WO2006130350A2 - Knee prosthesis with ceramic tibial component - Google Patents
Knee prosthesis with ceramic tibial component Download PDFInfo
- Publication number
- WO2006130350A2 WO2006130350A2 PCT/US2006/019254 US2006019254W WO2006130350A2 WO 2006130350 A2 WO2006130350 A2 WO 2006130350A2 US 2006019254 W US2006019254 W US 2006019254W WO 2006130350 A2 WO2006130350 A2 WO 2006130350A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tibial
- knee prosthesis
- ceramic
- component
- bearing
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/38—Joints for elbows or knees
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/38—Joints for elbows or knees
- A61F2/3868—Joints for elbows or knees with sliding tibial bearing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/38—Joints for elbows or knees
- A61F2/389—Tibial components
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2002/3092—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth having an open-celled or open-pored structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/38—Joints for elbows or knees
- A61F2002/3895—Joints for elbows or knees unicompartimental
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00179—Ceramics or ceramic-like structures
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00179—Ceramics or ceramic-like structures
- A61F2310/00185—Ceramics or ceramic-like structures based on metal oxides
- A61F2310/00203—Ceramics or ceramic-like structures based on metal oxides containing alumina or aluminium oxide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00179—Ceramics or ceramic-like structures
- A61F2310/00185—Ceramics or ceramic-like structures based on metal oxides
- A61F2310/00239—Ceramics or ceramic-like structures based on metal oxides containing zirconia or zirconium oxide ZrO2
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00179—Ceramics or ceramic-like structures
- A61F2310/00299—Ceramics or ceramic-like structures based on metal nitrides
- A61F2310/00317—Ceramics or ceramic-like structures based on metal nitrides containing silicon nitride
Definitions
- This invention relates generally to improvements in knee prostheses, particularly with respect to an improved tibial component constructed from a relatively hard and relatively high strength ceramic material.
- the ceramic tibial component includes at least one generally articulation surface designed for direct bearing engagement by and articulation against an associated femoral articulation surface having a generally convex or condylar shape.
- the ceramic tibial component is design for ultra low wear over an extended service life, and further permits elimination of a conventional polymer-based bearing insert and undesirable wear debris problems associated therewith.
- Knee prostheses generally comprise a tibial component adapted for fixation to an appropriately resected upper end of the patient's tibia.
- Such tibial components have generally been formed from a biocompatible metal material such as cobalt chrome, titanium, stainless steel, or from polymer- based materials.
- the tibial component thus provides a strong and durable prosthetic base structure for supporting a polymer-based bearing insert which in turn defines a pair of upwardly presented, generally concave bearing seats for articulatory engagement with a corresponding pair of generally convex or condylar-shaped articulation surfaces at the lower end of the patient's femur.
- These femoral articulation surfaces can be defined by natural femoral bone surfaces, or alternately by condyle surfaces on a reconstructed or prosthetic femoral component affixed to the patient's femur.
- Such femoral components have generally been formed from a biocompatible metal material such as cobalt chrome, titanium, stainless steel, zirconium, zirconium oxide and ceramic materials such as alumina, zirconia and zirconia-toughened alumina (ZTA).
- a biocompatible metal material such as cobalt chrome, titanium, stainless steel, zirconium, zirconium oxide and ceramic materials such as alumina, zirconia and zirconia-toughened alumina (ZTA).
- the polymer-based bearing insert is formed typically from a high density or ultra high molecular weight polyethylene (PE) material, which has been shown in various specific compositions to accommodate smooth and relatively low-wear articulation relative to the femoral surfaces.
- PE polyethylene
- clinical studies have shown that significant wear debris can be generated and released by the polymeric bearing insert over a period of time, and further that a principle contributing factor to implant failure is. osteolysis attributable at least in part to the presence of such polymer- based wear debris. More particularly, such studies have shown that PE wear debris released into peri-implant tissues appears to elicit a deleterious biological reaction, incorporating foreign body giant cell and macrophage cell responses leading to undesirable bone resorption, with eventual loosening and failure of the prosthetic implant.
- alternative prosthesis constructions have proposed improvements in and to the polymer-based bearing insert, such as the use of highly cross-linked polyethylene materials.
- Other alternative prostheses have been proposed using rigid-on-rigid components, such as ceramic-on-ceramic or metal-on- metal, thereby eliminating the polymer-based bearing insert and wear debris associated therewith.
- Bearing couples in the knee joint have been limited to metal-on-polymer or ceramic-on-polymer.
- ceramic knee prosthesis components have shown promise for use in a ceramic-on-ceramic or alternately in a ceramic-on- metal articulating interface, thereby completely eliminating the polymer- based bearing insert.
- Such prosthesis constructions when formed with a good surface finish and conformal surface geometry, have demonstrated a relatively low coefficient of friction and resultant substantial reduction in component wear in comparison with ceramic-polymer or metal-polymer articulatory interfaces.
- the major limitation on the use of ceramic components particularly such as alumina-based ceramic materials has been an unacceptably high rate of brittle fracture occurring within a postsurgical follow-up period ranging from a few months to several years. In this regard, ceramic materials generally exhibit relatively low toughness and are thus prone to brittle fracture.
- U.S. Patent 6,881 ,229 discloses an improved ceramic material for use in joint prostheses, such as knee prostheses, wherein a ceramic-on- ceramic or a ceramic-on-metal articulatory interface is defined.
- the improved ceramic material comprises a doped silicon nitride (Si 3 N 4 ) having relatively high hardness, tensile strength, elastic modulus, lubricity, and fracture toughness.
- the improved doped silicon nitride ceramic has a flexural strength greater than about 700 Mega-Pascal (MPa) and a fracture toughness greater than about 7 Mega-Pascal root meter (MPam 05 ). This high strength and high toughness doped silicon nitride ceramic achieves ultra-low wear over an extended service life, with dramatically reduced risk of brittle fracture.
- U.S. Patent 6,846,327 discloses improved ceramic materials for bone graft applications, wherein the ceramic material is designed to mimic structural characteristics of natural patient bone by including first and second regions of comparatively lower and higher porosity to respectively mimic natural cortical and cancellous bone structures.
- the preferred ceramic materials disclosed exhibit a flexural strength greater than about 500 Mega-Pascal (MPa) and a fracture toughness greater than about 5 Mega-Pascal root meter (MPam 0 5 ).
- MPa Mega-Pascal
- MPam 0 5 Mega-Pascal root meter
- the relatively low porosity region of the ceramic material provides high structural strength and integrity, whereas the higher porosity region is suitable for bone ingrowth to achieve secure and stable implant affixation.
- the present invention comprises an improved knee joint prosthesis particularly wherein the load-bearing tibial component thereof is constructed from an improved high strength and high toughness ceramic material as disclosed, e.g., in U.S. Patent 6,881 ,229 and/or U.S. Patent 6,846,327.
- an improved knee prosthesis includes a load-bearing tibial component constructed from a relatively high strength and high toughness ceramic material and defining at least one articulation surface for ultra-low wear articulation with a generally convex or condylar-shaped femoral articulation surface defined by a femoral prosthetic component or by natural patient bone.
- the ceramic tibial component is adapted for direct fixation relative to the patient's tibial bone, or alternately in the form of a tibial bearing insert component carried by a tibial baseplate member which is adapted in turn for fixation to tibial bone.
- the ceramic tibial component comprises a monoblock structure defining at least one and preferably a pair of generally concave articulation surfaces or bearing seats formed by a ceramic material having relative high hardness and high fracture toughness, such as the doped silicon nitride (Si 3 N 4 ) disclosed in U.S. Patent 6,881 ,229 which in incorporated by reference herein.
- This high strength and high toughness doped silicon nitride ceramic achieves ultra-low wear over an extended service life, with dramatically reduced risk of brittle fracture, when articulated against femoral articulation surfaces of prosthetic materials such as biocompatible metal or ceramic, or when articulated against natural femoral bone.
- the tibial ceramic monoblock structure further includes an underside region defined by a ceramic porous bone ingrowth surface for secure ingrowth affixation to natural tibial bone, such as the porous ceramic disclosed in U.S. Patent 6,846,327 which is also incorporated by reference herein.
- a ceramic porous bone ingrowth surface for secure ingrowth affixation to natural tibial bone, such as the porous ceramic disclosed in U.S. Patent 6,846,327 which is also incorporated by reference herein.
- An alternate form would be the attachment of the component to the natural tibial bone through cementation.
- the porous structure may allow for bone interdigitation.
- a further alternate method for cementation would not include a porous section and be replaced with a slot or pocket that will receive the cement and may or may not include undercut features for tensile strength.
- the ceramic tibial component comprises a tibial bearing insert constructed from a ceramic material (as described above) having relatively high hardness and high fracture toughness properties.
- This ceramic tibial bearing insert in configured for mounting in a fixed or partially mobile manner onto a tibial baseplate member which is adapted in turn for fixation to the patient's tibial bone.
- the tibial baseplate member may be constructed from ceramic material, preferably such as the above-described material forming a bearing platform defined by relatively high hardness and high toughness ceramic in combination with an underside region defined by a ceramic porous bone ingrowth surface.
- the tibial baseplate member may be constructed from a biocompatible metal.
- the tibial bearing insert may include a central upstanding stabilizer post of the general type described in U.S. Patent 5,116,375.
- the ceramic tibial component may comprise a meniscal bearing insert defining an upwardly presented articulation surface constructed from a ceramic material (as described above) having relatively high hardness and high fracture toughness, in combination with an underside region defined by a ceramic porous bone ingrowth surface suitable for ingrowth-fixation or bone cement fixation with a prepared region at the upper end of the patient's tibia.
- the hard and tough articulation surface typically defines a shallow upwardly concave bearing seat for articulating with a convex or condylar-shaped femoral articulation surface defined by a femoral prosthetic component or alternately by natural patient bone.
- the ceramic tibial component of the knee prosthesis permits the elimination of a polymer-based bearing insert, and thereby also permits elimination of post-surgical problems associated with polymer-based wear particles and debris.
- the ceramic tibial component provides for ultra low wear over an extended service life, substantially without incurring brittle fracture problems associated typically with ceramic prosthesis structures.
- FIGURE 1 is an exploded perspective view illustrating an exemplary knee prosthesis including a ceramic tibial component in accordance with one preferred form of the invention
- FIGURE 2 is a top plan view of the ceramic tibial component, taken generally on the line 2-2 of FIG. 1 ;
- FIGURE 3 is a bottom plan view of the ceramic tibial component, taken generally on the line 3-3 of FIG. 1 ;
- FIGURE 4 is a side elevation view of the knee prosthesis of FIGS. 1-3 in assembled relation and depicting patient femoral and tibial bones in dotted lines;
- FIGURE 5 is an exploded perspective view showing one alternative preferred form of the invention, including a ceramic tibial bearing insert adapted for assembly with a tibial base member;
- FIGURE 6 is a side elevation view showing the tibial bearing component and base member of FIG. 5 in assembled relation;
- FIGURE 7 is a perspective view illustrating an alternative configuration for the ceramic tibial bearing component
- FIGURE 8 is an exploded perspective view depicting a further alternative preferred form of the invention, including a ceramic tibial bearing component adapted for assembly with a tibial baseplate member;
- FIGURE 9 is a perspective view showing the tibial bearing component and baseplate member of FIG. 8 in assembled relation, and further depicted in assembled relation with a femoral component for the knee prosthesis;
- FIGURE 10 is a side elevation view of the knee prosthesis illustrated in FIG. 9;
- FIGURE 11 is an exploded perspective view showing one alternative preferred configuration for the tibial bearing component and baseplate member of FiGS. 8-10;
- FIGURE 12 is another perspective view showing another alternative preferred configuration for the tibial bearing component and baseplate member of FIGS. 8-10;
- FIGURE 13 is a further perspective view showing a further alternative preferred configuration for the tibial bearing component and baseplate member of FIGS. 8-10;
- FIGURE 14 is an exploded perspective view illustrating a ceramic meniscal bearing component adapted for tibial fixation and interposed between a patient's femoral and tibial bones;
- FIGURE 15 is a perspective view showing the ceramic meniscal bearing component in assembled relation between the patient's femoral and tibial bones;
- FIGURE 16 is a top plan view of the meniscal bearing component, taken generally on the line 16-16 of FIG. 14;
- FIGURE 17 is a bottom plan view of the meniscal bearing component, taken generally on the line 17-17 of FIG. 14.
- an improved knee prosthesis referred to generally in one preferred form by the reference numeral 10 in FIGURES 1-4 includes a tibial component 12 constructed from a relatively hard and high strength ceramic material which may also incorporate a relatively porous ceramic bone ingrowth surface 14 (FIG. 3) for secure affixation to patient bone.
- the ceramic tibial component 12 is designed for articulation with a femoral prosthesis 16 (FIGS. 1 and 4) which may be constructed from a hard and high strength material such as a compatible and preferably identical ceramic material, or a biocompatible metal material, or alternately for articulation with natural patient femoral bone surfaces.
- the resultant ceramic-on-ceramic, or ceramic-on-metal, or ceramic-on-bone articulatory interface beneficially exhibits ultra-low wear over an extended service life, while additionally permitting elimination of the traditional polymer-based bearing insert and wear debris problems associated therewith.
- FIGS. 1 and 4 illustrate the knee prosthesis 10 including the ceramic tibial component 12 and the associated femoral component 16 for repairing or replacing the natural anatomical articulatory surfaces of the human knee joint.
- the ceramic tibial component 12 comprises a monoblock structure having a size and shape for seated and secure affixation at the upper end of a resected tibial bone 18 (FIG. 4), whereas the femoral component 16 has a size and shape for similarly seated and secure affixation at the lower end of a resected femoral bone 20.
- the tibial component 12 defines an upwardly presented platform 22 which is contoured to form a laterally spaced pair of upwardly presented, generally concave bearing seats 24 and 26.
- the bearing seats 24, 26 define shallow concave articulation surfaces for respective engagement by and combined sliding and rolling articulation with generally convex medial and lateral condyles 28 and 30 formed on the femoral component 16.
