WO2006132680A1 - Vinyl alcohol copolymers for use in aqueous dispersions and melt extruded articles - Google Patents
Vinyl alcohol copolymers for use in aqueous dispersions and melt extruded articles Download PDFInfo
- Publication number
- WO2006132680A1 WO2006132680A1 PCT/US2006/003267 US2006003267W WO2006132680A1 WO 2006132680 A1 WO2006132680 A1 WO 2006132680A1 US 2006003267 W US2006003267 W US 2006003267W WO 2006132680 A1 WO2006132680 A1 WO 2006132680A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- amps
- copolymer
- reaction zone
- reaction mass
- comonomers
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F216/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
- C08F216/02—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
- C08F216/04—Acyclic compounds
- C08F216/06—Polyvinyl alcohol ; Vinyl alcohol
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F218/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
- C08F218/02—Esters of monocarboxylic acids
- C08F218/04—Vinyl esters
- C08F218/08—Vinyl acetate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/12—Hydrolysis
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L29/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
- C08L29/02—Homopolymers or copolymers of unsaturated alcohols
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/04—Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
- C11D17/041—Compositions releasably affixed on a substrate or incorporated into a dispensing means
- C11D17/042—Water soluble or water disintegrable containers or substrates containing cleaning compositions or additives for cleaning compositions
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/52—Amides or imides
- C08F220/54—Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
- C08F220/58—Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine
- C08F220/585—Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine and containing other heteroatoms, e.g. 2-acrylamido-2-methylpropane sulfonic acid [AMPS]
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2800/00—Copolymer characterised by the proportions of the comonomers expressed
- C08F2800/10—Copolymer characterised by the proportions of the comonomers expressed as molar percentages
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2329/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
- C08J2329/02—Homopolymers or copolymers of unsaturated alcohols
- C08J2329/04—Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
Definitions
- Copolymers of vinyl alcohol (VOH) with a minor amount of 2-acrylamido-2-methyl propane sulfonic acid in free acid form or as a salt of the free acid (AMPS) are known in the art and are useful for various applications, e.g., the production of cold water soluble films which can be formed into containers for predetermined batches of soaps and detergents, temporary sizing for new garments prior to their first washing and oil drilling applications where these copolymers can serve for the temporary shoring up of concrete supports used to maintain the integrity of wells prior to the setting of the concrete.
- a problem with the production of these copolymers by prior art methods is that it is difficult to produce the copolymer with a sufficiently high content of polymerized AMPS while maintaining satisfactory levels of productivity and avoiding compositional drift, i.e., unacceptable variations in the content of AMPS in the copolymer from one batch to the next.
- any process which is capable of producing VOH/AMPS copolymers with satisfactory loading of polymerized AMPS, combined with relatively high productivity and low compositional drift, is much to be desired.
- a process for the production of a copolymer of vinyl alcohol (VOH) and 2-acrylamido-2-methyl propane sulfonic acid or a salt of such acid (AMPS) by steps including continuously feeding with agitation, vinyl acetate (VAM) and AMPS as comonomers, a free radical yielding polymerization initiator, and a solvent for said comonomers, initiator, and copolymer resulting from the copolymerization of said comonomers, maintaining the resulting reaction mass in said first reaction zone under polymerization conditions for a residence time sufficient for a major proportion of AMPS fed to said first reaction zone to polymerize, continuously feeding reaction mass from said first reaction zone with an additional supply of AMPS to a second reaction zone, maintaining the reaction mass in the second reaction zone for a residence time sufficient to polymerize a major proportion of the AMPS added to the second reaction zone, continuously withdrawing reaction mass from the second
- the comonomer with VAM may be the free acid form of AMPS or the sodium, potassium, or ammonium salt of such free acid form.
- the free radical yielding polymerization initiator utilized for the copolymerization of VAc and AMPS or salt of AMP may be, for example, 2-ethylhexyl peroxydicarbonate (Trigonox EHP), 2,2'-azobisisobutylronitrile (AIBN), t-butyl peroxyneodecanoate, bis(4-t-butylcyclohexyl) peroxydicarbonate, di-n-propyl peroxydicarbonate, di-n-butyl peroxydicarbonate, di-acetyl peroxydicarbonate, di-s-butyl peroxydicarbonate.
- any initiator able to generate free radicals can be used.
- acetaldehyde (AcH) as a chain transfer agent can be continuously fed to the first reaction zone with the other components.
- the amount of AcH may, for example, be up to about 0.2 wt. % based on the total of VAM and AcH being added.
- a solvent for the comonomers VAM and AMPS, the polymerization initiator and the copolymer being formed in the two reaction zones is generally employed in the process. Suitable solvents are, for example, methanol, ethanol, and propanol. The preferred solvent is methanol.
- the amount of AMPS continuously fed to both reaction zones is, for example, about 1 to about 20 wt. %, preferably about 4 to 15 wt. % based on the total of VAM and AMPS being fed.
- the "split" or ratio between the amounts of AMPS fed to the first and second reaction zones, respectively, may be, for example, from about 55:45 to about 80:20.
- the amount of polymerization initiator fed to the first reaction zone may be, for example, about 0.0001 to about 1 wt. % based on the weight of VAM being fed.
- the amount of solvent fed to the first reaction zone may be, for example, about 10 to about 40 wt. % based on the weight of VAM being fed.
- the polymerization initiator is preferably fed to the first reaction zone as a solution in the solvent at a concentration in the solvent of about 0.1 to about 10 wt. % based on the weight of the solution.
- the average residence time in the first reaction zone of the components fed to the first reaction zone may be, for example, in the range of about 30 to about 120 minutes, preferably about 45 to about 70 minutes.
- the reaction temperature in the first reaction zone is, for example, about 55 0 C to about 85 0 C, preferably about 60 0 C to about 80 0 C.
- the average residence time in the second reaction zone of the components in the effluent from the first reaction one and the additional AMPS fed to the second reaction zone may be, for example, in the range of about 30 to about 120 minutes, preferably about 45 to about 70 minutes.
- the reaction temperature in the second reaction zone may be, for example, about 55 0 C to about 85 0 C, preferably about 60 0 C to about 80 0 C.
- the pressure in each reaction zone may be in the range, for example, of about 1 to about 30 psi, preferably about 3 to about 15 psi.
- the residence times and temperatures in the first and second reaction zones are generally sufficient to result in the polymerization of substantially all of the AMPS fed to the system although a small percentage of VAM added to the system may remain unpolymerized.
- the polymer solids content in the effluent from the second reaction zone may be, for example, in the range of about 40 to about 85%, preferably about 55 to about 75%, while the percent conversion calculated from actual polymer solids content and the theoretical polymer solids content equal to the amount of monomers added may be in the range of about 70 to about 99%, preferably about 80 to about 98%.
- the molecular weight of the copolymer from the second reaction zone indicated by the viscosity of a 15 wt. % solution in methanol is in the range, for example, of about 4 to about 200 cps preferably about 7 to about 30 cps.
- the effluent from the second reaction zone may, for example, be fed to a stripping column to remove the more volatile components such as unreacted VAM from the copolymer of VAM and AMPS.
- the resulting "paste" is then mixed with an aqueous solution of a strong base such as sodium hydroxide, e.g., containing about 10 to about 50 wt. % of sodium hydroxide to provide base at a caustic mole ratio (CMR, ratio of moles of base to moles of acetate in the copolymer) of about 0.01 to about 0.1.
- a strong base such as sodium hydroxide
- an amount of a volatile alcohol e.g., methanol, is also added to reduce the solids content in the paste to about 30 to about 65 wt. %.
- the resulting mass is then allowed to react at a temperature from about room temperature (RT, about 22 C), to about 50 C. for a period, e.g., about 5 minutes to about 24 hours to obtain a percent hydrolysis of the acetate groups in the copolymer to hydroxyl groups, e.g., in the range of about 70 to about 99+%, preferably in the range of about 80 to about 95%.
- the saponified copolymer of VOH and AMPS may have, for example, about 1 to about 8 mol % of polymerized AMPS (poly AMPS), about 1 to about 20 mol % of polymerized VAM (PVAc) and about 75 to about 98 mol % of polymerized vinyl alcohol (PVOH), preferably about 2 to about 4 mol % of poly AMPS, about 5 to about 10 mol % of PVAc, and about 85 to about 95 mol % of PVOH, a degree of hydrolysis of, for example, about 70 to about 99+%, preferably about 80 to about 95% indicated by C 13 NMR and a relative molecular weight indicated by the viscosity of a 4% aqueous-solution of the VOH copolymer of, for example, about 3 to about 30 cps, preferably about 7 to about 10 cps.
