WO2006129348A1 - Semiconductor manufacturing apparatus - Google Patents

Semiconductor manufacturing apparatus Download PDF

Info

Publication number
WO2006129348A1
WO2006129348A1 PCT/JP2005/009944 JP2005009944W WO2006129348A1 WO 2006129348 A1 WO2006129348 A1 WO 2006129348A1 JP 2005009944 W JP2005009944 W JP 2005009944W WO 2006129348 A1 WO2006129348 A1 WO 2006129348A1
Authority
WO
WIPO (PCT)
Prior art keywords
manufacturing apparatus
vibration
semiconductor manufacturing
semiconductor substrate
semiconductor
Prior art date
Application number
PCT/JP2005/009944
Other languages
French (fr)
Japanese (ja)
Inventor
Keizo Yamada
Minoru Matsuzawa
Original Assignee
Topcon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corporation filed Critical Topcon Corporation
Priority to PCT/JP2005/009944 priority Critical patent/WO2006129348A1/en
Publication of WO2006129348A1 publication Critical patent/WO2006129348A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67288Monitoring of warpage, curvature, damage, defects or the like

Definitions

  • the present invention relates to a semiconductor manufacturing apparatus used for manufacturing, inspecting, measuring, or evaluating a semiconductor device.
  • the present invention also relates to a semiconductor manufacturing apparatus using an electron beam, an ion beam, light or electromagnetic waves.
  • the present invention also relates to a semiconductor device evaluation apparatus (inspection apparatus) that performs process evaluation during the semiconductor device manufacturing process using an electron beam, ion beam, light, or electromagnetic wave.
  • a semiconductor device is one in which various functions are performed on a semiconductor wafer such as silicon (hereinafter simply referred to as a "wafer") to realize an electrical function.
  • Semiconductor devices are getting smaller year by year due to the evolution of semiconductor processes.
  • semiconductor devices consisting of very small structures with a size of 0.1 microns or less are made and measured.
  • a wafer is a disk-shaped structure having a diameter of 20 to 30 cm.
  • Such a disk-like structure has the property of easily vibrating when exposed to external force vibration. Wafer vibrations in semiconductor manufacturing equipment can cause process failures and measurement instabilities. Therefore, in the development of a semiconductor manufacturing apparatus and a semiconductor device evaluation apparatus, various adjustments and improvements are made to suppress vibrations.
  • FIG. 10 is an explanatory view showing an example of a conventional semiconductor manufacturing apparatus.
  • This semiconductor manufacturing apparatus irradiates a wafer 10 as an object to be inspected with an electron beam 3, detects the current (substrate current) generated by the wafer 10 by this irradiation, and the wafer 10 is processed as designed. (See, for example, Patent Documents 1 to 3).
  • the wafer 10 is placed on the XY stage 7 via the tray 6.
  • the electron beam 3 is emitted from the electron beam source 2.
  • the electron beam 3 passes through the electron boom barrel 4, is converged by a lens 5 disposed at one end of the electron beam barrel 4, and is irradiated so as to be focused on the surface of the wafer 10.
  • the tray 6, the XY stage 7 and the wafer 10 are accommodated in a vacuum chamber 1 which is controlled in an atmosphere so that an electron beam can be emitted.
  • Patent Document 1 Japanese Patent No. 3334750
  • Patent Document 2 Japanese Patent No. 3292159
  • Patent Document 3 Japanese Patent No. 3175765
  • a vibration sensor 101 is arranged to confirm that the wafer 10 is not vibrating.
  • the vibration sensor 101 include an acceleration sensor that converts vibration into an electrical signal, and a laser vibration measurement device that detects vibration by irradiating the surface of a vibrating body with laser and measuring its reflection intensity.
  • the output of the vibration sensor 101 is amplified by the signal amplification device 102 and then analyzed by the waveform analysis device 103 to extract the vibration component.
  • a small acceleration sensor has a size of about lcm and a weight of 1 gram. Vibration measurement is performed by actually attaching the acceleration sensor to the vibration measurement location. In the case of a laser vibration measurement device, the size is larger than the 10cm square, so it is placed at a reference location where it is considered that it will not vibrate! In some cases, measurement is performed by using a mirror to convey light to a desired position.
  • the conventional vibration sensor 101 such as an acceleration sensor or a laser vibration measuring device, while applying a force, secures a certain place on the inspection object such as the wafer 10, and the acceleration sensor itself or It is necessary to place sensor components (such as mirrors).
  • sensor components such as mirrors.
  • the acceleration sensor or mirror or the like will adversely affect the measurement and the cache process for the wafer 10 that is the original purpose.
  • the present invention has been made in order to solve the above-described problems of the prior art.
  • Regarding the vibration state of a semiconductor manufacturing apparatus itself or a manufacturing object or an inspection object of a semiconductor manufacturing apparatus It is an object of the present invention to provide a semiconductor manufacturing apparatus that can detect well without hindering the original manufacturing operation or inspection operation of the semiconductor manufacturing apparatus.
  • the present invention provides a semiconductor manufacturing apparatus that can satisfactorily detect the vibration state of a manufacturing object or an inspection object of the semiconductor manufacturing apparatus without providing a vibration sensor separately from the original components of the semiconductor manufacturing apparatus. With the goal.
  • a semiconductor manufacturing apparatus processes or measures a semiconductor substrate that is either a semiconductor wafer itself or a semiconductor wafer processed. And it has a capacity
  • the capacitance generated between the semiconductor substrate and the peripheral object can be measured by the capacitance measuring means.
