WO2006129656A1 - Multilayer optical compensation film - Google Patents
Multilayer optical compensation film Download PDFInfo
- Publication number
- WO2006129656A1 WO2006129656A1 PCT/JP2006/310766 JP2006310766W WO2006129656A1 WO 2006129656 A1 WO2006129656 A1 WO 2006129656A1 JP 2006310766 W JP2006310766 W JP 2006310766W WO 2006129656 A1 WO2006129656 A1 WO 2006129656A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid crystal
- cycloolefin
- optical compensation
- based resin
- resin film
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/12—Chemical modification
- C08J7/123—Treatment by wave energy or particle radiation
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/08—Non-steroidal liquid crystal compounds containing at least two non-condensed rings
- C09K19/10—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
- C09K19/12—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/08—Non-steroidal liquid crystal compounds containing at least two non-condensed rings
- C09K19/10—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
- C09K19/20—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
- C09K19/2007—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/32—Non-steroidal liquid crystal compounds containing condensed ring systems, i.e. fused, bridged or spiro ring systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/38—Polymers
- C09K19/3833—Polymers with mesogenic groups in the side chain
- C09K19/3842—Polyvinyl derivatives
- C09K19/3852—Poly(meth)acrylate derivatives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K2019/0444—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
- C09K2019/0448—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2219/00—Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used
- C09K2219/03—Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used in the form of films, e.g. films after polymerisation of LC precursor
Definitions
- the present invention relates to a laminated optical compensation film used for improving image quality of a liquid crystal display device.
- Liquid crystal display devices are used in notebook personal computers, personal computer monitors, and the like, but in recent years, they have also been used for large television applications, and the demand is rapidly increasing.
- Liquid crystal display devices used in such applications are required to be viewed well from a wider range, and the VA method and IPS method, which have improved the viewing angle dependency of the conventional TN method, are often used. Has been. However, with these methods, although the viewing angle characteristics in the vertical and horizontal directions on the image display surface are improved, for example, when viewed from an oblique direction, contrast and color reproducibility are insufficient, and further improvements are made. Is required.
- Patent Document 1 discloses the use of an optical compensation film having an Nz coefficient of 0.5.
- an optical compensation film as disclosed in Patent Document 2, a shrinkable film is applied to a resin film to be stretched so that the shrinking direction is orthogonal to the stretching direction. Since it is manufactured by the method of heating and stretching after pasting, it is difficult to manufacture a large optical compensation film for use in large liquid crystal display devices, which have a low yield in the width direction of the film and are in great demand in recent years. It has become.
- Patent Document 3 For example, a liquid crystal layer in which a vertically aligned liquid crystal layer is laminated on a uniaxially or biaxially stretched film layer as described in Patent Document 3 has been dealt with. A stacked optical compensation film has been proposed.
- a material for the film layer of the liquid crystal laminated optical compensation film a polycarbonate or a triacetyl cellulose film is used.
- the film layer of the optical compensation film is heated by the heat generated by the backlight during use, and light is emitted by the generated internal stress. There was a problem called display loss that caused display defects.
- Patent Document 1 Japanese Patent Laid-Open No. 4-305602
- Patent Document 2 JP-A-5-157911
- Patent Document 3 Japanese Unexamined Patent Publication No. 2003-149441
- An object of the present invention is to provide a laminated optical compensation film used for improving the image quality of a liquid crystal display device in view of the above situation.
- the present invention is a laminated optical compensation film comprising a cycloolefin-based resin film and a vertically-aligned liquid crystal layer laminated on the cycloolefin-based resin film, A laminated optical compensation film in which the surface on the side in contact with the vertical alignment liquid crystal layer is subjected to atmospheric pressure plasma treatment with an inert gas having an oxygen concentration of 15% by volume or less.
- the laminated optical compensation film of the present invention comprises a cycloolefin-based resin film and a vertically aligned liquid crystal layer laminated on the cycloolefin-based resin film.
- the cycloolefin-based resin film is a film in which a cycloolefin-based resin is formed.
- the cycloolefin-based resin is not particularly limited, and examples thereof include norbornene-based resin and dicyclopentagen-based resin. Among them, those having no unsaturated bond or having an unsaturated bond hydrogenated are preferably used. For example, a ring-opening (co) polymer of one or more norbornene monomers is used.
- Examples include addition copolymers with cycloolefin monomers (cyclopentene, cyclootaten, 5, 6-dihydrocyclopentagen, etc.), and modified products thereof.
- ZEONEX, ZEONOR manufactured by Nippon Zeon
- ARTON manufactured by JSR
- TOPAS manufactured by Chicona
- APEL manufactured by Mitsui Chemicals
- the film forming method is not particularly limited, and, specifically, a conventionally known film forming method may be used.
- a cycloolefin-based resin is supplied to an extruder and melted and kneaded. Mold force attached to the tip of the extruder Method of forming a long cycloolefin-based resin film by extruding it into a film (melt extrusion method), a solution obtained by dissolving a cycloolefin-based resin in an organic solvent Examples thereof include a method of evaporating the organic solvent after casting on a drum or band to form a long cycloolefin-based resin film (solution casting method).
- the melt extrusion method may be used. preferable.
- the cycloolefin-based resin film may be a retardation film having a retardation by being stretched. By using a retardation film, various optical properties can be imparted.
- the retardation film is formed by stretching the cycloolefin-based resin film.
- the cycloolefin-based rosin molecules are oriented in a predetermined direction.
- the stretching method for example, a long cycloolefin-based resin film is stretched in the transverse direction (width direction) in the temperature region near the glass transition temperature Tg of the cycloolefin-based resin, and then longitudinally (long). Length direction), a long cycloolefin-based resin film
- cycloolefin-based resin film is made of cycloolefin-based resin glass.
- a method of applying a pressing force in the thickness direction to form a thin film and simultaneously stretching in the longitudinal direction (length direction) and the transverse direction (width direction) can be mentioned.
- the cycloolefin-based resin film has an atmospheric pressure plasma with an inert gas having an oxygen concentration of 15% by volume or less on the surface in contact with the vertical alignment liquid crystal layer. Processed.
- the normal pressure plasma treatment is a method in which a voltage is applied to a gas introduced between electrodes to be excited into a plasma gas, and a functional group is introduced onto the surface of the object to be processed by the plasma gas. It is.
- the atmospheric pressure plasma treatment is preferably performed in an apparatus having a pair of counter electrodes, and a solid dielectric is installed on at least one of the opposing surfaces of the electrodes.
- a solid dielectric is installed on at least one of the opposing surfaces of the electrodes.
- the plasma is generated between the solid dielectric and the electrode.
- the solid dielectric is installed on both of the electrodes, the plasma is generated between the solid dielectrics.
- a normal pressure plasma treatment is performed by placing a hydrophobic resin film, which is a target object of the hydrophilic treatment, between the solid dielectric and the electrode or between the solid dielectrics.
- the electrode is not particularly limited, and examples thereof include a simple metal such as copper and aluminum, an alloy such as stainless steel and brass, and a metal compound.
- the counter electrode has a structure in which the distance between the counter electrodes is substantially constant in order to avoid occurrence of arc discharge due to electric field concentration.
- an electrode structure that satisfies this condition Parallel plate type, cylindrical opposed flat plate type, spherical opposed flat plate type, hyperboloid, opposed flat plate type, coaxial cylindrical type structure and the like.
- the solid dielectric is preferably disposed on one or both of the opposing surfaces of the electrode. At this time, the solid dielectric and the electrode on the side to be installed are in close contact with each other, and the opposite surface of the electrode in contact is completely covered. This is because if there is a part where the electrodes face each other directly without being covered by the solid dielectric, a force arc discharge occurs.
- the solid dielectric may be in the form of a sheet or a film, but the lower limit of the preferred thickness is 0. Olmm and the upper limit force mm of the preferred thickness. If it is less than 0.01 mm, a high voltage is required to generate discharge plasma, and if it exceeds 4 mm, dielectric breakdown occurs when voltage is applied and arc discharge occurs.
- the material of the solid dielectric is not particularly limited, and examples thereof include plastics such as polytetrafluoroethylene and polyethylene terephthalate, glass, silicon dioxide, aluminum oxide, zirconium dioxide, and titanium dioxide. Examples thereof include metal oxides and double oxides such as barium titanate.
- the solid dielectric preferably has a relative dielectric constant of 2 or more in an environment of 25 ° C.
- Specific examples of the dielectric having a relative dielectric constant of 2 or more include polytetrafluoroethylene, glass, and metal oxide film.
- the upper limit of the relative dielectric constant is not particularly limited, but the actual material is about 18500.
- the solid dielectric having a relative dielectric constant of 10 or more includes a metal oxide film mixed with 5 to 50% by weight of titanium oxide and 50 to 95% by weight of aluminum oxide, or a metal oxide containing zirconium oxide. It is preferable to use a coating that has a thickness of 10 to L000 ⁇ m!
- the distance between the electrodes is not particularly limited, taking into consideration the pressure of the atmospheric gas, the oxygen concentration, the thickness of the solid dielectric, the magnitude of the applied voltage, the purpose of using the plasma discharge-treated film, etc.
- the preferable lower limit is 0.5 mm
- the preferable upper limit is 50 mm. If the thickness is less than 0.5 mm, the process with large fluctuations in the atmospheric gas concentration between the electrodes tends to be uneven, and the thickness of the workpiece to be installed between the electrodes is limited. Over 50mm In other words, it is difficult to generate a uniform discharge plasma.
- the applied voltage is preferably a pulse voltage.
- the Norse waveform may be an impulse type, square wave type, or modulation type waveform, and even if the applied voltage repeats positive and negative, it is a one-wave shape in which voltage is applied to either the positive or negative polarity side. It may be a waveform.
- the voltage rise time of the pulse voltage is not particularly limited, but the preferred lower limit is 40 ns, and the preferred upper limit is 100 s.
- the voltage rise time of the pulse voltage means a time during which the voltage change is continuously positive. It is difficult to realize a pulse voltage with a voltage rise time of less than 40 ns, and if it exceeds 100 s, the discharge state becomes easy to move to the arc and becomes unstable, and a high-density plasma state due to the pulse voltage cannot be expected.
- a more preferred lower limit is 50 ns, and a more preferred upper limit is 5 ⁇ s.
- the time scale of 100 s or less is the same as the voltage rise time of the pulse voltage, in which the voltage fall time of the pulse voltage is preferably steep.
- the voltage rise time and the voltage fall time of the pulse voltage can be set to the same time, although it varies depending on the pulse electric field generation technology.
- the frequency of the pulse voltage is not particularly limited, but a preferable lower limit is 0.5 kHz, and a preferable upper limit is 100 kHz. If it is less than 0.5 kHz, the plasma density is low, so it takes too much time to process, and if it exceeds 100 kHz, arc discharge tends to occur. A more preferred lower limit is 1 kHz.
- the pulse duration in the pulse voltage is not particularly limited, the lower limit of U is preferably 1 ⁇ s, and the preferable upper limit is 1000 ⁇ s. If it is less than 1 ⁇ s, the discharge becomes unstable, and if it exceeds 1000 s, it tends to shift to arc discharge. A more preferred lower limit is 3 s, and a more preferred upper limit is 200 s.
- the pulse duration means the time during which the pulse continues in the pulse voltage that is the ON / OFF repetitive force.
- OFF time that lasts at least 1 s within the discharge time lms.
- direct current may be superimposed when applying the pulse voltage.
- the atmospheric gas that generates plasma discharge contains at least oxygen gas and has an oxygen concentration. Is an inert gas with a volume of 15% or less.
- the mixed gas other than oxygen gas include nitrogen gas and argon gas, and the volume ratio of oxygen gas and gas other than oxygen can be mixed at an almost arbitrary ratio in the range of 15:85 to 1:99. . If the oxygen gas concentration in the mixed gas exceeds 15% by volume, the components derived from oxygen and nitrogen introduced to the surface of the force-treated substrate for which the reason is unknown at this time will decrease, and the adhesion of the polymerizable liquid crystal layer will be reduced. Decreases rapidly.
- a more preferable upper limit of the oxygen gas concentration is 10% by volume.
- the lower limit of the oxygen gas concentration in the mixed gas is not particularly limited.
- the treatment is carried out near normal pressure, a large amount of equipment is required to make it completely oxygen-free, so there is substantially no such oxygen that is not practical. Permissible.
- the pressure of the atmospheric plasma treatment is not particularly limited, but a preferable lower limit is ⁇ rr (about 1.33 X 10 4 Pa), and a preferable upper limit is 800 Torr (about 10.7 X 10 4 Pa). A more preferred lower limit is 700 Torr (about 9.33 ⁇ 10 4 Pa), and a more preferred upper limit is 780 Torr (about 10.4 ⁇ 10 4 Pa).
- the vertical alignment liquid crystal layer is not particularly limited as long as it is made of a liquid crystal having vertical alignment.
- a vertically aligned liquid crystal layer for example, the polymer strength of a polymerizable liquid crystal composition containing at least one compound selected from the group consisting of the following formulas (1), (2) and (3): And the like.
- W 1 is hydrogen or methyl, and 1 is an integer of 4-6.
- W 2 and W 3 are hydrogen, chlorine or fluorine
- W 4 and W 5 are hydrogen
- X is a single bond, ethylene bond or ethane bond
- m is an integer of 4-6.
- n is an integer of 4-6.
- W 2 and W 3 are hydrogen
- W 4 and W 5 are hydrogen
- X is a single bond.
- the compound with m force 6 can be synthesized by the method described in Makromol. Chem. 190, 2255-2268 (1989).
- W 2 and W 3 are hydrogen, W 4 is hydrogen, W 5 is methyl, X is a single bond, and m-force 6 is It can be synthesized by the method described in Makromol. Chem. 190, 3201—3215 (1989).
- W 2 and W 3 are hydrogen, W 4 is trifluoromethyl, W 5 is trifluoromethyl, X is a single bond, and m is 6.
- W 4 is trifluoromethyl
- W 5 is trifluoromethyl
- X is a single bond
- m is 6.
- W 2 and W 3 are chlorine or fluorine
- W 4 is hydrogen
- W 5 is chlorine
- X is a single bond
- m is 6 Crystals Vol30, No8, 979—
- m force or the compound of 6 is Macromolecules, 26, 6132— 6134 (199
- the laminated optical compensation film of the present invention by controlling the homeotropic alignment of the polymerizable liquid crystal composition, the viewing angle characteristics of a liquid crystal display device using the laminated optical compensation film of the present invention are controlled. Can be improved.
- a method for controlling homeotopic orientation is not particularly limited, and examples thereof include a method of adding an organic key compound represented by the following formula (4) to the polymerizable liquid crystal composition.
- R 1 is a linear alkylene having 2 to 10 carbon atoms, and 1 to 2 non-adjacent —CH— in the alkylene are replaced by —O or —NH 2.
- R 2 is methyl, ethyl, propyl or isopropyl.
- R 3 is methyl, ethyl or trimethylsilyl.
- R is an integer of 0-2.
- the compound (4) is a key compound having an amino group and a hydrolyzable alkoxy group or trimethylsilyloxy group.
- the amount of the organic silicon compound is preferably
- the lower limit is 0.01 parts by weight with respect to the polymerizable liquid crystal compound
- the preferred upper limit is 0.30 parts by weight
- the more preferred lower limit is 0.03 parts by weight
- the more preferred upper limit is 0.20 parts by weight.
- a preferred upper limit is 0.15 parts by weight.
- the method for producing the laminated optical compensation film of the present invention is not particularly limited.
- a normal-pressure plasma treatment is performed on a polyolefin resin film using an inert gas having an oxygen concentration of 15% by volume or less.
- the polymerizable liquid crystal composition serving as a raw material for the vertical alignment liquid crystal layer was dissolved in a solvent on the surface of the cycloolefin-based resin film subjected to the normal pressure plasma treatment and subjected to the normal pressure plasma treatment. And a step of applying a liquid crystal solution and drying.
- Such a method for producing a laminated optical compensation film is also one aspect of the present invention.
- the solvent for dissolving the polymerizable liquid crystal composition is not particularly limited.
- the proportion of the solvent is not particularly limited, but the preferred lower limit is 60 wt% and the preferred upper limit is 98 wt% based on the total amount of the polymerizable liquid crystal composition solution. If the amount is less than 60% by weight, the solubility of the polymerizable liquid crystal compound and the optimum viscosity may not be obtained when the polymerizable liquid crystal composition solution is applied. Steaming The time and heat amount at the time of emission and the economic viewpoint power are also favorable. More preferably, the lower limit is 50% by weight, and the more preferable upper limit is 90% by weight, the still more preferable lower limit is 70% by weight, and the upper limit is more preferably 85% by weight.
- a known photopolymerization initiator may be used.
- the preferred addition amount of the photopolymerization initiator is not particularly limited, but based on the total amount of the composition, the preferred lower limit is 0.01% by weight, the preferred upper limit is 10% by weight, the more preferred lower limit is 0.1% by weight, A more preferred upper limit is 7% by weight.
