the gear shaft have the same V radius, and the gears Y and Z have the same radius.
  • the radius of the grid strip B is 10 times the axis X of the gear.
  • the amount of displacement of the beam on the circular grid is 50 times the multiple of the displacement of the metal strip U (ie, the displacement of the object). If the circumference of B is set to 200 legs, the displacement of the metal strip U corresponding to the laser beam T sweeping through a circle of grids is 4 legs. The resolution of the sensor is 0. 5 ram, then the resolution of this sensor is 0.01 awake.
  • the magnification of the gear mechanism, the resolution of the grid strip, and the angular displacement factor between the laser beam T and ⁇ can be adjusted as needed to adjust the resolution and range of the sensor.
  • a commonly used micrometer with a resolution of 0. 001mm is also used to convert the line displacement into an angular displacement after the gear drive amplification mechanism, and then use the pointer to indicate the reading on the dial. Since the micrometer is made with precision, the displacement magnification is about one thousand times when the accuracy is ensured.
  • the laser beam T is used as a pointer, and there is no weight, friction, etc., so that it is more reliable than the micrometer when the same displacement magnification is used.
  • the circular grid strip has a finer scale and a higher resolution than the dial. Therefore, the resolution of the above sensing device can be higher than that of the minute.
  • the MCU processes the signal and transmits the corresponding data to the secondary instrument or computer through a standard interface (such as a serial port, etc.), which realizes modularization and is convenient to use.
  • a standard interface such as a serial port, etc.
  • the caliper can be mainly divided into three types: a vernier caliper, a table caliper and a digital caliper (electronic caliper) according to the reading manner.
  • the vernier caliper is a rule-type hand-held universal length measuring tool that uses the cursor principle to subdivide the readings, that is, the difference between the scribe line spacing (referred to as the line spacing) on the main ruler and the line spacing on the vernier scale is used to read the fractional part.
  • the integer part of the magnitude is read from the master ruler and the fractional part is read from the vernier scale.
  • Commonly used are 0. lmm, 0. 05mm and 0. 02mm 3 kinds of minimum reading value.
  • the pitch of the precision rack and gear is known as the length, and the indicator with the corresponding index is used as the hand-held length measuring tool for the enlarged, subdivided and indicated parts.
  • the caliper with the table can solve the reading error of the vernier caliper. 0 ⁇ Both common minimum readings are 0. 05mm and 0. 02mm two.
  • the existing digital calipers generally adopt a measuring system such as a capacitive grid type, an eddy current type or a grating type, and a digital hand-held length measuring tool, also known as a digital display caliper, has a resolution of 0. 01mm, its reading is intuitive and clear, with more functions and higher measurement efficiency.
  • Non-digital calipers such as vernier calipers and watch calipers
  • digital calipers are gradually being replaced by digital calipers because they are relatively cumbersome to read, have a single function, and are far less convenient to use than digital calipers.
  • the more mature technologies are mainly capacitive grid type, eddy current type and grating type.
  • these caliper structures are relatively complicated, and there are widespread problems that are susceptible to measurement environmental conditions such as humidity, dust, or electromagnetic interference.
  • the digital caliper proposed by the present invention is an application of a displacement-amplified digital displacement sensor on a digital caliper.
  • the digital caliper is composed of a main ruler U and a sub-foot K.
  • the sub-foot K can slide on the main ruler U, and the distance between the main ruler and the auxiliary ruler is the displacement to be measured.
  • the gear transmission amplification system By engraving the tooth on the main ruler U of the caliper and installing the gear transmission amplification system on the sub-foot K, the relative linear displacement between the main ruler and the auxiliary ruler is converted into an angular displacement amount, and the angular displacement is measured. After conversion, the amount of line displacement can be obtained, and then the function of the caliper can be realized.
  • the gear transmission amplifying system on the rack and the sub-scale on the main ruler is similar to the conventional structure with a table caliper or a dial gauge, a minute gauge, and the like.
  • FIG. 13 the side of the main ruler U is engraved with precision ridges; the circular part of the sub-foot K is a displacement amplification and measuring system, and the entire sub-foot can slide on the main ruler.
  • the circular part is actually a displacement sensor, the principle is exactly the same as Figure 10.
  • V is a gear shaft with precision ribs engraved thereon, and the teeth of U mesh with the ribs of V; a large diameter gear wheel W with precision ribs is fixed to the gear shaft V.
  • the gear shaft X is also engraved with precision ridges and meshes with the ribs of the gear disc W.
  • a light-emitting device such as a laser emitter is mounted on the gear shaft X, and a laser beam having a constant beam width is centered on the axis of the gear axis X, and a ring-shaped photovoltaic material grid strip B having a certain radius is placed.
  • the annular grid strip After the annular grid strip is unfolded, it becomes a strip shape, and the arrangement of the grid strips can be selected from one of the above figures 1, 2, 3, 4, 5, 6, 7, and 8.
  • the displacement sensing device of the circular portion is as shown in Fig. 12, and the grid strip is selected according to the scheme of Fig. 11.
  • the invention also provides a switch type digital angular displacement sensor, and the principle of the switch type angular displacement sensor is basically the same as that of the digital displacement sensor using displacement amplification.
  • the digital displacement sensor using displacement amplification measures the line displacement generated by the object, so it is to first enlarge the displacement of the line to be measured into an angular displacement corresponding to the displacement of the line to be measured through the gear transmission amplification system, and then measure the angular displacement. , thereby achieving the purpose of measuring the displacement of the line to be measured.
  • the measurement of the angular displacement is generally measured indirectly by measuring the length of the arc corresponding to the angular displacement.
  • the switch type digital angular displacement sensor there is no displacement guide bar, that is, there is no problem of converting the line displacement into angular displacement, but directly (or after amplification by the amplification system), the angular displacement is measured, and the angular displacement measurement is performed.
  • the method is the same as that of a ⁇ -type line displacement sensor using displacement amplification.
  • the theodolite has three types of cursor theodolite, optical theodolite and electronic theodolite.
  • Cursors Theodolites are typically metal dials, cursor readings, and tapered shafts, which are currently rarely used.
  • the optical theodolite has the advantages of high reading accuracy, small size, light weight, etc., and is widely used.
  • the electronic theodolite has high precision, digitization and many functions, and is very convenient to use.
  • Electronic theodolites have gradually replaced the optical theodolites.
  • the electronic theodolite adopts a new type of dial carving, generally in the form of three dials, namely a grid dial, a grating dial and a code dial.
  • the angle measurement method of the existing electronic theodolite is mainly the photoelectric incremental angle measurement, and the principle is the grating displacement measurement principle, and the high-precision grating dial is used.
  • the existing electronic theodolites have excellent performance, but due to their complicated technology, high production process requirements and high cost, they have not been widely used.
  • the switch type digital electronic theodolite angle measuring instrument is a sensor for amplifying the displacement with the displacement shown in Fig. 10a and Fig. 10b, by scoring the precision tooth on the vertical axis of the theodolite, and amplifying the angular displacement of the vertical axis by the gear transmission amplification system. , measure the angular displacement of this magnification, and obtain the angular displacement of the vertical axis after conversion.
  • the angular displacement of the vertical axis is also the horizontal angle measured by the theodolite.
  • a light-emitting device such as a laser emitter
  • a beam of a certain width is emitted toward the outer diameter while With this axis as the center of the circle, a ring of photovoltaic material grids distributed in a regular pattern is placed.
  • the beam will be scanned on the annular grid of photovoltaic material by the conversion of the gear system.
  • R is the vertical axis of the theodolite
  • W is a larger diameter gear plate fixed on the R axis, which is engraved with precise ridges
  • X is a fixed on the R axis.
  • Sleeve structure, X It can rotate relative to R, but its spatial position is fixed by the R axis, X is also engraved with precise ridges, and X is equipped with a laser emitter (or other light source) to emit a beam with a small beam width toward the outer diameter direction;
  • the Z axis is the axis parallel to the R axis in the theodolite, and its spatial position remains fixed and does not rotate with the rotation of the axis R;
  • V and Y are gear plates engraved with precision ribs, where V and W mesh, Y and X Engagement;
  • B is a ring-shaped photoelectric material grid strip with a larger radius, centered on the axis R, and the annular grid strip is arranged in the same manner as the B-grid strip in FIG.
  • the light source on X emits a radial beam
  • the beam emitted on it will also rotate, so that the beam will be scanned on the grid of annular photoelectric material, working principle and displacement amplification
  • the digital displacement sensor is the same. ⁇
  • the displacement of the beam on the grid of the ring-shaped photoelectric material can be identified. By appropriate conversion, the corresponding angle is obtained, thereby realizing the measurement of the angle.
  • magnetic sensor technologies for detecting geomagnetic signals mainly include fluxgates, magnetoresistive sensors, magnetic induction sensors, and magnetic needles.
  • the fluxgate is bulky, complex in structure, high in cost, and difficult to miniaturize, and the reliability is not high enough.
  • Magnetoresistive sensors, small in size, high in sensitivity, strong in immunity to electromagnetic noise, etc., have high reliability, but their technical difficulty and cost are still high.
  • the magnetic needle type electronic compass structure and principle are very simple, easy to maintain and use, and its accuracy can also meet the requirements of many projects, and the cost is relatively low, so the application is more common.
  • a commonly used portable inclinometer uses magnetic needle orientation, and then uses the potentiometer principle to measure the angular displacement of the magnetic needle to determine the orientation of the borehole.
  • This kind of equipment can basically meet the needs of engineering and occupy a certain market share, but it is not ideal enough for measurement accuracy and ease of use.
  • the invention provides a switch type digital electric azimuth angle sensor based on magnetic needle orientation.
  • a magnetic needle sensitive to geomagnetic signals can be freely rotated about an axis in the horizontal plane to ensure that it points in the same direction as the earth's magnetic field.
  • a light source is fixed on the magnetic needle, and a radial beam having a certain beam width is emitted, so that the direction of the beam is the same as the direction of the magnetic needle.
  • a ring-shaped grid of photovoltaic material distributed according to a certain regularity is placed around the axis of rotation of the magnetic needle. Then, when the magnetic needle rotates, the light beam will be scanned on the annular grid strip of the photovoltaic material.
  • This azimuth measurement is simple in principle, reliable in structure, low in cost and high in accuracy.
  • M is a magnetic needle sensitive to the geomagnetic field, free to rotate around the X axis, and M and X
  • the friction torque between the shafts is very small, so the M magnetic needle can sensitively indicate the direction of the magnetic field
  • a light source is mounted on the M magnetic needle, and the light source can emit a radial beam T having a certain beam width, the beam direction is generally the same as the magnetic needle pointing, or The direction of the beam has a certain relationship with the orientation of the magnetic needle
  • is a ring of circular photoelectric material with a certain diameter placed at the center of the axis of the X-axis.
  • Inclination sensors are widely used in geological drilling, mining, industrial control, automotive, aerospace, construction, etc.
  • the gravity pendulum tilt sensor is used for measuring the inclination of the object by the plumb line provided by the force of gravity, including solid pendulum type, liquid pendulum type, gas pendulum type, and the principle and structure are simple and used. Convenient, high precision, low cost, and widely used.
  • the signals of the current gravity tilt sensor are basically analog, so there are still some limitations in terms of anti-electromagnetic interference and analog signal transmission.
  • the present invention in combination with the above-described digital displacement sensor for displacement amplification, provides a switch type digital solids tilt angle sensor.
  • the solid pendulum is used as a sensitive element. When the object is tilted, the solid pendulum stays in the direction of gravity, so it will rotate around a fixed axis. Measure the angle of rotation of the solid pendulum to obtain the tilt angle of the object.
  • a light source is mounted on the solid pendulum to emit a radial beam of a certain beam width such that the beam is directed at the same direction as the gravity pendulum.
  • a ring-shaped grid of photoelectric material materials distributed according to a certain regularity is placed at the center of the rotation axis of the gravity pendulum. Then, as the solid swings around the axis, the beam will be scanned over the strip of optoelectronic material.
  • G is a solid gravity pendulum that can rotate freely around the axis X.
  • a light source is mounted on the G, and the light source can emit a radial beam having a certain beam width.
  • the beam direction is generally the same as the solid pendulum direction, or the beam direction has a certain relationship with the solid pendulum orientation; ⁇ is centered on the X-axis axis.
  • a grid of annular optoelectronic material with a certain radius After the annular grid strip is unfolded, the grid distribution can use one of the figures 1, 2, 3, 4, 5, 6, 7, and 8.
  • the solid gravity swing G rotates, and the light source is scanned on the grid belt to measure the tilt angle.
  • G is a solid gravity pendulum with a precise tooth pattern on the pendulum
  • X is the axis of the fixed gravity pendulum
  • the gravity pendulum G can Rotating around the X axis; a smaller gear R is fixed to a larger diameter gear plate V.
  • R and V are one.
  • the gear R meshes with the gear on the gravity pendulum G, and V meshes with the other gear W
  • Y is the axis fixed by R and V, R and V can be rotated about the Y axis;
  • the gear W is fixed on the Z axis, W It can be rotated around the Z axis.
  • W is equipped with a laser emitter (or other light source) that emits a beam T having a small beam width toward the outer diameter;
  • B It is a ring-shaped photoelectric material grid strip with a large radius and is set with the axis Z as the center. After the annular grid strip is unfolded, the distribution of the grid can be one of the figures 1, 2, 3, 4, 5, 6, 7, and 8.
  • the gravity swing G rotates, and the gear on the upper side drives R to rotate, which in turn causes the V connected to R to rotate, which in turn causes W to rotate. Therefore, the angular displacement of the gravity pendulum is amplified by this gear system.
  • R, V, and W you can adjust the magnification of the G-angle displacement of the gravity pendulum, such as 100 times. Since the light source on W emits a radial beam, when the gravity pendulum G rotates, the beam T emitted on W will undergo more rotation, so that the beam is scanned on the annular photoelectric material grid, and the working principle and displacement are amplified.
  • the digital displacement sensor is the same.
  • the displacement sensing circuit of the displacement sensor of the present invention involves only a simple on and off relationship.
  • the displacement of the object causes the sliding body to slide on the motherboard attached to the grid.
  • the sliding body will give different switching signals at different positions on the motherboard grid, thereby judging the sliding body on the motherboard grid. Position, the displacement of the detected object is obtained.
  • the circuit signal is a simple digital signal that is turned on or off
  • the sensing device is called a switching digital sensing device.
  • the sensing device can be adapted to harsh working environments with high reliability, stability and low cost.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