- poly AMPS polymerized AMPS
- PVAc polymerized VAM
- PVOH polymer
- Examples 1-11 describe the preparation of copolymers of VAM and the sodium salt of a copolymer of 2-acrylamido-2- methyl propane sulfonic propane sulfonic acid (SAMPS) by a continuous process under varying process conditions.
- Polymerizations were performed using two jacketed 2-L glass reactors in series fitted with reflux condensers, mechanical stirrers and feed lines.
- Reactor 1 was fed continuously with vinyl acetate (VAM), which, in some examples, contained acetaldehyde (AcH), methanol containing di(ethylhexyl) peroxy dicarbonate (EHP) initiator, and SAMPS, each as a separate feed line using metering pumps.
- VAM vinyl acetate
- AcH acetaldehyde
- EHP methanol containing di(ethylhexyl) peroxy dicarbonate
- SAMPS each as a separate feed line using metering pumps.
- each feed was placed on a balance and the feed rates checked by measuring the weight difference with time.
- SAMPS was also fed continuously to the second reactor to minimize compositional drift (the split between Reactor 1 and Reactor 2 was 75:25).
- Table 1 lists the feed rates and initiator and aldehyde concentrations for the runs.
- Reactor 1 temperature was 60 0 C and Reactor 2 temperature was 64 0 C.
- the residence time was 1 hour in each reactor.
- the polymer solution coming out of Reactor 2 was fed into an Oldershaw column to remove residual vinyl acetate using methanol vapors. Each run was 12 hours long to ensure the polymerization was lined-out.
- Table 2 indicates the results from the polymerization of SAMPS with vinyl acetate in the examples, including relative molecular weight of the polymer indicated by the viscosity of a 15% solution in methanol, the actual percentage of solids in Reactor 2 and the percent conversions (figures in parentheses) calculated from the actual percent solids and theoretical percent solids (figures not in parentheses).
- Table 2 shows the overall conversion of vinyl acetate and SAMPS into polymer. Based on these theoretical solids levels, which are directly related to the conversion of monomers to copolymer, the conversions range from 83% to 98%, no residual SAMPS were detected by C 13 NMR in any of the runs.
- CMR Caustic mole ratio
- the 50% NaOH was diluted with enough MeOH when added to the paste to dilute the solids to 35%.
- the NaOH/MeOH was mixed into the paste by hand (10 to 20 min. of mixing) at room temperature.
- the paste was then allowed to react for the time and temperature shown in the above table. Saponification procedures similar to those described in Examples 12-17 were carried out on the polymers of Examples 1-11.
- Table 4 shows the compositions and properties of the saponified polymers for each of the examples of Tables 1 and 2 including mol percents of polymerized SAMPS (SAMPS), polymerized VAM (PVAc) and polymerized vinyl alcohol (PVOH), degree of hydrolysis indicated by C 13 NMR, relative molecular weight as indicated by the viscosity of a 4% solution water and degree of hydrolysis indicated by titration.
- SAMPS polymerized SAMPS
- PVAc polymerized VAM
- PVOH polymerized vinyl alcohol
- the invention includes a continuous process for making vinyl acetate/acrylamide or acrylamide derivative copolymers.
- Acrylamide or acrylamide derivative monomers and copolymers incorporating them are referred to herein as acrylamido comonomers and acrylamido copolymers, respectively, for purposes of convenience.
- a continuous process for making a vinyl acetate/acrylamido copolymer comprising: (a) continuously supplying a reaction mixture including vinyl acetate and a more reactive acrylamido comonomer to a reaction zone wherein the vinyl acetate and acrylamido comonomer are at least partially consumed to form an intermediate reaction mixture; (b) continuously supplying to the intermediate reaction mixture a stream enriched with respect to the more reactive acrylamido comonomer and copolymerizing the additional acrylamido comonomer with the intermediate reaction mixture to form a vinyl acetate/acrylamido copolymer product; and (c) continuously recovering the vinyl acetate acrylamido copolymer product.
- copolymers of vinyl alcohol (VOH) with a minor amount of 2- acrylamido-2-methyl propane sulfonic acid in free acid form or as a salt of the free acid (AMPS) are useful for the production of cold water soluble films which can be formed into containers for predetermined batches of soaps and detergents.
- VOH vinyl alcohol
- AMPS 2- acrylamido-2-methyl propane sulfonic acid in free acid form or as a salt of the free acid
- the inherent novel property of the product made by the novel process of the present invention can be determined by a "harsh chemical dissolution test method.”
- the “harsh chemical dissolution test method” is defined as the time required for the film to dissolve completely (no film evident in slide frame or beaker) prepared by the following: a) “film preparation method;” b) "pouch containing harsh chemical preparation method;” and then c) the film is tested by the following "water solubility test method".
- the inherent novel property of the product made by the novel process of the present invention when made into a film, in one embodiment, has a harsh chemical dissolution time of less than about 80 seconds measured by the harsh chemical dissolution test method after 8 weeks, more specifically, less than about 50 seconds, more specifically, less than about 40 seconds, and more specifically, less than about 25 seconds.
- the inherent novel property of the product made by the novel process of the present invention can be determined by a "HCL dissolution test method.”
- the "HCL dissolution test method” is defined as the time required for the film to dissolve completely (no film evident in slide frame or beaker) prepared by the following: a) "film preparation method;” and then b) the film is tested by the following "HCL solubility test method.”
- the inherent novel property of the product made by the novel process of the present invention, when made into a film in one embodiment, has an HCL dissolution time with a 3% HCL solution of less than about 120 seconds, more specifically, less than about 110 seconds, and more specifically, less than about 100 seconds.
- the inherent novel property of the product made by the novel process of the present invention, when made into a film, in one embodiment, has an HCL dissolution time with a 15% HCL solution of less than about 90 seconds, more specifically, less than about 85 seconds, and more specifically, less than about 80 seconds.
- the inherent novel property of the product made by the novel process of the present invention, when made into a film, in one embodiment, has an HCL dissolution time with a 28% HCL solution of less than about 75 seconds, more specifically, less than about 70 seconds, and more specifically, less than about 60 seconds.
- aqueous solution of polymer i.e. 4% polymer by weight
- the aqueous solution is cast onto a glass plate and allowed to dry.
- the resulting film (2-3 mil thick) is peeled off the plate and placed into a control humidity at 50% Rh and temperature room at 7O 0 F for 24 hours.
- the film is then cut into 2.5 x 3.5 cm pieces. It should be noted that no additional additives are used in making the film (e.g. such as propyl gallate).
- a pouch is made in conditions having a temperature of 67.6 0 F and 36.5% humidity.
- the film made by the above “film preparation method,” is cut in to 6" x 3" pieces and folded in half to make a 3" x 3" square. 3 sides of the square are heat-sealed using a hand held heat-sealing gun. 25 g of the tradename “Super Shock It” ("HTH" brand - 54.6% calcium hypochlorite,
- a 2.3 x 3.4 cm film specimen from each side of the pouch is fixed in a slide frame as shown in the Figure 1.
- a beaker is filled with 400 ml DI water and stirred at 400 rpm. The water temperature is maintained at 21 0 C +/-1C. The specimen is immersed in the water with the time required for the film to dissolve completely (no film evident in slide frame or beaker) is recorded. The average time, in seconds, for the 3 filled pouches is the time for the "harsh chemical dissolution test method after 8 weeks.”
- a 250 ml jacketed beaker, programmable stir plate, magnetic stir bar, stop watch, and 35 mm slide frame is used.
- concentrated HCl (Fisher HCl, certified A. C. S. Plus, lot# 002562, assay 37.5%) a 3%, 15% and 28% solution is prepared.
- a 2.3 x 3.4 cm film specimen is fixed in a slide frame as shown in the Figure 1.
- a 225 ml of HCl solution (in a 0.25 liter beaker) is agitated via a magnetic stirrer (300 rpm) creating a vortex.
- the film made by the above “film preparation method” is immersed in the HCL solution with the time required for the film to dissolve completely (no film evident in slide frame or beaker) being recorded.
- the testing is performed at room temperature.
- the test procedure is repeated for each concentration of acid solution and film material.
