WO2006129736A1 - Process for producing cyclic ester - Google Patents

Process for producing cyclic ester Download PDF

Info

Publication number
WO2006129736A1
WO2006129736A1 PCT/JP2006/310937 JP2006310937W WO2006129736A1 WO 2006129736 A1 WO2006129736 A1 WO 2006129736A1 JP 2006310937 W JP2006310937 W JP 2006310937W WO 2006129736 A1 WO2006129736 A1 WO 2006129736A1
Authority
WO
WIPO (PCT)
Prior art keywords
ester
acid
cyclic
boiling point
cyclic dimer
Prior art date
Application number
PCT/JP2006/310937
Other languages
French (fr)
Japanese (ja)
Inventor
Masazumi Takaoka
Masanori Iwazumi
Masaru Wada
Ryo Shinagawa
Tadashi Okuma
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Priority to JP2007519052A priority Critical patent/JP5132309B2/en
Publication of WO2006129736A1 publication Critical patent/WO2006129736A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/101,4-Dioxanes; Hydrogenated 1,4-dioxanes
    • C07D319/121,4-Dioxanes; Hydrogenated 1,4-dioxanes not condensed with other rings

Definitions

  • the present invention relates to a method for producing a hydroxyalkyloxyacetic acid hydroxy cyclic ester
  • a method for producing a cyclic ester such as a method for producing a cyclic dimer ester.
  • Poly (hydroxyalkyloxyacetate) is widely used as a biodegradable polymer, and particularly used as a bioabsorbable polymer in the field of medical applications.
  • Oxycyclic esters can be used as starting materials for this poly (hydroxyalkyloxyacetate), and various industrial production methods have been proposed.
  • Patent Document 3 discloses a method for producing p-dioxanone, which is an oxycyclic ester, and reacts an ethylene glycol salt with monochloroacetic acid to obtain j8-hydroxyethoxyacetic acid through a purification step. After that, p-dioxanone was obtained by distillation. However, since p-dioxanone obtained by this method has low purity, further purification is required to use it as a raw material for bioabsorbable polymers. Repeated purification operations reduce the yield of p-dioxanone. It is a complicated process.
  • Patent Document 5 discloses a method for producing p-dioxanone, and P-dioxanone, which is the target product, is obtained in high yield. However, it has been desired to further improve the operability such that the operability such as taking out is not always sufficient.
  • Patent Documents 6 and 7 describe a method for producing a cyclic ester.
  • a mixture containing an aliphatic polyester and a specific polyalkylene glycol ether having a boiling point of 230 to 450 ° C. and a molecular weight of 150 to 450 is subjected to an oligomer of an aliphatic polyester derived from the aliphatic polyester under normal pressure or reduced pressure.
  • a cyclic ester is produced, and the produced cyclic ester is distilled off together with a high-boiling polar organic solvent and then taken out from the distillate.
  • further purification operations must be performed. It is a process.
  • polyhydroxycarboxylic acids are also widely used as biodegradable polymers.
  • polyglycolic acid is used as a bioabsorbable polymer in the field of medical applications. It is known to use glycolide as a starting material for this polydaricholic acid, and various industrial production methods have been proposed for cyclic dimer esters containing glycolide.
  • glycolide is obtained by polycondensation of glycolic acid, followed by distillation and further purification by dropwise addition to an alcohol solvent.
  • a purification operation is unavoidable. For this reason, the yield of glycolide is reduced by the purification operation, which is a complicated process.
  • Patent Document 4 glycolic acid and polyalkylene glycol are polycondensed and then distilled to obtain glycolide.
  • thermal decomposition of polyalkylene glycol occurs during the distillation of glycolide, and thermal decomposition products are mixed in, so a purification operation is unavoidable. Therefore, there is a problem similar to that of Patent Document 1.
  • Patent Documents 6 and 7 describe a method for producing an ⁇ -hydroxycarboxylic acid cyclic dimer ester.
  • a high boiling point polar organic solvent or a mixture of a high boiling point polar organic solvent and a solubilizing agent is added to an ⁇ -hydroxycarboxylic acid oligomer, and the oligomer is brought to a temperature at which depolymerization of the oligomer occurs under normal pressure or reduced pressure.
  • X-hydroxycarboxylic acid cyclic dimer ester is formed by heating, and the produced ⁇ -hydroxycarboxylic acid cyclic dimer ester is distilled off together with the high-boiling polar organic solvent, and then removed from the distillate.
  • further purification operations must be performed, and it is difficult to say that this is an industrially advantageous production method in view of the purification load.
  • Patent Document 1 discloses a method for producing a macrocyclic ester.
  • Polyester of a dibasic acid and an alkylene glycol is used as a polyoxyester.
  • Ethylene brush rate is obtained by depolymerizing and cyclizing under reduced pressure with additives such as alkylene glycol.
  • practical high molecular weight biodegradable polymers On the other hand, cyclic esters used as starting materials for the production of medical materials such as biodegradable packaging materials and bioabsorbable sutures need to be of higher purity and are usually further purified. There was a need to do.
  • Patent Document 1 JP-A-55-120581
  • Patent Document 2 Japanese Patent Publication No. 51-006673
  • Patent Document 3 Japanese Patent Publication No. 60-36785
  • Patent Document 4 JP-A 63-152375
  • Patent Document 5 JP 2001-288180 A
  • Patent Document 6 Japanese Patent Laid-Open No. 9-328481
  • Patent Document 7 WO02Z014303
  • a first problem to be solved by the present invention is to provide an industrially advantageous production method of a cyclic ester that can be a raw material for a biodegradable polymer.
  • the second problem to be solved by the present invention is an industrially advantageous production in which an oxy cyclic ester which is a raw material of poly (hydroxyalkyloxyacetic acid ester) can be obtained efficiently and in a high yield. It is to provide a method.
  • the third problem to be solved by the present invention is an industrially advantageous process for producing a cyclic dimer ester used as a raw material for a biodegradable polymer, particularly glycolide, which is a raw material for polydaricholic acid. Is to provide.
  • Z represents oxygen or a linear or branched oxyalkyleneoxy group having 2 to 20 carbon atoms
  • R 1 and R 2 may be the same or different from each other. It is preferably hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms, and p is an integer of 1 to 20000.
  • X represents a carbonyl group or a substituted or unsubstituted methylene group
  • R 3 and R 4 may be the same or different and each represents hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms, and n represents an integer of 1 to 4.
  • Cyclic ester comprising two steps of heating the polymerization liquid obtained in the first step and simultaneously carrying out the reaction and distillation, a step of obtaining a cyclic ester having a purity of 98% or more from S, etc. A method of manufacturing the same is provided.
  • the present invention uses a hydroxyalkyloxyacetic acid represented by the following formula (3) as a raw material, [0022] [Chemical 3]
  • R represents a hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms which may be the same or different from each other, and n is 1 Indicates an integer of ⁇ 4)
  • R and each represent hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms, which may be the same or different, and n is 1 Indicates an integer of ⁇ 4)
  • a method for producing an oxycyclic ester comprising the following two steps is provided.
  • the hydroxyalkyloxyacetic acid (3) is preferably ⁇ -hydroxyethoxyacetic acid.
  • R 1 and R 2 represent hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms, which may be the same or different from each other.
  • M represents an integer from 1 to 20000.
  • R 1 and R 2 represent hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms, which may be the same or different from each other.
  • M represents an integer from 1 to 20000.
  • a method for producing a cyclic dimer ester comprising the following two steps is provided.
  • the oc-hydroxycarboxylic acid and Z or (-hydroxycarboxylic acid condensate (5) glycolic acid and z or glycolic acid condensate are preferable.
  • the molecular weight of the alkylene glycol used in the first step when producing the cyclic dimer ester (6) is preferably in the range of 100 to 900.
  • the production method of the present invention dramatically reduces the rate of formation of the oxycyclic ester by suppressing the formation of a high-molecular weight hydroxyalkyloxyacetic acid product and maintaining the fluidity of the solution itself.
  • the yield can also be improved.
  • high-purity oxycyclic ester can be obtained by simultaneously performing depolymerization reaction and distillation purification. That is, the compound can be obtained efficiently and in a high yield.
  • the production method of the present invention suppresses the formation of a high molecular weight product of a-hydroxycarboxylic acid and keeps the fluidity of the polymerization solution, whereby the production rate of the cyclic dimer ester is increased. As well as the yield. Further, by carrying out the reaction and purification by distillation at the same time, a high-purity cyclic dimer ester can be obtained. That is, the compound can be obtained efficiently and with high purity.
  • the method for producing a cyclic ester in the present invention uses at least one compound represented by the following formula (1) as a raw material,
  • Z represents oxygen or a linear or branched oxyalkyleneoxy group having 2 to 20 carbon atoms, and R 1 and R 2 may be the same or different from each other. Or a linear or branched alkyl group having 1 to 4 carbon atoms, p is 1 to 20000 Indicates an integer.
  • X represents a carbonyl group or a substituted or unsubstituted methylene group
  • R 3 and R 4 may be the same or different and each represents hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms, and n represents an integer of 1 to 4.
  • the second step includes the step of obtaining a cyclic ester having a purity of 98% or more while simultaneously performing the reaction and distillation by heating the polymerization liquid obtained in the first step.
  • cyclic ester represented by the above formula (2) include an oxy cyclic ester and a cyclic dimer ester. Hereinafter, these production methods will be described more specifically.
  • the hydroxyalkyloxyacetic acid used as a raw material in the present invention is a compound represented by the following formula (3).
  • R and IT represent hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms, which may be the same or different from each other, n is an integer from 1 to 4.
  • Hydroxyalkyloxyacetic acid can be produced by a publicly known method. For example, Tokusho Sho 60
  • No. 36785 can be obtained by the examples described in JP-A-2001-288180.
  • the hydroxyalkyloxyacetic acid used in the present invention is preferably one in which impurities derived from raw materials are excluded as much as possible.
  • the oxycyclic ester obtained by the present invention is a compound represented by the following formula (4).
  • R and IT represent hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms, which may be the same or different from each other, and n Represents an integer from 1 to 4.
  • the method for producing a hydroxyalkyl oxyacetic acid cyclic ester according to the present invention is characterized in that it includes [first step] and [second step] described below. Hereinafter, each process will be described.
  • the first step of the method for producing an oxycyclic ester according to the present invention is an oxycyclic ester represented by the above formula (4) obtained by the present invention (hereinafter also referred to as oxycyclic ester (4)).
  • oxycyclic ester (4) an oxycyclic ester represented by the above formula (4) obtained by the present invention.
  • an alkylene glycol having a higher boiling point is added to hydroxyalkyloxyacetic acid and a polymerization reaction is performed to obtain a polymerization solution.
  • This first step is characterized in that an alkylene diol having a boiling point higher than that of the oxy cyclic ester (4) is used.
  • a copolymer of the alkylene glycol and hydroxyalkyloxyacetic acid is obtained by using an alkylene glycol having a boiling point higher than that of the epoxy cyclic ester (4).
  • the resulting polymerization solution is uniform until the end of the first step, and tends to maintain high fluidity.
  • the polymer tends to be a homopolymer and has a high molecular weight, so that the resulting polymerization solution is uniform. In some cases, the fluidity may also decrease.
  • the alkylene glycol used in the first step is usually a liquid having a melting point of 100 ° C or lower, more preferably 70 ° C or lower, and has a boiling point higher than that of the oxycyclic ester (4) obtained by the present invention. If it is alkylene glycol, it is not particularly limited! ,.
  • the boiling point in the present invention is a boiling point measured under normal pressure (760 mmHg) based on JIS K0066-1992 “Method for Distillation Test of Chemical Products”. When measured under reduced pressure, it refers to the boiling point converted to normal pressure. The boiling point measured under reduced pressure was converted to the normal boiling point based on the boiling point conversion chart of “Basic Organic Chemistry Experiment P155, Maruzen (1966); Kazuo Hata”.
  • the boiling point of alkylene glycol is preferably 30 ° C (converted to normal pressure (76 OmmHg)) or higher than the boiling point of the cyclic ester to be formed, and it is preferably 50 ° C (normal pressure) to the boiling point of the cyclic ester to be formed. (Equivalent to (760mmHg)) Higher than 70 ° C (normal pressure (760mmHg) equivalent) higher than the boiling point of the cyclic ester that is more preferable It is most preferable that it is 100 ° C (normal pressure (760mmHg) conversion) or more higher than the boiling point.
  • the alkylene glycol and the product oxycyclic ester can be easily separated in the second step described later.
  • the resulting oxycyclic ester (4) is p-dioxanone (boiling point: 212 ° C), for example, diethylene glycol (boiling point: 244 ° C), triethylene glycol (boiling point: 287 ° C), tetraethylene glycol (Boiling point: 327 ° C), pentaethylene glycol (boiling point: 430 ° C), hexamethylene glycol (boiling point: 440 ° C), dipropylene glycol (boiling point: 232 ° C), tripropylene glycol, tetrapropylene glycol, Examples thereof include polyethylene glycol and polypropylene glycol.
  • alkylene glycols may be used alone or in admixture of two or more.
  • the alkylene glycol used in the present invention is a mixture of two or more, the lowest boiling point of the alkylene glycol contained in the mixture is defined as the boiling point of the mixture.
  • the alkylene glycol used in the present invention is a polyalkylene glycol
  • the boiling point is lower than that of the cyclic ester to be produced, and the component should substantially contain components.
  • low-boiling components such as ethylene glycol and diethylene glycol are not substantially contained in polyethylene glycol. It is most preferable that no low-boiling components such as are included.
  • polyethylene glycol and polypropylene glycol are preferable from the viewpoint of not producing THF as a decomposition product.
  • the power of availability is more preferable than that of polyethylene glycol.
  • the amount of the alkylene glycol used is usually 0.01 to 10 moles, preferably 0.1 to 5 moles, more preferably 0.1 to 1 moles per mole of hydroxyalkyloxyacetic acid.
  • the number of moles is a value obtained by dividing the mass of the alkylene glycol used by the molecular weight of the alkylene glycol.
  • Polymer of alkylene glycol as alkylene glycol When used, the average molecular weight is a value obtained by calculating the hydroxyl value and calculating the hydroxyl value.
  • the average molecular weight of polyethylene glycol can be determined as follows.
  • JIS K0070-1992 (Testing method for acid value, saponification value, ester value, iodine value, hydroxyl value and unsaponified product of chemical products) 7.1 (Neutralization titration method) ).
  • the polymerization reaction is carried out by heating the alkylene glycol with hydroxyalkyloxyacetic acid (3) and heating. This reaction can be carried out in any temperature range that gives the desired substance.
  • the preferred temperature is 50 to 200 ° C, more preferably 80 to 160 ° C.
  • the reaction is allowed to proceed by distilling off the condensed water produced in the system by heating. By distilling off the condensed water by this heating, the polymerization reaction proceeds and a polymerization solution is obtained.
  • hydroxyalkyloxyacetic acid may be added as a solution dissolved in an organic solvent or a solvent such as water, or may itself be added.
  • the reaction conditions for distilling off the condensed water are not particularly limited as long as the condensed water is distilled off.
  • the pressure is set in the range of 101.3 kPa to 6.7 kPa, and the temperature is set. Can be set to the boiling point of water contained in the solution in the first step at that pressure.
  • Hydroxyalkyloxyacetic acid (3) is, for example, alkylene glycol, monochloro
  • a compound synthesized with an aqueous solution containing an alkali such as chloroacetic acid or sodium hydroxide can also be used as it is.
  • this aqueous solution usually contains a salt
  • water in the aqueous solution for example, 99% or more of water is removed by distillation. Wash with alcohols such as methanol, ethanol, isopropyl alcohol, ketones such as acetone, methyl ethyl ketone, cyclohexanone, amides such as N, N-dimethylacetamide, N, N-dimethylformamide, etc. You can distill further.
  • the conditions for distilling the salt with the alcohols, ketones or amides after washing are preferably set such that the pressure is in the range of 101.3 kPa to 0.1 lkPa, and the temperature is used for washing.
  • the boiling point of the solvent at that pressure can be set.
  • a solvent that azeotropes with water such as toluene and xylene may be added to distill off the above-mentioned condensed water and the like.
  • the azeotropic solvent is added and the condensed water is distilled off, the generated water is distilled from the reaction system together with the azeotropic solvent, and the resulting distillate is separated using a separator.
  • the solvent and product water may be separated, and the separated solvent may be polymerized while returning to the reaction system.
  • the amount of water distilled off is 90% or more in terms of theoretical distillation rate, preferably 95% or more in terms of theoretical distillation rate, and more preferably 98% or more in terms of theoretical distillation rate.
  • the polymerization reaction in the process is completed.
  • the solution obtained after distilling off is referred to as a polymerization solution obtained in the first step.
  • the theoretical water distillation rate in the present invention refers to the ratio of the total weight of water distilled out of the reaction system to the total mass of water added to the reaction system.
  • the hydroxyalkyloxyacetic acid added in the first step is an aqueous solution dissolved in a solvent such as water
  • a solvent such as water
  • water contained in the aqueous hydroxyalkyloxyacetic acid solution to be added and polymerization in the first step The combined strength of the resulting condensed water The total weight of the water contained in the raw material of the first step.
  • the theoretical distillation rate in the case of using the hydroxyalkyloxyacetic acid aqueous solution is that the distillation of water actually starts after the heat treatment in the first step with respect to the total weight of water contained in the raw material. It is the ratio of the total weight of water that has been collected before the end of the force.
  • the polymerization solution of hydroxyalkyloxyacetic acid and alkylene glycol obtained in the first step is heated under normal pressure or reduced pressure. It is characterized in that the oxy cyclic ester (4) is distilled while simultaneously performing the depolymerization reaction and distillation.
  • the present invention is characterized in that an alkylene glycol having a boiling point higher than that of the oxy cyclic ester (4) obtained in the second step is used.
  • the polymerization solution obtained in the first step contains a copolymer of a high-boiling alkylene glycol and hydroxyalkyloxyacetic acid. This copolymer has hydroxyl groups at both ends.
  • the polymerization solution obtained in the first step becomes a homopolymer, and the homopolymer has a hydroxyl group and a carboxyl group at each end. Even if this polymerization solution is heat-treated, only the depolymerization reaction does not occur efficiently, and the polymerization reaction further proceeds. As a result, during the reaction in the second step, the homogeneity of the reaction solution may be impaired and the fluidity may be lowered, and the oxy cyclic ester tends not to be obtained in a high yield.
  • the depolymerization reaction of the polymerization solution in the second step needs to be performed at a higher temperature than the polymerization reaction in the first step, if the alkylene glycol contains a low-boiling component, the yield tends to decrease. .
  • the alkylene glycol used has a higher boiling point than the target oxycyclic ester, the low-boiling components derived from the alkylene glycol tend not to be distilled off, and the yield of the target product is high in purity. Become.
  • the reaction solution is uniform until the end of the reaction in the second step, and the depolymerization is performed.
  • the fluidity of the reaction solution is good during distillation, and the residual liquid in the still water after distillation is also reduced. It is also fluid and easy to handle.
  • the temperature at the time of depolymerization and distillation in the second step is not particularly limited as long as the polymer obtained in the first step is depolymerized, but preferably 50 to 300 ° C. More preferably, it is 80-200. C.
  • the pressure during depolymerization and distillation in the second step is usually 101.3 kPa to 0.1 lkPa.
  • the stirring load in the present invention refers to a measured value of a force (Ncm: -Euton centimeter) applied to the stirring shaft at a rotation speed of 200 rpm using a stirrer with an RZR2101 torque meter manufactured by Heidolph.
  • the stirring load of the residue in the reaction vessel after distillation in the second step is usually 10 Ncm to 90 Ncm, preferably 20 Ncm to 50 Ncm at 80 ° C.
  • the oxy cyclic ester obtained through the first and second steps described above is a practical high molecular weight biodegradable polymer that can be used as a poly (hydroxyalkyl oxyacetate) without any problem. It becomes.
  • the oxycyclic ester of the present invention can produce a high-purity oxycyclic ester, and thus can obtain a high molecular weight poly (hydroxyalkyloxyacetic acid ester) force S having no practical problem.
  • the obtained poly (hydroxyalkyloxyacetic acid ester) can be suitably used for medical materials such as sutures and medical devices by performing known and public processing.
  • the ⁇ -hydroxycarboxylic acid that can be used as one of the raw materials in the present invention is a compound represented by the following formula (5).
  • the a-hydroxycarboxylic acid condensate that can be used as one of the raw materials in the present invention is a compound represented by the following general formula (7), which is represented by the above formula (5). It is a condensate obtained by polycondensation of ⁇ -hydroxycarboxylic acid.
  • R 1 and R 2 represent hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms, which may be the same or different from each other.
  • M represents an integer from 2 to 20000.
  • the ⁇ -hydroxycarboxylic acid and / or ⁇ -hydroxycarboxylic acid condensate used as a raw material in the present invention refers to the a-hydroxycarboxylic acid represented by the above formula (5) and the a-hydroxycarboxylic acid represented by the above formula (7).
  • Carboxylic acid condensate power One or two or more selected compounds.
  • the linear alkyl group having 1 to 4 carbon atoms in R 1 and R 2 of the above formulas (5) and (7) is a methyl group, an ethyl group, an n-propyl group, or an n-butyl group.
  • the branched alkyl group having 1 to 4 carbon atoms is an isopropyl group, an isobutyl group, a sec-butyl group, or a tert-butyl group. Among these groups, a methyl group and an ethyl group are preferable.
  • R 1 and R 2 either one is hydrogen and the other is hydrogen or a linear or branched chain having 1 to 4 carbon atoms
  • An alkyl group is preferred, and one of them is hydrogen and the other is more preferably a hydrogen atom or a methyl group or an ethyl group.
  • One of them is hydrogen, the other is more preferably a hydrogen or methyl group, and both are hydrogen. It is particularly preferred.
  • Examples of the ⁇ -hydroxycarboxylic acid represented by the above formula (5) include glycolic acid, lactic acid, and a-hydroxypropionic acid. Among these compounds, preferably glyco Luric acid and lactic acid are preferred, and glycolic acid is more preferred.
  • glycolic acid can be used as the dalicholic acid. Further, recycled polyglycolic acid may be used as a raw material.
  • Commercially available dalicholic acid contains glycolic acid condensates such as glycolyloxyglycolic acid (glycolic acid dimer) and glycolyloxyglycoloxyglycolic acid (glycolic acid trimer) in addition to glycolic acid. May have. These are effective in the production of cyclic dimer esters and can be comprehensively handled as glycolic acid species.
  • the glycolic acid condensate is contained in an industrially available glycolic acid aqueous solution, and it is known that the glycolic acid condensate is produced only by heating and melting high-purity glycolic acid.
  • glycolic acid glycolic acid condensates, and mixtures thereof are preferred from the viewpoint of easy availability.
  • the glycolic acid and its condensate can be obtained in the form of a powdery solid or an aqueous solution, but from the viewpoint of being easily available at a low cost, the aqueous solution is preferred.
  • glycolic acid aqueous solutions examples include industrial 70% glycolic acid and GLYPURE70 manufactured by DuPont, 70% glycolic acid manufactured by Otsuka Chemical, and the like. .
  • the glycolic acid aqueous solution preferably used is GLYPURE70 (registered trademark) manufactured by DuPont.
  • the glycolic acid when glycolic acid and its condensate are used as raw materials, the glycolic acid may be used as a powdered solid as it is, or may be used as the glycolic acid aqueous solution as described above. ⁇ ⁇ .
  • a commercially available aqueous solution of Daricholic acid is 70% by weight (concentration of total of Daricholic acid and glycolic acid condensate converted to Daricholic acid), but as glycolic acid
  • the concentration of glycolic acid is not particularly limited, and can be used in a wide concentration range.
  • the efficiency in production that is, the unit price per reaction batch, that is, increasing the amount charged, shortening the dehydration time, and saving the energy required for dehydration
  • the glycolic acid concentration is 50 to 90 fold.
  • a range of 60% by weight is more preferred. If it is in the said range, a polymer can be obtained efficiently in the first step.
  • glycolic acid When glycolic acid is used as a raw material of the present invention, the purity of glycolic acid is not particularly limited. However, for example, a commercially available glycolic acid aqueous solution may contain compounds such as formic acid, diglycolic acid, dariosagilic acid, and oxalic acid as trace components. These compounds often inhibit the polymerization reaction, that is, block the growth terminal of the polymerization. Accordingly, the content of these compounds in the aqueous glycolic acid solution is preferably less than 0.5% by weight. When impurities are contained, those obtained by removing these compounds by adsorption treatment with activated carbon, vacuum distillation or stripping may be used.
  • impurities those obtained by removing these compounds by adsorption treatment with activated carbon, vacuum distillation or stripping may be used.
  • the raw material a-hydroxycarboxylic acid and Z or ⁇ -hydroxycarboxylic acid condensate can be obtained by a known method, for example, the UK.
  • Patent 550837 can be obtained by dehydration polycondensation by a method such as JP-A-6-65360 or by solid phase polymerization.
  • an ex-hydroxycarboxylic acid aqueous solution and soot or ex-hydroxycarboxylic acid condensate is used, and the pressure is adjusted to 1.0 to: L01. 3 in an inert gas atmosphere, preferably in a soot atmosphere.
  • kPa preferably in the range of 1.0 to 20. OkPa, and the temperature force Sl00 to 250. Heat to C, preferably 140 to 200 ° C, to distill off water and condensed water in the system.
  • the weight-average molecular weight in terms of ⁇ determined by GPC measurement of ⁇ -hydroxycarboxylic acid and ⁇ or ⁇ -hydroxycarboxylic acid condensate obtained as described above is usually 500 to 300,000. It is 5000-150000.
  • the weight average molecular weight and molecular weight distribution can be measured by GPC (gel permeation chromatograph) method after dissolving in a predetermined organic solvent.
  • GPC gel permeation chromatograph
  • HFIP hexafluoroisopropyl alcohol
  • KD—806M + KD—805L + KD—803) molecular weights of known PMMA with molecular weights of 1.6 million, 760,000, 210,000, 550,000, 220,000, 0.7000, and 20,000
  • a calibration curve obtained from the elution time by RI detection of (polymethylmethacrylate) standard was prepared in advance, the elution time of the measurement sample was obtained, and converted to the weight average molecular weight using the calibration curve.
  • ex-hydroxycarboxylic acid and Z or ex-hydroxycarboxylic acid condensate are calo-heated and water in the system is distilled off, it can be carried out without a catalyst.
  • a catalyst may be used.
  • catalysts used are stannous chloride, stannic chloride, stannous sulfate, stannous oxide, stannic oxide, tetraphenyltin, stannous octoate, stannous acetate, stannous acetate
  • Tin-based catalysts such as ditin, titanium-based catalysts such as titanium tetrachloride, isopropionate titanate, butyl titanate, germanium-based catalysts such as metal germanium, germanium tetrachloride, germanium oxide, zinc oxide, triacid ⁇
  • Metallized catalysts such as antimony, lead oxide, acid aluminum, iron oxide, etc., organic sulfonic acid catalysts such as methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, toluenesulfonic acid, sulfuric acid, phosphoric acid And mineral acid catalysts. These catalysts can be used alone or in combination of two or more.
  • the metal atoms based on the respect ⁇ - hydroxy carboxylic acid monomers 1 mol, preferably 1 X 10- 5 ⁇ : L0- 2 equivalents, more preferably 3 chi It is added at a rate of 10- 5 ⁇ 5 ⁇ 10- 2 equivalents.
  • the catalyst is added as it is, or dissolved or suspended in a suitable solvent.
  • the accessory can be batched or divided. If the catalyst is substantially until the polycondensation reaction is completed, it can be added to the reaction system at the time of deviation.
  • the cyclic dimer ester obtained by the present invention contains the ⁇ -hydroxycarboxylic acid and
  • R 1 and R 2 represent hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms, which may be the same or different from each other.
  • the linear alkyl group having 1 to 4 carbon atoms represents a methyl group, an ethyl group, an n propyl group, and an n butyl group
  • the branched alkyl group having 1 to 4 carbon atoms is an isopropyl group.
  • Isobutyl group, sec butyl group, and tert butyl group a methyl group and an ethyl group are preferable.
  • R 1 and R 2 either one is hydrogen and the other is hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms, It is particularly preferred that one of them is hydrogen and the other is hydrogen or a methyl group or an ethyl group, and one of them is more preferably hydrogen and the other is hydrogen or a methyl group, and more preferred is both hydrogen.
  • Examples of the cyclic dimer ester represented by the above formula (6) include glycolide, which is a cyclic dimer of glycolic acid, lactide, which is a cyclic dimer of lactic acid, and ⁇ -hydroxypropionic acid.
  • a cyclic dimer is mentioned.
  • glycolide and ratatide are preferable, and glycolide is more preferable.
  • the method for producing a cyclic dimer ester according to the present invention is characterized in that it includes [first step] and [second step] described below. Hereinafter, each step will be described.
  • the first step of the production method of the cyclic dimer ester of the present invention is a cyclic dimer ester represented by the above formula (6) obtained by the present invention (hereinafter referred to as cyclic dimer ester (6)).
  • This is a step of adding an alkylene glycol having a higher boiling point to ⁇ -hydroxycarboxylic acid and ⁇ ⁇ or ⁇ -hydroxycarboxylic acid condensate to obtain a polymerization solution by polymerization reaction.
  • the first step refers to the time until the above-described polymerization reaction is performed, the depolymerization in the second step described later occurs, and the cyclic dimer ester starts to distill.
  • the first step of the production method of the cyclic dimer ester of the present invention will be described in detail.
  • This first step is characterized in that an alkylene glycol having a boiling point higher than that of the cyclic dimer ester (6) is used.