开关式数字位移传感器及其应用 技术领域
本发明涉及量测物体位移的传感器及其应用, 特别是关于一种开关式数字 位移传感器及其应用。 现有技术
在现有技术中, 已有很多测量位移的传感装置。 这些位移传感装置可分为 模拟式和数字式两大类, 主要有电位器、 电阻应变式、 电容式、 电感式、 涡流 式、 光电式以及光栅式、 感应同步器式和磁栅式等。 这些传感装置技术都比较 成熟, 在适宜的工作环境下, 其产品能满足测试要求。
例如常见的电位器就是一种简单实用的位移传感器, 它的基本原理是采用 一个电刷在电阻上滑动, 根据电路中电阻的变化来判断电刷的位置, 根据电刷 与电阻的位移的关系得到物体的位移。 但是, 由于电位器中电阻的阻值是随温 度和湿度环境而变化的, 信号传输线电阻及其随温度的变化也会引起误差, 而 且根据电路中电阻的变化来判断电刷 (即物体) 的位移时精度也有限, 所以电 位器的应用存在较大的局限性。
在机械、 材料、 土木工程等许多涉及环境条件复杂的实验室量测和现场量 测中, 位移传感器的工作条件往往比较恶劣。 温度、 湿度、 压力等外部条件的 剧烈变化以及电场、 磁场干扰甚至断电等对位移传感装置的工作稳定性提出了 更高的要求。 在科研和工程实践的许多位移量测工作中, 目前还难以获得量测 工作稳定性较高的位移传感器, 甚至还可能无法得到测量数据。 这主要是因为 目前传感器的抗干扰能力难以满足这些测量环境的要求。 例如, 电位计、 电阻 应变式等对温度、 湿度比较敏感, 电容式、 电感式、 容栅式、 磁栅式等电磁测 量原理的传感器一般屏蔽要求较高, 这些局限性会降低位移量测的可靠性。 发明内容
本发明的目的是提供一种开关式数字位移传感器及其应用。
为实现上述目的, 本发明釆取以下技术方案:一种开关式数字位移传感器, 它含有固定在产生相对位移的一个物体上的一条代表刻度的栅格带 (B), 该栅 格带(B)上的栅格是可导电的栅格,其中每一个栅格均串接在一个电源回路中, 该电源回路在栅格所在位置是断开的; 还含有一个固定在所述产生相对位移的 另一个物体上的一个开关部件, 该开关部件能够随着两个物体产生的相对位移, 移至栅格带 (B)上的栅格处, 使得该栅格所在的回路导通, 并从该回路上输出 电信号, 该电信号经过处理后表示出两个物体的相对位移量。
上述的开关式数字位移传感器中, 每个栅格(B) 的宽度都相同, 每两个栅 格之间的净间距也相同,且栅格宽度与栅格之间的净间距等值;在该栅格带(B) 的一侧还固定有一条导电电极 (C), 与所述栅格带 (B) 之间绝缘, 该导电带与 电源的一极连接, 所述栅格带 (B) 上的每一个栅格均通过各自的导线 (L) 与 数据处理系统连接, 所述导电电极(C)与所述栅格和数据处理系统形成一个断 开的电源回路; 所述开关部件是一个导电材料滑片 (D), 该导电材料滑片 (D) 随着物体间的相对移动, 能够同时接触所述栅格带 (B)上的栅格与所述导电电 极 (C), 使该栅格所在的回路导通, 该回路上的电信号输出到数据处理电路中 经过处理得两个物体的相对位移量。
上述的开关式数字位移传感器中, 在所述导电电极(C) 的另一侧还固定有 另一条栅格带 (A), 并与导电带绝缘; 所述栅格带 (A) 上的栅格的宽度与栅格 之间的净间距之和是所述栅格带(B)上的栅格宽度的偶数倍, 且栅格之间的距 离远小于栅格的宽度, 并小于栅格 (B) 的宽度; 所述栅格带 (A) 上的每一个 栅格也通过各自的导线与数据处理系统连接, 所述导电电极(C)与所述栅格带 (A)上的栅格和数据处理系统也形成一个断开的回路; 所述导电材料滑片 (D) 随着物体间的相对移动,能够同时接触所述栅格带(B)上的栅格、导电电极(C) 和所述栅格带 (A) 上的栅格, 使得被接触的栅格所在的回路导通, 栅格带 (A) 上的栅格所在的回路输出的电信号经过处理后得到位移测量值的相对大数, 栅 格带(B)上的栅格所在的回路输出的电信号经过处理后得到位移测量值的相对 小数。
上述的开关式数字位移传感器中, 所述导电材料滑片(D) 的宽度是所述栅 格带 (B) 上的栅格宽度的 2倍。
上述的开关式数字位移传感器中, 所述栅格是光电材料的栅格, 每个栅格 的宽度都相同, 每两个栅格之间的净间距也相同, 且栅格宽度与栅格之间的净 间距等值; 在栅格带 (B) 的一侧连接着一条导电电极 (C), 该导电电极 (C) 与电源的一极连接, 所述栅格带(B)上每一个栅格的另一端均连接一个导电块 (S), 所述各导电块 (S)均通过各自的导线与数据处理系统连接, 所述导电电 极 (C)、 栅格带 (B) 上的栅格、 导电块 (S) 和数据处理系统构成一个断开的 回路; 所述开关部件是一个发光光源, 随着物体间的相对移动, 所述光源发射 的光能够照射到所述栅格, 使得被照射的栅格导电, 将该栅格所在的回路接通, 在该回路上输出的电信号经过处理得到物体的相对位移量。
上述的开关式数字位移传感器中, 所述栅格带(B)上的栅格划分为多个单 元, 每个单元包括 n个栅格, n大于等于 3, 每一个单元的栅格从同一方向按照 同样的顺序依次编号, 编号从 1到 n, 所有编号相同的栅格通过其导电块 (S ) 之后连接到同一根导线, 并输入信号处理电路。
上述的开关式数字位移传感器中, 它含有 n条栅格带, n大于等于 3, 每条 栅格带的上下两侧分别连接一条导电电极, 其中一条连接高 /或低电平, 另一条 输入信号处理电路; 所述 n条栅格带平行分布, 构成栅格带组, 该栅格带组沿 长度方向划分为多个栅格分布状况一致的单元, 每一个单元均包括 n个栅格, 这 n个栅格均勾分布在 n条栅格带上, 且沿栅格带组的长度方向等距分布。
上述的开关式数字位移传感器中, 它还包含有一条代表大刻度的栅格带 (A), 栅格带 (A) 与上述栅格带组平行排列, 栅格带 (A) 上的栅格数与栅格 带组所分的单元数相等, 且所述栅格带(A)上的栅格的宽度与栅格之间的净间 距之和是所述栅格带 (B)上的栅格宽度的偶数倍, 且栅格之间的距离远小于栅 格的宽度, 并小于栅格 (B) 的宽度。
上述的开关式数字位移传感器中, 它含有 n条栅格带, n大于等于 3, 每条 栅格带的两侧分别连接一条导电电极; 其中一条连接高 /或低电平, 另一条输入 信号处理电路; 所述 n条栅格带平行分布, 构成栅格带组, 该栅格带组沿长度 方向划分为多个栅格分布状况一致的单元, 这些栅格沿栅格带组的长度方向等 距分布; 每一个单元中, 栅格带组的不同位置处的栅格导电后输入信号处理电 路的信号组成不同的编码; 还有一条代表大刻度的栅格带 (A), 栅格带 (A) 与 所述栅格带组平行排列, 栅格带 (A) 上的栅格数与栅格带所分的单元数相等, 所述栅格带 (A) 上的栅格的宽度与栅格之间的净间距之和是所述栅格带 (B) 上的栅格宽度的偶数倍,且栅格之间的距离远小于栅格的宽度,并小于栅格 (B) 的宽度。
上述的开关式数字位移传感器中, 在所述导电电极(C) 的另一侧还连接有 另一条栅格带 (A); 该栅格带 (A) 上的栅格是光电材料的栅格, 且栅格的宽度 与栅格之间的净间距之和是所述栅格带(B)上栅格宽度的偶数倍, 栅格之间的 距离远小于栅格的宽度, 并小于栅格 (B) 的宽度; 所述栅格带 (A) 上每一个 栅格的另一端均连接一个导电块(0), 所述每个导电块(0)均通过各自的导线 (L) 与数据处理系统连接, 所述导电电极 (C)、 栅格带 (A) 上的栅格、 导电 块(0)和数据处理系统也构成一个断开的回路; 随着物体间的相对移动, 所述 光源发射的光能够同时照射所述栅格带 (B) 和栅格带 (A) 上的栅格, 使得被 照射的栅格导电, 将该栅格所在的回路接通, 栅格带 (A) 上的栅格所在的回路 输出的电信号经过处理后得到位移测量值的相对大数, 栅格带 (B)上的栅格所 在的回路输出的电信号经过处理后得到位移测量值的相对小数。
上述的开关式数字位移传感器中, 所述光源是激光发射器。
上述的开关式数字位移传感器中, 所述光源发出的光的宽度为所述栅格带 (B) 上的栅格宽度的 2倍。
本发明提供了一种使用位移放大的开关式数字位移传感器, 包含有: 位移 导条 (U), 其一端与产生相对位移的一个物体连接, 该位移导条(U)上刻有齿 纹; 一套齿轮放大机构, 其将位移导条随物体移动产生的线位移转换为角位移; 轴 (X), 固定在产生相对位移的另一个物体上, 上面装有光源 (T), 该轴 X通 过所述齿轮放大机构与位移导条 (U) 啮合, 在位移导条 (U) 的带动下旋转; 一条环行栅格带(Β), 该栅格带(Β)上的栅格是光电材料的栅格, 以所述轴(X) 为圆心设置, 环行栅格带上面每个栅格的宽度都相同, 每两个栅格之间的净间 距也相同, 且栅格宽度与栅格之间的净间距等值, 该栅格带 (Β) 的一侧连接有 一条环形导体(C), 该栅格带(B)上的每一块栅格的另一侧连接有导电块(S), 所述栅格通过环形导体 (C) 和导电块 (S ) 串接在电源回路中; 所述光源 (T) 发射的光的宽度大于环行栅格带(B)上的栅格的宽度; 当物体间产生相对位移 时, 位移导条 (U) 移动, 并通过齿轮放大机构带动所述轴 (X) 旋转, 使得轴 (X) 上的光源 (T) 旋转, 该光源 (T) 发射出的光扫描栅格带 (B) 上的栅格, 使得被扫描到的栅格导电, 该栅格所在的回路导通, 在该回路上输出的电信号 经过处理得到物体的位移量。
上述的使用位移放大的开关式数字位移传感器中, 所述齿轮放大机构包含 有一个与所述位移导条啮合的轴 (V), 以轴 (V) 为圆心固定在轴 (V) 上的齿 轮盘 (W), 该齿轮盘 (W) 与轴 (X) 啮合。
上述的使用位移放大的开关式数字位移传感器中以所述轴(X)为圆心还环 绕着一条代表大刻度的环行栅格带 (A), 该栅格带 (A) 上的栅格是光电材料的 栅格, 栅格 (A) 每隔一定距离, 由分缝断开, 分缝的中心距应为栅格 (B)上栅 格宽度的偶数倍,栅格 (A)的宽度, 应等于栅格(B)—个单元的总宽度减去栅格 (A)之间的净间距, 各栅格 (A)之间的净间距应比较窄, 应远小于栅格 (A) 的 宽度, 并小于栅格 (B) 之间的净间距; 该栅格带 (A) 的一侧连接所述环形导 体(C), 所述栅格带 (A)上的每一个栅格的另一端连接有导电块 (0), 所述栅 格带 (A) 上的栅格通过所述环形导体 (C) 和导电块 (0) 串接在电源回路中; 光源 (T) 发射出的光能同时扫描栅格带 (A)和栅格带 (B) 上的栅格, 使得被 扫描到的栅格导电, 该栅格所在的回路导通, 栅格带 (A)上的栅格所在回路输 出的电信号经过处理得到物体位移量的大刻度值, 栅格带 (B)上的栅格所在回 路输出的电信号经过处理得到物体位移量的小刻度值。