- the resultant articulatory interface with the femoral condylar surfaces beneficially exhibits ultra low wear over an extended service life.
- the invention permits elimination of the traditional polymer-based bearing insert, such as a high density or high molecular weight polyethylene (PE) bearing insert or the like normally fitted between the tibial component 12 and the femoral condyle structures to accommodate smooth articulation between these components.
- PE polyethylene
- clinical studies have linked premature prosthesis failures to the generation and accumulation of polymer-based wear debris associated with such polymer-based bearing inserts.
- the use of polymer-based inserts inherently increases the vertical span of the overall prosthesis construct, thereby restricting its utility to use with larger bone patients capable of receiving the larger sized prosthesis.
- the ceramic tibial component 12 is shown in one preferred form in
- FIGS. 1-4 in the form of a unitary or substantially monoblock configuration to include the upper platform 22 contoured to define the concave bearing seats 24, 26, and further to define a downwardly protruding fixation post 32.
- This fixation post 32 is desirably shaped to have a noncircular cross- sectional configuration, such as the radially winged construction as shown, for seated reception into a resected upper end of the patient's tibia 18 (FIG. 4).
- an underside surface of the upper platform 22 carries the ceramic porous bone ingrowth surface coating or lining 14.
- the preferred ceramic material used for constructing the ceramic tibial component 12 of the present invention comprises a high flexural strength and high fracture toughness ceramic material particularly such as a doped silicon nitride (Si 3 N 4 ) having relatively high hardness, tensile strength, elastic modulus, lubricity, and fracture toughness properties, as described in detail in U.S. Patent 6,881 ,229 which is incorporated by reference herein.
- This doped silicon nitride ceramic material has a relatively high flexural strength greater than about 700 Mega-Pascal (MPa) and a relatively high fracture toughness greater than about 7 Mega-Pascal root meter (MPam 0 5 ).
- MPa Mega-Pascal
- MPam 0 5 Mega-Pascal root meter
- This high strength and high toughness ceramic material is used to form a substrate for the ceramic tibial component 12.
- such substrate structure has a relatively low porosity, and thus exhibits high density and high structural integrity generally consistent with and generally mimicking the characteristics of natural cortical bone lined with smooth lubricious articular cartilage.
- FIG. 3 further shows the ceramic porous bone ingrowth surface coating or lining 14 formed on the underside of the tibia! platform 22, wherein this coating or lining exhibits a comparatively greater or higher porosity that is generally consistent with and generally mimics the characteristics of natural cancellous bone.
- this higher porosity surface coating or lining 14 provides an effective bone ingrowth surface for achieving secure and stable bone ingrowth affixation of the ceramic tibial component 12 with the patient's tibia 18.
- a preferred porous material comprises a ceramic porous ingrowth surface material.
- U.S. Patent 6,846,327 which is incorporated by reference herein discloses a ceramic bone graft component having relatively high flexural strength and relatively high toughness properties yet defining first and second regions of comparatively lower and higher porosity to respectively mimic natural cortical and cancellous bone structures. These regions of different porosity may be unitarily constructed or otherwise integrated into a common or monolithic ceramic component having a variable porosity gradient.
- the ceramic tibial component 12 has a porosity gradient ranging from about 2% to about 80% by volume, with the higher porosity region having a porosity in the range of from about 30% to about 80% by volume, and with overall pore sizes ranging from about 50 microns to about 1 ,000 microns.
- the relatively low porosity region of the ceramic material provides a dense and hard structure with high structural strength and integrity, whereas the higher porosity or less dense region is suitable for bone ingrowth to achieve secure and stable implant affixation.
- U.S. Patent 6,846,327 discloses a preferred alumina-zirconia ceramic material having a zirconia composition of about 10% to about 20% by volume, with either yttria stabilized zirconia (about 2.5 to about 5 mol % yttria in zirconia) or ceria stabilized zirconia (about 2.5 to about 15 mol % ceria in zirconia) for the zirconia phase.
- the resultant ceramic material exhibits a highly desirable combination of high flexural strength (greater than about 500 MPa) and high fracture toughness (greater than about 5 MPam 0 " 5 ).
- Such aiumina-zirconia based ceramic material may be employed in the present invention for the ceramic tibilar component cup 12, although the stronger and tougher silicon nitride (S ⁇ 3 N 4 ) ceramic as described in U.S. Patent 6,881 ,229 is preferred. Accordingly, in the preferred form, the ceramic tibial component 12 is constructed predominantly from relatively low porosity ceramic material having the desired high strength and high toughness properties, such as the doped silicon nitride (S ⁇ 3 N 4 ) material described in the above-referenced U.S. Patent 6,881 ,229.
- the ceramic tibial component 12 further includes the comparatively higher porosity bone ingrowth surface 14, formed preferably from a higher porosity ceramic material as described in the above-referenced U.S. Patent 6,846,327, extending over a substantial area of the underside of the upper platform 22.
- This relatively high porosity bone ingrowth surface 14 is preferably formed integrally with the low porosity substrate, although persons skilled in the art will understand that the bone ingrowth surface 14 may be separately applied as a surface coating or lining.
- the femoral component 16 shown in FIGS. 1 and 4 is constructed in the most preferred form from a ceramic material that is compatible with the ceramic tibial component material.
- a preferred material for the femoral component 16 comprises a matching or identical high strength and high toughness ceramic material corresponding with the ceramic tibial component 12, as disclosed in U.S. Patent 6,881 ,229.
- the femoral component 16 may be constructed from a biocompatible metal material, preferably such as a cobalt chrome alloy as disclosed in the above-referenced U.S. Patent 6,881 ,229, although other biocompatible metals may be used.
- the femoral component 16 defines the downwardly convex condyles 28, 30 forming articulating surfaces for engaging the bearing seats 24, 26 on the tibial component 12.
- an upper side of the femoral component 16 (in either ceramic or metal form) may incorporate one or more upstanding fixation posts 34 and/or one or more regions carrying a porous bone ingrowth surface or coating 36.
- the femoral component 16 may comprise a monoblock or substantially unitary structure including a low porosity substrate having high strength and toughness properties defining the condyles 28, 30, in combination with one or more higher porosity regions defining the bone ingrowth surface or surfaces 36, as described in the above-referenced U.S. Patent 6,846,327.
- the ceramic tibial component 12 may be used in a partial knee prosthesis wherein the tibial component is adapted to engage and articulate against the natural condylar structures at the lower end for the patient's femur.
- FIGS. 5-13 depict further alternative preferred forms of the ceramic tibial component of the present invention.
- components shown in FIGS. 5-13 which correspond in structure and/or function to those shown and described in FIGS. 1-4 are identified by common reference numerals increased by a factor of 100.
- FIGS. 5-6 depict a modified ceramic tibial component 112 including an upper ceramic bearing insert 40 defining a pair of upwardly presented, substantially concave bearing seats 124 and 126, and adapted for assembly with a lower tibial baseplate member 42.
- the lower baseplate member 42 defines a tibial platform 122 at an upper end thereof, in combination with a downwardly protruding fixation post 132.
- an underside surface of the tibial platform 122 may incorporate a porous bone ingrowth surface or coating 114 similar to that shown and described in FIG. 3.
- the upper side of the platform 122 is lined by a short upstanding peripheral rim 44 which includes undercuts 46 (FIG.
- the ceramic bearing insert 40 is constructed from a selected high strength and high toughness ceramic material suitable for extended service life with ultra low wear when articulated with an associated ceramic or metal femoral component (not shown in FIGS. 5- 6) or with natural femoral bone 20 (also not shown in FIGS. 5-6).
- a preferred ceramic material is again disclosed in U.S. Patent 6,881 ,229.
- the associated baseplate member 42 is constructed from a biocompatible metal suitable for snap-fit engagement of the ceramic ribs 48 on the bearing insert 40 with the undercut rim 44 on the baseplate member 42.
- FIG. 7 illustrates a modified bearing insert 140 corresponding with the bearing insert 40 shown and described in FIGS. 5-6, but further incorporating an upstanding central stabilizer post 50 projecting upwardly a short distance from a generally central location disposed between the two concave bearing seats 124, 126.
- This stabilizer post 50 provides additional stabilization of a reconstructed knee joint, particularly when used in combination with a femoral component of the type shown and described in U.S. Patent 5,116,375 which is incorporated by reference herein.
- a pair of lower snap-fit ribs 148 are provided for mounting of the modified bearing insert 140 onto a tibial baseplate member 42 (FIGS. 5-6).
- the stabilizer post 50 shown in FIG. 7 may be incorporated into the monoblock tibial component 12 shown in FIGS. 1-4, or otherwise incorporated into any one of the various embodiments disclosed herein.
- FIGS. 8-10 show a further alternative embodiment of the invention, wherein an upper ceramic bearing insert 240 is assembled with a lower tibial baseplate member 242.
- the upper bearing insert 240 is shaped to define the upwardly presented, generally concave bearing seats 224, 226, and further includes a downwardly extending central bearing post 52.
- This bearing post 52 is sized and shaped for slide-fit reception into an upwardly open bore 54 formed centrally within the underlying baseplate member 242 to extend downwardly within a fixation post 232.
- a tibial platform 222 is carried at the upper end of the baseplate member 242 and may incorporate a porous bone ingrowth surface 214 on an underside surface thereof.
- the tibial baseplate member 242 is affixed to the upper end of the patient's resected tibia 18 (FIG. 10).
- the bearing insert 240 is assembled with the baseplate member 242 by slide-fit reception of the bearing post 52 into the open bore 54.
- the platform 222 provides stable support for a generally planar underside surface of the bearing insert 240, thereby permitting the bearing insert 240 to rotate about a central axis of the bearing post 52 during knee joint articulation.
- FIGS. 9- 10 show a femoral component 16 in articulatory engagement with the bearing insert 240, which is supported in turn upon the platform 222 of the lower baseplate member 242.
- FIG. 11 shows a modification of the embodiment depicted in FIGS. 8-10, wherein the rotary support for an upper bearing insert 340 is replaced by a shallow bore 352 formed in the underside of the bearing insert 340 for slide-fit reception of a short peg 354 upstanding centrally from a platform 322 of a lower tibial baseplate member 342 including a central fixation post 332.
- FIG. 12 shows a further variation of the embodiment of FIG. 11 , wherein the shallow bore formed in the underside of an upper bearing insert 440 comprises a slot 452 elongated in the fore- aft or anterior-posterior direction.
- FIG. 13 illustrates a further variation of FIG. 12 wherein a key 60 includes an elongated head 62 for seating within the slot 452, and a cylindrical body 64 for seating within an open bore 54 in the underlying tibial baseplate 242 of the type shown and described in FIGS. 8-10.
- FIG. 11 accommodates rotary displacement of the bearing insert 340 relative to the baseplate member 342 when the peg 354 is rotatably seated within the bore 352, but prevents relative movement between the assembled components when the peg 354 is press-fit mounted into the bore 352.
- the assembled components accommodate a combination of rotary and/or anterior- posterior shifting movement of the bearing insert 440 relative to the tibial baseplate member 342.
- the key 60 in FIG. 13 effectively prohibits relative movement of the slotted bearing insert of FIG. 12, when the key body 64 is press-fit mounted into the bore 54 of the baseplate member 242 of FIGS. 8-10.
- rotary mounting of the key body 64 within the baseplate member bore 54 accommodates a combined rotation and translation between the assembled components.
- the bearing insert is desirably formed from the high strength and high toughness ceramic material suitable for extended service life with ultra low wear when articulated with an associated ceramic or metal femoral component or with natural femoral bone 20.
- the preferred ceramic material again comprises the ceramic material disclosed in U.S. Patent 6,881 ,229.
- the associated baseplate member is preferably constructed from the same or compatible ceramic material, or from a suitable biocompatible metal.
- the platform 22, 122, 322 defined by the baseplate member desirably includes the porous bone ingrowth surface formed on the underside thereof.
- a preferred baseplate member construction comprises the dual porosity ceramic material as described in the above-referenced U.S. Patent 6,846,327, with the low porosity region defining a structural load bearing substrate and the higher porosity region defining the integral bone ingrowth surface.
- FIGS. 14-17 show another alternative preferred form of the invention, wherein a modified ceramic tibial component 512 is provided in the form of a prosthetic meniscal bearing.
- This meniscal bearing 512 is sized and shaped for affixation to an suitably prepared and/or resected upper end region of the tibia 18, and defines an upwardly presented and preferably shallow concave bearing seat 524 for articulation with an adjacent femoral condyle surface, such as articulation with a natural bone condyle 528 as viewed in FIGS. 14-15.
- the meniscal bearing component 512 may be used for articulation with a femoral prosthesis 16 of the type shown and described in FIGS.
- the underside surface of the meniscal bearing component 512 includes a porous bone ingrowth surface or coating 514 (FIG. 17) for ingrowth-affixation to the prepared tibia 18. While a single meniscal bearing component 512 is shown in FIGS. 14-15, it will be understood that a pair of such bearing components having suitable sizes, shapes and thicknesses may be provided for respectively articulating with the pair of condyles 528 and 530, or with corresponding condylar surfaces on a femoral prosthesis.
- the meniscal bearing component 512 and particularly the bearing seat 522 is constructed from a selected high strength and high toughness ceramic material suitable for extended service life with ultra low wear. Once again, a preferred ceramic material is disclosed in U.S. Patent 6,881 ,229.
- the underside bone ingrowth surface 514 of the bearing component 512 is desirably formed as an integral portion but with a higher porosity suitable for ingrowth affixation to patient bone, as disclosed in U.S. Patent 6,846,327.
- ceramic articulation surfaces may comprise a surface portion of a monolithic ceramic structure, or alternately comprise a ceramic coating carried by a non-ceramic substrate, such as a composite structure in the form of a metallic substrate having a ceramic coating thereon.
- a non-ceramic substrate such as a composite structure in the form of a metallic substrate having a ceramic coating thereon.
- One such exemplary composite structure comprises a metal alloy substrate having an integral ceramic articulation surface thereon, such as the implantable material marketed by Smith & Nephew, Inc. of Memphis, Tenn. under the name Oxinium. Accordingly, no limitation on the invention is intended by way of the foregoing description and accompanying drawings, except as set forth in the appended claims.