- the photopolymerization initiator is not particularly limited, and examples thereof include 2 hydroxy-2-methyl-1-phenylpropane-1-one, 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-1,2, Diphenylane 1-On, Irgacure 1 500, Irgacure 1 2959, Irgacure 1 907, Irgacure 1 369, Irgacure 1300, Irgaki Your 819, Irgacure 1700, Irgacure 1800, Irgacure 1800, Icg 1 784, Irgacure 1 754, Irgacure 1 OXE01, p-methoxyphenyl-1,2,4 bis (trichloromethyl) triazine, 2- (p-butoxystyryl) -1,5 trichloromethyl-1,3,4-oxadiazole, 9 Luacridine, 1-(4-Isopropyl
- Both Darocur 1 and Irgacure 1 are manufactured by Ciba 'Specialty' Chemicals. Furthermore, known sensitizers (isopropyl thixanthone, jetyl thioxanthone, etc.) may be added thereto.
- photo radical polymerization initiator examples include, for example, p-methoxyphenol-2,4 bis (trichloromethyl) triazine, 2- (p-butoxystyryl) -15 trichloromethyl 1, 3, 4 —Oxadiazole, 9 phenacridine, 9, 10 benzphenazine
- the coating method is not particularly limited, and examples thereof include a die coating method, a roll coating method, a gravure coating method, a micro gravure method, a spin coating method, and a bar coating method.
- the laminated optical compensation film of the present invention it is possible to easily apply the liquid crystal solution to the cycloolefin-based resin film by performing the plasma discharge treatment step, and after the application, the liquid crystal solution can be applied.
- the adhesion between the layer and the cycloolefin-based resin film is extremely excellent.
- the solvent is removed after the application, and the layer of the polymerizable liquid crystal composition having a uniform film thickness on the cycloolefin-based resin film, that is, the vertical alignment liquid A crystal layer is formed.
- the conditions for removing the solvent are not particularly limited. If the solvent is almost removed and the coating film of the polymerizable liquid crystal composition is no longer fluid, it is dried.
- the solvent can be removed by air drying at room temperature, drying on a hot plate, drying in a drying oven, or blowing of warm or hot air.
- the nematic alignment of the polymerizable liquid crystal composition in the coating film may be completed in the process of drying the coating film. Therefore, the coating film that has undergone the drying step can be subjected to a polymerization step that does not go through a heat treatment step that will be described later. However, in order to make the orientation of the liquid crystal molecules in the coating film more uniform, it is preferable to heat-treat the coating film that has undergone the drying step and then to perform photopolymerization.
- the temperature and time when heat-treating the coating film, the wavelength of light used for light irradiation, the amount of light irradiated from the light source, and the like are the types and composition ratios of the compounds used in the polymerizable liquid crystal composition, and photopolymerization.
- the preferred range varies depending on whether or not an initiator is added and the amount added. Accordingly, the conditions regarding the temperature and time of the heat treatment of the coating film described below, the wavelength of light used for light irradiation, and the amount of light irradiated from the light source are merely an approximate range.
- the heat treatment of the coating film may be performed at a temperature equal to or higher than the liquid crystal phase transition point of the polymerizable liquid crystal composition, which is preferably performed under the condition that the solvent is removed and the uniform orientation of the polymerizable liquid crystal is obtained.
- the heat treatment method include a method in which the coating liquid is heated to a temperature at which the polymerizable liquid crystal composition exhibits a nematic liquid crystal phase to form a nematic alignment in the polymerizable liquid crystal composition in the coating film.
- Nematic alignment may be formed by changing the temperature of the coating film within a temperature range in which the polymerizable liquid crystal composition exhibits a nematic liquid crystal phase.
- This method is a method in which the nematic orientation is generally completed in the coating film by heating the coating film to a high temperature range within the above temperature range, and then the order is further ordered by lowering the temperature.
- the preferred lower limit of the heat treatment temperature is room temperature
- the preferred upper limit is 120 ° C
- the more preferred upper limit is 90 ° C
- the still more preferred upper limit is 70 ° C.
- the preferable lower limit of the heat treatment time is 5 seconds, and the preferable upper limit is 40 minutes, the more preferable lower limit is 10 seconds, the more preferable upper limit is 10 minutes, the more preferable lower limit is 20 seconds, and the more preferable! /, The upper limit is 5 minutes.
- the heat treatment time is preferably 5 seconds or longer. In order not to lower the productivity, it is preferable to set the heat treatment time within 2 hours. In this way, the polymerizable liquid crystal layer of the present invention is obtained.
- the wavelength of light used for the light irradiation is not particularly limited, but a preferred lower limit is 150 nm, a preferred upper limit is 500 nm, a more preferred lower limit is 250 nm, a more preferred upper limit is 45 Onm, a further preferred lower limit is 300 nm, and further preferred.
- the upper limit is 400 nm.
- the light for example, electron beams, ultraviolet rays, visible rays, infrared rays (heat rays) or the like can be used. Usually, ultraviolet rays or visible rays may be used.
- light sources include, for example, low-pressure mercury lamps (sterilization lamps, fluorescent chemical lamps, black lights), high-pressure discharge lamps (high-pressure mercury lamps, metal nitride lamps), short arc discharge lamps (extra-high-pressure mercury lamps) Xenon lamp, mercury xenon lamp) and the like.
- a metal nano lamp, a xenon lamp, and a high-pressure mercury lamp are preferably used.
- the wavelength region of the irradiation light source may be selected by installing a filter or the like between the light source and the polymerizable liquid crystal layer and passing only a specific wavelength region.
- the amount of light emitted from the light source particularly limited, such Iga, preferable lower limit is 2MjZcm 2, a preferred upper limit is 5000MiZcm 2, more preferably not lower limit 10MiZcm 2, a more preferred upper limit is 3000MiZcm 2, still more preferred lower limit 100 mjZcm 2 and a more preferable upper limit is 2000 mjZcm 2 .
- the temperature condition during light irradiation is preferably set in the same manner as the above heat treatment temperature. [0052]
- the laminated optical compensation film of the present invention obtained by using such a vertically aligned liquid crystal layer can exhibit extremely high performance.
- the cycloolefin-based resin film and the vertically oriented liquid crystal layer have an adhesion evaluation measured by a method according to the cross-cut method of JIS K 5600-5-6 of 0 to Preferred to be two categories.
- the adhesion evaluation is classified into 0-2, which means that the adhesion between the cycloolefin-based resin film and the vertical alignment liquid crystal layer is excellent, and the durability of the laminated optical compensation film of the present invention is excellent. It becomes.
- the present invention by selecting a base material having a cycloolefin-based resin film strength, birefringence hardly changes even if some stress is applied to the base material due to the heat generation of the knock light, so that light leakage is prevented. In this way, the coating properties of the liquid crystal solution, which was a problem with cycloolefin-based resin films, can be remarkably improved, and a laminated optical compensation film with excellent adhesion to the liquid crystal layer is provided. can do. That is, it is possible to contribute to the improvement of work efficiency without unexpected peeling between the substrate and the liquid crystal layer during rework.
- the homeotropic alignment of the liquid crystal layer can be easily controlled by using the vertical alignment liquid crystal layer in particular.
- the laminated optical compensation film of the present invention uses a cycloolefin-based resin film that is excellent in transparency and heat resistance and has a small photoelastic coefficient, it is heated by the heat generated by the knock light, and some stress is applied to the substrate. Even so, the birefringence hardly changes, and display defects such as light loss may not occur! /.
- the laminated optical compensation film used for the improvement of the image quality of a liquid crystal display device can be provided.
- Thermoplastic saturated norbornene-based resin (manufactured by Nippon Zeon Co., Ltd.) as cycloolefin-based resin
- the product name “Zeonor # 1420”) is supplied to a single-screw extruder, melted and kneaded, and the T-die force attached to the tip of the single-screw extruder is also melt-extruded to a width of 650 mm and flat. A long film having a uniform thickness of 65 ⁇ m was obtained.
- Figure 1 shows the plasma discharge treatment equipment.
- the upper electrode 2 made of stainless steel (SUS304), size: 150 mm X 100 mm
- the lower electrode 3 made of stainless steel (SUS30 4), size: 150 mm X 100 mm
- the distance between the electrodes is 2mm.
- the electrode facing surfaces of the upper electrode 2 and the lower electrode 3 are covered with a sprayed film 4 of AlO having a thickness of 1.5 mm.
- a pulsed power supply 6 applies an AC pulse voltage between the electrodes with a rise time of 5 ⁇ s, a pulse width of 100 ⁇ s, a frequency of 7 kHz, and a voltage of 5 kV between the electrodes to perform plasma discharge.
- Plasma discharge treatment was performed on one side of the film.
- the cycloolefin-based resin film 7 was subjected to plasma discharge treatment while moving between the upper electrode 2 and the lower electrode 3 at a speed of 4 mZ.
- Ethyl 3- (4 hydroxyphenol) propionate 400 g was dissolved in dimethylformamide (28 OOmL). Thereto was added sodium hydroxide (98 g), and the mixture was stirred at 40 ° C for 30 minutes. The formation of salt could be observed visually.
- 6-acetoxychlorohexane (515 g) was stirred at 80 ° C. for 7 hours. The reaction solution was poured into water (2000 mL), and toluene was added thereto and stirred. After separation, the toluene layer was washed with 6N hydrochloric acid, saturated sodium carbonate solution and water in that order, and dried over anhydrous magnesium sulfate.
- This toluene layer strength also distilled off the solvent to obtain 709 g of concentrate.
- Sodium hydroxide (185 g) was dissolved in water (400 mL), ethanol (600 mL) and 709 g of concentrate were added and heated, and the mixture was refluxed for 2 hours.
- the reaction solution was concentrated under reduced pressure using an evaporator, and the resulting concentrate was poured into 6N hydrochloric acid.
- the resulting slurry was filtered to obtain a solid, which was recrystallized with ethanol to obtain 28 lg of (4- (6-hydroxyhexoxy) phenol) propionic acid.
- the melting point was 109-112 ° C.
- Anhydrous aluminum chloride (162.7 g) was added to a mixture of 9 methylfluorene (55 g) and methylene chloride (800 mL) while maintaining the temperature below 0 ° C. to obtain a dark green reaction mixture.
- a solution of acetyl acetate (47.9 g) in methylene chloride (200 mL) was added dropwise while maintaining 0 ° C., and the mixture was gradually returned to room temperature and stirred for 12 hours.
- the reaction mixture was poured into a mixture of 6M hydrochloric acid and ice, and the organic layer was separated. This organic layer was thoroughly washed with saturated sodium hydrogen carbonate and water successively and dried over anhydrous magnesium sulfate.
- Polymerizable liquid crystal compound (5) 20% by weight, polymerizable liquid crystal compound (6) 60% by weight, polymerizable liquid crystal compound (7) 20% by weight of photopolymerization initiator Irgacure No. 'Specialty' Chemicals) and a compound (8) with a weight ratio of 0.10 (Sila Ace S330, Chisso) were added.
- Toluene was added to this composition to prepare a polymerizable liquid crystal composition solution (liquid crystal solution) having a solvent content of 75% by weight.
- a polymerizable liquid crystal composition solution (liquid crystal solution) was applied to the surface-treated surface of a cycloolefin-based resin film held on a 10 cm ⁇ 10 cm glass substrate by spin coating at 2000 rpm for 20 seconds. After coating, the solvent was dried on a hot plate kept at 70 ° C. Furthermore, this was cured by irradiating with a UV lamp with a UV lamp to produce a laminated optical compensation film.
- the integrated dose was 400 mJ and the oxygen concentration in the atmosphere was 5%.
- a laminated optical compensation film was produced in the same manner as in Example 1 except that a normal cycloolefin-based resin film was used after being subjected to atmospheric pressure plasma treatment.
- the contact angle between the cycloolefin-based resin film and the liquid crystal solution when the liquid crystal solution was applied onto the cycloolefin-based resin film was measured with G2 manufactured by KRUSS.
- the adhesion of the liquid crystal layer to the cycloolefin-based resin film was measured and evaluated by a method according to the cross-cut method (lmm width 100 mass) of JIS K 5600-5-6. .
- phase difference measuring device KOBRA-21ADH manufactured by Oji Scientific Instruments Co., Ltd.
- the phase difference in the front direction and the normal line to the film surface were measured at nine points in the plane.
- all azimuth phase differences were measured from 45 ° tilted direction at azimuth angle intervals of 15 degrees, and the values obtained by correcting the phase difference of the substrate were obtained.
- the vertical alignment was evaluated according to the following criteria.
- the front phase difference was 2nm or less at all measurement points, and the variation in the phase difference from the oblique 45 ° direction was 5nm or less.
- the obtained laminated optical compensation film was sandwiched between polarizing plates arranged in a cross-col and evaluated visually.
- a laminated optical compensation film used for improving the image quality of a liquid crystal display device is provided. Can be provided.
- FIG. 1 is a schematic diagram showing an example of a plasma discharge treatment apparatus.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- General Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Polarising Elements (AREA)
- Liquid Crystal (AREA)
- Laminated Bodies (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Disclosed is a multilayer optical compensation film used for improving the image quality of a liquid crystal display. Specifically disclosed is a multilayer optical compensation film composed of a cycloolefin resin film and a homeotropically aligned liquid crystal layer arranged on the cycloolefin resin film. In this multilayer optical compensation film, a surface of the cycloolefin resin film in contact with the homeotropically aligned liquid crystal layer is subjected to an atmospheric pressure plasma treatment using an inert gas having an oxygen concentration of not more than 15% by volume.
Description
明 細 書 Specification
積層光学補償フィルム Laminated optical compensation film
技術分野 Technical field
[0001] 本発明は、液晶表示装置の画質の改善に用いられる積層光学補償フィルムに関す る。 The present invention relates to a laminated optical compensation film used for improving image quality of a liquid crystal display device.
背景技術 Background art
[0002] 液晶表示装置は、ノートパソコンやパソコン用モニタ等に使用されているが、近年で は、大型テレビ用途にも採用され、急激に需要が増加している。 [0002] Liquid crystal display devices are used in notebook personal computers, personal computer monitors, and the like, but in recent years, they have also been used for large television applications, and the demand is rapidly increasing.
このような用途に用いられる液晶表示装置は、より広範囲から良好に視認されること が求められており、従来の TN方式の視野角依存性を改善した VA方式、 IPS方式と 呼ばれる方式が多く採用されている。しかしながら、これらの方式では、画像表示面 の上下左右方向の視野角特性は向上しているものの、例えば、斜め方向から観察し た場合にはコントラストや色再現性が不充分であり、更なる改善が求められている。 Liquid crystal display devices used in such applications are required to be viewed well from a wider range, and the VA method and IPS method, which have improved the viewing angle dependency of the conventional TN method, are often used. Has been. However, with these methods, although the viewing angle characteristics in the vertical and horizontal directions on the image display surface are improved, for example, when viewed from an oblique direction, contrast and color reproducibility are insufficient, and further improvements are made. Is required.
[0003] このような斜め方向からの視野角の低下は、液晶表示装置に用いられている偏光板 の視野角特性が原因の 1つであると考えられている。これを改善する方法として、例 えば、特許文献 1には、 Nz係数が 0. 5となるような光学補償フィルムを用いることが 開示されている。 [0003] Such a decrease in viewing angle from an oblique direction is considered to be caused by viewing angle characteristics of a polarizing plate used in a liquid crystal display device. As a method for improving this, for example, Patent Document 1 discloses the use of an optical compensation film having an Nz coefficient of 0.5.
[0004] 従来、このような光学補償フィルムとしては、特許文献 2に開示されているように、延 伸処理しようとする榭脂フィルムに収縮性フィルムをその収縮方向が延伸方向と直交 するように貼合した後、加熱延伸するという方法で製造されるため、特にフィルム幅方 向の歩留りが低ぐ近年需要が多い大型の液晶表示装置に用いられる大型の光学 補償フィルムを製造することが困難となってきた。 Conventionally, as such an optical compensation film, as disclosed in Patent Document 2, a shrinkable film is applied to a resin film to be stretched so that the shrinking direction is orthogonal to the stretching direction. Since it is manufactured by the method of heating and stretching after pasting, it is difficult to manufacture a large optical compensation film for use in large liquid crystal display devices, which have a low yield in the width direction of the film and are in great demand in recent years. It has become.
[0005] このような問題に対して、近年、例えば、特許文献 3に記載されているように、一軸又 は二軸延伸処理されたフィルム層に垂直配向処理された液晶層を積層した、液晶積 層型の光学補償フィルムが提案されて 、る。 In recent years, as described in Patent Document 3, for example, a liquid crystal layer in which a vertically aligned liquid crystal layer is laminated on a uniaxially or biaxially stretched film layer as described in Patent Document 3 has been dealt with. A stacked optical compensation film has been proposed.