  • the semiconductor substrate becomes the first electrode
  • the peripheral object for example, the lens 5 (see FIG. 1)
  • the space between the semiconductor substrate and the peripheral object becomes the insulator.
  • a capacitor is formed by the first electrode, the second electrode, and the insulator.
  • the electric capacity varies with the passage of time, it can be considered that the interval between the first electrode and the second electrode varies. Therefore, in this case, it can be considered that the semiconductor substrate is vibrating. Since the distance between the first electrode and the second electrode and the electric capacity are inversely proportional, it is possible to detect the magnitude of the vibration by looking at the magnitude of the fluctuation of the electric capacity.
  • the present invention can satisfactorily detect the vibration state of the manufacturing object or inspection object of the semiconductor manufacturing apparatus without providing a vibration sensor separately from the original components of the semiconductor manufacturing apparatus. That is, the vibration state of the manufacturing object or inspection object of the semiconductor manufacturing apparatus can be detected well without hindering the original manufacturing operation or inspection operation.
  • the semiconductor manufacturing apparatus of the present invention contains at least the semiconductor substrate and is controlled in an atmosphere so that an electron beam can be emitted, and the electron beam is directed toward the semiconductor substrate.
  • An electron beam source that emits light, and the capacitance measuring unit measures an electric capacitance generated between the semiconductor substrate disposed in the chamber and the peripheral object.
  • the semiconductor manufacturing apparatus of the present invention it is possible to satisfactorily detect the vibration state of a manufacturing object or an inspection object in a chamber that does not contaminate the atmosphere in the chamber.
  • the capacitance measuring unit sequentially outputs measurement values, and has a waveform analyzing unit that analyzes a change state of the output of the capacitance measuring unit with respect to time. It is characterized by.
  • the change state of the capacitance with time is analyzed by the waveform analysis means, not only the magnitude of the vibration of the manufacturing object or the inspection object but also where the vibration is located. Can also be detected. For example, it is possible to detect the magnitude of the vibration, the location of the cause of the vibration, etc. by analyzing the change state (waveform) of the capacitance with the passage of time by waveform analysis means by FFT (Fast Fourier Transform) it can.
  • FFT Fast Fourier Transform
  • the semiconductor manufacturing apparatus of the present invention is based on the output of the waveform analysis means. It has a vibration detecting means for detecting a vibration state of at least one of the semiconductor substrate and the semiconductor manufacturing apparatus.
  • the vibration detection means can identify the magnitude of the vibration and the position of the vibration cause.
  • a vibration detecting means for detecting a vibration state of at least one of the semiconductor substrate and the semiconductor manufacturing apparatus based on the output of the previous capacity measuring means.
  • the semiconductor manufacturing apparatus of the present invention it is possible to detect, for example, whether the cause of vibration is in the electron beam source or the related apparatus or whether there is another cause of vibration.
  • the vibration detection unit is configured to display the vibration state based on the output of the previous capacity measurement unit when the semiconductor substrate is irradiated with the electron beam. When detected, it is determined that there is vibration, and the electron beam is irradiated onto the semiconductor substrate. Based on the output of the previous capacity measuring means, the vibration is detected when the vibration state is detected. If it is determined that there is no electron beam source, it is determined that the electron beam source itself is vibrating.
  • the capacitance measuring unit measures the electric capacity based on a current (substrate current) generated in the semiconductor substrate.
  • a current substrate current
  • the inventors of the present application have found through experiments and the like that this is a function of the magnitude of the capacitance formed by the semiconductor substrate and the peripheral material.
  • a separate vibration sensor is not provided in a semiconductor manufacturing apparatus that inspects the processing shape or electrical characteristics of a semiconductor substrate based on the substrate current.
  • the vibration state of a semiconductor substrate or the like can be detected well.
  • a sensor that detects a processed shape or electrical characteristics of a semiconductor substrate can also be used as a vibration sensor.
  • the processing shape of the semiconductor substrate or electrical The characteristic detection and the vibration detection can be performed simultaneously.
  • the capacitance measuring means generates an electric current generated in the semiconductor substrate when the semiconductor substrate is irradiated with one of an electron beam, an ion beam, light, and an electromagnetic wave (substrate The electric capacity is measured based on a current.
  • the processing shape or electrical characteristics of the semiconductor substrate can be detected using various probes such as an electron beam, ion beam, light, and electromagnetic wave, and the vibration state of the semiconductor substrate or the like can be detected. Can be detected satisfactorily. It is also possible to detect the vibration state of the semiconductor substrate or the like while processing the semiconductor substrate using an electron beam, ion beam, light, electromagnetic wave, or the like.
  • the capacitance measuring means detects secondary electrons generated when the semiconductor substrate is irradiated with an electron beam, and the secondary electron detecting means. And a waveform analysis means for analyzing a change state of the output with respect to time.
  • the inventor of the present application has found through experiments and the like that the size of the secondary electrons is a function of the size of the electric capacity formed by the semiconductor substrate and the peripheral material.
  • a separate vibration sensor is provided in the semiconductor manufacturing apparatus that inspects the processing shape or electrical characteristics of the semiconductor substrate based on the output of the secondary electron detection means.
  • the vibration state of the semiconductor substrate can be detected well.
  • a sensor that detects a processed shape or electrical characteristics of a semiconductor substrate can also be used as a vibration sensor.
  • the detection of the processing shape or electrical characteristics of the semiconductor substrate and the detection of vibration can be performed simultaneously.
  • the capacitance measuring means detects substrate current detecting means for detecting a current generated in the semiconductor substrate, and secondary electrons generated when the semiconductor substrate is irradiated with an electron beam.