Landscapes
- Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Physical Education & Sports Medicine (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Prostheses (AREA)
Abstract
An improved knee prosthesis includes a ceramic tibial component for articulation with natural or prosthetic (re-surfaced) femoral surfaces. The ceramic tibial component is provided in the form of a ceramic monoblock adapted for fixation relative to the patient's tibial bone, or alternately in the form of a ceramic bearing insert component carried by a tibial baseplate member which is adapted in turn for fixation relative to tibial bone. In either form, the ceramic tibial component includes at least one upwardly concave articulation surface for movable bearing engagement by a generally convex or condylar shaped femoral articulation surface. The ceramic tibial component provides improved wear characteristics with extended service life.
Description
KNEE PROSTHESIS WITH CERAMIC TIBIAL COMPONENT
BACKGROUND OF THE INVENTION
This invention relates generally to improvements in knee prostheses, particularly with respect to an improved tibial component constructed from a relatively hard and relatively high strength ceramic material. The ceramic tibial component includes at least one generally articulation surface designed for direct bearing engagement by and articulation against an associated femoral articulation surface having a generally convex or condylar shape. The ceramic tibial component is design for ultra low wear over an extended service life, and further permits elimination of a conventional polymer-based bearing insert and undesirable wear debris problems associated therewith. Knee prostheses generally comprise a tibial component adapted for fixation to an appropriately resected upper end of the patient's tibia. Such tibial components have generally been formed from a biocompatible metal material such as cobalt chrome, titanium, stainless steel, or from polymer- based materials. The tibial component thus provides a strong and durable prosthetic base structure for supporting a polymer-based bearing insert which in turn defines a pair of upwardly presented, generally concave bearing seats for articulatory engagement with a corresponding pair of generally convex or condylar-shaped articulation surfaces at the lower end of the patient's femur. These femoral articulation surfaces can be defined by natural femoral bone surfaces, or alternately by condyle surfaces on a reconstructed or prosthetic femoral component affixed to the patient's femur. Such femoral components have generally been formed from a biocompatible metal material such as cobalt chrome, titanium, stainless steel, zirconium, zirconium oxide and ceramic materials such as alumina, zirconia and zirconia-toughened alumina (ZTA).
The polymer-based bearing insert is formed typically from a high density or ultra high molecular weight polyethylene (PE) material, which has been shown in various specific compositions to accommodate smooth
and relatively low-wear articulation relative to the femoral surfaces. However, clinical studies have shown that significant wear debris can be generated and released by the polymeric bearing insert over a period of time, and further that a principle contributing factor to implant failure is. osteolysis attributable at least in part to the presence of such polymer- based wear debris. More particularly, such studies have shown that PE wear debris released into peri-implant tissues appears to elicit a deleterious biological reaction, incorporating foreign body giant cell and macrophage cell responses leading to undesirable bone resorption, with eventual loosening and failure of the prosthetic implant. As a result, alternative prosthesis constructions have proposed improvements in and to the polymer-based bearing insert, such as the use of highly cross-linked polyethylene materials. Other alternative prostheses have been proposed using rigid-on-rigid components, such as ceramic-on-ceramic or metal-on- metal, thereby eliminating the polymer-based bearing insert and wear debris associated therewith. Bearing couples in the knee joint have been limited to metal-on-polymer or ceramic-on-polymer.
In general, ceramic knee prosthesis components have shown promise for use in a ceramic-on-ceramic or alternately in a ceramic-on- metal articulating interface, thereby completely eliminating the polymer- based bearing insert. Such prosthesis constructions, when formed with a good surface finish and conformal surface geometry, have demonstrated a relatively low coefficient of friction and resultant substantial reduction in component wear in comparison with ceramic-polymer or metal-polymer articulatory interfaces. However, the major limitation on the use of ceramic components particularly such as alumina-based ceramic materials has been an unacceptably high rate of brittle fracture occurring within a postsurgical follow-up period ranging from a few months to several years. In this regard, ceramic materials generally exhibit relatively low toughness and are thus prone to brittle fracture.
U.S. Patent 6,881 ,229 discloses an improved ceramic material for use in joint prostheses, such as knee prostheses, wherein a ceramic-on- ceramic or a ceramic-on-metal articulatory interface is defined. The
improved ceramic material comprises a doped silicon nitride (Si3N4) having relatively high hardness, tensile strength, elastic modulus, lubricity, and fracture toughness. Specifically, the improved doped silicon nitride ceramic has a flexural strength greater than about 700 Mega-Pascal (MPa) and a fracture toughness greater than about 7 Mega-Pascal root meter (MPam05). This high strength and high toughness doped silicon nitride ceramic achieves ultra-low wear over an extended service life, with dramatically reduced risk of brittle fracture.
In addition, U.S. Patent 6,846,327 discloses improved ceramic materials for bone graft applications, wherein the ceramic material is designed to mimic structural characteristics of natural patient bone by including first and second regions of comparatively lower and higher porosity to respectively mimic natural cortical and cancellous bone structures. The preferred ceramic materials disclosed exhibit a flexural strength greater than about 500 Mega-Pascal (MPa) and a fracture toughness greater than about 5 Mega-Pascal root meter (MPam0 5). In use, the relatively low porosity region of the ceramic material provides high structural strength and integrity, whereas the higher porosity region is suitable for bone ingrowth to achieve secure and stable implant affixation. The present invention comprises an improved knee joint prosthesis particularly wherein the load-bearing tibial component thereof is constructed from an improved high strength and high toughness ceramic material as disclosed, e.g., in U.S. Patent 6,881 ,229 and/or U.S. Patent 6,846,327.
SUMMARY OF THE INVENTION
In accordance with the invention, an improved knee prosthesis includes a load-bearing tibial component constructed from a relatively high strength and high toughness ceramic material and defining at least one articulation surface for ultra-low wear articulation with a generally convex or condylar-shaped femoral articulation surface defined by a femoral prosthetic component or by natural patient bone. The ceramic tibial
component is adapted for direct fixation relative to the patient's tibial bone, or alternately in the form of a tibial bearing insert component carried by a tibial baseplate member which is adapted in turn for fixation to tibial bone.
In one form, the ceramic tibial component comprises a monoblock structure defining at least one and preferably a pair of generally concave articulation surfaces or bearing seats formed by a ceramic material having relative high hardness and high fracture toughness, such as the doped silicon nitride (Si3N4) disclosed in U.S. Patent 6,881 ,229 which in incorporated by reference herein. This high strength and high toughness doped silicon nitride ceramic achieves ultra-low wear over an extended service life, with dramatically reduced risk of brittle fracture, when articulated against femoral articulation surfaces of prosthetic materials such as biocompatible metal or ceramic, or when articulated against natural femoral bone. The tibial ceramic monoblock structure further includes an underside region defined by a ceramic porous bone ingrowth surface for secure ingrowth affixation to natural tibial bone, such as the porous ceramic disclosed in U.S. Patent 6,846,327 which is also incorporated by reference herein. An alternate form would be the attachment of the component to the natural tibial bone through cementation. The porous structure may allow for bone interdigitation. A further alternate method for cementation would not include a porous section and be replaced with a slot or pocket that will receive the cement and may or may not include undercut features for tensile strength.
In one alternative preferred form of the invention, the ceramic tibial component comprises a tibial bearing insert constructed from a ceramic material (as described above) having relatively high hardness and high fracture toughness properties. This ceramic tibial bearing insert in configured for mounting in a fixed or partially mobile manner onto a tibial baseplate member which is adapted in turn for fixation to the patient's tibial bone. The tibial baseplate member may be constructed from ceramic material, preferably such as the above-described material forming a bearing platform defined by relatively high hardness and high toughness ceramic in combination with an underside region defined by a ceramic
porous bone ingrowth surface. Alternately, the tibial baseplate member may be constructed from a biocompatible metal. In one form, the tibial bearing insert may include a central upstanding stabilizer post of the general type described in U.S. Patent 5,116,375. In another alternative form, the ceramic tibial component may comprise a meniscal bearing insert defining an upwardly presented articulation surface constructed from a ceramic material (as described above) having relatively high hardness and high fracture toughness, in combination with an underside region defined by a ceramic porous bone ingrowth surface suitable for ingrowth-fixation or bone cement fixation with a prepared region at the upper end of the patient's tibia. The hard and tough articulation surface typically defines a shallow upwardly concave bearing seat for articulating with a convex or condylar-shaped femoral articulation surface defined by a femoral prosthetic component or alternately by natural patient bone.
In each of the foregoing embodiments of the invention, the ceramic tibial component of the knee prosthesis permits the elimination of a polymer-based bearing insert, and thereby also permits elimination of post-surgical problems associated with polymer-based wear particles and debris. In addition, the ceramic tibial component provides for ultra low wear over an extended service life, substantially without incurring brittle fracture problems associated typically with ceramic prosthesis structures.
Other features and advantages of the present invention will become apparent from the following more detailed description, taken in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings illustrate the invention. In such drawings:
FIGURE 1 is an exploded perspective view illustrating an exemplary knee prosthesis including a ceramic tibial component in accordance with one preferred form of the invention;
FIGURE 2 is a top plan view of the ceramic tibial component, taken generally on the line 2-2 of FIG. 1 ;
FIGURE 3 is a bottom plan view of the ceramic tibial component, taken generally on the line 3-3 of FIG. 1 ;
FIGURE 4 is a side elevation view of the knee prosthesis of FIGS. 1-3 in assembled relation and depicting patient femoral and tibial bones in dotted lines;
FIGURE 5 is an exploded perspective view showing one alternative preferred form of the invention, including a ceramic tibial bearing insert adapted for assembly with a tibial base member;
FIGURE 6 is a side elevation view showing the tibial bearing component and base member of FIG. 5 in assembled relation;
FIGURE 7 is a perspective view illustrating an alternative configuration for the ceramic tibial bearing component;
FIGURE 8 is an exploded perspective view depicting a further alternative preferred form of the invention, including a ceramic tibial bearing component adapted for assembly with a tibial baseplate member;
FIGURE 9 is a perspective view showing the tibial bearing component and baseplate member of FIG. 8 in assembled relation, and further depicted in assembled relation with a femoral component for the knee prosthesis; FIGURE 10 is a side elevation view of the knee prosthesis illustrated in FIG. 9;
FIGURE 11 is an exploded perspective view showing one alternative preferred configuration for the tibial bearing component and baseplate member of FiGS. 8-10; FIGURE 12 is another perspective view showing another alternative preferred configuration for the tibial bearing component and baseplate member of FIGS. 8-10;
FIGURE 13 is a further perspective view showing a further alternative preferred configuration for the tibial bearing component and baseplate member of FIGS. 8-10;
FIGURE 14 is an exploded perspective view illustrating a ceramic meniscal bearing component adapted for tibial fixation and interposed between a patient's femoral and tibial bones;
FIGURE 15 is a perspective view showing the ceramic meniscal bearing component in assembled relation between the patient's femoral and tibial bones; FIGURE 16 is a top plan view of the meniscal bearing component, taken generally on the line 16-16 of FIG. 14; and
FIGURE 17 is a bottom plan view of the meniscal bearing component, taken generally on the line 17-17 of FIG. 14.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
As shown in the exemplary drawings, an improved knee prosthesis referred to generally in one preferred form by the reference numeral 10 in FIGURES 1-4 includes a tibial component 12 constructed from a relatively hard and high strength ceramic material which may also incorporate a relatively porous ceramic bone ingrowth surface 14 (FIG. 3) for secure affixation to patient bone. The ceramic tibial component 12 is designed for articulation with a femoral prosthesis 16 (FIGS. 1 and 4) which may be constructed from a hard and high strength material such as a compatible and preferably identical ceramic material, or a biocompatible metal material, or alternately for articulation with natural patient femoral bone surfaces. The resultant ceramic-on-ceramic, or ceramic-on-metal, or ceramic-on-bone articulatory interface beneficially exhibits ultra-low wear over an extended service life, while additionally permitting elimination of the traditional polymer-based bearing insert and wear debris problems associated therewith.
FIGS. 1 and 4 illustrate the knee prosthesis 10 including the ceramic tibial component 12 and the associated femoral component 16 for
repairing or replacing the natural anatomical articulatory surfaces of the human knee joint. In this regard, the ceramic tibial component 12 comprises a monoblock structure having a size and shape for seated and secure affixation at the upper end of a resected tibial bone 18 (FIG. 4), whereas the femoral component 16 has a size and shape for similarly seated and secure affixation at the lower end of a resected femoral bone 20. In general, the tibial component 12 defines an upwardly presented platform 22 which is contoured to form a laterally spaced pair of upwardly presented, generally concave bearing seats 24 and 26. The bearing seats 24, 26 define shallow concave articulation surfaces for respective engagement by and combined sliding and rolling articulation with generally convex medial and lateral condyles 28 and 30 formed on the femoral component 16.