[0006] そして、この液晶積層型の光学補償フィルムのフィルム層の材料としては、ポリカーボ ネートゃトリアセチルセルロースフィルムが用いられて 、る。
しかし、このようなフィルム層を有する光学補償フィルムを用いて製造した液晶表示装 置は、使用の際のバックライトの発熱により、光学補償フィルムのフィルム層が加熱さ れ、発生した内部応力により光り抜けと呼ばれる、表示不良が生じるという問題があつ た。 [0006] As a material for the film layer of the liquid crystal laminated optical compensation film, a polycarbonate or a triacetyl cellulose film is used. However, in a liquid crystal display device manufactured using an optical compensation film having such a film layer, the film layer of the optical compensation film is heated by the heat generated by the backlight during use, and light is emitted by the generated internal stress. There was a problem called display loss that caused display defects.
[0007] このような問題に対して、近年、フィルム層の材料として耐熱性、低光弾性に優れた シクロォレフイン系榭脂が用いられるようになりつつある。し力し、シクロォレフイン系 榭脂フィルム上に液晶溶液を塗工し、液晶層を形成しょうとしてもはじきを生じるため 塗工が困難であり、また、シクロォレフイン系榭脂フィルムと液晶層とは密着性が悪い という問題があった。 [0007] To deal with such problems, in recent years, a cycloolefin-based resin excellent in heat resistance and low photoelasticity is being used as a material for a film layer. Applying a liquid crystal solution on a cycloolefin-based resin film to form a liquid crystal layer causes repelling, which is difficult to apply, and the cycloolefin-based resin film and the liquid crystal layer are adhesive. There was a problem of being bad.
特許文献 1:特開平 4— 305602号公報 Patent Document 1: Japanese Patent Laid-Open No. 4-305602
特許文献 2:特開平 5— 157911号公報 Patent Document 2: JP-A-5-157911
特許文献 3 :特開 2003— 149441号公報 Patent Document 3: Japanese Unexamined Patent Publication No. 2003-149441
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0008] 本発明は、上記現状に鑑み、液晶表示装置の画質の改善に用いられる積層光学補 償フィルムを提供することを目的とする。 An object of the present invention is to provide a laminated optical compensation film used for improving the image quality of a liquid crystal display device in view of the above situation.
課題を解決するための手段 Means for solving the problem
[0009] 本発明は、シクロォレフイン系榭脂フィルムと、前記シクロォレフイン系榭脂フィルム上 に積層された垂直配向性液晶層とからなる積層光学補償フィルムであって、前記シク 口才レフイン系榭脂フィルムは、前記垂直配向性液晶層と接する側の表面に、酸素 濃度が 15体積%以下である不活性ガスによる常圧プラズマ処理が施されている積層 光学補償フィルムである。 [0009] The present invention is a laminated optical compensation film comprising a cycloolefin-based resin film and a vertically-aligned liquid crystal layer laminated on the cycloolefin-based resin film, A laminated optical compensation film in which the surface on the side in contact with the vertical alignment liquid crystal layer is subjected to atmospheric pressure plasma treatment with an inert gas having an oxygen concentration of 15% by volume or less.
以下に本発明を詳述する。 The present invention is described in detail below.
[0010] 本発明者らは、鋭意検討の結果、シクロォレフイン系榭脂フィルムの表面に特定の条 件で常圧プラズマ処理を施すことにより、液晶溶液の塗工性、及び、得られる液晶層 との密着性を著しく改善することができ、特に液晶層として垂直配向性液晶層を積層 することにより、極めて高性能の光学補償フィルムが得られるということを見出し、本発 明を完成させるに至った。
[0011] 本発明の積層光学補償フィルムは、シクロォレフイン系榭脂フィルムと、前記シクロォ レフイン系榭脂フィルム上に積層された垂直配向性液晶層とからなる。 [0010] As a result of intensive studies, the inventors of the present invention applied the atmospheric pressure plasma treatment under specific conditions to the surface of the cycloolefin-based resin film, and thereby the coating properties of the liquid crystal solution and the resulting liquid crystal layer and It has been found that an extremely high performance optical compensation film can be obtained by laminating a vertical alignment liquid crystal layer as a liquid crystal layer, and the present invention has been completed. . [0011] The laminated optical compensation film of the present invention comprises a cycloolefin-based resin film and a vertically aligned liquid crystal layer laminated on the cycloolefin-based resin film.
[0012] 上記シクロォレフイン系榭脂フィルムは、シクロォレフイン系榭脂を成膜したものであ る。 [0012] The cycloolefin-based resin film is a film in which a cycloolefin-based resin is formed.
上記シクロォレフイン系榭脂としては特に限定されず、例えば、ノルボルネン系榭脂、 ジシクロペンタジェン系榭脂等が挙げられる。なかでも、不飽和結合を有さないか、 又は、不飽和結合が水素添加されたものが好適に用いられ、例えば、 1種又は 2種 以上のノルボルネン系モノマーの開環(共)重合体の水素添加物、 1種又は 2種以上 のノルボルネン系モノマーの付加(共)重合体、ノルボルネン系モノマーとォレフィン 系モノマー(エチレン、 aーォレフイン等)との付カ卩共重合体、ノルボルネン系モノマ 一とシクロォレフイン系モノマー(シクロペンテン、シクロオタテン、 5, 6—ジヒドロジシ クロペンタジェン等)との付加共重合体、及び、これらの変性物等が挙げられ、具体 的には、 ZEONEX、 ZEONOR (日本ゼオン社製)、 ARTON (JSR社製)、 TOPAS (チコナ社製)、 APEL (三井化学社製)等が挙げられる。 The cycloolefin-based resin is not particularly limited, and examples thereof include norbornene-based resin and dicyclopentagen-based resin. Among them, those having no unsaturated bond or having an unsaturated bond hydrogenated are preferably used. For example, a ring-opening (co) polymer of one or more norbornene monomers is used. Hydrogenated products, addition (co) polymers of one or more norbornene monomers, addition copolymers of norbornene monomers and olefin monomers (ethylene, a-olefin, etc.), norbornene monomers Examples include addition copolymers with cycloolefin monomers (cyclopentene, cyclootaten, 5, 6-dihydrocyclopentagen, etc.), and modified products thereof. Specifically, ZEONEX, ZEONOR (manufactured by Nippon Zeon) ARTON (manufactured by JSR), TOPAS (manufactured by Chicona), APEL (manufactured by Mitsui Chemicals), and the like.
[0013] 上記成膜の方法としては特に限定されず、従来公知の成膜方法を用いればよぐ具 体的には、例えば、シクロォレフイン系榭脂を押出機に供給して溶融、混練し、押出 機の先端に取り付けた金型力 フィルム状に押し出して長尺状のシクロォレフイン系 榭脂フィルムを成膜する方法 (溶融押出法)、シクロォレフイン系榭脂を有機溶媒中 に溶解してなる溶液をドラム又はバンド上に流延した後に有機溶媒を蒸発させて長 尺状のシクロォレフイン系榭脂フィルムを成膜する方法 (溶液流延法)等が挙げられ る。 [0013] The film forming method is not particularly limited, and, specifically, a conventionally known film forming method may be used. For example, a cycloolefin-based resin is supplied to an extruder and melted and kneaded. Mold force attached to the tip of the extruder Method of forming a long cycloolefin-based resin film by extruding it into a film (melt extrusion method), a solution obtained by dissolving a cycloolefin-based resin in an organic solvent Examples thereof include a method of evaporating the organic solvent after casting on a drum or band to form a long cycloolefin-based resin film (solution casting method).
なお、シクロォレフイン系榭脂フィルムの厚みが 80 m以上となる場合には、溶液流 延法では有機溶剤を充分に蒸発、除去させることが困難となることがあるので、溶融 押出法を用いることが好ましい。 If the thickness of the cycloolefin-based resin film is 80 m or more, it may be difficult to sufficiently evaporate and remove the organic solvent by the solution casting method. Therefore, the melt extrusion method may be used. preferable.
[0014] 上記シクロォレフイン系榭脂フィルムは、延伸処理されることにより位相差を有する位 相差フィルムであってもよい。位相差フィルムを用いることにより、様々な光学特性を 付与することが可能となる。 [0014] The cycloolefin-based resin film may be a retardation film having a retardation by being stretched. By using a retardation film, various optical properties can be imparted.
上記位相差フィルムは、上記シクロォレフイン系榭脂フィルムを延伸処理することによ
りシクロォレフィン系榭脂分子を所定方向に配向させたものである。上記延伸処理の 方法としては、例えば、長尺状のシクロォレフイン系榭脂フィルムを、シクロォレフイン 系榭脂のガラス転移温度 Tg付近の温度領域において、横方向(幅方向)に延伸した 後に縦方向(長さ方向)に延伸する方法、長尺状のシクロォレフイン系榭脂フィルムをThe retardation film is formed by stretching the cycloolefin-based resin film. The cycloolefin-based rosin molecules are oriented in a predetermined direction. As the stretching method, for example, a long cycloolefin-based resin film is stretched in the transverse direction (width direction) in the temperature region near the glass transition temperature Tg of the cycloolefin-based resin, and then longitudinally (long). Length direction), a long cycloolefin-based resin film
、シクロォレフイン系榭脂のガラス転移温度 Tg付近の温度領域において、縦方向(長 さ方向)及び横方向(幅方向)に同時に延伸する方法、シクロォレフイン系榭脂フィル ムを、シクロォレフイン系榭脂のガラス転移温度 Tg付近の温度領域において、厚み 方向に押圧力を加えて薄膜化して縦方向(長さ方向)及び横方向(幅方向)に同時に 延伸する方法等が挙げられる。 In the temperature range near the glass transition temperature Tg of cycloolefin-based resin, a method of simultaneously stretching in the longitudinal direction (length direction) and the transverse direction (width direction), cycloolefin-based resin film is made of cycloolefin-based resin glass. In the temperature region near the transition temperature Tg, a method of applying a pressing force in the thickness direction to form a thin film and simultaneously stretching in the longitudinal direction (length direction) and the transverse direction (width direction) can be mentioned.
[0015] 本発明の積層光学補償フィルムにおいては、上記シクロォレフイン系榭脂フィルムは 、上記垂直配向性液晶層と接する側の表面に、酸素濃度が 15体積%以下である不 活性ガスによる常圧プラズマ処理が施されて 、る。 [0015] In the laminated optical compensation film of the present invention, the cycloolefin-based resin film has an atmospheric pressure plasma with an inert gas having an oxygen concentration of 15% by volume or less on the surface in contact with the vertical alignment liquid crystal layer. Processed.
上記常圧プラズマ処理が施されていることにより、シクロォレフイン系榭脂フィルム上 に液晶溶液を塗工しやすくなり、液晶溶液力 なる垂直配向性液晶層とシクロォレフ イン系榭脂フィルムとは密着性に優れたものとなる。 By performing the above atmospheric pressure plasma treatment, it becomes easier to apply a liquid crystal solution onto the cycloolefin-based resin film, and the vertically aligned liquid crystal layer and the cycloolefin-based resin film, which have the liquid crystal solution power, are adhered to each other. It will be excellent.
[0016] 上記常圧プラズマ処理とは、電極間に導いた気体に電圧を印加することにより励起さ せてプラズマ化ガスとし、このプラズマ化ガスにより被処理物の表面に官能基を導入 するものである。 [0016] The normal pressure plasma treatment is a method in which a voltage is applied to a gas introduced between electrodes to be excited into a plasma gas, and a functional group is introduced onto the surface of the object to be processed by the plasma gas. It is.
[0017] 上記常圧プラズマ処理は、一対の対向電極を有し、該電極の対向面の少なくとも一 方に固体誘電体が設置されて ヽる装置にぉ 、て行われることが好ま ヽ。プラズマが 発生する部位は、上記電極の一方に固体誘電体を設置した場合は、固体誘電体と 電極との間、上記電極の双方に固体誘電体を設置した場合は、固体誘電体同士の 間の空間である。この固体誘電体と電極との間又は固体誘電体同士の間に親水化 処理の対象物体である疎水性榭脂フィルムを配置して常圧プラズマ処理を行う。 [0017] The atmospheric pressure plasma treatment is preferably performed in an apparatus having a pair of counter electrodes, and a solid dielectric is installed on at least one of the opposing surfaces of the electrodes. When the solid dielectric is installed on one of the electrodes, the plasma is generated between the solid dielectric and the electrode. When the solid dielectric is installed on both of the electrodes, the plasma is generated between the solid dielectrics. Space. A normal pressure plasma treatment is performed by placing a hydrophobic resin film, which is a target object of the hydrophilic treatment, between the solid dielectric and the electrode or between the solid dielectrics.
[0018] 上記電極としては特に限定されず、例えば、銅、アルミニウム等の金属単体、ステン レス、真鍮等の合金、金属化合物等力もなるものが挙げられる。 [0018] The electrode is not particularly limited, and examples thereof include a simple metal such as copper and aluminum, an alloy such as stainless steel and brass, and a metal compound.
[0019] 上記対向電極は、電界集中によるアーク放電の発生を避けるために、対向電極間の 距離が略一定となる構造であることが好まし 、。この条件を満たす電極構造としては
、平行平板型、円筒対向平板型、球対向平板型、双曲面、対向平板型、同軸円筒 型構造等が挙げられる。 [0019] It is preferable that the counter electrode has a structure in which the distance between the counter electrodes is substantially constant in order to avoid occurrence of arc discharge due to electric field concentration. As an electrode structure that satisfies this condition, Parallel plate type, cylindrical opposed flat plate type, spherical opposed flat plate type, hyperboloid, opposed flat plate type, coaxial cylindrical type structure and the like.
[0020] 上記固体誘電体は、上記電極の対向面の一方又は双方に設置されていることが好 ましい。この際、固体誘電体と設置される側の電極が密着し、かつ、接する電極の対 向面を完全に覆うよう〖こする。固体誘電体によって覆われずに電極同士が直接対向 する部位があると、そこ力 アーク放電が生じるためである。 [0020] The solid dielectric is preferably disposed on one or both of the opposing surfaces of the electrode. At this time, the solid dielectric and the electrode on the side to be installed are in close contact with each other, and the opposite surface of the electrode in contact is completely covered. This is because if there is a part where the electrodes face each other directly without being covered by the solid dielectric, a force arc discharge occurs.
上記固体誘電体の形状は、シート状でもフィルム状でもよいが、好ましい厚さの下限 が 0. Olmm,好ましい厚さの上限力 mmである。 0. 01 mm未満であると放電プラズ マを発生するのに高電圧を要し、 4mmを超えると電圧印加時に絶縁破壊が起こりァ ーク放電が発生する。 The solid dielectric may be in the form of a sheet or a film, but the lower limit of the preferred thickness is 0. Olmm and the upper limit force mm of the preferred thickness. If it is less than 0.01 mm, a high voltage is required to generate discharge plasma, and if it exceeds 4 mm, dielectric breakdown occurs when voltage is applied and arc discharge occurs.
[0021] 上記固体誘電体の材質としては特に限定されず、例えば、ポリテトラフルォロェチレ ン、ポリエチレンテレフタレート等のプラスチック、ガラス、二酸化珪素、酸化アルミ- ゥム、二酸化ジルコニウム、二酸化チタン等の金属酸化物、チタン酸バリウム等の複 酸ィ匕物等が挙げられる。 [0021] The material of the solid dielectric is not particularly limited, and examples thereof include plastics such as polytetrafluoroethylene and polyethylene terephthalate, glass, silicon dioxide, aluminum oxide, zirconium dioxide, and titanium dioxide. Examples thereof include metal oxides and double oxides such as barium titanate.
また、上記固体誘電体は、比誘電率が 25°C環境下で 2以上であることが好ましい。 比誘電率が 2以上の誘電体の具体例としては、例えば、ポリテトラフルォロエチレン、 ガラス、金属酸化膜等が挙げられる。さら〖こ、高密度の放電プラズマを安定して発生 させるためには、比誘電率が 10以上の固体誘電体を用いることが好ま 、。 The solid dielectric preferably has a relative dielectric constant of 2 or more in an environment of 25 ° C. Specific examples of the dielectric having a relative dielectric constant of 2 or more include polytetrafluoroethylene, glass, and metal oxide film. Furthermore, in order to generate a high-density discharge plasma stably, it is preferable to use a solid dielectric having a relative dielectric constant of 10 or more.
比誘電率の上限は特に限定されるものではないが、現実の材料では 18500程度の ものが知られている。比誘電率が 10以上の固体誘電体としては、酸化チタン 5〜50 重量%、酸化アルミニウム 50〜95重量%で混合された金属酸化物被膜、又は、酸 化ジルコニウムを含有する金属酸ィ匕物被膜からなり、その被膜の厚みが 10〜: L000 μ mであるものを用いることが好まし!、。 The upper limit of the relative dielectric constant is not particularly limited, but the actual material is about 18500. The solid dielectric having a relative dielectric constant of 10 or more includes a metal oxide film mixed with 5 to 50% by weight of titanium oxide and 50 to 95% by weight of aluminum oxide, or a metal oxide containing zirconium oxide. It is preferable to use a coating that has a thickness of 10 to L000 μm!