上述的使用位移放大的开关式数字位移传感器中以所述轴(X)为圆心还环 绕着一条代表大刻度的环行栅格带 (A), 该栅格带 (A)上的栅格是光电材料的 栅格, 其宽度是栅格带 (B)上栅格宽度的偶数倍, 且栅格间的距离远小于栅格 的宽度; 该栅格带 (A) 的一侧连接所述环形导体 (C), 所述栅格带 (A) 上的 每一个栅格的另一端连接有导电块(0), 所述栅格带 (A)上的栅格通过所述环 形导体 (C) 和导电块 (0) 串接在电源回路中; 光源 (T) 发射出的光能同时扫 描栅格带 (A) 和栅格带 (B) 上的栅格, 使得被扫描到的栅格导电, 该栅格所 在的回路导通, 栅格带(A)上的栅格所在回路输出的电信号经过处理得到物体 位移量的大刻度值, 栅格带(B)上的栅格所在回路输出的电信号经过处理得到 物体位移量的小刻度值; 在所述轴 (V)上还固定有一个齿轮盘 (Y), 在所述轴 (X) 上还套有一个与所述齿轮盘 (Υ) 啮合的另一个齿轮盘 (Ζ), 在该齿轮盘 (Ζ)上装有一个光源(Τ' ); 以所述轴(X)为圆心还环绕着一条环行栅格带(Α' ), 该栅格带 (Α,)上的栅格是光电材料的栅格, 在该环形栅格带(Α,) 的一侧连接 着一条环形导体 (C' ), 该环形导体 ( ) 与电源的一极连接, 所述栅格带 (Α' ) 上每一个栅格的另一端连接有导电块 (0' ), 所述栅格带 (Α' ) 上的栅格通过所 述环形导体( ) 和导电块 (0' ) 串接在电源回路中; 当光源 (Τ' ) 随着齿轮盘 (Ζ) 旋转时, 其发射出的光扫描栅格带 (Α' ) 上的栅格, 使得被扫描到的栅格 导电, 该栅格所在的回路导通, 在该回路上输出的电信号经过处理得到所述光 源 (Τ) 发出的光束扫描栅格带 (Β) 的圈数。
本发明提供了一种开关式数字角位移传感器, 含有与产生角位移的物体同 轴旋转的光源 (Τ), 以光源所在轴为圆心环绕着一条环形栅格带 (Β), 所述栅 格带 (Β)上面每个栅格的宽度都相同, 每两个栅格之间的净间距也相同, 且栅 格宽度与栅格之间的净间距等值, 栅格为光电材料的栅格, 该栅格带 (Β) 的一 侧连接有一条环形导体(C), 该栅格带(B) 上的每一块栅格的另一侧连接有导 电块 (S), 所述栅格通过环形导体 (C) 和导电块 (S ) 串接在电源回路中; 所 述光源 (T) 发射的光的宽度大于环行栅格带 (B) 上的栅格的宽度; 当物体旋 转时, 带动光源(T)旋转, 该光源(T)发射出的光扫描栅格带(B)上的栅格, 使得被扫描到的栅格导电, 该栅格所在的回路导通, 在该回路上输出的电信号 经过处理得到物体的角位移量。
本发明还提供了一种采用开关式数字位移传感器的数字卡尺, 含有可相对 滑动的主尺和副尺, 主尺上装有位移导条 (U), 副尺 (K) 上装有轴 (X) , 该 轴 (X)上装有光源 (T), 以轴 X为圆心环绕着一条环行栅格带 (Β), 上面每个栅 格的宽度都相同, 每两个栅格之间的净间距也相同, 且栅格宽度与栅格之间的 净间距等值, 栅格为光电材料的栅格, 该栅格带 (Β) 的一侧连接有一条环形导 体(C), 该栅格带 (B) 上的每一块栅格的另一侧连接有导电块 (S), 所述栅格 通过环形导体 (C) 和导电块 (S) 串接在电源回路中; 所述光源 (T) 发射的光 的宽度大于环行栅格带 (B)上的栅格的宽度; 还含有一个齿轮放大机构, 该齿 轮放大机构含有一个与位移导条 (U)啮合的轴 (V), 该轴 (V)上固定有与所述轴 (X) 啮合的齿轮盘 (W); 当主尺和副尺间产生相对位移时, 位移导条 (U) 移 动, 并通过齿轮放大机构带动所述轴 (X) 旋转, 使得轴 (X) 上的光源 (T) 旋 转, 该光源 (T) 发射出的光扫描栅格带 (B) 上的栅格, 使得被扫描到的栅格 导电, 该栅格所在的回路导通, 在该回路上输出的电信号经过处理得到待测物 体的长度。
本发明还提供了一种采用开关式数字角位移传感器的电子经纬仪, 其特点 在于: 产生角位移的是经纬仪的竖轴 (R), 在竖轴 (R) 上安装光源 (T), 所述 栅格带 (Β) 以所述竖轴 (R) 为圆心, 当竖轴 (R) 旋转时, 带动光源 (Τ) 扫 描栅格带 (Β)。
上述的采用开关式数字角位移传感器的电子经纬仪中, 产生角位移的是经 纬仪的竖轴 (R), 所述环形栅格带 (B) 以所述竖轴 (R) 为圆心设置, 在所述 竖轴 (R) 上套有一个可绕该竖轴 (R) 旋转的套筒式齿轮 (X), 在套筒式齿轮 (X)上装有光源(T), 所述竖轴 (R)通过一套齿轮放大机构带动套筒式齿轮 (X) 旋转, 使得光源 (Τ)旋转的角位移放大。
上述的采用开关式数字角位移传感器的电子经纬仪中, 所述齿轮放大机构 含有固定在所述竖轴 (R)上的齿轮盘(W), 该齿轮盘 (W)与另一根轴 (Z)啮合, 该 轴 (Z)上固定有一个与所述竖轴 (S)啮合的齿轮盘 (Y), 所述竖轴 (R)转动, 依次 带动齿轮盘 (W)、 轴 (Z)、 齿轮盘 (Y)和套筒式齿轮 00旋转, 使得光源 (T)旋转的 角位移放大。
本发明还提供了一种采用开关式数字角位移传感器的方位角测量仪, 其特 点在于:产生角位移的是以轴(X)为轴心旋转的地磁磁针(M),在地磁磁针(M) 上安装光源 (T), 所述环形栅格带 (Β) 以所述轴 (X) 为圆心设置, 当地磁磁 针在地磁场作用下旋转时, 带动光源 (Τ) 扫描栅格带 (Β)。
本发明还提供了一种采用开关式数字角位移传感器的倾角测量仪, 产生角 位移的是以轴 (X) 为轴心旋转的固体摆 (G), 在固体摆 (G) 上安装光源 (T), 所述环形栅格带 (Β) 以所述轴 (X) 为圆心设置, 当固体摆 (G)在重力作用下 旋转时, 带动光源 (Τ) 扫描栅格带 (Β)。
上述的采用开关式数字角位移传感器的倾角测量仪中, 产生角位移的是以 轴 (X) 为轴心旋转的固体摆 (G), 所述环形栅格带 (B) 以另一根轴 (W) 为圆 心设置, 在所述轴 O0 上装有光源 (T),所述固体摆 (G) 通过一套齿轮放大机 构带动轴 (W) 旋转, 使得光源 (T)旋转的角位移放大。
上述的采用开关式数字角位移传感器的倾角测量仪中, 所述齿轮放大机构 含有一个与固体摆(G)啮合的轴(Y), 和一个固定在轴(Y)上且与所述轴(W) 啮合的齿轮盘 (V), 所述固体摆 (G) 旋转时, 依次带动轴 (Y)、 齿轮盘 (V) 和轴 (W) 旋转。
本发明由于采取以上设计, 其具有以下优点: 本发明提供的位移传感器的 位移感应电路只涉及简单的接通和断开关系。 物体发生位移, 带动滑动体在附 着栅格的母板上滑动, 滑动体在母板栅格上不同的位置将会给出不同的开关信 号, 由此可判断滑动体在母板栅格上的位置, 得出被检测物体的位移。 由于电 路信号是简单的开或关的数字信号, 因此这种传感装置称为开关式数字传感装 置。 该传感装置可以适应恶劣的工作环境, 可靠性高, 稳定性好, 且成本低。 附图说明
图 1是一排导电体栅格带的开关式数字位移传感器的实施例图;
图 2是一排光电材料栅格带的开关式数字位移传感器的实施例图; 图 3 是一排光电材料栅格带分组接线的开关式数字位移传感器的实施例 图;
图 4 是一排光电材料栅格带多行布置的开关式数字位移传感器的实施例 图;
图 5是双排导电体栅格带的开关式数字位移传感器的实施例图;
图 6是双排光电材料栅格带的开关式数字位移传感器的实施例图; 图 7 是双排光电材料栅格带多行布置的幵关式数字位移传感器的实施例 图;
图 8是双排光电材料栅格带多行布置排列组合的开关式数字位移传感器的 实施例图;
图 9是开关数字式位移传感器的数据处理的原理框图;
图 10a是使用位移放大的开关式数字位移传感器的示意图;
图 10b是图 10a截面示意图;
图 11是三排光电材料的开关式数字栅格带实施例图;
图 12a 是使用位移放大的三排栅格带的开关式数字位移传感器的实施例 图;
图 12b是图 12a截面示意图;
图 13是开关式数字电子卡尺示意图;
图 14a是开关式数字电子经纬仪角度测量仪示意图;
图 14b是图 14a截面示意图;
图 15是开关数字式电测方位角传感器剖视示意图;
图 16是倾角传感器模型结构剖视示意图;
图 17a是放大角位移的倾角传感器模型结构剖视示意图;
图 17b是图 17a截面示意图。 本发明最佳实施方式
本发明所提出的开关式数字位移传感器的基本思想是: 其位移感应装置由 两部分组成, 一部分是固定在一个物体上的栅格带, 另一部分是固定在产生相 对位移的另一个物体上的开关部件, 物体的移动带动滑动体 (即开关部件) 在 栅格带上滑动, 滑动体在栅格带上不同的位置将会给出不同的开关信号, 由此 可判断滑动体在栅格带上的位置, 得出被检测物体的位移。
上述栅格带附着在母板上, 栅格所用的材料, 可为金属导电体, 相应的导 电材料滑片也使用金属导电体; 栅格也可使用光电材料, 相应的导电材料滑片 则用光源替代。 如图 1所示, 为仅使用一排栅格的开关式数字位移传感器实施例, 该实施 例中的栅格为导电材料。
在长条形不导电母板上镀上一排导电的栅格 B和一条导电体 C, 阴影部分 表示导电体, 非阴影部分为绝缘体。 栅格带 B随同母板固定在产生相对位移的 一个物体上, 每个栅格的宽度都相同, 每两个栅格之间的净间距也相同, 且栅 格宽度与栅格之间的净间距等值。 C为整条导电体, 位于栅格带 B的一恻, 与高 电平(或者低电平)相接, 但与栅格不接触。 D为金属滑片, 其宽度为 B排栅格 的两倍,它与栅格 B和导电体 C良好接触。 B排栅格分别通过导线经过必要处理 后连接低电平(或者高电平), 这样由导电体 C和 B排上的各栅格、 直流电源构 成了许多回路, 每一个回路在栅格与导电体 C之间的间隙处断开。 在初始状态 位移为零时, 滑片 D左侧与右边第一个栅格的左侧靠齐。 检测位移时, 滑片 D 随着物体的移动而移动, 当覆盖在某一个栅格上时, 该栅格的回路导通, 回路 中产生电信号, 将信号输出到数据处理电路中处理, 可得知滑片 D在母板上的 位置, 滑片 D滑过的距离即为物体产生的位移。
栅格 B的宽度和各栅格之间的净间距可以随实际需要而适当调整, 调整时 最好保证每个栅格 B的宽度相等, 栅格之间的净间距也相等, 且栅格宽度与净 间距等值。
无论任何时候, 滑片 D都要能够与栅格 B接触上。 如果滑片 D的宽度小于 栅格 B之间的净间距时, 就会出现滑片 D处在栅格 B的间隔中不导电位置的情 况, 这时滑片 D就不能给出栅格 B的信号, 以致无法给出量测结果。所以滑片 D 宽度应大于栅格 B的净间距。 而当滑片 D的宽度大于栅格 B的间距时, 则会出 现滑片 D同时碰上两个以上栅格 B的情况, 这时就可以联合这两个 (或几个) 栅格 B而确定滑片 D的位置。 但是, 为了传感器位移判断处理上的便利, 将滑 片 D与栅格的接触宽度做成栅格 B间距(栅格 B等宽等间距) 的两倍最为方便。 因为在栅格 B等间距等宽度的条件下, 滑片 D宽度等于栅格 B间距的两倍时, 滑片 D同时碰上两个栅格 (代表滑片 D处于这两个栅格之间的空位的位置) 的 概率和滑片 D只碰上一个栅格 (代表滑片 D处于这个栅格的位置) 的概率是相 等的, 那么栅格 B这个 "刻度尺"的刻度就是线性的, 均匀的, 这就十分方便 D 而如果滑片 D的宽度大于栅格 B间距但是不等于其间距的二倍, 那么栅格 B这 个 "刻度尺" 由滑片 D来 "读"时其 "刻度"就不一定是线性的, 均匀的, 虽 然釆用数据处理等方法仍有可能识别, 但是不太方便, 所以不可取。