  • the alkylene glycol used in the first step is a liquid having a melting point of 100 ° C or lower, more preferably 70 ° C or lower, and has a higher boiling point than the cyclic dimer (6) obtained by the present invention. If it is alkylene glycol, it will not be restricted in particular!
  • the boiling point in the present invention is a boiling point measured under normal pressure (760 mmHg) based on JIS K0066-1992 “Method for Distillation Test of Chemical Products”, and when measured under reduced pressure. Refers to the boiling point converted to normal pressure. The boiling point measured under reduced pressure was converted to the boiling point of atmospheric pressure based on the boiling point conversion chart of “Basic Organic Chemistry Experiment P155, Maruzen (1966); Kazuo Hata”.
  • the boiling point of the alkylene glycol used in the present invention is not less than the boiling point of the cyclic dimer shown in the present invention, preferably not less than 5 ° C from the boiling point of the cyclic dimer and not more than 350 ° C from the boiling point of the cyclic dimer. More preferably, it is in the range of 50 ° C or more from the boiling point of the cyclic dimer and 300 ° C or less from the boiling point of the cyclic dimer, more preferably 100 ° C or more from the boiling point of the cyclic dimer. The range is 250 ° C or less from the boiling point of the polymer.
  • the boiling point of the alkylene glycol is preferably 30 ° C (converted to normal pressure (760mmHg)) or more higher than the boiling point of the cyclic ester to be formed. More preferably, it is higher than the boiling point by 50 ° C (converted to normal pressure (760mmHg)), and more preferably 70 ° C (converted to normal pressure (760mmHg)) or higher than the boiling point of the cyclic ester produced.
  • U which is more than 100 ° C (converted to normal pressure (760mmHg)) above the boiling point of the cyclic ester to be produced.
  • This first step is characterized in that alkylene glycol having a boiling point higher than that of the cyclic dimer ester (6) is used.
  • the alkylene glycol By adding such an alkylene glycol in the first step, the alkylene glycol The hydroxyl group of-and the terminal carbonyl group of -hydroxycarboxylic acid and Z or ⁇ -hydroxycarboxylic acid condensate react.
  • the first step is characterized in that an alkylene glycol having a boiling point higher than that of the cyclic dimer ester (6) is used.
  • the hydroxyl group of the alkylene dallicol reacts with the terminal carbonyl group of the a-hydroxycarboxylic acid and the Z- or ⁇ -hydroxycarboxylic acid condensate.
  • the alkylene glycol having a boiling point higher than that of the cyclic dimer ester (6) in the first step the alkylene glycol, ⁇ -hydroxycarboxylic acid and ⁇ or a-hydroxy are used.
  • a copolymer with a carboxylic acid condensate is obtained, and the polymerization solution is uniform until the end of the first step, and high fluidity tends to be maintained.
  • the polymer tends to be a homopolymer and has a high molecular weight, so that the resulting polymerization solution is uniform. In some cases, the fluidity may also decrease.
  • the alkylene glycol used in the present invention is an aliphatic compound in which two hydroxyl groups are bonded to two different carbon atoms, and is a cyclic dimer ester obtained in the second step. Higher boiling point than.
  • the obtained cyclic dimer ester (6) is glycolide (boiling point: 240 ° C), for example, diethylene glycol (boiling point: 244 ° C), triethylene glycol (boiling point: 287 ° C), Examples include tetraethylene glycol (boiling point: 327 ° C), pentaethylene glycol (boiling point: 430 ° C), hexamethylene glycol (boiling point: 440 ° C), tripropylene glycol, and tetrapropylene glycol.
  • Commercially available alkylene glycol can also be used.
  • the above alkylene glycols may be used alone or in admixture of two or more.
  • the boiling point of the alkylene glycol having the lowest boiling point contained in the mixture is defined as the boiling point of the mixture.
  • alkylene glycol used in the present invention also include polyalkylene glycols such as polyethylene glycol and polypropylene glycol.
  • polyalkylene glycols such as polyethylene glycol and polypropylene glycol.
  • polyethylene Glycol and polypropylene glycol Preferably polyethylene glycol, more preferably polyethylene glycol.
  • polyalkylene glycol when used in the present invention, it does not substantially contain a component having a lower boiling point than the cyclic ester to be produced.
  • the polyethylene glycol when polyethylene glycol is used in the production of glycolide, which is a cyclic dimer ester, the polyethylene glycol is substantially free of low-boiling components such as ethylene glycol. Most preferably, no low-boiling components such as ethylene glycol are contained.
  • polyethylene glycol and polypropylene glycol are preferred from the viewpoint of not producing THF as a decomposition product. Further, polyethylene glycol is more preferable from the viewpoint of availability.
  • the molecular weight of the alkylene glycol used in the present invention is not particularly limited as long as it has a boiling point equal to or higher than that of the cyclic dimer ester, but the molecular weight is preferably 100 or more and less than 900, more preferably 200 to less than 200. 800, more preferably 400 to 600. Moreover, the thing of a liquid at normal temperature is more preferable than an operation surface.
  • the molecular weight is the average molecular weight.
  • the average molecular weight is a value obtained by determining its hydroxyl value, and the hydroxyl value power is also determined by a conversion formula.
  • the average molecular weight of polyethylene glycol is determined, it can be determined as follows.
  • the hydroxyl value (B) was determined according to JIS K0070-1992 (Test method for acid value, saponification value, ester value, iodine value, hydroxyl value and unsaponified product of chemical products) 7.1 (neutralization titration method). Ask.
  • the average molecular weight (A) is calculated by substituting the determined hydroxyl value (B) into the following conversion formula.
  • the average molecular weight is preferably from 100 to less than 900, more preferably from 200 to 800, and even more preferably from 400 to 600. Also, liquids at room temperature are more preferred than the operation surface.
  • the amount of alkylene glycol to be added is usually from 0.01 to 5 monolayer times the value obtained by converting ⁇ -hydroxycarboxylic acids and Z or ⁇ -hydroxycarboxylic acid condensate into OC-hydroxycarboxylic acid. Preferably, it is 0.01 to 1 monolayer times, more preferably 0.01 to 0.5 monole times.
  • the number of moles is a value obtained by dividing the mass of the alkylene glycol used by the molecular weight of the alkylene glycol.
  • the addition method of the alkylene glycol may be in any order, either batchwise or divided.
  • the alkylene glycol may be added to the reaction system at any time as long as the polycondensation reaction is substantially completed! /.
  • the polymerization reaction may be performed without a catalyst or a catalyst may be used during the polymerization reaction.
  • catalysts used include stannous chloride, stannic chloride, stannous sulfate, stannous oxide, stannic oxide, tetraphenyltin, stannous octoate, stannous acetate, stannic acetate
  • Tin-based catalysts such as tin, titanium-based catalysts such as titanium tetrachloride, isopropionate titanate, butyl titanate, germanium-based catalysts such as germanium metal, germanium tetrachloride, germanium oxide, zinc oxide, antimony trioxide,
  • Metalized catalysts such as lead oxide, aluminum oxide and iron oxide, organic sulfonic acid catalysts such as methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid and toluene sulfonic acid, and mineral acid catalysts such as sulfur
  • the catalyst When using a catalyst, the catalyst, the metal atom based, to ⁇ - hydroxy Shikarubon acid monomers 1 mol, preferably 1 X 10- 5 ⁇ : L0- 2 equivalents, more preferably 3 X 10- 5 to 5 ⁇ 10— Add at a ratio of 2 equivalents.
  • the catalyst is added as it is, or dissolved or suspended in a suitable solvent.
  • the accessory can be batched or divided. If the catalyst is substantially until the polycondensation reaction is completed, it may be added to the reaction system at the time of deviation.
  • the cyclic dimer ester shown in the present invention the cyclic dimer ester (6) is heated while performing the reaction and distillation by heating the polymerization solution obtained in the first step. It is a process to obtain.
  • the second step will be described in detail.
  • the ⁇ -hydroxycarboxylic acid obtained in the first step and the polymer of ⁇ or ⁇ -hydroxycarboxylic acid condensate and alkylendalicol are heated under normal pressure or reduced pressure to depolymerize. It is characterized by distilling the cyclic dimer ester while carrying out the reaction and distillation including
  • the present invention is characterized by using an alkylene glycol having a boiling point higher than that of the cyclic dimer ester (6) obtained in the second step.
  • the polymerization solution obtained in the first step contains a copolymer of a high-boiling alkylene glycol, a-hydroxycarboxylic acid, and a Z or ⁇ -hydroxycarboxylic acid condensate.
  • This copolymer has hydroxyl groups at both ends.
  • the polymerization solution obtained in the first step becomes a homopolymer, and the homopolymer has a hydroxyl group and a carboxyl group at each end. Even if this polymerization solution is heat-treated, only the depolymerization reaction does not occur efficiently, and the polymerization reaction further proceeds. As a result, during the reaction in the second step, the homogeneity of the reaction solution may be impaired and the fluidity may be lowered, and the cyclic dimer ester tends not to be obtained in a high yield.
  • the alkylene glycol used has a higher boiling point than the cyclic dimer ester of the target product, the low-boiling components derived from the alkylene glycol tend not to distill out, and the purity of the target product yield becomes higher.
  • the reaction solution is uniform until the end of the reaction in the second step.
  • the polymerization solution has good fluidity, and the residual liquid in the distillation still after distillation is also fluid and easy to handle.
  • a cyclic dimer ester can be efficiently obtained with a high distillation rate of the cyclic dimer ester.
  • the distillation rate is 0.20 gZmin or more, preferably 0.50 gZmin or more, and more preferably 0.80 gZmin or more.
  • the distillation rate is obtained by dividing the yield of the cyclic dimer ester by the time from the start to the end of the distillation of the cyclic dimer ester.
  • the depolymerization reaction tends to proceed more efficiently as compared with the case where the polymer is produced without adding alkylene glycol.
  • the reaction temperature in the second step is not particularly limited as long as it causes a cyclic ester-forming reaction including depolymerization and can be distilled, but is preferably 50 to 300 ° C. ⁇ or 100 ⁇ 250 o C, further [this preferably ⁇ or 180 ⁇ 250 o C, especially [this Ru preferably ⁇ or 180 ⁇ 230 o C der.
  • the pressure during the reaction in the second step is preferably 101.3 to 0.1 lkPa, more preferably ⁇ to 10.0 to 0.1 kPa, and further preferably ⁇ to 3.0 to 0. lkPa. is there.
  • the method for producing a cyclic dimer ester according to the present invention can provide a cyclic dimer ester in a high yield.
  • the yield is usually 65% or more, preferably 75% or more, and more preferably 85% or more.
  • the yield shown in the present invention is the yield of the cyclic dimer ester obtained in the second step, based on the amount of polycondensate of ⁇ -hydroxycarboxylic acid and ⁇ or OC-hydroxycarboxylic acid condensate used in the first step. It means what was divided.
  • a cyclic dimer ester can be obtained efficiently and with high purity. Its purity is 98% or more, preferably 99% or more.
  • the purity of the cyclic dimer ester shown in the present invention is 7 by gas chromatography using the absolute calibration curve method.
  • the cyclic dimer ester (6) obtained in the present invention can be polymerized as it is without re-purification by a conventionally known technique to produce a polyhydroxycarboxylic acid as a high molecular weight product.
  • the cyclic dimer ester obtained by the production method according to the present invention is polymerized by adding a known and publicly used method, for example, a polymerization initiator and an esterification catalyst, to obtain a high molecular weight polyhydroxycarboxylic acid.
  • polymerization initiator used examples include aliphatic saturated alcohols such as methanol, ethanol monole, propanol, butanol, aminoleanolone, caplinolenoleconole, cyclohexanol, lauryl alcohol, cyclopentanol, Examples include cycloaliphatic alcohols such as cyclohexanol, glycols such as diethylene glycol, and phenols such as lactic acid, aminophenol, and acetophenone. The amount added of the cyclic dimer esters, 0.001 weight 0/0, preferably from 0.002 to 0.2 wt%.
  • the Ester catalyst used is the conventionally known organic tin series such as stannous dioctanoate and tin triphosphate, organoaluminum series such as trimethylaluminum, triethylaluminum, triisobutylaluminum, etc., jetylzinc, dibutylzinc, etc.
  • organic dumbbell-based catalysts can be used alone or in combination of two or more.
  • the amount of added force is 0.001 to 1% by weight, preferably 0.002 to 0.5% by weight, based on the cyclic dimer ester.
  • the preferred polymerization temperature is 50 to 300 ° C, more preferably 100 to 250 ° C, further preferably 180 to 250 ° C, and particularly preferably 180 to 230 ° C.
  • the cyclic dimer ester obtained through the first step and the second step described above is a purity that can be suitably used as a raw material for producing polyhydroxycarboxylic acid, which is a bioabsorbable polymer used for medical materials.
  • polyhydroxycarboxylic acid which is a bioabsorbable polymer used for medical materials.
  • a high molecular weight polyhydroxycarboxylic acid can be obtained by a known publicly known polymerization method.
  • This polyhydroxycarboxylic acid has high purity and is produced from cyclic esters as raw materials.
  • the instrument is GC-14A manufactured by Shimadzu Corporation, the detector is a hydrogen flame ionization detector (FID), and the column is a column (G300, ⁇ : 1.2 mm x 40 m, film thickness: 2 m) manufactured by Chemicals Evaluation and Research Institute. It was.
  • the column temperature was 160 ° C, the injection temperature was 230 ° C, the detector temperature was 230 ° C, and nitrogen was used as the carrier gas at a flow rate of lOmlZ. About 50 mg of the sample was dissolved in 10 ml of acetone, and 11 was injected for measurement.
  • a calibration curve was prepared using a standard sample, and the purity of the cyclic ester was analyzed using the calibration curve.
  • the instrument is GC-14A manufactured by Shimadzu Corporation, the detector is a flame ionization detector (FID), and the column is a column (G205, ⁇ : 1.2mm X 40m (film thickness: 2 ⁇ ⁇ ) manufactured by Chemical Substance Evaluation Research Organization)
  • the column temperature was held at 80 ° C for 7 minutes, then increased to 2 70 ° C at 10 ° C / min and held for 30 minutes.Indication temperature was 300 ° C, detector temperature was 300 ° C, carrier Nitrogen was used as the gas at a flow rate of 20 ml Z. Approximately lOOmg of the sample was dissolved in 10 ml of acetone, and 1 ⁇ 1 was injected, and a calibration curve was prepared using a standard sample in advance. Each component was analyzed. The results are as follows.
  • the pressure in the reaction vessel was 3.3 kPa
  • the temperature was 95 ° C.
  • 40 g of toluene and 724.6 g of ethylene glycol were distilled out of the system, and the reaction solution was concentrated.
  • 920 g of acetone was added dropwise over 1.5 hours, followed by crystallization and filtration.
  • the filter cake was washed with 232.8 g of acetone and dried to obtain 371.2 g of sodium monohydroxyethoxyacetate.
  • the extraction yield of sodium hydroxyethoxyacetate at this time was 88.1% with respect to the monochloroacetic acid charged.
  • the acetone in the filtrate was distilled off under conditions of a pressure of 101.3 MPa and a temperature of 65 ° C to 120 ° C, then 20 g of toluene was removed, and the pressure was 101.3 MPa and the temperature was 110 ° C to 150 ° C.
  • the polymerization reaction was carried out with azeotropic dehydration. Since the theoretical distillation rate reached 99%, the polymerization reaction was terminated.
  • the stirring load of this polymerization solution was 40 Ncm at 30 ° C and 30 Ncm at 80 ° C, and the weight average molecular weight of the polymer in the polymerization solution was 6800.
  • the first step was carried out in the same manner as in Example 1 except that tetraethylene glycol was not added to 435.8 g of the hydroxyethoxyacetic acid aqueous solution obtained in Synthesis Example 1.
  • the stirring load of the polymerization solution was 40 Ncm at 30 ° C, 30 Ncm at 80 ° C, and the weight average molecular weight of the polymer was 15000.
  • Example 1 Tetraethylene glycol of 1A and polyethylene glycol having an average molecular weight of 400 (boiling point: 314 ° C: ethylene glycol, diethylene glycol and triethylene glycol) P-dioxanone was obtained in the same manner as in Example 1, except that the change was changed to “not detected”.
  • the stirring load of the polymerization solution obtained in the first step was 40 Ncm at 30 ° C and 30 Ncm at 80 ° C, and the weight average molecular weight of the polymer in the polymerization solution was 8000.
  • 78.6 g of p-dioxanone having a purity of 99.7% was distilled out by heating for 3 hours.
  • Sho (16 column 1 ⁇ 1 ⁇ 1 ⁇ «-811) was connected to a high-performance liquid chromatograph (PU-1580, UV-970, CO-965) manufactured by Enomoto Spectroscopy, and 0.05% phosphoric acid aqueous solution was eluted.
  • the sample was analyzed by an internal standard method at a column temperature of 35 ° C, an eluent flow rate of 0.8 mlZ, and a wavelength of 210 nm.
  • the instrument is GC-14A manufactured by Shimadzu Corporation, the detector is a hydrogen flame ionization detector (FID), and the column is a column (G250, 1.2 mm X 40 m, film thickness: 2 ⁇ m) manufactured by the Chemical Substance Evaluation Research Organization. It was.
  • the column temperature was 150 ° C, the injection temperature was 290 ° C, the detector temperature was 290 ° C, and nitrogen was used as the carrier gas at a flow rate of lOmlZ. About 50 mg of the sample was dissolved in 10 ml of acetone, and 31 was injected for measurement. First, a calibration curve was prepared using a standard sample, and the purity of glycolide was analyzed using the calibration curve.
  • the distillation rate was calculated by the following formula.
  • the instrument was GC-14A manufactured by Shimadzu Corporation, the detector was a flame ionization detector (FID), and the column was a column (G205, ⁇ : 1.2 mm x 40 m (film thickness: 2 m), manufactured by Chemicals Evaluation and Research Institute.
  • the column temperature was held at 80 ° C for 7 minutes, then heated to 270 ° C at 10 ° C / min and held for 30 minutes.
  • Injection temperature was 300 ° C
  • detector temperature was 300 ° C
  • carrier gas Nitrogen was used at a flow rate of 20 ml Z. Approximately lOO mg of sample was dissolved in 1 O ml of acetone, and 1 ⁇ 1 was injected and measured, and a calibration curve was prepared using a standard sample. Each component was analyzed using a calibration curve.
  • a 500 ⁇ four-necked flask was connected with a stirring blade, thermometer, and distillation line, and a vacuum line and a receiver were attached to the outlet of the distillation line.
  • a mantle heater is used to heat the flask, and the distillate line is kept at 90 ° C using a ribbon heater to prevent solidification of the cyclic dimer ester, and the receiver is kept at 90 ° C using an oil bath. We used what we did.
  • a 500 ml flask was charged with 500 g of an aqueous glycolic acid solution. Under atmospheric pressure, with stirring, the temperature was raised to 140 ° C over 2 hours, and the produced water was distilled off. Glico used here
  • the composition of the aqueous oxalic acid solution is as follows. Analysis was performed by high performance liquid chromatography and Karl Fischer methods.
  • a 500 ml flask was charged with 500 g of the aqueous glycolic acid solution used in Synthesis Example 1B.
  • the temperature was raised to 140 ° C over 2 hours with stirring under atmospheric pressure to distill the product water.
  • the internal pressure was reduced to 6.
  • OkPa and maintained at 140 ° C., and the produced water was further distilled to obtain a glycolic acid condensate (2).
  • the glycolic acid condensate (1) obtained in Synthesis Example 2B was pulverized, and the obtained pulverized product was sieved to fractionate a pulverized product having a diameter of 1.0 to 2.8 mm.
  • the separated pulverized product was filled in a SUS column tube and heated at 200 ° C. for 20 hours under a nitrogen stream. After completion of the heating, the mixture was cooled to room temperature to obtain a glycolic acid condensate (3).
  • the glycolic acid condensate (3) obtained in Synthesis Example 3B was filled again into a SUS column tube and further subjected to solid phase polymerization under a nitrogen stream at 220 ° C. for 20 hours to obtain a glycolic acid condensate (4). .
  • Example 1B The same operation as in Example 1B was performed except that the addition amount of PEG # 400 was changed to 53.3 g. It was visually confirmed that the polymer obtained in the first step was uniformly dissolved with PEG # 400, fluidity was ensured, and no phase separation was observed. By further heating, the depolymerization reaction started, and the generated cyclic dimer ester, glycolide (GLD), distilled out and accumulated in the receiver, and the second step was started. The distillate was collected by heating in the above temperature range (230 ° C.) until the distillation of the cyclic dimer ester (glycolide) substantially stopped. After completion of the distillation, the inside of the flask was observed, and polycondensate and PEG # 400 were observed as residues.
  • the addition amount of PEG # 400 was changed to 53.3 g. It was visually confirmed that the polymer obtained in the first step was uniformly dissolved with PEG # 400, fluidity was ensured, and no phase separation was observed.
  • the distillate was collected by heating in the above temperature range until the distillation of the cyclic dimer ester (dalicolide) substantially stopped. After completion of the distillation, the inside of the flask was observed, and polycondensate and PEG # 400 were seen as residues.
  • the distillate line between the flask and the receiver was found to have a cyclic dimer ester, but the accumulated amount was very small.
  • the cyclic dimer ester collected in the receiver was glycolide, and the yield was 89.3% and the purity was 99.85%. Distillation rate is 2. 05gZmin and 7 at a time.
  • the distillate was collected by heating in the above temperature range until the distillation of the cyclic dimer ester (glycolide) substantially stopped. After completion of the distillation, the inside of the flask was observed, and polycondensate and PEG # 400 were found as residues.
  • the distillate line between the flask and the receiver was found to have a cyclic dimer ester, but the amount accumulated was small.
  • the cyclic dimer ester collected in the receiver is glycolide, and the yield is 86.3. The purity was 99.80%.
  • the distillation rate was 0.87 gZmin.
  • polyethylene glycol with a depolymerization temperature of 230 ° C and PEG # 400 molecular weight of about 600 [PEG # 600 (liquid) manufactured by Wako Pure Chemical Industries, Ltd., boiling point 314 ° C: ethylene glycol, diethylene glycol and triethylene glycol Except that ethylene glycol was not detected (catalog value: boiling point 450 ° C or higher), freezing point 15 to 25 ° C, molecular weight about 600 (hereinafter referred to as PEG # 600)], the same as in Example 1B Glycolic acid condensate strength also produced a cyclic dimer ester (dalicolide).
  • the polymer obtained in the first step was uniformly dissolved with PEG # 600 and was not phase-separated.
  • the depolymerization reaction was started, and the produced cyclic dimer ester was distilled off and accumulated in the receiver, and the second step was started.
  • the distillate was collected by heating in the above temperature range until the distillation of the cyclic dimer ester (glycolide) substantially stopped. After completion of the distillation, the inside of the flask was observed, and polycondensate and polyethylene glycol 600 were observed as residues.
  • the distillate line between the flask and the receiver showed cyclic dimer ester adhesion, but the accumulation amount was very small. there were.
  • the cyclic dimer ester collected in the receiver was glycolide, the yield was 85.2%, and the purity was 99.86%.
  • the distillation rate was 0.57 gZmin.
  • the polymer obtained in the first step was uniformly dissolved with PEG # 1000, and it was confirmed by visual observation that it was not phase-separated, but the fluidity was bad.
  • the depolymerization reaction was started, and the produced cyclic dimer ester (glycolide) was distilled out and accumulated in the receiver, and the second step was started.
  • the polymer in the flask was so viscous that it was difficult to stir and foaming was intense.
  • the distillate was collected by heating in the above temperature range (230 ° C.) until the distillation of the cyclic dimer ester (glycolide) substantially stopped.
  • the distillate line between the flask and the receiver was found to have attached cyclic dimer ester, but the accumulated amount was very small.
  • the cyclic dimer ester collected in the receiver was glycolide and had a purity of 99.82%, a yield of 76.0%, and a distillation rate of 0.23 gZ min.
  • glyceric acid condensate (1) 100 g obtained in Synthesis Example 1B, tetraethylene glycol dimethyl ether (hereinafter “TEGDME” t) ) 200g, and polyethylene glycol # 300 [(PEG # 300 (liquid) manufactured by Wako Pure Chemical Industries, Ltd.), boiling point 287 ° C: ethylene glycol and diethylene glycol are not detected, triethylene glycol (boiling point 287 ° C) is 2 1% detection (catalog value: boiling point 400 ° C or higher), molecular weight of about 300, (hereinafter referred to as “13 ⁇ 40 # 300”) 42 8 (equivalent to 0.28 mol of alcoholic hydroxyl group) Then, it was heated to 260 ° C.
  • TEGDME tetraethylene glycol dimethyl ether
  • the oligomer obtained from the glycolic acid condensate (1) was uniformly dissolved with TEGDME and PEG # 300, and the phase fraction was It was confirmed visually that they were not separated.
  • the depolymerization reaction was carried out under reduced pressure, the distillate collected from the vicinity of 25. OkPa in the vacuum, and it was difficult to perform stable operation due to bumping of the contents of the flask.
  • the distillate in the receiver was prayed by GC and found to be TEGDME containing 3% of the cyclic dimer ester of the amount of the condensate charged. After the TEGDME distillation, the pressure was further reduced to 3. OkPa and the operation was continued.
  • Example (Example 1) of JP-A-63-152375 200 g of glycolic acid recrystallized from Dupont Dali Pure 99 using an aqueous medium, 400 g of DuPont Teracol-1000 (molecular weight 1000), and triacid ⁇ 200 after caloring antimony 0. 05g. C, 30. OkPa treatment gave copolymerized prepolymers.
  • 31.5 g of distillate was collected in the receiver, and the distillate in the receiver was analyzed by GC. As a result, it was 20% THF and 80% water. Furthermore, although the heating was continued, THF was contained in the cyclic dimer ester that was distilled off, so the reaction was stopped.
  • Example 1B the depolymerization temperature was changed to two steps of 230 ° C and 250 ° C, and PEG # 400 was not added, and the cyclic dimer ester was converted from the glycolic acid condensate in the same manner as in Example 1B. Manufactured.
  • the depolymerization reaction is started, and the produced cyclic dimer ester is distilled out and collected in a receiver.
  • a process corresponding to the second process of the invention has started. The mixture was heated at 230 ° C until the distillation of the cyclic dimer ester substantially stopped and collected in a receiver.
  • the purity of the distillate was 99.68%, the yield was 32.7%, and the distillation rate was 0.45 gZmin. Then, at 250 ° C, heat until the distillation of the cyclic dimer ester stopped practically. I collected things. After completion of the distillation, the inside of the flask was observed, and a polycondensate was seen as a residue. The distillate line between the flask and the receiver was found to have a cyclic dimer ester, but the accumulated amount was very small. The cyclic dimer ester collected in the receiver was glycolide with a purity of 99.68%, a yield of 4.5%, and a distillation rate of 0.19 gZmin (Comparative Example 4B).
  • Example 1B the temperature is 230 ° C
  • PEG # 400 is polyethylene glycol having a molecular weight of about 200 (PEG # 200 (liquid) manufactured by Wako Pure Chemical Industries, Ltd., boiling point 244 ° C: ethylene glycol not detected, diethylene glycol ( (Boiling point 244 ° C) is 3.2% detected, triethylene glycol (boiling point 287 ° C) is 21.8% detected (catalog value: boiling point 400 ° C or higher), molecular weight about 200, (hereinafter referred to as “PEG # 200 ”)] except that the change was made to Example 1B. It was visually confirmed that the polymer obtained in the first step was uniformly dissolved with PEG # 200, fluidity was ensured, and no phase separation was observed.
  • distillate was collected by heating in the above temperature range until distillation stopped substantially. After completion of distillation, the inside of the flask was observed, and polycondensate and PEG # 200 were found as residues. In the distilling line between the flask and the receiver, the amount of force and deposits observed was small.
  • the distillate collected in the receiver was the low-boiling fraction contained in glycolide and PEG # 200, purity 71.4%, yield 77.9%, and distillation rate was 0.80g. / te in mill.
  • a cyclic dimer ester was produced from a glycolic acid condensate in the same manner as in Example 3B except that PEG # 400 was changed to PEG # 200. It was visually confirmed that the polymer obtained in the first step was uniformly dissolved with PEG # 200 and was not phase-separated. By continuing the heating, the depolymerization reaction was started, the produced cyclic dimer ester was distilled off, accumulated in the receiver, and the second step was started. The distillate was collected by heating in the above temperature range (230 ° C.) until the distillation of the cyclic dimer ester substantially stopped. After completion of the distillation, the inside of the flask was observed, and polycondensate and PEG # 200 were seen as residues.
  • the distillate line had a cyclic dimer ester attached, but the accumulated amount was very small.
  • the distillate collected in the receiver was the low-boiling fraction contained in glycolide and PEG # 200, with a purity of 72.8%, a yield of 79.3%, and a distillation rate of 0.81 gZmin. Met. The results are summarized in Table 3.
  • GA condensate glycolic acid and glycolic acid condensate
  • GLD glycolide
  • PEG # 400 Polyethylene glycol (PEG # 400, manufactured by Wako Junna Co., Ltd., molecular weight about 400)
  • GA condensate molecular weight glycolic acid and glycolic acid Weight average molecular weight of condensate
  • PEG # 2 ⁇ Polyethylene glycol (PEG # 200, molecular weight of about 200, manufactured by Wako Junna Co., Ltd.)
  • PEG / GA ratio alkylene glycol / (glycolic acid and glycolic acid condensation) Product)
  • PEG «00 Polyethylene glycol (PEG # 300, W about Sako 300, Wako Pure Chemical Industries, Ltd.)
  • PEG # 1000 Polyethylene glycol (PEG # 1000, molecular S approx. 1000, manufactured by Wako Junna)
  • Example 4B To 250 g of glycolide obtained in the same manner as in Example 4B, 300 Oppm of lauryl alcohol and 30 ppm of tin octoate were charged, and after nitrogen substitution, the temperature was raised from room temperature to 210 ° C over 2 hours. After holding at C for 30 minutes, the temperature was raised to 230 ° C and held for 1 hour. Thereafter, it was cooled and the polymerized product was taken out.
  • the obtained polydaricholic acid had a weight average molecular weight of 210,000 and a melting point of 221 ° C.
  • an oxy cyclic ester such as p-dioxane can be efficiently obtained. Furthermore, according to the method for producing a cyclic ester of the present invention, a cyclic dimer ester such as dalicolide can be obtained with high purity and efficiency.
  • the P-dioxanone, glycolide, and the like obtained by the present invention can be used without any problem in the bioabsorbable suture field that is currently in practical use in the medical field.

Abstract

It is intended to provide an industrially advantageous process for producing a cyclic ester, an industrially advantageous process for producing a cyclic oxyester which is a raw material of poly(hydroxyalkyloxyacetic acid ester), and an industrially advantageous process for producing a cyclic dimeric ester which is a raw material of poly(α-hydroxycarboxylic acid). The process for producing a cyclic ester of the invention comprises two steps of [a first step] a step of obtaining a polymerization solution by adding an alkylene glycol with a boiling point higher than that of a cyclic ester to be produced to a specific hydroxyalkylcarboxylic acid and/or a condensation product of the hydroxyalkylcarboxylic acid and carrying out a polymerization reaction and [a second step] a step of obtaining a cyclic ester with a purity of 98% or higher by simultaneously carrying out a reaction and distillation by heating the polymerization solution obtained in the first step.