- the average time, in seconds, for 3 film samples is the time for the "HCL dissolution test method" at a specific HCL concentration (i.e. 3%, 15% and 28% HCL solutions).
- the polymer was made by Example 1-1, detailed above.
- the films and pouches were made by the methods described above.
- Testing equipment included a 500 ml jacketed beaker, programmable digital stir plate, magnetic stir bar, digital thermometer, stop watch, and 35 mm slide frame.
- the beaker was filled with 400 ml DI water and stirred at 400 rpm.
- the water temperature was maintained at 21 0 C +/-1 0 C by a jacketed beaker.
- Each week, for 8 weeks, 3 filled and 2 control pouches from each material were tested.
- the filled pouches were cut open and the contents removed.
- the polymer was made by Example 1-1, detailed above.
- the films were made by the methods described above.
- a 250 ml jacketed beaker, programmable stir plate, magnetic stir bar, stop watch, and 35 mm slide frame was used.
- Using concentrated HCl (Fisher HCl, certified A.C.S. Plus, lot# 002562, assay 37.5%) a 3%, 15% and 28% solution was prepared.
- a 2.3 x 3.4 cm film specimen was fixed in a slide frame as shown in the Figure 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Dispersion Chemistry (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Paints Or Removers (AREA)
- Packages (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Wrappers (AREA)
Abstract
In a method of preparing an aqueous dispersion selected from drilling fluids, hydraulic cement compositions, mineral pigment containing coatings, and papermaking furnishes or in a method of preparing a melt extrudate, the improvement comprising: a) producing a copolymer of vinyl alcohol (VOH) and 2-acrylamido-2-methyl propane sulfonic acid or a salt of such acid (AMPS) by steps including continuously feeding with agitation, vinyl acetate (VAM) and AMPS as comonomers, a free radical yielding polymerization initiator, and a solvent for said comonomers, initiator, and copolymer resulting from the copolymerization of said comonomers, maintaining the resulting reaction mass in said first reaction zone under polymerization conditions for a residence time sufficient for a major proportion of AMPS fed to said first reaction zone to polymerize, continuously feeding reaction mass from said first reaction zone with an additional supply of AMPS to a second reaction zone, maintaining the reaction mass in the second reaction zone for a residence time sufficient to polymerize a major proportion of the AMPS added to the second reaction zone, continuously withdrawing reaction mass from the second reaction zone, separating copolymer of VAM and AMPS from the latter reaction mass, and saponifying by hydrolysis and/or alcoholysis a major proportion of the acetate groups in said copolymer to form a copolymer of VOH and AMPS; and b) incorporating the saponified copolymer into the aqueous dispersion or melt extrudate. A product comprising a cold water soluble film wherein: a) the film comprises a copolymer of vinyl alcohol (VOH) with a minor amount of 2-acrylamido-2 -methyl propane sulfonic acid in free acid form or as a salt of the free acid (AMPS); and b) the film has a harsh chemical dissolution time of less than about 80 seconds measured by the harsh chemical dissolution test method after 8 weeks.
Description
VINYL ALCOHOL COPOLYMERS FOR USE IN AQUEOUS DISPERSIONS AND MELT EXTRUDED ARTICLES
BACKGROUND OF THE INVENTION Copolymers of vinyl alcohol (VOH) with a minor amount of 2-acrylamido-2-methyl propane sulfonic acid in free acid form or as a salt of the free acid (AMPS) are known in the art and are useful for various applications, e.g., the production of cold water soluble films which can be formed into containers for predetermined batches of soaps and detergents, temporary sizing for new garments prior to their first washing and oil drilling applications where these copolymers can serve for the temporary shoring up of concrete supports used to maintain the integrity of wells prior to the setting of the concrete.
A problem with the production of these copolymers by prior art methods is that it is difficult to produce the copolymer with a sufficiently high content of polymerized AMPS while maintaining satisfactory levels of productivity and avoiding compositional drift, i.e., unacceptable variations in the content of AMPS in the copolymer from one batch to the next. Thus, any process which is capable of producing VOH/AMPS copolymers with satisfactory loading of polymerized AMPS, combined with relatively high productivity and low compositional drift, is much to be desired.
BRIEF SUMMARY OF THE INVENTION In accordance with this invention, a process is provided for the production of a copolymer of vinyl alcohol (VOH) and 2-acrylamido-2-methyl propane sulfonic acid or a salt of such acid (AMPS) by steps including continuously feeding with agitation, vinyl acetate (VAM) and AMPS as comonomers, a free radical yielding polymerization initiator, and a solvent for said comonomers, initiator, and copolymer resulting from the copolymerization of said comonomers, maintaining the resulting reaction mass in said first reaction zone under polymerization conditions for a residence time sufficient for a major proportion of AMPS fed to said first reaction zone to polymerize, continuously feeding reaction mass from said first reaction zone with an additional supply of AMPS to a second reaction zone, maintaining the reaction mass in the second reaction zone for a residence time sufficient to polymerize a major proportion of the AMPS added to the second reaction zone, continuously withdrawing reaction mass from the second reaction zone, separating copolymer of VAM and AMPS from the latter reaction mass, and saponifying by hydrolysis and/or alcoholysis a major proportion of the
ac state groups in said copolymer to form a copolymer ofVOH and AMPS.
DETAILED DESCRIPTION OF THE INVENTION
In carrying out the foregoing process the comonomer with VAM may be the free acid form of AMPS or the sodium, potassium, or ammonium salt of such free acid form.
The free radical yielding polymerization initiator utilized for the copolymerization of VAc and AMPS or salt of AMP may be, for example, 2-ethylhexyl peroxydicarbonate (Trigonox EHP), 2,2'-azobisisobutylronitrile (AIBN), t-butyl peroxyneodecanoate, bis(4-t-butylcyclohexyl) peroxydicarbonate, di-n-propyl peroxydicarbonate, di-n-butyl peroxydicarbonate, di-acetyl peroxydicarbonate, di-s-butyl peroxydicarbonate. Essentially any initiator able to generate free radicals can be used.
Optionally, acetaldehyde (AcH) as a chain transfer agent can be continuously fed to the first reaction zone with the other components. The amount of AcH may, for example, be up to about 0.2 wt. % based on the total of VAM and AcH being added. A solvent for the comonomers VAM and AMPS, the polymerization initiator and the copolymer being formed in the two reaction zones is generally employed in the process. Suitable solvents are, for example, methanol, ethanol, and propanol. The preferred solvent is methanol.
The amount of AMPS continuously fed to both reaction zones is, for example, about 1 to about 20 wt. %, preferably about 4 to 15 wt. % based on the total of VAM and AMPS being fed. The "split" or ratio between the amounts of AMPS fed to the first and second reaction zones, respectively, may be, for example, from about 55:45 to about 80:20.
The amount of polymerization initiator fed to the first reaction zone may be, for example, about 0.0001 to about 1 wt. % based on the weight of VAM being fed. The amount of solvent fed to the first reaction zone may be, for example, about 10 to about 40 wt. % based on the weight of VAM being fed. The polymerization initiator is preferably fed to the first reaction zone as a solution in the solvent at a concentration in the solvent of about 0.1 to about 10 wt. % based on the weight of the solution.
The average residence time in the first reaction zone of the components fed to the first reaction zone may be, for example, in the range of about 30 to about 120 minutes, preferably about 45 to about 70 minutes.
The reaction temperature in the first reaction zone is, for example, about 55 0C to about 85 0C, preferably about 60 0C to about 80 0C.
The average residence time in the second reaction zone of the components in the effluent from the first reaction one and the additional AMPS fed to the second reaction zone may be, for example, in the range of about 30 to about 120 minutes, preferably about 45 to about 70 minutes. The reaction temperature in the second reaction zone may be, for example, about 55 0C to about 85 0C, preferably about 60 0C to about 80 0C.
The pressure in each reaction zone may be in the range, for example, of about 1 to about 30 psi, preferably about 3 to about 15 psi.
The residence times and temperatures in the first and second reaction zones are generally sufficient to result in the polymerization of substantially all of the AMPS fed to the system although a small percentage of VAM added to the system may remain unpolymerized.
The polymer solids content in the effluent from the second reaction zone may be, for example, in the range of about 40 to about 85%, preferably about 55 to about 75%, while the percent conversion calculated from actual polymer solids content and the theoretical polymer solids content equal to the amount of monomers added may be in the range of about 70 to about 99%, preferably about 80 to about 98%. The molecular weight of the copolymer from the second reaction zone indicated by the viscosity of a 15 wt. % solution in methanol is in the range, for example, of about 4 to about 200 cps preferably about 7 to about 30 cps.