呈整条形的导电体 C也可以用其他能够保证滑片 D与电源的一极保持连通 的方法来代替, 例如用一根导线将电源的一极与滑片 D相连。 在滑片 D滑动时, 该导线与滑片 D保持连接, 使滑片 D与直流电压的一极相接。
如图 2所示, 其和图 1所示实施例不同的是, 图 2实施例中的栅格为光电 材料。 将图 1中的 B排栅格导电材料换成光电材料。 光电材料在有光照射时电 阻很小, 无光照时电阻很大, 因此光照时呈相对导通状态, 无光照时呈相对绝 缘状态。此时导电体 C应与 B排栅格接触, 在 B栅格的另一端连接导电块 S, 其 余均与上述图 1 中栅格使用导电材料的连接方式一致, 测量位移时数据处理方 法仍然不变。
将滑片 D换成为光源 T, 光源可选用激光发射器, 激光发射器具有光源稳 定等特点。 光线的宽度为 Β排栅格宽度的两倍。
由于光源 Τ与各栅格并不直接接触, 且光电材料栅格的尺寸可以很小, 因 此可以较大幅度地提高传感器工作的可靠性和测量精度。
在图 2中, 每一个栅格 Β单独向外引出一根导线, 如果传感器的量程较大, Β栅格的数量较多,则接线的数量将可能过大。图 3以激光式数字位移传感器为 例, 将图 2中栅格 Β的接线进行分组, 以便减小接线的数量。
如图 3所示, Β是光电材料栅格条带(其中砂点阴影部分为光电材料), 每 个栅格的宽度都相同, 每两个栅格之间的净间距也相同, 且栅格宽度与栅格之 间的净间距等值, 编号为 1、 2、 3三种; C是与 Β相连的普通导电材料的导电体 C, 并与高电平 (或低电平) 相连; S为导电块, 所有的 S块也被编号为 1、 2、 3三种, 并与栅格 Β的编号一一对应。每个 S块上都有一根引出线, 引出线的编 号对应为 1、 2或 3。 整个栅格带上所有编号相同的引出线是连接在一起的, 即 所有编号为 1的引出线连接在一起, 所有编号为 2的引出线也连接在一起, 所 有编号为 3的引出线也连接在一起 (图 3中未画出来)。 这 3组引线统称为 L, 分别与单片机的 3个引脚连接。 T为激光光束。
由于光电效应, 光束 T照射到的 B栅格块将产生电流, 其所在电路呈导电状态, 则相应的单片机引脚将得到高电平 (或者低电平) 信号; 而未被照射到的 B栅 格块不产生电流(或电流相对很小), 其所在电路呈相对绝缘状态, 则相应的单 片机引脚将得到低电平(或者高电平)信号。则当光束 T在光电材料栅格条带 B 上扫描时, 单片机的三个信号输入引脚将接收到高低电平交替出现的信号序列。 若 C连接高电平, 则当光束 T在栅格条带 B上向左手方向扫描时, 栅格带将产 生高低电平的信号序列, 其中依次产生高电平的 B栅格块的编号的循环序列如 下:
Figure imgf000012_0001
而当光束 T向右手方向扫描时, 其中依次产生高电平的 B栅格块的编号的循环 序列如下:
•[ϊ]→·|ΐ和 3[→ 1→l3禾 Π 2|→ →|2和 l|→ - |l和 3 这种电平信号的循环序列可以方便地用单片机识别。 由于光束向左和向右 移动时, 电平信号的循环序列是不同的, 所以可以根据电平信号序列的排布分 辨出光束的移动方向。 例如: 若现在是编号为 2的 B栅格块被光束照射, 那么 该光电栅格块将呈导电状态, 则其引出线就是高电平的 (假设 C连接髙电平), 即高电平状态的 B栅格块的编号为 2。 由图 3可见, 光束移动时, 下一个被照射 的 B栅格块将是 " 3 "或者 " 1 ", 若光束宽度为栅格宽度的两倍, 紧接着将会是 "2和 3 "或者 "2和 1 " 同时被照射到的状态, 即紧接着下一个呈现高电平状 态的 B栅格块就是 " 2和 3"或者 " 2和 1 "。 如光束向左手方向移动, 下一个紧 接着出现的高电平的栅格块为 " 2和 3"; 反之, 如光束向右手方向移动, 下一 个紧接着出现的高电平的栅格块就为 "2和 1 "。 采用寄存器等储存记忆历史上 的电平信号的序列和位移量。 那么, 当光束 T在光电栅格 B扫描时, 单片机根 据寄存器里记忆的历史信号, 对比当前的信号, 根据既定规律即可判断光束扫 描的方向。 如果以向左手为位移的正方向, 那么当光束 T在 B栅格条带上扫描 时, 光束 T的位置每移动一个 B栅格块的宽度, 电平信号就发生突变, 这时单 片机首先判断光束 T 的移动方向: 若对比历史的电平信号, 单片机判断光束 T 是向左移动了一格的, 就在上一个位移量上加上一个 B栅格的宽度, 反之, 减 去一个 B栅格的宽度, 从而得到新的位移量。 然后将这个新的位移量, 及其当 前的电平信号储存记忆起来以供确定下一个位移增量 (可正可负) 时使用。
上述测量的原理为计数器原理: 通过判断光束 T移动的方向确定计数时的 加减关系, 即增量的正负号, 将增量与原数相加即得到最新值。 所以这种结构 只要能保证可以识别增量的正负号即可, 也就是说能够判断光束 T的移动方向 即可。采用三种不同编号的光电材料栅格块就可以实现光束 T移动方向的判断。 当然, 釆用三种以上的不同编号的光电材料栅格块, 也可以达到同样目的。 这 种计数器原理增量测量方式使得测量时使用十分方便。 同时, 结构和制作工艺 上的简化有利于提高可靠性和精度。
这种计数器式的传感器, 只适用于在量测期间不断电的情况, 或者在断电 时数据处理系统具有数据记忆功能的情况。
图 4为单排栅格带多行布置的计数器式位移传感器。 为了提高传感器结构 的可靠性, 可以将图 3中栅格排列的方式转换为图 4中多行排列的布置。 该方 案其实只是将图 3中的布置成一排的 1、 2、 3栅格拆开并且布置成 3行栅格, 构成栅格带组, 编号为 1的所有栅格均列于栅格带 B1上, 编号为 2的所有栅格 均列于栅格带 B2上, 编号为 3的所有栅格均列于栅格带 B3上, 且栅格的横向 位置不变, 仅仅向下错开一行。 这样, 图 4中栅格带组也分为多个单元, 每个 单元栅格的分布状况一致, 每一个单元包含 3个栅格, 均匀分布在 3行栅格带 上。 由于编号相同的栅格输入单片机的同一个信号输入端, 因此图 4中的每一 行栅格带两侧分别连接两条导电体, 一条连接高 (或低) 电平, 如图 4中的 0 所示, 另一条则作为信号端输入单片机, 如图 4中的 Cl、 C2、 C3所示。 其中, Bl、 B2可以共用一条导电体 0连接高 (或低) 电平。 这样的栅格分布方式可以 将各栅格连接的导线合并为导电带 Cl、 C2、 C3, 使得结构更简单, 更易于实施, 而且光电栅格可以做得更精密, 有利于提髙传感器的分辨率和可靠性。 激光的 长度与栅格带组的长度一致, 能够同时覆盖三条栅格带。 当激光进行扫描时, 输入单片机的三个信号会依次呈现编码 " 100"、 空、 " 010 "、 空、 " 001 "、 空、 " 100" 并持续循环下去, 通过单片机就可以很容易地处理这种周期循环 的信号, 从而得到待测位移。 只使用图 1中所述的栅格 B, 已能够进行滑片!)位置的判断。 但是, 当需 要测量的量程较大时, B排栅格上的栅格数量将比较大, 因此提出了一种量程较 大时接线和信号处理比较简单的优化方法。 比如, 使用双排栅格带的开关式数 字位移传感器, 如图 5所示, 其为栅格使用导电材料的位移传感器。
在图 1原有栅格带 B的基础上, 在长条形不导电母板上再镀上一排导电体 栅格 A, 栅格 A位于导电体 C的另一侧。 每一栅格 A单独串接在回路中。
将栅格 B划分为若干个结构相同的单元。 图 5中给出了第①、 ②个单元和 第③个单元的一部分。 本例子中每个单元由 5个栅格组成。 栅格 A的分缝中心 间的距离应为 B栅格带一个单元的宽度。 当滑片 D在栅格 B上滑动时, 可以判 断滑片 D在 B排栅格单元中位于该单元的第几个栅格上; 同时, 滑片 D也在栅 格 A上滑动, 并根据在栅格 A上的位置判别此时滑片 D位于 B排栅格的第几个 单元上。 因此, 通过滑片 D的信号可以判断滑片 D位于栅格 B的第几个单元以 及该单元上的第几个栅格上, 从而确定滑片 D的位置。
也就是说, 将滑片的位置判断分为两个部分, 一部分表示滑片位置的相对 大数(代表滑片位于哪个单元), 另一部分表示滑片位置的相对小数(滑片位于 特定单元上的第几个栅格)。 传感装置分别判断滑片位置的相对大数和相对小 数, 合在一起就可确定滑片的位置。 然后, 根据滑片的位置, 用数据处理系统 和数字仪表显示出物体的位移。
这实际上是将位置进行编码的一种方式, 滑片位置的信息由不同的编码组 合确定。栅格 A上每一个栅格加上分隔缝的宽度等于栅格 B上一个单元的宽度, 光束在 B栅格带上每扫过一个单元的总位移量, 就刚好在 A栅格带上扫过一个 栅格。 如同自然数的结构, 由个、 十、 百、 千……各个位组成了一个特定的数; 当增加栅格带条数时, 高一级的栅格带 (如 A) 就把它低一级的栅格带 (如 B) 划分为若干个相似的单元, 从而各个级的栅格带就形成了有规律的进位结构。 比如在图 5的示例中 B就相当于代表个位, A就可以代表十位。 当然, B、 A之 间的进位关系是由栅格的结构决定的, 并不一定是十进制的。 从根本上来讲, 上述的这种多级栅格的编码原理, 就是在进行编码的时候, 高低级栅格之间的 关系是进位关系
栅格 A每隔一定距离, 由分缝断开, 分缝的中心距应为 B栅格上栅格宽度 的偶数倍。 A排栅格的宽度,应等于 B排栅格一个单元的总宽度减去栅格 A之间 的净间距。 各栅格 A之间的净间距应比较窄, 应远小于栅格 A的宽度, 并小于 栅格 B之间的净间距。 这是为了保证滑片 D在滑过两块相邻 A栅格时, 能够至 少接触上相邻的这两块栅格 A中的一块。 根据滑片 D在栅格 A上的位置, 结合 滑片 D在栅格 B上的位置, 利用单片机即可判断此时滑片 D所处的准确位置。 例如, 栅格 B的宽度为 1醒, 净间距也为 lmm, B排栅格每个单元包含 5个栅格 B, 则栅格 A的分缝中心距为 10mm, 栅格 A之间的净间距取为 0. 5mm, 则栅格 A 的宽度为 10—0. 5 = 9. 5inm。
在初始状态, 滑片 D位移为零, 该滑片左侧与右边第一个 B栅格的左侧并 齐。 从 A排栅格和 B排栅格引出导线, 分别与单片机的输入引脚相连。 单片机 可以判断引线上的电平信号。 当滑片 D在母板上滑动时, 会覆盖 A和 B上位于 同一位置处的栅格, 该两个栅格所在回路导通, 在回路中连上接线端子 F, 其电 路导通时, 引出线为高电平。 单片机得到了相应引出线的电平信号, 然后根据 内部程序判断出滑片 D在 A栅格和 B栅格上的位置, 进而得到滑片 D在母板上 的滑动位移。
为了使用上的方便, 还可以直接将单片机植入到传感器中, 而只需从传感 器外部提供电源, 并通过传感器的接口将单片机处理过的数据输出。
将图 5中的 A、 B排栅格导电体材料换成光电材料, 可以得到另一种实施方 案, 参见图 6。 这种方案也就是在图 2的基础上添加栅格带 A。 此时导电体 C应 与 B排栅格接触, 在 A栅格的另一端连接导电块 0, 在 B栅格的另一端连接 导电块 S,其余均与图 5所述栅格传感器的连线方式一致,测量位移时数据处理 方法仍然不变。 这样, 就可以得到与图 5相对应的, 使用光电材料的一种量程 较大时接线和信号处理比较简单的方案。