Description

明 細 書  Specification
環状エステルの製造方法  Method for producing cyclic ester
技術分野  Technical field
[0001] 本発明は、ヒドロキシアルキルォキシ酢酸力 ォキシ環状エステルを製造する方法 The present invention relates to a method for producing a hydroxyalkyloxyacetic acid hydroxy cyclic ester
、および環状二量体エステルを製造する方法等、環状エステルを製造する方法に関 する。 And a method for producing a cyclic ester, such as a method for producing a cyclic dimer ester.
背景技術  Background art
[0002] ポリ(ヒドロキシアルキルォキシ酢酸エステル)は、生分解性ポリマーとして広く使用 されており、特に医療用途の分野では生体吸収性ポリマーとして使用されている。ォ キシ環状エステルはこのポリ(ヒドロキシアルキルォキシ酢酸エステル)の出発原料と して使用することができ、種々の工業的製造方法が提案されている。  [0002] Poly (hydroxyalkyloxyacetate) is widely used as a biodegradable polymer, and particularly used as a bioabsorbable polymer in the field of medical applications. Oxycyclic esters can be used as starting materials for this poly (hydroxyalkyloxyacetate), and various industrial production methods have been proposed.
[0003] 例えば、特許文献 3には、ォキシ環状エステルである p—ジォキサノンの製造方法 が開示されており、エチレングリコール塩とモノクロル酢酸とを反応させ、精製工程を 経て j8—ヒドロキシエトキシ酢酸を得た後に、蒸留により p—ジォキサノンを得ている。 しかし、この方法で得られた p—ジォキサノンは純度が低いため、生体吸収性ポリマ 一用の原料として用いるためにはさらに精製が必要であり、度重なる精製操作により p—ジォキサノンの収率低下を招き、煩雑なプロセスとなっている。 [0003] For example, Patent Document 3 discloses a method for producing p-dioxanone, which is an oxycyclic ester, and reacts an ethylene glycol salt with monochloroacetic acid to obtain j8-hydroxyethoxyacetic acid through a purification step. After that, p-dioxanone was obtained by distillation. However, since p-dioxanone obtained by this method has low purity, further purification is required to use it as a raw material for bioabsorbable polymers. Repeated purification operations reduce the yield of p-dioxanone. It is a complicated process.
[0004] また、特許文献 5には、 p—ジォキサノンの製造法が開示されており、高収率で目的 物である P-ジォキサノンが得られている。しかし、取り出しなどの操作性が必ずしも十 分ではなぐ更なる操作性の向上が望まれていた。 [0004] Patent Document 5 discloses a method for producing p-dioxanone, and P-dioxanone, which is the target product, is obtained in high yield. However, it has been desired to further improve the operability such that the operability such as taking out is not always sufficient.
[0005] 特許文献 6および 7には、環状エステルの製造法についての記述がある。この方法 では、脂肪族ポリエステルと、 230〜450°Cの沸点および 150〜450の分子量を有 する特定のポリアルキレングリコールエーテルとを含む混合物を、常圧下または減圧 下、脂肪族ポリエステル由来のオリゴマーの解重合が起る温度に加熱することで、環 状エステルを生成させ、生成した環状エステルを高沸点極性有機溶媒と共に留去さ せた後、留出物から取り出している。し力 純度の高い環状エステルを得るためには さらに精製操作を行わなければならず、精製負荷を考慮すると工業的には煩雑なプ ロセスとなっている。 [0005] Patent Documents 6 and 7 describe a method for producing a cyclic ester. In this method, a mixture containing an aliphatic polyester and a specific polyalkylene glycol ether having a boiling point of 230 to 450 ° C. and a molecular weight of 150 to 450 is subjected to an oligomer of an aliphatic polyester derived from the aliphatic polyester under normal pressure or reduced pressure. By heating to a temperature at which depolymerization occurs, a cyclic ester is produced, and the produced cyclic ester is distilled off together with a high-boiling polar organic solvent and then taken out from the distillate. In order to obtain a cyclic ester with a high purity, further purification operations must be performed. It is a process.
[0006] 一方、ポリヒドロキシカルボン酸についても、生分解性ポリマーとして広く使用されて いる。特にポリグリコール酸は、医療用途の分野では生体吸収性ポリマーとして使用 されている。このポリダリコール酸の出発原料としてグリコライドを使用することが知ら れており、グリコライドを含む環状二量体エステルについて、種々の工業的製造方法 が提案されている。  [0006] On the other hand, polyhydroxycarboxylic acids are also widely used as biodegradable polymers. In particular, polyglycolic acid is used as a bioabsorbable polymer in the field of medical applications. It is known to use glycolide as a starting material for this polydaricholic acid, and various industrial production methods have been proposed for cyclic dimer esters containing glycolide.
[0007] 例えば、特許文献 2では、グリコール酸を重縮合した後、蒸留し、更にはアルコール 溶媒に滴下精製することによりグリコライドを得ている。しかし、この方法においては重 縮合から蒸留をする間にグリコライドの着色成分が混在する為、精製操作が不可避 である。そのため、精製操作によるグリコライドの収率低下を招き、煩雑なプロセスと なっている。  [0007] For example, in Patent Document 2, glycolide is obtained by polycondensation of glycolic acid, followed by distillation and further purification by dropwise addition to an alcohol solvent. However, in this method, since a colored component of glycolide is mixed during distillation from polycondensation, a purification operation is unavoidable. For this reason, the yield of glycolide is reduced by the purification operation, which is a complicated process.
[0008] また、特許文献 4にお 、ては、グリコール酸とポリアルキレングリコールを重縮合した 後、蒸留し、グリコライドを得ている。しかし、この方法においてはグリコライドの留出中 にポリアルキレングリコールの熱分解が起こり、熱分解物が混入する為、精製操作が 不可避である。したがって、特許文献 1と同様の問題がある。  [0008] Further, in Patent Document 4, glycolic acid and polyalkylene glycol are polycondensed and then distilled to obtain glycolide. However, in this method, thermal decomposition of polyalkylene glycol occurs during the distillation of glycolide, and thermal decomposition products are mixed in, so a purification operation is unavoidable. Therefore, there is a problem similar to that of Patent Document 1.
[0009] 特許文献 6および 7には、 α—ヒドロキシカルボン酸環状二量体エステルの製造法 についての記述がある。この方法では、 α—ヒドロキシカルボン酸オリゴマーに高沸 点極性有機溶媒若しくは高沸点極性有機溶媒と可溶化剤の混合物を添加し、常圧 下または減圧下、該オリゴマーの解重合が起る温度に加熱することで、 (Xーヒドロキ シカルボン酸環状二量体エステルを生成させ、生成した α—ヒドロキシカルボン酸環 状二量体エステルを高沸点極性有機溶媒と共に留去させた後、留出物から取り出し ている。しかし純度の高い α—ヒドロキシカルボン酸環状二量体エステルを得るため にはさらに精製操作を行わなければならず、精製負荷を考慮すると工業的に有利な 製造法とは言いがたい。  [0009] Patent Documents 6 and 7 describe a method for producing an α-hydroxycarboxylic acid cyclic dimer ester. In this method, a high boiling point polar organic solvent or a mixture of a high boiling point polar organic solvent and a solubilizing agent is added to an α-hydroxycarboxylic acid oligomer, and the oligomer is brought to a temperature at which depolymerization of the oligomer occurs under normal pressure or reduced pressure. (X-hydroxycarboxylic acid cyclic dimer ester is formed by heating, and the produced α-hydroxycarboxylic acid cyclic dimer ester is distilled off together with the high-boiling polar organic solvent, and then removed from the distillate. However, in order to obtain a highly pure α-hydroxycarboxylic acid cyclic dimer ester, further purification operations must be performed, and it is difficult to say that this is an industrially advantageous production method in view of the purification load.
[0010] また、環状エステルの製造方法としては、例えば、特許文献 1にお 、ては、大環状 エステルの製造方法が開示されており、二塩基酸とアルキレングリコールとのポリエス テルを、ポリオキシアルキレングリコール等の添加剤をカ卩えて減圧下に解重合環化さ せエチレンブラシレートを得ている。しかし、実用可能な高分子量の生分解性ポリマ 一で、生分解性の包装材料や生体吸収性縫合糸など医療材料を製造する用途へ用 いるための出発原料となる環状エステルは、より高純度である必要があり、通常、さら に精製を行う必要があった。 [0010] As a method for producing a cyclic ester, for example, Patent Document 1 discloses a method for producing a macrocyclic ester. Polyester of a dibasic acid and an alkylene glycol is used as a polyoxyester. Ethylene brush rate is obtained by depolymerizing and cyclizing under reduced pressure with additives such as alkylene glycol. However, practical high molecular weight biodegradable polymers On the other hand, cyclic esters used as starting materials for the production of medical materials such as biodegradable packaging materials and bioabsorbable sutures need to be of higher purity and are usually further purified. There was a need to do.
特許文献 1:特開昭 55-120581号公報  Patent Document 1: JP-A-55-120581
特許文献 2 :特公 51-006673号公報  Patent Document 2: Japanese Patent Publication No. 51-006673
特許文献 3:特公昭 60-36785号公報  Patent Document 3: Japanese Patent Publication No. 60-36785
特許文献 4:特開昭 63-152375号公報  Patent Document 4: JP-A 63-152375
特許文献 5 :特開 2001-288180号公報  Patent Document 5: JP 2001-288180 A
特許文献 6:特開平 9-328481号公報  Patent Document 6: Japanese Patent Laid-Open No. 9-328481
特許文献 7:WO02Z014303号公報  Patent Document 7: WO02Z014303
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] 本発明が解決しょうとする第一の課題は、生分解性ポリマーの原料ともなりえる環 状エステルの工業的に有利な製造方法を提供することにある。 [0011] A first problem to be solved by the present invention is to provide an industrially advantageous production method of a cyclic ester that can be a raw material for a biodegradable polymer.
[0012] 本発明が解決しょうとする第二の課題は、ポリ(ヒドロキシアルキルォキシ酢酸エス テル)の原料であるォキシ環状エステルを効率的且つ、高収率で得られる工業的に 有利な製造方法を提供することにある。  [0012] The second problem to be solved by the present invention is an industrially advantageous production in which an oxy cyclic ester which is a raw material of poly (hydroxyalkyloxyacetic acid ester) can be obtained efficiently and in a high yield. It is to provide a method.
[0013] 本発明が解決しょうとする第三の課題は生分解性ポリマーの原料となる環状二量 体エステル、なかでも特に、ポリダリコール酸の原料であるグリコライドを工業的に有 利な製造方法を提供することにある。 [0013] The third problem to be solved by the present invention is an industrially advantageous process for producing a cyclic dimer ester used as a raw material for a biodegradable polymer, particularly glycolide, which is a raw material for polydaricholic acid. Is to provide.
課題を解決するための手段  Means for solving the problem
[0014] 本発明者らは上記課題を解決するため鋭意検討を行った結果、特定のヒドロキシァ ルキルカルボン酸などから、環状エステルを効率的且つ、高収率で得られる製造法 を見出し、本発明を完成するに至った。 [0014] As a result of intensive studies to solve the above-mentioned problems, the present inventors have found a production method capable of obtaining a cyclic ester efficiently and in high yield from a specific hydroxycarboxylic acid, etc. It came to complete.
[0015] すなわち本発明者は、 [0015] That is, the present inventor
下記式(1)で表される少なくとも 1つの化合物を原料とし、  Using at least one compound represented by the following formula (1) as a raw material,
[0016] [化 1]
Figure imgf000005_0001
[0016] [Chemical 1]
Figure imgf000005_0001
[0017] (上記式(1)中、 Zは酸素または炭素数 2〜20の直鎖状もしくは分岐状のォキシアル キレンォキシ基を示し、 R1および R2は互いに同一であっても異なっていてもよい、水 素または炭素数 1〜4の直鎖状もしくは分岐状のアルキル基を示し、 pは 1〜20000 の整数を示す。 ) (In the above formula (1), Z represents oxygen or a linear or branched oxyalkyleneoxy group having 2 to 20 carbon atoms, and R 1 and R 2 may be the same or different from each other. It is preferably hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms, and p is an integer of 1 to 20000.)
下記式(2)で示される環状エステルを製造する方法であり、  A method for producing a cyclic ester represented by the following formula (2):
[0018] [化 2]  [0018] [Chemical 2]
Figure imgf000005_0002
Figure imgf000005_0002
[0019] (上記式(2)中、 Xはカルボニル基、または置換もしくは無置換のメチレン基を示し、  (In the above formula (2), X represents a carbonyl group or a substituted or unsubstituted methylene group,
R3および R4は互いに同一であっても異なっていてもよい、水素または炭素数 1〜4の直鎖状もしくは分岐状のアルキル基を示し、 nは 1〜4の整数を示す。 ) R 3 and R 4 may be the same or different and each represents hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms, and n represents an integer of 1 to 4. )
[第一工程] 上記化合物(1)に、製造される環状エステル (2)よりも沸点の高いアル キレングリコールを添加して、重合反応を行 、重合液を得る工程、  [First Step] A step of adding an alkylene glycol having a boiling point higher than that of the produced cyclic ester (2) to the compound (1) to carry out a polymerization reaction to obtain a polymerization solution,
[第二工程] 第一工程で得られた重合液を加熱して反応及び蒸留を同時に行!ヽな 力 Sら純度 98%以上の環状エステルを得る工程、の二工程を含んでなる環状エステル を製造する方法を提供する。  [Second Step] Cyclic ester comprising two steps of heating the polymerization liquid obtained in the first step and simultaneously carrying out the reaction and distillation, a step of obtaining a cyclic ester having a purity of 98% or more from S, etc. A method of manufacturing the same is provided.
[0020] また、本発明者らは上記課題を解決するため鋭意検討を行った結果、ヒドロキシァ ルキルォキシ酢酸からォキシ環状エステルを効率的且つ、高収率で得られる製造法 を見出し、本発明を完成するに至った。  [0020] Further, as a result of diligent studies to solve the above-mentioned problems, the present inventors have found a production method capable of obtaining an oxy cyclic ester from hydroxyalkylacetic acid in an efficient and high yield, and the present invention has been made. It came to be completed.
[0021] すなわち、本発明は、下記式(3)で表されるヒドロキシアルキルォキシ酢酸を原料と し、 [0022] [化 3] That is, the present invention uses a hydroxyalkyloxyacetic acid represented by the following formula (3) as a raw material, [0022] [Chemical 3]
Figure imgf000006_0001
Figure imgf000006_0001
[0023] (上記式(3)中、 Rおよび ま互いに同一であっても異なっていてもよい、水素また は炭素数 1〜4の直鎖状もしくは分岐状のアルキル基を示し、 nは 1〜4の整数を示す o ) (In the above formula (3), R represents a hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms which may be the same or different from each other, and n is 1 Indicates an integer of ~ 4)
下記式 (4)で示されるォキシ環状エステルを製造する方法であり、  A method for producing an oxycyclic ester represented by the following formula (4):
[0024] [化 4] [0024] [Chemical 4]
Figure imgf000006_0002
Figure imgf000006_0002
[0025] (上記式 (4)中、 Rおよび は互いに同一であっても異なっていてもよい、水素また は炭素数 1〜4の直鎖状もしくは分岐状のアルキル基を示し、 nは 1〜4の整数を示す o )  (In the above formula (4), R and each represent hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms, which may be the same or different, and n is 1 Indicates an integer of ~ 4)
[第一工程] 上記ヒドロキシアルキルォキシ酢酸(3)に、製造されるォキシ環状エステ ル (4)よりも沸点の高 、アルキレングリコールを添カ卩して、重合反応を行 、重合液を 得る工程、  [First Step] To the hydroxyalkyloxyacetic acid (3), an alkylene glycol having a boiling point higher than that of the produced oxycyclic ester (4) is added, and a polymerization reaction is performed to obtain a polymerization solution. Process,
[第二工程] 第一工程で得られた重合液を加熱して反応及び蒸留を同時に行!ヽな がら、ォキシ環状エステル (4)を得る工程、  [Second Step] The step of obtaining the oxy cyclic ester (4) while simultaneously heating and reacting the polymerization solution obtained in the first step!
の二工程を含んでなるォキシ環状エステルを製造する方法を提供する。  A method for producing an oxycyclic ester comprising the following two steps is provided.
[0026] 前記ヒドロキシアルキルォキシ酢酸(3)としては βーヒドロキシエトキシ酢酸が好まし い。 [0026] The hydroxyalkyloxyacetic acid (3) is preferably β-hydroxyethoxyacetic acid.
[0027] さらに、本発明者らは上記課題を解決するため鋭意検討を行った結果、 exーヒドロ キシカルボン酸および Ζまたは α—ヒドロキシカルボン酸縮合物から環状二量体ェ ステルを効率的且つ、高純度で得られる製造法を見出し、本発明を完成するに至つ た。 [0027] Further, as a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a cyclic dimer ester is efficiently and highly efficient from ex-hydroxycarboxylic acid and Ζ or α-hydroxycarboxylic acid condensate. Finding a production method that can be obtained with purity, and completing the present invention It was.
すなわち、本発明は、  That is, the present invention
下記式(5)で表される α—ヒドロキシカルボン酸および Ζまたは α—ヒドロキシカル ボン酸縮合物を原料とし、  Using α-hydroxycarboxylic acid and カ ル ボ ン or α-hydroxycarboxylic acid condensate represented by the following formula (5) as raw materials,
[0028] [化 5]  [0028] [Chemical 5]
Figure imgf000007_0001
Figure imgf000007_0001
[0029] (上記式(5)中、 R1および R2は、互いに同一であっても異なっていてもよい、水素また は炭素数 1〜4の直鎖状もしくは分岐状のアルキル基を示し、 mは 1〜20000の整数 を示す。) (In the above formula (5), R 1 and R 2 represent hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms, which may be the same or different from each other. M represents an integer from 1 to 20000.)
下記式 (6)で示される環状二量体エステルを製造する方法であり、  A method for producing a cyclic dimer ester represented by the following formula (6):
[0030] [化 6]  [0030] [Chemical 6]
Figure imgf000007_0002
Figure imgf000007_0002
[0031] (上記式(6)中、 R1および R2は、互いに同一であっても異なっていてもよい、水素また は炭素数 1〜4の直鎖状もしくは分岐状のアルキル基を示し、 mは 1〜20000の整数 を示す。) (In the above formula (6), R 1 and R 2 represent hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms, which may be the same or different from each other. M represents an integer from 1 to 20000.)
[第一工程] 上記 α—ヒドロキシカルボン酸および/または α—ヒドロキシカルボン酸 縮合物(5)に、製造される環状二量体エステル (6)よりも沸点の高いアルキレングリコ ールを添加して、重合反応を行い重合液を得る工程、  [First Step] An alkylene glycol having a boiling point higher than that of the produced cyclic dimer ester (6) is added to the α-hydroxycarboxylic acid and / or the α-hydroxycarboxylic acid condensate (5). A step of performing a polymerization reaction to obtain a polymerization solution,
[第二工程] 第一工程で得られた重合液を加熱して反応及び蒸留を同時に行!ヽな がら、環状二量体エステル (6)を得る工程、  [Second Step] The step of obtaining the cyclic dimer ester (6) while simultaneously heating and reacting the polymerization solution obtained in the first step!
の二工程を含んでなる環状二量体エステルを製造する方法を提供する。 [0032] 前記 ocーヒドロキシカルボン酸および Zまたは ( ーヒドロキシカルボン酸縮合物(5) としてはグリコール酸および zまたはグリコール酸縮合物が好ましい。 A method for producing a cyclic dimer ester comprising the following two steps is provided. As the oc-hydroxycarboxylic acid and Z or (-hydroxycarboxylic acid condensate (5), glycolic acid and z or glycolic acid condensate are preferable.
[0033] また、環状二量体エステル (6)を製造する場合の上記第一工程にお!、て使用する アルキレングリコールの分子量としては 100〜900の範囲が好ましい。  [0033] The molecular weight of the alkylene glycol used in the first step when producing the cyclic dimer ester (6) is preferably in the range of 100 to 900.
発明の効果  The invention's effect
[0034] 本発明の製造方法は、ヒドロキシアルキルォキシ酢酸の高分子量ィ匕物の生成を低 く抑え且つ、溶液自体の流動性を保持することにより、ォキシ環状エステルの生成速 度を飛躍的に向上することができ且つ、収率も向上する。また解重合反応と蒸留精 製を同時に行うことにより、高純度のォキシ環状エステルが得られる。即ち、該化合物 を効率的且つ、高収率で得られることが可能である。  [0034] The production method of the present invention dramatically reduces the rate of formation of the oxycyclic ester by suppressing the formation of a high-molecular weight hydroxyalkyloxyacetic acid product and maintaining the fluidity of the solution itself. The yield can also be improved. In addition, high-purity oxycyclic ester can be obtained by simultaneously performing depolymerization reaction and distillation purification. That is, the compound can be obtained efficiently and in a high yield.
[0035] また、本発明の製造方法は、 aーヒドロキシカルボン酸の高分子量ィ匕物の生成を 低く抑え、且つ、重合液の流動性を保持することにより、環状二量体エステルの生成 速度を飛躍的に向上することができ且つ、収率も向上する。また反応と蒸留精製を同 時に行うことにより、高純度の環状二量体エステルが得られる。即ち、該化合物を効 率的且つ、高純度で得られることが可能である。  [0035] In addition, the production method of the present invention suppresses the formation of a high molecular weight product of a-hydroxycarboxylic acid and keeps the fluidity of the polymerization solution, whereby the production rate of the cyclic dimer ester is increased. As well as the yield. Further, by carrying out the reaction and purification by distillation at the same time, a high-purity cyclic dimer ester can be obtained. That is, the compound can be obtained efficiently and with high purity.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0036] 〔環状エステルの製造方法〕 [Method for producing cyclic ester]
本発明における環状エステルの製造方法は、下記式(1)で表される少なくとも 1つ の化合物を原料とし、  The method for producing a cyclic ester in the present invention uses at least one compound represented by the following formula (1) as a raw material,
[0037] [化 7] [0037] [Chemical 7]
Figure imgf000008_0001
Figure imgf000008_0001
(上記式(1)中、 Zは酸素または炭素数 2〜20の直鎖状もしくは分岐状のォキシアル キレンォキシ基を示し、 R1および R2は互いに同一であっても異なっていてもよい、水 素または炭素数 1〜4の直鎖状もしくは分岐状のアルキル基を示し、 pは 1〜20000 の整数を示す。 ) (In the above formula (1), Z represents oxygen or a linear or branched oxyalkyleneoxy group having 2 to 20 carbon atoms, and R 1 and R 2 may be the same or different from each other. Or a linear or branched alkyl group having 1 to 4 carbon atoms, p is 1 to 20000 Indicates an integer. )
下記式(2)で示される環状エステルを製造する方法であり、  A method for producing a cyclic ester represented by the following formula (2):
[0039] [化 8]  [0039] [Chemical 8]
Figure imgf000009_0001
Figure imgf000009_0001
[0040] (上記式(2)中、 Xはカルボニル基、または置換もしくは無置換のメチレン基を示し、  (In the above formula (2), X represents a carbonyl group or a substituted or unsubstituted methylene group,
R3および R4は互いに同一であっても異なっていてもよい、水素または炭素数 1〜4の直鎖状もしくは分岐状のアルキル基を示し、 nは 1〜4の整数を示す。 ) R 3 and R 4 may be the same or different and each represents hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms, and n represents an integer of 1 to 4. )
[第一工程] 上記化合物(1)に、製造される環状エステル (2)よりも沸点の高いアル キレングリコールを添加して、重合反応を行 、重合液を得る工程、  [First Step] A step of adding an alkylene glycol having a boiling point higher than that of the produced cyclic ester (2) to the compound (1) to carry out a polymerization reaction to obtain a polymerization solution,
[第二工程] 第一工程で得られた重合液を加熱して反応及び蒸留を同時に行!ヽな がら純度 98%以上の環状エステルを得る工程、の二工程を含んでいる。  [Second Step] The second step includes the step of obtaining a cyclic ester having a purity of 98% or more while simultaneously performing the reaction and distillation by heating the polymerization liquid obtained in the first step.
[0041] 上記式(2)で表される環状エステルとしては、より具体的には、ォキシ環状エステル 、環状二量体エステルが挙げられる。以下、これらの製造方法につき、さらに具体的 に説明する。  [0041] Specific examples of the cyclic ester represented by the above formula (2) include an oxy cyclic ester and a cyclic dimer ester. Hereinafter, these production methods will be described more specifically.
[0042] 〔ォキシ環状エステルの製造方法〕  [Method for Producing Oxycyclic Ester]
以下、本発明によるォキシ環状エステルの製造方法ついて詳細に説明する。 本発明で原料として用いるヒドロキシアルキルォキシ酢酸とは、下記式(3)で示される 化合物である。  Hereafter, the manufacturing method of the oxy cyclic ester by this invention is demonstrated in detail. The hydroxyalkyloxyacetic acid used as a raw material in the present invention is a compound represented by the following formula (3).
[0043] [化 9]  [0043] [Chemical 9]
Figure imgf000009_0002
[0044] (上記式(3)中、 Rおよび ITは、互いに同一であっても異なっていてもよい、水素ま たは炭素数 1〜4の直鎖状もしくは分岐状のアルキル基を示し、 nは 1〜4の整数を示 す。)
Figure imgf000009_0002
(In the above formula (3), R and IT represent hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms, which may be the same or different from each other, n is an integer from 1 to 4.)
上記式(3)で表されるヒドロキシアルキルォキシ酢酸(以下、ヒドロキシアルキルォキ シ酢酸(3)ともいう。)としては、 Rおよび ITが水素であり、 n= lである 13ーヒドロキシ エトキシ酢酸が好ましい。  As the hydroxyalkyloxyacetic acid represented by the above formula (3) (hereinafter also referred to as hydroxyalkyloxyacetic acid (3)), R and IT are hydrogen, and 13-hydroxyethoxyacetic acid where n = l. Is preferred.
[0045] ヒドロキシアルキルォキシ酢酸は公知公用の方法で製造できる。例えば、特公昭 60  [0045] Hydroxyalkyloxyacetic acid can be produced by a publicly known method. For example, Tokusho Sho 60
36785号公報ゃ特開 2001— 288180号公報に記載の実施例により得ることがで きる。  No. 36785 can be obtained by the examples described in JP-A-2001-288180.
[0046] 本発明で用いるヒドロキシアルキルォキシ酢酸としては、原料由来の不純物を極力 排除したものが好ましい。  [0046] The hydroxyalkyloxyacetic acid used in the present invention is preferably one in which impurities derived from raw materials are excluded as much as possible.
[0047] 本発明により得られるォキシ環状エステルは、下記式 (4)で示される化合物である。  [0047] The oxycyclic ester obtained by the present invention is a compound represented by the following formula (4).
[0048] [化 10] [0048] [Chemical 10]
Figure imgf000010_0001
Figure imgf000010_0001
[0049] (上記式 (4)中、 Rおよび ITは、互いに同一であっても異なっていてもよい、水素また は炭素数 1〜4の直鎖状もしくは分岐状のアルキル基を示し、 nは 1〜4の整数を示す 。)  [0049] (In the above formula (4), R and IT represent hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms, which may be the same or different from each other, and n Represents an integer from 1 to 4.)
そして、上記式(3)で表されるヒドロキシアルキルォキシ酢酸の中でも好ま U、ィ匕合 物である、 βーヒドロキシエトキシ酢酸を本発明の原料ィ匕合物として用いた場合には 、式 (4)において Rおよび ITが水素であり、 n= lである p ジォキサノンが得られる。  And, among the hydroxyalkyloxyacetic acids represented by the above formula (3), U, a compound, β-hydroxyethoxy acetic acid, which is a compound, is used as a raw material compound of the present invention. In (4), p dioxanone is obtained in which R and IT are hydrogen and n = l.
[0050] 本発明に係るヒドロキシアルキルォキシ酢酸カゝらォキシ環状エステルを製造する方 法は、以下に説明する [第一工程]および [第二工程]を含む点に特徴がある。以下、 各工程について説明する。  [0050] The method for producing a hydroxyalkyl oxyacetic acid cyclic ester according to the present invention is characterized in that it includes [first step] and [second step] described below. Hereinafter, each process will be described.
[0051] 本発明によるォキシ環状エステルの製造方法の第一工程とは、本発明で得られる 上記式 (4)で表されるォキシ環状エステル (以下、ォキシ環状エステル (4)とも ヽぅ。) よりも沸点の高 、アルキレングリコールを、ヒドロキシアルキルォキシ酢酸に添カ卩して 、重合反応し重合溶液を得る工程である。 [0051] The first step of the method for producing an oxycyclic ester according to the present invention is an oxycyclic ester represented by the above formula (4) obtained by the present invention (hereinafter also referred to as oxycyclic ester (4)). In this step, an alkylene glycol having a higher boiling point is added to hydroxyalkyloxyacetic acid and a polymerization reaction is performed to obtain a polymerization solution.
[0052] 以下、本発明によるォキシ環状エステルの製造方法にっ 、て、第一工程の詳細な 説明をする。  [0052] Hereinafter, the first step will be described in detail by the method for producing an oxycyclic ester according to the present invention.
[0053] この第一工程にぉ 、ては、ォキシ環状エステル (4)よりも沸点の高 、アルキレンダリ コ一ルを用いる点に特徴がある。  [0053] This first step is characterized in that an alkylene diol having a boiling point higher than that of the oxy cyclic ester (4) is used.
[0054] このようなアルキレングリコールを第一工程において添加することで、アルキレンダリ コールの水酸基と、ヒドロキシアルキルォキシ酢酸の末端のカルボ-ル基とが反応す る。 [0054] By adding such an alkylene glycol in the first step, the hydroxyl group of alkylene dallicol reacts with the carboxyl group at the terminal of hydroxyalkyloxyacetic acid.
[0055] したがって、この第一工程にお!、てォキシ環状エステル(4)よりも沸点の高 、アル キレングリコールを用いることで、そのアルキレングリコールとヒドロキシアルキルォキ シ酢酸との共重合体が得られ、その重合溶液は第一工程の最後に到るまで均一で あり、高い流動性が維持される傾向にある。  [0055] Therefore, in this first step, a copolymer of the alkylene glycol and hydroxyalkyloxyacetic acid is obtained by using an alkylene glycol having a boiling point higher than that of the epoxy cyclic ester (4). The resulting polymerization solution is uniform until the end of the first step, and tends to maintain high fluidity.
[0056] それに対し、この第一工程にぉ 、て、アルキレングリコールを添加せずに重合する と、重合体はホモポリマーとなり高分子量ィヒされる傾向にあるため、得られる重合溶 液が均一とならず、流動性も低下してしまう場合がある。  [0056] On the other hand, if the polymerization is performed without adding the alkylene glycol in the first step, the polymer tends to be a homopolymer and has a high molecular weight, so that the resulting polymerization solution is uniform. In some cases, the fluidity may also decrease.
[0057] 上記第一工程で用いるアルキレングリコールは、通常、融点が 100°C以下、さらに 好ましくは融点が 70°C以下の液体であり、本発明によって得られるォキシ環状エステ ル (4)より沸点の高!、アルキレングリコールであれば特に制限されな!、。  [0057] The alkylene glycol used in the first step is usually a liquid having a melting point of 100 ° C or lower, more preferably 70 ° C or lower, and has a boiling point higher than that of the oxycyclic ester (4) obtained by the present invention. If it is alkylene glycol, it is not particularly limited! ,.
[0058] 本発明における沸点とは、 JIS K0066— 1992「化学製品の蒸留試験方法」に基 づ ヽて常圧(760mmHg)下で測定した沸点である。減圧下にお 、て測定した場合 には、常圧に換算した沸点をいう。減圧下で測定された沸点は、「基礎有機化学実 験 P155,丸善(1966) ;畑一夫著」の沸点換算図表に基づいて常圧の沸点へ換算し た。  The boiling point in the present invention is a boiling point measured under normal pressure (760 mmHg) based on JIS K0066-1992 “Method for Distillation Test of Chemical Products”. When measured under reduced pressure, it refers to the boiling point converted to normal pressure. The boiling point measured under reduced pressure was converted to the normal boiling point based on the boiling point conversion chart of “Basic Organic Chemistry Experiment P155, Maruzen (1966); Kazuo Hata”.
[0059] アルキレングリコールの沸点は、生成する環状エステルの沸点よりも 30°C (常圧 (76 OmmHg)換算)以上高いことが好ましぐ生成する環状エステルの沸点よりも 50°C (常 圧 (760mmHg)換算)以上高いことがより好ましぐ生成する環状エステルの沸点より も 70°C (常圧 (760mmHg)換算)以上高いことが特に好ましぐ生成する環状エステル の沸点よりも 100°C (常圧 (760mmHg)換算)以上高 、ことが最も好ま 、。 [0059] The boiling point of alkylene glycol is preferably 30 ° C (converted to normal pressure (76 OmmHg)) or higher than the boiling point of the cyclic ester to be formed, and it is preferably 50 ° C (normal pressure) to the boiling point of the cyclic ester to be formed. (Equivalent to (760mmHg)) Higher than 70 ° C (normal pressure (760mmHg) equivalent) higher than the boiling point of the cyclic ester that is more preferable It is most preferable that it is 100 ° C (normal pressure (760mmHg) conversion) or more higher than the boiling point.