By constructing the articulatory surfaces or bearing seats 24, 26 on the tibial component 12 from a selected ceramic material having high flexural strength and high fracture toughness properties, the resultant articulatory interface with the femoral condylar surfaces beneficially exhibits ultra low wear over an extended service life. Importantly, the invention permits elimination of the traditional polymer-based bearing insert, such as a high density or high molecular weight polyethylene (PE) bearing insert or the like normally fitted between the tibial component 12 and the femoral condyle structures to accommodate smooth articulation between these components. In this regard, clinical studies have linked premature prosthesis failures to the generation and accumulation of polymer-based wear debris associated with such polymer-based bearing inserts. In addition, the use of polymer-based inserts inherently increases the vertical span of the overall prosthesis construct, thereby restricting its utility to use with larger bone patients capable of receiving the larger sized prosthesis. The ceramic tibial component 12 is shown in one preferred form in
FIGS. 1-4, in the form of a unitary or substantially monoblock configuration to include the upper platform 22 contoured to define the concave bearing seats 24, 26, and further to define a downwardly protruding fixation post
32. This fixation post 32 is desirably shaped to have a noncircular cross- sectional configuration, such as the radially winged construction as shown, for seated reception into a resected upper end of the patient's tibia 18 (FIG. 4). In addition, an underside surface of the upper platform 22 carries the ceramic porous bone ingrowth surface coating or lining 14. Persons skilled in the art will recognize that alternative structural fixation elements such as pegs and the like, which may or may not be centrally positioned, may be used, and further that alternative fixation techniques such as a cemented prosthesis-bone interface may be used. The preferred ceramic material used for constructing the ceramic tibial component 12 of the present invention comprises a high flexural strength and high fracture toughness ceramic material particularly such as a doped silicon nitride (Si3N4) having relatively high hardness, tensile strength, elastic modulus, lubricity, and fracture toughness properties, as described in detail in U.S. Patent 6,881 ,229 which is incorporated by reference herein. This doped silicon nitride ceramic material has a relatively high flexural strength greater than about 700 Mega-Pascal (MPa) and a relatively high fracture toughness greater than about 7 Mega-Pascal root meter (MPam0 5). This high strength and high toughness doped silicon nitride ceramic achieves ultra-low wear over an extended service life, with dramatically reduced risk of brittle fracture.
This high strength and high toughness ceramic material is used to form a substrate for the ceramic tibial component 12. In this regard, such substrate structure has a relatively low porosity, and thus exhibits high density and high structural integrity generally consistent with and generally mimicking the characteristics of natural cortical bone lined with smooth lubricious articular cartilage. FIG. 3 further shows the ceramic porous bone ingrowth surface coating or lining 14 formed on the underside of the tibia! platform 22, wherein this coating or lining exhibits a comparatively greater or higher porosity that is generally consistent with and generally mimics the characteristics of natural cancellous bone. As a result, this higher porosity surface coating or lining 14 provides an effective bone
ingrowth surface for achieving secure and stable bone ingrowth affixation of the ceramic tibial component 12 with the patient's tibia 18.
While persons skilled in the art will recognize and appreciate that the specific material used for the bone ingrowth surface coating or lining 14 may vary, a preferred porous material comprises a ceramic porous ingrowth surface material. In this regard, U.S. Patent 6,846,327 which is incorporated by reference herein discloses a ceramic bone graft component having relatively high flexural strength and relatively high toughness properties yet defining first and second regions of comparatively lower and higher porosity to respectively mimic natural cortical and cancellous bone structures. These regions of different porosity may be unitarily constructed or otherwise integrated into a common or monolithic ceramic component having a variable porosity gradient. In a preferred form, the ceramic tibial component 12 has a porosity gradient ranging from about 2% to about 80% by volume, with the higher porosity region having a porosity in the range of from about 30% to about 80% by volume, and with overall pore sizes ranging from about 50 microns to about 1 ,000 microns. In use, the relatively low porosity region of the ceramic material provides a dense and hard structure with high structural strength and integrity, whereas the higher porosity or less dense region is suitable for bone ingrowth to achieve secure and stable implant affixation.
U.S. Patent 6,846,327 discloses a preferred alumina-zirconia ceramic material having a zirconia composition of about 10% to about 20% by volume, with either yttria stabilized zirconia (about 2.5 to about 5 mol % yttria in zirconia) or ceria stabilized zirconia (about 2.5 to about 15 mol % ceria in zirconia) for the zirconia phase. The resultant ceramic material exhibits a highly desirable combination of high flexural strength (greater than about 500 MPa) and high fracture toughness (greater than about 5 MPam0"5). Such aiumina-zirconia based ceramic material may be employed in the present invention for the ceramic tibilar component cup 12, although the stronger and tougher silicon nitride (SΪ3N4) ceramic as described in U.S. Patent 6,881 ,229 is preferred.
Accordingly, in the preferred form, the ceramic tibial component 12 is constructed predominantly from relatively low porosity ceramic material having the desired high strength and high toughness properties, such as the doped silicon nitride (SΪ3N4) material described in the above-referenced U.S. Patent 6,881 ,229. The ceramic tibial component 12 further includes the comparatively higher porosity bone ingrowth surface 14, formed preferably from a higher porosity ceramic material as described in the above-referenced U.S. Patent 6,846,327, extending over a substantial area of the underside of the upper platform 22. This relatively high porosity bone ingrowth surface 14 is preferably formed integrally with the low porosity substrate, although persons skilled in the art will understand that the bone ingrowth surface 14 may be separately applied as a surface coating or lining.
The femoral component 16 shown in FIGS. 1 and 4 is constructed in the most preferred form from a ceramic material that is compatible with the ceramic tibial component material. In this regard, a preferred material for the femoral component 16 comprises a matching or identical high strength and high toughness ceramic material corresponding with the ceramic tibial component 12, as disclosed in U.S. Patent 6,881 ,229. Alternately, the femoral component 16 may be constructed from a biocompatible metal material, preferably such as a cobalt chrome alloy as disclosed in the above-referenced U.S. Patent 6,881 ,229, although other biocompatible metals may be used. In either configuration, the femoral component 16 defines the downwardly convex condyles 28, 30 forming articulating surfaces for engaging the bearing seats 24, 26 on the tibial component 12. In addition, an upper side of the femoral component 16 (in either ceramic or metal form) may incorporate one or more upstanding fixation posts 34 and/or one or more regions carrying a porous bone ingrowth surface or coating 36. In a ceramic embodiment, the femoral component 16 may comprise a monoblock or substantially unitary structure including a low porosity substrate having high strength and toughness properties defining the condyles 28, 30, in combination with one or more higher porosity regions defining the bone ingrowth surface or
surfaces 36, as described in the above-referenced U.S. Patent 6,846,327. Or, persons skilled in the art will recognize and appreciate that the ceramic tibial component 12 may be used in a partial knee prosthesis wherein the tibial component is adapted to engage and articulate against the natural condylar structures at the lower end for the patient's femur.
FIGS. 5-13 depict further alternative preferred forms of the ceramic tibial component of the present invention. For sake of convenience and ease of description, components shown in FIGS. 5-13 which correspond in structure and/or function to those shown and described in FIGS. 1-4 are identified by common reference numerals increased by a factor of 100.
FIGS. 5-6 depict a modified ceramic tibial component 112 including an upper ceramic bearing insert 40 defining a pair of upwardly presented, substantially concave bearing seats 124 and 126, and adapted for assembly with a lower tibial baseplate member 42. In this embodiment of the invention, the lower baseplate member 42 defines a tibial platform 122 at an upper end thereof, in combination with a downwardly protruding fixation post 132. In addition, an underside surface of the tibial platform 122 may incorporate a porous bone ingrowth surface or coating 114 similar to that shown and described in FIG. 3. The upper side of the platform 122 is lined by a short upstanding peripheral rim 44 which includes undercuts 46 (FIG. 6) at the anterior and posterior sides of the platform 122 for receiving and engaging lock ribs 48 formed on the bearing insert 40 to seat and retain the bearing insert 40 in assembled relation with the baseplate membei 42. In one preferred form, the ceramic bearing insert 40 is constructed from a selected high strength and high toughness ceramic material suitable for extended service life with ultra low wear when articulated with an associated ceramic or metal femoral component (not shown in FIGS. 5- 6) or with natural femoral bone 20 (also not shown in FIGS. 5-6). A preferred ceramic material is again disclosed in U.S. Patent 6,881 ,229. The associated baseplate member 42 is constructed from a biocompatible metal suitable for snap-fit engagement of the ceramic ribs 48 on the bearing insert 40 with the undercut rim 44 on the baseplate member 42.
Alternately, if desired, the bearing insert 40 and baseplate member 42 may both be constructed from the same or compatible ceramic materials, with the snap-fit ribs 48 being constructed from a suitable deformable material mounted onto the bearing insert 40. FIG. 7 illustrates a modified bearing insert 140 corresponding with the bearing insert 40 shown and described in FIGS. 5-6, but further incorporating an upstanding central stabilizer post 50 projecting upwardly a short distance from a generally central location disposed between the two concave bearing seats 124, 126. This stabilizer post 50 provides additional stabilization of a reconstructed knee joint, particularly when used in combination with a femoral component of the type shown and described in U.S. Patent 5,116,375 which is incorporated by reference herein. A pair of lower snap-fit ribs 148 are provided for mounting of the modified bearing insert 140 onto a tibial baseplate member 42 (FIGS. 5-6). Persons skilled in the art will further appreciate that the stabilizer post 50 shown in FIG. 7 may be incorporated into the monoblock tibial component 12 shown in FIGS. 1-4, or otherwise incorporated into any one of the various embodiments disclosed herein.
FIGS. 8-10 show a further alternative embodiment of the invention, wherein an upper ceramic bearing insert 240 is assembled with a lower tibial baseplate member 242. In this version of the invention, the upper bearing insert 240 is shaped to define the upwardly presented, generally concave bearing seats 224, 226, and further includes a downwardly extending central bearing post 52. This bearing post 52 is sized and shaped for slide-fit reception into an upwardly open bore 54 formed centrally within the underlying baseplate member 242 to extend downwardly within a fixation post 232. A tibial platform 222 is carried at the upper end of the baseplate member 242 and may incorporate a porous bone ingrowth surface 214 on an underside surface thereof. The tibial baseplate member 242 is affixed to the upper end of the patient's resected tibia 18 (FIG. 10). The bearing insert 240 is assembled with the baseplate member 242 by slide-fit reception of the bearing post 52 into the open bore 54. In this position, the platform 222 provides stable
support for a generally planar underside surface of the bearing insert 240, thereby permitting the bearing insert 240 to rotate about a central axis of the bearing post 52 during knee joint articulation. In this regard, FIGS. 9- 10 show a femoral component 16 in articulatory engagement with the bearing insert 240, which is supported in turn upon the platform 222 of the lower baseplate member 242.
FIG. 11 shows a modification of the embodiment depicted in FIGS. 8-10, wherein the rotary support for an upper bearing insert 340 is replaced by a shallow bore 352 formed in the underside of the bearing insert 340 for slide-fit reception of a short peg 354 upstanding centrally from a platform 322 of a lower tibial baseplate member 342 including a central fixation post 332. FIG. 12 shows a further variation of the embodiment of FIG. 11 , wherein the shallow bore formed in the underside of an upper bearing insert 440 comprises a slot 452 elongated in the fore- aft or anterior-posterior direction. The slot 452 is adapted to receive the upstanding peg 352 on the underlying tibial baseplate member 342 of the type shown and described in FIG. 11. FIG. 13 illustrates a further variation of FIG. 12 wherein a key 60 includes an elongated head 62 for seating within the slot 452, and a cylindrical body 64 for seating within an open bore 54 in the underlying tibial baseplate 242 of the type shown and described in FIGS. 8-10.
In these versions, FIG. 11 accommodates rotary displacement of the bearing insert 340 relative to the baseplate member 342 when the peg 354 is rotatably seated within the bore 352, but prevents relative movement between the assembled components when the peg 354 is press-fit mounted into the bore 352. In FIG. 12, the assembled components accommodate a combination of rotary and/or anterior- posterior shifting movement of the bearing insert 440 relative to the tibial baseplate member 342. Finally, the key 60 in FIG. 13 effectively prohibits relative movement of the slotted bearing insert of FIG. 12, when the key body 64 is press-fit mounted into the bore 54 of the baseplate member 242 of FIGS. 8-10. Alternately, rotary mounting of the key body 64 within the
baseplate member bore 54 accommodates a combined rotation and translation between the assembled components.
In each of the embodiments depicted in FIGS. 8-13, the bearing insert is desirably formed from the high strength and high toughness ceramic material suitable for extended service life with ultra low wear when articulated with an associated ceramic or metal femoral component or with natural femoral bone 20. The preferred ceramic material again comprises the ceramic material disclosed in U.S. Patent 6,881 ,229. The associated baseplate member is preferably constructed from the same or compatible ceramic material, or from a suitable biocompatible metal. In either form, ceramic or metal, the platform 22, 122, 322 defined by the baseplate member desirably includes the porous bone ingrowth surface formed on the underside thereof. In the ceramic configuration, a preferred baseplate member construction comprises the dual porosity ceramic material as described in the above-referenced U.S. Patent 6,846,327, with the low porosity region defining a structural load bearing substrate and the higher porosity region defining the integral bone ingrowth surface.
FIGS. 14-17 show another alternative preferred form of the invention, wherein a modified ceramic tibial component 512 is provided in the form of a prosthetic meniscal bearing. This meniscal bearing 512 is sized and shaped for affixation to an suitably prepared and/or resected upper end region of the tibia 18, and defines an upwardly presented and preferably shallow concave bearing seat 524 for articulation with an adjacent femoral condyle surface, such as articulation with a natural bone condyle 528 as viewed in FIGS. 14-15. It will be recognized and understood, however, that the meniscal bearing component 512 may be used for articulation with a femoral prosthesis 16 of the type shown and described in FIGS. 1 , 3 and 9-10. The underside surface of the meniscal bearing component 512 includes a porous bone ingrowth surface or coating 514 (FIG. 17) for ingrowth-affixation to the prepared tibia 18. While a single meniscal bearing component 512 is shown in FIGS. 14-15, it will be understood that a pair of such bearing components having suitable sizes, shapes and thicknesses may be provided for respectively
articulating with the pair of condyles 528 and 530, or with corresponding condylar surfaces on a femoral prosthesis.
The meniscal bearing component 512 and particularly the bearing seat 522 is constructed from a selected high strength and high toughness ceramic material suitable for extended service life with ultra low wear. Once again, a preferred ceramic material is disclosed in U.S. Patent 6,881 ,229. The underside bone ingrowth surface 514 of the bearing component 512 is desirably formed as an integral portion but with a higher porosity suitable for ingrowth affixation to patient bone, as disclosed in U.S. Patent 6,846,327.