图 7是将图 6所示的栅格带中呈一排布置的 B栅格带改为 5行布置, 以提 高传感器结构的可靠性的方案。 B栅格带由一排布置改为 5行布置的原理,与将 图 3中一排 B栅格改为图 4中 3行布置的原理相同, 不再赘述。
图 7中分为 5行布置的 B栅格, 还可以进行不同的排列组合。 图 8是对 B 栅格分布的多种排列组合中的一种布置, 它实际上是在第一级栅格带 B的内部 栅格之间进行组合, 以扩大这一级的一个单元的长度。 通过将图 7 中的第一级 的栅格带组(栅格带 B, 图 7中下面 5排的栅格带)中的栅格进行排列组合即可 得到图 8所示的布置。栅格带 A上的一个栅格对应栅格带组的一个单元 N,从纵 向看, 光束 T中包含下面 5行栅格带在同一位置的编码情况, 激光扫描到的位 置输出的 5个信号组成了一个编码。 以图 8中激光 T覆盖的范围为例, 单片机 接收到的信号可视为(图中从上至下)" 01100", T左边的位置编码视为 "01010", T右边的位置编码视为 " 10001 "。可以将 5行栅格带上的栅格进行排列组合, 在 不同的纵向位置得到不同的编码。 这样图 7中的第一级栅格带 B的 5行栅格组 成的单元的长度就大大增加, 从而可以减少第二级栅格带 A的个数, 减少栅格 带 A的引出线的数量, 达到简化结构, 提高系统可靠性的目的。 如果各级栅格 带内部的栅格都类似地进行组合, 则可以大大减少引出的导线数, 并可以减少 对单片机接口数量的需求。
在进行位移测量时, 可使用单片机进行信号分析和处理。 图 9是图 5中各 栅格输出端子连接单片机数据处理系统的示意图, L为传感器引出线, F为回路 中的接线端子, H为单片机数据处理系统, I为数字显示设备, PC为微型计算机。 本发明还提供了一种使用位移放大的开关式数字位移传感器。 这种传感器 用于测量物体的线位移。 为了提高传感器的分辨率, 可以将线位移进行物理放 大后再测量。 通过齿轮传动放大系统可以将待测线位移量转换为较大的角位移 量, 然后再测量角位移量。 这种齿轮传动放大系统类似于百分表、 千分计等。 如图 10a、 图 10b所示, 为一排栅格带使用位移放大的开关式数字位移传 感器。本发明中的位移导条是金属条 U (就像百分表上可以伸出、缩进的金属杆), 也可以采用非金属材料等其他材料, 只需保证 U具有适当的强度、 刚度和耐久 性,并能可靠地将待测位移传递到齿轮 V上即可。直的金属条 U—侧及齿轮轴 V 上刻有精密齿紋, U的齿紋与 V的齿纹啮合,且齿轮轴 V上固定一个直径较大的 刻有精密齿纹的齿轮盘 W。齿轮轴 X上也刻有精密齿紋,并与齿轮盘 W的齿紋啮 合。 在齿轮轴 X上安装一个激光发射器!1, 发射光束宽度一定的激光束 T。 以齿 轮轴 X的轴心为圆心放置一个半径一定的环形的光电栅格带 Β。环形的栅格带 Β 展开成条状后, 即如图 2所示。 也可以用图 3、 图 4的栅格带。 如果将激光束换 为导电的滑片, 也可以使用图 1的栅格带。 当金属条 U随待测位移而移动时, 将带动齿轮轴 V (及齿轮盘 W)转动, 继而带动齿轮轴 X转动, 则激光光束 Τ将 在光电材料栅格 Β上扫描。 光束 Τ照射在栅格带的不同位置时栅格带将给出不 同的电路通或断的编码信号,通过单片机等处理该编码信号即可判断激光光束 Τ 照射在栅格带上的位置, 继而得出待测位移。 也就是说, 栅格串接在电源回路 中, 当没有光束照射时, 电源回路是断开的, 光束 Τ照射在栅格上时, 栅格导 电, 该栅格所在的电源回路接通, 将回路中的电信号输出到外部的数据处理电 路, 可以判断激光照射在栅格带上的位置以及在栅格带上扫描过的距离, 即得 出金属条 u走过的位移。
根据同一电平信号的出现序列, 通过单片机进行信号分析处理, 就可以确 定光束 Τ在环形栅格上扫描时扫过的圈数, 因此可以实现环形栅格带的反复循 环利用, 从而得到很大的量程。
为了简化传感器的结构和信号的后续处理, 可以在图 2中栅格带 Β的一侧 以轴 X为圆心再增加一条栅格带 Α。 环形栅格带展开成条状后, 即如图 6所示。
栅格带 Α与栅格带 B共用环形导电体 C。 A上的栅格在另一侧也分别连接 一个导电块 0, 并通过 0串接在回路中,激光束 T同时覆盖栅格带 B和 A上的栅 格,激光束 T照射的栅格回路导通, B栅格和 A栅格所在回路输出的电平信号经 过处理即可得到光束所在位置, 继而得到待测位移。
为了栅格 B连线的方便, 也可将图 6的栅格换为图 7、 图 8的栅格。 在野外间断性测量等可能断电、 数据处理系统没有数据记忆等情况下, 上 述方法就不能准确判断光束在环形栅格上扫描的圈数, 因为光束第一次扫描到 特定位置和以后各次扫描到同一位置时, 所得到的信号是相同的。 为了能够适 应这种可能存在断电等情况的测量, 可以在上述两排环形栅格一侧设置第三排 环形光电栅格 A', 用于识别激光光束 T扫过栅格 B和 A的圈数。 环形栅格展开 后, 如图 11所示。 因此通过判断激光光束 T所扫过环形栅格带的圈数和在环形 栅格带中所处的具体位置, 就可以准确判断激光光束 τ扫过的位移。 这个识别 激光光束 T扫过圈数的功能可通过以下装置实现。如图 12a、 图 12b所示, 在齿 轮传动机构中, 在轴 V、 轴 X同一高度上各安装齿轮 Y和 Z, 其中齿轮 Y固定在 轴 V上; 而齿轮 Z套穿在轴 X上, 但并不固定, 即齿轮 Z和轴 X可以相对转动; 调节齿轮 Y和 Z的半径关系, 可以调节轴 X角位移与齿轮 Z角位移的倍数。 在 齿轮 Z上安装激光发射器 T' 扫描第三排光电栅格 A'。 调整齿轮传动系统放大 倍数及栅格 A,的宽度等, 可保证光束 T扫描一整圈, 光束 Γ 在光电栅格 A'上 刚好扫描一个栅格的宽度。 如图 11所示, 在前述两排光电栅格一侧另加光电栅 格 A', 栅格 A'—侧是环形导体 C', C'接高电平 (或者低电平), 栅格 A'的另一 侧分别接导电块 0', 并通过引出线 L连接到数据处理电路, 从而构成一个没有 激光照射时呈断开状态的回路, 其工作原理与栅格带 B和 A相同。 根据这三排 光电栅格的高低电平信号, 既可读出光线 T扫过的圈数, 又可以读出光线 T在 环形光电栅格上的位置, 从而可以判断光线 τ扫过的位移, 继而可以得到物体 的位移。
栅格带 A'上的栅格宽度, 可以根据需要确定。 其原则是, 各个栅格的宽度 是相等的; 激光光束 T,在 A,栅格上扫描过的栅格数量, 等于 T光束在 A栅格上 照射扫描过的圈数; A'栅格带中, 各栅格宽度总和加上各栅格之间净间距的总 和, 不大于 A,栅格带所在圆周的周长。 如果需要量测光束 T在栅格 A上扫描过 的圈数比较多, 则每个 A'栅格的宽度就要小一些, 以便在一个周长的范围内可 布置更多的栅格 A,; 反之, 如果需要量测光束 T在栅格 A上扫描过的圏数比较 少, 则每个 A'栅格的宽度就可以大一些。 例如, 如果要满足最大量测为 T光束 在 A栅格上照射转 10圈的要求, 那么栅格 A'的宽度就应等于或小于 A'栅格所 在圆周的周长的十分之一; 如果要满足最大量测为 T光束在栅格 A上照射转 15 圈的要求, 那么栅格 A'的宽度就应等于或小于栅格 A'所在圆周的周长的十五分 之一。 至于栅格 A,各个栅格之间的间距, 与 A栅格的做法相同, 即栅格带 A,上 的栅格之间的间距应远小于栅格 A'的宽度, 并明显小于光束 Γ的宽度, 比如可 取为 0. 5ran, 以有效地防止误判。 反过来说, 光束 T'的宽度, 须大于栅格带 A' 各个栅格之间的净间距, 以免出现全部光束 Γ只照射在栅格之间空白处的情况 而导致无法判断光束 Γ照射的位置; 且光束 Γ的宽度宜小于栅格 A'的宽度, 以 免出现光束 Γ同时照射在三个栅格 A,的情况而增加数据处理的难度。
高低电平的信号采用单片机处理, 从各个栅格所在的回路中引出信号线传 输电平信号, B栅格带和 A栅格带所输出的信号联合起来可判断激光束 T在环形 栅格上的具体位置, A'栅格带输出的信号可确定激光束 T在环形栅格上扫过的 (环形栅格的) 圈数, 单片机根据设定的逻辑判断规则处理这些电平信号, 得 到待测位移, 并可控制数码显示设备显示相关数据, 且可以方便地与计算机通 信等。 可参见图 9。
以下为具体实施例- 光源采用激光发射器, 或者采用其他发光装置如发光二极管等, 光源只要 能保证所发射的光能够使光电材料产生明显的光导效应即可。 金属条 U—侧和 齿轮轴 V的圆周上每 0. 5mm一个齿纹,齿轮 W的半径为齿轮轴 V的半径的五倍。 齿轮轴 X和齿轮轴 V半径相等, 齿轮 Y和 Z的半径相等。 栅格带 B的半径为齿 轮轴 X的 10倍。 则光束在环形栅格上扫过的位移量与金属条 U (即物体位移) 的位移量的倍数为 50倍。 若 B的周长设为 200腿, 则激光光束 T扫过一圈栅格 所对应的金属条 U的位移为 4腿。 B上的光电栅格的分辨率为 0. 5ram, 那么这个 传感器的分辨率为 0. 01醒。
实际运用中, 可以根据需要来调整齿轮传动机构的放大倍数、 栅格带的分 辨率和激光光束 T和 Γ之间的角位移倍数关系, 从而调节传感器的分辨率和量 程。 在各个啮合的地方都能很好啮合的情况下, 从理论上说, 齿轮轴 V和 X半 径越小, 齿轮 W的半径越大, B的半径越大, 则物体位移的放大倍数越高。常用 的分辨率为 0. 001mm的千分计, 也是釆用齿轮传动放大机构将线位移量转换为 角位移量后再测量的, 并用指针在刻度盘上指示读数。 由于千分计制作精密, 在保证了精度的情况下, 其位移放大倍数约一千倍。 在上述传感装置中, 采用 了激光光束 T作为指针, 没有重量和摩擦等, 因此在釆用相同的位移放大倍数 的情况下, 将比千分计更可靠。 而且环形栅格带的刻度要更精细, 其分辨率比 刻度盘更高。 所以, 上述传感装置的分辨率可以比千分计更高。
如果将单片机植入到传感器中, 单片机处理信号后通过标准接口 (如串口 等)将相应数据传输给二次仪表或者计算机, 这样就实现了模块化, 使用很方 便。 以上述使用位移放大的开关式数字位移传感器为基础, 可以容易地得到开关式数字卡尺、 数 字高度尺、 数字深度尺等量具。
现有技术中, 卡尺按照其读数方式主要可分为游标卡尺、 带表卡尺和数字 式卡尺 (电子卡尺)三种。 游标卡尺是采用游标原理细分读数的尺形手携式通 用长度测量工具, 即利用主尺上的刻线间距 (简称线距) 和游标尺上的线距之 差来读出小数部分。 测量时, 量值的整数部分从主尺上读出, 小数部分从游标 尺上读出。 常用的有 0. lmm、 0. 05mm和 0. 02mm3种最小读数值。 带表卡尺是以 精密齿条、 齿轮的齿距作为已知长度, 以带有相应分度的指示表作为放大、 细 分和指示部分的手携式长度测量工具。 带表卡尺能解决游标卡尺的读数误差问 题。 常见的最小读数值有 0. 05mm和 0. 02mm两种。 已有的数字式卡尺一般采用 容栅式、 电涡流式或光栅式等测量系统, 以数字显示量值的尺形手携式长度测 量工具, 又称数显卡尺, 常用的分辨率为 0. 01mm, 其读数直观清晰, 功能较多, 测量效率较高。 游标卡尺、 带表卡尺这类非数字式的卡尺由于读数相对比较繁 琐, 功能单一, 使用远不及数字式卡尺方便, 所以正逐渐被数字式卡尺取代。 而现有的数字式卡尺中, 技术比较成熟的主要是容栅式、 电涡流式及光栅式等 几种。 但是, 这几种卡尺结构比较复杂, 而且普遍存在着易受湿度、 粉尘或电 磁干扰等测量环境条件影响的问题。