[0060] アルキレングリコールの沸点が上記範囲にあることで、後述する第二工程において 、アルキレングリコールと生成物であるォキシ環状エステルとを容易に分離できる。 得られるォキシ環状エステル (4)が p—ジォキサノン (沸点: 212°C)である場合には 、例えば、ジエチレングリコール(沸点: 244°C)、トリエチレングリコール(沸点: 287°C )、テトラエチレングリコール(沸点:327°C)、ペンタエチレングリコール(沸点: 430°C )、へキサメチレングリコール(沸点: 440°C)、ジプロピレングリコール(沸点: 232°C) 、トリプロピレングリコール、テトラプロピレングリコール、ポリエチレングリコール、ポリ プロピレングリコール等が挙げられる。 [0060] When the boiling point of the alkylene glycol is in the above range, the alkylene glycol and the product oxycyclic ester can be easily separated in the second step described later. When the resulting oxycyclic ester (4) is p-dioxanone (boiling point: 212 ° C), for example, diethylene glycol (boiling point: 244 ° C), triethylene glycol (boiling point: 287 ° C), tetraethylene glycol (Boiling point: 327 ° C), pentaethylene glycol (boiling point: 430 ° C), hexamethylene glycol (boiling point: 440 ° C), dipropylene glycol (boiling point: 232 ° C), tripropylene glycol, tetrapropylene glycol, Examples thereof include polyethylene glycol and polypropylene glycol.
[0061] これらのアルキレングリコールは、単独または 2種以上混合して用いても差し支えな い。なお、本発明で用いるアルキレングリコールが 2種以上の混合物である場合は、 その混合物に含まれる最も沸点の低 、アルキレングリコールの沸点を、その混合物 の沸点とする。 [0061] These alkylene glycols may be used alone or in admixture of two or more. When the alkylene glycol used in the present invention is a mixture of two or more, the lowest boiling point of the alkylene glycol contained in the mixture is defined as the boiling point of the mixture.
[0062] また、本発明で用いるアルキレングリコールがポリアルキレングリコールである場合 は、生成する環状エステルよりも沸点が低 、成分を実質的に含んで 、てはならな 、。 例えば、 p—ジォキサノンを製造する際にポリエチレンダリコ一ルを用いる場合には、 ポリエチレングリコール中に、エチレングリコール、ジエチレングリコール等の低沸点 成分が実質的に含まないことが好ましぐエチレングリコール、ジエチレングリコール 等の低沸点成分が全く含まれて 、な 、ことが最も好ま 、。  [0062] Further, when the alkylene glycol used in the present invention is a polyalkylene glycol, the boiling point is lower than that of the cyclic ester to be produced, and the component should substantially contain components. For example, when polyethylene darcol is used in the production of p-dioxanone, it is preferable that low-boiling components such as ethylene glycol and diethylene glycol are not substantially contained in polyethylene glycol. It is most preferable that no low-boiling components such as are included.
[0063] 本発明において、アルキレングリコールとして上記ポリアルキレングリコールを用い る場合、 THFを分解生成物として生じさせない観点からは、ポリエチレングリコール、 ポリプロピレングリコールが好ましい。また、入手の容易さ力もポリエチレングリコール 力 り好ましい。 [0063] In the present invention, when the above polyalkylene glycol is used as the alkylene glycol, polyethylene glycol and polypropylene glycol are preferable from the viewpoint of not producing THF as a decomposition product. In addition, the power of availability is more preferable than that of polyethylene glycol.
[0064] 上記アルキレングリコールの用いる量は、ヒドロキシアルキルォキシ酢酸 1モルに対 し、通常 0. 01〜10モノレ、好ましくは 0. 1〜5モル、さらに好ましくは 0. 1〜1モノレであ る。  [0064] The amount of the alkylene glycol used is usually 0.01 to 10 moles, preferably 0.1 to 5 moles, more preferably 0.1 to 1 moles per mole of hydroxyalkyloxyacetic acid. The
[0065] 上記モル数は、使用するアルキレングリコールの質量を、アルキレングリコールの分 子量で除した値である。アルキレングリコールとしてアルキレングリコールの重合体を 用いる場合の平均分子量は、その水酸基価を求め、その水酸基価力 換算式により 求めた値である。 [0065] The number of moles is a value obtained by dividing the mass of the alkylene glycol used by the molecular weight of the alkylene glycol. Polymer of alkylene glycol as alkylene glycol When used, the average molecular weight is a value obtained by calculating the hydroxyl value and calculating the hydroxyl value.
[0066] 例えば、ポリエチレングリコールの平均分子量を求める場合は、以下のようにして求 めることができる。  [0066] For example, the average molecular weight of polyethylene glycol can be determined as follows.
[0067] まず、 JIS K0070— 1992 (化学製品の酸価,けん化価,エステル価,よう素価, 水酸基価及び不けん化物の試験方法) 7. 1 (中和滴定法)により水酸基価 (B)を求 める。  [0067] First, JIS K0070-1992 (Testing method for acid value, saponification value, ester value, iodine value, hydroxyl value and unsaponified product of chemical products) 7.1 (Neutralization titration method) ).
[0068] 求めた水酸基価 (B)を、下記換算式に代入して、平均分子量 (A)を算出する。  [0068] By substituting the determined hydroxyl value (B) into the following conversion formula, the average molecular weight (A) is calculated.
[0069] 56106/B X 2=A [0069] 56106 / B X 2 = A
(A:平均分子量、 B :水酸基価、 56106 :換算係数)  (A: average molecular weight, B: hydroxyl value, 56106: conversion factor)
アルキレングリコールの用いる量が上記範囲にある場合には、反応液の流動性、目 的物の精製速度、留出速度の点で優れる。  When the amount of alkylene glycol used is in the above range, it is excellent in terms of the fluidity of the reaction solution, the purification rate of the target product, and the distillation rate.
[0070] 第一工程は、上記アルキレングリコールをヒドロキシアルキルォキシ酢酸(3)〖こ添カロ し加熱することにより重合反応を行う。この反応は、所望の物質が得られるあらゆる温 度範囲で行う事ができる力 好ましい温度は 50〜200°C、さらに好ましくは 80〜160 °Cである。 [0070] In the first step, the polymerization reaction is carried out by heating the alkylene glycol with hydroxyalkyloxyacetic acid (3) and heating. This reaction can be carried out in any temperature range that gives the desired substance. The preferred temperature is 50 to 200 ° C, more preferably 80 to 160 ° C.
[0071] さらに第一工程は、前述のアルキレングリコールをヒドロキシアルキルォキシ酢酸(3 )に添加した後、系内で生成する縮合水を加熱により留去することにより反応を進行 させる。この加熱による縮合水の留去により、重合反応が進行し、重合溶液が得られ る。  [0071] Further, in the first step, after adding the above-mentioned alkylene glycol to hydroxyalkyloxyacetic acid (3), the reaction is allowed to proceed by distilling off the condensed water produced in the system by heating. By distilling off the condensed water by this heating, the polymerization reaction proceeds and a polymerization solution is obtained.
[0072] この第一工程にぉ 、て、ヒドロキシアルキルォキシ酢酸は、有機溶媒または水等の 溶媒に溶解させた溶液として添加してもよいし、そのもの自体を添加してもよい。  [0072] In this first step, hydroxyalkyloxyacetic acid may be added as a solution dissolved in an organic solvent or a solvent such as water, or may itself be added.
[0073] また、ヒドロキシアルキルォキシ酢酸を水溶液として添カ卩した場合には、この水溶液 に由来する水の少なくとも一部は、上述の縮合水の留去操作により、留去される。  [0073] When hydroxyalkyloxyacetic acid is added as an aqueous solution, at least a part of the water derived from this aqueous solution is distilled off by the above-described operation of distilling condensed water.
[0074] 縮合水を留去する反応条件として、縮合水が留去される限り特に制限はないが、好 ましくは、圧力を 101. 3kPa〜6. 7kPaの範囲に設定し、温度設定については、そ の圧力にて第一工程中の溶液が含む水の沸点に設定することができる。  [0074] The reaction conditions for distilling off the condensed water are not particularly limited as long as the condensed water is distilled off. Preferably, the pressure is set in the range of 101.3 kPa to 6.7 kPa, and the temperature is set. Can be set to the boiling point of water contained in the solution in the first step at that pressure.
[0075] なお、ヒドロキシアルキルォキシ酢酸(3)は、例えば、アルキレングリコール、モノク ロロ酢酸、水酸ィ匕ナトリウムなどのアルカリを含む水溶液力も合成されたィ匕合物を、そ のままの水溶液の状態で用いることもできる。 [0075] Hydroxyalkyloxyacetic acid (3) is, for example, alkylene glycol, monochloro A compound synthesized with an aqueous solution containing an alkali such as chloroacetic acid or sodium hydroxide can also be used as it is.
[0076] しかし、通常、この水溶液は塩を含んでいるため、この水溶液中に含まれる塩を除 去する目的で、留去により、水溶液中の水、例えば 99%以上の水を除去した後にメ タノール、エタノール、イソプロピルアルコール等のアルコール類、アセトン、メチルェ チルケトン、シクロへキサノン等のケトン類、 N, N—ジメチルァセトアミド、 N, N—ジメ チルホルムアミド等のアミド類等で洗浄し、さらに留去を行ってもよ 、。  [0076] However, since this aqueous solution usually contains a salt, for the purpose of removing the salt contained in this aqueous solution, water in the aqueous solution, for example, 99% or more of water is removed by distillation. Wash with alcohols such as methanol, ethanol, isopropyl alcohol, ketones such as acetone, methyl ethyl ketone, cyclohexanone, amides such as N, N-dimethylacetamide, N, N-dimethylformamide, etc. You can distill further.
[0077] 上記アルコール類、ケトン類、あるいはアミド類等によるこの塩の洗浄後の留去条件 は、好ましくは、圧力を 101. 3kPa〜0. lkPaの範囲に設定し、温度は、洗浄に用い た溶媒のその圧力における沸点に設定することができる。  [0077] The conditions for distilling the salt with the alcohols, ketones or amides after washing are preferably set such that the pressure is in the range of 101.3 kPa to 0.1 lkPa, and the temperature is used for washing. The boiling point of the solvent at that pressure can be set.
[0078] また、重合をより進行させる目的で留去を促進する観点からは、トルエンゃキシレン 等の水と共沸する溶媒を添加して、上述の縮合水等の留去を行ってもよい。なお、共 沸する溶媒を添加して縮合水の留去を行う場合には、生成する水を共沸溶媒と共に 反応系から留出させ、得られた留出液を、分離器を用いて、溶媒と生成水とに分離し 、分離した溶媒は反応系にさらに戻しながら重合してもよい。  [0078] From the viewpoint of promoting distillation for the purpose of further promoting the polymerization, a solvent that azeotropes with water such as toluene and xylene may be added to distill off the above-mentioned condensed water and the like. . When the azeotropic solvent is added and the condensed water is distilled off, the generated water is distilled from the reaction system together with the azeotropic solvent, and the resulting distillate is separated using a separator. The solvent and product water may be separated, and the separated solvent may be polymerized while returning to the reaction system.
[0079] 水の留去量としては、理論留去率で 90%以上、好ましくは理論留去率で 95%以上 、さらに好ましくは理論留去率で 98%以上であり、この時点を第一工程の重合反応 の終了する。留去した後に得られた溶液を第一工程で得られる重合溶液と称する。  [0079] The amount of water distilled off is 90% or more in terms of theoretical distillation rate, preferably 95% or more in terms of theoretical distillation rate, and more preferably 98% or more in terms of theoretical distillation rate. The polymerization reaction in the process is completed. The solution obtained after distilling off is referred to as a polymerization solution obtained in the first step.
[0080] 本発明における理論留去率とは次のとおりである。  [0080] The theoretical distillation rate in the present invention is as follows.
[0081] 本発明における水の理論留去率とは、反応系に添加された水の全質量に対して、 反応系外に留出した水の全重量の割合をいう。  [0081] The theoretical water distillation rate in the present invention refers to the ratio of the total weight of water distilled out of the reaction system to the total mass of water added to the reaction system.
[0082] 第一工程で添加されるヒドロキシアルキルォキシ酢酸が水等の溶媒へ溶解した水 溶液である場合には、添加するヒドロキシアルキルォキシ酢酸水溶液が含む水と、第 一工程の重合により生じる縮合水を合わせたもの力 第一工程の原材料が含む水の 全重量となる。 [0082] When the hydroxyalkyloxyacetic acid added in the first step is an aqueous solution dissolved in a solvent such as water, water contained in the aqueous hydroxyalkyloxyacetic acid solution to be added and polymerization in the first step The combined strength of the resulting condensed water The total weight of the water contained in the raw material of the first step.
[0083] したがって、ヒドロキシアルキルォキシ酢酸水溶液を用いた場合の理論留去率は、 原材料が含む水の全重量に対する、第一工程の加熱処理にぉ 、て水の溜出が実際 に開始して力も終わるまでに溜出した水の全重量の割合である。 [0084] 本発明で示すォキシ環状エステルの製造方法の第二工程とは、前記第一工程で 得られたヒドロキシアルキルォキシ酢酸とアルキレングリコールとの重合溶液を常圧 若しくは減圧下、加熱して解重合反応及び蒸留を同時に行 、ながらォキシ環状エス テル (4)を溜出させる点に特徴がある。 [0083] Therefore, the theoretical distillation rate in the case of using the hydroxyalkyloxyacetic acid aqueous solution is that the distillation of water actually starts after the heat treatment in the first step with respect to the total weight of water contained in the raw material. It is the ratio of the total weight of water that has been collected before the end of the force. [0084] In the second step of the method for producing an oxycyclic ester shown in the present invention, the polymerization solution of hydroxyalkyloxyacetic acid and alkylene glycol obtained in the first step is heated under normal pressure or reduced pressure. It is characterized in that the oxy cyclic ester (4) is distilled while simultaneously performing the depolymerization reaction and distillation.
[0085] 以下、本発明によるォキシ環状エステル製造方法の第二工程を詳細に説明する。  Hereinafter, the second step of the method for producing an oxycyclic ester according to the present invention will be described in detail.
[0086] 本発明は、第二工程により得られるォキシ環状エステル (4)よりも沸点の高いアル キレングリコールを用いて 、る点に特徴がある。  [0086] The present invention is characterized in that an alkylene glycol having a boiling point higher than that of the oxy cyclic ester (4) obtained in the second step is used.
[0087] 第一工程により得られる重合溶液には、高沸点のアルキレングリコールとヒドロキシ アルキルォキシ酢酸との共重合体が含まれる。この共重合体は両末端に水酸基を有 する。  [0087] The polymerization solution obtained in the first step contains a copolymer of a high-boiling alkylene glycol and hydroxyalkyloxyacetic acid. This copolymer has hydroxyl groups at both ends.
[0088] 第一工程で得られる重合溶液中の重合体の両末端に水酸基があることで、第二ェ 程で加熱処理しても、解重合反応のみが効率的に進行し、得られるォキシ環状エス テルの収率が高くなる。  [0088] The presence of hydroxyl groups at both ends of the polymer in the polymerization solution obtained in the first step allows only the depolymerization reaction to proceed efficiently even when heat-treated in the second step, and the resulting oxy The yield of cyclic ester is increased.
[0089] 一方、第一工程でアルキレングリコールを添加しな 、場合、第一工程で得られる重 合溶液はホモポリマーとなり、そのホモポリマーは末端のそれぞれに水酸基とカルボ キシル基を有する。この重合溶液を加熱処理しても、解重合反応のみが効率的には 起こらず、さらに重合反応が進行してしまう。その結果、第二工程の反応中において 、反応液の均一性が損なわれ、流動性も低下してしまう場合があり、ォキシ環状エス テルが高収率では得られな 、傾向にある。  [0089] On the other hand, when alkylene glycol is not added in the first step, the polymerization solution obtained in the first step becomes a homopolymer, and the homopolymer has a hydroxyl group and a carboxyl group at each end. Even if this polymerization solution is heat-treated, only the depolymerization reaction does not occur efficiently, and the polymerization reaction further proceeds. As a result, during the reaction in the second step, the homogeneity of the reaction solution may be impaired and the fluidity may be lowered, and the oxy cyclic ester tends not to be obtained in a high yield.
[0090] この第二工程における重合溶液の解重合の反応は、第一工程の重合反応よりも高 温で行う必要があるため、アルキレングリコールが低沸点成分を含むと収率を下げる 傾向にある。  [0090] Since the depolymerization reaction of the polymerization solution in the second step needs to be performed at a higher temperature than the polymerization reaction in the first step, if the alkylene glycol contains a low-boiling component, the yield tends to decrease. .
[0091] したがって使用するアルキレングリコールが目的物のォキシ環状エステルより高沸 点であることにより、アルキレングリコールに由来する低沸点成分が溜出しない傾向 にあり、 目的生成物の収率の純度が高くなる。  Accordingly, since the alkylene glycol used has a higher boiling point than the target oxycyclic ester, the low-boiling components derived from the alkylene glycol tend not to be distilled off, and the yield of the target product is high in purity. Become.
[0092] し力も、第二工程にぉ 、て、解重合生成物であるォキシ環状エステルの蒸留をして も、第二工程の反応の最後に到るまで反応溶液が均一であり、解重合及び蒸留を行 う際に、当該反応溶液の流動性がよぐ且つ、また、蒸留後の蒸留釜中の釜残液に ついても流動性があり、取り扱いも容易である。 [0092] In the second step, even when the oxycyclic ester as the depolymerization product is distilled, the reaction solution is uniform until the end of the reaction in the second step, and the depolymerization is performed. In addition, the fluidity of the reaction solution is good during distillation, and the residual liquid in the still water after distillation is also reduced. It is also fluid and easy to handle.
[0093] 上記第二工程での解重合及び蒸留の際の温度は、第一工程で得られた重合物が 解重合する温度であれば特に制限はないが、好ましくは、 50〜300°C、より好ましく は、 80〜200。Cである。  [0093] The temperature at the time of depolymerization and distillation in the second step is not particularly limited as long as the polymer obtained in the first step is depolymerized, but preferably 50 to 300 ° C. More preferably, it is 80-200. C.
[0094] 上記第二工程での解重合及び蒸留の際の圧力は、通常 101. 3kPa〜0. lkPaで ある。  [0094] The pressure during depolymerization and distillation in the second step is usually 101.3 kPa to 0.1 lkPa.
[0095] 流動性の指標の 1つとして攪拌付加があげられる。  [0095] Addition of stirring is one of the indicators of fluidity.
[0096] 本発明における攪拌負荷とは、 Heidolph社製の RZR2101トルクメーター付攪拌 機を用い、回転数 200rpmにおける攪拌軸に加わる力(Ncm : -ユートンセンチメー トル)の測定値をいう。上記第二工程での蒸留後の反応容器中の釜残の攪拌負荷は 80°Cにおいて、通常 10Ncm〜90Ncmあり、好ましくは 20Ncm〜50Ncmである。  [0096] The stirring load in the present invention refers to a measured value of a force (Ncm: -Euton centimeter) applied to the stirring shaft at a rotation speed of 200 rpm using a stirrer with an RZR2101 torque meter manufactured by Heidolph. The stirring load of the residue in the reaction vessel after distillation in the second step is usually 10 Ncm to 90 Ncm, preferably 20 Ncm to 50 Ncm at 80 ° C.
[0097] 上述の第一工程、第二工程を経て得られるォキシ環状エステルは、実用可能な高 分子量の生分解性ポリマーでポリ(ヒドロキシアルキルォキシ酢酸エステル)として問 題なく用いることができる原材料となる。すなわち、本発明のォキシ環状エステルは、 純度の高いォキシ環状エステルが製造されるので、実用上問題のない高分子量の ポリ(ヒドロキシアルキルォキシ酢酸エステル)力 S得ることができる。また得られたポリ ( ヒドロキシアルキルォキシ酢酸エステル)は、公知公用の加工をすることにより、縫合 糸、メディカルディバイス等の医療用材料に好適に用いることができる。  [0097] The oxy cyclic ester obtained through the first and second steps described above is a practical high molecular weight biodegradable polymer that can be used as a poly (hydroxyalkyl oxyacetate) without any problem. It becomes. In other words, the oxycyclic ester of the present invention can produce a high-purity oxycyclic ester, and thus can obtain a high molecular weight poly (hydroxyalkyloxyacetic acid ester) force S having no practical problem. The obtained poly (hydroxyalkyloxyacetic acid ester) can be suitably used for medical materials such as sutures and medical devices by performing known and public processing.
[0098] 〔環状二量体エステルの製造方法〕 [Method for producing cyclic dimer ester]
以下、本発明による環状二量体エステルの製造方法ついて詳細に説明する。 本発明で原料の一つとして用いられ得る α—ヒドロキシカルボン酸とは、下記式(5) で示される化合物である。  Hereinafter, the manufacturing method of cyclic dimer ester by this invention is demonstrated in detail. The α-hydroxycarboxylic acid that can be used as one of the raw materials in the present invention is a compound represented by the following formula (5).
[0099] [化 11] [0099] [Chemical 11]
Figure imgf000016_0001
[0100] (上記式(5)中、 R1および R2は互いに同一であっても異なっていてもよい、水素また は炭素数 1〜4の直鎖状もしくは分岐状のアルキル基を示し、 m= lを示す。 ) 本発明で原料の一つとして用いられ得る aーヒドロキシカルボン酸縮合物とは、下 記一般式(7)で示される化合物であり、上記式(5)で示される α—ヒドロキシカルボン 酸を重縮合した縮合物である。
Figure imgf000016_0001
(In the above formula (5), R 1 and R 2 may be the same as or different from each other, and each represents hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms; m = l) The a-hydroxycarboxylic acid condensate that can be used as one of the raw materials in the present invention is a compound represented by the following general formula (7), which is represented by the above formula (5). It is a condensate obtained by polycondensation of α-hydroxycarboxylic acid.
[0101] [化 12]  [0101] [Chemical 12]
Figure imgf000017_0001
Figure imgf000017_0001
[0102] (上記式(7)中、 R1および R2は、互いに同一であっても異なっていてもよい、水素ま たは炭素数 1〜4の直鎖状もしくは分岐状のアルキル基を示し、 mは 2〜20000の整 数を示す。 ) [In the above formula (7), R 1 and R 2 represent hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms, which may be the same or different from each other. M represents an integer from 2 to 20000.)
本発明で原料として用いる α—ヒドロキシカルボン酸及び/又は α—ヒドロキシカ ルボン酸縮合物とは、前記式 (5)で示される aーヒドロキシカルボン酸及び前記式 (7) で示される a—ヒドロキシカルボン酸縮合物力 選ばれる 1種の化合物または 2種以 上の混合物のことをいう。  The α-hydroxycarboxylic acid and / or α-hydroxycarboxylic acid condensate used as a raw material in the present invention refers to the a-hydroxycarboxylic acid represented by the above formula (5) and the a-hydroxycarboxylic acid represented by the above formula (7). Carboxylic acid condensate power One or two or more selected compounds.
[0103] 上記式(5)、 (7)の R1および R2における炭素数 1〜4の直鎖状アルキル基とは、メチ ル基、ェチル基、 n—プロピル基、 n—ブチル基を示し、炭素数 1〜4の分岐状アルキ ル基とはイソプロピル基、イソブチル基、 sec—ブチル基、 tert—ブチル基を示す。こ れら基の中でも、好ましくはメチル基、ェチル基である。 [0103] The linear alkyl group having 1 to 4 carbon atoms in R 1 and R 2 of the above formulas (5) and (7) is a methyl group, an ethyl group, an n-propyl group, or an n-butyl group. The branched alkyl group having 1 to 4 carbon atoms is an isopropyl group, an isobutyl group, a sec-butyl group, or a tert-butyl group. Among these groups, a methyl group and an ethyl group are preferable.
[0104] 式(5)、(7)で示される化合物中、 R1および R2の組合せとしては、いずれか一方が 水素であり他方が水素または炭素数 1〜4の直鎖または分岐状のアルキル基が好ま しく、 、ずれか一方が水素であり他方が水素原子またはメチル基またはェチル基が より好ましぐいずれか一方が水素であり他方が水素またはメチル基がさらに好ましく 、両方が水素であることが特に好ましい。 [0104] In the compounds represented by formulas (5) and (7), as the combination of R 1 and R 2 , either one is hydrogen and the other is hydrogen or a linear or branched chain having 1 to 4 carbon atoms An alkyl group is preferred, and one of them is hydrogen and the other is more preferably a hydrogen atom or a methyl group or an ethyl group. One of them is hydrogen, the other is more preferably a hydrogen or methyl group, and both are hydrogen. It is particularly preferred.
[0105] 上記式(5)で表される α—ヒドロキシカルボン酸の例としては、グリコール酸、乳酸、 aーヒドロキシプロピオン酸が挙げられる。これら化合物の中でも、好ましくはグリコー ル酸、乳酸であり、更に好ましくはグリコール酸である。 [0105] Examples of the α-hydroxycarboxylic acid represented by the above formula (5) include glycolic acid, lactic acid, and a-hydroxypropionic acid. Among these compounds, preferably glyco Luric acid and lactic acid are preferred, and glycolic acid is more preferred.
[0106] 上記ダリコール酸としては、市販のグリコール酸を用いることができる。また原料とし て、再利用の廃ポリグリコール酸を用いてもよい。市販のダリコール酸においては、グ リコール酸の他、グリコリルォキシグリコール酸(グリコール酸二量体)、グリコリルォキ シグリコリルォキシグリコール酸 (グリコール酸三量体)等のグリコール酸縮合物を含 有することがある。これらは、環状二量体エステルの製造において有効であり、グリコ ール酸種として包括的に取り扱うことができる。なお、グリコール酸縮合物は、工業的 に入手可能なグリコール酸水溶液に含まれており、高純度のグリコール酸を加熱溶 融させるだけでも生成することが知られて 、る。  [0106] Commercially available glycolic acid can be used as the dalicholic acid. Further, recycled polyglycolic acid may be used as a raw material. Commercially available dalicholic acid contains glycolic acid condensates such as glycolyloxyglycolic acid (glycolic acid dimer) and glycolyloxyglycoloxyglycolic acid (glycolic acid trimer) in addition to glycolic acid. May have. These are effective in the production of cyclic dimer esters and can be comprehensively handled as glycolic acid species. The glycolic acid condensate is contained in an industrially available glycolic acid aqueous solution, and it is known that the glycolic acid condensate is produced only by heating and melting high-purity glycolic acid.
[0107] 上記式(5)および(7)で示される化合物および混合物の中でも、容易に入手可能 であるという観点からは、グリコール酸、グリコール酸縮合物、およびこれらの混合物 が好ましい。  [0107] Among the compounds and mixtures represented by the above formulas (5) and (7), glycolic acid, glycolic acid condensates, and mixtures thereof are preferred from the viewpoint of easy availability.
[0108] なお、グリコール酸及びその縮合物は、粉状固体、あるいは水溶液の形態で入手 することができるが、安価で容易に入手可能であるという観点からは水溶液の形態が 好ましい。  [0108] The glycolic acid and its condensate can be obtained in the form of a powdery solid or an aqueous solution, but from the viewpoint of being easily available at a low cost, the aqueous solution is preferred.
[0109] 本発明にお 、て用いることができる入手可能なグリコール酸水溶液の例としては、 デュポン社製の工業用 70%グリコール酸や GLYPURE70、大塚化学社製の 70% グリコール酸等が挙げられる。好ましく用いられるグリコール酸水溶液はデュポン社製 GLYPURE70 (登録商標)である。  [0109] Examples of available glycolic acid aqueous solutions that can be used in the present invention include industrial 70% glycolic acid and GLYPURE70 manufactured by DuPont, 70% glycolic acid manufactured by Otsuka Chemical, and the like. . The glycolic acid aqueous solution preferably used is GLYPURE70 (registered trademark) manufactured by DuPont.
[0110] 本発明の製造方法において、グリコール酸及びその縮合物を原料として用いる場 合には、グリコール酸は粉状固体をそのまま用いてもよいし、上述のようなグリコール 酸水溶液として用いてもょ ヽ。  [0110] In the production method of the present invention, when glycolic acid and its condensate are used as raw materials, the glycolic acid may be used as a powdered solid as it is, or may be used as the glycolic acid aqueous solution as described above.ヽ ヽ.
[0111] 通常、広く流通している市販のダリコール酸の水溶液は 70重量% (ダリコール酸と グリコール酸縮合物のダリコール酸に換算したものとの合計の濃度)であるが、グリコ ール酸としてグリコール酸水溶液を用いる場合には、グリコール酸の濃度は特に限定 されるものではなぐ広い濃度範囲で使用することが可能である。し力しながら、製造 における効率、即ち反応バッチ当たりの単価、即ち、仕込み量アップ、脱水時間の短 縮、脱水に要するエネルギーの節約を考慮した場合、グリコール酸濃度 50〜90重 量%の範囲が好ましぐ 60〜80重量%の範囲がより好ましい。前記範囲内であれば 効率よく第一工程で重合体が得られる。 [0111] Normally, a commercially available aqueous solution of Daricholic acid is 70% by weight (concentration of total of Daricholic acid and glycolic acid condensate converted to Daricholic acid), but as glycolic acid When a glycolic acid aqueous solution is used, the concentration of glycolic acid is not particularly limited, and can be used in a wide concentration range. However, when considering the efficiency in production, that is, the unit price per reaction batch, that is, increasing the amount charged, shortening the dehydration time, and saving the energy required for dehydration, the glycolic acid concentration is 50 to 90 fold. A range of 60% by weight is more preferred. If it is in the said range, a polymer can be obtained efficiently in the first step.
[0112] また、本発明の原料としてグリコール酸を用いる場合には、グリコール酸の純度は 特に制限されない。しかし、例えば、市販のグリコール酸水溶液には、微量成分とし てギ酸、ジグリコール酸、ダリオギザル酸、シユウ酸等の化合物が含まれている場合 がある。これら化合物は、重合反応を阻害すること、すなわち、重合の成長末端を封 止することが多い。従って、グリコール酸水溶液中のこれら化合物の含有量は 0. 5重 量%未満であることが好ましい。また不純物を含む場合には、活性炭等の吸着処理 や、減圧蒸留やストリツビングにより、これら化合物は除去したものを用いてもよい。  [0112] When glycolic acid is used as a raw material of the present invention, the purity of glycolic acid is not particularly limited. However, for example, a commercially available glycolic acid aqueous solution may contain compounds such as formic acid, diglycolic acid, dariosagilic acid, and oxalic acid as trace components. These compounds often inhibit the polymerization reaction, that is, block the growth terminal of the polymerization. Accordingly, the content of these compounds in the aqueous glycolic acid solution is preferably less than 0.5% by weight. When impurities are contained, those obtained by removing these compounds by adsorption treatment with activated carbon, vacuum distillation or stripping may be used.
[0113] また、より高分子量のポリ( aーヒドロキシカルボン酸)を得る観点からは、原料となる aーヒドロキシカルボン酸及び Z又は α—ヒドロキシカルボン酸縮合物を、公知の方 法、例えば英国特許 550837号ゃ特開平 6— 65360号公報等の方法により脱水重 縮合し、或いは更には固相重合することにより得ることができる。  [0113] Further, from the viewpoint of obtaining a higher molecular weight poly (a-hydroxycarboxylic acid), the raw material a-hydroxycarboxylic acid and Z or α-hydroxycarboxylic acid condensate can be obtained by a known method, for example, the UK. Patent 550837 can be obtained by dehydration polycondensation by a method such as JP-A-6-65360 or by solid phase polymerization.
[0114] 例えば、 exーヒドロキシカルボン酸水溶液及び Ζ又は exーヒドロキシカルボン酸縮 合物を用い、不活性ガス雰囲気下、好ましくは Ν雰囲気下で、圧力を 1. 0〜: L01. 3  [0114] For example, an ex-hydroxycarboxylic acid aqueous solution and soot or ex-hydroxycarboxylic acid condensate is used, and the pressure is adjusted to 1.0 to: L01. 3 in an inert gas atmosphere, preferably in a soot atmosphere.
2  2
kPa、好ましくは 1. 0〜20. OkPaの範囲とし、温度力 S l00〜250。C、好ましくは 140 〜200°Cの範囲となるように加熱し、系内の水と縮合水を留去する。このとき得られる 、 aーヒドロキシカルボン酸及び Z又は α—ヒドロキシカルボン酸縮合物は分子量分 布を有する α—ヒドロキシカルボン酸縮合物である。すなわち式 (7)においては、 m= 2〜50000であり、好ましくは m= 2〜20000である。式(5)、(7)に示す m= l及び /又は m= 2〜20000とはゲルパーミッションクロマトグラフィにおける分子量の測定 にお ヽて、その分析結果の分布で示される最も小さ ヽ分子量と最も大き ヽ分子量を α—ヒドロキシカルボン酸単量体分子量で除した値の幅である。  kPa, preferably in the range of 1.0 to 20. OkPa, and the temperature force Sl00 to 250. Heat to C, preferably 140 to 200 ° C, to distill off water and condensed water in the system. The a-hydroxycarboxylic acid and Z or α-hydroxycarboxylic acid condensate obtained at this time are α-hydroxycarboxylic acid condensates having a molecular weight distribution. That is, in the formula (7), m = 2 to 50000, preferably m = 2 to 20000. In formulas (5) and (7), m = l and / or m = 2 to 20000 is the smallest molecular weight and the largest molecular weight measured by gel permeation chromatography. This is the width of the value obtained by dividing the molecular weight by the molecular weight of the α-hydroxycarboxylic acid monomer.
[0115] 上述のようにして得られる α—ヒドロキシカルボン酸及び Ζ又は α—ヒドロキシカル ボン酸縮合物の GPC測定により求めた、 ΡΜΜΑ換算の重量平均分子量は通常、 5 00〜300000であり、好まし <は 5000〜 150000である。  [0115] The weight-average molecular weight in terms of ΡΜΜΑ determined by GPC measurement of α-hydroxycarboxylic acid and Ζ or α-hydroxycarboxylic acid condensate obtained as described above is usually 500 to 300,000. It is 5000-150000.