  • the substrate current detection means and the secondary electron detector Based on the output of the output means, it is possible to detect the processing shape or electrical characteristics of the semiconductor substrate with high accuracy, and also detect the vibration state of the semiconductor substrate, etc. without providing a separate vibration sensor with high accuracy. can do.
  • the semiconductor manufacturing apparatus of the present invention is characterized in that the waveform analysis means includes difference analysis means for analyzing a difference between an output of the substrate current detection means and an output of the secondary electron detection means.
  • the semiconductor manufacturing apparatus of the present invention has irradiation means for irradiating the semiconductor substrate with light or electromagnetic waves used for exposure processing for transferring a desired pattern to the semiconductor substrate, and the capacitance measuring means. Is for measuring the electric capacity based on the current (substrate current) generated in the semiconductor substrate disposed in the vicinity of or around the irradiation means for performing the exposure process. And
  • the semiconductor manufacturing apparatus of the present invention it is possible to satisfactorily detect the vibration state of the semiconductor substrate exposed in the exposure apparatus through measurement of electric capacitance. Therefore, vibration can be removed in the exposure apparatus, and exposure with higher accuracy is possible.
  • the vibration state of at least one of the semiconductor substrate and the semiconductor manufacturing apparatus is more than a predetermined value by comparing the output value of the waveform analyzing means with a predetermined reference value.
  • a warning can be displayed when the semiconductor substrate vibrates to a predetermined value or more. Therefore, it is possible to detect the occurrence of a defective device due to processing or measurement in a large vibration state.
  • the semiconductor manufacturing apparatus of the present invention includes an output value of the waveform analysis means and a predetermined reference value.
  • the determination means for determining whether or not the vibration state of at least one of the semiconductor substrate and the semiconductor manufacturing apparatus is greater than a predetermined value, and the determination means determines that the vibration state is greater than the predetermined value.
  • a management means for stopping the operation of the semiconductor manufacturing apparatus at least for the processing or measurement. According to the semiconductor manufacturing apparatus of the present invention, for example, processing or measuring a semiconductor substrate is performed. When the semiconductor substrate vibrates to a predetermined value or more, the processing or measurement operation can be stopped. Therefore, it is possible to avoid continuing processing or measuring in a large vibration state.
  • the vibration state of at least one of the semiconductor substrate and the semiconductor manufacturing apparatus is more than a predetermined value by comparing the output value of the waveform analyzing means with a predetermined reference value.
  • the semiconductor manufacturing apparatus of the present invention it is possible to identify whether a device is processed or measured in a vibration state larger than a predetermined value (device during vibration). Therefore, for example, it is possible to take measures such as not inspecting the device during vibration, or inspecting it more strictly than other devices. Therefore, the present invention can provide a highly reliable device.
  • the capacitance measuring means includes a stage on which the semiconductor substrate is placed and a case where the semiconductor substrate is placed at a plurality of different positions on the stage.
  • the vibration state is detected for each position on the stage.
  • the semiconductor manufacturing apparatus of the present invention includes a position dependency detection unit that detects the vibration state of each position of the stage based on the measured capacitance. Can be detected. Therefore, it is possible to detect a position where the vibration is large or small on the stage, and it is possible to effectively take measures against the vibration.
  • the semiconductor manufacturing apparatus of the present invention provides a correspondence between the stage on which the semiconductor substrate is mounted and movable, the moving operation of the stage, and the time change of the measurement value of the capacitance measuring means. And a time dependency detecting means for determining whether or not a vibration affecting the machining or measurement has occurred based on the relationship.
  • the semiconductor manufacturing apparatus of the present invention for example, it is possible to detect that the semiconductor substrate vibrates with the movement of the stage, and the movement of the semiconductor substrate stops after a certain period of time after the movement stops. For example, when the time until the force vibration at the time of movement stop is longer than a certain reference time, it can be determined that the vibration affecting the machining or measurement has occurred. Therefore, according to the present invention, it is easy to take a vibration countermeasure for the stage, and it is easy to provide a highly reliable device.
  • the semiconductor manufacturing apparatus of the present invention includes a vibration sensor that detects vibrations of constituent members other than the constituent members that are in direct contact with the semiconductor substrate in the constituent members of the semiconductor manufacturing device, and the capacitance measuring unit. And analyzing means for analyzing the vibration affecting the processing or measurement of the semiconductor substrate and the source of the vibration based on the output of the vibration sensor and the output of the vibration sensor.
  • vibration during processing or measurement of a semiconductor substrate can be analyzed based on the output of the capacitance measuring means and the output of the vibration sensor (acceleration sensor or the like).
  • the present invention detects vibration states at different detection positions using sensors having different configurations, so that the vibration state of a manufacturing object or inspection object of a semiconductor manufacturing apparatus can be analyzed with higher accuracy. Become.
  • the present invention it is possible to perform vibration measurement without providing a vibration sensor separately from the original components of the semiconductor manufacturing apparatus and without attaching the vibration sensor to the semiconductor substrate. Therefore, the vibration state of the semiconductor manufacturing apparatus and the semiconductor substrate can be detected well without hindering the original manufacturing operation or inspection operation of the semiconductor manufacturing apparatus.
  • the present invention can improve the defect of the semiconductor manufacturing apparatus using the vibration measurement result (for example, a vibration-proof structure).
  • vibration generated in a vacuum can be measured, so that it is not necessary to consider the contamination in the vacuum chamber by the sensor or the destruction of the sensor itself.
  • the present invention is not limited to a semiconductor device manufacturing apparatus or evaluation / measurement apparatus using an electron beam or light.
  • the semiconductor device manufacturing apparatus or evaluation 'measuring apparatus uses an electromagnetic wave or ion as a probe (medium). It can also be applied to.