本发明所提出的数字卡尺是位移放大式数字位移传感器在数字卡尺上的应 用。如图 13所示, 数字卡尺由主尺 U和副尺 K组成, 副尺 K可以在主尺 U上滑 动, 主尺爪与副尺爪之间的距离即为需量测的位移。 通过在卡尺的主尺 U上刻 有齿纹和在副尺 K上安装齿轮传动放大系统, 将主尺与副尺之间的相对线位移 量转换放大为角位移量, 量测该角位移量, 经过换算即可得到线位移量, 继而 实现卡尺的功能。 主尺上的齿条与副尺上的齿轮传动放大系统类似于以往的带 表卡尺或百分表、 千分计等的相应结构。
图 13中主尺 U的一侧刻有精密齿紋; 副尺 K上圆形的部分是位移放大、测 量系统, 整个副尺可以在主尺上滑动。 圆形部分实际上就是一个位移传感器, 原理与图 10完全相同。 图 13中, V为齿轮轴, 上面刻有精密齿纹, 并且 U的齿 紋与 V的齿紋啮合; 齿轮轴 V上固定一个直径较大的刻有精密齿紋的齿轮盘 W。 齿轮轴 X上也刻有精密齿纹, 并与齿轮盘 W的齿纹啮合。 在齿轮轴 X上安装一 个发光装置如激光发射器,发射光束宽度一定的激光光束^以齿轮轴 X的轴心 为圆心,放置一个半径一定的环形的光电材料栅格条带 B。环形的栅格带展开后, 成为条状, 栅格带的排列可选用上述图 1、 2、 3、 4、 5、 6、 7、 8中的一种。 或 者, 圆形部分的位移传感装置釆用图 12所示的做法, 则栅格带相应选用图 11 的方案。
由图 13可知, 当副尺 K在主尺 U上滑动时, 将带动齿轮轴 V (及齿轮盘 W) 转动, 继而带动齿轮轴 X转动, 则激光光束 T将在环形的光电材料栅格 B上扫 描, 得到副尺与主尺的相对位移, 从而进行卡尺的测量。 工作原理与上述采用 位移放大的开关式数字位移传感器相同。 釆用单片机处理所得的信号, 即可得 到待测位移, 并通过数字显示设备显示测量结果, 而且可以进行公制与英制的 转换, 以及在任意位置置零等。 本发明还提供了一种开关式数字角位移传感器, 开关式角位移传感器与使 用位移放大的数字位移传感器的原理基本相同。 使用位移放大的数字位移传感 器测量的是物体产生的线位移, 所以它是通过齿轮传动放大系统先将待测线位 移放大为与待测线位移有对应关系的角位移, 然后量测此角位移, 从而达到量 测待测线位移的目的。 角位移的量测一般都是通过量测角位移所对应的圆弧的 长度来间接测量的。 而在开关式数字角位移传感器中, 没有位移导条, 即不存 在将线位移转换为角位移的问题, 而是直接 (或通过放大系统进行放大后) 对 角位移进行测量, 其角位移量测的方法与采用位移放大的幵关式线位移传感器 是一样的。
以下是开关式数字角位移传感器作为几种角度检测仪器的具体应用方案: 1、 开关式数字电子经纬仪角度测量仪。
现有技术中, 经纬仪有游标经纬仪、 光学经纬仪和电子经纬仪三类。 游标 经纬仪一般为金属度盘、 游标读数、 锥形轴系, 目前已很少使用。 而光学经纬 仪具有读数精度较高、 体积小、 重量轻等优点, 使用很广泛。 电子经纬仪精度 高、 数字化、 功能多, 使用十分方便。 电子经纬仪有逐渐取代光学经纬仪的趋 势。 电子经纬仪采用新型的度盘刻划形式, 一般有三种度盘形式, 即格区式度 盘、 光栅度盘和编码度盘。 现有的电子经纬仪的测角方式主要为光电增量式测 角, 其原理是光栅式位移测量原理, 釆用高精度光栅度盘。 现有的电子经纬仪 性能优异, 但由于其技术比较复杂, 生产上工艺要求很高, 成本昂贵, 所以目 前尚未广泛普及。
开关式数字电子经纬仪角度测量仪是结合图 10a、 图 10b所示的釆用位移 放大的传感器, 通过在经纬仪竖轴上刻划精密齿紋, 并通过齿轮传动放大系统 放大竖轴的角位移量, 量测此放大的角位移, 经过换算即可得到竖轴的角位移 量。 竖轴的角位移量也就是经纬仪量测的水平角。 量测这个角位移量是通过以 下结构实现的: 在产生该放大的角位移量的旋转轴心上安装发光装置 (如激光 发射器), 朝外径的方向发射一束宽度一定的光束, 同时以此轴为圆心放置一个 环形的按一定规律分布的光电材料栅格条带。 当竖轴转动时, 通过齿轮系统的 转换, 该光束将在此光电材料环形栅格条带上扫描。
如图 14a、 图 14b所示, R为经纬仪的竖轴; W为固定在 R轴上的一个直径 较大的齿轮盘, 其上刻有精密的齿紋; X为固定在 R轴上的一个套筒式结构, X 可以与 R相对转动, 但是其空间位置被 R轴固定, X上也刻有精密的齿紋, 而且 X 上装有激光发射器 (或其他光源), 朝外径方向发射光束宽度很小的光束; Z 轴为经纬仪中的与 R轴平行的轴, 其空间位置保持固定, 不随轴 R的转动而转 动; V和 Y均为刻有精密齿紋的齿轮盘, 其中 V与 W啮合, Y与 X啮合; B为环 形的光电材料栅格带, 半径较大, 以轴 R为中心放置, 环形栅格带展开后的排 列方式与图 6中的 B栅格带相同。
当进行角度测量时, 经纬仪的竖轴 R转动, 其上固定的 W将随 R—起转动, 从而带动 V转动, 继而使轴 Z转动, 带动 Y转动, Y又带动 X绕轴 R转动。所以 轴 R的转动角位移量通过此齿轮系统得到了放大。 改变 W、 V、 X、 Y的半径, 从 而可以调整此角位移量的放大倍数, 如 100倍。 由于 X上的光源发射径向的光 束, 所以当 R转动时, 在 X转动的同时, 其上发射的光束也将转动, 从而光束 将在环形光电材料栅格上扫描, 工作原理与采用位移放大的数字位移传感器相 同。 釆用单片机处理环形栅格上传输的信号, 即可识别光束在环形光电材料栅 格上的位移, 通过适当换算, 就得到了相应的角度, 从而实现对角度的量测。
2、 开关数字式电测方位角测量仪
现有技术中, 用来探测地磁信号的磁传感器技术主要有磁通门、 磁阻传感 器、 磁感应传感器及磁针等。 磁通门体积大, 结构复杂, 成本高, 且难以小型 化, 可靠性不够高。 磁阻传感器, 体积小, 灵敏度较高, 抗电磁噪声等干扰的 能力强, 可靠性较高, 但其技术难度和成本仍较高。 磁针式的电子罗盘结构和 原理十分简单, 维修使用方便, 其精度也可满足很多工程的要求, 成本比较低, 因此应用较为普遍。 如一种常用的轻便测斜仪, 就是利用磁针定向, 然后采用 电位器原理测量磁针转过的角位移, 从而确定钻孔的方位。 这种设备基本能满 足工程的需要, 占有一定的市场份额, 但在量测精度和使用的方便性上还不够 理想。
本发明提供了一种基于磁针定向的开关式数字式电测方位角传感器。 一个 对地磁信号敏感的磁针, 在水平面内可以绕一轴心自由转动从而保证其指向与 地磁场的方向相同。 在此磁针上固定一光源, 发射光束宽度一定的径向光束, 使光束的指向与磁针的指向相同。 同时, 以磁针旋转轴心为中心, 放置一个环 形的按一定规律分布的光电材料栅格条带。 则当磁针转动时, 光束将在此光电 材料环形栅格条带上扫描。 这种方位测量, 原理简单, 结构可靠, 成本低, 精 度也较高。
如图 15所示, M为对地磁磁场敏感的磁针, 可绕 X轴自由旋转, 且 M与 X 轴之间的摩擦力矩很小, 因此 M磁针可以灵敏地指示地磁场方向; 在 M磁针上 安装一光源,光源可发射光束宽度一定的径向光束 T,光束方向一般与磁针指向 相同,或者是光束方向与磁针指向有确定的关系; Β是以 X轴的轴心为圆心放置 的直径一定的环形光电材料栅格带 Β,环形的栅格带展开后,栅格分布可以采用 图 1、 2、 3、 4、 5、 6、 7、 8中的一种。 当磁针转动时, 带动光源在栅格带 Β上 扫描, 即可量测出磁针偏转的角度。
3、 开关式数字固体摆倾角测量仪
倾角传感器广泛应用于地质钻探、 采矿、 工业控制、 汽车、 航空、 建筑等 各种工程的倾角测量。 现有技术中, 重力摆式倾角传感器是利用物体受重力作 用而提供的铅垂线而进行倾角测量的, 包括固体摆式、 液体摆式、 气体摆式三 种, 其原理和结构简单, 使用方便, 精度较高, 成本较低, 应用比较广泛。 但 目前的重力摆式倾角传感器的信号基本都是模拟式的, 因此在抗电磁干扰、 模 拟信号的传输等方面仍有一定的局限性。
本发明结合上述釆用位移放大的数字位移传感器, 提供了一种开关式的数 字固体摆倾角传感器。 釆用固体摆作为灵敏元件, 当物体倾斜时, 固体摆保持 指向重力方向, 因此将绕一固定轴旋转。 量测固体摆的旋转角度, 即可得到物 体的倾斜角。 在此固体摆上安装光源, 发射光束宽度一定的径向光束, 使光束 指向与重力摆的指向相同。 同时以重力摆的旋转轴心为圆心放置一个环形的按 一定规律分布的光电材料栅格条带。 则当固体摆绕轴转动时, 光束将在此光电 材料环形栅格条带上扫描。
如图 16所示, G为固体重力摆, 可绕轴 X自由转动。 在 G上安装一光源, 光源可发射光束宽度一定的径向光束^光束方向一般与固体摆指向相同,或者 光束方向与固体摆指向有确定的关系; Β是以 X轴的轴心为中心放置的半径一定 的环形光电材料栅格带。 环形的栅格带展开后, 栅格分布可以釆用图 1、 2、 3、 4、 5、 6、 7、 8中的一种。 当传感器倾斜时, 固体重力摆 G转动, 带动光源在栅 格带 Β上扫描, 即可量测出倾斜的角度。
也可以将固体摆的角位移放大后再测量, 如图 17a、 图 17b所示, G为固体 重力摆, 摆的上面刻有精密的齿纹, X为固定重力摆的轴, 重力摆 G可以绕 X 轴转动;一个直径较大的齿轮盘 V上固定有一个较小的齿轮 R。 R和 V是一体的。 其中的齿轮 R与重力摆 G上的齿轮啮合, 而 V与另一个齿轮 W啮合, Y为固定 R 和 V的轴, R和 V可以绕 Y轴旋转;齿轮 W被固定在 Z轴上, W可以绕 Z轴旋转。 W上装有激光发射器(或其他光源), 朝外径方向发射光束宽度很小的光束 T; B 为环形的光电材料栅格带, 半径较大, 以轴 Z为圆心设置。 环形的栅格带展开 后, 栅格的分布可以采用图 1、 2、 3、 4、 5、 6、 7、 8中的一种。
当进行倾斜角度的测量时, 随着传感器的倾斜, 重力摆 G转动, 其上面的 齿轮带动 R转动, 继而使与 R连在一起的 V转动, 又带动 W转动。 所以重力摆 的转动角位移量通过此齿轮系统得到了放大。 改变 R、 V、 W的半径, 可以调整 重力摆 G角位移量的放大倍数, 如 100倍。 由于 W上的光源发射径向的光束, 所以当重力摆 G转动时, W上发射的光束 T将发生更多的转动,从而光束在环形 光电材料栅格上扫描, 工作原理与釆用位移放大的数字位移传感器相同。 采用 单片机处理环形栅格上传输的信号, 即可识别光束在环形光电材料栅格上的位 移, 通过适当换算, 就得到了相应的角度, 从而实现对重力摆的倾角的量测。 工业应用性
通过本发明的设计, 使得本发明的位移传感器的位移感应电路只涉及简单 的接通和断开关系。 物体发生位移, 带动滑动体在附着栅格的母板上滑动, 滑 动体在母板栅格上不同的位置将会给出不同的开关信号, 由此可判断滑动体在 母板栅格上的位置, 得出被检测物体的位移。 由于电路信号是简单的开或关的 数字信号, 因此这种传感装置称为开关式数字传感装置。 该传感装置可以适应 恶劣的工作环境, 可靠性高, 稳定性好, 且成本低。