[0116] 本発明において重量平均分子量と分子量分布は、所定の有機溶媒に溶解させ、 G PC (ゲルパーミッションクロマトグラフ)法により測定することができる。例えばグリコー ル酸及び Z又はグリコール酸縮合物の測定はトリフルォロ酢酸ナトリウム 0. 05重量 %を溶解させた HFIP (へキサフルォロイソプロピルアルコール)を溶媒とし、 35°C、 1 mlZ分でカラム(SHODEX製 KD— 806M +KD— 805L +KD— 803)を通し、分 子量 160万、 76万、 21万、 5. 5万、 2. 2万、 0. 7万、 0. 2万の分子量既知 PMMA ( ポリメタクリル酸メチル)標準物質の RI検出による溶出時間から求めた検量線を予め 作成し、測定試料の溶出時間を求め、検量線を用いて重量平均分子量に換算した。 [0116] In the present invention, the weight average molecular weight and molecular weight distribution can be measured by GPC (gel permeation chromatograph) method after dissolving in a predetermined organic solvent. For example, Glico The measurement of phosphoric acid and Z or glycolic acid condensate was performed using HFIP (hexafluoroisopropyl alcohol) in which 0.05% by weight of sodium trifluoroacetate was dissolved in a solvent at 35 ° C, 1 mlZ min. KD—806M + KD—805L + KD—803), molecular weights of known PMMA with molecular weights of 1.6 million, 760,000, 210,000, 550,000, 220,000, 0.7000, and 20,000 A calibration curve obtained from the elution time by RI detection of (polymethylmethacrylate) standard was prepared in advance, the elution time of the measurement sample was obtained, and converted to the weight average molecular weight using the calibration curve.
[0117] また、 exーヒドロキシカルボン酸及び Z又は exーヒドロキシカルボン酸縮合物をカロ 熱し、系内の水を留去する際、無触媒で行うこともできるが、脱水重縮合時間短縮の ために触媒を用いてもよい。用いる触媒の例としては、塩化第一錫、塩化第二錫、硫 酸第一錫、酸化第一錫、酸化第二錫、テトラフェニル錫、オクタン酸第一錫、酢酸第 一錫、酢酸第二錫などの錫系触媒、四塩化チタン、チタン酸イソプロピオネート、チタ ン酸ブチルなどのチタン系触媒、金属ゲルマニウム、四塩化ゲルマニウム、酸化ゲル マニウムなどのゲルマニウム系触媒、酸化亜鉛、三酸ィ匕アンチモン、酸化鉛、酸ィ匕ァ ルミ二ゥム、酸化鉄等の金属化物系触媒、メタンスルホン酸、エタンスルホン酸、ベン ゼンスルホン酸、トルエンスルホン酸等の有機スルホン酸触媒、硫酸、リン酸等の鉱 酸触媒が挙げられる。これらの触媒は、それぞれ単独で、あるいは 2種以上の組み合 わせて使用することができる。  [0117] In addition, when ex-hydroxycarboxylic acid and Z or ex-hydroxycarboxylic acid condensate are calo-heated and water in the system is distilled off, it can be carried out without a catalyst. A catalyst may be used. Examples of catalysts used are stannous chloride, stannic chloride, stannous sulfate, stannous oxide, stannic oxide, tetraphenyltin, stannous octoate, stannous acetate, stannous acetate Tin-based catalysts such as ditin, titanium-based catalysts such as titanium tetrachloride, isopropionate titanate, butyl titanate, germanium-based catalysts such as metal germanium, germanium tetrachloride, germanium oxide, zinc oxide, triacid金属 Metallized catalysts such as antimony, lead oxide, acid aluminum, iron oxide, etc., organic sulfonic acid catalysts such as methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, toluenesulfonic acid, sulfuric acid, phosphoric acid And mineral acid catalysts. These catalysts can be used alone or in combination of two or more.
[0118] 触媒を用いる場合は、触媒をその金属原子を基準として、 α—ヒドロキシカルボン 酸単量体 1モルに対し、好ましくは 1 X 10— 5〜: L0— 2当量、より好ましくは 3 Χ 10— 5〜5 Χ 10— 2当量の割合で添加する。触媒は、そのまま、あるいは適当な溶媒に溶解又は懸 濁して添加する。添カ卩は、一括でも分割でもよい。触媒は実質的に重縮合反応が完 結するまでの間であれば、 、ずれの時期に反応系に添カ卩してもょ 、。 When using the 0118] catalyst, the metal atoms based on the respect α- hydroxy carboxylic acid monomers 1 mol, preferably 1 X 10- 5 ~: L0- 2 equivalents, more preferably 3 chi It is added at a rate of 10- 5 ~5 Χ 10- 2 equivalents. The catalyst is added as it is, or dissolved or suspended in a suitable solvent. The accessory can be batched or divided. If the catalyst is substantially until the polycondensation reaction is completed, it can be added to the reaction system at the time of deviation.
[0119] 本発明により得られる環状二量体エステルは、前記 α—ヒドロキシカルボン酸及び[0119] The cyclic dimer ester obtained by the present invention contains the α-hydroxycarboxylic acid and
Ζまたは ocーヒドロキシカルボン酸縮合物力 得られる下記一般式 (6)示される化合 物である。 Amber or oc-hydroxycarboxylic acid condensate power This is a compound represented by the following general formula (6).
[0120] [化 13] [0120] [Chemical 13]
Figure imgf000021_0001
Figure imgf000021_0001
[0121] (上記式(6)中、 R1および R2は互いに同一であっても異なっていてもよい、水素また は炭素数 1〜4の直鎖状もしくは分岐状のアルキル基を示す。) (In the above formula (6), R 1 and R 2 represent hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms, which may be the same or different from each other. )
上記式 (6)において炭素数 1〜4の直鎖状アルキル基とはメチル基、ェチル基、 n プロピル基、 n ブチル基を示し、炭素数 1〜4の分岐状アルキル基とはイソプロピ ル基、イソブチル基、 sec ブチル基、 tert ブチル基を示す。これら基の中でも、好 ましくはメチル基、ェチル基である。式(6)で示される化合物中、 R1および R2の組合 せとしては、いずれか一方が水素であり他方が水素または炭素数 1〜4の直鎖または 分岐状のアルキル基が好ましく、 、ずれか一方が水素であり他方が水素またはメチ ル基またはェチル基がより好ましぐいずれか一方が水素であり他方が水素またはメ チル基さらに好ましぐ両方が水素であることが特に好ましい。 In the above formula (6), the linear alkyl group having 1 to 4 carbon atoms represents a methyl group, an ethyl group, an n propyl group, and an n butyl group, and the branched alkyl group having 1 to 4 carbon atoms is an isopropyl group. , Isobutyl group, sec butyl group, and tert butyl group. Among these groups, a methyl group and an ethyl group are preferable. In the compound represented by the formula (6), as the combination of R 1 and R 2 , either one is hydrogen and the other is hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms, It is particularly preferred that one of them is hydrogen and the other is hydrogen or a methyl group or an ethyl group, and one of them is more preferably hydrogen and the other is hydrogen or a methyl group, and more preferred is both hydrogen.
[0122] 上記式 (6)で表される環状二量体エステルの例としては、グリコール酸の環状二量 体であるグリコライド、乳酸の環状二量体であるラクタイド、 α -ヒドロキシプロピオン酸 の環状二量体が挙げられる。これら化合物の中でも、好ましくはグリコライド、ラタタイ ドであり、更に好ましくはグリコライドである。  [0122] Examples of the cyclic dimer ester represented by the above formula (6) include glycolide, which is a cyclic dimer of glycolic acid, lactide, which is a cyclic dimer of lactic acid, and α-hydroxypropionic acid. A cyclic dimer is mentioned. Among these compounds, glycolide and ratatide are preferable, and glycolide is more preferable.
[0123] 本発明に係る環状二量体エステルの製造方法は、以下に説明する [第一工程]及 び [第二工程]を含む点に特徴がある。以下、各工程ごとに説明する。  [0123] The method for producing a cyclic dimer ester according to the present invention is characterized in that it includes [first step] and [second step] described below. Hereinafter, each step will be described.
[0124] 本発明の環状二量体エステルの製造方法の第一工程は、本発明で得られる上記 式 (6)で表される環状二量体エステル (以下、環状二量体エステル (6)ともいう。)より も沸点の高いアルキレングリコールを α—ヒドロキシカルボン酸及び Ζ又は α—ヒドロ キシカルボン酸縮合物に添加して、重合反応し重合溶液を得る工程である。なお、 環状二量体エステルの製造方法において、第一工程とは、上述の重合反応を行い、 後述する第二工程での解重合が起こり、環状二量体エステルが留出し始めるまでを いう。 [0125] 以下、本発明の環状二量体エステルの製造方法の第一工程を詳細に説明する。 [0124] The first step of the production method of the cyclic dimer ester of the present invention is a cyclic dimer ester represented by the above formula (6) obtained by the present invention (hereinafter referred to as cyclic dimer ester (6)). This is a step of adding an alkylene glycol having a higher boiling point to α-hydroxycarboxylic acid and 及 び or α-hydroxycarboxylic acid condensate to obtain a polymerization solution by polymerization reaction. In the method for producing a cyclic dimer ester, the first step refers to the time until the above-described polymerization reaction is performed, the depolymerization in the second step described later occurs, and the cyclic dimer ester starts to distill. [0125] Hereinafter, the first step of the production method of the cyclic dimer ester of the present invention will be described in detail.
[0126] この第一工程にお!、ては、環状二量体エステル (6)よりも沸点の高 、アルキレング リコールを用いる点に特徴がある。 [0126] This first step is characterized in that an alkylene glycol having a boiling point higher than that of the cyclic dimer ester (6) is used.
[0127] 上記第一工程で用いるアルキレングリコールは、融点が 100°C以下さらに好ましく は融点が 70°C以下の液体であり、本発明によって得られる環状二量体 (6)より沸点 の高 、アルキレングリコールであれば特に制限されな!、。  [0127] The alkylene glycol used in the first step is a liquid having a melting point of 100 ° C or lower, more preferably 70 ° C or lower, and has a higher boiling point than the cyclic dimer (6) obtained by the present invention. If it is alkylene glycol, it will not be restricted in particular!
[0128] 本発明における沸点とは、 JIS K0066— 1992「化学製品の蒸留試験方法」に基 づ ヽて常圧(760mmHg)下で測定した沸点であり、減圧下にお ヽて測定した場合 には、常圧に換算した沸点を指す。減圧下で測定された沸点を、「基礎有機化学実 験 P155,丸善(1966) ;畑一夫著」の沸点換算図表に基づいて常圧の沸点へ換算し た。  The boiling point in the present invention is a boiling point measured under normal pressure (760 mmHg) based on JIS K0066-1992 “Method for Distillation Test of Chemical Products”, and when measured under reduced pressure. Refers to the boiling point converted to normal pressure. The boiling point measured under reduced pressure was converted to the boiling point of atmospheric pressure based on the boiling point conversion chart of “Basic Organic Chemistry Experiment P155, Maruzen (1966); Kazuo Hata”.
[0129] 本発明で用いるアルキレングリコールの沸点は、本発明で示す環状二量体の沸点 以上、好ましくは環状二量体の沸点より 5°C以上環状二量体の沸点より 350°C以下 の範囲であり、より好ましくは環状二量体の沸点より 50°C以上環状二量体の沸点より 300°C以下の範囲であり、さらに好ましくは環状二量体の沸点より 100°C以上環状二 量体の沸点より 250°C以下の範囲である。  [0129] The boiling point of the alkylene glycol used in the present invention is not less than the boiling point of the cyclic dimer shown in the present invention, preferably not less than 5 ° C from the boiling point of the cyclic dimer and not more than 350 ° C from the boiling point of the cyclic dimer. More preferably, it is in the range of 50 ° C or more from the boiling point of the cyclic dimer and 300 ° C or less from the boiling point of the cyclic dimer, more preferably 100 ° C or more from the boiling point of the cyclic dimer. The range is 250 ° C or less from the boiling point of the polymer.
[0130] 本発明の別の好ましい態様として、アルキレングリコールの沸点は、生成する環状 エステルの沸点よりも 30°C (常圧 (760mmHg)換算)以上高いことが好ましぐ生成す る環状エステルの沸点よりも 50°C (常圧 (760mmHg)換算)以上高 、ことがより好まし く、生成する環状エステルの沸点よりも 70°C (常圧 (760mmHg)換算)以上高 ヽこと が特に好ましぐ生成する環状エステルの沸点よりも 100°C (常圧 (760mmHg)換算) 以上高 、ことが最も好ま U、。  [0130] As another preferred embodiment of the present invention, the boiling point of the alkylene glycol is preferably 30 ° C (converted to normal pressure (760mmHg)) or more higher than the boiling point of the cyclic ester to be formed. More preferably, it is higher than the boiling point by 50 ° C (converted to normal pressure (760mmHg)), and more preferably 70 ° C (converted to normal pressure (760mmHg)) or higher than the boiling point of the cyclic ester produced. U, which is more than 100 ° C (converted to normal pressure (760mmHg)) above the boiling point of the cyclic ester to be produced.
[0131] アルキレングリコールの沸点が上記範囲にあることで、後述する第二工程において 、アルキレングリコールと生成物である環状二量体エステル (6)とを容易に分離でき る。  [0131] When the boiling point of the alkylene glycol is in the above range, the alkylene glycol and the product cyclic dimer ester (6) can be easily separated in the second step described later.
[0132] この第一工程にぉ 、て、環状二量体エステル (6)よりも沸点の高 、アルキレングリコ ールを用いる点に特徴がある。  [0132] This first step is characterized in that alkylene glycol having a boiling point higher than that of the cyclic dimer ester (6) is used.
[0133] このようなアルキレングリコールを第一工程で添加することで、アルキレングリコール の水酸基と、 ーヒドロキシカルボン酸及び Z又は α—ヒドロキシカルボン酸縮合物 の末端のカルボニル基とが反応をする。 [0133] By adding such an alkylene glycol in the first step, the alkylene glycol The hydroxyl group of-and the terminal carbonyl group of -hydroxycarboxylic acid and Z or α-hydroxycarboxylic acid condensate react.
[0134] したがって、この第一工程にぉ 、ては、環状二量体エステル (6)よりも沸点の高!ヽ アルキレングリコールを用いる点に特徴がある。  Therefore, the first step is characterized in that an alkylene glycol having a boiling point higher than that of the cyclic dimer ester (6) is used.
[0135] このようなアルキレングリコールを第一工程において添加することで、アルキレンダリ コールの水酸基と、 aーヒドロキシカルボン酸及び Z又は α—ヒドロキシカルボン酸 縮合物の末端のカルボニル基とが反応する。  [0135] By adding such an alkylene glycol in the first step, the hydroxyl group of the alkylene dallicol reacts with the terminal carbonyl group of the a-hydroxycarboxylic acid and the Z- or α-hydroxycarboxylic acid condensate.
[0136] したがって、この第一工程にぉ 、て環状二量体エステル (6)よりも沸点の高 、アル キレングリコールを用いることで、そのアルキレングリコールと α—ヒドロキシカルボン 酸及び Ζ又は aーヒドロキシカルボン酸縮合物との共重合体が得られ、その重合溶 液は第一工程の最後に到るまで均一であり、高い流動性が維持される傾向にある。  Therefore, by using an alkylene glycol having a boiling point higher than that of the cyclic dimer ester (6) in the first step, the alkylene glycol, α-hydroxycarboxylic acid and Ζ or a-hydroxy are used. A copolymer with a carboxylic acid condensate is obtained, and the polymerization solution is uniform until the end of the first step, and high fluidity tends to be maintained.
[0137] それに対し、この第一工程にぉ 、て、アルキレングリコールを添加せずに重合する と、重合体はホモポリマーとなり高分子量ィヒされる傾向にあるため、得られる重合溶 液が均一とならず、流動性も低下してしまう場合がある。  [0137] On the other hand, if the polymerization is performed without adding alkylene glycol in the first step, the polymer tends to be a homopolymer and has a high molecular weight, so that the resulting polymerization solution is uniform. In some cases, the fluidity may also decrease.
[0138] 本発明で用いるアルキレングリコールとは、 2個の水酸基が 2個の相異なる炭素原 子に結合している脂肪族化合物のことであり、第二工程で得られる環状二量体エス テルよりも沸点が高 、。得られる環状二量体エステル (6)がグリコライド (沸点: 240°C )である場合には、例えば、ジエチレングリコール (沸点: 244°C)、トリエチレングリコ ール(沸点: 287°C)、テトラエチレングリコール(沸点: 327°C)、ペンタエチレングリコ ール(沸点: 430°C)、へキサメチレングリコール(沸点: 440°C)、トリプロピレングリコ ール、テトラプロピレングリコール等が挙げられる。また、市販のアルキレングリコール を使用することができる。  [0138] The alkylene glycol used in the present invention is an aliphatic compound in which two hydroxyl groups are bonded to two different carbon atoms, and is a cyclic dimer ester obtained in the second step. Higher boiling point than. When the obtained cyclic dimer ester (6) is glycolide (boiling point: 240 ° C), for example, diethylene glycol (boiling point: 244 ° C), triethylene glycol (boiling point: 287 ° C), Examples include tetraethylene glycol (boiling point: 327 ° C), pentaethylene glycol (boiling point: 430 ° C), hexamethylene glycol (boiling point: 440 ° C), tripropylene glycol, and tetrapropylene glycol. Commercially available alkylene glycol can also be used.
[0139] 上記アルキレングリコールは、単独または 2種以上混合して用いても差し支えない。  [0139] The above alkylene glycols may be used alone or in admixture of two or more.
なお、本発明で用いるアルキレングリコールが 2種以上の混合物である場合において 、その混合物に含まれる最も沸点の低いアルキレングリコールの沸点を、その混合物 の沸点とする。  When the alkylene glycol used in the present invention is a mixture of two or more, the boiling point of the alkylene glycol having the lowest boiling point contained in the mixture is defined as the boiling point of the mixture.
[0140] また、本発明に用いるアルキレングリコールとして、ポリエチレングリコール、ポリプロ ピレンダリコール等のポリアルキレングリコールも挙げられる。好ましくはポリエチレン グリコール、ポリプロピレングリコールであり、更に好ましくはポリエチレングリコールで ある。 [0140] Examples of the alkylene glycol used in the present invention also include polyalkylene glycols such as polyethylene glycol and polypropylene glycol. Preferably polyethylene Glycol and polypropylene glycol, more preferably polyethylene glycol.
[0141] 本発明においてポリアルキレングリコールを使用する場合、生成する環状エステル よりも沸点が低い成分を実質的に含んでいない。例えば、環状二量体エステルであ るグリコライドを製造する際にポリエチレングリコールを用いる場合には、ポリエチレン グリコール中に、エチレングリコールなどの低沸点成分が実質的に含まれていないこ と力 子ましく、エチレングリコールなどの低沸点成分が全く含まれていないことが最も 好ましい。  [0141] When polyalkylene glycol is used in the present invention, it does not substantially contain a component having a lower boiling point than the cyclic ester to be produced. For example, when polyethylene glycol is used in the production of glycolide, which is a cyclic dimer ester, the polyethylene glycol is substantially free of low-boiling components such as ethylene glycol. Most preferably, no low-boiling components such as ethylene glycol are contained.
[0142] 本発明において、アルキレングリコールとして上記ポリアルキレングリコールを用い る場合、 THFを分解生成物として生じさせない観点からは、ポリエチレングリコール、 ポリプロピレングリコールが好ましい。また、入手の容易さからはポリエチレングリコー ルがより好ましい。  [0142] In the present invention, when the above polyalkylene glycol is used as the alkylene glycol, polyethylene glycol and polypropylene glycol are preferred from the viewpoint of not producing THF as a decomposition product. Further, polyethylene glycol is more preferable from the viewpoint of availability.
[0143] 本発明で用いるアルキレングリコールは環状二量体エステルの沸点以上の沸点を 有するものであればその分子量は特に制限されないが、その分子量は 100以上 900 未満が好ましぐより好ましくは 200〜800であり、さらに好ましくは 400〜600である 。また、操作面より常温で液体のものがより好ましい。  [0143] The molecular weight of the alkylene glycol used in the present invention is not particularly limited as long as it has a boiling point equal to or higher than that of the cyclic dimer ester, but the molecular weight is preferably 100 or more and less than 900, more preferably 200 to less than 200. 800, more preferably 400 to 600. Moreover, the thing of a liquid at normal temperature is more preferable than an operation surface.
[0144] 本発明で用いるアルキレングリコールが重合体の場合は、上記分子量とは、その平 均分子量である。  [0144] When the alkylene glycol used in the present invention is a polymer, the molecular weight is the average molecular weight.
アルキレングリコールとしてアルキレングリコールの重合体を用いる場合の平均分子 量は、その水酸基価を求め、その水酸基価力も換算式により求めた値である。  When an alkylene glycol polymer is used as the alkylene glycol, the average molecular weight is a value obtained by determining its hydroxyl value, and the hydroxyl value power is also determined by a conversion formula.
[0145] 例えば、ポリエチレングリコールの平均分子量を求める場合は、以下のようにして求 めることができる。 [0145] For example, when the average molecular weight of polyethylene glycol is determined, it can be determined as follows.
[0146] まず、 JIS K0070— 1992 (化学製品の酸価,けん化価,エステル価,よう素価, 水酸基価及び不けん化物の試験方法) 7.1 (中和滴定法)により水酸基価 (B)を求め る。  [0146] First, the hydroxyl value (B) was determined according to JIS K0070-1992 (Test method for acid value, saponification value, ester value, iodine value, hydroxyl value and unsaponified product of chemical products) 7.1 (neutralization titration method). Ask.
[0147] 求めた水酸基価 (B)を、下記換算式に代入して、平均分子量 (A)を算出する。  The average molecular weight (A) is calculated by substituting the determined hydroxyl value (B) into the following conversion formula.
[0148] 56106/B X 2=A [0148] 56106 / B X 2 = A
(A:平均分子量、 B :水酸基価、 56106 :換算係数) 上記平均分子量は、 100以上 900未満が好ましぐより好ましくは 200〜800であり 、さらに好ましくは 400〜600である。また、操作面より常温で液体のものがより好まし い。 (A: average molecular weight, B: hydroxyl value, 56106: conversion factor) The average molecular weight is preferably from 100 to less than 900, more preferably from 200 to 800, and even more preferably from 400 to 600. Also, liquids at room temperature are more preferred than the operation surface.
[0149] 添カ卩するアルキレングリコールの量は、 α—ヒドロキシカルボン酸類及び Z又は α ーヒドロキシカルボン酸縮合物を OCーヒドロキシカルボン酸に換算した値に対し、通 常 0. 01〜5モノレ倍好ましくは、 0. 01〜1モノレ倍さらに好ましくは 0. 01〜0. 5モノレ 倍である。  [0149] The amount of alkylene glycol to be added is usually from 0.01 to 5 monolayer times the value obtained by converting α-hydroxycarboxylic acids and Z or α-hydroxycarboxylic acid condensate into OC-hydroxycarboxylic acid. Preferably, it is 0.01 to 1 monolayer times, more preferably 0.01 to 0.5 monole times.
[0150] 上記モル数は、使用するアルキレングリコールの質量を、アルキレングリコールの分 子量で除した値である。  [0150] The number of moles is a value obtained by dividing the mass of the alkylene glycol used by the molecular weight of the alkylene glycol.
[0151] アルキレングリコールの用いる量が上記範囲にある場合には、反応液の流動性、 目 的物の精製速度、留出速度の点で優れる。  [0151] When the amount of alkylene glycol used is within the above range, the flowability of the reaction solution, the purification rate of the target product, and the distillation rate are excellent.
[0152] アルキレングリコールの添加方法は、一括でも分割でもよぐ添加の順序は問わな い。アルキレングリコールは実質的に重縮合反応が完結するまでの間であれば、い ずれの時期に反応系に添加してもよ!/、。  [0152] The addition method of the alkylene glycol may be in any order, either batchwise or divided. The alkylene glycol may be added to the reaction system at any time as long as the polycondensation reaction is substantially completed! /.
[0153] また、第一工程では重合反応の際、無触媒で重合反応を行っても、触媒を用いて もよい。用いる触媒の例としては、塩化第一錫、塩化第二錫、硫酸第一錫、酸化第一 錫、酸化第二錫、テトラフェニル錫、オクタン酸第一錫、酢酸第一錫、酢酸第二錫な どの錫系触媒、四塩化チタン、チタン酸イソプロピオネート、チタン酸ブチルなどのチ タン系触媒、金属ゲルマニウム、四塩化ゲルマニウム、酸化ゲルマニウムなどのゲル マニウム系触媒、酸化亜鉛、三酸化アンチモン、酸化鉛、酸化アルミニウム、酸化鉄 等の金属化物系触媒、メタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、ト ルエンスルホン酸等の有機スルホン酸触媒、硫酸、リン酸等の鉱酸触媒が挙げられ る。これらの触媒は、それぞれ単独で、あるいは 2種以上の組み合わせで使用するこ とができる。触媒を用いる場合は、触媒を、その金属原子を基準として、 α—ヒドロキ シカルボン酸単量体 1モルに対し、好ましくは 1 X 10— 5〜: L0— 2当量、より好ましくは 3 X 10— 5〜5 Χ 10— 2当量の割合で添加する。触媒は、そのまま、あるいは適当な溶媒に溶 解又は懸濁して添加する。添カ卩は、一括でも分割でもよい。触媒は実質的に重縮合 反応が完結するまでの間であれば、 、ずれの時期に反応系に添加してもよ 、。 [0154] 本発明で示す環状二量体エステルの製造方法の第二工程は、前記第一工程で得 られた重合溶液を加熱して反応及び蒸留を行 ヽながら環状二量体エステル (6)を得 る工程である。 [0153] In the first step, the polymerization reaction may be performed without a catalyst or a catalyst may be used during the polymerization reaction. Examples of catalysts used include stannous chloride, stannic chloride, stannous sulfate, stannous oxide, stannic oxide, tetraphenyltin, stannous octoate, stannous acetate, stannic acetate Tin-based catalysts such as tin, titanium-based catalysts such as titanium tetrachloride, isopropionate titanate, butyl titanate, germanium-based catalysts such as germanium metal, germanium tetrachloride, germanium oxide, zinc oxide, antimony trioxide, Metalized catalysts such as lead oxide, aluminum oxide and iron oxide, organic sulfonic acid catalysts such as methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid and toluene sulfonic acid, and mineral acid catalysts such as sulfuric acid and phosphoric acid The These catalysts can be used alone or in combination of two or more. When using a catalyst, the catalyst, the metal atom based, to α- hydroxy Shikarubon acid monomers 1 mol, preferably 1 X 10- 5 ~: L0- 2 equivalents, more preferably 3 X 10- 5 to 5 Χ 10— Add at a ratio of 2 equivalents. The catalyst is added as it is, or dissolved or suspended in a suitable solvent. The accessory can be batched or divided. If the catalyst is substantially until the polycondensation reaction is completed, it may be added to the reaction system at the time of deviation. [0154] In the second step of the production method of the cyclic dimer ester shown in the present invention, the cyclic dimer ester (6) is heated while performing the reaction and distillation by heating the polymerization solution obtained in the first step. It is a process to obtain.
[0155] 以下、第二工程を詳細に説明する。この第二工程においては、第一工程で得られ た α—ヒドロキシカルボン酸、及び Ζ又は α—ヒドロキシカルボン酸縮合物とアルキ レンダリコールとの重合物を常圧又は減圧下、加熱して解重合を含む反応と蒸留を 行!、ながら環状二量体エステルを留出させる点に特徴がある。  [0155] Hereinafter, the second step will be described in detail. In this second step, the α-hydroxycarboxylic acid obtained in the first step and the polymer of Ζ or α-hydroxycarboxylic acid condensate and alkylendalicol are heated under normal pressure or reduced pressure to depolymerize. It is characterized by distilling the cyclic dimer ester while carrying out the reaction and distillation including
[0156] 以下、本発明による環状二量体エステル製造方法の第二工程を詳細に説明する。 [0156] Hereinafter, the second step of the method for producing a cyclic dimer ester according to the present invention will be described in detail.
[0157] 本発明は、第二工程により得られる環状二量体エステル (6)よりも沸点の高いアル キレングリコールを用いて 、る点に特徴がある。 [0157] The present invention is characterized by using an alkylene glycol having a boiling point higher than that of the cyclic dimer ester (6) obtained in the second step.
[0158] 第一工程により得られる重合溶液には、高沸点のアルキレングリコールと aーヒドロ キシカルボン酸及び Z又は α—ヒドロキシカルボン酸縮合物との共重合体が含まれ ている。この共重合体は両末端に水酸基を有する。 [0158] The polymerization solution obtained in the first step contains a copolymer of a high-boiling alkylene glycol, a-hydroxycarboxylic acid, and a Z or α-hydroxycarboxylic acid condensate. This copolymer has hydroxyl groups at both ends.
[0159] 第一工程で得られる重合溶液中の重合体の両末端に水酸基があることで、第二ェ 程で加熱処理しても、解重合反応のみが効率的に進行し、得られる環状二量体エス テルの収率が高くなる。 [0159] The presence of hydroxyl groups at both ends of the polymer in the polymerization solution obtained in the first step allows only the depolymerization reaction to proceed efficiently even when heat-treated in the second step, and the resulting cyclic The yield of dimer ester is increased.
[0160] 一方、第一工程でアルキレングリコールを添加しな 、場合、第一工程で得られる重 合溶液はホモポリマーとなり、そのホモポリマーは末端のそれぞれに水酸基とカルボ キシル基を有する。この重合溶液を加熱処理しても、解重合反応のみが効率的には 起こらず、さらに重合反応が進行してしまう。その結果、第二工程の反応中において 、反応液の均一性が損なわれ、流動性も低下してしまう場合があり、環状二量体エス テルが高収率では得られな 、傾向にある。  [0160] On the other hand, when alkylene glycol is not added in the first step, the polymerization solution obtained in the first step becomes a homopolymer, and the homopolymer has a hydroxyl group and a carboxyl group at each end. Even if this polymerization solution is heat-treated, only the depolymerization reaction does not occur efficiently, and the polymerization reaction further proceeds. As a result, during the reaction in the second step, the homogeneity of the reaction solution may be impaired and the fluidity may be lowered, and the cyclic dimer ester tends not to be obtained in a high yield.
[0161] この第二工程における重合溶液の解重合の反応は、第一工程の重合反応よりも高 温で行う必要があるため、アルキレングリコールが低沸点成分を含むと収率を下げる 傾向にある。  [0161] Since the depolymerization reaction of the polymerization solution in the second step needs to be performed at a higher temperature than the polymerization reaction in the first step, the yield tends to decrease when the alkylene glycol contains a low-boiling component. .
[0162] したがって使用するアルキレングリコールが目的物の環状二量体エステルより高沸 点であることにより、アルキレングリコールに由来する低沸点成分が溜出しない傾向 にあり、 目的生成物の収率の純度が高くなる。 [0163] し力も、第二工程にぉ 、て、解重合生成物である環状二量体エステルの蒸留をし ても、第二工程の反応の最後に到るまで反応溶液が均一であり、解重合及び蒸留を 行う際に、当該重合溶液の流動性がよぐ且つ、また、蒸留後の蒸留釜中の釜残液 についても流動性があり、取り扱いも容易である。 [0162] Accordingly, since the alkylene glycol used has a higher boiling point than the cyclic dimer ester of the target product, the low-boiling components derived from the alkylene glycol tend not to distill out, and the purity of the target product yield Becomes higher. [0163] In the second step, even if the cyclic dimer ester as the depolymerization product is distilled, the reaction solution is uniform until the end of the reaction in the second step. When performing depolymerization and distillation, the polymerization solution has good fluidity, and the residual liquid in the distillation still after distillation is also fluid and easy to handle.
[0164] したがって、環状二量体エステルの留出速度が速ぐ効率的に環状二量体エステ ルを得ることができる。その留出速度は、 0. 20gZmin以上であり、好ましくは 0. 50 gZmin以上であり、さらに好ましくは 0. 80gZmin以上である。本発明において留 出速度とは環状二量体エステルの収量を環状二量体エステルの留出開始から終了 までの時間で除したものを!、う。  [0164] Therefore, a cyclic dimer ester can be efficiently obtained with a high distillation rate of the cyclic dimer ester. The distillation rate is 0.20 gZmin or more, preferably 0.50 gZmin or more, and more preferably 0.80 gZmin or more. In the present invention, the distillation rate is obtained by dividing the yield of the cyclic dimer ester by the time from the start to the end of the distillation of the cyclic dimer ester.
そのため、アルキレングリコールを添加せずに重合体を製造した場合と比較して、解 重合反応がより効率よく進行する傾向にある。  Therefore, the depolymerization reaction tends to proceed more efficiently as compared with the case where the polymer is produced without adding alkylene glycol.
[0165] 上記第二工程での反応温度は解重合を含む環状エステルの生成反応が起こり、 留出可能な温度であれば特に制限はされないが、好ましくは 50〜300°C、より好まし く ίま 100〜250oC、更【こ好ましく ίま 180〜250oC、特【こ好ましく ίま 180〜230oCであ る。 [0165] The reaction temperature in the second step is not particularly limited as long as it causes a cyclic ester-forming reaction including depolymerization and can be distilled, but is preferably 50 to 300 ° C. ί or 100~250 o C, further [this preferably ί or 180~250 o C, especially [this Ru preferably ί or 180~230 o C der.
[0166] 上記第二工程での反応の際の圧力は、好ましくは 101. 3〜0. lkPa、より好ましく ίま 10. 0〜0. lkPa、更に好ましく ίま 3. 0〜0. lkPaである。  [0166] The pressure during the reaction in the second step is preferably 101.3 to 0.1 lkPa, more preferably ί to 10.0 to 0.1 kPa, and further preferably ί to 3.0 to 0. lkPa. is there.