  • the capacity changes according to the vibration generated by the equipment or the electric power that changes in proportion to the vibration.
  • CVD Chemical Vapor Deposition
  • the present invention can be applied to any device that can extract a signal.
  • vibration analysis of a semiconductor manufacturing apparatus can be performed easily and with high accuracy, and a state in which no vibration occurs in the semiconductor manufacturing apparatus can be created by improving the apparatus. become able to.
  • a device abnormality caused by vibration can be automatically detected, and an alarm can be displayed and the operation of the device can be stopped in response to the detection. You can also record data about Therefore, it is possible to prevent problems occurring due to abnormal operation of the device due to vibration. In addition, even if a failure occurs, it is possible to easily execute analysis and countermeasures for the failure based on the data remaining in the record.
  • FIG. 1 is an explanatory view showing a semiconductor manufacturing apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a waveform diagram showing an example of FFT analysis results for the semiconductor manufacturing apparatus same as above.
  • FIG. 3 is a waveform diagram showing an example of the result of FFT analysis of a semiconductor manufacturing apparatus after taking measures against vibration.
  • FIG. 4 is an explanatory view showing a semiconductor manufacturing apparatus according to a second embodiment of the present invention.
  • FIG. 5 is an explanatory view showing a semiconductor manufacturing apparatus according to a third embodiment of the present invention.
  • FIG. 6 is an explanatory view showing a semiconductor manufacturing apparatus according to a fourth embodiment of the present invention.
  • FIG. 7 is an explanatory view showing a semiconductor manufacturing apparatus according to a fifth embodiment of the present invention.
  • 8 An explanatory diagram showing a semiconductor manufacturing apparatus according to a sixth embodiment of the present invention.
  • 9 An explanatory view showing a semiconductor manufacturing apparatus according to a seventh embodiment of the present invention. [10] It is an explanatory view showing an example of a conventional semiconductor manufacturing apparatus.
  • FIG. 1 is an explanatory view showing a semiconductor manufacturing apparatus according to the first embodiment of the present invention.
  • the substrate current generated in the wafer 10 placed inside the semiconductor manufacturing apparatus is measured, and the frequency analysis of the substrate current is performed, so that either the component of the semiconductor manufacturing apparatus or the wafer 10 is analyzed.
  • the present invention relates to an apparatus and a method for finding out whether or not the object vibrates. That is, the semiconductor manufacturing apparatus according to the present embodiment measures vibrations by measuring the electric capacity generated between the wafer 10 and the peripheral object arranged in the vicinity of the wafer 10 through the substrate current. It is.
  • the semiconductor manufacturing apparatus is an apparatus for measuring or measuring the wafer 10 using the electron beam 3.
  • the wafer 10 is a semiconductor wafer itself such as silicon, for example, and may be a semiconductor substrate obtained by dividing the semiconductor wafer itself.
  • the semiconductor manufacturing apparatus includes a vacuum chamber 1, an electron beam source 2, an electron beam column 4, a lens (objective lens) 5, a tray 6, an XY stage 7, and a substrate current detection device 8. And a waveform analyzer 9.
  • the vacuum chamber 1 is a container or a room for controlling the atmosphere so that the electron beam 3 can be emitted.
  • a part of the electron beam source 2, an electron beam column 4, a lens 5, a tray 6, an XY stage 7 and a wafer 10 are arranged.
  • the electron beam source 2 emits an electron beam 3.
  • the electron beam column 4 is a tube through which the electron beam 3 passes, and supports a lens 5 that converges or diffuses the electron beam 3.
  • the lens 5 forms an objective lens that converges the electron beam 3 so that the electron beam 3 is focused on the surface of the wafer 10.
  • Lens 5 consists of a coil, A current is passed through the coil to create a magnetic field and the electron beam is converged by the magnetic field.
  • the tray 6 holds the wafer 10.
  • the tray 6 is placed on the XY stage 7.
  • the XY stage 7 is a stage that can be moved precisely in the X and Y directions. By moving the XY stage 7, the electron beam 3 can be irradiated to a desired position of the wafer 10.
  • the substrate current detection device 8 detects a substrate current that is a current generated in the wafer 10 when the wafer 10 is irradiated with the electron beam 3.
  • the substrate current detection device 8 constitutes a capacitance measuring means for measuring an electric capacitance generated between the wafer 10 and a peripheral object (such as the lens 5) arranged in the vicinity of or around the wafer 10.
  • the waveform analysis device 9 is for sequentially inputting the output of the substrate current detection device 8 and analyzing the waveform. For example, the waveform analyzer 9 performs FFT analysis on the substrate current.
  • the substrate current generated in the wafer 10 is a very small current (for example, several pA). Therefore, the vibration of the semiconductor manufacturing apparatus or the wafer 10 during the detection of the substrate current causes a decrease in accuracy of measurement values and a loss of stability.
  • the wafer 10 that also has silicon power and the semiconductor manufacturing apparatus form an electric capacity.
  • the electric capacity is an electric element generally called a capacitor.
  • a capacitor refers to a structure in which an insulator is sandwiched between two metals (electrodes).
  • a capacitor has the property of storing electric charge. For example, if one of the two electrodes forming the capacitor is formed by the wafer 10, the other electrode is formed by the lens 5, and the space between the wafer 10 and the lens 5 forms an insulator. Conceivable.
  • a voltage is applied to the electrode forming the capacity
  • Examples include a method of measuring the amount of current flowing, or a method of measuring a current generated by a change in capacitance due to a charge previously stored in a capacitive component.