Claims

权利要求
1、一种开关式数字位移传感器, 其特征在于: 它含有固定在产生相对位移 的一个物体上的一条代表刻度的栅格带 (B), 该栅格带 (B)上的栅格是可导电 的栅格, 其中每一个栅格均串接在一个电源回路中, 该电源回路在栅格所在位 置是断开的; 还含有一个固定在所述产生相对位移的另一个物体上的一个开关 部件, 该开关部件能够随着两个物体产生的相对位移, 移至栅格带 (B)上的栅 格处, 使得该栅格所在的回路导通, 并从该回路上输出电信号, 该电信号经过 处理后表示出两个物体的相对位移量。
2、 根据权利要求 1所述的开关式数字位移传感器, 其特征在于: 每个栅格
(B) 的宽度都相同, 每两个栅格之间的净间距也相同, 且栅格宽度与栅格之间 的净间距等值; 在该栅格带 (B) 的一侧还固定有一条导电电极 (C), 与所述栅 格带 (B) 之间绝缘, 该导电带与电源的一极连接, 所述栅格带 (B) 上的每一 个栅格均通过各自的导线 (L) 与数据处理系统连接, 所述导电电极 (C) 与所 述栅格和数据处理系统形成一个断开的电源回路; 所述开关部件是一个导电材 料滑片 (D), 该导电材料滑片 (D) 随着物体间的相对移动, 能够同时接触所述 栅格带 (B) 上的栅格与所述导电电极 (C), 使该栅格所在的回路导通, 该回路 上的电信号输出到数据处理电路中经过处理得两个物体的相对位移量。
3、 根据权利要求 2所述的开关式数字位移传感器, 其特征在于: 在所述导 电电极(C) 的另一侧还固定有另一条栅格带 (A), 并与导电带绝缘; 所述栅格 带 (A) 上的栅格的宽度与栅格之间的净间距之和是所述栅格带 (B) 上的栅格 宽度的偶数倍, 且栅格之间的距离远小于栅格的宽度, 并小于栅格(B)的宽度; 所述栅格带(A)上的每一个栅格也通过各自的导线与数据处理系统连接, 所述 导电电极 (C) 与所述栅格带 (A) 上的栅格和数据处理系统也形成一个断开的 回路; 所述导电材料滑片 (D) 随着物体间的相对移动, 能够同时接触所述栅格 带 (B)上的栅格、 导电电极 (C) 和所述栅格带 (A) 上的栅格, 使得被接触的 栅格所在的回路导通, 栅格带(A)上的栅格所在的回路输出的电信号经过处理 后得到位移测量值的相对大数, 栅格带(B)上的栅格所在的回路输出的电信号 经过处理后得到位移测量值的相对小数。
4、根据权利要求 2或 3所述的开关式数字位移传感装器, 其特征在于: 所 述导电材料滑片 (D) 的宽度是所述栅格带 (B) 上的栅格宽度的 2倍。
5、 根据权利要求 1所述的开关式数字位移传感器, 其特征在于: 所述栅格 是光电材料的栅格, 每个栅格的宽度都相同, 每两个栅格之间的净间距也相同, 且栅格宽度与栅格之间的净间距等值; 在栅格带 (B) 的一侧连接着一条导电电 极 (C), 该导电电极 (C) 与电源的一极连接, 所述栅格带 (B) 上每一个栅格 的另一端均连接一个导电块(S), 所述各导电块(S)均通过各自的导线与数据 处理系统连接, 所述导电电极 (C)、 栅格带 (B) 上的栅格、 导电块 (S ) 和数 据处理系统构成一个断开的回路; 所述开关部件是一个发光光源, 随着物体间 的相对移动, 所述光源发射的光能够照射到所述栅格, 使得被照射的栅格导电, 将该栅格所在的回路接通, 在该回路上输出的电信号经过处理得到物体的相对 位移量。
6、 根据权利要求 5所述的开关式数字位移传感器, 其特征在于: 所述栅格 带 (B) 上的栅格划分为多个单元, 每个单元包括 n个栅格, n大于等于 3, 每 一个单元的栅格从同一方向按照同样的顺序依次编号,编号从 1到 n,所有编号 相同的栅格通过其导电块 (S) 之后连接到同一根导线, 并输入信号处理电路。
7、 根据权利要求 6所述的开关式数字位移传感器, 其特征在于: 它含有 n 条栅格带, n大于等于 3, 每条栅格带的上下两侧分别连接一条导电电极, 其中 一条连接高 /或低电平, 另一条输入信号处理电路; 所述 n条栅格带平行分布, 构成栅格带组, 该栅格带组沿长度方向划分为多个栅格分布状况一致的单元, 每一个单元均包括 n个栅格, 这 n个栅格均匀分布在 n条栅格带上, 且沿栅格 带组的长度方向等距分布。
8、 根据权利要求 7所述的开关式数字位移传感器, 其特征在于: 它还包含 有一条代表大刻度的栅格带 (A), 栅格带 (A) 与上述栅格带组平行排列, 栅格 带 (A) 上的栅格数与栅格带组所分的单元数相等, 且所述栅格带 (A) 上的栅 格的宽度与栅格之间的净间距之和是所述栅格带 (B) 上的栅格宽度的偶数倍, 且栅格之间的距离远小于栅格的宽度, 并小于栅格 (B) 的宽度。
9、 根据权利要求 8所述的开关式数字位移传感器, 其特征在于: 它含有 n 条栅格带, n大于等于 3, 每条栅格带的两侧分别连接一条导电电极, 其中一条 连接高 /或低电平, 另一条输入信号处理电路; 所述 n条栅格带平行分布, 构成 栅格带组, 该栅格带组沿长度方向划分为多个栅格分布状况一致的单元, 这些 栅格沿栅格带组的长度方向等距分布; 每一个单元中, 栅格带组的不同位置处 的栅格导电后输入信号处理电路的信号组成不同的编码; 还有一条代表大刻度 的栅格带 (A), 栅格带 (A) 与所述栅格带组平行排列, 栅格带 (A) 上的栅格 数与栅格带所分的单元数相等, 所述栅格带(A)上的栅格的宽度与栅格之间的 净间距之和是所述栅格带(B)上的栅格宽度的偶数倍, 且栅格之间的距离远小 于栅格的宽度, 并小于栅格 (B) 的宽度。
10、 根据权利要求 5所述的开关式数字位移传感器, 其特征在于: 在所述 导电电极 (C) 的另一侧还连接有另一条栅格带 (A); 该栅格带 (A) 上的栅格 是光电材料的栅格, 且栅格的宽度与栅格之间的净间距之和是所述栅格带 (B) 上栅格宽度的偶数倍, 栅格之间的距离远小于栅格的宽度, 并小于栅格(B) 的 宽度; 所述栅格带 (A)上每一个栅格的另一端均连接一个导电块(0), 所述每 个导电块(0)均通过各自的导线(L)与数据处理系统连接,所述导电电极(C)、 栅格带 (A) 上的栅格、 导电块 (0) 和数据处理系统也构成一个断开的回路; 随着物体间的相对移动, 所述光源发射的光能够同时照射所述栅格带(B)和栅 格带 (A)上的栅格, 使得被照射的栅格导电, 将该栅格所在的回路接通, 栅格 带(A)上的栅格所在的回路输出的电信号经过处理后得到位移测量值的相对大 数, 栅格带 (B)上的栅格所在的回路输出的电信号经过处理后得到位移测量值 的相对小数。
11、 根据权利要求 5或 10所述的开关式数字位移传感器, 其特征在于: 所 述光源是激光发射器。
12、 根据权利要求 5或 10所述的开关式数字位移传感器, 其特征在于: 所 述光源发出的光的宽度为所述栅格带 (B) 上的栅格宽度的 2倍。
13、 一种使用位移放大的开关式数字位移传感器, 其特征在于, 包含有: 位移导条 (U), 其一端与产生相对位移的一个物体连接, 该位移导条 (U) 上刻有齿紋;
一套齿轮放大机构,其将位移导条随物体移动产生的线位移转换为角位移; 轴 (x), 固定在产生相对位移的另一个物体上, 上面装有光源 (τ), 该轴
X通过所述齿轮放大机构与位移导条 (U)啮合, 在位移导条 (U)的带动下旋转; 一条环行栅格带(Β), 该栅格带(Β)上的栅格是光电材料的栅格, 以所述 轴 (X) 为圆心设置, 环行栅格带上面每个栅格的宽度都相同, 每两个栅格之间 的净间距也相同, 且栅格宽度与栅格之间的净间距等值, 该栅格带 (Β) 的一侧 连接有一条环形导体 (C), 该栅格带(B)上的每一块栅格的另一侧连接有导电 块 (S), 所述栅格通过环形导体 (C) 和导电块 (S) 串接在电源回路中;
所述光源 (T) 发射的光的宽度大于环行栅格带 (B) 上的栅格的宽度; 当物体间产生相对位移时, 位移导条(U)移动, 并通过齿轮放大机构带动 所述轴 (X) 旋转, 使得轴 (X) 上的光源 (T) 旋转, 该光源 (T) 发射出的光 扫描栅格带(B)上的栅格, 使得被扫描到的栅格导电, 该栅格所在的回路导通, 在该回路上输出的电信号经过处理得到物体的位移量。
14、根据权利要求 13所述的使用位移放大的开关式数字位移传感器, 其特 征在于: 所述齿轮放大机构包含有一个与所述位移导条啮合的轴(V), 以轴(V) 为圆心固定在轴 (V) 上的齿轮盘 00, 该齿轮盘 (W) 与轴 (X) 啮合。
15、根据权利要求 13或 14所述的使用位移放大的开关式数字位移传感器, 其特征在于: 以所述轴(X)为圆心还环绕着一条代表大刻度的环行栅格带(A), 该栅格带 (A) 上的栅格是光电材料的栅格, 栅格 (A) 每隔一定距离, 由分缝 断开, 分缝的中心距应为栅格 (B)上栅格宽度的偶数倍,栅格 (A)的宽度, 应等于 栅格 (B)—个单元的总宽度减去栅格 (A)之间的净间距, 各栅格(A) 之间的净 间距应比较窄, 应远小于栅格 (A) 的宽度, 并小于栅格 (B) 之间的净间距; 该栅格带 (A) 的一侧连接所述环形导体 (C), 所述栅格带 (A) 上的每一 个栅格的另一端连接有导电块(0), 所述栅格带 (A)上的栅格通过所述环形导 体 (C) 和导电块 (0) 串接在电源回路中;
光源(T) 发射出的光能同时扫描栅格带 (A)和栅格带 (B)上的栅格, 使 得被扫描到的栅格导电, 该栅格所在的回路导通, 栅格带 (A)上的栅格所在回 路输出的电信号经过处理得到物体位移量的大刻度值, 栅格带(B)上的栅格所 在回路输出的电信号经过处理得到物体位移量的小刻度值。
16、根据权利要求 14所述的使用位移放大的开关式数字位移传感器, 其特 征在于: 以所述轴 (X) 为圆心还环绕着一条代表大刻度的环行栅格带 (A), 该 栅格带 (A) 上的栅格是光电材料的栅格, 其宽度是栅格带 (B) 上栅格宽度的 偶数倍, 且栅格间的距离远小于栅格的宽度; 该栅格带 (A) 的一侧连接所述环 形导体 (C), 所述栅格带 (A)上的每一个栅格的另一端连接有导电块 (0), 所 述栅格带 (A) 上的栅格通过所述环形导体 (C)和导电块 (0) 串接在电源回路 中;
光源 (T) 发射出的光能同时扫描栅格带 (A)和栅格带 (B)上的栅格, 使 得被扫描到的栅格导电, 该栅格所在的回路导通, 栅格带 (A)上的栅格所在回 路输出的电信号经过处理得到物体位移量的大刻度值, 栅格带 (B)上的栅格所 在回路输出的电信号经过处理得到物体位移量的小刻度值;
在所述轴 (V) 上还固定有一个齿轮盘 (Y), 在所述轴 (X) 上还套有一个 与所述齿轮盘 (Υ) 啮合的另一个齿轮盘 (Ζ), 在该齿轮盘 (Ζ) 上装有一个光 源 (Γ );
以所述轴(X)为圆心还环绕着一条环行栅格带(Α,), 该栅格带(Α' )上的 栅格是光电材料的栅格,在该环形栅格带(Α' )的一侧连接着一条环形导体(C' ), 该环形导体( )与电源的一极连接, 所述栅格带 (A,)上每一个栅格的另一端 连接有导电块 (0,), 所述栅格带 (Α' ) 上的栅格通过所述环形导体 (C,) 和导 电块 (0' ) 串接在电源回路中;
当光源 (Γ ) 随着齿轮盘 (Z) 旋转时, 其发射出的光扫描栅格带 (A,) 上 的栅格, 使得被扫描到的栅格导电, 该栅格所在的回路导通, 在该回路上输出 的电信号经过处理得到所述光源 (T) 发出的光束扫描栅格带 (B) 的圈数。
17、 一种开关式数字角位移传感器, 其特征在于: 含有与产生角位移的物 体同轴旋转的光源 (T), 以光源所在轴为圆心环绕着一条环形栅格带 (Β), 所 述栅格带 (Β) 上面每个栅格的宽度都相同, 每两个栅格之间的净间距也相同, 且栅格宽度与栅格之间的净间距等值, 栅格为光电材料的栅格, 该栅格带 (Β) 的一侧连接有一条环形导体(C), 该栅格带 (B)上的每一块栅格的另一侧连接 有导电块 (S), 所述栅格通过环形导体(C) 和导电块 (S ) 串接在电源回路中; 所述光源 (T) 发射的光的宽度大于环行栅格带 (B) 上的栅格的宽度; 当物体旋转时, 带动光源 (T) 旋转, 该光源 (T) 发射出的光扫描栅格带 (B)上的栅格, 使得被扫描到的栅格导电, 该栅格所在的回路导通, 在该回路 上输出的电信号经过处理得到物体的角位移量。
18、 一种采用开关式数字位移传感器的数字卡尺, 其特征在于: 含有可相 对滑动的主尺和副尺, 主尺上装有位移导条(U), 副尺(K)上装有轴(X), 该 轴 (X)上装有光源(T), 以轴 X为圆心环绕着一条环行栅格带 (Β), 上面每个栅 格的宽度都相同, 每两个栅格之间的净间距也相同, 且栅格宽度与栅格之间的 净间距等值, 栅格为光电材料的栅格, 该栅格带 (Β) 的一侧连接有一条环形导 体(C), 该栅格带 (B)上的每一块栅格的另一侧连接有导电块 (S), 所述栅格 通过环形导体 (C) 和导电块 (S) 串接在电源回路中; 所述光源 (T) 发射的光 的宽度大于环行栅格带 (B) 上的栅格的宽度;
还含有一个齿轮放大机构, 该齿轮放大机构含有一个与位移导条 (U)啮合 的轴 (V) , 该轴 (V)上固定有与所述轴 (X) 啮合的齿轮盘 (W);
当主尺和副尺间产生相对位移时, 位移导条(U)移动, 并通过齿轮放大机 构带动所述轴 (X) 旋转, 使得轴 (X) 上的光源 (T) 旋转, 该光源 (T) 发射 出的光扫描栅格带 (B) 上的栅格, 使得被扫描到的栅格导电, 该栅格所在的回 路导通, 在该回路上输出的电信号经过处理得到待测物体的长度。
19、 一种采用开关式数字角位移传感器的电子经纬仪, 其特征在于: 产生 角位移的是经纬仪的竖轴 (R), 在竖轴 (R)上安装光源 (T), 所述栅格带 (Β) 以所述竖轴 (R)为圆心, 当竖轴(R)旋转时, 带动光源(Τ)扫描栅格带(Β)。
20、 根据权利要求 19所述的采用开关式数字角位移传感器的电子经纬仪, 其特征在于: 产生角位移的是经纬仪的竖轴 (R), 所述环形栅格带 (B) 以所述 竖轴 (R) 为圆心设置, 在所述竖轴 (R)上套有一个可绕该竖轴 (R) 旋转的套 筒式齿轮 (X), 在套筒式齿轮 (X) 上装有光源 (T), 所述竖轴 (R)通过一套齿 轮放大机构带动套筒式齿轮 (X)旋转, 使得光源 (Τ)旋转的角位移放大。
21、 根据权利要求 20所述的采用开关式数字角位移传感器的电子经纬仪, 其特征在于: 所述齿轮放大机构含有固定在所述竖轴 (R)上的齿轮盘(W), 该齿 轮盘 (W)与另一根轴 (Z)啮合, 该轴 (Z)上固定有一个与所述竖轴 (S)啮合的齿轮 盘 (Y), 所述竖轴 (R)转动, 依次带动齿轮盘 (W)、 轴 (Z)、 齿轮盘 (Y)和套筒式齿 轮 (X)旋转, 使得光源 (T)旋转的角位移放大。
22、 一种采用开关式数字角位移传感器的方位角测量仪, 其特征在于: 产 生角位移的是以轴 (X) 为轴心旋转的地磁磁针 (M), 在地磁磁针 (M) 上安装 光源 (T), 所述环形栅格带 (Β) 以所述轴 (X) 为圆心设置, 当地磁磁针在地 磁场作用下旋转时, 带动光源 (Τ) 扫描栅格带 (Β)。
23、 一种采用开关式数字角位移传感器的倾角测量仪, 其特征在于: 产生 角位移的是以轴(X)为轴心旋转的固体摆(G), 在固体摆(G)上安装光源(T), 所述环形栅格带 (Β) 以所述轴 (X) 为圆心设置, 当固体摆 (G) 在重力作用下 旋转时, 带动光源 (Τ) 扫描栅格带 (Β)。
24、 根据权利要求 23所述的釆用开关式数字角位移传感器的倾角测量仪, 其特征在于: 产生角位移的是以轴 (X) 为轴心旋转的固体摆 (G), 所述环形栅 格带 (B) 以另一根轴 (W) 为圆心设置, 在所述轴 (W) 上装有光源 (T) ,所述固 体摆 (G)通过一套齿轮放大机构带动轴 (W) 旋转, 使得光源 (T)旋转的角位移 放大。
25、 根据权利要求 24所述的采用开关式数字角位移传感器的倾角测量仪, 其特征在于: 所述齿轮放大机构含有一个与固体摆 (G) 啮合的轴 (Y), 和一个 固定在轴(Υ)上且与所述轴(W)啮合的齿轮盘(V), 所述固体摆(G)旋转时, 依次带动轴 (Y)、 齿轮盘 (V) 和轴 (W) 旋转。
PCT/CN2006/001347 2005-06-17 2006-06-15 Capteur de déplacement numérique en mode commuté et son application WO2006133648A1 (fr)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN200510011955.8 2005-06-17
CNB2005100119558A CN1327189C (zh) 2005-06-17 2005-06-17 开关式数字位移传感器
CN200510012185.9 2005-07-15
CNB2005100121859A CN100371685C (zh) 2005-07-15 2005-07-15 使用位移放大的开关式数字位移传感器
CN200510086606.2 2005-10-14
CNB2005100866077A CN100365390C (zh) 2005-10-14 2005-10-14 用于开关式数字位移传感器的计数器式栅格带
CN200510086607.7 2005-10-14
CNB2005100866062A CN100365389C (zh) 2005-10-14 2005-10-14 开关式数字角位移传感器及其应用