In carrying out the saponification step resulting in VOH/ AMPS copolymers, the effluent from the second reaction zone may, for example, be fed to a stripping column to remove the more volatile components such as unreacted VAM from the copolymer of VAM and AMPS. The resulting "paste" is then mixed with an aqueous solution of a strong base such as sodium hydroxide, e.g., containing about 10 to about 50 wt. % of sodium hydroxide to provide base at a caustic mole ratio (CMR, ratio of moles of base to moles of acetate in the copolymer) of about 0.01 to about 0.1. Optionally, an amount of a volatile alcohol, e.g., methanol, is also added to reduce the solids content in the paste to about 30 to about 65 wt. %. The resulting mass is then allowed to react at a temperature from about room temperature (RT, about 22 C), to about 50 C. for a period, e.g., about 5 minutes to about 24 hours to obtain a percent hydrolysis of the acetate groups in the copolymer to hydroxyl groups, e.g., in the range of about 70 to about 99+%, preferably in the range of about 80 to about 95%.
The saponified copolymer of VOH and AMPS may have, for example, about 1 to about 8 mol % of polymerized AMPS (poly AMPS), about 1 to about 20 mol % of polymerized VAM (PVAc) and about 75 to about 98 mol % of polymerized vinyl alcohol (PVOH), preferably about
2 to about 4 mol % of poly AMPS, about 5 to about 10 mol % of PVAc, and about 85 to about 95 mol % of PVOH, a degree of hydrolysis of, for example, about 70 to about 99+%, preferably about 80 to about 95% indicated by C13 NMR and a relative molecular weight indicated by the viscosity of a 4% aqueous-solution of the VOH copolymer of, for example, about 3 to about 30 cps, preferably about 7 to about 10 cps.
The following examples further illustrate the invention. Examples 1-11 describe the preparation of copolymers of VAM and the sodium salt of a copolymer of 2-acrylamido-2- methyl propane sulfonic propane sulfonic acid (SAMPS) by a continuous process under varying process conditions. Polymerizations were performed using two jacketed 2-L glass reactors in series fitted with reflux condensers, mechanical stirrers and feed lines. Reactor 1 was fed continuously with vinyl acetate (VAM), which, in some examples, contained acetaldehyde (AcH), methanol containing di(ethylhexyl) peroxy dicarbonate (EHP) initiator, and SAMPS, each as a separate feed line using metering pumps. To ensure accurate feed rates, each feed was placed on a balance and the feed rates checked by measuring the weight difference with time. SAMPS was also fed continuously to the second reactor to minimize compositional drift (the split between Reactor 1 and Reactor 2 was 75:25). Table 1 lists the feed rates and initiator and aldehyde concentrations for the runs. Reactor 1 temperature was 60 0C and Reactor 2 temperature was 64 0C. The residence time was 1 hour in each reactor. The polymer solution coming out of Reactor 2 was fed into an Oldershaw column to remove residual vinyl acetate using methanol vapors. Each run was 12 hours long to ensure the polymerization was lined-out.
Table 1 : Feedrates for the Continuous Polymerization Runs Concentration (wt. %) % EHP in % AcH in Feedrate, g/min
Table 2 indicates the results from the polymerization of SAMPS with vinyl acetate in the examples, including relative molecular weight of the polymer indicated by the viscosity of a 15% solution in methanol, the actual percentage of solids in Reactor 2 and the percent conversions (figures in parentheses) calculated from the actual percent solids and theoretical percent solids (figures not in parentheses).
Table 2: Results From the Polymerization of SAMPS With Vinyl Acetate
Table 2 shows the overall conversion of vinyl acetate and SAMPS into polymer. Based on these theoretical solids levels, which are directly related to the conversion of monomers to copolymer, the conversions range from 83% to 98%, no residual SAMPS were detected by C13 NMR in any of the runs.
Saponification of the VAM/SAMPS copolymers was accomplished by treating the paste obtained from the Oldershaw column used to strip VAM from the effluent from Reactor 2 with 50 wt % aqueous NaOH at various values of caustic mole ratio (CMR) further diluted with methanol so that the solids content was 35 wt. %. Examples 12-17 illustrate the effect of varying conditions of saponification carried out on the VAM/SAMPS copolymer of Example 3, with the results shown in Table 3.
Table 3: Saponification of PVAc-AMPS
RT = room temperature
Caustic mole ratio (CMR) was calculated with the assumption the polymer is 100% PVAc. The small amount of co-AMPS was ignored in the CMR calculation.
As stated, the 50% NaOH was diluted with enough MeOH when added to the paste to dilute the solids to 35%. The NaOH/MeOH was mixed into the paste by hand (10 to 20 min. of mixing) at room temperature. The 40 0C saponification gelled after about 1 minute of mixing. The paste was then allowed to react for the time and temperature shown in the above table. Saponification procedures similar to those described in Examples 12-17 were carried out on the polymers of Examples 1-11.
Table 4 shows the compositions and properties of the saponified polymers for each of the examples of Tables 1 and 2 including mol percents of polymerized SAMPS (SAMPS), polymerized VAM (PVAc) and polymerized vinyl alcohol (PVOH), degree of hydrolysis indicated by C13 NMR, relative molecular weight as indicated by the viscosity of a 4% solution water and degree of hydrolysis indicated by titration.
Table 4: Composition of Copolymer and Final Viscosity
Composition of Saponified Polymer by C.SUP.13 NMR Final Results
C13 NMR spectroscopy was used to determine the copolymer composition and the randomness of the SAMPS in the copolymer. The SAMPS feedrate was the only variable to
control the SAMPS loading in the copolymer.
The data in Tables 1-4 indicates that copolymers of VOH and AMPS can be obtained at relatively high AMPS loadings, high conversion rates and productivity, high degree of hydrolysis and relatively low compositional drift, using the continuous process of this invention. More generally, the invention includes a continuous process for making vinyl acetate/acrylamide or acrylamide derivative copolymers. Acrylamide or acrylamide derivative monomers and copolymers incorporating them are referred to herein as acrylamido comonomers and acrylamido copolymers, respectively, for purposes of convenience. There is thus provided in accordance with the invention a continuous process for making a vinyl acetate/acrylamido copolymer comprising: (a) continuously supplying a reaction mixture including vinyl acetate and a more reactive acrylamido comonomer to a reaction zone wherein the vinyl acetate and acrylamido comonomer are at least partially consumed to form an intermediate reaction mixture; (b) continuously supplying to the intermediate reaction mixture a stream enriched with respect to the more reactive acrylamido comonomer and copolymerizing the additional acrylamido comonomer with the intermediate reaction mixture to form a vinyl acetate/acrylamido copolymer product; and (c) continuously recovering the vinyl acetate acrylamido copolymer product.
As stated above, copolymers of vinyl alcohol (VOH) with a minor amount of 2- acrylamido-2-methyl propane sulfonic acid in free acid form or as a salt of the free acid (AMPS) are useful for the production of cold water soluble films which can be formed into containers for predetermined batches of soaps and detergents. The following test results disclose the inherent novel properties of such a film made by the novel process of the present invention.
For example, in one embodiment, the inherent novel property of the product made by the novel process of the present invention can be determined by a "harsh chemical dissolution test method." The "harsh chemical dissolution test method" is defined as the time required for the film to dissolve completely (no film evident in slide frame or beaker) prepared by the following: a) "film preparation method;" b) "pouch containing harsh chemical preparation method;" and then c) the film is tested by the following "water solubility test method". The inherent novel property of the product made by the novel process of the present invention, when made into a film, in one embodiment, has a harsh chemical dissolution time of less than about 80 seconds measured by the harsh chemical dissolution test method after 8 weeks, more specifically, less than about 50 seconds, more specifically, less than about 40 seconds, and more specifically, less than about 25 seconds.