  • There are other methods for knowing the change in capacitance such as the bridge method, in which no current flows, and any method can be used.
  • the bridge method is to detect changes in the impedance of the sensor by configuring the bridge with four impedances including the sensor and balancing the bridge.
  • the wafer 10 is placed on the tray 6 disposed on the XY stage 7.
  • the wafer 10 and the tray 6 are electrically connected with conductive rubber or the like.
  • the tray 6 force extends the wiring for measuring the substrate current.
  • the wiring is connected to the input terminal of the substrate current detection device 8.
  • the substrate current detection device 8 amplifies the input minute current (substrate current) and converts it into a voltage signal that is easy to handle. This voltage signal is recorded as a function of time. For example, a substrate current waveform signal is captured at a sampling period such as 4 OkHz or 4 MHz, converted into a digital signal, and stored. This digital signal is sent to the waveform analyzer 9 for FFT analysis.
  • FIG. 2 is a waveform diagram showing an example of the result of FFT analysis performed by the waveform analysis apparatus 9 of the semiconductor manufacturing apparatus. In other words, this is an example of the result of FFT analysis of the waveform of the substrate current of the wafer 10.
  • the horizontal axis represents frequency
  • the vertical axis represents signal intensity (peak intensity).
  • Figure 2 shows an example of analysis of a semiconductor manufacturing device before taking measures against vibration.
  • each peak corresponds to vibration of the wafer 10, vibration of the semiconductor manufacturing apparatus, or power supply noise.
  • the peak of 10 OHz is caused by the vibration of the wafer 10, indicating that there is a problem with the method of supporting the wafer 10.
  • the peak at 300 Hz represents the vibration of the semiconductor manufacturing equipment (such as lens 5 or vacuum chamber 1). These have been confirmed experimentally.
  • Such an analysis of the output of the waveform analysis device 9 may be performed manually, but may be performed automatically, for example, when the waveform analysis device 9 also functions as a vibration detection means. That is, the waveform analyzer 9 may detect the vibration state of at least one of the wafer 10 and the semiconductor manufacturing apparatus based on the waveform shown in FIG. 2 output by FFT analysis. Yes.
  • Fig. 3 is a waveform diagram showing an example of the result of FFT analysis of the waveform analysis device 9 of the semiconductor manufacturing equipment after taking countermeasures against the vibration cause obtained by the FFT analysis as shown in Fig. 2. is there.
  • Fig. 3 shows an example of analyzing the substrate current after taking measures against vibration.
  • FIG. 3 shows that the vibration peak disappears and the cause of the vibration causing the quality deterioration of the manufacturing apparatus and the measuring apparatus has been removed, as is clear when compared with FIG.
  • FIG. 4 is an explanatory view showing a semiconductor manufacturing apparatus according to the second embodiment of the present invention.
  • the same components as those of the semiconductor manufacturing apparatus of FIG.
  • the difference between the semiconductor manufacturing apparatus of the present embodiment and the semiconductor manufacturing apparatus of the first embodiment is that the switch 2a and the waveform recording apparatus 11 are provided in the semiconductor manufacturing apparatus.
  • the switch 2 a is a switch for turning on and off the operation of the electron beam source 2.
  • the switch 2a may be constituted by a shirter or the like disposed on the propagation path of the electron beam 3. In this case, the irradiation of the electron beam 3 onto the wafer 10 can be turned on and off while the electron beam source 2 is in an electron beam radiation operation state.
  • the waveform recording device 11 records the waveform of the substrate current that is the output of the substrate current detection device 8.
  • the waveform recorded by the waveform recorder 11 is analyzed by the waveform analyzer 9 and subjected to vibration analysis.
  • the vibration component caused by the semiconductor manufacturing apparatus may vary between when the electron beam 3 is irradiated and when it is not. Therefore, by comparing the data at the time of irradiation with the electron beam 3 and the data at the time of non-irradiation (for example, data stored in the waveform storage device 11), more detailed vibration can be known. For example, noise is observed during electron beam irradiation, and if not, it can be seen that the electron beam source 3 itself is vibrating.
  • the waveform analysis device 9 may have a function as a vibration detection means for detecting such a vibration state or a vibration factor.
  • FIG. 5 is an explanatory view showing a semiconductor manufacturing apparatus according to the third embodiment of the present invention.
  • the semiconductor manufacturing apparatus of the present embodiment is an application of the present invention to an apparatus for acquiring a secondary electron image, such as a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the SEM scans the surface of the object to be measured (wafer 10) with the electron beam 3 narrowed down to a few nanometers, and the secondary electrons generated thereby are acquired by the secondary electron detector 12 and the secondary electron detector 13.
  • This is an apparatus that generates an image showing the uneven state of the surface of the measurement target.
  • the waveform analyzer 14 analyzes the vibration state of the wafer 10 or the semiconductor manufacturing apparatus by praying for the change state of the output of the secondary electron detector 13 over time.
  • the vibration of the apparatus is measured as follows. First, a wafer 10 having a surface region that has not been subjected to a manufacturing process is set in a semiconductor manufacturing apparatus. That is, the wafer 10 is arranged on the XY stage 7 through the tray 6. Then, the electron beam 3 is scanned on the wafer 10 or a specific place on the wafer 10 is irradiated with the electron beam 3. Secondary electrons generated at this time are detected by a powerful secondary electron detector 12 such as a scintillator and converted into an electrical signal. This electrical signal is stored in a storage device, and further subjected to FFT analysis in the waveform analysis device 14 to obtain a frequency spectrum. These frequency spectrum force vibration sources are identified and semiconductor manufacturing equipment is adjusted and improved.