[0022] 上記電極間の距離としては特に限定されず、雰囲気ガスの圧力、酸素濃度、固体誘 電体の厚さ、印加電圧の大きさ、プラズマ放電処理されたフィルムを利用する目的等 を考慮して決定され、好ましい下限は 0. 5mm、好ましい上限は 50mmである。 0. 5 mm未満であると、電極間における雰囲気ガス濃度の変動が大きぐ処理が不均一 になり易ぐまた、電極間に設置する被処理物の厚さが限定されてしまう。 50mmを超
えると、均一な放電プラズマを発生させることが困難である。 [0022] The distance between the electrodes is not particularly limited, taking into consideration the pressure of the atmospheric gas, the oxygen concentration, the thickness of the solid dielectric, the magnitude of the applied voltage, the purpose of using the plasma discharge-treated film, etc. The preferable lower limit is 0.5 mm, and the preferable upper limit is 50 mm. If the thickness is less than 0.5 mm, the process with large fluctuations in the atmospheric gas concentration between the electrodes tends to be uneven, and the thickness of the workpiece to be installed between the electrodes is limited. Over 50mm In other words, it is difficult to generate a uniform discharge plasma.
また、印加する電圧はパルス電圧が好ましい。ノ ルス波形はインパルス型、方形波型 、変調型の波形のいずれでもよぐさらに印加電圧が正負の繰り返しであっても、正 又は負のいずれかの極性側に電圧が印加される片波状の波形であってもよい。 The applied voltage is preferably a pulse voltage. The Norse waveform may be an impulse type, square wave type, or modulation type waveform, and even if the applied voltage repeats positive and negative, it is a one-wave shape in which voltage is applied to either the positive or negative polarity side. It may be a waveform.
[0023] パルス電圧の電圧立ち上がり時間としては特に限定されないが、好ましい下限は 40 ns、好ましい上限は 100 sである。ここで、パルス電圧の電圧立ち上がり時間とは、 電圧変化が連続して正である時間を意味する。 40ns未満の電圧立ち上がり時間の パルス電圧を実現することは困難であり、 100 sを超えると放電状態がアークに移 行しやすく不安定なものとなり、パルス電圧による高密度プラズマ状態を期待できなく なる。より好ましい下限は 50ns、より好ましい上限は 5 μ sである。 [0023] The voltage rise time of the pulse voltage is not particularly limited, but the preferred lower limit is 40 ns, and the preferred upper limit is 100 s. Here, the voltage rise time of the pulse voltage means a time during which the voltage change is continuously positive. It is difficult to realize a pulse voltage with a voltage rise time of less than 40 ns, and if it exceeds 100 s, the discharge state becomes easy to move to the arc and becomes unstable, and a high-density plasma state due to the pulse voltage cannot be expected. . A more preferred lower limit is 50 ns, and a more preferred upper limit is 5 μs.
また、パルス電圧の電圧立ち下がり時間も急峻であることが好ましぐパルス電圧の 電圧立ち上がり時間と同様の 100 s以下のタイムスケールであることが好ましい。パ ルス電界発生技術によっても異なるが、例えば、本発明の実施例で使用した電源装 置では、パルス電圧の電圧立ち上がり時間と電圧立ち下がり時間とを同じ時間に設 定することができる。 In addition, it is preferable that the time scale of 100 s or less is the same as the voltage rise time of the pulse voltage, in which the voltage fall time of the pulse voltage is preferably steep. For example, in the power supply device used in the embodiment of the present invention, the voltage rise time and the voltage fall time of the pulse voltage can be set to the same time, although it varies depending on the pulse electric field generation technology.
[0024] パルス電圧の周波数としては特に限定されないが、好ましい下限は 0. 5kHz、好まし い上限は 100kHzである。 0. 5kHz未満であるとプラズマ密度が低いため処理に時 間がかかりすぎ、 100kHzを超えるとアーク放電が発生しやすくなる。より好ましい下 限は 1kHzである。 [0024] The frequency of the pulse voltage is not particularly limited, but a preferable lower limit is 0.5 kHz, and a preferable upper limit is 100 kHz. If it is less than 0.5 kHz, the plasma density is low, so it takes too much time to process, and if it exceeds 100 kHz, arc discharge tends to occur. A more preferred lower limit is 1 kHz.
[0025] 上記パルス電圧におけるパルス継続時間としては特に限定されな 、が、好ま Uヽ下 限は 1 μ s、好ましい上限は 1000 μ sである。 1 μ s未満であると放電が不安定なもの となり、 1000 sを超えるとアーク放電に移行しやすくなる。より好ましい下限は 3 s 、より好ましい上限は 200 sである。ここで、パルス継続時間とは、 ON、 OFFの繰り 返し力らなるノ ルス電圧における、ノ《ルスが連続する時間を意味する。 [0025] Although the pulse duration in the pulse voltage is not particularly limited, the lower limit of U is preferably 1 μs, and the preferable upper limit is 1000 μs. If it is less than 1 μs, the discharge becomes unstable, and if it exceeds 1000 s, it tends to shift to arc discharge. A more preferred lower limit is 3 s, and a more preferred upper limit is 200 s. Here, the pulse duration means the time during which the pulse continues in the pulse voltage that is the ON / OFF repetitive force.
さらに、放電を安定させるためには、放電時間 lms内に、少なくとも 1 s継続する OF F時間を有することが好ましい。また、パルス電圧の印加において、直流を重畳しても よい。 Further, in order to stabilize the discharge, it is preferable to have an OFF time that lasts at least 1 s within the discharge time lms. Further, direct current may be superimposed when applying the pulse voltage.
[0026] プラズマ放電を発生する雰囲気ガスは、少なくとも酸素ガスを含み、かつ、酸素濃度
が 15体積%以下である不活性ガスである。酸素ガス以外の混合ガスとしては、窒素 ガス、アルゴンガス等が挙げられ、酸素ガスと酸素以外のガスの体積比率は 15 : 85 〜1: 99の範囲でほぼ任意の比率で混合することができる。混合ガス中の酸素ガス濃 度が 15体積%を超えると、現時点で理由は不明である力 処理基材表面に導入され る酸素、窒素由来の成分が減少し、重合性液晶層の密着性が急激に低下する。酸 素ガス濃度のより好ましい上限は 10体積%である。また、混合ガス中の酸素ガス濃 度の下限は特に限定されない。本発明においては常圧付近で処理を実施するため 、完全に無酸素状態にするには大が力りな設備を必要とすることからあまり現実的で はなぐ実質的にその程度の酸素の存在は許容される。 [0026] The atmospheric gas that generates plasma discharge contains at least oxygen gas and has an oxygen concentration. Is an inert gas with a volume of 15% or less. Examples of the mixed gas other than oxygen gas include nitrogen gas and argon gas, and the volume ratio of oxygen gas and gas other than oxygen can be mixed at an almost arbitrary ratio in the range of 15:85 to 1:99. . If the oxygen gas concentration in the mixed gas exceeds 15% by volume, the components derived from oxygen and nitrogen introduced to the surface of the force-treated substrate for which the reason is unknown at this time will decrease, and the adhesion of the polymerizable liquid crystal layer will be reduced. Decreases rapidly. A more preferable upper limit of the oxygen gas concentration is 10% by volume. Further, the lower limit of the oxygen gas concentration in the mixed gas is not particularly limited. In the present invention, since the treatment is carried out near normal pressure, a large amount of equipment is required to make it completely oxygen-free, so there is substantially no such oxygen that is not practical. Permissible.
[0027] 上記常圧プラズマ処理の圧力としては特に限定されないが、好ましい下限は ΙΟΟΤο rr (約 1. 33 X 104Pa)、好ましい上限は 800Torr (約 10. 7 X 104Pa)であり、より好 ましい下限は 700Torr (約 9. 33 X 104Pa)、より好ましい上限は 780Torr (約 10. 4 X 104Pa)である。 [0027] The pressure of the atmospheric plasma treatment is not particularly limited, but a preferable lower limit is ΙΟΟΤο rr (about 1.33 X 10 4 Pa), and a preferable upper limit is 800 Torr (about 10.7 X 10 4 Pa). A more preferred lower limit is 700 Torr (about 9.33 × 10 4 Pa), and a more preferred upper limit is 780 Torr (about 10.4 × 10 4 Pa).
[0028] 上記垂直配向性液晶層としては、垂直配向性を有する液晶からなるものであれば特 に限定されない。このような垂直配向性液晶層としては、例えば、下記式(1)、 (2)及 び (3)からなる群より選択される少なくとも 1種の化合物を含有する重合性液晶組成 物の重合体力 なるもの等が挙げられる。 [0028] The vertical alignment liquid crystal layer is not particularly limited as long as it is made of a liquid crystal having vertical alignment. As such a vertically aligned liquid crystal layer, for example, the polymer strength of a polymerizable liquid crystal composition containing at least one compound selected from the group consisting of the following formulas (1), (2) and (3): And the like.
[0029] [化 1] [0029] [Chemical 1]
上記式(1)において、 W1は水素又はメチルであり、 1は 4〜6の整数である。 In the above formula (1), W 1 is hydrogen or methyl, and 1 is an integer of 4-6.
上記式(2)において、 W2及び W3は水素、塩素又はフッ素であり、 W4及び W5は水素
、塩素、メチル又はトリフルォロメチルであり、 Xは単結合、エチレン結合又はエタン結 合であり、 mは 4〜6の整数である。 In the above formula (2), W 2 and W 3 are hydrogen, chlorine or fluorine, W 4 and W 5 are hydrogen , Chlorine, methyl or trifluoromethyl, X is a single bond, ethylene bond or ethane bond, and m is an integer of 4-6.
上記式(3)において、 nは 4〜6の整数である。 In the above formula (3), n is an integer of 4-6.
[0030] 上記式(1)中、 W1がメチルであり mが 4又は 6の化合物は特開 2003— 238491号公 報に記載の方法により合成することができる。 [0030] In the above formula (1), a compound in which W 1 is methyl and m is 4 or 6 can be synthesized by the method described in Japanese Patent Laid-Open No. 2003-238491.
[0031] 上記式(2)中、 W2及び W3が水素であり、 W4及び W5が水素であり、 Xが単結合でありIn the above formula (2), W 2 and W 3 are hydrogen, W 4 and W 5 are hydrogen, and X is a single bond.
、 m力 6のィ匕合物は Makromol. Chem. 190, 2255— 2268 (1989)に記載の方法 により合成することができる。 The compound with m force 6 can be synthesized by the method described in Makromol. Chem. 190, 2255-2268 (1989).
[0032] 上記式(2)中、 W2及び W3が水素であり、 W4が水素であり、 W5がメチルであり、 Xが 単結合であり、 m力 6のィ匕合物は Makromol. Chem. 190, 3201— 3215 (1989) に記載の方法により合成することができる。 In the above formula (2), W 2 and W 3 are hydrogen, W 4 is hydrogen, W 5 is methyl, X is a single bond, and m-force 6 is It can be synthesized by the method described in Makromol. Chem. 190, 3201—3215 (1989).
[0033] 上記式(2)中、 W2及び W3が水素であり、 W4がトリフルォロメチルであり、 W5がトリフ ルォロメチルであり、 Xが単結合であり、 mが 6の化合物は特開 2004— 231638号公 報に記載の方法により合成することができる。 [0033] In the above formula (2), W 2 and W 3 are hydrogen, W 4 is trifluoromethyl, W 5 is trifluoromethyl, X is a single bond, and m is 6. Can be synthesized by the method described in JP-A-2004-231638.
[0034] 上記式(2)中、 W2及び W3が塩素又はフッ素であり、 W4が水素であり、 W5が塩素で あり、 Xが単結合であり、 mが 6の化合物は Liquid Crystals Vol30, No8, 979—[0034] In the above formula (2), W 2 and W 3 are chlorine or fluorine, W 4 is hydrogen, W 5 is chlorine, X is a single bond, and m is 6 Crystals Vol30, No8, 979—
984 (2003)に記載の方法により合成することができる。 984 (2003).
[0035] 上記式(3)中、 m力 又は 6の化合物は Macromolecules, 26, 6132— 6134 (199[0035] In the above formula (3), m force or the compound of 6 is Macromolecules, 26, 6132— 6134 (199
3)に記載の方法で合成することができる。 It can be synthesized by the method described in 3).
[0036] 本発明の積層光学補償フィルムにおいては、上記重合性液晶組成物のホメオトロピ ック配向を制御することにより、本発明の積層光学補償フィルムを用 、てなる液晶表 示装置の視野角特性を改善することが可能となる。 [0036] In the laminated optical compensation film of the present invention, by controlling the homeotropic alignment of the polymerizable liquid crystal composition, the viewing angle characteristics of a liquid crystal display device using the laminated optical compensation film of the present invention are controlled. Can be improved.
ホメオト口ピック配向を制御する方法としては特に限定されず、例えば、上記重合性 液晶組成物に下記式 (4)で示されるような有機ケィ素化合物を添加する方法等が挙 げられる。 A method for controlling homeotopic orientation is not particularly limited, and examples thereof include a method of adding an organic key compound represented by the following formula (4) to the polymerizable liquid crystal composition.
[0037] [化 2] [0037] [Chemical 2]
( 4 )( Four )
H2N— R1— Si-(-OR3) 3_r
上記式 (4)において、 R1は 2〜10個の炭素原子を有する直鎖状のアルキレンであり 、このアルキレン中の隣り合わない 1〜2個の— CH—は— O 又は— NH で置き H 2 N— R 1 — Si-(-OR 3 ) 3 _ r In the above formula (4), R 1 is a linear alkylene having 2 to 10 carbon atoms, and 1 to 2 non-adjacent —CH— in the alkylene are replaced by —O or —NH 2.
2 2
換えられてもよい。 R2はメチル、ェチル、プロピル又はイソプロピルである。 R3はメチ ル、ェチル又はトリメチルシリルである。また、 rは 0〜2の整数である。 It may be replaced. R 2 is methyl, ethyl, propyl or isopropyl. R 3 is methyl, ethyl or trimethylsilyl. R is an integer of 0-2.
すなわち、化合物 (4)はァミノ基と加水分解性のアルコキシ基又はトリメチルシリルォ キシ基とを有するケィ素化合物である。 That is, the compound (4) is a key compound having an amino group and a hydrolyzable alkoxy group or trimethylsilyloxy group.
[0038] 上記式 (4)の具体的構造としては特に限定されず、下記式 (4 1)〜(4 15)等が 挙げられる。 [0038] The specific structure of the above formula (4) is not particularly limited, and examples thereof include the following formulas (41) to (415).
[0039] [化 3-1]
[0039] [Chemical 3-1]
NH2^^Si(OC2H5)3 (4- 1) NH 2 ^^ Si (OC 2 H 5 ) 3 (4-1)
^/^Si(OC2H5)3 ^ / ^ Si (OC 2 H5) 3
NH (4-2) NH (4-2)
OCH3 OCH 3
H2NCH2CH2NHCH2CH2Ch½— Si— OCH3 (4-3) H 2 NCH 2 CH 2 NHCH 2 CH 2 Ch½— Si— OCH 3 (4-3)
CH3 CH 3
H2NCH2CH2NHCH2CH2CH2— Si(OCHa)3 (4-4) H 2 NCH 2 CH 2 NHCH 2 CH 2 CH 2 — Si (OCHa) 3 (4-4)
H2N(CH2)eNHCH2CH2CH2-Si(OCH3)3 (4-5) H 2 N (CH2) e NHCH 2 CH 2 CH 2 -Si (OCH 3 ) 3 (4-5)
CH3 CH 3
H2NCH2CH2CH2 -Si-OC2H| (4-6) H 2 NCH 2 CH 2 CH 2 -Si-OC 2 H | (4-6)
CH3 CH 3
CH(CH3)2 CH (CH3) 2
H2NCH2CH2CH2— Si - OC2H5 (4-7) H 2 NCH 2 CH 2 CH 2 — Si-OC 2 H 5 (4-7)
CH(CH3)2 CH (CH 3 ) 2
H2NCH2CH2CH2-Si (OChy3 (4-8) H 2 NCH 2 CH 2 CH 2 -Si (OChy 3 (4-8)
OC2H5 OC 2 H 5
H2NCH2CH2CH2_Sト CH3 (4— 9) H 2 NCH 2 CH 2 CH 2 _S to CH 3 (4-9)
OC,H= OC, H =
(4-10)(4-10)
H H
[化 3- 2]
-CH, [Chemical 3-2] -CH,
H C. H C.