A variety of further modifications and improvements in and to the knee prosthesis of the present invention will be apparent to persons skilled in the art. For example, where ceramic articulation surfaces are specified, persons skilled in the art will recognize and appreciate that such ceramic surfaces may comprise a surface portion of a monolithic ceramic structure, or alternately comprise a ceramic coating carried by a non-ceramic substrate, such as a composite structure in the form of a metallic substrate having a ceramic coating thereon. One such exemplary composite structure comprises a metal alloy substrate having an integral ceramic articulation surface thereon, such as the implantable material marketed by Smith & Nephew, Inc. of Memphis, Tenn. under the name Oxinium. Accordingly, no limitation on the invention is intended by way of the foregoing description and accompanying drawings, except as set forth in the appended claims.
Claims
1. A knee prosthesis, comprising: a tibial component having a size and shape adapted for seated affixation to an upper end of a prepared tibia in a patient, said tibial component defining at least one upwardly presented bearing seat forming an articulation surface having a size and shape for articulatory engagement with a generally convex articulation surface formed on a mating femoral component; said articulation surface of said bearing seat being formed from ceramic material having a relatively high flexural strength and a relatively high fracture toughness for ultra-low wear upon post-implantation articulation with said femoral component articulation surface.
2. The knee prosthesis of claim 1 wherein said ceramic material has a relatively high flexural strength greater than about 500 Mega-Pascal (MPa) and a relatively high fracture toughness greater than about 5 Mega- Pascal root meter (MPam0 5).
3. The knee prosthesis of claim 1 wherein said ceramic material has a relatively high flexural strength greater than about 700 Mega-Pascal (MPa) and a relatively high fracture toughness greater than about 7 Mega- Pascal root meter (MPam0 5).
4. The knee prosthesis of claim 3 wherein said ceramic material comprises doped silicon nitride.
5. The knee prosthesis of claim 1 further including a porous bone ingrowth surface on an underside of said tibial component for bone ingrowth affixation of said tibial component with the prepared patient tibia.
6. The knee prosthesis of claim 5 wherein said bone ingrowth surface comprises a ceramic bone ingrowth surface.
7. The knee prosthesis of claim 6 wherein said tibial component comprises a ceramic material having a variable porosity gradient defining a relatively low porosity first region said at least one bearing seat, and a comparatively higher porosity second region defining said ceramic bone ingrowth surface, said first and second regions being integrally formed.
8. The knee prosthesis of claim 7 wherein said ceramic material has a porosity gradient ranging from about 2% to about 80% by volume, with said higher porosity region having a porosity in the range of from about 30% to about 80% by volume.
9. The knee prosthesis of claim 8 wherein said ceramic material has pores formed therein with a pore size ranging from about 50 microns to about 1 ,000 microns.
10. The knee prosthesis of claim 1 wherein said generally convex articulation surface on said mating femoral prosthesis comprises a femoral condyle defined by natural femoral bone or a femoral prosthesis.
11. The knee prosthesis of claim 10 wherein said convex articulation surface of said femoral prosthesis is formed from a material selected from the group consisting essentially of ceramic and biocompatible metal materials.
12. The knee prosthesis of claim 10 wherein said articulation surfaces of said femoral prosthesis and said tibial component are formed from the same ceramic material.
13. The knee prosthesis of claim 1 wherein said tibial component has a monoblock ceramic structure.
14. The knee prosthesis of claim 1 wherein said tibial component comprises a bearing insert mounted on a tibial baseplate member, said at least one bearing seat being formed on said bearing insert, and said tibial baseplate member being adapted for seated affixation to an upper end of a prepared tibia in a patient.
15. The knee prosthesis of claim 14 wherein said bearing insert is movably mounted on said tibial baseplate member.
16. The knee prosthesis of claim 14 wherein said bearing insert is snap-fit mounted on said tibial baseplate member.
17. The knee prosthesis of claim 14 wherein said tibial baseplate member is formed from a material selected from the group consisting essentially of ceramic and biocompatible metal materials and combinations thereof.
18. The knee prosthesis of claim 17 wherein said tibial baseplate member comprises a ceramic material having a variable porosity gradient defining a structural load bearing and relatively low porosity first region, and a comparatively higher porosity second region defining said bone ingrowth surface, said first and second regions being integrally formed.
19. The knee prosthesis of claim 14 wherein said articulation surface of said bearing insert and said tibial baseplate member are formed from the same ceramic material.
20. The knee prosthesis of claim 1 wherein said at least one bearing seat comprises a pair of laterally spaced, generally upwardly concave bearing seats.
21. The knee prosthesis of claim 20 wherein said tibial component further includes a stabilizer post protruding upwardly from a position disposed generally between said pair of bearing seats.
22. The knee prosthesis of claim 1 wherein said tibial component comprises a meniscal bearing insert.
23. A knee prosthesis, comprising: a tibial component having an underside surface including means for seated affixation to an upper end of a prepared tibia in a patient, said tibial component further defining at least one upwardly presented bearing seat forming an articulation surface having a size and shape for articulatory engagement with a generally convex articulation surface formed on a mating femoral component; said tibial component being formed from ceramic monoblock material having a relatively high flexural strength and a relatively high fracture toughness for ultra-low wear upon post-implantation articulation with said femoral component articulation surface.
24. The knee prosthesis of claim 23 wherein said ceramic material comprises doped silicon nitride.
25. The knee prosthesis of claim 23 wherein said affixation means comprises a porous bone ingrowth surface on said underside surface of said tibial component.
26. The knee prosthesis of claim 25 wherein said ceramic monoblock material has a variable porosity gradient defining a relatively low porosity first region said at least one bearing seat, and a comparatively higher porosity second region defining said ceramic bone ingrowth surface, said first and second regions being integrally formed.
27. The knee prosthesis of claim 23 wherein said at least one bearing seat comprises a pair of laterally spaced, generally concave bearing seats.
28. The knee prosthesis of claim 23 wherein said tibial component comprises a meniscal bearing insert.
29. A knee prosthesis, comprising: a tibial baseplate member having an underside surface including means for seated affixation to an upper end of a prepared tibia in a patient; a tibial bearing insert carried by said baseplate member, said tibial bearing insert defining at least one upwardly presented bearing seat forming an articulation surface having a size and shape for articulatory engagement with a generally convex articulation surface formed on a mating femoral component; said articulation surface of said tibial bearing insert being formed from ceramic material having a relatively high flexural strength and a relatively high fracture toughness for ultra-low wear upon post-implantation articulation with said femoral component articulation surface.
30. The knee prosthesis of claim 29 wherein said ceramic material comprises doped silicon nitride.
31. The knee prosthesis of claim 29 wherein said affixation means comprises a porous bone ingrowth surface on said underside surface of said tibial baseplate member.
32. The knee prosthesis of claim 29 wherein said tibial baseplate member is formed from a material selected from the group consisting essentially of ceramic and biocompatible metal materials.
33. The knee prosthesis of claim 32 wherein said tibial baseplate member comprises a ceramic material having a variable porosity gradient defining a structure load bearing and relatively low porosity first region, and a comparatively higher porosity second region defining said bone ingrowth surface, said first and second regions being integrally formed.
34. The knee prosthesis of claim 29 wherein said articulation surface of said tibial bearing insert and said tibial baseplate member are formed from the same ceramic material.
35. The knee prosthesis of claim 29 wherein said at least one bearing seat comprises a pair of laterally spaced, generally concave bearing seats.
36. The knee prosthesis of claim 29 wherein said tibial bearing insert is movably mounted on said tibial baseplate member.
37. The knee prosthesis of claim 29 wherein said tibial bearing insert is snap-fit mounted on said tibial baseplate member.
38. The knee prosthesis of claim 29 wherein said tibial bearing insert and said tibial baseplate member cooperatively define an interengaging post and bore to accommodate relative rotary movement therebetween.
39. The knee prosthesis of claim 29 wherein said tibial bearing component and said tibial baseplate member cooperatively define an interengaging post and anterior-posterior elongated slot to accommodate relative rotary and anterior-posterior sliding movement therebetween.
40. The knee prosthesis of claim 29 wherein one of said tibial bearing component and said tibial baseplate member has an anterior- poster elongated slot formed therein, and the other of said tibial bearing component and said tibial baseplate member has a bore formed therein, and further including a key having an elongated head seated within said slot and a generally cylindrical body seated within said bore.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06784429A EP1890654A4 (en) | 2005-05-27 | 2006-05-18 | Knee prosthesis with ceramic tibial component |
JP2008513546A JP2008541851A (en) | 2005-05-27 | 2006-05-18 | Artificial knee joint with ceramic tibial components |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13928005A | 2005-05-27 | 2005-05-27 | |
US11/139,280 | 2005-05-27 | ||
US11/223,376 US7776085B2 (en) | 2001-05-01 | 2005-09-08 | Knee prosthesis with ceramic tibial component |
US11/223,376 | 2005-09-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2006130350A2 true WO2006130350A2 (en) | 2006-12-07 |
WO2006130350A3 WO2006130350A3 (en) | 2007-06-21 |
Family
ID=37482135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2006/019254 WO2006130350A2 (en) | 2005-05-27 | 2006-05-18 | Knee prosthesis with ceramic tibial component |
Country Status (3)
Country | Link |
---|---|
US (1) | US7776085B2 (en) |
EP (1) | EP1890654A4 (en) |
WO (1) | WO2006130350A2 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2272466A1 (en) | 2009-07-10 | 2011-01-12 | Medizinische Hochschule Hannover | Knee joint prosthesis and method for producing said prosthesis |
EP2316383A1 (en) * | 2009-10-30 | 2011-05-04 | DePuy Products, Inc. | Prosthesis with surfaces having different textures |
US8128703B2 (en) | 2007-09-28 | 2012-03-06 | Depuy Products, Inc. | Fixed-bearing knee prosthesis having interchangeable components |
WO2012051397A1 (en) * | 2010-10-14 | 2012-04-19 | Depuy Products, Inc. | Prosthesis with surfaces having different textures and method of making the prosthesis |
US8187335B2 (en) | 2008-06-30 | 2012-05-29 | Depuy Products, Inc. | Posterior stabilized orthopaedic knee prosthesis having controlled condylar curvature |
US8192498B2 (en) | 2008-06-30 | 2012-06-05 | Depuy Products, Inc. | Posterior cructiate-retaining orthopaedic knee prosthesis having controlled condylar curvature |
US8206451B2 (en) | 2008-06-30 | 2012-06-26 | Depuy Products, Inc. | Posterior stabilized orthopaedic prosthesis |
US8236061B2 (en) | 2008-06-30 | 2012-08-07 | Depuy Products, Inc. | Orthopaedic knee prosthesis having controlled condylar curvature |