Publications (1)

Publication Number Publication Date
WO2006133648A1 true WO2006133648A1 (fr) 2006-12-21

Family

ID=37531961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/001347 WO2006133648A1 (fr) 2005-06-17 2006-06-15 Capteur de déplacement numérique en mode commuté et son application

Country Status (1)

Country Link
WO (1) WO2006133648A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101451861B (zh) * 2007-12-07 2010-09-01 台达电子工业股份有限公司 马达绝对位置的信号处理装置
CN108955481A (zh) * 2018-07-09 2018-12-07 西北农林科技大学 一种基于rfid技术的树木胸径快速测量系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1040865A (zh) * 1989-10-20 1990-03-28 山东矿业学院 实现电子经纬仪的无度盘测角方法
CN2100601U (zh) * 1991-05-07 1992-04-01 高秀珍 绝对式挠性编码带位移传感器
CN2408433Y (zh) * 2000-03-09 2000-11-29 何乃福 万能激光检测仪
US6307283B1 (en) * 1997-05-16 2001-10-23 Maschinenfabrik Reinhausen Gmbh Position signalling device for a motor drive

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1040865A (zh) * 1989-10-20 1990-03-28 山东矿业学院 实现电子经纬仪的无度盘测角方法
CN2100601U (zh) * 1991-05-07 1992-04-01 高秀珍 绝对式挠性编码带位移传感器
US6307283B1 (en) * 1997-05-16 2001-10-23 Maschinenfabrik Reinhausen Gmbh Position signalling device for a motor drive
CN2408433Y (zh) * 2000-03-09 2000-11-29 何乃福 万能激光检测仪

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101451861B (zh) * 2007-12-07 2010-09-01 台达电子工业股份有限公司 马达绝对位置的信号处理装置
CN108955481A (zh) * 2018-07-09 2018-12-07 西北农林科技大学 一种基于rfid技术的树木胸径快速测量系统及方法
CN108955481B (zh) * 2018-07-09 2023-08-18 西北农林科技大学 一种基于rfid技术的树木胸径快速测量系统及方法

Similar Documents

Publication Publication Date Title
CN1030588C (zh) 电容式位置检测器
US3825827A (en) Columnar display for electrical signals with digital signal limit set
US5825307A (en) Absolute linear encoder and method of production utilizing index and counter channels
EP2889588B1 (en) Direct-reading type metering device and direct-reading type water meter
CN211346681U (zh) 一种直线位移绝对位置编码器
US4459702A (en) Electronic vernier
JPH01501098A (ja) 絶対測定スケール装置
EP3091339A1 (en) Nonvolatile rotation sensor with spiral track
Weiwen et al. Research on combinatorial-code grating eddy-current absolute-position sensor
CN101614562B (zh) 具有数字化功能的指针式读数装置
WO2006133648A1 (fr) Capteur de déplacement numérique en mode commuté et son application
CN104089597B (zh) 一种多点位移测量装置
CN2771823Y (zh) 绝对式角度编码器
CN2773715Y (zh) 磁阻传感器和地磁场实验仪
CN204963696U (zh) 一种卷尺
CN100365389C (zh) 开关式数字角位移传感器及其应用
CN104132609A (zh) 一种电磁栅尺结构及其位移信息读取方法
CN202018254U (zh) 数显千分尺显示装置
CN207703178U (zh) 一种六球样板
CN101979959A (zh) 光电式微位移测量装置
CN207147430U (zh) 一种增量式圆光栅尺光栅角位移检测系统
CN206321156U (zh) 一种便于测量大型轴承圆弧尺寸的滚道桥尺
CN100365390C (zh) 用于开关式数字位移传感器的计数器式栅格带
CN104359409B (zh) 一种基于光学的高精度位移传感器
WO2006107363A1 (en) Imaging optical encoder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06752964

Country of ref document: EP

Kind code of ref document: A1