H N -O H N -O
(4- (Four-
CH3 CH 3
定したホメオト口ピック配向を得るために、有機ケィ素化合物の配合量の好ましい
下限は重合性液晶化合物に対して 0. 01重量部、好ましい上限は 0. 30重量部であ り、より好ましい下限は 0. 03重量部、より好ましい上限は 0. 20重量部であり、更に 好ましい上限は 0. 15重量部である。 In order to obtain a defined homeotopick pick orientation, the amount of the organic silicon compound is preferably The lower limit is 0.01 parts by weight with respect to the polymerizable liquid crystal compound, the preferred upper limit is 0.30 parts by weight, the more preferred lower limit is 0.03 parts by weight, and the more preferred upper limit is 0.20 parts by weight. A preferred upper limit is 0.15 parts by weight.
[0041] 本発明の積層光学補償フィルムの製造方法としては特に限定されず、例えば、シクロ ォレフィン系榭脂フィルムに酸素濃度が 15体積%以下である不活性ガスを用いて常 圧プラズマ処理を施す工程と、上記常圧プラズマ処理が施されたシクロォレフイン系 榭脂フィルムの常圧プラズマ処理が施された面上に上記垂直配向性液晶層の原料 となる上記重合性液晶組成物を溶剤に溶解した液晶溶液を塗工し、乾燥させる工程 とを有する方法等が挙げられる。 [0041] The method for producing the laminated optical compensation film of the present invention is not particularly limited. For example, a normal-pressure plasma treatment is performed on a polyolefin resin film using an inert gas having an oxygen concentration of 15% by volume or less. And the polymerizable liquid crystal composition serving as a raw material for the vertical alignment liquid crystal layer was dissolved in a solvent on the surface of the cycloolefin-based resin film subjected to the normal pressure plasma treatment and subjected to the normal pressure plasma treatment. And a step of applying a liquid crystal solution and drying.
このような積層光学補償フィルムの製造方法もまた、本発明の 1つである。 Such a method for producing a laminated optical compensation film is also one aspect of the present invention.
[0042] 上記重合性液晶組成物を溶解する溶剤としては特に限定されず、例えば、ベンゼン 、トルエン、キシレン、メシチレン、 n—ブチルベンゼン、ジェチルベンゼン、テトラリン 、メトキシベンゼン、 1, 2—ジメトキシベンゼン、エチレングリコールジメチルエーテル 、ジエチレングリコールジメチルエーテル、アセトン、メチルェチルケトン、メチルイソ ブチルケトン、シクロペンタノン、シクロへキサノン、酢酸ェチル、乳酸ェチル、乳酸メ チル、エチレングリコーノレモノメチノレエーテノレアセテート、プロピレングリコーノレモノメ チノレエーテノレアセテート、プロピレングリコーノレモノェチノレエーテノレアセテート、 Ί ブチロラタトン、 2—ピロリドン、 Ν—メチル 2—ピロリドン、ジメチルホルムアミド、クロ 口ホルム、ジクロロメタン、四塩化炭素、ジクロロエタン、テトラクロロエチレン、トリクロ口 エチレン、テトラクロロエチレン、クロ口ベンゼン、 t—ブチルアルコール、ジアセトンァ ノレコーノレ、グリセリン、モノァセチン、エチレングリコーノレ、トリエチレングリコール、へ キシレングリコーノレ、エチレングリコーノレモノメチノレエーテノレ、ェチノレセノレソノレブ、ブ チルセルソルブ等が挙げられる。上記溶媒は単一化合物であってもよいし、混合物 であってもよい。 [0042] The solvent for dissolving the polymerizable liquid crystal composition is not particularly limited. For example, benzene, toluene, xylene, mesitylene, n-butylbenzene, jetylbenzene, tetralin, methoxybenzene, 1,2-dimethoxybenzene , Ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, ethyl acetate, ethyl lactate, methyl lactate, ethylene glycol monomethino ethenore acetate, propylene glycol monomono main Chino Les ether Honoré acetate, propylene glycol Honoré monomethyl E Chino les ether Honoré acetate, I Buchirorataton, 2-pyrrolidone, Nyu- methyl 2-pyrrolidone, dimethyl formamide, black hole Hol , Dichloromethane, carbon tetrachloride, dichloroethane, tetrachloroethylene, trichloroethylene, ethylene, tetrachloroethylene, black benzene, t-butyl alcohol, diacetone alcohole, glycerin, monoacetin, ethylene glycol, triethylene glycol, hexylene glycol, ethylene glycol Monomethinoreethenore, ethinorescenoresonoleb, butyrcellsolve and the like. The solvent may be a single compound or a mixture.
[0043] 上記溶剤の割合としては特に限定されないが、重合性液晶組成物溶液全量を基準 として、好ましい下限は 60重量%、好ましい上限は 98重量%である。 60重量%未満 であると、重合性液晶化合物の溶解性及び重合性液晶組成物溶液を塗工する際に 最適な粘度が得られないことがあり、 98重量%を超えると、溶剤コスト及び溶剤を蒸
発させる際の時間や熱量と 、つた経済的観点力も好ましくな 、。より好まし 、下限は 5 0重量%、より好ましい上限は 90重量%であり、更に好ましい下限は 70重量%、更に 好まし 、上限は 85重量%である。 [0043] The proportion of the solvent is not particularly limited, but the preferred lower limit is 60 wt% and the preferred upper limit is 98 wt% based on the total amount of the polymerizable liquid crystal composition solution. If the amount is less than 60% by weight, the solubility of the polymerizable liquid crystal compound and the optimum viscosity may not be obtained when the polymerizable liquid crystal composition solution is applied. Steaming The time and heat amount at the time of emission and the economic viewpoint power are also favorable. More preferably, the lower limit is 50% by weight, and the more preferable upper limit is 90% by weight, the still more preferable lower limit is 70% by weight, and the upper limit is more preferably 85% by weight.
[0044] 上記重合性液晶組成物の重合速度を最適化するために、公知の光重合開始剤を用 いてもよい。光重合開始剤の好ましい添加量としては特に限定されないが、組成物 全量を基準として、好ましい下限は 0. 01重量%、好ましい上限は 10重量%であり、 より好ましい下限は 0. 1重量%、より好ましい上限は 7重量%である。 [0044] In order to optimize the polymerization rate of the polymerizable liquid crystal composition, a known photopolymerization initiator may be used. The preferred addition amount of the photopolymerization initiator is not particularly limited, but based on the total amount of the composition, the preferred lower limit is 0.01% by weight, the preferred upper limit is 10% by weight, the more preferred lower limit is 0.1% by weight, A more preferred upper limit is 7% by weight.
[0045] 上記光重合開始剤としては特に限定されず、例えば、 2 ヒドロキシー 2—メチルー 1 —フエニルプロパン一 1—オン、 1—ヒドロキシシクロへキシルフェニルケトン、 2, 2— ジメトキシ一 1, 2 ジフエニルェタン一 1—オン、ィルガキュア一 500、ィルガキュア 一 2959、ィルガキュア一 907、ィルガキュア一 369、ィルガキュア一 1300、ィルガキ ユア一 819、ィルガキュア一 1700、ィルガキュア一 1800、ィルガキュア一 1850、ダ 口キュア一 4265、ィルガキュア一 784、ィルガキュア一 754、ィルガキュア一 OXE01 、 p—メトキシフエニル一 2, 4 ビス(トリクロロメチル)トリァジン、 2— (p ブトキシスチ リル)一 5 トリクロロメチル一 1, 3, 4—ォキサジァゾール、 9 フエ二ルァクリジン、 1 - (4—イソプロピルフエ-ル) 2 ヒドロキシ一 2—メチルプロパン一 1—オン、ベン ジルジメチルケタール、 2—メチルー 1 [4 (メチルチオ)フエ-ル] 2 モルホリ ノプロパン 1 オン、及び、 2, 4 ジェチルキサントンと p ジメチルァミノ安息香酸 メチルとの混合物等が挙げられる。なお、ダロキュア一及びィルガキュア一はいずれ もチバ 'スペシャルティ'ケミカルズ社製のものである。更に、これらに公知の増感剤( イソプロピルチォキサントン、ジェチルチオキサントンなど)を添加してもよい。 [0045] The photopolymerization initiator is not particularly limited, and examples thereof include 2 hydroxy-2-methyl-1-phenylpropane-1-one, 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-1,2, Diphenylane 1-On, Irgacure 1 500, Irgacure 1 2959, Irgacure 1 907, Irgacure 1 369, Irgacure 1300, Irgaki Your 819, Irgacure 1700, Irgacure 1800, Irgacure 1800, Icg 1 784, Irgacure 1 754, Irgacure 1 OXE01, p-methoxyphenyl-1,2,4 bis (trichloromethyl) triazine, 2- (p-butoxystyryl) -1,5 trichloromethyl-1,3,4-oxadiazole, 9 Luacridine, 1-(4-Isopropylphenol) 2 Hydroxy 1 2-Methylpropane 1 1-one, benzyldimethyl ketal, 2-methyl-1- [4 (methylthio) phenol] 2 morpholinopropane 1-one, and a mixture of 2,4 jetylxanthone and methyl p-dimethylaminobenzoate. Both Darocur 1 and Irgacure 1 are manufactured by Ciba 'Specialty' Chemicals. Furthermore, known sensitizers (isopropyl thixanthone, jetyl thioxanthone, etc.) may be added thereto.
[0046] 上記光ラジカル重合開始剤のその他の例としては、例えば、 p—メトキシフエ-ルー 2 , 4 ビス(トリクロロメチル)トリアジン、 2— (p ブトキシスチリル)一 5 トリクロロメチ ルー 1, 3, 4—ォキサジァゾール、 9 フエ二ルァクリジン、 9, 10 ベンズフエナジン [0046] Other examples of the photo radical polymerization initiator include, for example, p-methoxyphenol-2,4 bis (trichloromethyl) triazine, 2- (p-butoxystyryl) -15 trichloromethyl 1, 3, 4 —Oxadiazole, 9 phenacridine, 9, 10 benzphenazine
、ベンゾフエノン Zミヒラーズケトン混合物、へキサァリールビイミダゾール Zメルカプト ベンズイミダゾール混合物、 1— (4—イソプロピルフエ-ル) 2 ヒドロキシ一 2—メ チルプロパン 1 オン、ベンジルジメチルケタール、 2—メチルー 1 [4 (メチル チォ)フエ-ル ] 2 モルホリノプロパン 1 オン、 2, 4 ジェチルキサントン Zp
ージメチルァミノ安息香酸メチル混合物、ベンゾフエノン zメチルトリエタノールァミン 混合物等が挙げられる。 , Benzophenone Z Michler's ketone mixture, Hexalylbiimidazole Z Mercapto benzimidazole mixture, 1— (4-Isopropylphenol) 2 Hydroxy-2-methylpropane 1-one, Benzyldimethyl ketal, 2-Methyl-1 [4 (Methyl Thio) fuel] 2 morpholinopropane 1-on, 2, 4 jetylxanthone Zp -Methyl dimethylaminobenzoate mixture, benzophenone z methyltriethanolamine mixture, etc.
[0047] 上記塗工の方法としては特に限定されず、例えば、ダイコート法、ロールコート法、グ ラビアコート法、マイクログラビア法、スピンコート法、バーコート法等が挙げられる。 本発明の積層光学補償フィルムにお ヽては、上記プラズマ放電処理工程を行うこと によりシクロォレフイン系榭脂フィルムに対して液晶溶液を容易に塗工することが可能 となり、また、塗工後には液晶層とシクロォレフイン系榭脂フィルムとの密着性が極め て優れる。 [0047] The coating method is not particularly limited, and examples thereof include a die coating method, a roll coating method, a gravure coating method, a micro gravure method, a spin coating method, and a bar coating method. In the laminated optical compensation film of the present invention, it is possible to easily apply the liquid crystal solution to the cycloolefin-based resin film by performing the plasma discharge treatment step, and after the application, the liquid crystal solution can be applied. The adhesion between the layer and the cycloolefin-based resin film is extremely excellent.
[0048] 上記液晶溶液を塗工する際には、塗工後に溶剤を除去して、上記シクロォレフイン系 榭脂フィルム上に膜厚の均一な重合性液晶組成物の層、すなわち、垂直配向性液 晶層を形成させる。溶剤除去の条件は特に限定されず、溶剤がおおむね除去され、 重合性液晶組成物の塗膜の流動性がなくなるまで乾燥すればょ 、。室温での風乾、 ホットプレートでの乾燥、乾燥炉での乾燥、温風や熱風の吹き付けなどを利用して溶 剤を除去することができる。重合性液晶組成物に用いる化合物の種類と組成比によ つては、塗膜を乾燥する過程で、塗膜中の重合性液晶組成物のネマチック配向が完 了していることがある。従って、乾燥工程を経た塗膜は、後述する熱処理工程を経由 することなぐ重合工程に供することができる。しかしながら、塗膜中の液晶分子の配 向をより均一化させるためには、乾燥工程を経た塗膜を熱処理し、その後に光重合 処理することが好ましい。 [0048] When the liquid crystal solution is applied, the solvent is removed after the application, and the layer of the polymerizable liquid crystal composition having a uniform film thickness on the cycloolefin-based resin film, that is, the vertical alignment liquid A crystal layer is formed. The conditions for removing the solvent are not particularly limited. If the solvent is almost removed and the coating film of the polymerizable liquid crystal composition is no longer fluid, it is dried. The solvent can be removed by air drying at room temperature, drying on a hot plate, drying in a drying oven, or blowing of warm or hot air. Depending on the type and composition ratio of the compound used in the polymerizable liquid crystal composition, the nematic alignment of the polymerizable liquid crystal composition in the coating film may be completed in the process of drying the coating film. Therefore, the coating film that has undergone the drying step can be subjected to a polymerization step that does not go through a heat treatment step that will be described later. However, in order to make the orientation of the liquid crystal molecules in the coating film more uniform, it is preferable to heat-treat the coating film that has undergone the drying step and then to perform photopolymerization.
[0049] 塗膜を熱処理する際の温度及び時間、光照射に用いられる光の波長、光源から照 射する光の量等は、重合性液晶組成物に用いる化合物の種類と組成比、光重合開 始剤の添加の有無やその添加量などによって、好ましい範囲が異なる。従って、以下 に説明する塗膜の熱処理の温度及び時間、光照射に用いられる光の波長、光源か ら照射する光の量についての条件は、あくまでもおよその範囲を示すものである。 [0049] The temperature and time when heat-treating the coating film, the wavelength of light used for light irradiation, the amount of light irradiated from the light source, and the like are the types and composition ratios of the compounds used in the polymerizable liquid crystal composition, and photopolymerization. The preferred range varies depending on whether or not an initiator is added and the amount added. Accordingly, the conditions regarding the temperature and time of the heat treatment of the coating film described below, the wavelength of light used for light irradiation, and the amount of light irradiated from the light source are merely an approximate range.
[0050] 塗膜の熱処理は、溶剤が除去され重合性液晶の均一配向性が得られる条件で行う ことが好ましぐ重合性液晶組成物の液晶相転移点以上で行ってもよい。熱処理方 法としては、例えば、上記重合性液晶組成物がネマチック液晶相を示す温度まで塗 膜を加温して、塗膜中の重合性液晶組成物にネマチック配向を形成させる方法等が
挙げられる。上記重合性液晶組成物がネマチック液晶相を示す温度範囲内で、塗膜 の温度を変化させることによってネマチック配向を形成させてもよい。この方法は、上 記温度範囲の高温域まで塗膜を加温することによって塗膜中にネマチック配向を概 ね完成させ、次いで温度を下げることによってさらに秩序だった配向にする方法であ る。上記のどちらの熱処理方法を採用する場合でも、熱処理温度の好ましい下限は 室温、好ましい上限は 120°Cであり、より好ましい上限は 90°Cであり、更に好ましい 上限は 70°Cである。 [0050] The heat treatment of the coating film may be performed at a temperature equal to or higher than the liquid crystal phase transition point of the polymerizable liquid crystal composition, which is preferably performed under the condition that the solvent is removed and the uniform orientation of the polymerizable liquid crystal is obtained. Examples of the heat treatment method include a method in which the coating liquid is heated to a temperature at which the polymerizable liquid crystal composition exhibits a nematic liquid crystal phase to form a nematic alignment in the polymerizable liquid crystal composition in the coating film. Can be mentioned. Nematic alignment may be formed by changing the temperature of the coating film within a temperature range in which the polymerizable liquid crystal composition exhibits a nematic liquid crystal phase. This method is a method in which the nematic orientation is generally completed in the coating film by heating the coating film to a high temperature range within the above temperature range, and then the order is further ordered by lowering the temperature. In either of the above heat treatment methods, the preferred lower limit of the heat treatment temperature is room temperature, the preferred upper limit is 120 ° C, the more preferred upper limit is 90 ° C, and the still more preferred upper limit is 70 ° C.