In another example, in another embodiment, the inherent novel property of the product made by the novel process of the present invention can be determined by a "HCL dissolution test method." The "HCL dissolution test method" is defined as the time required for the film to dissolve completely (no film evident in slide frame or beaker) prepared by the following: a) "film preparation method;" and then b) the film is tested by the following "HCL solubility test method." The inherent novel property of the product made by the novel process of the present invention, when made into a film, in one embodiment, has an HCL dissolution time with a 3% HCL solution of less than about 120 seconds, more specifically, less than about 110 seconds, and more specifically, less than about 100 seconds. The inherent novel property of the product made by the novel process of the present invention, when made into a film, in one embodiment, has an HCL dissolution time with a 15% HCL solution of less than about 90 seconds, more specifically, less than about 85 seconds, and more specifically, less than about 80 seconds. The inherent novel property of the product made by the novel process of the present invention, when made into a film, in one embodiment, has an HCL dissolution time with a 28% HCL solution of less than about 75 seconds, more specifically, less than about 70 seconds, and more specifically, less than about 60 seconds.
Film Preparation Method
An aqueous solution of polymer (i.e. 4% polymer by weight) is made by dissolving the polymer in water. The aqueous solution is cast onto a glass plate and allowed to dry. The resulting film (2-3 mil thick) is peeled off the plate and placed into a control humidity at 50% Rh and temperature room at 7O0F for 24 hours. The film is then cut into 2.5 x 3.5 cm pieces. It should be noted that no additional additives are used in making the film (e.g. such as propyl gallate).
Pouch Containing Harsh Chemical Preparation Method
A pouch is made in conditions having a temperature of 67.6 0F and 36.5% humidity. The film, made by the above "film preparation method," is cut in to 6" x 3" pieces and folded in half to make a 3" x 3" square. 3 sides of the square are heat-sealed using a hand held heat-sealing gun. 25 g of the tradename "Super Shock It" ("HTH" brand - 54.6% calcium hypochlorite,
45.4% other ingredients, 53 % available chlorine) are added to the pouch. The fourth side of the pouch is sealed.
Water Solubility Test Method
After 8 weeks, 3 filled and 2 control pouches from each material are tested. The filled pouches are cut open and the contents removed. A 2.3 x 3.4 cm film specimen from each side of the pouch is fixed in a slide frame as shown in the Figure 1. A beaker is filled with 400 ml DI water and stirred at 400 rpm. The water temperature is maintained at 21 0C +/-1C. The specimen is immersed in the water with the time required for the film to dissolve completely (no film evident in slide frame or beaker) is recorded. The average time, in seconds, for the 3 filled pouches is the time for the "harsh chemical dissolution test method after 8 weeks."
HCL Test Method
A 250 ml jacketed beaker, programmable stir plate, magnetic stir bar, stop watch, and 35 mm slide frame is used. Using concentrated HCl (Fisher HCl, certified A. C. S. Plus, lot# 002562, assay 37.5%) a 3%, 15% and 28% solution is prepared. A 2.3 x 3.4 cm film specimen is fixed in a slide frame as shown in the Figure 1. A 225 ml of HCl solution (in a 0.25 liter beaker) is agitated via a magnetic stirrer (300 rpm) creating a vortex. The film made by the above "film preparation method" is immersed in the HCL solution with the time required for the film to dissolve completely (no film evident in slide frame or beaker) being recorded. The testing is performed at room temperature. The test procedure is repeated for each concentration of acid solution and film material. The average time, in seconds, for 3 film samples is the time for the "HCL dissolution test method" at a specific HCL concentration (i.e. 3%, 15% and 28% HCL solutions).
The following is an example of a product made by the process of the present invention that is tested by the "harsh chemical dissolution test method." The polymer was made by Example 1-1, detailed above. The films and pouches were made by the methods described above. Testing equipment included a 500 ml jacketed beaker, programmable digital stir plate, magnetic stir bar, digital thermometer, stop watch, and 35 mm slide frame. The beaker was filled with 400 ml DI water and stirred at 400 rpm. The water temperature was maintained at 21 0C +/-1 0C by a jacketed beaker. Each week, for 8 weeks, 3 filled and 2 control pouches from each material were tested. The filled pouches were cut open and the contents removed. A 2.3 x 3.4 cm film specimen from each side of the pouch was fixed in a slide frame as shown in the Figure 1. The specimen was immersed in the water with the time required for the film to
dissolve completely (no film evident in slide frame or beaker) is recorded as the time for the "harsh chemical dissolution test method" after the given week. The results are the following:
The following is an example of a product made by the process of the present invention that is tested by the "HCL dissolution test method". The polymer was made by Example 1-1, detailed above. The films were made by the methods described above. A 250 ml jacketed beaker, programmable stir plate, magnetic stir bar, stop watch, and 35 mm slide frame was used. Using concentrated HCl (Fisher HCl, certified A.C.S. Plus, lot# 002562, assay 37.5%) a 3%, 15% and 28% solution was prepared. A 2.3 x 3.4 cm film specimen was fixed in a slide frame as shown in the Figure 1. 225 ml of HCl solution (in a 0.25 liter beaker) was agitated via a magnetic stirrer (300 rpm) creating a vortex. The specimen was immersed in the water with the time required for the film to dissolve completely (no film evident in slide frame or beaker) being recorded. The testing was performed at room temperature. The test procedure was repeated for each concentration of acid solution and film material. The results were: a) for the 3% HCL solution, the "HCL dissolution test method" was 107 seconds; b) for the 15% HCL solution, the "HCL dissolution test method" was 81 seconds; and c) for the 28% HCL solution, the "HCL dissolution test method" was 60 seconds.
Claims
1. A product comprising a cold water soluble film wherein: a) the film comprises a copolymer of vinyl alcohol (VOH) with a minor amount of 2-acrylamido-2 -methyl propane sulfonic acid in free acid form or as a salt of the free acid (AMPS); and b) the film has a harsh chemical dissolution time of less than about 80 seconds measured by the harsh chemical dissolution test method after 8 weeks.
2. The product of Claim 1 wherein the film has a harsh chemical dissolution time of less than about 50 seconds measured by the harsh chemical dissolution test method after 8 weeks.
3. The product of Claim 1 wherein the film has a harsh chemical dissolution time of less than about 40 seconds measured by the harsh chemical dissolution test method after 8 weeks.
4. A product comprising a cold water soluble film that can be formed into containers for predetermined batches of soaps and detergents wherein: a) the film comprises a copolymer of vinyl alcohol (VOH) with a minor amount of 2-acrylamido-2-methyl propane sulfonic acid in free acid form or as a salt of the free acid (AMPS); and b) the film has a harsh chemical dissolution time of less than about 80 seconds measured by the harsh chemical dissolution test method after 8 weeks.
5. The product of Claim 4 wherein the film has a harsh chemical dissolution time of less than about 50 seconds measured by the harsh chemical dissolution test method after 8 weeks.
6. The product of Claim 4 wherein the film has a harsh chemical dissolution time of less than about 40 seconds measured by the harsh chemical dissolution test method after 8 weeks.
7. The product of Claim 4 wherein the degree of hydrolysis is at least above about 95%.
8. The product of Claim 4 wherein the film has a HCL dissolution time of less than about 120 seconds measured by the HCL dissolution test method at 3% HCL solution.
9. The product of Claim 4 wherein the film has a HCL dissolution time of less than about 100 seconds measured by the HCL dissolution test method at 3% HCL solution.
10. The product of Claim 4 wherein the film has a HCL dissolution time of less than about 90 seconds measured by the HCL dissolution test method at 15% HCL solution.
11. The product of Claim 4 wherein the film has a HCL dissolution time of less than about 80 seconds measured by the HCL dissolution test method at 15% HCL solution.
12. The product of Claim 4 wherein the film has a HCL dissolution time of less than about 75 seconds measured by the HCL dissolution test method at 28% HCL solution.
13. The product of Claim 4 wherein the film has a HCL dissolution time of less than about 60 seconds measured by the HCL dissolution test method at 28% HCL solution.
14. The product of Claim 4 wherein the viscosity is less than about 7 centipoise.
15. The product of Claim 4 wherein the copolymer of vinyl alcohol (VOH) and 2- acrylamido-2-methyl propane sulfonic acid or a salt of such acid (AMPS) is produced by the method comprising continuously feeding with agitation, vinyl acetate (VAM) and AMPS as comonomers, a free radical yielding polymerization initiator, and a solvent for said comonomers, initiator, and copolymer resulting from the copolymerization of said comonomers, maintaining the resulting reaction mass in said first reaction zone under polymerization conditions for a residence time sufficient for a major proportion of AMPS fed to said first reaction zone to polymerize, continuously feeding reaction mass from said first reaction zone with an additional supply of AMPS to a second reaction zone, maintaining the reaction mass in the second reaction zone for a residence time sufficient to polymerize a major proportion of the AMPS added to the second reaction zone, continuously withdrawing reaction mass from the second reaction zone, separating copolymer of VAM and AMPS from the latter reaction mass, and saponifing by hydrolysis and/or alcoholysis a major proportion of the acetate groups in said copolymer to form a copolymer of VOH and AMPS.