  • FIG. 6 is an explanatory view showing a semiconductor manufacturing apparatus according to the fourth embodiment of the present invention.
  • the semiconductor manufacturing apparatus of this embodiment is a combination of the semiconductor manufacturing apparatus of the first embodiment shown in FIG. 1 and the semiconductor manufacturing apparatus of the third embodiment shown in FIG. That is, in this embodiment, vibration analysis is performed using both a signal obtained from the secondary electron detector 12 and a signal obtained from the substrate current detection device 8 (hereinafter simply referred to as “both”). An example is shown. In some cases, both may have a peak at the same frequency. It may not be the case. This semiconductor manufacturing equipment uses these properties to investigate the cause of vibration. When detecting minute vibrations, it may be advantageous to analyze the difference between the two signals to distinguish them from the surrounding electrical noise. Since electrical noise is often included in both, the vibration component can be measured with higher accuracy by using the difference.
  • FIG. 7 is an explanatory view showing a semiconductor manufacturing apparatus according to the fifth embodiment of the present invention.
  • the semiconductor manufacturing apparatus of the present embodiment is an example in which the present invention is applied to an optical apparatus (for example, a manufacturing apparatus such as an exposure apparatus).
  • an optical apparatus for example, a manufacturing apparatus such as an exposure apparatus.
  • the semiconductor manufacturing apparatus includes a housing 21, a light source 22, an optical system 24, a lens 25, a tray 26, an XY stage 27, a substrate current detection device 28, and a waveform analysis device. 29.
  • the light source 22 emits light 23 used for exposing the wafer 10.
  • the optical system 24 and the lens 25 converge the light 23 so that the light is focused on the surface of the wafer 10. Therefore, the light source 22, the optical system 24, and the lens 25 constitute an irradiating unit that irradiates the wafer 10 with the light 23 used for the exposure process for transferring the desired pattern onto the wafer 10.
  • the tray 26, the XY stage 27, the substrate current detection device 28, and the waveform analysis device 29 correspond to the tray 6, the XY stage 7, the substrate current detection device 8, and the waveform analysis device 9 of FIG.
  • the exposure apparatus is an apparatus that requires very high precision positioning. For this purpose, strict temperature control and highly precise XY stage 27 are used. However, the wafer 10 itself, the XY stage 27, or the housing 21 is always exposed to vibrations caused by external forces, which causes deterioration of exposure accuracy.
  • the exposure apparatus is entirely made of metal, an electric capacity is generated between the wafer 10 placed in the exposure apparatus and the exposure apparatus.
  • a current accompanying a capacitance change is induced in the wafer 10. This current is detected by the substrate current.
  • the cause of vibration of the wafer 10 and the cause of vibration of the exposure apparatus can be known.
  • a high-performance exposure apparatus can be configured by taking anti-vibration measures for the detected cause of vibration.
  • FIG. 8 is an explanatory view showing a semiconductor manufacturing apparatus according to the sixth embodiment of the present invention.
  • the semiconductor manufacturing apparatus of this embodiment is an example in which an alarm system is added to the semiconductor manufacturing apparatus of FIG. 7 and the semiconductor manufacturing apparatuses of the other embodiments described above.
  • the manufacturing apparatus and the evaluation apparatus may be in a state where desired performance cannot be exhibited when subjected to vibrations exceeding a specified level due to a change in installation environment or the like. If it is unclear whether or not the force is causing vibration during manufacturing or measurement, the wafer 10 processed by the apparatus cannot be properly processed or the measurement value is not correct. Therefore, in the semiconductor manufacturing apparatus of the present embodiment, the apparatus is managed using the vibration signal obtained by the method or configuration shown in each of the above embodiments.
  • the substrate current detection device 28 detects vibration data at the time of manufacture or measurement in real time.
  • the waveform analysis device 29 performs vibration analysis such as FFT analysis on the vibration waveform detected by the substrate current detection device 28 in real time, and extracts a vibration peak generated at a certain frequency.
  • the management device 30 compares the management value (reference value) determined for each frequency with the vibration intensity obtained in the actual measurement. Then, the management device 30 displays a warning on the display device 31 when the peak exceeds the management value.
  • the management device 30 may have a function of stopping the manufacturing operation or the measurement operation of the semiconductor manufacturing apparatus when the peak exceeds the management value.
  • the management apparatus 30 does not stop the manufacturing operation or measurement operation of the semiconductor manufacturing apparatus, and indicates that the device is manufactured or measured when there is a lot of vibration. May be transmitted to the host computer and stored as management information.
  • FIG. 8 shows an example of a semiconductor manufacturing apparatus using an optical system. However, an apparatus using an electron beam such as an electron microscope, or a semiconductor such as an etching apparatus or a CVD apparatus is processed.
  • a system similar to that of the present embodiment can be configured by any device such as a device to be used.
  • the magnitude of the vibration may be a function of the position on the XY stage 27. For example, when the wafer 10 is brought to a certain position on the XY stage 27, a large vibration is observed, and when the wafer 10 is brought to another certain position, the vibration becomes small.
  • This semiconductor manufacturing apparatus can also specify the vibration source by measuring the position dependency of the vibration signal observed in this way.
  • the waveform analysis device 29 or the management device 30 has a function as a position dependency detection means, and specifies a vibration source in the XY stage 27 or the like.