また、上記熱処理時間の好ましい下限は 5秒、好ましい上限は 40分であり、より好ま しい下限は 10秒、より好ましい上限は 10分であり、更に好ましい下限は 20秒、更に 好まし!/、上限は 5分である。重合性液晶組成物からなる層の温度を所定の温度まで 上昇させるためには、熱処理時間を 5秒以上にすることが好ましい。生産性を低下さ せないためには、熱処理時間を 2時間以内にすることが好ましい。このようにして本発 明の重合性液晶層が得られる。 The preferable lower limit of the heat treatment time is 5 seconds, and the preferable upper limit is 40 minutes, the more preferable lower limit is 10 seconds, the more preferable upper limit is 10 minutes, the more preferable lower limit is 20 seconds, and the more preferable! /, The upper limit is 5 minutes. In order to raise the temperature of the layer made of the polymerizable liquid crystal composition to a predetermined temperature, the heat treatment time is preferably 5 seconds or longer. In order not to lower the productivity, it is preferable to set the heat treatment time within 2 hours. In this way, the polymerizable liquid crystal layer of the present invention is obtained.
上記光照射に用いられる光の波長は特に限定されないが、好ましい下限は 150nm 、好ましい上限は 500nmであり、より好ましい下限は 250nm、より好ましい上限は 45 Onmであり、更に好ましい下限は 300nm、更に好ましい上限は 400nmである。上記 光としては、例えば、電子線、紫外線、可視光線、赤外線 (熱線)等を利用することが でき、通常は、紫外線又は可視光線を用いればよい。光源の具体的例としては、例 えば、低圧水銀ランプ (殺菌ランプ、蛍光ケミカルランプ、ブラックライト)、高圧放電ラ ンプ (高圧水銀ランプ、メタルノヽライドランプ)、ショートアーク放電ランプ (超高圧水銀 ランプ、キセノンランプ、水銀キセノンランプ)等が挙げられる。なかでも、メタルノヽライ ドランプ、キセノンランプ、及び、高圧水銀ランプが好適に用いられる。光源と重合性 液晶層との間にフィルタ一等を設置して特定の波長領域のみを通すことにより、照射 光源の波長領域を選択してもよい。光源から照射する光量としては特に限定されな いが、好ましい下限は 2mjZcm2、好ましい上限は 5000miZcm2であり、より好まし い下限は 10miZcm2、より好ましい上限は 3000miZcm2であり、更に好ましい下限 は 100mjZcm2、更に好ましい上限は 2000mjZcm2である。光照射時の温度条件 は、上記の熱処理温度と同様に設定されることが好ま 、。
[0052] このような垂直配向性液晶層を用いることにより得られる本発明の積層光学補償フィ ルムは、極めて高い性能を発揮することができる。 The wavelength of light used for the light irradiation is not particularly limited, but a preferred lower limit is 150 nm, a preferred upper limit is 500 nm, a more preferred lower limit is 250 nm, a more preferred upper limit is 45 Onm, a further preferred lower limit is 300 nm, and further preferred. The upper limit is 400 nm. As the light, for example, electron beams, ultraviolet rays, visible rays, infrared rays (heat rays) or the like can be used. Usually, ultraviolet rays or visible rays may be used. Specific examples of light sources include, for example, low-pressure mercury lamps (sterilization lamps, fluorescent chemical lamps, black lights), high-pressure discharge lamps (high-pressure mercury lamps, metal nitride lamps), short arc discharge lamps (extra-high-pressure mercury lamps) Xenon lamp, mercury xenon lamp) and the like. Among these, a metal nano lamp, a xenon lamp, and a high-pressure mercury lamp are preferably used. The wavelength region of the irradiation light source may be selected by installing a filter or the like between the light source and the polymerizable liquid crystal layer and passing only a specific wavelength region. The amount of light emitted from the light source particularly limited, such Iga, preferable lower limit is 2MjZcm 2, a preferred upper limit is 5000MiZcm 2, more preferably not lower limit 10MiZcm 2, a more preferred upper limit is 3000MiZcm 2, still more preferred lower limit 100 mjZcm 2 and a more preferable upper limit is 2000 mjZcm 2 . The temperature condition during light irradiation is preferably set in the same manner as the above heat treatment temperature. [0052] The laminated optical compensation film of the present invention obtained by using such a vertically aligned liquid crystal layer can exhibit extremely high performance.
[0053] 本発明の積層光学補償フィルムにおいて、シクロォレフイン系榭脂フィルムと垂直配 向性液晶層とは、 JIS K 5600— 5— 6のクロスカット法に準ずる方法により測定した 付着性評価が 0〜2分類であることが好ま 、。付着性評価が 0〜2分類であることに よりシクロォレフイン系榭脂フィルムと垂直配向性液晶層との密着性が優れていること になり、本発明の積層光学補償フィルムの耐久性が優れたものとなる。 [0053] In the laminated optical compensation film of the present invention, the cycloolefin-based resin film and the vertically oriented liquid crystal layer have an adhesion evaluation measured by a method according to the cross-cut method of JIS K 5600-5-6 of 0 to Preferred to be two categories. The adhesion evaluation is classified into 0-2, which means that the adhesion between the cycloolefin-based resin film and the vertical alignment liquid crystal layer is excellent, and the durability of the laminated optical compensation film of the present invention is excellent. It becomes.
発明の効果 The invention's effect
[0054] 本発明によれば、シクロォレフイン系榭脂フィルム力 なる基材を選定することにより、 ノ ックライトの発熱によって基材に多少の応力が力かったとしても複屈折が殆ど変化 しないため光抜け等の表示不良が発生せず、シクロォレフイン系榭脂フィルムの問題 点であった液晶溶液の塗工性を著しく改善することができ、液晶層との密着性に優 れた積層光学補償フィルムを提供することができる。即ち、リワーク時に基材と液晶層 間に不測の剥離が発生することもなぐ作業効率の向上に寄与できる。そして、本発 明においては、特に垂直配向性液晶層とすることにより、容易に液晶層のホメオト口 ピック配向を制御することができる。 [0054] According to the present invention, by selecting a base material having a cycloolefin-based resin film strength, birefringence hardly changes even if some stress is applied to the base material due to the heat generation of the knock light, so that light leakage is prevented. In this way, the coating properties of the liquid crystal solution, which was a problem with cycloolefin-based resin films, can be remarkably improved, and a laminated optical compensation film with excellent adhesion to the liquid crystal layer is provided. can do. That is, it is possible to contribute to the improvement of work efficiency without unexpected peeling between the substrate and the liquid crystal layer during rework. In the present invention, the homeotropic alignment of the liquid crystal layer can be easily controlled by using the vertical alignment liquid crystal layer in particular.
本発明の積層光学補償フィルムは、透明性、耐熱性に優れ、光弾性係数の小さなシ クロォレフィン系榭脂フィルムを用いることから、ノ ックライトの発熱により加熱されて 基材に多少の応力が力かったとしても複屈折が殆ど変化しないため、光り抜け等の 表示不良が発生することもな!/、。 Since the laminated optical compensation film of the present invention uses a cycloolefin-based resin film that is excellent in transparency and heat resistance and has a small photoelastic coefficient, it is heated by the heat generated by the knock light, and some stress is applied to the substrate. Even so, the birefringence hardly changes, and display defects such as light loss may not occur! /.
本発明によれば、液晶表示装置の画質の改善に用いられる積層光学補償フィルムを 提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the laminated optical compensation film used for the improvement of the image quality of a liquid crystal display device can be provided.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0055] 以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみ に限定されるものではない。 [0055] Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[0056] (実施例 1) [Example 1]
(シクロォレフィンフィルムの作製) (Production of cycloolefin film)
シクロォレフイン系榭脂として熱可塑性飽和ノルボルネン系榭脂(日本ゼオン社製
商品名「ゼォノア # 1420」)を用い、これを一軸押出機に供給して溶融、混練し、一 軸押出機の先端に取り付けた Tダイ力も溶融押出を行って、幅 650mmで、かつ、平 均厚みが 65 μ mの長尺状のフィルムを得た。 Thermoplastic saturated norbornene-based resin (manufactured by Nippon Zeon Co., Ltd.) as cycloolefin-based resin The product name “Zeonor # 1420”) is supplied to a single-screw extruder, melted and kneaded, and the T-die force attached to the tip of the single-screw extruder is also melt-extruded to a width of 650 mm and flat. A long film having a uniform thickness of 65 μm was obtained.
[0057] (常圧プラズマ処理) [0057] (Atmospheric pressure plasma treatment)
図 1はプラズマ放電処理装置を示す。金属製チャンバ一 1内に、上部電極 2 (ステン レス(SUS304)製、大きさ: 150mm X 100mm)と、下部電極 3 (ステンレス(SUS30 4)製、大きさ: 150mm X 100mm)が金属チャンバ一 1と絶縁された状態で配置され ている。電極間距離は 2mmである。上部電極 2及び下部電極 3の電極対向面は、 1 . 5mm厚の Al Oの溶射膜 4によって被覆されている。 Figure 1 shows the plasma discharge treatment equipment. In the metal chamber 1, the upper electrode 2 (made of stainless steel (SUS304), size: 150 mm X 100 mm) and the lower electrode 3 (made of stainless steel (SUS30 4), size: 150 mm X 100 mm) are placed in the metal chamber 1. It is arranged in a state insulated from 1. The distance between the electrodes is 2mm. The electrode facing surfaces of the upper electrode 2 and the lower electrode 3 are covered with a sprayed film 4 of AlO having a thickness of 1.5 mm.
2 3 twenty three
上記シクロォレフイン系榭脂フィルム 7を上部電極 2と下部電極 3の中間に配置した後 、装置内が lTorr (約 133Pa)になるまで油回転ポンプで排気を行った。排気後、窒 素と酸素とを体積比 95: 5で混合した混合ガスを、ガス導入管 5から装置内が 760To rr (約 1. 01 X 105Pa)になるまで導入した。 After placing the cycloolefin-based resin film 7 in the middle of the upper electrode 2 and the lower electrode 3, evacuation was performed with an oil rotary pump until the inside of the apparatus reached lTorr (about 133 Pa). After evacuation, a mixed gas in which nitrogen and oxygen were mixed at a volume ratio of 95: 5 was introduced from the gas introduction pipe 5 until the inside of the apparatus reached 760 Torr (about 1.01 X 10 5 Pa).
パルス電源 6より電極間に立ち上がり時間 5 μ s、パルス幅 100 μ s、周波数 7kHz、 電圧士 5kVの交流パルス電圧を前記電極間に印加してプラズマ放電を行 ヽ、シクロ ォレフィン系榭脂フィルム 7の片面にプラズマ放電処理を行った。なお、シクロォレフ イン系榭脂フィルム 7は、上部電極 2と下部電極 3との間を 4mZ分の速度で移動させ ながらプラズマ放電処理を行った。 A pulsed power supply 6 applies an AC pulse voltage between the electrodes with a rise time of 5 μs, a pulse width of 100 μs, a frequency of 7 kHz, and a voltage of 5 kV between the electrodes to perform plasma discharge. Plasma discharge treatment was performed on one side of the film. The cycloolefin-based resin film 7 was subjected to plasma discharge treatment while moving between the upper electrode 2 and the lower electrode 3 at a speed of 4 mZ.
[0058] (重合性液晶化合物(5)の合成) [0058] (Synthesis of polymerizable liquid crystal compound (5))
(第 1段階) (Stage 1)
エタノール(1500mL)に 3— (4 ヒドロキシフエ-ル)プロピオン酸(1150g)をカロえ た溶液を撹拌しながら、硫酸(230g)を 10分かけて滴下して、その後 5時間還流させ た。反応溶液を濃縮し、得られた濃縮液を水(lOOOmL)に注ぎ入れ、酢酸ェチルを 加えて攪拌した。分液した後、酢酸ェチル層を飽和炭酸ナトリウム溶液で中和し、少 量の水で水洗した後、無水硫酸マグネシウムで乾燥した。この酢酸ェチル層から酢 酸ェチル及び未反応成分を溶剤留去して、 1400gの濃縮物が得られた。濃縮物を 減圧蒸留により精製して 1144gの 3—(4 ヒドロキシフエ-ル)プロピオン酸ェチルを 得た。沸点は 160°CZ4. OhPaであった。
[0059] (第 2段階) While stirring a solution of 3- (4 hydroxyphenol) propionic acid (1150 g) in ethanol (1500 mL), sulfuric acid (230 g) was added dropwise over 10 minutes and then refluxed for 5 hours. The reaction solution was concentrated, and the obtained concentrated solution was poured into water (lOOOOmL), and ethyl acetate was added and stirred. After liquid separation, the ethyl acetate layer was neutralized with a saturated sodium carbonate solution, washed with a small amount of water, and then dried over anhydrous magnesium sulfate. Ethyl acetate and unreacted components were distilled off from this ethyl acetate layer to obtain 1400 g of concentrate. The concentrate was purified by distillation under reduced pressure to obtain 1144 g of ethyl 3- (4 hydroxyphenol) propionate. The boiling point was 160 ° CZ4. [0059] (second stage)
アイスバスで 10°Cに冷却した無水酢酸( 1200mL)に 6 クロ口へキサノール(800g) を加え、次にピリジン(934g)を 10分かけて滴下した。敵下後、 2時間還流させた。反 応溶液を水に注ぎ、そこにトルエンを加えて撹拌した。トルエン層を分液して、これを 飽和炭酸ナトリウム水溶液で中和し、少量の水で水洗した。その後、無水硫酸マグネ シゥムで乾燥した。このトルエン層からトルエン及び未反応成分を溶剤留去して濃縮 物を得た。この濃縮物を減圧蒸留で精製して 983gの 6 ァセトキシクロロへキサンを 得た。沸点は 82°CZ5. 3hPaであった。 Six acetic anhydride (800 g) was added to acetic anhydride (1200 mL) cooled to 10 ° C. with an ice bath, and then pyridine (934 g) was added dropwise over 10 minutes. After defeating the enemy, it was refluxed for 2 hours. The reaction solution was poured into water, and toluene was added thereto and stirred. The toluene layer was separated, neutralized with a saturated aqueous sodium carbonate solution, and washed with a small amount of water. Then, it dried with anhydrous magnesium sulfate. Toluene and unreacted components were distilled off from this toluene layer to obtain a concentrate. The concentrate was purified by distillation under reduced pressure to obtain 983 g of 6-acetoxychlorohexane. The boiling point was 82 ° CZ5.3 hPa.
[0060] (第 3段階) [0060] (Stage 3)
3—(4 ヒドロキシフエ-ル)プロピオン酸ェチル(400g)をジメチルホルムアミド(28 OOmL)に溶力した。そこへ水酸ィ匕ナトリウム(98g)を加え、 40°Cで 30分撹拌した。 塩の生成が目視で観察できた。 6 ァセトキシクロロへキサン(515g)をカ卩ぇ 80°Cで 7 時間撹拌した。反応溶液を水(2000mL)に注ぎ、そこにトルエンを加えて攪拌した。 分液した後、トルエン層を 6N塩酸、飽和炭酸ナトリウム溶液、水の順番で洗浄し、無 水硫酸マグネシウムで乾燥した。このトルエン層力も溶剤を留去して 709gの濃縮物 を得た。水酸化ナトリウム(185g)を水(400mL)に溶力し、そこへエタノール(600m L)と濃縮物 709gをカ卩えて加熱し、 2時間還流させた。エバポレーターを用いて減圧 下に反応液を濃縮し、得られた濃縮物を 6N塩酸に注いだ。得られたスラリーをろ過 して固形物を得、これをエタノールで再結晶して 28 lgの(4— (6—ヒドロキシへキシ ルォキシ)フエ-ル)プロピオン酸を得た。融点は 109〜112°Cであった。 Ethyl 3- (4 hydroxyphenol) propionate (400 g) was dissolved in dimethylformamide (28 OOmL). Thereto was added sodium hydroxide (98 g), and the mixture was stirred at 40 ° C for 30 minutes. The formation of salt could be observed visually. 6-acetoxychlorohexane (515 g) was stirred at 80 ° C. for 7 hours. The reaction solution was poured into water (2000 mL), and toluene was added thereto and stirred. After separation, the toluene layer was washed with 6N hydrochloric acid, saturated sodium carbonate solution and water in that order, and dried over anhydrous magnesium sulfate. This toluene layer strength also distilled off the solvent to obtain 709 g of concentrate. Sodium hydroxide (185 g) was dissolved in water (400 mL), ethanol (600 mL) and 709 g of concentrate were added and heated, and the mixture was refluxed for 2 hours. The reaction solution was concentrated under reduced pressure using an evaporator, and the resulting concentrate was poured into 6N hydrochloric acid. The resulting slurry was filtered to obtain a solid, which was recrystallized with ethanol to obtain 28 lg of (4- (6-hydroxyhexoxy) phenol) propionic acid. The melting point was 109-112 ° C.