16. In a method of preparing an aqueous dispersion selected from drilling fluids, hydraulic cement compositions, mineral pigment containing coatings, and papermaking furnishes or in a method of preparing a melt extrudate, the improvement comprising: a) producing a copolymer of vinyl alcohol (VOH) and 2-acrylamido-2-methyl propane sulfonic acid or a salt of such acid (AMPS) by steps including continuously feeding with agitation, vinyl acetate (VAM) and AMPS as comonomers, a free radical yielding polymerization initiator, and a solvent for said comonomers, initiator, and copolymer resulting from the copolymerization of said comonomers, maintaining the resulting reaction mass in said first reaction zone under polymerization conditions for a residence time sufficient for a major proportion of AMPS fed to said first reaction zone to polymerize, continuously feeding reaction mass from said first reaction zone with an additional supply of AMPS to a second reaction zone, maintaining the reaction mass in the second reaction zone for a residence time sufficient to polymerize a major proportion of the AMPS added to the second reaction zone, continuously withdrawing reaction mass from the second reaction zone, separating copolymer of VAM and AMPS from the latter reaction mass, and saponifying by hydrolysis and/or alcoholysis a major proportion of the acetate groups in said copolymer to form a copolymer of VOH and AMPS; and b) incorporating the saponified copolymer into the aqueous dispersion or melt extrudate.
17. The process of Claim 16, wherein the total amount of AMPS fed to both reaction zones is about 1 to about 20 wt. % based on the total of VAM and AMPS being fed.
18. The process of Claim 16, wherein the effluent from said second reaction zone has an actual polymer solids content of about 40 to about 85% and the percent conversion calculated from said actual polymer solids content and the theoretical polymer solids content equal to the amount of monomers added to the system is about 70 to about 99%.
19. The process of Claim 16, wherein the relative molecular weight of the VAM/AMPS copolymer obtained from the second reaction zone is indicated by a viscosity of a 15 wt. % solution of the copolymer in methanol of about 4 to about 30 cps.
20. The process of Claim 16, wherein the saponified copolymer of VOH and AMPS contains about 1 to about 8 mol % of polymerized AMPS (poly AMPS), about 1 to about 20 mol % of polymerized VAM (PVAc) and about 75 to about 98 mol % of polymerized VOH (PVOH), a degree of hydrolysis of about 70 to at least 99% indicated by Cl 3NMR and a relative molecular weight indicated by a viscosity of a 4% aqueous solution of the VOH copolymer of about 3 to about 30 cps.
21. In a method of preparing a drilling fluid aqueous dispersion, the improvement comprising: a) producing a copolymer of vinyl alcohol (VOH) and 2-acrylamido-2-methyl propane sulfonic acid or a salt of such acid (AMPS) by steps including continuously feeding with agitation, vinyl acetate (VAM) and AMPS as comonomers, a free radical yielding polymerization initiator, and a solvent for said comonomers, initiator, and copolymer resulting from the copolymerization of said comonomers, maintaining the resulting reaction mass in said first reaction zone under polymerization conditions for a residence time sufficient for a major proportion of AMPS fed to said first reaction zone to polymerize, continuously feeding reaction mass from said first reaction zone with an additional supply of AMPS to a second reaction zone, maintaining the reaction mass in the second reaction zone for a residence time sufficient to polymerize a major proportion of the AMPS added to the second reaction zone, continuously withdrawing reaction mass from the second reaction zone, separating copolymer of VAM and AMPS from the latter reaction mass, and saponifying by hydrolysis and/or alcoholysis a major proportion of the acetate groups in said copolymer to form a copolymer of VOH and AMPS; and b) incorporating the saponified copolymer into the aqueous dispersion.
22. In a method of preparing a hydraulic cement aqueous dispersion, the improvement comprising: a) producing a copolymer of vinyl alcohol (VOH) and 2-acrylamido-2-methyl propane sulfonic acid or a salt of such acid (AMPS) by steps including continuously feeding with agitation, vinyl acetate (VAM) and AMPS as comonomers, a free radical yielding polymerization initiator, and a solvent for said comonomers, initiator, and copolymer resulting from the copolymerization of said comonomers, maintaining the resulting reaction mass in said first reaction zone under polymerization conditions for a residence time sufficient for a major proportion of AMPS fed to said first reaction zone to polymerize, continuously feeding reaction mass from said first reaction zone with an additional supply of AMPS to a second reaction zone, maintaining the reaction mass in the second reaction zone for a residence time sufficient to polymerize a major proportion of the AMPS added to the second reaction zone, continuously withdrawing reaction mass from the second reaction zone, separating copolymer of VAM and AMPS from the latter reaction mass, and saponifying by hydrolysis and/or alcoholysis a major proportion of the acetate groups in said copolymer to form a copolymer of VOH and AMPS; and b) incorporating the saponified copolymer into the aqueous dispersion.
23. In a method of preparing a pigment coating which is an aqueous dispersion including a clay, the improvement comprising: a) producing a copolymer of vinyl alcohol (VOH) and 2-acrylamido~2-methyl propane sulfonic acid or a salt of such acid (AMPS) by steps including continuously feeding with agitation, vinyl acetate (VAM) and AMPS as comonomers, a free radical yielding polymerization initiator, and a solvent for said comonomers, initiator, and copolymer resulting from the copolymerization of said comonomers, maintaining the resulting reaction mass in said first reaction zone under polymerization conditions for a residence time sufficient for a major proportion of AMPS fed to said first reaction zone to polymerize, continuously feeding reaction mass from said first reaction zone with an additional supply of AMPS to a second reaction zone, maintaining the reaction mass in the second reaction zone for a residence time sufficient to polymerize a major proportion of the AMPS added to the second reaction zone, continuously withdrawing reaction mass from the second reaction zone, separating copolymer of VAM and AMPS from the latter reaction mass, and saponifying by hydrolysis and/or alcoholysis a major proportion of the acetate groups in said copolymer to form a copolymer of VOH and AMPS; and b) incorporating the saponified copolymer into the aqueous dispersion.
24. In a method of preparing a papermaking furnish which is an aqueous dispersion, the improvement comprising: a) producing a copolymer of vinyl alcohol (VOH) and 2-acrylamido-2-methyl propane sulfonic acid or a salt of such acid (AMPS) by steps including continuously feeding with agitation, vinyl acetate (VAM) and AMPS as comonomers, a free radical yielding polymerization initiator, and a solvent for said comonomers, initiator, and copolymer resulting from the copolymerization of said comonomers, maintaining the resulting reaction mass in said first reaction zone under polymerization conditions for a residence time sufficient for a major proportion of AMPS fed to said first reaction zone to polymerize, continuously feeding reaction mass from said first reaction zone with an additional supply of AMPS to a second reaction zone, maintaining the reaction mass in the second reaction zone for a residence time sufficient to polymerize a major proportion of the AMPS added to the second reaction zone, continuously withdrawing reaction mass from the second reaction zone, separating copolymer of VAM and AMPS from the latter reaction mass, and saponifying by hydrolysis and/or alcoholysis a major proportion of the acetate groups in said copolymer to form a copolymer of VOH and AMPS; and b) incorporating the saponified copolymer into the aqueous dispersion.
25. In a method of preparing a melt extrudate, the improvement comprising: a) producing a copolymer of vinyl alcohol (VOH) and 2-acrylamido-2-methyl propane sulfonic acid or a salt of such acid (AMPS) by steps including continuously feeding with agitation, vinyl acetate (VAM) and AMPS as comonomers, a free radical yielding polymerization initiator, and a solvent for said comonomers, initiator, and copolymer resulting from the copolymerization of said comonomers, maintaining the resulting reaction mass in said first reaction zone under polymerization conditions for a residence time sufficient for a major proportion of AMPS fed to said first reaction zone to polymerize, continuously feeding reaction mass from said first reaction zone with an additional supply of AMPS to a second reaction zone, maintaining the reaction mass in the second reaction zone for a residence time sufficient to polymerize a major proportion of the AMPS added to the second reaction zone, continuously withdrawing reaction mass from, the second reaction zone, separating copolymer of VAM and AMPS from the latter reaction mass, and saponifying by hydrolysis and/or alcoholysis a major proportion of the acetate groups in said copolymer to form a copolymer of VOH and AMPS; and b) incorporating the saponified copolymer into the melt extrudate.