US8828086B2 (en) | 2008-06-30 | 2014-09-09 | Depuy (Ireland) | Orthopaedic femoral component having controlled condylar curvature |
US8871142B2 (en) | 2008-05-22 | 2014-10-28 | DePuy Synthes Products, LLC | Implants with roughened surfaces |
US9011547B2 (en) | 2010-01-21 | 2015-04-21 | Depuy (Ireland) | Knee prosthesis system |
US9119723B2 (en) | 2008-06-30 | 2015-09-01 | Depuy (Ireland) | Posterior stabilized orthopaedic prosthesis assembly |
US9168145B2 (en) | 2008-06-30 | 2015-10-27 | Depuy (Ireland) | Posterior stabilized orthopaedic knee prosthesis having controlled condylar curvature |
CN105030383A (en) * | 2015-05-08 | 2015-11-11 | 江苏奥康尼医疗科技发展有限公司 | Combined type full-organic-polymer-material artificial unicondylar knee joint |
US9204967B2 (en) | 2007-09-28 | 2015-12-08 | Depuy (Ireland) | Fixed-bearing knee prosthesis having interchangeable components |
US9398956B2 (en) | 2007-09-25 | 2016-07-26 | Depuy (Ireland) | Fixed-bearing knee prosthesis having interchangeable components |
US9492280B2 (en) | 2000-11-28 | 2016-11-15 | Medidea, Llc | Multiple-cam, posterior-stabilized knee prosthesis |
US11213397B2 (en) | 2009-05-21 | 2022-01-04 | Depuy Ireland Unlimited Company | Prosthesis with surfaces having different textures and method of making the prosthesis |
Families Citing this family (102)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6695848B2 (en) | 1994-09-02 | 2004-02-24 | Hudson Surgical Design, Inc. | Methods for femoral and tibial resection |
US20030008396A1 (en) * | 1999-03-17 | 2003-01-09 | Ku David N. | Poly(vinyl alcohol) hydrogel |
US8062377B2 (en) | 2001-03-05 | 2011-11-22 | Hudson Surgical Design, Inc. | Methods and apparatus for knee arthroplasty |
ES2424614T3 (en) * | 2001-05-01 | 2013-10-07 | Amedica Corporation | Radiolucent bone graft |
US7776085B2 (en) | 2001-05-01 | 2010-08-17 | Amedica Corporation | Knee prosthesis with ceramic tibial component |
US7695521B2 (en) | 2001-05-01 | 2010-04-13 | Amedica Corporation | Hip prosthesis with monoblock ceramic acetabular cup |
US20050177238A1 (en) * | 2001-05-01 | 2005-08-11 | Khandkar Ashok C. | Radiolucent bone graft |
WO2002102275A2 (en) * | 2001-06-14 | 2002-12-27 | Amedica Corporation | Metal-ceramic composite articulation |
US6994727B2 (en) * | 2002-12-17 | 2006-02-07 | Amedica Corporation | Total disc implant |
ES2465090T3 (en) * | 2002-12-20 | 2014-06-05 | Smith & Nephew, Inc. | High performance knee prostheses |
US8388624B2 (en) | 2003-02-24 | 2013-03-05 | Arthrosurface Incorporated | Trochlear resurfacing system and method |
FR2854792B1 (en) * | 2003-05-12 | 2005-09-09 | Tornier Sa | GAME OF PROTHETIC ELEMENTS FOR A TIBIAL PROTHETIC SET |
US20050143832A1 (en) | 2003-10-17 | 2005-06-30 | Carson Christopher P. | High flexion articular insert |
US7857814B2 (en) * | 2004-01-14 | 2010-12-28 | Hudson Surgical Design, Inc. | Methods and apparatus for minimally invasive arthroplasty |
US20060030854A1 (en) * | 2004-02-02 | 2006-02-09 | Haines Timothy G | Methods and apparatus for wireplasty bone resection |
US8021368B2 (en) * | 2004-01-14 | 2011-09-20 | Hudson Surgical Design, Inc. | Methods and apparatus for improved cutting tools for resection |
US8114083B2 (en) * | 2004-01-14 | 2012-02-14 | Hudson Surgical Design, Inc. | Methods and apparatus for improved drilling and milling tools for resection |
US7815645B2 (en) * | 2004-01-14 | 2010-10-19 | Hudson Surgical Design, Inc. | Methods and apparatus for pinplasty bone resection |
US8287545B2 (en) | 2004-01-14 | 2012-10-16 | Hudson Surgical Design, Inc. | Methods and apparatus for enhanced retention of prosthetic implants |
WO2005077013A2 (en) | 2004-02-06 | 2005-08-25 | Georgia Tech Research Corporation | Surface directed cellular attachment |
WO2005077304A1 (en) * | 2004-02-06 | 2005-08-25 | Georgia Tech Research Corporation | Load bearing biocompatible device |
US20050278025A1 (en) * | 2004-06-10 | 2005-12-15 | Salumedica Llc | Meniscus prosthesis |
US8252058B2 (en) * | 2006-02-16 | 2012-08-28 | Amedica Corporation | Spinal implant with elliptical articulatory interface |
US20070198093A1 (en) * | 2006-02-17 | 2007-08-23 | Amedica Corporation | Spinal implant with offset keels |
CA2930222A1 (en) | 2006-06-30 | 2008-01-10 | Smith & Nephew, Inc. | Anatomical motion hinged prosthesis |
EP2081520B1 (en) | 2006-11-07 | 2017-07-12 | Biomedflex, LLC | Medical implants |
US8029574B2 (en) | 2006-11-07 | 2011-10-04 | Biomedflex Llc | Prosthetic knee joint |
US8070823B2 (en) | 2006-11-07 | 2011-12-06 | Biomedflex Llc | Prosthetic ball-and-socket joint |
US8308812B2 (en) | 2006-11-07 | 2012-11-13 | Biomedflex, Llc | Prosthetic joint assembly and joint member therefor |
US9005307B2 (en) | 2006-11-07 | 2015-04-14 | Biomedflex, Llc | Prosthetic ball-and-socket joint |
US20110166671A1 (en) | 2006-11-07 | 2011-07-07 | Kellar Franz W | Prosthetic joint |
US8512413B2 (en) | 2006-11-07 | 2013-08-20 | Biomedflex, Llc | Prosthetic knee joint |
AU2007332787A1 (en) | 2006-12-11 | 2008-06-19 | Arthrosurface Incorporated | Retrograde resection apparatus and method |
EP1961433A1 (en) * | 2007-02-20 | 2008-08-27 | National University of Ireland Galway | Porous substrates for implantation |
US7833274B2 (en) * | 2007-05-16 | 2010-11-16 | Zimmer, Inc. | Knee system and method of making same |
US20110035018A1 (en) * | 2007-09-25 | 2011-02-10 | Depuy Products, Inc. | Prosthesis with composite component |
US7628818B2 (en) * | 2007-09-28 | 2009-12-08 | Depuy Products, Inc. | Fixed-bearing knee prosthesis having interchangeable components |
US8715359B2 (en) | 2009-10-30 | 2014-05-06 | Depuy (Ireland) | Prosthesis for cemented fixation and method for making the prosthesis |
US20110035017A1 (en) * | 2007-09-25 | 2011-02-10 | Depuy Products, Inc. | Prosthesis with cut-off pegs and surgical method |
US8059865B2 (en) | 2007-11-09 | 2011-11-15 | The Nielsen Company (Us), Llc | Methods and apparatus to specify regions of interest in video frames |
WO2009111266A2 (en) * | 2008-02-29 | 2009-09-11 | Vot, Llc | Femoral prosthesis |
US8771364B2 (en) * | 2008-10-17 | 2014-07-08 | Biomet Manufacturing, Llc | Tibial tray having a reinforcing member |
US20100100191A1 (en) * | 2008-10-17 | 2010-04-22 | Biomet Manufacturing Corp. | Tibial Tray Having a Reinforcing Member |
JP5404342B2 (en) * | 2009-01-06 | 2014-01-29 | キヤノン株式会社 | Optical scanning device and image forming apparatus using the same |
US20100217400A1 (en) * | 2009-02-24 | 2010-08-26 | Mako Surgical Corp. | Prosthetic device, method of planning bone removal for implantation of prosthetic device, and robotic system |
US20100256758A1 (en) * | 2009-04-02 | 2010-10-07 | Synvasive Technology, Inc. | Monolithic orthopedic implant with an articular finished surface |
US10945743B2 (en) | 2009-04-17 | 2021-03-16 | Arthrosurface Incorporated | Glenoid repair system and methods of use thereof |
WO2010121250A1 (en) | 2009-04-17 | 2010-10-21 | Arthrosurface Incorporated | Glenoid resurfacing system and method |
US9889012B2 (en) | 2009-07-23 | 2018-02-13 | Didier NIMAL | Biomedical device, method for manufacturing the same and use thereof |
EP2456473B1 (en) | 2009-07-23 | 2016-02-17 | Didier Nimal | Biomedical device, method for manufacturing the same and use thereof |
BR112012022482A2 (en) | 2010-03-05 | 2016-07-19 | Arthrosurface Inc | tibial surface recomposition system and method. |
US8142511B2 (en) | 2010-04-19 | 2012-03-27 | Zimmer, Inc. | Bi-material prosthesis component |
WO2012018563A1 (en) | 2010-07-24 | 2012-02-09 | Zimmer, Inc. | Tibial prosthesis |
CA2989184C (en) | 2010-07-24 | 2020-02-25 | Zimmer, Inc. | Asymmetric tibial components for a knee prosthesis |
RU2013109815A (en) | 2010-08-12 | 2014-09-20 | Смит Энд Нефью, Инк. | DESIGN USED FOR FASTENING ORTHOPEDIC IMPLANT, AND METHOD OF INSTALLATION ON THE BONE |
WO2012034033A1 (en) | 2010-09-10 | 2012-03-15 | Zimmer, Inc. | Motion facilitating tibial components for a knee prosthesis |
US8603101B2 (en) | 2010-12-17 | 2013-12-10 | Zimmer, Inc. | Provisional tibial prosthesis system |
US9155543B2 (en) | 2011-05-26 | 2015-10-13 | Cartiva, Inc. | Tapered joint implant and related tools |
KR20140075736A (en) * | 2011-09-15 | 2014-06-19 | 아메디카 코포레이션 | Coated implants and related methods |
RS54557B1 (en) * | 2011-09-29 | 2016-06-30 | Christiaan Rudolf Oosthuizen | A tibial component |
CN104066402B (en) | 2011-11-18 | 2016-05-04 | 捷迈有限公司 | For the shin bone support member with improved articulation feature of knee-joint prosthesis |
WO2013077919A1 (en) | 2011-11-21 | 2013-05-30 | Zimmer, Inc. | Tibial baseplate with asymmetric placement of fixation structures |
EP2804565B1 (en) | 2011-12-22 | 2018-03-07 | Arthrosurface Incorporated | System for bone fixation |
WO2013115849A1 (en) | 2012-01-30 | 2013-08-08 | Zimmer, Inc. | Asymmetric tibial components for a knee prosthesis |
US20130302509A1 (en) * | 2012-05-09 | 2013-11-14 | Amedica Corporation | Antibacterial biomedical implants and associated materials, apparatus, and methods |
US10806831B2 (en) | 2012-05-09 | 2020-10-20 | Sintx Technologies, Inc. | Antibacterial biomedical implants and associated materials, apparatus, and methods |
US9925295B2 (en) | 2012-05-09 | 2018-03-27 | Amedica Corporation | Ceramic and/or glass materials and related methods |
US8663334B2 (en) | 2012-05-31 | 2014-03-04 | Howmedica Osteonics Corp. | Lateral entry insert for cup trial |
US8906102B2 (en) | 2012-05-31 | 2014-12-09 | Howmedica Osteonics Corp. | Lateral entry insert for cup trial |
DE112013003358T5 (en) | 2012-07-03 | 2015-03-19 | Arthrosurface, Inc. | System and procedure for joint surface replacement and repair |
FR2994644B1 (en) * | 2012-08-24 | 2014-08-29 | Anatomic | PROTHETIC TIBIAL PLUG AND TIBIAL PROTHETIC INSERT FOR IMMOBILIZATION ON SUCH PROTHETIC TIBIAL PLUG |
US9949837B2 (en) * | 2013-03-07 | 2018-04-24 | Howmedica Osteonics Corp. | Partially porous bone implant keel |
ES2657682T3 (en) | 2013-03-08 | 2018-03-06 | Stryker Corporation | Bone pads |
US9492200B2 (en) | 2013-04-16 | 2016-11-15 | Arthrosurface Incorporated | Suture system and method |
US9925052B2 (en) | 2013-08-30 | 2018-03-27 | Zimmer, Inc. | Method for optimizing implant designs |
US20160265332A1 (en) | 2013-09-13 | 2016-09-15 | Production Plus Energy Services Inc. | Systems and apparatuses for separating wellbore fluids and solids during production |
US9931219B2 (en) | 2014-03-07 | 2018-04-03 | Arthrosurface Incorporated | Implant and anchor assembly |
US11607319B2 (en) | 2014-03-07 | 2023-03-21 | Arthrosurface Incorporated | System and method for repairing articular surfaces |
US10624748B2 (en) | 2014-03-07 | 2020-04-21 | Arthrosurface Incorporated | System and method for repairing articular surfaces |
AU2015234631A1 (en) | 2014-03-24 | 2016-10-13 | Production Plus Energy Services Inc. | Systems and apparatuses for separating wellbore fluids and solids during production |
US10280727B2 (en) | 2014-03-24 | 2019-05-07 | Heal Systems Lp | Systems and apparatuses for separating wellbore fluids and solids during production |
US10597993B2 (en) | 2014-03-24 | 2020-03-24 | Heal Systems Lp | Artificial lift system |
FR3032347B1 (en) * | 2015-02-05 | 2019-12-20 | Assistance Publique - Hopitaux De Paris | TOTAL KNEE PROSTHESIS WITH CERAMIC FRICTION TORQUE ON CERAMIC AND MOBILE CERAMIC TRAY. |
AU2016243659B2 (en) | 2015-03-31 | 2020-04-23 | Cartiva, Inc. | Hydrogel implants with porous materials and methods |
CA2981064C (en) | 2015-03-31 | 2024-01-02 | Cartiva, Inc. | Carpometacarpal (cmc) implants and methods |
AU2016248062B2 (en) | 2015-04-14 | 2020-01-23 | Cartiva, Inc. | Tooling for creating tapered opening in tissue and related methods |
CN108135701B (en) | 2015-09-21 | 2019-12-24 | 捷迈有限公司 | Prosthesis system including tibial bearing component |
US10709564B2 (en) * | 2015-10-07 | 2020-07-14 | Ceramtec Gmbh | Knee endoprosthesis for replacing at least parts of the knee joint |
WO2018165442A1 (en) | 2017-03-10 | 2018-09-13 | Zimmer, Inc. | Tibial prosthesis with tibial bearing component securing feature |
WO2018208612A1 (en) | 2017-05-12 | 2018-11-15 | Zimmer, Inc. | Femoral prostheses with upsizing and downsizing capabilities |
CA3108761A1 (en) | 2017-08-04 | 2019-02-07 | Arthrosurface Incorporated | Multicomponent articular surface implant |
US11426282B2 (en) | 2017-11-16 | 2022-08-30 | Zimmer, Inc. | Implants for adding joint inclination to a knee arthroplasty |