[0061] (第 4段階) [0061] (Stage 4)
(4— (6 ヒドロキシへキシルォキシ)フエ-ル)プロピオン酸(200g)、 N, N—ジメチ ルァ-リン(lOOg)及び BHT(0. 3g)をジォキサン(lOOOmL)に溶かした。そこヘア クリル酸クロリド(74. 3g)を 10分かけて滴下し、 60°Cで 5時間攪拌した。反応溶液を 水に注ぎ、酢酸ェチルを加えて攪拌した。酢酸ェチル層を分液した後、水で洗浄し、 無水硫酸マグネシウムで乾燥した。この酢酸ェチル層力 溶剤を留去して固形物を 得た。この固形物をトルエンに溶解し、多量のヘプタンに注いで再沈殿させて、 213 gの(4一(6—アタリロイルォキシへキシルォキシ)フエ-ル)プロピオン酸を得た。融
点は 64〜68°Cであった。 (4- (6Hydroxyhexyloxy) phenol) propionic acid (200 g), N, N-dimethyllaurin (lOOg) and BHT (0.3 g) were dissolved in dioxane (lOOOmL). Then hair chloric acid chloride (74.3 g) was added dropwise over 10 minutes and stirred at 60 ° C. for 5 hours. The reaction solution was poured into water, ethyl acetate was added and stirred. The ethyl acetate layer was separated, washed with water, and dried over anhydrous magnesium sulfate. The ethyl acetate layer strength solvent was distilled off to obtain a solid. This solid was dissolved in toluene, poured into a large amount of heptane, and reprecipitated to obtain 213 g of (4 ((6-allyloyloxyhexyloxy) phenol) propionic acid. Fusion The point was 64-68 ° C.
[0062] (第 5段階) [0062] (5th stage)
(4— (6 アクリルォキシへキシルォキシ)フエ-ル)プロピオン酸( 150g)、 2, 3 ビ ス(トリフルォロメチル)ハイドロキノン(52. 2g) , BHT(0. 75g)、ジメチルァミノピリジ ン(15g)を塩化メチレン(900ml)に溶解した。この溶液に、 DCC (N、 N,ージシクロ へキシルカルボジイミド)(100g)を塩化メチレン(300mL)に溶かした溶液を 1時間 かけて滴下した。更に 2時間撹拌した後、水を加えて分液した。塩化メチレン層を 6N 塩酸、 10%水酸ィ匕ナトリウム水で洗浄し、無水硫酸マグネシウムで乾燥した。この塩 ィ匕メチレン層カゝら得られた濃縮物をシリカゲルカラムクロマトグラフィーで精製して下 記式 (5)で表される重合性液晶化合物(5) 125gを得た。 (4- (6 acryloxyhexyloxy) phenol) propionic acid (150 g), 2, 3 bis (trifluoromethyl) hydroquinone (52.2 g), BHT (0.775 g), dimethylaminopyridin (15 g) was dissolved in methylene chloride (900 ml). To this solution, a solution of DCC (N, N, -dicyclohexylcarbodiimide) (100 g) dissolved in methylene chloride (300 mL) was added dropwise over 1 hour. After further stirring for 2 hours, water was added to separate the layers. The methylene chloride layer was washed with 6N hydrochloric acid and 10% aqueous sodium hydroxide and dried over anhydrous magnesium sulfate. The concentrate obtained from the salt methylene layer was purified by silica gel column chromatography to obtain 125 g of a polymerizable liquid crystal compound (5) represented by the following formula (5).
[0063] (重合性液晶化合物(6)の合成) [0063] (Synthesis of polymerizable liquid crystal compound (6))
(第 1段階) (Stage 1)
フルオレン(78. 3g)及び THF (700mL)の混合物を—70°Cに冷却し、—60°C以下 を保ちながら n—BuLi (300mL, 0. 47mol相当)を滴下した。次いで、ヨウ化メチル (66. 8g)をカ卩えて徐々に室温に戻した。再び 0°Cに冷却し、 3M—塩酸(300mL)を 加え、反応混合物をトルエンで抽出した。得られた有機層を、飽和炭酸水素ナトリウ ム、飽和亜硫酸水素ナトリウム及び水を順次用いてよく洗浄し、無水硫酸マグネシゥ ムで乾燥した。この有機層から減圧下で溶剤を除去し、残留物をカラムクロマトグラフ ィー(シリカゲル、溶出液:トルエン Zヘプタン [40Z60])及び再結晶(エタノール)に よって精製して、淡黄色結晶の 9—メチルフルオレン(57. 4g)を得た。融点は 47. 3 〜48. 8。Cであった。 A mixture of fluorene (78.3 g) and THF (700 mL) was cooled to −70 ° C., and n-BuLi (300 mL, corresponding to 0.47 mol) was added dropwise while maintaining the temperature at −60 ° C. or lower. Subsequently, methyl iodide (66.8 g) was added and gradually returned to room temperature. The mixture was cooled again to 0 ° C, 3M-hydrochloric acid (300 mL) was added, and the reaction mixture was extracted with toluene. The obtained organic layer was washed thoroughly with saturated sodium hydrogen carbonate, saturated sodium hydrogen sulfite and water successively and dried over anhydrous magnesium sulfate. The solvent was removed from the organic layer under reduced pressure, and the residue was purified by column chromatography (silica gel, eluent: toluene Z heptane [40Z60]) and recrystallization (ethanol). —Methylfluorene (57.4 g) was obtained. The melting point is 47.3-48.8. C.
[0064] (第 2段階) [0064] (Second stage)
0°C以下を保ちながら無水塩化アルミニウム(162. 7g)を、 9 メチルフルオレン(55 g)及び塩化メチレン (800mL)の混合物に加え、深緑色の反応混合物を得た。この 混合物に、 0°Cを保ちながら塩化ァセチル (47. 9g)の塩化メチレン(200mL)溶液 を滴下し、徐々に室温に戻して 12時間攪拌した。反応混合物を 6M—塩酸と氷の混 合物に投入して、有機層を分離させた。この有機層を飽和炭酸水素ナトリウム及び水 を順次用いて十分に洗浄して、無水硫酸マグネシウムで乾燥した。この有機層から
減圧下で溶剤を除去し、得られた残留物をカラムクロマトグラフィー(シリカゲル、溶出 液:ヘプタン Z酢酸ェチル [7Z3])及び再結晶(エタノール)によって精製して、黄色 結晶の 2, 7 ジァセチル— 9—メチルフルオレン(30g)を得た。融点は 127. 9〜12 9. 0。Cであった。 Anhydrous aluminum chloride (162.7 g) was added to a mixture of 9 methylfluorene (55 g) and methylene chloride (800 mL) while maintaining the temperature below 0 ° C. to obtain a dark green reaction mixture. To this mixture, a solution of acetyl acetate (47.9 g) in methylene chloride (200 mL) was added dropwise while maintaining 0 ° C., and the mixture was gradually returned to room temperature and stirred for 12 hours. The reaction mixture was poured into a mixture of 6M hydrochloric acid and ice, and the organic layer was separated. This organic layer was thoroughly washed with saturated sodium hydrogen carbonate and water successively and dried over anhydrous magnesium sulfate. From this organic layer The solvent was removed under reduced pressure, and the resulting residue was purified by column chromatography (silica gel, eluent: heptane Z ethyl acetate [7Z3]) and recrystallized (ethanol) to give 2,7 diacetyl- 9-methylfluorene (30 g) was obtained. The melting point is 127.9-129.0. C.
[0065] (第 3段階) [0065] (Stage 3)
2, 7 ジァセチルー 9 メチルフルオレン(30g)、塩化メチレン(300mL)、無水酢 酸(35g)及び 34%過酸ィ匕水素水(34. 6g)の混合物に、 36M 硫酸(12mL)を 3 °C以下を保ちながらゆっくりと滴下した。得られた混合物を 24°Cで 7時間攪拌し、水 に投入した。分離した有機層を飽和炭酸水素ナトリウム、 10%亜硫酸水素ナトリウム 及び水を順次用いて十分に洗浄して、無水硫酸マグネシウムで乾燥した。この有機 層から減圧下で溶剤を除去し、得られた残留物をカラムクロマトグラフィー (シリカゲ ル、溶出液:ヘプタン Zトルエン [6Z4])及び再結晶(エタノール)によって精製して 、無色結晶の 2, 7 ジァセチルォキシー 9 メチルフルオレン(12. 4g)を得た。融 点は 138. 6〜139. 7。Cであった。 2, 7 Diacetyl- 9 Methylfluorene (30 g), methylene chloride (300 mL), acetic anhydride (35 g) and 34% hydrogen peroxide-hydrogenated water (34.6 g) were mixed with 36 M sulfuric acid (12 mL) at 3 ° C. It was dropped slowly while maintaining the following. The resulting mixture was stirred at 24 ° C for 7 hours and poured into water. The separated organic layer was thoroughly washed with saturated sodium hydrogen carbonate, 10% sodium hydrogen sulfite and water successively and dried over anhydrous magnesium sulfate. The solvent was removed from the organic layer under reduced pressure, and the resulting residue was purified by column chromatography (silica gel, eluent: heptane Ztoluene [6Z4]) and recrystallization (ethanol). , 7 Diacetyloxy 9 methylfluorene (12.4 g) was obtained. The melting point is 138.6 to 139.7. C.
[0066] (第 4段階) [0066] (Stage 4)
2, 7 ジァセチルォキシー 9 メチルフルオレン(12g)、水酸化リチウム · 1水和物(3 . 42g)及びエチレングリコール(120mL)の混合物を 1時間加熱還流した。反応混 合物を 6M—塩酸に投入して、酢酸ェチルで抽出した。有機層を十分水洗してから 無水硫酸マグネシウムで乾燥した。この有機層から減圧下で溶剤を除去して、淡褐 色結晶の 2, 7 ジヒドロキシ一 9—メチルフルオレン(7. 24g)を得た。融点は 191. 5〜196. 3。Cであった。 A mixture of 2,7 diacetyloxy 9 methylfluorene (12 g), lithium hydroxide monohydrate (3.42 g) and ethylene glycol (120 mL) was heated to reflux for 1 hour. The reaction mixture was poured into 6M-hydrochloric acid and extracted with ethyl acetate. The organic layer was sufficiently washed with water and dried over anhydrous magnesium sulfate. The solvent was removed from the organic layer under reduced pressure to obtain 2,7 dihydroxy mono 9-methylfluorene (7.24 g) as pale brown crystals. The melting point is 191.5-196.3. C.
[0067] (第 5段階) [0067] (5th stage)
2, 7 ジヒドロキシ一 9—メチルフルオレン(0. 5g)、 4— (6—アタリロイルォキシへキ シルォキシ)安息香酸(1. 52g)、 EDC (エチレンジクロリド、 0. 99g)、 DMAP (4— ジメチルァミノピリジン、 5. 76mg)及び塩化メチレン(30mL)の混合物を室温で 12 時間攪拌した。反応混合物に水を加え、分離した有機層を水洗してから無水硫酸マ グネシゥムで乾燥した。この有機層から減圧下で溶剤を除去し、得られた残留物を力 ラムクロマトグラフィー(シリカゲル、溶出液:トルエン Z酢酸ェチル [95Z5])及び再
結晶(エタノール Z酢酸ェチル)によって精製して、下記式 (6)で表される重合性液 晶化合物(6) 0. 19gを得た。 2, 7 Dihydroxy mono 9-methyl fluorene (0.5 g), 4— (6-Atalyloxyhexyloxy) benzoic acid (1.52 g), EDC (ethylene dichloride, 0.99 g), DMAP (4— A mixture of dimethylaminopyridine, 5.76 mg) and methylene chloride (30 mL) was stirred at room temperature for 12 hours. Water was added to the reaction mixture, and the separated organic layer was washed with water and then dried over anhydrous magnesium sulfate. The solvent was removed from the organic layer under reduced pressure, and the resulting residue was subjected to force chromatography (silica gel, eluent: toluene Z ethyl acetate [95Z5]) and re-reacted. Purification by crystals (ethanol Z ethyl acetate) gave 0.19 g of a polymerizable liquid crystal compound (6) represented by the following formula (6).
[0068] (重合性液晶化合物(7)の合成) [0068] (Synthesis of polymerizable liquid crystal compound (7))
ω—ブロモへキサン酸 33. 6gと塩ィ匕チォニル 20. 5gをベンゼン中で還流反応させ、 lTorrの減圧蒸留により 143— 145°Cの留分を採取し、対応する酸クロライド 31. 3g を得た。 ω-Bromohexanoic acid (33.6 g) and chlorothionyl (20.5 g) were refluxed in benzene, and lTorr was distilled under reduced pressure to collect a 143-145 ° C fraction, and the corresponding acid chloride (31.3 g) was recovered. Obtained.
次いで、 20°Cの無水エーテル中で、 LiAlH 5. 6gを加え還元を行い、 ω ブロモ Next, in anhydrous ether at 20 ° C, LiAlH 5.6 g was added for reduction, and ω bromo
4 Four
アルコール 14. Ogを得た。 Alcohol 14. Og was obtained.
これを 4—ヒドロキシ一 4,一シァノビフエ-ルと KOHより得られた 4—ヒドロキシ一 4, —シァノビフエ-ルのカリウム塩 18. lgとメタノール中で 12時間還流反応させた。反 応後、水—クロ口ホルムにて抽出、水洗後、 Al Oカラムを通して濃縮し、残渣をベン This was refluxed for 12 hours in methanol with 18. lg of potassium salt of 4-hydroxy-1,4-syanobiphenol obtained from 4-hydroxy-1,4-sianobiphenol and KOH. After the reaction, extraction with water-closure form, washing with water, and concentration through an Al 2 O column, the residue is bent.
2 3 twenty three
ゼンにて再結晶して 12. 6gの 4 (ヒドロキソへキシロキシ) 4,一シァノビフエニル を得た。 Recrystallization from zen yielded 12.6 g of 4 (hydroxohexyloxy) 4, 1-sianobiphenyl.
これを室温で無水ベンゼン中トリエチルァミンの存在下、アクリル酸クロライド 3. 8gと 反応させた。反応溶液は水洗し、 MgSOで乾燥した後、ベンゼンを留去、メタノール This was reacted with 3.8 g of acrylic acid chloride in the presence of triethylamine in anhydrous benzene at room temperature. The reaction solution was washed with water and dried over MgSO.
4 Four
で再結晶した。次いでベンゼンを溶媒としてシリカゲルカラムを通し、もう一度メタノー ルで再結晶して、下記式 (7)で表される重合性液晶化合物(7) 10. Ogを得た。 And recrystallized. Next, the mixture was passed through a silica gel column with benzene as a solvent and recrystallized once again with methanol to obtain 10. Og of a polymerizable liquid crystal compound (7) represented by the following formula (7).
[0069] (重合性液晶組成物の調製) [0069] (Preparation of polymerizable liquid crystal composition)
重合性液晶化合物(5) 20重量%、重合性液晶化合物(6) 60重量%、重合性液晶 化合物(7) 20重量%に対して重量比 0. 03の光重合開始剤ィルガキュア一 907 (チ ノ 'スペシャルティ'ケミカルズ社製)及び重量比 0. 10の化合物(8) (サイラエース S330 チッソ社製)を添加した。この組成物にトルエンをカ卩えて、溶剤が 75重量%で ある重合性液晶組成物溶液 (液晶溶液)を作製した。 Polymerizable liquid crystal compound (5) 20% by weight, polymerizable liquid crystal compound (6) 60% by weight, polymerizable liquid crystal compound (7) 20% by weight of photopolymerization initiator Irgacure No. 'Specialty' Chemicals) and a compound (8) with a weight ratio of 0.10 (Sila Ace S330, Chisso) were added. Toluene was added to this composition to prepare a polymerizable liquid crystal composition solution (liquid crystal solution) having a solvent content of 75% by weight.
- o«。- ( 7 )-o «. -(7)
O O
OC2H5 OC 2 H 5
I I
NH2 -CH2CH2CH2-Si— OC2H5 ( 8 ) NH 2 -CH 2 CH 2 CH 2 -Si— OC 2 H 5 (8)
OC2H5 OC 2 H 5
[0071] (積層光学補償フィルムの作製) [0071] (Production of laminated optical compensation film)
重合性液晶組成物溶液 (液晶溶液)を 10cm X 10cmのガラス基板に保持されたシク ロォレフイン系榭脂フィルムの表面処理面に、 2000rpm、 20sec、スピンコートにて 塗布した。塗布後、 70°Cに保ったホットプレート上で溶媒を乾燥した。更にこれをノヽ ロゲンランプにて UV照射を行い硬化させることにより積層光学補償フィルムを作製し た。なお、積算照射量は 400mJ、雰囲気の酸素濃度は 5%で行った。 A polymerizable liquid crystal composition solution (liquid crystal solution) was applied to the surface-treated surface of a cycloolefin-based resin film held on a 10 cm × 10 cm glass substrate by spin coating at 2000 rpm for 20 seconds. After coating, the solvent was dried on a hot plate kept at 70 ° C. Furthermore, this was cured by irradiating with a UV lamp with a UV lamp to produce a laminated optical compensation film. The integrated dose was 400 mJ and the oxygen concentration in the atmosphere was 5%.