26. In a method of preparing an aqueous dispersion selected from drilling fluids, hydraulic cement compositions, and pigment coatings including a clay, the improvement comprising: a) preparing a saponified vinyl alcohol resin provided with sulfonic acid functionality by polymerizing vinyl acetate (VAM) and an unsaturated sulfonic acid containing comonomer followed by saponifying by hydrolysis and/or alcoholysis a major proportion of the acetate groups in said copolymer to form a saponified resin of VOH and the sulfonic acid containing comonomer, wherein the saponified polyvinyl alcohol resin consists essentially of recurring units I, II and III,
R1 is present or absent and if present is C1-C20 alkylene, C4-C8 cycloalkylene,
C4-C8 heterocycloalkylene, arylene, heteroarylene, or -C(=0)-NH-R2- ;
R2 is C1-C10 alkylene, C4-C8 cycloalkylene, C4-C8 heterocycloalkylene, arylene, alkylarylene, heteroarylene, alkylheteroarylene;
M is a cationic counterion or hydrogen; and wherein recurring unit I is present in the saponified resin in an amount of from about 0.5 to about 10 mole percent; recurring unit II is present in the resin in an amount of from about 75 to about 98 mole percent and recurring unit III is present in an amount of from about 1 to about 20 mole percent; and b) incorporating the saponified polyvinyl alcohol resin into the aqueous dispersion.
27. The improvement according to Claim 26, wherein the saponified resin consists essentially of the following recurring units:
28. The improvement according to Claim 26, wherein the saponified resin consists essentially of the following recurring units:
29. The improvement according to Claim 26, wherein the saponified resin consists essentially of the following recurring units:
30. The improvement according to Claim 26, wherein the aqueous dispersion is a drilling fluid.
31. The improvement according to Claim 26, wherein the aqueous dispersion is a hydraulic cement composition.
32. The improvement according to Claim 31 hydraulic cement composition contains a dispersant.
33. The improvement according to Claim 26, wherein the aqueous dispersion is a clay containing pigment composition.
34. The improvement according to Claim 33, wherein the pigment composition contains a binder resin.
35. The improvement according to Claim 33, wherein the pigment composition contains a latex binder resin.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200680020165.9A CN101193955B (en) | 2005-06-07 | 2006-01-30 | The vinyl alcohol copolymer of resistance to harsh chemical |
KR1020087000305A KR101190925B1 (en) | 2005-06-07 | 2006-01-30 | Vinyl alcohol copolymers for use in aqueous dispersions and melt extruded articles |
EP06719908A EP1888674A1 (en) | 2005-06-07 | 2006-01-30 | Vinyl alcohol copolymers for use in aqueous dispersions and melt extruded articles |
JP2008515684A JP2008542520A (en) | 2005-06-07 | 2006-01-30 | Vinyl alcohol copolymers for use in aqueous dispersions and melt-extruded articles |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/147,910 | 2005-06-07 | ||
US11/147,910 US7786229B2 (en) | 2003-07-11 | 2005-06-07 | Vinyl alcohol copolymers for use in aqueous dispersions and melt extruded articles |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006132680A1 true WO2006132680A1 (en) | 2006-12-14 |
Family
ID=36678525
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2006/003267 WO2006132680A1 (en) | 2005-06-07 | 2006-01-30 | Vinyl alcohol copolymers for use in aqueous dispersions and melt extruded articles |
Country Status (6)
Country | Link |
---|---|
US (2) | US7786229B2 (en) |
EP (1) | EP1888674A1 (en) |
JP (3) | JP2008542520A (en) |
KR (1) | KR101190925B1 (en) |
CN (1) | CN101193955B (en) |
WO (1) | WO2006132680A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106795236A (en) * | 2014-10-09 | 2017-05-31 | 株式会社可乐丽 | Modified polyvinylalcohol, resin combination and film |
EP3088428A4 (en) * | 2013-12-25 | 2017-07-05 | Kuraray Co., Ltd. | Modified polyvinyl alcohol and water-soluble film containing same |
US10336872B2 (en) | 2014-10-09 | 2019-07-02 | Kuraray Co., Ltd. | Resin composition and film |
US10370627B2 (en) | 2016-06-13 | 2019-08-06 | The Procter & Gamble Company | Water-soluble unit dose articles made from a combination of different films and containing household care compositions |
US10479965B2 (en) | 2016-06-13 | 2019-11-19 | The Procter & Gamble Company | Water-soluble unit dose articles made from a combination of different films and containing household care compositions |
US10745655B2 (en) | 2016-06-13 | 2020-08-18 | The Procter & Gamble Company | Water-soluble unit dose articles made from a combination of different films and containing household care compositions |
US10899518B2 (en) | 2016-06-13 | 2021-01-26 | Monosol, Llc | Water-soluble packets |
US10907117B2 (en) | 2016-06-13 | 2021-02-02 | Monosol, Llc | Use of a first film and a second film to improve seal strength of a water-soluble unit dose article |
US11473039B2 (en) | 2016-06-13 | 2022-10-18 | Monosol, Llc | Water-soluble unit dose articles made from a combination of different films |
US11767405B2 (en) | 2016-04-13 | 2023-09-26 | Monosol, Llc | Water soluble film, packets employing the film, and methods of making and using same |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8466243B2 (en) | 2003-07-11 | 2013-06-18 | Sekisui Specialty Chemicals America, Llc | Vinyl alcohol copolymers for use in aqueous dispersions and melt extruded articles |
US6818709B1 (en) * | 2003-07-11 | 2004-11-16 | Celanese International Corporation | Production of vinyl alcohol copolymers |
US7786229B2 (en) * | 2003-07-11 | 2010-08-31 | Sekisui Specialty Chemicals America, Llc | Vinyl alcohol copolymers for use in aqueous dispersions and melt extruded articles |
AU2007248285B2 (en) * | 2006-05-01 | 2011-07-14 | Monosol, Llc | Halogen-resistant composition |
US7745517B2 (en) | 2006-05-02 | 2010-06-29 | Sekisui Specialty Chemicals America, Llc | Polyvinyl alcohol films with improved resistance to oxidizing chemicals |
US8772220B2 (en) | 2007-08-24 | 2014-07-08 | Sekisui Specialty Chemicals America, Llc | Chemical delivery product and process for making the same |
US9142835B2 (en) * | 2007-11-20 | 2015-09-22 | Sekisui Specialty Chemicals America, Llc | Separator film for batteries including oxidation resistant vinyl alcohol copolymer |
JP5931088B2 (en) | 2010-12-22 | 2016-06-08 | セキスイ・スペシャルティ・ケミカルズ・アメリカ・エルエルシー | Cold water soluble polyvinyl alcohol / alkyl acrylate copolymers and films thereof |
CN103724514B (en) * | 2012-10-12 | 2016-03-02 | 中国石油化工集团公司 | A kind of preparation method of vinyl modified polyvinyl alcohol |
CN103724513B (en) * | 2012-10-12 | 2016-04-27 | 中国石油化工集团公司 | A kind of modified polyvinyl alcohol and preparation method thereof |
TWI548655B (en) | 2012-10-22 | 2016-09-11 | 積水特殊化學美國有限責任公司 | Pvp copolymer for harsh chemical packaging |
ES2688148T3 (en) | 2014-03-28 | 2018-10-31 | Synthomer (Uk) Ltd. | Secondary suspension agent for suspension polymerization reaction |
US10647793B2 (en) | 2014-03-28 | 2020-05-12 | Synthomer (Uk) Limited | Use of a sulphur or phosphorous-containing polymer as a processing aid in a polyvinyl chloride polymer composition |
CN105017090B (en) * | 2015-06-16 | 2017-07-25 | 天长市天佳化工科技有限公司 | A kind of synthetic method of 4 (N methyl Ns sulfoethvl) aminobenzaldehyde sodium salts |
EP3686171A4 (en) * | 2018-02-22 | 2020-12-30 | Denka Company Limited | Additive for oil well cement and cement slurry using said additive for oil well cement |
CN114426612A (en) * | 2020-10-14 | 2022-05-03 | 中国石油化工股份有限公司 | Ethylene-vinyl alcohol copolymer production device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09272774A (en) * | 1996-04-05 | 1997-10-21 | Kuraray Co Ltd | Water-soluble film for packaging acidic substance |