  • the magnitude of the vibration may have a time dependency with respect to a certain movement of the XY stage 27. For example, it is detected that the wafer 27 vibrates with the movement of the XY stage 27 and that the movement stops and the vibration of the wafer 27 stops after a certain amount of time. And, for example, when the time until the force vibration at the time of movement stop is longer than a certain reference time, it can be determined that the vibration affecting the machining or measurement has occurred. For such a phenomenon, the vibration source can be identified by measuring the time dependence of the FFT analysis waveform in the waveform analyzer 29. The management device 30 sets a management value in advance for the position dependency or time dependency as described above, and if the detected value for the position dependency or time dependency exceeds the control value, the device malfunctions. Can be displayed, and the operation of the equipment can be automatically stopped.
  • FIG. 9 is an explanatory view showing a semiconductor manufacturing apparatus according to the seventh embodiment of the present invention.
  • the semiconductor manufacturing apparatus of the present embodiment combines the vibration sensor 41 and the signal amplifying apparatus 42 with the semiconductor manufacturing apparatus of FIG. 1, and performs waveform analysis on the waveform of the substrate current and the output waveform of the vibration sensor 41.
  • the vibration sensor 41 for example, an acceleration sensor can be applied, and it is directly attached to the outside of the vacuum chamber 1.
  • the signal amplifying device 42 amplifies the output signal of the vibration sensor 41 and outputs it to the waveform analyzing device 9.
  • the vibration sensor 41 can mainly detect vibration generated outside the apparatus, and the substrate current detection apparatus 8 can mainly detect vibration generated inside the apparatus. Therefore, the waveform analyzer 9 can identify the vibration source with higher accuracy by correlating the signal from the vibration sensor 41 with the substrate current and analyzing the waveform of the correlation.
  • a semiconductor manufacturing apparatus using an electron beam or light has been described.
  • the present invention is not limited to this, and the present invention is applied to a semiconductor manufacturing apparatus using an ion beam or various electromagnetic waves. It can also be applied.
  • the present invention is useful for a semiconductor manufacturing apparatus used for manufacturing, inspecting, measuring, or evaluating a semiconductor device.
  • the present invention can be applied to a semiconductor manufacturing apparatus that uses a method of irradiating a semiconductor substrate such as a semiconductor wafer with an electron beam, light, electromagnetic wave, or ion beam.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

A semiconductor manufacturing apparatus which can excellently detect vibration state of the semiconductor manufacturing apparatus itself or an object to be manufactured or an object to be inspected by the semiconductor manufacturing apparatus without disturbing original manufacturing operation or inspecting operation of the semiconductor manufacturing apparatus. The semiconductor manufacturing apparatus for processing or measuring a semiconductor substrate, which is either a semiconductor wafer itself or a substrate provided by processing the semiconductor wafer, is characterized in that the apparatus is provided with a capacitance measuring means for measuring a capacitance generated between the semiconductor substrate and a peripheral object arranged in the vicinity or periphery of the semiconductor substrate.

Description

明 細 書  Specification
半導体製造装置  Semiconductor manufacturing equipment
技術分野  Technical field
[0001] 本発明は、半導体デバイスの製造、検査、測定又は評価などに用いられる半導体 製造装置に関するものである。また、本発明は、電子ビーム、イオンビーム、光又は 電磁波などを利用した半導体製造装置に関する。また、本発明は、電子ビーム、ィォ ンビーム、光又は電磁波などを利用して半導体デバイスの製造工程途中のプロセス 評価を行う半導体デバイスの評価装置 (検査装置)に関する。  The present invention relates to a semiconductor manufacturing apparatus used for manufacturing, inspecting, measuring, or evaluating a semiconductor device. The present invention also relates to a semiconductor manufacturing apparatus using an electron beam, an ion beam, light or electromagnetic waves. The present invention also relates to a semiconductor device evaluation apparatus (inspection apparatus) that performs process evaluation during the semiconductor device manufacturing process using an electron beam, ion beam, light, or electromagnetic wave.
背景技術  Background art
[0002] 半導体デバイスとは、シリコン等の半導体ウェハ(以下、単に「ウェハ」という)上に種 々の加工を施して電気的な機能を実現できるようにしたものである。半導体デバイス は半導体プロセスの進化により年々サイズが小さくなつている。現在の半導体製造装 置及び半導体デバイスの評価装置では、サイズが 0. 1ミクロン以下の非常に小さな 構造物からなる半導体デバイスが作られたり、測定されたりする。  [0002] A semiconductor device is one in which various functions are performed on a semiconductor wafer such as silicon (hereinafter simply referred to as a "wafer") to realize an electrical function. Semiconductor devices are getting smaller year by year due to the evolution of semiconductor processes. In the current semiconductor manufacturing equipment and semiconductor device evaluation equipment, semiconductor devices consisting of very small structures with a size of 0.1 microns or less are made and measured.
[0003] 一方、ウェハは直径が 20cmから 30cmの円板状の構造物である。このような円板 状の構造物は、外部力 の振動にさらされると、容易に振動を起こす性質がある。半 導体製造装置内におけるウェハの振動はプロセスの不具合及び測定の不安定性の 要因となる。そこで、半導体製造装置及び半導体デバイスの評価装置の開発では、 振動抑制のために 、ろ 、ろな調整及び装置改良が行われる。  On the other hand, a wafer is a disk-shaped structure having a diameter of 20 to 30 cm. Such a disk-like structure has the property of easily vibrating when exposed to external force vibration. Wafer vibrations in semiconductor manufacturing equipment can cause process failures and measurement instabilities. Therefore, in the development of a semiconductor manufacturing apparatus and a semiconductor device evaluation apparatus, various adjustments and improvements are made to suppress vibrations.