[0167] 本発明に係る環状二量体エステルの製造方法は、高収率で環状二量体エステル を得ることができる。その収率は、通常 65%以上であり、好ましくは 75%以上であり、 さらに好ましくは、 85%以上である。本発明で示す収率とは、第一工程で用いた α— ヒドロキシカルボン酸及び Ζ又は OCーヒドロキシカルボン酸縮合物の重縮合物量を第 二工程で得られた環状二量体エステルの収量で除したものをいう。  [0167] The method for producing a cyclic dimer ester according to the present invention can provide a cyclic dimer ester in a high yield. The yield is usually 65% or more, preferably 75% or more, and more preferably 85% or more. The yield shown in the present invention is the yield of the cyclic dimer ester obtained in the second step, based on the amount of polycondensate of α-hydroxycarboxylic acid and Ζ or OC-hydroxycarboxylic acid condensate used in the first step. It means what was divided.
[0168] また、本発明に係る製造方法によれば効率よくかつ高純度で環状二量体エステル を得ることができる。その純度は、 98%以上であり、好ましくは 99%以上である。本発 明で示す環状二量体エステルの純度は、ガスクロマトグラフで絶対検量線法により測 し 7こ。  [0168] Furthermore, according to the production method of the present invention, a cyclic dimer ester can be obtained efficiently and with high purity. Its purity is 98% or more, preferably 99% or more. The purity of the cyclic dimer ester shown in the present invention is 7 by gas chromatography using the absolute calibration curve method.
[0169] 本発明で得られる環状二量体エステル (6)は、従来公知の手法により再精製を行 わなくても、そのまま重合して高分子量体であるポリヒドロキシカルボン酸を製造でき る。即ち、本発明に係る製造方法で得られる環状二量体エステルは、公知公用の方 法、例えば重合開始剤及びエステル化触媒を加え重合することにより高分子量のポ リヒドロキシカルボン酸が得られる。使用する重合開始剤としては、メタノール、ェタノ 一ノレ、プロパノーノレ、ブタノーノレ、アミノレァノレコーノレ、カプリノレァノレコーノレ、シクロへキ サノール、ラウリルアルコール等の脂肪族飽和アルコール類、シクロペンタノール、シ クロへキサノール等の脂環式アルコール類、ジエチレングリコール等のグリコール類、 乳酸、ァミノフエノール、ァセトフヱノン等のフエノール類が挙げられる。その添加量は 環状二量体エステル類に対して、 0.001〜1重量0 /0、好ましくは 0.002〜0.2重量% である。使用するエステルイ匕触媒は従来力 知られているジオクタン酸第一スズ、力 プリル酸スズ等の有機スズ系、トリメチルアルミニウム、トリェチルアルミニウム、トリイソ ブチルアルミニウム等の有機アルミニウム系、ジェチル亜鉛、ジブチル亜鉛等の有機 亜鈴系等の触媒を単独若しくは 2種類以上組み合わせて使用することができる。その 添力卩量は環状二量体エステル類に対して 0. 001〜1重量%、好ましくは 0. 002-0. 5重量%である。好ましい重合温度は 50〜300°C、より好ましくは 100〜250°C、更 に好ましくは 180〜250°C、特に好ましくは 180〜230°Cである。 [0169] The cyclic dimer ester (6) obtained in the present invention can be polymerized as it is without re-purification by a conventionally known technique to produce a polyhydroxycarboxylic acid as a high molecular weight product. The That is, the cyclic dimer ester obtained by the production method according to the present invention is polymerized by adding a known and publicly used method, for example, a polymerization initiator and an esterification catalyst, to obtain a high molecular weight polyhydroxycarboxylic acid. Examples of the polymerization initiator used include aliphatic saturated alcohols such as methanol, ethanol monole, propanol, butanol, aminoleanolone, caplinolenoleconole, cyclohexanol, lauryl alcohol, cyclopentanol, Examples include cycloaliphatic alcohols such as cyclohexanol, glycols such as diethylene glycol, and phenols such as lactic acid, aminophenol, and acetophenone. The amount added of the cyclic dimer esters, 0.001 weight 0/0, preferably from 0.002 to 0.2 wt%. The Ester catalyst used is the conventionally known organic tin series such as stannous dioctanoate and tin triphosphate, organoaluminum series such as trimethylaluminum, triethylaluminum, triisobutylaluminum, etc., jetylzinc, dibutylzinc, etc. These organic dumbbell-based catalysts can be used alone or in combination of two or more. The amount of added force is 0.001 to 1% by weight, preferably 0.002 to 0.5% by weight, based on the cyclic dimer ester. The preferred polymerization temperature is 50 to 300 ° C, more preferably 100 to 250 ° C, further preferably 180 to 250 ° C, and particularly preferably 180 to 230 ° C.
[0170] 上述の第一工程、第二工程を経て得られる環状二量体エステルは、医療用材料に 用いる生体吸収性ポリマーであるポリヒドロキシカルボン酸の製造原料として、好適に 用いることができる純度を有しており、公知公用の重合方法により高分子量のポリヒド ロキシカルボン酸を得ることができる。このポリヒドロキシカルボン酸は純度の高!、環 状エステルが原料となって製造されるため、公知公用の方法でカ卩ェをすることにより[0170] The cyclic dimer ester obtained through the first step and the second step described above is a purity that can be suitably used as a raw material for producing polyhydroxycarboxylic acid, which is a bioabsorbable polymer used for medical materials. Thus, a high molecular weight polyhydroxycarboxylic acid can be obtained by a known publicly known polymerization method. This polyhydroxycarboxylic acid has high purity and is produced from cyclic esters as raw materials.
、多層ボトルやフィルム等の汎用用途をはじめ、特に、縫合糸ゃメディカルディバイス 等の医療用材料に好適に用いることができる。 In addition to general-purpose uses such as multilayer bottles and films, it can be suitably used for medical materials such as sutures and medical devices.
実施例  Example
[0171] 以下、実施例をあげて本発明をさらに詳細を説明するが、本発明はこれに限定され るものではない。  [0171] Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
[0172] 〔ォキシ環状エステルの製造〕 [Production of Oxycyclic Ester]
以下、ォキシ環状エステルの製造について説明するが、ォキシ環状エステル製造 の実施例において、部とあるのはいずれも重量基準である。また撹拌負荷、ォキシ環 状エステルの純度、重量平均分子量は、次に示す方法で測定した。 Hereinafter, the production of the oxy cyclic ester will be described. In the examples of the production of the oxy cyclic ester, all the parts are based on weight. Also stirring load, oxy ring The purity and weight average molecular weight of the ester-like ester were measured by the following methods.
( 1)攪拌負荷  (1) Stirring load
Heidolph社製の RZR2101トルクメーター付攪拌機を用 Vヽ回転数 200rpmにおける 攪拌軸に加わる力(Ncm : -ユートンセンチメートル)を測定した。  Using a stirrer with an RZR2101 torque meter manufactured by Heidolph, the force applied to the stirring shaft (Ncm: -Euton centimeter) at a rotation speed of 200 rpm was measured.
(2)ォキシ環状エステルの純度  (2) Purity of oxy cyclic ester
ガスクロマトグラフィーにより測定した。装置は島津製作所製 GC— 14A、検出器は水 素炎イオン化検出器 (FID)、カラムは化学物質評価研究機構製カラム (G300、 φ : 1. 2mm X 40m,膜厚: 2 m)を用いた。カラム温度を 160°C、インジェクション温度を 23 0°C、検出器温度を 230°Cとし、キャリアガスとして窒素を流量 lOmlZ分とした。試料 約 50mgをアセトン 10mlに溶解させ、 1 1を注入し測定した。あら力じめ、標準試料 を用いて検量線を作製しておき、その検量線を用いて環状エステルの純度の分析を 行った。 Measured by gas chromatography. The instrument is GC-14A manufactured by Shimadzu Corporation, the detector is a hydrogen flame ionization detector (FID), and the column is a column (G300, φ: 1.2 mm x 40 m, film thickness: 2 m) manufactured by Chemicals Evaluation and Research Institute. It was. The column temperature was 160 ° C, the injection temperature was 230 ° C, the detector temperature was 230 ° C, and nitrogen was used as the carrier gas at a flow rate of lOmlZ. About 50 mg of the sample was dissolved in 10 ml of acetone, and 11 was injected for measurement. A calibration curve was prepared using a standard sample, and the purity of the cyclic ester was analyzed using the calibration curve.
(3)重量平均分子量  (3) Weight average molecular weight
ゲルパーミエーシヨンクロマトグラフ法(GPC)により測定した。装置は Shodex製 syst em21を用いた。トリフルォロ酢酸ナトリウム 0. 05重量%を溶解させた HFIP (へキサ フルォロイソプロピルアルコール)を溶媒とし、 35°C、 lmlZ分でカラム(SHODEX 製 KD- 806M +KD- 805L +KD- 803)を通し、分子量 160万、 76万、 21万、 5. 5 万、 2. 2万、 0. 7万、 0. 2万の分子量既知 PMMA (ポリメタクリル酸メチル)標準物 質の RI検出による溶出時間から求めた検量線を予め作成した。測定試料の溶出時 間を求め、検量線を用いて PMMA換算の重量平均分子量に換算した。 Measured by gel permeation chromatography (GPC). The apparatus used was a sysdex em21 manufactured by Shodex. Using HFIP (hexafluoroisopropyl alcohol) in which 0.05% by weight of sodium trifluoroacetate was dissolved as a solvent, a column (SHODEX KD-806M + KD-805L + KD-803) was used at 35 ° C and lmlZ min. Through elution time by RI detection of PMMA (polymethyl methacrylate) standard materials with known molecular weights of 1.6 million, 760,000, 210,000, 550,000, 220,000, 0.7000, and 20,000 A calibration curve obtained from the above was prepared in advance. The elution time of the measurement sample was determined and converted to a PMMA equivalent weight average molecular weight using a calibration curve.
(4)アルキレングリコールに含まれる低沸点成分の測定  (4) Measurement of low boiling point components in alkylene glycol
ガスクロマトグラフィーにより測定した。装置は島津製作所製 GC— 14A、検出器は 水素炎イオン化検出器 (FID)、カラムは化学物質評価研究機構製カラム (G205、 φ : 1 .2mm X 40m (膜厚 : 2 μ τη)を用いた。カラム温度は 80°Cで 7分保持後、 10°C/分で 2 70°Cまで昇温し 30分保持した。インジヱクシヨン温度を 300°C、検出器温度を 300°C とし、キャリアガスとして窒素を流量 20mlZ分とした。試料約 lOOmgをアセトン 10ml に溶解させ、 1 μ 1を注入し測定した。あらかじめ、標準試料を用いて検量線を作製し ておき、その検量線を用いて各成分の分析を行った。 その結果は以下のとおりである。 Measured by gas chromatography. The instrument is GC-14A manufactured by Shimadzu Corporation, the detector is a flame ionization detector (FID), and the column is a column (G205, φ: 1.2mm X 40m (film thickness: 2 μ τη) manufactured by Chemical Substance Evaluation Research Organization) The column temperature was held at 80 ° C for 7 minutes, then increased to 2 70 ° C at 10 ° C / min and held for 30 minutes.Indication temperature was 300 ° C, detector temperature was 300 ° C, carrier Nitrogen was used as the gas at a flow rate of 20 ml Z. Approximately lOOmg of the sample was dissolved in 10 ml of acetone, and 1 μ 1 was injected, and a calibration curve was prepared using a standard sample in advance. Each component was analyzed. The results are as follows.
[0173] [表 1]  [0173] [Table 1]
Figure imgf000030_0001
Figure imgf000030_0001
[0174] (合成例 1)  [Synthesis Example 1]
96重量0 /0水酸ィ匕ナトリウム 170g(4. 08モノレ)とエチレングリコーノレ 1241. 4g (20. 0 モル)とを反応容器に仕込み 130°Cまで加熱した。その後トルエン 40gを力卩ぇ共沸脱 水しながら水 97. 6gを系外へ留去した。その後、 100°Cに温度を下げ、モノクロル酢 酸 189g (2. 0モル)を 1時間かけて装入し、さらに 1. 5時間攪拌した。ついで、反応 容器の圧力を 3. 3kPa、温度を 95°Cとし、トルエン 40g及びエチレングリコール 724. 6gを系外へ留去して反応液を濃縮した。その後、アセトン 920gを 1. 5時間かけて滴 下し晶析後、ろ過した。アセトン 232. 8gを用い濾塊を洗浄、乾燥して 一ヒドロキシ エトキシ酢酸ナトリウム 371. 2gを得た。このときの ヒドロキシエトキシ酢酸ナトリウ ムの取り出し収率は仕込みのモノクロル酢酸に対し 88. 1%であった。引き続き、 60 %メタノール水 670gを得られた j8—ヒドロキシエトキシ酢酸ナトリウム 371. 2gに加え 70°Cに加熱した後、アセトン 1170gを 2時間かけて滴下した。室温まで冷却してろ過 し、アセトン 490gで濾塊を洗浄後、乾燥して ]3—ヒドロキシエトキシ酢酸ナトリウム 33 5. 6gを得た。このときの ヒドロキシエトキシ酢酸ナトリウムの精製収率は仕込み のモノクロル酢酸に対し 82. 3%であった。引き続き、得られた j8—ヒドロキシエトキシ 酢酸ナ卜リウム 335. 6gに水 367gを加え、 35. 7重量0 /0の塩酸水 168. 9g (l. 65モ ル)で中和してヒドロキシエトキシ酢酸水溶液 871. 5gが得られた。 96 weight 0/0 Mizusani匕sodium 170 g (4. 08 Monore) and ethylene glycol Honoré 1241. 4g was heated to (20.0 mol) and the reaction vessel to feed 130 ° C. Thereafter, 97.6 g of water was distilled off from the system while azeotropically dehydrating 40 g of toluene. Thereafter, the temperature was lowered to 100 ° C., and 189 g (2.0 mol) of monochloroacetic acid was charged over 1 hour, followed by further stirring for 1.5 hours. Subsequently, the pressure in the reaction vessel was 3.3 kPa, the temperature was 95 ° C., 40 g of toluene and 724.6 g of ethylene glycol were distilled out of the system, and the reaction solution was concentrated. Thereafter, 920 g of acetone was added dropwise over 1.5 hours, followed by crystallization and filtration. The filter cake was washed with 232.8 g of acetone and dried to obtain 371.2 g of sodium monohydroxyethoxyacetate. The extraction yield of sodium hydroxyethoxyacetate at this time was 88.1% with respect to the monochloroacetic acid charged. Subsequently, after adding 670 g of 60% aqueous methanol to 371.2 g of sodium j8-hydroxyethoxyacetate obtained and heating to 70 ° C., 1170 g of acetone was added dropwise over 2 hours. After cooling to room temperature and filtering, the filter cake was washed with 490 g of acetone and dried to give 335.6 g of sodium 3-hydroxyethoxyacetate. The purification yield of sodium hydroxyethoxyacetate at this time was 82.3% with respect to the monochloroacetic acid charged. Subsequently, the resulting j8- hydroxyethoxy acetate Na Bok potassium 335. 6 g of water 367g was added to, hydroxyethoxy acetic acid was neutralized with 35.7 weight 0/0 hydrochloric acid aqueous 168. 9g (l. 65 molar) 871.5 g of aqueous solution was obtained.
(実施例 1A)  (Example 1A)
[第一工程] 合成例 1で得られたヒドロキシエトキシ酢酸水溶液 435. 8g (ヒドロキシェ トキシ酢酸 1. 0モル)に、テトラエチレンダリコール(沸点: 314°C) 32g (0.16モル)を 加え、圧力 8. 7kPa、温度 65°Cの条件下で水を留去 (脱水率: 99%)した後、アセトン 188gを加え晶析、ろ過し、 145gのアセトンで濾塊を洗浄した。さらに濾液中のァセト ンを圧力 101.3MPa、温度 65°Cから 120°Cの条件で留去した後、トルエン 20gをカロ え、圧力 101. 3MPa、温度 110°C〜150°C)の条件下で共沸脱水しながら重合反 応した。理論留去率が 99%になったので重合反応を終了した。この重合溶液の攪拌 負荷は 30°Cで 40Ncm、 80°Cで 30Ncmであり、重合溶液中の重合体の重量平均 分子量は 6800であった。 [First step] Tetraethylenedaricol (boiling point: 314 ° C) 32g (0.16mol) was added to the hydroxyethoxyacetic acid aqueous solution 435.8g (hydroxyethoxyacetic acid 1.0mol) obtained in Synthesis Example 1. In addition, water was distilled off under conditions of a pressure of 8.7 kPa and a temperature of 65 ° C. (dehydration rate: 99%), 188 g of acetone was added for crystallization and filtration, and the filter cake was washed with 145 g of acetone. Further, the acetone in the filtrate was distilled off under conditions of a pressure of 101.3 MPa and a temperature of 65 ° C to 120 ° C, then 20 g of toluene was removed, and the pressure was 101.3 MPa and the temperature was 110 ° C to 150 ° C. The polymerization reaction was carried out with azeotropic dehydration. Since the theoretical distillation rate reached 99%, the polymerization reaction was terminated. The stirring load of this polymerization solution was 40 Ncm at 30 ° C and 30 Ncm at 80 ° C, and the weight average molecular weight of the polymer in the polymerization solution was 6800.
[第二工程] 引き続き、第一工程で得られた重合溶液そのものを反応容器中で、圧 力 1. 3kPaの条件下、 150°Cに加熱しながら 3時間かけて解重合と蒸留を同時に行 い、 75. 6gの留出物を得た。留出物中の P-ジォキサノン純度は 99. 8重量%であり 、 P-ジォキサノン(沸点: 212°C)の取り出し収率はモノクロル酢酸換算で 73.9%であ つた。蒸留後の釜残の攪拌負荷は 30°Cで 40Ncm、 80°Cで 30Ncm、釜残の重量平 均分子量は 5000であった。  [Second step] Subsequently, the polymerization solution obtained in the first step itself was heated in a reaction vessel at a pressure of 1.3 kPa at 150 ° C for 3 hours while simultaneously performing depolymerization and distillation. 75.6 g of distillate was obtained. The purity of P-dioxanone in the distillate was 99.8% by weight, and the removal yield of P-dioxanone (boiling point: 212 ° C) was 73.9% in terms of monochloroacetic acid. The stirring load of the residue after distillation was 40 Ncm at 30 ° C, 30 Ncm at 80 ° C, and the weight average molecular weight of the residue was 5000.
(比較例 1A) (Comparative Example 1A)
[第一工程] 合成例 1で得られたヒドロキシエトキシ酢酸水溶液 435. 8gにテトラェチ レングリコールを添加しないこと以外は、実施例 1と同様に第一工程の操作を行った 。第一工程終了時、重合溶液の攪拌負荷は 30°Cで 40Ncm、 80°Cで 30Ncmであり 、重合体の重量平均分子量は 15000であった。  [First Step] The first step was carried out in the same manner as in Example 1 except that tetraethylene glycol was not added to 435.8 g of the hydroxyethoxyacetic acid aqueous solution obtained in Synthesis Example 1. At the end of the first step, the stirring load of the polymerization solution was 40 Ncm at 30 ° C, 30 Ncm at 80 ° C, and the weight average molecular weight of the polymer was 15000.
[第二工程] 引き続き、第一工程で得られた重合溶液そのものを反応容器中で、圧 力 1. 3kPaの条件下、 150°Cに加熱しながら 12時間かけて解重合及び蒸留を同時 に行い、 65. 5gの留出物を得た。留出物中の P-ジォキサノン純度は 99. 7重量%で あり、 P-ジォキサノンの取り出し収率はモノクロル酢酸換算で 63.9%であった。蒸留 直後の釜残は粘調な液体であり、室温まで冷却し放置すると固化した。この蒸留後 の釜残の攪拌負荷は 30°Cで 110Ncm、 80°Cで 100Ncm、釜残の重量平均分子量 は 19000であった。  [Second step] Subsequently, the polymerization solution obtained in the first step itself was heated in a reaction vessel at a pressure of 1.3 kPa at 150 ° C for 12 hours while simultaneously performing depolymerization and distillation. And 65.5 g of distillate was obtained. The purity of P-dioxanone in the distillate was 99.7% by weight, and the yield of P-dioxanone was 63.9% in terms of monochloroacetic acid. The residue in the kettle immediately after distillation was a viscous liquid that solidified when cooled to room temperature and left to stand. The stirring load of the residue after distillation was 110 Ncm at 30 ° C, 100 Ncm at 80 ° C, and the weight average molecular weight of the residue was 19000.
(実施例 3A) (Example 3A)
実施例 1Aのテトラエチレングリコールを平均分子量 400のポリエチレングリコール( 沸点: 314°C :エチレングリコール、ジエチレングリコールおよびトリエチレングリコー ルは不検出)に変更した以外は、実施例 1と同様の操作により p—ジォキサノンを得た 。第一工程で得られる重合溶液の撹拌負荷は 30°Cで 40Ncm、 80°Cで 30Ncmであ り、重合溶液中の重合体の重量平均分子量は 8000であった。第二工程では 3時間 力けて純度 99. 7%の p—ジォキサノン 78. 6gを留出させた。 p—ジォキサノンの取り 出し収率はモノクロル酢酸換算で 76.7%であった。蒸留後の釜残の攪拌負荷は 30 °Cで 40Ncm、 80°Cで 30Ncmであり、釜残の重量平均分子量は 7000であった。 (参考例 1A) Example 1 Tetraethylene glycol of 1A and polyethylene glycol having an average molecular weight of 400 (boiling point: 314 ° C: ethylene glycol, diethylene glycol and triethylene glycol) P-dioxanone was obtained in the same manner as in Example 1, except that the change was changed to “not detected”. The stirring load of the polymerization solution obtained in the first step was 40 Ncm at 30 ° C and 30 Ncm at 80 ° C, and the weight average molecular weight of the polymer in the polymerization solution was 8000. In the second step, 78.6 g of p-dioxanone having a purity of 99.7% was distilled out by heating for 3 hours. The yield of p-dioxanone was 76.7% in terms of monochloroacetic acid. The stirring load of the residue after distillation was 40 Ncm at 30 ° C and 30 Ncm at 80 ° C, and the weight average molecular weight of the residue was 7000. (Reference Example 1A)
実施例 1で得られた P—ジォキサノン 70g (0.69モル)、ラウリルアルコール 60mg、ォ クタン酸スズ 70mgを仕込み、 90°Cで 10時間反応した。得られたポリ(p—ジォキサノ ン)の重量平均分子量は 30万であった。  70 g (0.69 mol) of P-dioxanone obtained in Example 1, 60 mg of lauryl alcohol and 70 mg of stannous octoate were added and reacted at 90 ° C. for 10 hours. The resulting poly (p-dioxanone) had a weight average molecular weight of 300,000.
[0175] 〔環状二量体エステルの製造〕 [Production of cyclic dimer ester]
以下、環状二量体エステル製造について説明する。  Hereinafter, production of the cyclic dimer ester will be described.
[0176] 尚、本発明による環状二量体エステル製造における主な物性は、下記の方法にて 測定した。 [0176] The main physical properties in the production of the cyclic dimer ester according to the present invention were measured by the following methods.
[0177] (1)重量平均分子量 (第一工程で得られる重合体)  [0177] (1) Weight average molecular weight (polymer obtained in the first step)
ゲルパーミエーシヨンクロマトグラフ法 (GPC)により測定した。装置は Shodex製 sy stem21を用いた。トリフルォロ酢酸ナトリウム 0. 05重量%を溶解させた HFIP (へキ サフルォロイソプロピルアルコール)を溶媒とし、 35°C、 lmlZ分でカラム(SHODE X製 KD— 806M+KD— 805L+KD— 803)を通し、分子量 160万、 76万、 21万 、 5. 5万、 2. 2万、 0. 7万、 0. 2万の分子量既知 PMMA (ポリメタクリル酸メチル)標 準物質の RI検出による溶出時間から求めた検量線を予め作成した。測定試料の溶 出時間を求め、検量線を用いて PMMA換算の重量平均分子量に換算した。  It was measured by gel permeation chromatography (GPC). The apparatus used was sy stem21 manufactured by Shodex. Column with HFIP (hexafluoroisopropyl alcohol) dissolved in 0.05% by weight of sodium trifluoroacetate at 35 ° C and lmlZ min. (SHODE X KD—806M + KD—805L + KD—803) Elution of PMMA (polymethyl methacrylate) standard substances with molecular weights of 1.6 million, 760,000, 210,000, 550,000, 220,000, 70,000, and 20,000 by RI detection A calibration curve obtained from the time was prepared in advance. The dissolution time of the measurement sample was determined, and converted to PMMA equivalent weight average molecular weight using a calibration curve.
[0178] (2)融点 (Tm)  [0178] (2) Melting point (Tm)
島津製作所製示差熱分析計 DSC-60シリーズを用い、以下の条件で測定した。  Using a DSC-60 series differential thermal analyzer manufactured by Shimadzu Corporation, the measurement was performed under the following conditions.
[0179] aーヒドロキシカルボン酸重縮合物の場合は、約 10mgの試料をアルミパンに詰め 、 50mlZ分の窒素気流下、室温から 10°CZ分の速度で 280°Cまで昇温させ、吸熱 ピークの温度を融点とした。  [0179] In the case of a-hydroxycarboxylic acid polycondensate, about 10 mg of sample is packed in an aluminum pan, heated from room temperature to 280 ° C at a rate of 10 ° CZ under a nitrogen stream of 50 mlZ, and endothermic. The peak temperature was taken as the melting point.
[0180] 環状二量体エステルの場合は、約 10mgの試料をアルミパンに詰め、 50mlZ分の 窒素気流下、室温から 5°CZ分の速度で 150°Cまで昇温させ、吸熱ピークの温度を 融点とした。 [0180] In the case of cyclic dimer ester, about 10 mg of sample is packed in an aluminum pan, Under a nitrogen stream, the temperature was raised from room temperature to 150 ° C at a rate of 5 ° CZ, and the endothermic peak temperature was taken as the melting point.
(3)グリコール酸の分析 (高速液体クロマトグラフ法)  (3) Analysis of glycolic acid (high performance liquid chromatographic method)
曰本分光製 高速液体クロマトグラフ装置(PU- 1580、 UV- 970、 CO- 965)に Sho (16 製カラム1^1^1^« -811を接続し、 0. 05%リン酸水溶液を溶離液とし、カラム 温度 35°C、溶離液の流速を 0.8mlZ分、 210nmの波長で内部標準法により分析し た。 Sho (16 column 1 ^ 1 ^ 1 ^ «-811) was connected to a high-performance liquid chromatograph (PU-1580, UV-970, CO-965) manufactured by Enomoto Spectroscopy, and 0.05% phosphoric acid aqueous solution was eluted. The sample was analyzed by an internal standard method at a column temperature of 35 ° C, an eluent flow rate of 0.8 mlZ, and a wavelength of 210 nm.
(4)グリコール酸中の水分分析(力ールフィッシャー法)  (4) Moisture analysis in glycolic acid (force Fischer method)
京都電子製 カールフィッシャー水分計 MCK-510Nにおいて、発生液にリーデル デハーン製ハイドラナールクローマット A :、対極液にリーデルデハーン製ハイドラナ ールクローマット CG-Kを用いて分析を行なった。 In the Karl Fischer moisture meter MCK-510N manufactured by Kyoto Electronics Co., Ltd., analysis was performed using Riedel De Haan Hydranal Claw Mat A as the generation solution and Riedel De Haan Hydranal Chromat CG-K as the counter electrode solution.
(5)グリコライドの純度 (ガスクロマトグラフ法)  (5) Purity of glycolide (gas chromatographic method)
ガスクロマトグラフィーにより測定した。装置は島津製作所製 GC— 14A、検出器は水 素炎イオン化検出器 (FID)、カラムは化学物質評価研究機構製カラム (G250、 : 1 . 2mm X 40m、膜厚: 2 μ m)を用いた。カラム温度を 150°C、インジェクション温度を 2 90°C、検出器温度を 290°Cとし、キャリアガスとして窒素を流量 lOmlZ分とした。試 料約 50mgをアセトン 10mlに溶解させ、 3 1を注入し測定した。あら力じめ、標準試 料を用いて検量線を作製しておき、その検量線を用いてグリコライドの純度の分析を 行った。 Measured by gas chromatography. The instrument is GC-14A manufactured by Shimadzu Corporation, the detector is a hydrogen flame ionization detector (FID), and the column is a column (G250, 1.2 mm X 40 m, film thickness: 2 μm) manufactured by the Chemical Substance Evaluation Research Organization. It was. The column temperature was 150 ° C, the injection temperature was 290 ° C, the detector temperature was 290 ° C, and nitrogen was used as the carrier gas at a flow rate of lOmlZ. About 50 mg of the sample was dissolved in 10 ml of acetone, and 31 was injected for measurement. First, a calibration curve was prepared using a standard sample, and the purity of glycolide was analyzed using the calibration curve.
(6)収率  (6) Yield
収率は次式により算出した。 The yield was calculated by the following formula.
収率 (%) = (aZb) X 100 Yield (%) = (aZb) X 100
a:環状二量体エステルの収量 (g) a: Yield of cyclic dimer ester (g)
b:第一工程で用いた α—ヒドロキシカルボン酸及び/又は aーヒドロキシカルボン 酸縮合物の重量重縮合物量 (g) b: Weight polycondensate amount of α-hydroxycarboxylic acid and / or a-hydroxycarboxylic acid condensate used in the first step (g)
(7)留出速度  (7) Distillation speed
留出速度は次式により算出した。  The distillation rate was calculated by the following formula.
留出速度 (gZmin) = aZt a:環状二量体エステルの収量 (g) Distillation rate (gZmin) = aZt a: Yield of cyclic dimer ester (g)
t:環状二量体エステルの留出開始から終了までの時間(min)  t: Time from the start to the end of distillation of the cyclic dimer ester (min)
(8)アルキレングリコールに含まれる低沸点成分の測定  (8) Measurement of low boiling point components contained in alkylene glycol
ガスクロマトグラフィーにより測定した。装置は島津製作所製 GC— 14A、検出器は 水素炎イオン化検出器 (FID)、カラムは化学物質評価研究機構製カラム (G205、 φ: 1. 2mm X 40m (膜厚: 2 m)を用いた。カラム温度は 80°Cで 7分保持後、 10°C/分 で 270°Cまで昇温し 30分保持した。インジェクション温度を 300°C、検出器温度を 30 0°Cとし、キャリアガスとして窒素を流量 20mlZ分とした。試料約 lOOmgをアセトン 1 Omlに溶解させ、 1 μ 1を注入し測定した。あらカゝじめ、標準試料を用いて検量線を作 製しておき、その検量線を用いて各成分の分析を行った。  Measured by gas chromatography. The instrument was GC-14A manufactured by Shimadzu Corporation, the detector was a flame ionization detector (FID), and the column was a column (G205, φ: 1.2 mm x 40 m (film thickness: 2 m), manufactured by Chemicals Evaluation and Research Institute. The column temperature was held at 80 ° C for 7 minutes, then heated to 270 ° C at 10 ° C / min and held for 30 minutes.Injection temperature was 300 ° C, detector temperature was 300 ° C, carrier gas Nitrogen was used at a flow rate of 20 ml Z. Approximately lOO mg of sample was dissolved in 1 O ml of acetone, and 1 μ1 was injected and measured, and a calibration curve was prepared using a standard sample. Each component was analyzed using a calibration curve.
その結果は以下のとおりである。  The results are as follows.
[0181] [表 2] [0181] [Table 2]
Figure imgf000034_0001
Figure imgf000034_0001
[0182] 以下に、実験装置、合成例、実施例、比較例を挙げて、本発明により具体的に説明 する。  [0182] The present invention will be specifically described below with reference to experimental apparatuses, synthesis examples, examples, and comparative examples.
(実験装置)  (Experimental device)
500π 四つ口フラスコに攪拌翼、温度計、留出ラインを接続し、留出ラインの出口 には真空ライン及び受器を取り付けた。フラスコ加熱用にマントルヒーターを用い、留 出ラインには環状二量体エステルの固化防止のため、リボンヒーターを用いて 90°C に保温し、受器はオイルバスを用いて 90°Cに保温したものを使用した。  A 500π four-necked flask was connected with a stirring blade, thermometer, and distillation line, and a vacuum line and a receiver were attached to the outlet of the distillation line. A mantle heater is used to heat the flask, and the distillate line is kept at 90 ° C using a ribbon heater to prevent solidification of the cyclic dimer ester, and the receiver is kept at 90 ° C using an oil bath. We used what we did.
(合成例 1B)  (Synthesis Example 1B)
500mlのフラスコにグリコール酸水溶液 500gを装入した。大気圧下、攪拌しながら 1 40°Cまで 2時間かけて加熱昇温し、生成水を留出させた。尚、ここで使用したグリコ ール酸水溶液の組成は次の通りである。分析は高速液体クロマトグラフ法及びカー ルフィッシャー法によって行った。 A 500 ml flask was charged with 500 g of an aqueous glycolic acid solution. Under atmospheric pressure, with stirring, the temperature was raised to 140 ° C over 2 hours, and the produced water was distilled off. Glico used here The composition of the aqueous oxalic acid solution is as follows. Analysis was performed by high performance liquid chromatography and Karl Fischer methods.
グリコール酸 58. 4重量%  Glycolic acid 58.4 wt%
グリコール酸二量体 9. 9重量%  Glycolic acid dimer 9.9 wt%
シユウ酸 0. 01重量%  Oxalic acid 0.01% by weight
水 29. 8重量%  Water 29.8% by weight
次いで、内圧を 6. OkPaに減圧し、 200°Cまで昇温して、更に生成水を留出させ、グ リコール酸縮合物(1)を得た。得られた縮合物の重量平均分子量は 8000 (m= 1〜 902)、融点(Tm)は 215°Cであった。 Next, the internal pressure was reduced to 6. OkPa, the temperature was raised to 200 ° C., and the produced water was further distilled to obtain a glycolic acid condensate (1). The resulting condensate had a weight average molecular weight of 8000 (m = 1 to 902) and a melting point (Tm) of 215 ° C.
(合成例 2B) (Synthesis Example 2B)
500mlのフラスコに合成例 1Bで用いたグリコール酸水溶液 500gを装入した。大気 圧下、攪拌しながら 140°Cまで 2時間かけて昇温し、生成水を留出させた。次いで、 内圧を 6. OkPaにまで減圧し、 140°Cで保持し、更に生成水を留出させ、グリコール 酸縮合物(2)を得た。得られた縮合物の重量平均分子量は 6000 (m= 1〜777)、 T mは 172°Cであった。  A 500 ml flask was charged with 500 g of the aqueous glycolic acid solution used in Synthesis Example 1B. The temperature was raised to 140 ° C over 2 hours with stirring under atmospheric pressure to distill the product water. Next, the internal pressure was reduced to 6. OkPa and maintained at 140 ° C., and the produced water was further distilled to obtain a glycolic acid condensate (2). The resulting condensate had a weight average molecular weight of 6000 (m = 1 to 777) and T m of 172 ° C.
(合成例 3B) (Synthesis Example 3B)
合成例 2Bにおいて得られたグリコール酸縮合物(1)を粉砕し、得られた粉砕物を篩 い分けして径 1. 0〜2. 8mmの粉砕物を分別した。分別した粉砕物を SUS製カラム 管に充填し、窒素気流下で、 200°C、 20時間加熱した。加熱終了後、室温まで冷却 し、グリコール酸縮合物(3)を得た。得られた縮合物の重量平均分子量は 4. 1万 (m = 1〜3123)、 Tmは 228°Cであった。 The glycolic acid condensate (1) obtained in Synthesis Example 2B was pulverized, and the obtained pulverized product was sieved to fractionate a pulverized product having a diameter of 1.0 to 2.8 mm. The separated pulverized product was filled in a SUS column tube and heated at 200 ° C. for 20 hours under a nitrogen stream. After completion of the heating, the mixture was cooled to room temperature to obtain a glycolic acid condensate (3). The resulting condensate had a weight average molecular weight of 410,000 (m = 1-3123) and Tm of 228 ° C.
(合成例 4B) (Synthesis Example 4B)