US10835380B2 (en) | 2018-04-30 | 2020-11-17 | Zimmer, Inc. | Posterior stabilized prosthesis system |
US11857001B2 (en) | 2018-09-06 | 2024-01-02 | Sintx Technologies, Inc. | Antipathogenic face mask |
WO2020051004A1 (en) * | 2018-09-06 | 2020-03-12 | Sintx Technologies, Inc. | Antipathogenic compositions and methods thereof |
US11850214B2 (en) | 2018-09-06 | 2023-12-26 | Sintx Technologies, Inc. | Antiviral compositions and devices and methods of use thereof |
US11844344B2 (en) | 2018-09-06 | 2023-12-19 | Sintx Technologies, Inc. | Systems and methods for rapid inactivation of SARS-CoV-2 by silicon nitride and aluminum nitride |
EP3711714A1 (en) * | 2019-03-19 | 2020-09-23 | Limarcorporate S.p.A. | Tibial baseplate for tibial component of a knee prosthesis, tibial component comprising the tibial baseplate and method for manufacturing the tibial baseplate |
WO2020173956A1 (en) * | 2019-02-28 | 2020-09-03 | Limacorporate S.P.A. | Tibial baseplate for tibial component of a knee prosthesis, tibial component comprising the tibial baseplate and method for manufacturing the tibial baseplate |
US11478358B2 (en) | 2019-03-12 | 2022-10-25 | Arthrosurface Incorporated | Humeral and glenoid articular surface implant systems and methods |
KR20230137386A (en) * | 2021-01-29 | 2023-10-04 | 신티엑스 테크놀로지스, 잉크. | Antiviral compositions and devices, and methods of using the same |
CN113288526A (en) * | 2021-06-09 | 2021-08-24 | 北京爱康宜诚医疗器材有限公司 | Knee joint prosthesis |
Family Cites Families (126)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA992255A (en) * | 1971-01-25 | 1976-07-06 | Cutter Laboratories | Prosthesis for spinal repair |
US4000525A (en) * | 1975-08-21 | 1977-01-04 | The United States Of America As Represented By The Secretary Of The Navy | Ceramic prosthetic implant suitable for a knee joint plateau |
US4072532A (en) * | 1975-11-20 | 1978-02-07 | Nasa | High temperature resistant cermet and ceramic compositions |
SE449048B (en) * | 1979-07-10 | 1987-04-06 | Charnley Surgical Inventions | COAT PROTECTED OF PLASTIC MATERIAL INTENDED FOR IMPLANTATION IN A COAT PAN |
EP0176728B1 (en) * | 1984-09-04 | 1989-07-26 | Humboldt-Universität zu Berlin | Intervertebral-disc prosthesis |
US4743256A (en) * | 1985-10-04 | 1988-05-10 | Brantigan John W | Surgical prosthetic implant facilitating vertebral interbody fusion and method |
US4695282A (en) * | 1986-01-23 | 1987-09-22 | Osteonics Corp. | Acetabular cup assembly with selective bearing face orientation |
JPS63182274A (en) | 1987-01-20 | 1988-07-27 | 住友化学工業株式会社 | Manufacture of ceramic formed body with particle layer on surface |
US5118645A (en) * | 1988-01-27 | 1992-06-02 | The Dow Chemical Company | Self-reinforced silicon nitride ceramic of high fracture toughness and a method of preparing the same |
US5266683A (en) * | 1988-04-08 | 1993-11-30 | Stryker Corporation | Osteogenic proteins |
CA1333209C (en) * | 1988-06-28 | 1994-11-29 | Gary Karlin Michelson | Artificial spinal fusion implants |
US5609635A (en) * | 1988-06-28 | 1997-03-11 | Michelson; Gary K. | Lordotic interbody spinal fusion implants |
US5458638A (en) | 1989-07-06 | 1995-10-17 | Spine-Tech, Inc. | Non-threaded spinal implant |
US5152791A (en) | 1989-12-07 | 1992-10-06 | Olympus Optical Co., Ltd. | Prosthetic artificial bone having ceramic layers of different porosity |
FR2659226B1 (en) * | 1990-03-07 | 1992-05-29 | Jbs Sa | PROSTHESIS FOR INTERVERTEBRAL DISCS AND ITS IMPLEMENTATION INSTRUMENTS. |
GB2251795B (en) | 1991-01-17 | 1995-02-08 | Minnesota Mining & Mfg | Orthopaedic implant |
GB9102348D0 (en) * | 1991-02-04 | 1991-03-20 | Inst Of Orthopaedics The | Prosthesis for knee replacement |
US5314487A (en) * | 1991-02-14 | 1994-05-24 | Smith & Nephew Richards Inc. | Acetabular prosthesis with anchoring pegs |
US5192327A (en) * | 1991-03-22 | 1993-03-09 | Brantigan John W | Surgical prosthetic implant for vertebrae |
JP3064470B2 (en) | 1991-04-19 | 2000-07-12 | 杉郎 大谷 | Artificial prosthetic materials |
SE469653B (en) | 1992-01-13 | 1993-08-16 | Lucocer Ab | POROEST IMPLANT |
DE4208116C2 (en) * | 1992-03-13 | 1995-08-03 | Link Waldemar Gmbh Co | Intervertebral disc prosthesis |
DK0603787T3 (en) | 1992-12-23 | 1998-09-28 | Hoechst Ag | High temperature solid silicon nitride ceramics and process for making them |
US5312571A (en) * | 1993-01-07 | 1994-05-17 | Norton Company | Shaped bodies and the production thereof |
US5414049A (en) | 1993-06-01 | 1995-05-09 | Howmedica Inc. | Non-oxidizing polymeric medical implant |
US5425772A (en) * | 1993-09-20 | 1995-06-20 | Brantigan; John W. | Prosthetic implant for intervertebral spinal fusion |
CA2142634C (en) * | 1994-02-18 | 2005-09-20 | Salvatore Caldarise | Self-lubricating implantable articulation member |
CA2189335A1 (en) | 1994-05-24 | 1995-11-30 | Ugo Ripamonti | A biomaterial and bone implant for bone repair and replacement |
CH689725A5 (en) * | 1994-09-08 | 1999-09-30 | Franz Dr Sutter | Condyle prosthesis. |
US5702458A (en) | 1994-12-09 | 1997-12-30 | New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery | Joint prosthesis |
JP3732228B2 (en) | 1994-12-09 | 2006-01-05 | ソファモーア・デインク・グループ・インコーポレーテッド | Adjustable vertebral body replacement |
US6376573B1 (en) * | 1994-12-21 | 2002-04-23 | Interpore International | Porous biomaterials and methods for their manufacture |
CA2166450C (en) * | 1995-01-20 | 2008-03-25 | Ronald Salovey | Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints |
US6758849B1 (en) * | 1995-02-17 | 2004-07-06 | Sdgi Holdings, Inc. | Interbody spinal fusion implants |
CN1134810A (en) * | 1995-02-17 | 1996-11-06 | 索发默达纳集团股份有限公司 | Improved interbody spinal fusion implants |
WO1996029030A1 (en) | 1995-03-17 | 1996-09-26 | Smith & Nephew Richards Inc. | Medical implants |
US6039762A (en) * | 1995-06-07 | 2000-03-21 | Sdgi Holdings, Inc. | Reinforced bone graft substitutes |
US6149688A (en) | 1995-06-07 | 2000-11-21 | Surgical Dynamics, Inc. | Artificial bone graft implant |
US5702449A (en) | 1995-06-07 | 1997-12-30 | Danek Medical, Inc. | Reinforced porous spinal implants |
GB9611437D0 (en) | 1995-08-03 | 1996-08-07 | Secr Defence | Biomaterial |
US5871546A (en) * | 1995-09-29 | 1999-02-16 | Johnson & Johnson Professional, Inc. | Femoral component condyle design for knee prosthesis |
US5888222A (en) * | 1995-10-16 | 1999-03-30 | Sdgi Holding, Inc. | Intervertebral spacers |
CA2242645A1 (en) * | 1995-12-08 | 1997-06-12 | Robert S. Bray, Jr. | Anterior stabilization device |
NZ331107A (en) | 1996-02-13 | 2000-04-28 | Gen Hospital Corp | Radiation and melt treated ultra high molecular weight polyethylene prosthetic devices |
US5871547A (en) * | 1996-03-01 | 1999-02-16 | Saint-Gobain/Norton Industrial Ceramics Corp. | Hip joint prosthesis having a zirconia head and a ceramic cup |
EP0803234B1 (en) * | 1996-04-23 | 2004-11-17 | Biomet Limited | Methods of manufacturing an acetabular cup |
US6143948A (en) * | 1996-05-10 | 2000-11-07 | Isotis B.V. | Device for incorporation and release of biologically active agents |
US6069295A (en) * | 1996-05-10 | 2000-05-30 | Isotis B.V. | Implant material |
FR2751526B1 (en) | 1996-07-29 | 1999-01-08 | Claude Hubin | JOINT PART OF A HIP PROSTHESIS WITH PARTICLE TRAP |
US5782832A (en) * | 1996-10-01 | 1998-07-21 | Surgical Dynamics, Inc. | Spinal fusion implant and method of insertion thereof |
EP1028760B1 (en) | 1996-10-15 | 2004-04-14 | Orthopaedic Hospital | Wear resistant surface-gradient cross-linked polyethylene |
CA2269342C (en) * | 1996-10-23 | 2006-09-12 | Sdgi Holdings, Inc. | Spinal spacer |
US6037519A (en) * | 1997-10-20 | 2000-03-14 | Sdgi Holdings, Inc. | Ceramic fusion implants and compositions |
US5824100A (en) | 1996-10-30 | 1998-10-20 | Osteonics Corp. | Knee prosthesis with increased balance and reduced bearing stress |
GB9623540D0 (en) * | 1996-11-12 | 1997-01-08 | Johnson & Johnson Professional | Hip joint prosthesis |
US6013591A (en) * | 1997-01-16 | 2000-01-11 | Massachusetts Institute Of Technology | Nanocrystalline apatites and composites, prostheses incorporating them, and method for their production |
US6210612B1 (en) * | 1997-03-31 | 2001-04-03 | Pouvair Corporation | Method for the manufacture of porous ceramic articles |
US5861041A (en) * | 1997-04-07 | 1999-01-19 | Arthit Sitiso | Intervertebral disk prosthesis and method of making the same |
US6033438A (en) * | 1997-06-03 | 2000-03-07 | Sdgi Holdings, Inc. | Open intervertebral spacer |
US5972368A (en) * | 1997-06-11 | 1999-10-26 | Sdgi Holdings, Inc. | Bone graft composites and spacers |
DE19726412A1 (en) * | 1997-06-21 | 1998-12-24 | Merck Patent Gmbh | Implant material with a carrier-drug combination |
US5879407A (en) * | 1997-07-17 | 1999-03-09 | Waggener; Herbert A. | Wear resistant ball and socket joint |
JPH1149572A (en) | 1997-08-01 | 1999-02-23 | Honda Motor Co Ltd | Ceramic composite particles and their production |
US6136029A (en) | 1997-10-01 | 2000-10-24 | Phillips-Origen Ceramic Technology, Llc | Bone substitute materials |
US6296667B1 (en) * | 1997-10-01 | 2001-10-02 | Phillips-Origen Ceramic Technology, Llc | Bone substitutes |
DE29720022U1 (en) | 1997-11-12 | 1998-01-15 | SCHÄFER micomed GmbH, 73035 Göppingen | Intervertebral implant |
US5899939A (en) * | 1998-01-21 | 1999-05-04 | Osteotech, Inc. | Bone-derived implant for load-supporting applications |
US6123729A (en) | 1998-03-10 | 2000-09-26 | Bristol-Myers Squibb Company | Four compartment knee |
US6736849B2 (en) * | 1998-03-11 | 2004-05-18 | Depuy Products, Inc. | Surface-mineralized spinal implants |
US6139585A (en) | 1998-03-11 | 2000-10-31 | Depuy Orthopaedics, Inc. | Bioactive ceramic coating and method |
SE517365C2 (en) * | 1998-03-19 | 2002-05-28 | Biomat System Ab | Ceramic silica nitride biomaterial and method for its manufacture |
CA2329363C (en) * | 1998-04-23 | 2007-12-11 | Cauthen Research Group, Inc. | Articulating spinal implant |
US5908796A (en) * | 1998-05-01 | 1999-06-01 | Saint-Gobain Industrial Ceramics, Inc. | Dense silicon nitride ceramic having fine grained titanium carbide |
US6090144A (en) * | 1998-05-12 | 2000-07-18 | Letot; Patrick | Synthetic knee system |
US6261322B1 (en) | 1998-05-14 | 2001-07-17 | Hayes Medical, Inc. | Implant with composite coating |
DE69933731T2 (en) * | 1998-05-29 | 2007-10-04 | Tokuyama Corp., Tokuyama | Dental porcelain |
JP4156197B2 (en) * | 1998-08-06 | 2008-09-24 | ウォーソー・オーソペディック・インコーポレーテッド | Composite intervertebral spacer |
AU766735B2 (en) * | 1998-09-15 | 2003-10-23 | Isotis N.V. | Osteoinduction |
US6152960A (en) | 1998-10-13 | 2000-11-28 | Biomedical Engineering Trust I | Femoral component for knee endoprosthesis |
US6113637A (en) * | 1998-10-22 | 2000-09-05 | Sofamor Danek Holdings, Inc. | Artificial intervertebral joint permitting translational and rotational motion |
US6039763A (en) * | 1998-10-27 | 2000-03-21 | Disc Replacement Technologies, Inc. | Articulating spinal disc prosthesis |
ES2144974B1 (en) | 1998-11-19 | 2001-01-01 | Levante Ind Quirurgicas | KNEE PROTESIS WITH MOBILE CONGRUENT INSERT. |
US6156069A (en) | 1999-02-04 | 2000-12-05 | Amstutz; Harlan C. | Precision hip joint replacement method |
US6245108B1 (en) * | 1999-02-25 | 2001-06-12 | Spineco | Spinal fusion implant |
US6368350B1 (en) * | 1999-03-11 | 2002-04-09 | Sulzer Spine-Tech Inc. | Intervertebral disc prosthesis and method |
US6277149B1 (en) * | 1999-06-08 | 2001-08-21 | Osteotech, Inc. | Ramp-shaped intervertebral implant |
AU7023100A (en) * | 1999-09-08 | 2001-04-10 | Depuy International Limited | Combination of material for joint prosthesis |
US6494883B1 (en) | 2000-05-26 | 2002-12-17 | Bret A. Ferree | Bone reinforcers |
JP4777568B2 (en) * | 1999-11-11 | 2011-09-21 | 株式会社 ジャパン・ティッシュ・エンジニアリング | Implant material and method for producing the same |
US7115143B1 (en) * | 1999-12-08 | 2006-10-03 | Sdgi Holdings, Inc. | Orthopedic implant surface configuration |
US6827740B1 (en) * | 1999-12-08 | 2004-12-07 | Gary K. Michelson | Spinal implant surface configuration |
FR2805455B1 (en) * | 2000-02-24 | 2002-04-19 | Aesculap Sa | FEMORAL COMPONENT OF A THREE-BEND KNEE PROSTHESIS |
US6414086B1 (en) * | 2000-02-29 | 2002-07-02 | Howmedica Osteonics Corp. | Compositions, processes and methods of improving the wear resistance of prosthetic medical devices |
FR2805733B1 (en) * | 2000-03-03 | 2002-06-07 | Scient X | DISC PROSTHESIS FOR CERVICAL VERTEBRUS |
AU783205C (en) * | 2000-03-15 | 2006-08-17 | Depuy Orthopaedics, Inc. | Prosthetic cup assembly which includes components possessing self-locking taper |