WO2005010057A1 (en) * | 2003-07-11 | 2005-02-03 | Celanese International Corporation | Production of vinyl alcohol copolymers |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0810328B2 (en) * | 1987-01-17 | 1996-01-31 | 日本ペイント株式会社 | Photosensitive resin composition |
JPH0810329B2 (en) * | 1987-01-17 | 1996-01-31 | 日本ペイント株式会社 | Photosensitive resin composition |
IT1236966B (en) * | 1989-10-25 | 1993-05-07 | Ausidet Srl | PROCESS FOR THE PRODUCTION OF AQUEOUS SOLUTIONS OF ANTI-INCRUSTATION AGENTS AND SOLUTIONS SO OBTAINED |
JPH05320219A (en) * | 1991-06-05 | 1993-12-03 | Denki Kagaku Kogyo Kk | Production of polyvinyl alcohol resin |
JP3118352B2 (en) * | 1993-10-27 | 2000-12-18 | 株式会社クラレ | Water-soluble film for agricultural chemical packaging |
JP4476451B2 (en) * | 2000-07-06 | 2010-06-09 | 株式会社クラレ | Water-soluble film for packaging chlorine-containing substances |
JP2005154710A (en) * | 2003-03-10 | 2005-06-16 | Toray Ind Inc | Polymer solid electrolyte, method for producing the same, and solid polymer type fuel cell by using the same |
US7022656B2 (en) * | 2003-03-19 | 2006-04-04 | Monosol, Llc. | Water-soluble copolymer film packet |
US7786229B2 (en) * | 2003-07-11 | 2010-08-31 | Sekisui Specialty Chemicals America, Llc | Vinyl alcohol copolymers for use in aqueous dispersions and melt extruded articles |
JP2005139240A (en) * | 2003-11-04 | 2005-06-02 | Japan Vam & Poval Co Ltd | Water-soluble film and individually packaging material |
-
2005
- 2005-06-07 US US11/147,910 patent/US7786229B2/en not_active Expired - Lifetime
-
2006
- 2006-01-30 CN CN200680020165.9A patent/CN101193955B/en active Active
- 2006-01-30 WO PCT/US2006/003267 patent/WO2006132680A1/en active Application Filing
- 2006-01-30 KR KR1020087000305A patent/KR101190925B1/en not_active IP Right Cessation
- 2006-01-30 JP JP2008515684A patent/JP2008542520A/en not_active Withdrawn
- 2006-01-30 EP EP06719908A patent/EP1888674A1/en not_active Withdrawn
-
2010
- 2010-08-11 US US12/806,352 patent/US7932328B2/en not_active Expired - Lifetime
-
2012
- 2012-07-05 JP JP2012151441A patent/JP5851948B2/en active Active
-
2015
- 2015-07-27 JP JP2015147601A patent/JP6073993B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09272774A (en) * | 1996-04-05 | 1997-10-21 | Kuraray Co Ltd | Water-soluble film for packaging acidic substance |
WO2005010057A1 (en) * | 2003-07-11 | 2005-02-03 | Celanese International Corporation | Production of vinyl alcohol copolymers |
US20050065272A1 (en) * | 2003-07-11 | 2005-03-24 | Richard Vicari | Vinyl alcohol copolymers for use in aqueous dispersions and melt extruded articles |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 02 30 January 1998 (1998-01-30) * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10654958B2 (en) | 2013-12-25 | 2020-05-19 | Kuraray Co., Ltd. | Modified polyvinyl alcohol and water-soluble film containing same |
EP3088428A4 (en) * | 2013-12-25 | 2017-07-05 | Kuraray Co., Ltd. | Modified polyvinyl alcohol and water-soluble film containing same |
US10336872B2 (en) | 2014-10-09 | 2019-07-02 | Kuraray Co., Ltd. | Resin composition and film |
CN106795236A (en) * | 2014-10-09 | 2017-05-31 | 株式会社可乐丽 | Modified polyvinylalcohol, resin combination and film |
CN106795236B (en) * | 2014-10-09 | 2020-05-15 | 株式会社可乐丽 | Modified polyvinyl alcohol, resin composition, and film |
US11767405B2 (en) | 2016-04-13 | 2023-09-26 | Monosol, Llc | Water soluble film, packets employing the film, and methods of making and using same |
US10370627B2 (en) | 2016-06-13 | 2019-08-06 | The Procter & Gamble Company | Water-soluble unit dose articles made from a combination of different films and containing household care compositions |
US10745655B2 (en) | 2016-06-13 | 2020-08-18 | The Procter & Gamble Company | Water-soluble unit dose articles made from a combination of different films and containing household care compositions |
US10899518B2 (en) | 2016-06-13 | 2021-01-26 | Monosol, Llc | Water-soluble packets |
US10907117B2 (en) | 2016-06-13 | 2021-02-02 | Monosol, Llc | Use of a first film and a second film to improve seal strength of a water-soluble unit dose article |
US11078451B2 (en) | 2016-06-13 | 2021-08-03 | The Procter & Gamble Company | Water-soluble unit dose articles made from a combination of different films and containing household care compositions |
US11473039B2 (en) | 2016-06-13 | 2022-10-18 | Monosol, Llc | Water-soluble unit dose articles made from a combination of different films |
US11649419B2 (en) | 2016-06-13 | 2023-05-16 | Monosol, Llc | Use of a first film and a second film to improve seal strength of a water-soluble unit dose article |
US10479965B2 (en) | 2016-06-13 | 2019-11-19 | The Procter & Gamble Company | Water-soluble unit dose articles made from a combination of different films and containing household care compositions |
US11781094B2 (en) | 2016-06-13 | 2023-10-10 | The Procter & Gamble Company | Water-soluble unit dose articles made from a combination of different films and containing household care compositions |
Also Published As
Publication number | Publication date |
---|---|
KR20080019051A (en) | 2008-02-29 |
CN101193955A (en) | 2008-06-04 |
JP2012229430A (en) | 2012-11-22 |
JP5851948B2 (en) | 2016-02-03 |
JP2015232137A (en) | 2015-12-24 |
US7932328B2 (en) | 2011-04-26 |
JP6073993B2 (en) | 2017-02-01 |
KR101190925B1 (en) | 2012-10-12 |
US20050222355A1 (en) | 2005-10-06 |
US20100305270A1 (en) | 2010-12-02 |
US7786229B2 (en) | 2010-08-31 |
JP2008542520A (en) | 2008-11-27 |
CN101193955B (en) | 2016-03-30 |
EP1888674A1 (en) | 2008-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7932328B2 (en) | Vinyl alcohol copolymers for use in aqueous dispersions and melt extruded articles | |
US6818709B1 (en) | Production of vinyl alcohol copolymers | |
EP2655447B1 (en) | Cold water soluble polyvinyl alcohol/alkyl acrylate copolymers and films thereof | |
JP2002284818A (en) | Novel vinyl alcohol resin and its use | |
JP2002241433A (en) | Novel vinyl alcohol resin and its use | |
JP2008542520A5 (en) | ||
CN107771191A (en) | Water solubility or water-swellable polymer as the fluid loss agent in cement mortar | |
CN104558320B (en) | Polyvinyl acetate emulsion | |
TWI693241B (en) | Modified vinyl alcohol polymer and its manufacturing method | |
US8466243B2 (en) | Vinyl alcohol copolymers for use in aqueous dispersions and melt extruded articles | |
US20020042459A1 (en) | Thickeners based on vinyl alcohol copolymers | |
JP4132467B2 (en) | Production method of vinyl alcohol polymer | |
US20160280599A1 (en) | Process for producing water-redispersible polymer powder compositions having cationic functionality | |
CN102532389B (en) | Poly-vinyl versatate-vinyl acetate-ethylene emulsion and emulsion polymerization preparation method | |
JP2007126655A (en) | New vinyl alcohol-based resin and use thereof | |
TW202340279A (en) | Vinyl alcohol copolymer, resin composition containing same, and resin molded body | |
JPS59204999A (en) | Paper surface sizing agent | |
CN116057077A (en) | Acetoacetyl group-containing polyvinyl alcohol resin and method for producing acetoacetyl group-containing polyvinyl alcohol resin | |
TW202334251A (en) | Modified vinyl alcohol polymer and method for producing same | |
JPH0426533A (en) | Cement admixture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200680020165.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2006719908 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2008515684 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020087000305 Country of ref document: KR |