合成例 3Bにおいて得られたグリコール酸縮合物(3)を再度 SUS製カラム管に充填 し、更に 220°Cの窒素気流下で 20時間固相重合させ、グリコール酸縮合物 (4)を得 た。得られた縮合物の重量平均分子量は 7. 2万 (m= l〜4949)、 Tmは 232°Cであ つ 7こ。 The glycolic acid condensate (3) obtained in Synthesis Example 3B was filled again into a SUS column tube and further subjected to solid phase polymerization under a nitrogen stream at 220 ° C. for 20 hours to obtain a glycolic acid condensate (4). . The resulting condensate has a weight average molecular weight of 72,000 (m = 1 to 4949) and a Tm of 232 ° C.
(合成例 5B)  (Synthesis Example 5B)
合成例 4Bにお 、て得られたグリコール酸縮合物 (4)を再度 SUS製カラム管に充填 し、更に 220°Cの窒素気流下で 20時間固相重合させ、グリコール酸縮合物(5)を得 た。得られた縮合物の分子量は 10. 0万(m= l〜7995)、 Tmは 236°Cであった。 (実施例 IB) In Synthesis Example 4B, the glycolic acid condensate (4) obtained above is packed again into a SUS column tube. Further, solid state polymerization was performed under a nitrogen stream at 220 ° C. for 20 hours to obtain a glycolic acid condensate (5). The obtained condensate had a molecular weight of 10,000,000 (m = l to 7995) and Tm of 236 ° C. (Example IB)
第一工程として、合成例 1Bで得られたグリコール酸縮合物(1) 270gを 500mlフラス コに装入し、ポリエチレングリコール 400 [和光純薬 (株)製 PEG # 400 (液体)、沸点 314°C :エチレングリコール、ジエチレングリコールおよびトリエチレングリコールは不 検出(カタログ値:沸点 450°C以上)、凝固点 4〜8°C、重量平均分子量約 400 (以下 、 PEG # 400という)] 113. 4gを加えた。窒素雰囲気下、 1. OkPaの減圧条件下で、 グリコール酸縮合物と PEG # 400との混合物を 230°Cまで加熱した。この加熱により 、重合反応が進行する。得られた重合物は、ポリエチレングリコール 400と均一に溶 解し、流動性が確保され、且つ、相分離していないことが目視により確認された。 さらに加熱を続けることにより、解重合反応が開始し、環状二量体エステルであるグ リコライド (GLD)が留出して受器にたまり出し、第二工程が開始した。グリコライドの 留出が実質的に止むまで上記温度で加熱してグリコライドを捕集した。留出時間は 2 70分であった。留出終了後、フラスコ内を観察したところ残渣が存在した。第一工程 、第二工程とも重合物の流動性はよぐ特に問題なく操作することができた。フラスコ と受器との間の溜出ラインには、溜出物の付着が認められたが、その蓄積量は僅少 であった。受器に捕集したグリコライド (融点: 92〜93°C、沸点: 240°C)であり、収率 は 88%、純度は 99. 86%であった。留出速度は 0. 87gZminであった。 As a first step, 270 g of the glycolic acid condensate (1) obtained in Synthesis Example 1B was charged into a 500 ml flask, and polyethylene glycol 400 [PEG # 400 (liquid), Wako Pure Chemical Industries, Ltd., boiling point 314 ° C: Ethylene glycol, diethylene glycol and triethylene glycol are not detected (catalog value: boiling point 450 ° C or higher), freezing point 4-8 ° C, weight average molecular weight about 400 (hereinafter referred to as PEG # 400)] It was. Under a nitrogen atmosphere: 1. A mixture of glycolic acid condensate and PEG # 400 was heated to 230 ° C under reduced pressure of OkPa. The polymerization reaction proceeds by this heating. It was confirmed by visual observation that the obtained polymer was uniformly dissolved in polyethylene glycol 400, fluidity was ensured, and no phase separation was observed. By continuing the heating, the depolymerization reaction was started, and the cyclic dimer ester glycolide (GLD) was distilled out and accumulated in the receiver, and the second step was started. The glycolide was collected by heating at the above temperature until the distillation of glycolide substantially stopped. Distillation time was 270 minutes. When the inside of the flask was observed after completion of the distillation, a residue was present. In both the first step and the second step, the flowability of the polymer could be operated without any particular problems. Distillate was found adhering to the distilling line between the flask and the receiver, but the accumulated amount was very small. It was glycolide (melting point: 92-93 ° C, boiling point: 240 ° C) collected in the receiver, and the yield was 88% and the purity was 99.86%. The distillation rate was 0.87 gZmin.
(実施例 2B) (Example 2B)
PEG # 400の添加量を 53. 3gとした以外は、実施例 1Bと同様の操作を行った。第 一工程で得られた重合物は、 PEG # 400と均一に溶解し、流動性が確保され、且つ 、相分離していないことが目視により確認された。さらに加熱を続けることにより、解重 合反応が開始し、生成した環状二量体エステルであるグリコライド (GLD)が留出して 受器にたまり出し、第二工程が開始した。環状二量体エステル (グリコライド)の留出 が実質的に止むまで上記温度範囲(230°C)で加熱して留出物を捕集した。留出終 了後、フラスコ内を観察したところ重縮合物と PEG # 400が残渣として見られた。フラ スコと受器との間の溜出ラインには、留出物の付着が認められたが、その蓄積量は僅 少であった。受器に捕集した環状二量体エステルはグリコライドであり、収率は 88. 1 %、純度は 99. 83%であった。留出速度は 0. 54gZminであった。 The same operation as in Example 1B was performed except that the addition amount of PEG # 400 was changed to 53.3 g. It was visually confirmed that the polymer obtained in the first step was uniformly dissolved with PEG # 400, fluidity was ensured, and no phase separation was observed. By further heating, the depolymerization reaction started, and the generated cyclic dimer ester, glycolide (GLD), distilled out and accumulated in the receiver, and the second step was started. The distillate was collected by heating in the above temperature range (230 ° C.) until the distillation of the cyclic dimer ester (glycolide) substantially stopped. After completion of the distillation, the inside of the flask was observed, and polycondensate and PEG # 400 were observed as residues. Distillate was found adhering to the distilling line between the flask and the receiver, but the accumulated amount was small. It was small. The cyclic dimer ester collected in the receiver was glycolide, and the yield was 88.1% and the purity was 99.83%. The distillation rate was 0.54 gZmin.
(実施例 3B) (Example 3B)
第一工程として、合成例 4Bで調整したグリコール酸縮合物 (4) 206. 2gを 500mlフ ラスコに装入し、 PEG # 400 82. 6g加えた。窒素ガス雰囲気下、 1. OkPaの減圧 条件下で、グリコール酸縮合物と PEG # 400との混合物を 230°Cに加熱した。この 加熱により、重合反応が進行する。得られた重合物は、 PEG # 400と均一〖こ溶解し、 流動性が確保され、且つ、相分離していないことが目視により確認された。さらに加 熱を続けることにより、解重合反応が開始し、生成した環状二量体エステル (グリコラ イド)が留出して受器にたまり出し、第二工程が開始した。環状二量体エステル (ダリ コライド)の留出が実質的に止むまで上記温度範囲で加熱して留出物を捕集した。 留出終了後、フラスコ内を観察したところ重縮合物と PEG # 400とが残渣として見ら れた。フラスコと受器との間の留出ラインには、環状二量体エステルの付着が認めら れたが、その蓄積量は僅少であった。受器に捕集した環状二量体エステルはグリコラ イドであり、収率は 89. 3%、純度は 99. 85%であった。留出速度は 2. 05gZminで あつ 7こ。 As a first step, 206.2 g of the glycolic acid condensate (4) prepared in Synthesis Example 4B was charged into a 500 ml flask, and 82.6 g of PEG # 400 was added. Under a nitrogen gas atmosphere: 1. A mixture of glycolic acid condensate and PEG # 400 was heated to 230 ° C under reduced pressure of OkPa. This heating causes the polymerization reaction to proceed. It was confirmed by visual observation that the obtained polymer was uniformly dissolved with PEG # 400, fluidity was ensured, and no phase separation was observed. By further heating, the depolymerization reaction started, and the produced cyclic dimer ester (glycolide) was distilled out and accumulated in the receiver, and the second step was started. The distillate was collected by heating in the above temperature range until the distillation of the cyclic dimer ester (dalicolide) substantially stopped. After completion of the distillation, the inside of the flask was observed, and polycondensate and PEG # 400 were seen as residues. The distillate line between the flask and the receiver was found to have a cyclic dimer ester, but the accumulated amount was very small. The cyclic dimer ester collected in the receiver was glycolide, and the yield was 89.3% and the purity was 99.85%. Distillation rate is 2. 05gZmin and 7 at a time.
(実施例 4B) (Example 4B)
第一工程として、合成例 3Bで調整したグリコール酸縮合物(3) 200. 5gを 500mlフ ラスコに装人し、 PEG # 400 84. 9gカロ免た。蜜素ガス雰囲気下で、力つ、 1. OkPa の減圧条件下で、グリコール酸縮合物と PEG # 400との混合物を 230°Cに加熱した 。この加熱により、重合反応が進行する。得られた重合物は、 PEG # 400と均一に溶 解し、相分離していないことが目視により確認された。さらに加熱を続けることにより、 解重合反応が開始し、生成した環状二量体エステル (グリコライド)が留出して受器に たまり出し、第二工程が開始した。環状二量体エステル (グリコライド)の留出が実質 的に止むまで上記温度範囲で加熱して留出物を捕集した。留出終了後、フラスコ内 を観察したところ重縮合物と PEG # 400とが残渣として見られた。フラスコと受器との 間の留出ラインには、環状二量体エステルの付着が認められたが、その蓄積量は僅 少であった。受器に捕集した環状二量体エステルはグリコライドであり、収率は 86. 3 %、純度は 99. 80%であった。留出速度は 0. 87gZminであった。 As a first step, 20.5 g of the glycolic acid condensate (3) prepared in Synthesis Example 3B was charged to a 500 ml flask, and PEG # 400 84.9 g was released. Under a honey-gas atmosphere, vigorously: 1. A mixture of glycolic acid condensate and PEG # 400 was heated to 230 ° C under reduced pressure of OkPa. By this heating, the polymerization reaction proceeds. The obtained polymer was uniformly dissolved with PEG # 400, and it was visually confirmed that no phase separation occurred. By further heating, the depolymerization reaction was started, and the produced cyclic dimer ester (glycolide) was distilled out and accumulated in the receiver, and the second step was started. The distillate was collected by heating in the above temperature range until the distillation of the cyclic dimer ester (glycolide) substantially stopped. After completion of the distillation, the inside of the flask was observed, and polycondensate and PEG # 400 were found as residues. The distillate line between the flask and the receiver was found to have a cyclic dimer ester, but the amount accumulated was small. The cyclic dimer ester collected in the receiver is glycolide, and the yield is 86.3. The purity was 99.80%. The distillation rate was 0.87 gZmin.
(実施例 5B) (Example 5B)
第一工程として、合成例 5Bで調整したグリコール酸縮合物(5) 189. 4gを 500mlフ ラスコに装入し、 PEG # 400を 80. 2g加えた。窒素ガス雰囲気下、 1. OkPaの減圧 条件下で、グリコール酸縮合物と PEG # 400との混合物を 230°Cに加熱した。この 加熱により、重合反応が進行する。得られた重合物は、 PEG # 400と均一〖こ溶解し、 流動性が確保され、且つ、相分離していないことが目視により確認された。さらに加 熱を続けることにより、解重合反応が開始し、生成した環状二量体エステルが留出し て受器にたまり出し、第二工程が開始した。 230°Cの温度で環状二量体エステルの 溜出が実質的に止むまで加熱し、次いで 250°Cの温度で環状二量体エステルの留 出が実施的に止むまで加熱し、留出物を捕集した。留出終了後、フラスコ内を観察し たところ重縮合物と PEG # 400とが残渣として見られた。フラスコと受器との間の留出 ラインには、環状二量体エステルの付着が認められた力 その蓄積量は僅少であつ た。受器に捕集した環状二量体エステルはグリコライドであり、収率は 95. 9%、純度 は 99. 83%であった。留出速度は 0. 76gZminであった。 As the first step, 189.4 g of the glycolic acid condensate (5) prepared in Synthesis Example 5B was charged into a 500 ml flask, and 80.2 g of PEG # 400 was added. Under a nitrogen gas atmosphere: 1. A mixture of glycolic acid condensate and PEG # 400 was heated to 230 ° C under reduced pressure of OkPa. This heating causes the polymerization reaction to proceed. It was confirmed by visual observation that the obtained polymer was uniformly dissolved with PEG # 400, fluidity was ensured, and no phase separation was observed. By further heating, the depolymerization reaction was started, and the produced cyclic dimer ester was distilled out and accumulated in the receiver, and the second step was started. Heat at a temperature of 230 ° C until the distillate of the cyclic dimer substantially stops, then heat at a temperature of 250 ° C until the distillate of the cyclic dimer stops practically. Was collected. After completion of distillation, the inside of the flask was observed, and polycondensate and PEG # 400 were found as residues. In the distilling line between the flask and the receiver, the force in which the cyclic dimer ester was found to adhere was very small. The cyclic dimer ester collected in the receiver was glycolide, and the yield was 95.9% and the purity was 99.83%. The distillation rate was 0.76 gZmin.
(実施例 6B) (Example 6B)
第一工程において、解重合温度を 230°C、 PEG # 400を分子量約 600のポリエチレ ングリコール [和光純薬 (株)製 PEG # 600 (液体)、沸点 314°C:エチレングリコール 、ジエチレングリコールおよびトリエチレングリコールは不検出(カタログ値:沸点 450 °C以上)、凝固点 15〜25°C、分子量約 600 (以下、 PEG # 600という)]に変更したこ と以外は、実施例 1Bと同様にしてグリコール酸縮合物力も環状二量体エステル (ダリ コライド)を製造した。第一工程で得られた重合物は、 PEG # 600と均一に溶解し、 相分離していないことが目視により確認された。さらに加熱を続けることにより、解重 合反応が開始し、生成した環状二量体エステルが留出し、受器にたまり出し、第二ェ 程が開始した。環状二量体エステル (グリコライド)の留出が実質的に止むまで上記 温度範囲で加熱して留出物を捕集した。留出終了後、フラスコ内を観察したところ重 縮合物とポリエチレングリコール 600とが残渣として見られた。フラスコと受器との間の 留出ラインには、環状二量体エステルの付着が認められたが、その蓄積量は僅少で あった。受器に捕集した環状二量体エステルはグリコライドであり、収率は 85. 2%、 純度は 99. 86%であった。留出速度は 0. 57gZminであった。 In the first step, polyethylene glycol with a depolymerization temperature of 230 ° C and PEG # 400 molecular weight of about 600 [PEG # 600 (liquid) manufactured by Wako Pure Chemical Industries, Ltd., boiling point 314 ° C: ethylene glycol, diethylene glycol and triethylene glycol Except that ethylene glycol was not detected (catalog value: boiling point 450 ° C or higher), freezing point 15 to 25 ° C, molecular weight about 600 (hereinafter referred to as PEG # 600)], the same as in Example 1B Glycolic acid condensate strength also produced a cyclic dimer ester (dalicolide). It was visually confirmed that the polymer obtained in the first step was uniformly dissolved with PEG # 600 and was not phase-separated. By further heating, the depolymerization reaction was started, and the produced cyclic dimer ester was distilled off and accumulated in the receiver, and the second step was started. The distillate was collected by heating in the above temperature range until the distillation of the cyclic dimer ester (glycolide) substantially stopped. After completion of the distillation, the inside of the flask was observed, and polycondensate and polyethylene glycol 600 were observed as residues. The distillate line between the flask and the receiver showed cyclic dimer ester adhesion, but the accumulation amount was very small. there were. The cyclic dimer ester collected in the receiver was glycolide, the yield was 85.2%, and the purity was 99.86%. The distillation rate was 0.57 gZmin.
(実施例 7B) (Example 7B)
解重合温度を 230°C、 PEG # 400を分子量約 1000のポリエチレングリコール [和 光純薬 (株)製 PEG # 1000 (塊状)、沸点 430°C:エチレングリコール、ジエチレング リコール、トリエチレングリコールおよびテトラエチレングリコールは不検出(カタログ値 :沸点 450°C以上)、凝固点 30〜40°C、分子量約 1000 (以下「PEG # 1000」という 。;)]に変更したこと以外は、実施例 1Bと同様にしてグリコール酸縮合物力も環状二量 体エステル (グリコライド)を製造した。第一工程で得られた重合物は、 PEG # 1000 と均一に溶解し、相分離していないことが目視により確認されたが流動性は悪力つた 。さらに加熱を続けることにより、解重合反応が開始し、生成した環状二量体エステル (グリコライド)が留出し、受器にたまり出し、第二工程が開始した。しかしながらフラス コ内の重合物は粘性が高ぐ攪拌し難ぐ更には発泡が激しかった。環状二量体エス テル (グリコライド)の留出が実質的に止むまで上記温度範囲(230°C)で加熱して留 出物を捕集した。留出終了後、フラスコ内を観察したところ重縮合物と PEG # 1000 とが残渣として見られた。フラスコと受器との間の留出ラインには、環状二量体エステ ルの付着が認められたが、その蓄積量は僅少であった。受器に捕集した環状二量体 エステルはグリコライドであり、純度 99. 82%、収率は 76. 0%であり、留出速度は 0. 23gZ minで teつた。  Polyethylene glycol with a depolymerization temperature of 230 ° C and PEG # 400 of about 1000 molecular weight [PEG # 1000 (bulk) made by Wako Pure Chemical Industries, Ltd., boiling point 430 ° C: ethylene glycol, diethylene glycol, triethylene glycol and tetraethylene Glycol was not detected (catalog value: boiling point 450 ° C or higher), freezing point 30 to 40 ° C, molecular weight about 1000 (hereinafter referred to as “PEG # 1000”;))] Thus, a cyclic dimer ester (glycolide) was also produced with the glycolic acid condensate power. The polymer obtained in the first step was uniformly dissolved with PEG # 1000, and it was confirmed by visual observation that it was not phase-separated, but the fluidity was bad. By further heating, the depolymerization reaction was started, and the produced cyclic dimer ester (glycolide) was distilled out and accumulated in the receiver, and the second step was started. However, the polymer in the flask was so viscous that it was difficult to stir and foaming was intense. The distillate was collected by heating in the above temperature range (230 ° C.) until the distillation of the cyclic dimer ester (glycolide) substantially stopped. After completion of the distillation, the inside of the flask was observed, and polycondensate and PEG # 1000 were found as residues. The distillate line between the flask and the receiver was found to have attached cyclic dimer ester, but the accumulated amount was very small. The cyclic dimer ester collected in the receiver was glycolide and had a purity of 99.82%, a yield of 76.0%, and a distillation rate of 0.23 gZ min.
(比較例 1B) (Comparative Example 1B)
WO2002Z083661号公報実施例(実施例 1)に準じて、合成例 1Bで得られたダリ コール酸縮合物(1) 100g、極性有機溶媒としてテトラエチレングリコールジメチルェ 一テル(以下「TEGDME」 t 、う) 200g、及びポリエチレングリコール # 300[ (和光 純薬 (株)製 PEG # 300 (液体)、沸点 287°C:エチレングリコールとジエチレングリコ 一ルは不検出、トリエチレングリコール (沸点 287°C)は 2. 1%検出(カタログ値:沸点 400°C以上)、分子量約 300、(以下、「1¾0 # 300」とぃぅ)]428 (ァルコール性水酸 基として 0. 28モル相当)をカ卩えた後、 260°Cまで加熱した。この時、グリコール酸縮 合物(1)から得られるオリゴマーは、 TEGDME、 PEG # 300と均一〖こ溶解し、相分 離していないことが目視により確認された。減圧により解重合反応を実施したところ、 減圧度 25. OkPa付近より留出液が受器にたまり出し、これ以上の減圧はフラスコ内 容物突沸により安定操作困難であった。留出終了後、受器内留出物を GCにより分 祈したところ、仕込縮合物量の 3 %の環状二量体エステルを含む TEGDMEであつ た。 TEGDME留出後、更に 3. OkPaまで減圧し、操作を続行したところ、環状二量 体エステルが留出し受器にたまり出した。環状二量体エステルの溜出が実質的に止 むまで上記温度範囲で加熱して留出物を捕集した。留出終了後、フラスコ内を観察 したところ重縮合物と PEG # 300とが残渣として見られた。フラスコと受器との間の留 出ラインには、環状二量体エステルの付着が認められた力 その蓄積量は僅少であ つた。受器に捕集した留出物はグリコライドと PEG # 300とに含有されていた低沸分 であり、純度 85. 68%、収率は 58%であり、留出速度は 0. 53gZminであった。 (比較例 2B) According to WO2002Z083661 Publication Example (Example 1), glyceric acid condensate (1) 100 g obtained in Synthesis Example 1B, tetraethylene glycol dimethyl ether (hereinafter “TEGDME” t) ) 200g, and polyethylene glycol # 300 [(PEG # 300 (liquid) manufactured by Wako Pure Chemical Industries, Ltd.), boiling point 287 ° C: ethylene glycol and diethylene glycol are not detected, triethylene glycol (boiling point 287 ° C) is 2 1% detection (catalog value: boiling point 400 ° C or higher), molecular weight of about 300, (hereinafter referred to as “1¾0 # 300”) 42 8 (equivalent to 0.28 mol of alcoholic hydroxyl group) Then, it was heated to 260 ° C. At this time, the oligomer obtained from the glycolic acid condensate (1) was uniformly dissolved with TEGDME and PEG # 300, and the phase fraction was It was confirmed visually that they were not separated. When the depolymerization reaction was carried out under reduced pressure, the distillate collected from the vicinity of 25. OkPa in the vacuum, and it was difficult to perform stable operation due to bumping of the contents of the flask. After the distillation was completed, the distillate in the receiver was prayed by GC and found to be TEGDME containing 3% of the cyclic dimer ester of the amount of the condensate charged. After the TEGDME distillation, the pressure was further reduced to 3. OkPa and the operation was continued. As a result, cyclic dimer ester accumulated in the distillation receiver. Distillate was collected by heating in the above temperature range until distillation of the cyclic dimer ester substantially stopped. After completion of the distillation, the inside of the flask was observed, and polycondensate and PEG # 300 were observed as residues. In the distillation line between the flask and the receiver, the force in which the cyclic dimer ester was found to adhere was very small. The distillate collected in the receiver was the low-boiling fraction contained in glycolide and PEG # 300, with a purity of 85.68%, yield of 58%, and a distillation rate of 0.53 gZmin. there were. (Comparative Example 2B)
特開昭 63-152375号公報実施例(例 1)に準じて、デュポン製ダリピュア 99より水溶 媒を用いて再結晶したグリコール酸 200g、デュポン製 Teracol- 1000 (分子量 1000 ) 400g、および三酸ィ匕アンチモン 0. 05gをカロえた後、 200。C、 30. OkPaの処理によ り、共重合されたプレボリマーが得られた。この時、 31. 5gの留出液が受器にたまり、 受器内留出物を GCにて分析したところ、 20%の THFおよび 80%の水であった。更 に加熱を継続したが溜出する環状二量体エステル中に THFが含有されて 、たため 反応を中止した。 According to Example (Example 1) of JP-A-63-152375, 200 g of glycolic acid recrystallized from Dupont Dali Pure 99 using an aqueous medium, 400 g of DuPont Teracol-1000 (molecular weight 1000), and triacid匕 200 after caloring antimony 0. 05g. C, 30. OkPa treatment gave copolymerized prepolymers. At this time, 31.5 g of distillate was collected in the receiver, and the distillate in the receiver was analyzed by GC. As a result, it was 20% THF and 80% water. Furthermore, although the heating was continued, THF was contained in the cyclic dimer ester that was distilled off, so the reaction was stopped.
(比較例 3B) (Comparative Example 3B)
実施例 1Bにおいて解重合温度を 230°C、 250°Cの 2段階に変更し、 PEG # 400を 添加しないこと以外は、実施例 1Bと同様にしてグリコール酸縮合物から環状二量体 エステルを製造した。本発明の第一工程に相当する工程で得られた重合物を、さら に加熱することにより、解重合反応が開始し、生成した環状二量体エステルが溜出し 、受器にたまり出し、本発明の第二工程に相当する工程が開始した。 230°Cにおい て環状二量体エステルの留出が実質的に止むまで加熱し、受器に捕集した。留出物 の純度 99. 68%、収率は 32. 7%であり、留出速度は 0. 45gZminであった。次い で 250°Cにおいて、環状二量体エステルの留出が実施的に止むまで加熱し、留出 物を捕集した。留出終了後、フラスコ内を観察したところ重縮合物が残渣として見ら れた。フラスコと受器との間の留出ラインには、環状二量体エステルの付着が認めら れたが、その蓄積量は僅少であった。受器に捕集した環状二量体エステルはグリコラ イドであり、純度 99. 68%、収率は 4. 5%であり、留出速度は 0. 19gZminであった (比較例 4B) In Example 1B, the depolymerization temperature was changed to two steps of 230 ° C and 250 ° C, and PEG # 400 was not added, and the cyclic dimer ester was converted from the glycolic acid condensate in the same manner as in Example 1B. Manufactured. By further heating the polymer obtained in the step corresponding to the first step of the present invention, the depolymerization reaction is started, and the produced cyclic dimer ester is distilled out and collected in a receiver. A process corresponding to the second process of the invention has started. The mixture was heated at 230 ° C until the distillation of the cyclic dimer ester substantially stopped and collected in a receiver. The purity of the distillate was 99.68%, the yield was 32.7%, and the distillation rate was 0.45 gZmin. Then, at 250 ° C, heat until the distillation of the cyclic dimer ester stopped practically. I collected things. After completion of the distillation, the inside of the flask was observed, and a polycondensate was seen as a residue. The distillate line between the flask and the receiver was found to have a cyclic dimer ester, but the accumulated amount was very small. The cyclic dimer ester collected in the receiver was glycolide with a purity of 99.68%, a yield of 4.5%, and a distillation rate of 0.19 gZmin (Comparative Example 4B).
実施例 1Bにおいて温度を 230°Cに、 PEG # 400を分子量約 200のポリエチレングリ コール [和光純薬 (株)製 PEG # 200 (液体)、沸点 244°C:エチレングリコールは不 検出、ジエチレングリコール (沸点 244°C)は 3. 2%検出、トリエチレングリコール (沸 点 287°C)は 21. 8%検出、(カタログ値:沸点 400°C以上)、分子量約 200、(以下、 「PEG # 200」)]に変更したこと以外は、実施例 1Bと同様に行った。第一工程で得ら れる重合物は、 PEG # 200と均一に溶解し、流動性が確保され、且つ、相分離して いないことが目視により確認された。 In Example 1B, the temperature is 230 ° C, PEG # 400 is polyethylene glycol having a molecular weight of about 200 (PEG # 200 (liquid) manufactured by Wako Pure Chemical Industries, Ltd., boiling point 244 ° C: ethylene glycol not detected, diethylene glycol ( (Boiling point 244 ° C) is 3.2% detected, triethylene glycol (boiling point 287 ° C) is 21.8% detected (catalog value: boiling point 400 ° C or higher), molecular weight about 200, (hereinafter referred to as “PEG # 200 ")] except that the change was made to Example 1B. It was visually confirmed that the polymer obtained in the first step was uniformly dissolved with PEG # 200, fluidity was ensured, and no phase separation was observed.
さらに加熱を続けることにより、解重合反応が開始し、受器に溜出物がたまり出し、 第二工程が開始した。留出が実質的に止むまで上記温度範囲で加熱して留出物を 捕集した。留出終了後、フラスコ内を観察したところ重縮合物と PEG # 200とが残渣 として見られた。フラスコと受器との間の留出ラインには、付着物が認められた力 そ の蓄積量は僅少であった。受器に捕集した留出物はグリコライドと PEG # 200に含ま れていた低沸分であり、純度 71. 4%、収率は 77. 9%であり、溜出速度は 0. 80g/ millで teつた。  By further heating, the depolymerization reaction started, the distillate accumulated in the receiver, and the second step started. Distillate was collected by heating in the above temperature range until distillation stopped substantially. After completion of distillation, the inside of the flask was observed, and polycondensate and PEG # 200 were found as residues. In the distilling line between the flask and the receiver, the amount of force and deposits observed was small. The distillate collected in the receiver was the low-boiling fraction contained in glycolide and PEG # 200, purity 71.4%, yield 77.9%, and distillation rate was 0.80g. / te in mill.
(比較例 5B) (Comparative Example 5B)
PEG # 400を PEG # 200に変更したこと以外は、実施例 3Bと同様にしてグリコール 酸縮合物から環状二量体エステルを製造した。第一工程で得られる重合物は、 PEG # 200と均一に溶解し、相分離していないことが目視により確認された。さらに加熱を 続けることにより、解重合反応が開始し、生成した環状二量体エステルが留出し、受 器にたまり出し第二工程が開始した。環状二量体エステルの留出が実質的に止むま で上記温度範囲(230°C)で加熱して留出物を捕集した。留出終了後、フラスコ内を 観察したところ重縮合物と PEG # 200とが残渣として見られた。フラスコと受器との間 の留出ラインには、環状二量体エステルの付着が認められたが、その蓄積量は僅少 であった。受器に捕集した留出物はグリコライドと PEG # 200に含まれていた低沸分 であり、純度 72. 8%、収率は 79. 3%であり、留出速度は 0. 81gZminであった。 結果を表 3にまとめた。 A cyclic dimer ester was produced from a glycolic acid condensate in the same manner as in Example 3B except that PEG # 400 was changed to PEG # 200. It was visually confirmed that the polymer obtained in the first step was uniformly dissolved with PEG # 200 and was not phase-separated. By continuing the heating, the depolymerization reaction was started, the produced cyclic dimer ester was distilled off, accumulated in the receiver, and the second step was started. The distillate was collected by heating in the above temperature range (230 ° C.) until the distillation of the cyclic dimer ester substantially stopped. After completion of the distillation, the inside of the flask was observed, and polycondensate and PEG # 200 were seen as residues. Between flask and receiver The distillate line had a cyclic dimer ester attached, but the accumulated amount was very small. The distillate collected in the receiver was the low-boiling fraction contained in glycolide and PEG # 200, with a purity of 72.8%, a yield of 79.3%, and a distillation rate of 0.81 gZmin. Met. The results are summarized in Table 3.
[表 3] [Table 3]
Figure imgf000043_0001
Figure imgf000043_0001
GA縮合物:グリコール酸及びグリコール酸縮合物、 GLD:グリコライド、 PEG#400:ポリェ于レングリコール (和光純菜 (株)製 PEG #400、分子量約 400) GA縮合物分子量:グリコール酸及びグリコール酸縮合物の重量平均分子量、 PEG#2∞:ポリエチレングリコール (和光純菜(株)製 PEG#200、分子量約 200) PEG/GA比:アルキレングリコ一ル /(グリコ一ル酸及びグリコ一ル酸縮合物)の重量比、 PEG«00:ポリエチレングリコール (和光純薬(株)製 PEG#300、分子 S約 300)  GA condensate: glycolic acid and glycolic acid condensate, GLD: glycolide, PEG # 400: Polyethylene glycol (PEG # 400, manufactured by Wako Junna Co., Ltd., molecular weight about 400) GA condensate molecular weight: glycolic acid and glycolic acid Weight average molecular weight of condensate, PEG # 2∞: Polyethylene glycol (PEG # 200, molecular weight of about 200, manufactured by Wako Junna Co., Ltd.) PEG / GA ratio: alkylene glycol / (glycolic acid and glycolic acid condensation) Product), PEG «00: Polyethylene glycol (PEG # 300, W about Sako 300, Wako Pure Chemical Industries, Ltd.)
PEG#1000:ポリェチレングリコール (和光純菜 (株)製 PEG # 1000、分子 S約 1000) PEG # 1000: Polyethylene glycol (PEG # 1000, molecular S approx. 1000, manufactured by Wako Junna)
実施例 4Bと同様の方法で得られたグリコライド 250gに対してラウリルアルコール 300 Oppm、オクタン酸スズ 30ppmを仕込み、窒素置換の後、室温から 210°Cまで 2時間 かけて昇温し、 210°Cで 30分保持した後、 230°Cまで昇温し、 1時間保持した。その 後冷却し重合物を取り出した。得られたポリダリコール酸は、重量平均分子量 21万、 融点が 221°Cであった。 To 250 g of glycolide obtained in the same manner as in Example 4B, 300 Oppm of lauryl alcohol and 30 ppm of tin octoate were charged, and after nitrogen substitution, the temperature was raised from room temperature to 210 ° C over 2 hours. After holding at C for 30 minutes, the temperature was raised to 230 ° C and held for 1 hour. Thereafter, it was cooled and the polymerized product was taken out. The obtained polydaricholic acid had a weight average molecular weight of 210,000 and a melting point of 221 ° C.
産業上の利用可能性  Industrial applicability
[0188] 本発明の環状エステルの製造方法によれば、 p—ジォキサンなどのォキシ環状エス テルが効率よく得られる。また、本発明の環状エステルの製造方法によれば、ダリコラ イドなどの環状二量体エステルが高純度で効率よく得られる。 [0188] According to the method for producing a cyclic ester of the present invention, an oxy cyclic ester such as p-dioxane can be efficiently obtained. Furthermore, according to the method for producing a cyclic ester of the present invention, a cyclic dimer ester such as dalicolide can be obtained with high purity and efficiency.
[0189] 本発明により得られる P-ジォキサノン、グリコライドなどは、医療分野にお!ヽて現在 実用化されている生体吸収性の縫合糸分野において問題なく使用できる。 [0189] The P-dioxanone, glycolide, and the like obtained by the present invention can be used without any problem in the bioabsorbable suture field that is currently in practical use in the medical field.