US20020111680A1 (en) * | 2000-06-13 | 2002-08-15 | Michelson Gary K. | Ratcheted bone dowel |
US6587788B1 (en) * | 2000-07-12 | 2003-07-01 | Trimble Navigation Limited | Integrated position and direction system with radio communication for updating data |
US20020062154A1 (en) * | 2000-09-22 | 2002-05-23 | Ayers Reed A. | Non-uniform porosity tissue implant |
CA2433550A1 (en) | 2001-01-02 | 2002-07-11 | Advanced Ceramics Research, Inc. | Compositions and methods for biomedical applications |
US20030050709A1 (en) * | 2001-02-23 | 2003-03-13 | Ulrich Noth | Trabecular bone-derived human mesenchymal stem cells |
US6673075B2 (en) * | 2001-02-23 | 2004-01-06 | Albert N. Santilli | Porous intervertebral spacer |
US7776085B2 (en) | 2001-05-01 | 2010-08-17 | Amedica Corporation | Knee prosthesis with ceramic tibial component |
ES2424614T3 (en) * | 2001-05-01 | 2013-10-07 | Amedica Corporation | Radiolucent bone graft |
US7695521B2 (en) * | 2001-05-01 | 2010-04-13 | Amedica Corporation | Hip prosthesis with monoblock ceramic acetabular cup |
US20050177238A1 (en) * | 2001-05-01 | 2005-08-11 | Khandkar Ashok C. | Radiolucent bone graft |
US6719794B2 (en) * | 2001-05-03 | 2004-04-13 | Synthes (U.S.A.) | Intervertebral implant for transforaminal posterior lumbar interbody fusion procedure |
WO2002102275A2 (en) * | 2001-06-14 | 2002-12-27 | Amedica Corporation | Metal-ceramic composite articulation |
US6569201B2 (en) * | 2001-09-28 | 2003-05-27 | Depuy Acromed, Inc. | Hybrid composite interbody fusion device |
US6740118B2 (en) * | 2002-01-09 | 2004-05-25 | Sdgi Holdings, Inc. | Intervertebral prosthetic joint |
US20080027548A9 (en) * | 2002-04-12 | 2008-01-31 | Ferree Bret A | Spacerless artificial disc replacements |
US6706068B2 (en) * | 2002-04-23 | 2004-03-16 | Bret A. Ferree | Artificial disc replacements with natural kinematics |
US6770095B2 (en) | 2002-06-18 | 2004-08-03 | Depuy Acroned, Inc. | Intervertebral disc |
US6723097B2 (en) * | 2002-07-23 | 2004-04-20 | Depuy Spine, Inc. | Surgical trial implant |
US7273496B2 (en) | 2002-10-29 | 2007-09-25 | St. Francis Medical Technologies, Inc. | Artificial vertebral disk replacement implant with crossbar spacer and method |
US20040143332A1 (en) * | 2002-10-31 | 2004-07-22 | Krueger David J. | Movable disc implant |
US6994727B2 (en) * | 2002-12-17 | 2006-02-07 | Amedica Corporation | Total disc implant |
US7364589B2 (en) | 2003-02-12 | 2008-04-29 | Warsaw Orthopedic, Inc. | Mobile bearing articulating disc |
US6908484B2 (en) * | 2003-03-06 | 2005-06-21 | Spinecore, Inc. | Cervical disc replacement |
US20040220679A1 (en) | 2003-05-01 | 2004-11-04 | Diaz Robert L. | Hybrid ceramic composite implants |
CA2519742A1 (en) * | 2003-05-16 | 2004-11-25 | Blue Membranes Gmbh | Medical implants comprising biocompatible coatings |
US7270679B2 (en) | 2003-05-30 | 2007-09-18 | Warsaw Orthopedic, Inc. | Implants based on engineered metal matrix composite materials having enhanced imaging and wear resistance |
US7794465B2 (en) * | 2003-09-10 | 2010-09-14 | Warsaw Orthopedic, Inc. | Artificial spinal discs and associated implantation instruments and methods |
GB0321582D0 (en) * | 2003-09-15 | 2003-10-15 | Benoist Girard Sas | Prosthetic acetabular cup and prosthetic femoral joint incorporating such a cup |
US7846183B2 (en) * | 2004-02-06 | 2010-12-07 | Spinal Elements, Inc. | Vertebral facet joint prosthesis and method of fixation |
US7195644B2 (en) * | 2004-03-02 | 2007-03-27 | Joint Synergy, Llc | Ball and dual socket joint |
US20050216092A1 (en) | 2004-03-23 | 2005-09-29 | Sdgi Holdings, Inc. | Constrained artificial implant for orthopaedic applications |
-
2005
- 2005-09-08 US US11/223,376 patent/US7776085B2/en not_active Expired - Fee Related
-
2006
- 2006-05-18 WO PCT/US2006/019254 patent/WO2006130350A2/en active Application Filing
- 2006-05-18 EP EP06784429A patent/EP1890654A4/en not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of EP1890654A4 * |
Cited By (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10188521B2 (en) | 2000-11-28 | 2019-01-29 | Medidea, Llc | Multiple-cam, posterior-stabilized knee prosthesis |
US9492280B2 (en) | 2000-11-28 | 2016-11-15 | Medidea, Llc | Multiple-cam, posterior-stabilized knee prosthesis |
US9398956B2 (en) | 2007-09-25 | 2016-07-26 | Depuy (Ireland) | Fixed-bearing knee prosthesis having interchangeable components |
US8128703B2 (en) | 2007-09-28 | 2012-03-06 | Depuy Products, Inc. | Fixed-bearing knee prosthesis having interchangeable components |
US9204967B2 (en) | 2007-09-28 | 2015-12-08 | Depuy (Ireland) | Fixed-bearing knee prosthesis having interchangeable components |
US8871142B2 (en) | 2008-05-22 | 2014-10-28 | DePuy Synthes Products, LLC | Implants with roughened surfaces |
US9393118B2 (en) | 2008-05-22 | 2016-07-19 | DePuy Synthes Products, Inc. | Implants with roughened surfaces |
US9204968B2 (en) | 2008-06-30 | 2015-12-08 | Depuy (Ireland) | Posterior stabilized orthopaedic prosthesis |
US11369478B2 (en) | 2008-06-30 | 2022-06-28 | Depuy Ireland Unlimited Company | Orthopaedic knee prosthesis having controlled condylar curvature |
US8236061B2 (en) | 2008-06-30 | 2012-08-07 | Depuy Products, Inc. | Orthopaedic knee prosthesis having controlled condylar curvature |
US12109119B2 (en) | 2008-06-30 | 2024-10-08 | Depuy Ireland Unlimited Company | Orthopaedic femoral component having controlled condylar curvature |
US8734522B2 (en) | 2008-06-30 | 2014-05-27 | Depuy (Ireland) | Posterior stabilized orthopaedic prosthesis |
US8784496B2 (en) | 2008-06-30 | 2014-07-22 | Depuy (Ireland) | Orthopaedic knee prosthesis having controlled condylar curvature |
US8795380B2 (en) | 2008-06-30 | 2014-08-05 | Depuy (Ireland) | Orthopaedic knee prosthesis having controlled condylar curvature |
US8828086B2 (en) | 2008-06-30 | 2014-09-09 | Depuy (Ireland) | Orthopaedic femoral component having controlled condylar curvature |
US8834575B2 (en) | 2008-06-30 | 2014-09-16 | Depuy (Ireland) | Posterior stabilized orthopaedic knee prosthesis having controlled condylar curvature |
US8192498B2 (en) | 2008-06-30 | 2012-06-05 | Depuy Products, Inc. | Posterior cructiate-retaining orthopaedic knee prosthesis having controlled condylar curvature |
US12059356B2 (en) | 2008-06-30 | 2024-08-13 | Depuy Ireland Unlimited Company | Orthopaedic knee prosthesis having controlled condylar curvature |
US10179051B2 (en) | 2008-06-30 | 2019-01-15 | Depuy Ireland Unlimited Company | Orthopaedic knee prosthesis having controlled condylar curvature |
US9119723B2 (en) | 2008-06-30 | 2015-09-01 | Depuy (Ireland) | Posterior stabilized orthopaedic prosthesis assembly |
US11730602B2 (en) | 2008-06-30 | 2023-08-22 | Depuy Ireland Unlimited Company | Orthopaedic knee prosthesis having controlled condylar curvature |
US9168145B2 (en) | 2008-06-30 | 2015-10-27 | Depuy (Ireland) | Posterior stabilized orthopaedic knee prosthesis having controlled condylar curvature |
US8206451B2 (en) | 2008-06-30 | 2012-06-26 | Depuy Products, Inc. | Posterior stabilized orthopaedic prosthesis |
US11337823B2 (en) | 2008-06-30 | 2022-05-24 | Depuy Ireland Unlimited Company | Orthopaedic femoral component having controlled condylar curvature |
US8187335B2 (en) | 2008-06-30 | 2012-05-29 | Depuy Products, Inc. | Posterior stabilized orthopaedic knee prosthesis having controlled condylar curvature |
US9220601B2 (en) | 2008-06-30 | 2015-12-29 | Depuy (Ireland) | Orthopaedic femoral component having controlled condylar curvature |
US9326864B2 (en) | 2008-06-30 | 2016-05-03 | Depuy (Ireland) | Orthopaedic knee prosthesis having controlled condylar curvature |
US10265180B2 (en) | 2008-06-30 | 2019-04-23 | Depuy Ireland Unlimited Company | Orthopaedic knee prosthesis having controlled condylar curvature |
US10849760B2 (en) | 2008-06-30 | 2020-12-01 | Depuy Ireland Unlimited Company | Orthopaedic knee prosthesis having controlled condylar curvature |
US9452053B2 (en) | 2008-06-30 | 2016-09-27 | Depuy (Ireland) | Orthopaedic knee prosthesis having controlled condylar curvature |
US10729551B2 (en) | 2008-06-30 | 2020-08-04 | Depuy Ireland Unlimited Company | Orthopaedic knee prosthesis having controlled condylar curvature |
US10543098B2 (en) | 2008-06-30 | 2020-01-28 | Depuy Ireland Unlimited Company | Orthopaedic femoral component having controlled condylar curvature |
US9539099B2 (en) | 2008-06-30 | 2017-01-10 | Depuy Ireland Unlimited Company | Orthopaedic knee prosthesis having controlled condylar curvature |
US9937049B2 (en) | 2008-06-30 | 2018-04-10 | Depuy Ireland Unlimited Company | Orthopaedic knee prosthesis having controlled condylar curvature |
US9931216B2 (en) | 2008-06-30 | 2018-04-03 | Depuy Ireland Unlimited Company | Orthopaedic femoral component having controlled condylar curvature |
US10433964B2 (en) | 2009-05-21 | 2019-10-08 | Depuy Ireland Unlimited Company | Prosthesis with surfaces having different textures and method of making the prosthesis |
US11213397B2 (en) | 2009-05-21 | 2022-01-04 | Depuy Ireland Unlimited Company | Prosthesis with surfaces having different textures and method of making the prosthesis |
US9101476B2 (en) | 2009-05-21 | 2015-08-11 | Depuy (Ireland) | Prosthesis with surfaces having different textures and method of making the prosthesis |
WO2011003621A2 (en) | 2009-07-10 | 2011-01-13 | Medizinische Hochschule Hannover | Knee joint prosthesis and related method |
US9999512B2 (en) | 2009-07-10 | 2018-06-19 | Aesculap Ag | Knee joint prosthesis and related method |
US9833323B2 (en) | 2009-07-10 | 2017-12-05 | Aesculap Ag | Knee joint prosthesis and related method |
EP3103416A2 (en) | 2009-07-10 | 2016-12-14 | Aesculap AG | Knee joint prosthesis and related method |
EP2272466A1 (en) | 2009-07-10 | 2011-01-12 | Medizinische Hochschule Hannover | Knee joint prosthesis and method for producing said prosthesis |
EP2316383A1 (en) * | 2009-10-30 | 2011-05-04 | DePuy Products, Inc. | Prosthesis with surfaces having different textures |
CN102058444A (en) * | 2009-10-30 | 2011-05-18 | 德普伊产品公司 | Prosthesis with surfaces having different textures and method of making the prosthesis |
AU2010236107B2 (en) * | 2009-10-30 | 2015-09-17 | Depuy Products, Inc. | Prosthesis with surfaces having different textures and method of making the prosthesis |
EP2617392A1 (en) * | 2009-10-30 | 2013-07-24 | DePuy Products, Inc. | Prosthesis with surfaces having different textures |
US9011547B2 (en) | 2010-01-21 | 2015-04-21 | Depuy (Ireland) | Knee prosthesis system |
WO2012051397A1 (en) * | 2010-10-14 | 2012-04-19 | Depuy Products, Inc. | Prosthesis with surfaces having different textures and method of making the prosthesis |
CN105030383A (en) * | 2015-05-08 | 2015-11-11 | 江苏奥康尼医疗科技发展有限公司 | Combined type full-organic-polymer-material artificial unicondylar knee joint |
Also Published As
Publication number | Publication date |
---|---|
US20060052875A1 (en) | 2006-03-09 |
WO2006130350A3 (en) | 2007-06-21 |
US7776085B2 (en) | 2010-08-17 |
EP1890654A4 (en) | 2012-06-27 |
EP1890654A2 (en) | 2008-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7776085B2 (en) | Knee prosthesis with ceramic tibial component | |
US7695521B2 (en) | Hip prosthesis with monoblock ceramic acetabular cup | |
US5358529A (en) | Plastic knee femoral implants | |
EP1331904B1 (en) | Bimetal tibial component construct for knee joint prosthesis | |
EP2319462B1 (en) | Prosthesis with composite component | |
US20110035018A1 (en) | Prosthesis with composite component | |
US20080195218A1 (en) | Prosthetic implant for use without bone cement | |
US9289305B2 (en) | Total knee arthroplasty with symmetric femoral implant having double Q-angle trochlear groove | |
US20030153979A1 (en) | Posterior stabilized knee system prosthetic devices employing diffusion-hardened surfaces | |
US9681955B2 (en) | Application of diffusion hardened material | |
WO2005009298A1 (en) | Mobile bearing knee prosthesis | |
US20130060344A1 (en) | Femoral component with reinforced articulating surface | |
JP2008541851A (en) | Artificial knee joint with ceramic tibial components | |
US20040220679A1 (en) | Hybrid ceramic composite implants | |
WO2009091802A2 (en) | A knee system and method of making same | |
US9060864B1 (en) | Joint prosthesis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2008513546 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006784429 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: RU |