[0072] (実施例 2) [Example 2]
常圧プラズマ処理時の混合ガス濃度を窒素:酸素 = 90 : 10とした以外は、実施例 1と 同様にして積層光学補償フィルムを作製した。 A laminated optical compensation film was produced in the same manner as in Example 1 except that the mixed gas concentration during normal pressure plasma treatment was changed to nitrogen: oxygen = 90: 10.
[0073] (実施例 3) [0073] (Example 3)
常圧プラズマ処理時の混合ガス濃度を窒素:酸素 = 85 : 15とした以外は、実施例 1と
同様にして積層光学補償フィルムを作製した。 Example 1 except that the mixed gas concentration during normal pressure plasma treatment was nitrogen: oxygen = 85: 15 A laminated optical compensation film was produced in the same manner.
[0074] (比較例 1) [0074] (Comparative Example 1)
常圧プラズマ処理を施して ヽな ヽシクロォレフィン系榭脂フィルムを用いた以外は、 実施例 1と同様にして積層光学補償フィルムを作製した。 A laminated optical compensation film was produced in the same manner as in Example 1 except that a normal cycloolefin-based resin film was used after being subjected to atmospheric pressure plasma treatment.
[0075] (比較例 2) [0075] (Comparative Example 2)
常圧プラズマ処理の代わりに春日電機社製のコロナ放電処理装置 (高周波電源装 置 AGI— 020)を使用し、処理強度 0. 2kW、速度 4. OmZ分でシクロォレフイン系 榭脂フィルムの片面にコロナ放電処理を行った以外は実施例 1と同様にして積層光 学補償フィルムを作製した。 Instead of atmospheric pressure plasma treatment, use a corona discharge treatment device (high frequency power supply device AGI-020) manufactured by Kasuga Denki Co., Ltd. with a treatment strength of 0.2 kW and a speed of 4. OmZ for one side of a cycloolefin-based resin film. A laminated optical compensation film was produced in the same manner as in Example 1 except that the discharge treatment was performed.
[0076] (比較例 3) [0076] (Comparative Example 3)
常圧プラズマ処理時の混合ガス濃度を窒素:酸素 = 79: 21 (大気)とした以外は、実 施例 1と同様にして積層光学補償フィルムを作製した。 A laminated optical compensation film was produced in the same manner as in Example 1 except that the mixed gas concentration during atmospheric pressure plasma treatment was changed to nitrogen: oxygen = 79: 21 (atmosphere).
[0077] (比較例 4) [0077] (Comparative Example 4)
常圧プラズマ処理時の混合ガス濃度を窒素:酸素 = 1: 99とした以外は、実施例 1と 同様にして積層光学補償フィルムを作製した。 A laminated optical compensation film was produced in the same manner as in Example 1 except that the mixed gas concentration during normal pressure plasma treatment was changed to nitrogen: oxygen = 1: 99.
[0078] <評価 > [0078] <Evaluation>
実施例 1〜3、及び、比較例 1〜4で得られた積層光学補償フィルム及び積層光学補 償フィルムの作製工程につ ヽて以下の評価を行った。結果を表 1に示した。 The following evaluation was performed for the production steps of the laminated optical compensation film and laminated optical compensation film obtained in Examples 1 to 3 and Comparative Examples 1 to 4. The results are shown in Table 1.
[0079] (接触角の測定) [0079] (Contact angle measurement)
シクロォレフイン系榭脂フィルム上に液晶溶液を塗工した際のシクロォレフイン系榭脂 フィルムと液晶溶液との接触角を KRUSS社製 G2により測定した。 The contact angle between the cycloolefin-based resin film and the liquid crystal solution when the liquid crystal solution was applied onto the cycloolefin-based resin film was measured with G2 manufactured by KRUSS.
[0080] (はじき評価) [0080] (Repel evaluation)
シクロォレフイン系榭脂フィルム上に液晶溶液を塗工した際のシクロォレフイン系榭脂 フィルムに対する液晶溶液のはじき具合を目視により観察し、下記基準によりはじき 評価を行った。 When the liquid crystal solution was applied onto the cycloolefin-based resin film, the repelling condition of the liquid crystal solution with respect to the cycloolefin-based resin film was visually observed and evaluated according to the following criteria.
〇 はじくことなく均一に塗工できた。 〇 Uniform coating was possible without repelling.
△ 若干はじきのためムラが生じたが塗工できた。 Δ: Unevenness occurred due to slight repelling, but coating was possible.
X はじきのため均一に塗工することが困難であった。
[0081] (密着性評価) It was difficult to coat uniformly due to X repelling. [0081] (Adhesion evaluation)
得られた積層光学補償フィルムに対して、液晶層のシクロォレフイン系榭脂フィルム に対する密着性を JIS K 5600— 5— 6のクロスカット法(lmm幅 100マス)に準ず る方法により測定し、評価した。 For the laminated optical compensation film obtained, the adhesion of the liquid crystal layer to the cycloolefin-based resin film was measured and evaluated by a method according to the cross-cut method (lmm width 100 mass) of JIS K 5600-5-6. .
[0082] (垂直配向性) [0082] (Vertical orientation)
得られた積層光学補償フィルムに対して、位相差測定装置 KOBRA— 21ADH (王 子計測機器株式会社製)を用いて、面内 9点について正面方向での位相差とフィル ム面に対する法線カゝら 45度傾斜させた方向からの全方位位相差測定を方位角 15 度間隔で行い、基材の位相差を補正した値を求め、下記基準により垂直配向性を評 価し 7こ。 Using the phase difference measuring device KOBRA-21ADH (manufactured by Oji Scientific Instruments Co., Ltd.) for the obtained laminated optical compensation film, the phase difference in the front direction and the normal line to the film surface were measured at nine points in the plane. In addition, all azimuth phase differences were measured from 45 ° tilted direction at azimuth angle intervals of 15 degrees, and the values obtained by correcting the phase difference of the substrate were obtained. The vertical alignment was evaluated according to the following criteria.
〇 全ての測定点において正面位相差が 2nm以下で、斜め 45度方向からの位相差 のばらつきが 5nm以下であった。 〇 The front phase difference was 2nm or less at all measurement points, and the variation in the phase difference from the oblique 45 ° direction was 5nm or less.
△ 1点以上、正面位相差が 2nm以上である力、 45度方向からの位相差のばらつき 力 S5nm以上であった。 Δ 1 point or more, force with front phase difference of 2 nm or more, dispersion force of phase difference from 45 degrees direction S5 nm or more.
X 外観試験において、正面、斜め方向とも光り抜けが見られな力つた。 X In the appearance test, the front and oblique directions were strong.
[0083] (外観) [0083] (Appearance)
得られた積層光学補償フィルムをクロス-コルに配設した偏光板間に挟み、目視に て評価した。 The obtained laminated optical compensation film was sandwiched between polarizing plates arranged in a cross-col and evaluated visually.
[0084] [表 1]
[0084] [Table 1]
産業上の利用可能性 Industrial applicability
本発明によれば、液晶表示装置の画質の改善に用いられる積層光学補償フィルムを
提供することができる。 According to the present invention, a laminated optical compensation film used for improving the image quality of a liquid crystal display device is provided. Can be provided.
図面の簡単な説明 Brief Description of Drawings
[0086] [図 1]プラズマ放電処理装置の一例を示す模式図である。 FIG. 1 is a schematic diagram showing an example of a plasma discharge treatment apparatus.
符号の説明 Explanation of symbols
[0087] 1 金属製チャンバ一 [0087] 1 Metal chamber
2 上部電極 2 Upper electrode
3 下部電極 3 Lower electrode
4 固体誘電体被膜 4 Solid dielectric coating
5 ガス導入管 5 Gas inlet pipe
6 パルス電源 6 Pulse power supply
7 シクロォレフイン系榭脂フィルム
7 Cycloolefin-based resin film
Claims
[1] シクロォレフイン系榭脂フィルムと、前記シクロォレフイン系榭脂フィルム上に積層され た垂直配向性液晶層とからなる積層光学補償フィルムであって、 [1] A laminated optical compensation film comprising a cycloolefin-based resin film and a vertically-aligned liquid crystal layer laminated on the cycloolefin-based resin film,
前記シクロォレフイン系榭脂フィルムは、前記垂直配向性液晶層と接する側の表面に The cycloolefin-based resin film is formed on the surface in contact with the vertical alignment liquid crystal layer.
、酸素濃度が 15体積%以下である不活性ガスによる常圧プラズマ処理が施されてい る Atmospheric pressure plasma treatment with an inert gas whose oxygen concentration is 15% by volume or less has been performed.
ことを特徴とする積層光学補償フィルム。 A laminated optical compensation film characterized by the above.
[2] 垂直配向性液晶層は、下記式(1)、 (2)及び (3)からなる群より選択される少なくとも [2] The vertical alignment liquid crystal layer is at least selected from the group consisting of the following formulas (1), (2) and (3)
1種の化合物を含有する重合性液晶組成物の重合体力 なることを特徴とする請求 項 1記載の積層光学補償フィルム。 2. The laminated optical compensation film according to claim 1, wherein the polymer power of the polymerizable liquid crystal composition containing one kind of compound.
[化 1] [Chemical 1]
上記式(1)において、 Wiは水素又はメチルであり、 1は 4〜6の整数である。 In the above formula (1), Wi is hydrogen or methyl, and 1 is an integer of 4-6.
上記式(2)において、 W2及び W3は水素、塩素又はフッ素であり、 W4及び W5は水素In the above formula (2), W 2 and W 3 are hydrogen, chlorine or fluorine, W 4 and W 5 are hydrogen
、塩素、メチル又はトリフルォロメチルであり、 Xは単結合、エチレン結合又はエタン結 合であり、 mは 4〜6の整数である。 , Chlorine, methyl or trifluoromethyl, X is a single bond, ethylene bond or ethane bond, and m is an integer of 4-6.
上記式(3)において、 nは 4〜6の整数である。 In the above formula (3), n is an integer of 4-6.
シクロォレフイン系榭脂フィルムと垂直配向性液晶層とは、 JIS K 5600— 5— 6のク ロスカット法に準ずる方法により測定した付着性評価が 0〜2分類であることを特徴と する請求項 1又は 2記載の積層光学補償フィルム。
シクロォレフイン系榭脂フィルムに酸素濃度が 15体積%以下である不活性ガスを用 V、て常圧プラズマ処理を施す工程と、前記常圧プラズマ処理が施されたシクロォレフ イン系榭脂フィルムの常圧プラズマ処理が施された面上に垂直配向性液晶層の原料 となる重合性液晶組成物を溶剤に溶解した液晶溶液を塗工し、乾燥させる工程とを 有することを特徴とする積層光学補償フィルムの製造方法。
The cycloolefin-based resin film and the vertically aligned liquid crystal layer are characterized in that the adhesion evaluation measured by a method according to the cross-cut method of JIS K 5600-5-6 is 0 to 2 classification. 2. The laminated optical compensation film according to 2. A process for performing an atmospheric pressure plasma treatment using an inert gas having an oxygen concentration of 15% by volume or less on the cycloolefin-based resin film, and an atmospheric pressure of the cycloolefin-based resin film subjected to the atmospheric pressure plasma treatment A laminated optical compensation film comprising a step of applying a liquid crystal solution obtained by dissolving a polymerizable liquid crystal composition, which is a raw material of a vertical alignment liquid crystal layer, into a solvent on a surface subjected to plasma treatment, and drying the solution. Manufacturing method.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-160143 | 2005-05-31 | ||
JP2005160143A JP2006337565A (en) | 2005-05-31 | 2005-05-31 | Laminated optical compensation film |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006129656A1 true WO2006129656A1 (en) | 2006-12-07 |
Family
ID=37481585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/310766 WO2006129656A1 (en) | 2005-05-31 | 2006-05-30 | Multilayer optical compensation film |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2006337565A (en) |
TW (1) | TW200706573A (en) |
WO (1) | WO2006129656A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12031003B2 (en) | 2016-09-30 | 2024-07-09 | Gen-Probe Incorporated | Compositions on plasma-treated surfaces |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4894258B2 (en) * | 2005-03-29 | 2012-03-14 | Jnc株式会社 | Polymerizable liquid crystal composition and optically anisotropic thin film |
JP5206066B2 (en) * | 2007-03-28 | 2013-06-12 | Jnc株式会社 | Polymerizable liquid crystal composition |
WO2013021826A1 (en) * | 2011-08-08 | 2013-02-14 | Dic株式会社 | Polymerizable liquid crystal composition, and method for producing optically anisotropic body |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002226616A (en) * | 2001-02-06 | 2002-08-14 | Sekisui Chem Co Ltd | Hydrophilizing method for surface of hydrophobic resin film |
JP2003003266A (en) * | 2001-06-22 | 2003-01-08 | Konica Corp | Atmospheric pressure plasma treatment equipment, atmosphere pressure plasma treatment method, base material, optical film and image display element |
JP2003149441A (en) * | 2001-11-15 | 2003-05-21 | Nitto Denko Corp | Phase difference plate, method for manufacturing the same, and optical film |
-
2005
- 2005-05-31 JP JP2005160143A patent/JP2006337565A/en active Pending
-
2006
- 2006-05-30 TW TW095119133A patent/TW200706573A/en unknown
- 2006-05-30 WO PCT/JP2006/310766 patent/WO2006129656A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002226616A (en) * | 2001-02-06 | 2002-08-14 | Sekisui Chem Co Ltd | Hydrophilizing method for surface of hydrophobic resin film |
JP2003003266A (en) * | 2001-06-22 | 2003-01-08 | Konica Corp | Atmospheric pressure plasma treatment equipment, atmosphere pressure plasma treatment method, base material, optical film and image display element |
JP2003149441A (en) * | 2001-11-15 | 2003-05-21 | Nitto Denko Corp | Phase difference plate, method for manufacturing the same, and optical film |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12031003B2 (en) | 2016-09-30 | 2024-07-09 | Gen-Probe Incorporated | Compositions on plasma-treated surfaces |
Also Published As
Publication number | Publication date |
---|---|
TW200706573A (en) | 2007-02-16 |
JP2006337565A (en) | 2006-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018124198A1 (en) | Liquid crystal composition, polymer liquid crystal compound, light absorbing anisotropic film, laminate and image display device | |
JP5365519B2 (en) | Liquid crystal composition and use thereof | |
JP2009227667A (en) | Compound, and optical film containing the compound | |
WO2005057258A1 (en) | Composition for liquid crystal film formation, optically anisotropic film and process for producing them | |
JP7086210B2 (en) | Laminates and image display devices | |
JP5720795B2 (en) | Pattern retardation film and method for producing the same | |
JP2016532893A (en) | Retardation film and image display device having the same | |
WO2009028429A1 (en) | Elliptically polarizing plate, method for producing the same, and liquid crystal display device using the same | |
WO2021059819A1 (en) | Composition for forming polarizer, polarizer, multilayer body and image display device | |
JP2009086260A (en) | Retardation film | |
WO2017007007A1 (en) | Polymerizable composition including polymerizable compound, film, half mirror for projection image display, and polymerizable compound | |
WO2020122116A1 (en) | Light-absorbing anisotropic film, laminate, and image display device | |
WO2006129656A1 (en) | Multilayer optical compensation film | |
US11732192B2 (en) | Liquid crystal composition, light absorption anisotropic film, laminate, and image display device | |
JP2007155757A (en) | Multilayer optical compensation film and combined polarizing plate | |
JP6954288B2 (en) | Polymerizable liquid crystal compositions and liquid crystal polymers | |
WO2007132816A1 (en) | Optical functional film and method for producing the same | |
WO2018221470A1 (en) | Phase difference film, liquid crystal composition, optical member, display panel, display device, and method for manufacturing phase difference film | |
JP7207110B2 (en) | Polymerizable liquid crystal composition, liquid crystal polymer and retardation film | |
WO2020003938A1 (en) | Polarizer and image display device | |
JP4981269B2 (en) | Laminated optical compensation film, composite polarizing plate, and liquid crystal display element | |
JP6469180B2 (en) | Optically anisotropic film and manufacturing method thereof, laminate and manufacturing method thereof, polarizing plate, liquid crystal display device and organic EL display device | |
CN110865491A (en) | Oriented liquid crystal film and method for producing same, optical film with adhesive and method for producing same, and image display device | |
JP2007304444A (en) | Retardation film and method of manufacturing retardation film | |
JP2015197492A (en) | Optically anisotropic film and production method of the same, laminate and production method of laminate, polarizing plate, liquid crystal display device, and organic electroluminescence display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06746994 Country of ref document: EP Kind code of ref document: A1 |