Claims

請求の範囲 下記式(1)で表される少なくとも 1つの化合物を原料とし、 [化 1] [Claim 1] Using at least one compound represented by the following formula (1) as a raw material,
[上記式(1)中、 Zは酸素または炭素数 2〜20の直鎖状もしくは分岐状のォキシアル キレンォキシ基を示し、 R1および R2は互いに同一であっても異なっていてもよい、水 素または炭素数 1〜4の直鎖状もしくは分岐状のアルキル基を示し、 pは 1〜20000 の整数を示す。 ] [In the above formula (1), Z represents oxygen or a linear or branched oxyalkyleneoxy group having 2 to 20 carbon atoms, and R 1 and R 2 may be the same or different from each other, Represents a linear or branched alkyl group having 1 to 4 carbon atoms, and p represents an integer of 1 to 20000. ]
下記式(2)で示される環状エステルを製造する方法であり、  A method for producing a cyclic ester represented by the following formula (2):
Figure imgf000045_0002
Figure imgf000045_0002
[上記式(2)中、 Xはカルボニル基、または置換もしくは無置換のメチレン基を示し、 R3および R4は互いに同一であっても異なっていてもよい、水素または炭素数 1〜4の直鎖状もしくは分岐状のアルキル基を示し、 nは 1〜4の整数を示す。 ] [第一工程] 上記化合物(1)に、製造される環状エステル (2)よりも沸点の高いアル キレングリコールを添加して、重合反応を行 、重合液を得る工程、 [In the above formula (2), X represents a carbonyl group, or a substituted or unsubstituted methylene group, and R 3 and R 4 may be the same or different from each other, hydrogen or C 1-4 A linear or branched alkyl group is shown, and n is an integer of 1 to 4. [First Step] A step of adding an alkylene glycol having a boiling point higher than that of the produced cyclic ester (2) to the compound (1) to carry out a polymerization reaction to obtain a polymerization solution,
[第二工程] 第一工程で得られた重合液を加熱して反応及び蒸留を同時に行!ヽな がら純度 98%以上の、環状エステルを得る工程、 [Second Step] The step of heating the polymerization liquid obtained in the first step to simultaneously carry out the reaction and distillation while obtaining a cyclic ester having a purity of 98% or more,
の二工程を含んでなる環状エステルを製造する方法。 A method for producing a cyclic ester comprising the two steps.
下記式(3)で表されるヒドロキシアルキルォキシ酢酸を原料とし、  Using hydroxyalkyloxyacetic acid represented by the following formula (3) as a raw material,
[化 3]
Figure imgf000046_0001
[Chemical 3]
Figure imgf000046_0001
[上記式(3)中、 Rおよび R ま互いに同一であっても異なっていてもよい、水素また は炭素数 1〜4の直鎖状もしくは分岐状のアルキル基を示し、 nは 1〜4の整数を示す [In the above formula (3), R and R are the same or different and each represents hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms, and n is 1 to 4 Indicates an integer
。 ] . ]
下記式 (4)で示されるォキシ環状エステルを製造する方法であり、  A method for producing an oxycyclic ester represented by the following formula (4):
[化 4]  [Chemical 4]
Figure imgf000046_0002
Figure imgf000046_0002
[上記式 (4)中、 Rおよび は互いに同一であっても異なっていてもよい、水素また は炭素数 1〜4の直鎖状もしくは分岐状のアルキル基を示し、 nは 1〜4の整数を示す o ]  [In the above formula (4), R and each independently represent hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms, and n represents 1 to 4 O to indicate an integer
[第一工程] 上記ヒドロキシアルキルォキシ酢酸(3)に、製造されるォキシ環状エステ ル (4)よりも沸点の高 、アルキレングリコールを添カ卩して、重合反応を行 、重合液を 得る工程、  [First Step] To the hydroxyalkyloxyacetic acid (3), an alkylene glycol having a boiling point higher than that of the produced oxycyclic ester (4) is added, and a polymerization reaction is performed to obtain a polymerization solution. Process,
[第二工程] 第一工程で得られた重合液を加熱して反応及び蒸留を同時に行!ヽな がら、ォキシ環状エステル (4)を得る工程、の二工程を含んでなるォキシ環状エステ ルを製造する方法。  [Second Step] While the polymerization liquid obtained in the first step is heated to carry out the reaction and distillation at the same time, the oxy cyclic ester comprising the two steps of obtaining the oxy cyclic ester (4) is obtained. How to manufacture.
[3] 前記ヒドロキシアルキルォキシ酢酸(3)が βーヒドロキシエトキシ酢酸であることを特 徴とする請求項 2に記載のォキシ環状エステルを製造する方法。  [3] The method for producing an oxycyclic ester according to [2], wherein the hydroxyalkyloxyacetic acid (3) is β-hydroxyethoxyacetic acid.
[4] 下記式(5)で表される ex ヒドロキシカルボン酸および Ζまたは ex ヒドロキシカル ボン酸縮合物を原料とし、  [4] The raw material is ex hydroxycarboxylic acid and お よ び or ex hydroxycarboxylic acid condensate represented by the following formula (5):
[化 5]
Figure imgf000047_0001
[Chemical 5]
Figure imgf000047_0001
[上記式(5)中、 R1および R2は、互いに同一であっても異なっていてもよい、水素また は炭素数 1〜4の直鎖状もしくは分岐状のアルキル基を示し、 mは 1〜20000の整数 を示す。] [In the above formula (5), R 1 and R 2 represent hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms, which may be the same or different, and m is Indicates an integer from 1 to 20000. ]
下記式 (6)で示される環状二量体エステルを製造する方法であり、  A method for producing a cyclic dimer ester represented by the following formula (6):
[化 6]  [Chemical 6]
Figure imgf000047_0002
Figure imgf000047_0002
[上記式(6)中、 R1および R2は、互いに同一であっても異なっていてもよい、水素また は炭素数 1〜4の直鎖状もしくは分岐状のアルキル基を示し、 mは 1〜20000の整数 を示す。] [In the above formula (6), R 1 and R 2 represent hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms which may be the same or different, and m is Indicates an integer from 1 to 20000. ]
[第一工程] 上記 α—ヒドロキシカルボン酸および/または α—ヒドロキシカルボン酸 縮合物(5)に、製造される環状二量体エステル (6)よりも沸点の高いアルキレングリコ ールを添加して、重合反応を行い重合液を得る工程、  [First Step] An alkylene glycol having a boiling point higher than that of the produced cyclic dimer ester (6) is added to the α-hydroxycarboxylic acid and / or the α-hydroxycarboxylic acid condensate (5). A step of performing a polymerization reaction to obtain a polymerization solution,
[第二工程] 第一工程で得られた重合液を加熱して反応及び蒸留を同時に行!ヽな がら、環状二量体エステル (6)を得る工程、  [Second Step] The step of obtaining the cyclic dimer ester (6) while simultaneously heating and reacting the polymerization solution obtained in the first step!
の二工程を含んでなる環状二量体エステルを製造する方法。  A process for producing a cyclic dimer ester comprising the two steps.
[5] 前記 ex ヒドロキシカルボン酸および Ζまたは (X ヒドロキシカルボン酸縮合物(5) がグリコール酸および Ζまたはグリコール酸縮合物であることを特徴とする請求項 4に 記載の環状二量体エステルを製造する方法。 [5] The cyclic dimer ester according to claim 4, wherein the ex hydroxycarboxylic acid and Ζ or (X hydroxycarboxylic acid condensate (5) are glycolic acid and Ζ or glycolic acid condensate. How to manufacture.
[6] 上記第一工程において使用するアルキレングリコールの分子量が 100〜900の範 囲であることを特徴とする請求項 4または 5に記載の環状エステルを製造する方法。 6. The method for producing a cyclic ester according to claim 4 or 5, wherein the molecular weight of the alkylene glycol used in the first step is in the range of 100 to 900.
PCT/JP2006/310937 2005-06-01 2006-05-31 Process for producing cyclic ester WO2006129736A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007519052A JP5132309B2 (en) 2005-06-01 2006-05-31 Method for producing cyclic ester

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005161299 2005-06-01
JP2005-161299 2005-06-01
JP2006-063758 2006-03-09
JP2006063758 2006-03-09

Publications (1)

Publication Number Publication Date
WO2006129736A1 true WO2006129736A1 (en) 2006-12-07

Family

ID=37481664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310937 WO2006129736A1 (en) 2005-06-01 2006-05-31 Process for producing cyclic ester

Country Status (2)

Country Link
JP (1) JP5132309B2 (en)
WO (1) WO2006129736A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013535433A (en) * 2010-07-14 2013-09-12 ソルヴェイ(ソシエテ アノニム) Process for producing cyclic diesters of alpha-hydroxy acids
WO2014080876A1 (en) 2012-11-22 2014-05-30 株式会社クレハ Method for producing glycolide, which is provided with rectification step by means of gas-liquid countercurrent contact, and method for purifying crude glycolide
CN115073415A (en) * 2022-05-31 2022-09-20 江苏景宏新材料科技有限公司 Method for preparing high-purity glycolide

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63152375A (en) * 1986-10-29 1988-06-24 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Produuction of high purity cyclic ester
JPH02268179A (en) * 1989-03-22 1990-11-01 E I Du Pont De Nemours & Co Production of cyclic ester
JPH05287056A (en) * 1992-04-07 1993-11-02 Toyobo Co Ltd Production of aliphatic polyester
JPH06287278A (en) * 1993-04-07 1994-10-11 Toyobo Co Ltd Production of aliphatic polyester
JPH1045744A (en) * 1996-08-08 1998-02-17 Tokuyama Corp Production of 2-p-dioxanone
JPH1045745A (en) * 1996-08-08 1998-02-17 Tokuyama Corp Production of 2-p-dioxanone
JP2002128777A (en) * 2000-10-20 2002-05-09 Kureha Chem Ind Co Ltd Method for purifying glycolide

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63152375A (en) * 1986-10-29 1988-06-24 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Produuction of high purity cyclic ester
JPH02268179A (en) * 1989-03-22 1990-11-01 E I Du Pont De Nemours & Co Production of cyclic ester
JPH05287056A (en) * 1992-04-07 1993-11-02 Toyobo Co Ltd Production of aliphatic polyester
JPH06287278A (en) * 1993-04-07 1994-10-11 Toyobo Co Ltd Production of aliphatic polyester
JPH1045744A (en) * 1996-08-08 1998-02-17 Tokuyama Corp Production of 2-p-dioxanone
JPH1045745A (en) * 1996-08-08 1998-02-17 Tokuyama Corp Production of 2-p-dioxanone
JP2002128777A (en) * 2000-10-20 2002-05-09 Kureha Chem Ind Co Ltd Method for purifying glycolide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013535433A (en) * 2010-07-14 2013-09-12 ソルヴェイ(ソシエテ アノニム) Process for producing cyclic diesters of alpha-hydroxy acids
WO2014080876A1 (en) 2012-11-22 2014-05-30 株式会社クレハ Method for producing glycolide, which is provided with rectification step by means of gas-liquid countercurrent contact, and method for purifying crude glycolide
US9365536B2 (en) 2012-11-22 2016-06-14 Kureha Corporation Method for producing glycolide, which is provided with rectification step by means of gas-liquid countercurrent contact, and method for purifying crude glycolide
CN115073415A (en) * 2022-05-31 2022-09-20 江苏景宏新材料科技有限公司 Method for preparing high-purity glycolide

Also Published As

Publication number Publication date
JPWO2006129736A1 (en) 2009-01-08
JP5132309B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
KR100895603B1 (en) Glycolide production process, and glycolic acid oligomer for glycolide production
KR970011637B1 (en) Aliphatic polyester and preparation process thereof
WO2011089802A1 (en) Method for producing glycolide
JPWO2005090438A1 (en) Process for producing aliphatic polyester with less residual cyclic ester
JP2004519485A (en) Method for producing glycolide and glycolic acid composition
JPH09505323A (en) Polylactic acid production method
JP4388148B2 (en) Method for producing glycolide
WO2006129736A1 (en) Process for producing cyclic ester
CN110511205B (en) Preparation method of high-purity glycolide
JPH10231270A (en) Production of polyoxyalkylenecarboxylic acid
JPH10109983A (en) Production and purification of cyclic ester
JP4750256B2 (en) Method for purifying glycolide
US5952455A (en) Process for producing polyhydroxycarboxylic acid
JP3184680B2 (en) Purification method of polyhydroxycarboxylic acid
JP6751221B2 (en) Method for producing cyclic ester
JP4075089B2 (en) Method for producing lactide
JPH08109250A (en) Method for purifying polyhydroxycarboxylic acid
JPH11209370A (en) Production of lactide and catalyst for producing lactide
JP2869748B2 (en) Composition containing reactive monomer and method for producing the same
JP3350210B2 (en) Aliphatic polyester and method for producing the same
JPH05202175A (en) Production of polyester carbonate polyol
JP4003287B2 (en) Method for producing lactide capable of suppressing racemization
JPS60248727A (en) Purification of delta-valerolactone polymer
JP2004331782A (en) Manufacturing process of polyester
JP3091207B2 (en) Lactone polymer and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007519052

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06756857

Country of ref document: EP

Kind code of ref document: A1