[0004] 図 10は、従来の半導体製造装置の一例を示す説明図である。この半導体製造装 置は、被検査物であるウェハ 10に電子ビーム 3を照射し、この照射によりウェハ 10生 じる電流 (基板電流)を検出して、そのウェハ 10が設計値通りに加工されているか等 を検査するものである(例えば、特許文献 1から 3参照)。  FIG. 10 is an explanatory view showing an example of a conventional semiconductor manufacturing apparatus. This semiconductor manufacturing apparatus irradiates a wafer 10 as an object to be inspected with an electron beam 3, detects the current (substrate current) generated by the wafer 10 by this irradiation, and the wafer 10 is processed as designed. (See, for example, Patent Documents 1 to 3).
[0005] ウェハ 10は、トレイ 6を介して XYステージ 7の上に載置されている。また電子ビーム 3は、電子ビーム源 2から放射される。その電子ビーム 3は、電子ブーム鏡筒 4の中を 通り、電子ビーム鏡筒 4の一方端に配置されたレンズ 5で収束され、ウェハ 10の表面 に焦点が合うように照射される。そして、ウェハ 10、電子ビーム鏡筒 4の一部、レンズ 5、トレイ 6、 XYステージ 7及びウェハ 10は、電子ビームの放出が可能なように真空に 雰囲気制御された真空チャンバ 1の内部に収納されている。 The wafer 10 is placed on the XY stage 7 via the tray 6. The electron beam 3 is emitted from the electron beam source 2. The electron beam 3 passes through the electron boom barrel 4, is converged by a lens 5 disposed at one end of the electron beam barrel 4, and is irradiated so as to be focused on the surface of the wafer 10. And wafer 10, part of electron beam column 4, lens 5. The tray 6, the XY stage 7 and the wafer 10 are accommodated in a vacuum chamber 1 which is controlled in an atmosphere so that an electron beam can be emitted.
[0006] 特許文献 1:特許 3334750号公報 [0006] Patent Document 1: Japanese Patent No. 3334750
特許文献 2 :特許 3292159号公報  Patent Document 2: Japanese Patent No. 3292159
特許文献 3 :特許 3175765号公報  Patent Document 3: Japanese Patent No. 3175765
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] また、ウェハ 10の振動状態を検出するためには、振動センサ 101を ΧΥステージ 7 に設置する構成が考えられる。ウェハ 10が振動していると、電子ビーム 3の焦点がゥ ェハ 10の表面上力もずれてしまい、ウェハ 10についての計測又は加工に悪影響を 与えてしまう。そこで、ウェハ 10が振動していないことを確認するために、振動センサ 101を配置している。振動センサ 101としては、振動を電気信号に変換する加速度セ ンサ、振動体の表面にレーザーを照射し、その反射強度を計ることで振動を検出す るレーザ振動測定装置などがある。振動センサ 101の出力は、信号増幅装置 102で 増幅された後に、波形解析装置 103で解析されて、振動成分が抽出される。 Further, in order to detect the vibration state of the wafer 10, a configuration in which the vibration sensor 101 is installed on the heel stage 7 can be considered. When the wafer 10 is vibrating, the focal point of the electron beam 3 is also shifted on the surface of the wafer 10, which adversely affects the measurement or processing of the wafer 10. Therefore, a vibration sensor 101 is arranged to confirm that the wafer 10 is not vibrating. Examples of the vibration sensor 101 include an acceleration sensor that converts vibration into an electrical signal, and a laser vibration measurement device that detects vibration by irradiating the surface of a vibrating body with laser and measuring its reflection intensity. The output of the vibration sensor 101 is amplified by the signal amplification device 102 and then analyzed by the waveform analysis device 103 to extract the vibration component.
[0008] 例えば、加速度センサは、小さいものでは大きさ lcm位、重さ 1グラムのものがある 。その加速度センサを振動測定箇所に実際に貼り付けることによって振動測定が行 われる。レーザ振動測定装置の場合は、サイズが 10cm角よりも大きいので、振動測 定場所とは少しはなれた場所でかつ、振動しな!、と考えられる基準場所に配置され る。場合によっては鏡を用いて光を所望の位置に搬送し、測定を行う場合もある。  [0008] For example, a small acceleration sensor has a size of about lcm and a weight of 1 gram. Vibration measurement is performed by actually attaching the acceleration sensor to the vibration measurement location. In the case of a laser vibration measurement device, the size is larger than the 10cm square, so it is placed at a reference location where it is considered that it will not vibrate! In some cases, measurement is performed by using a mirror to convey light to a desired position.
[0009] し力しながら、加速度センサ又はレーザ振動測定装置など力 なる従来の振動セン サ 101は、ウェハ 10などの被検査物の上に一定の場所を確保してそこに加速度セン サ自体又はセンサ構成要素 (鏡など)を配置することが必要となる。ところが、ウェハ 1 0に直接に加速度センサ又は鏡などを配置することは、非常に困難である。これは、 ウエノ、 10とレンズ(対物レンズ) 5との間隔は、通常、 3mm位しかないからである。さら に、ウェハ 10に直接に加速度センサ又は鏡などを配置できたとしても、その加速度 センサ又は鏡などは本来の目的であるウェハ 10についての計測及びカ卩ェ処理に悪 影響を与えてしまう。 [0010] また、半導体製造装置は、真空チャンバ 1のような真空装置又はプラズマが発生す るような過酷な条件に置かれるものが多い。したがって、従来の半導体製造装置にお いて、加速度センサ又は鏡などを実験的に配置して測定を行うことは原理的に可能 であるが、長期にわたって正確なセンサ動作を保障し続けることは非常に困難である [0009] The conventional vibration sensor 101, such as an acceleration sensor or a laser vibration measuring device, while applying a force, secures a certain place on the inspection object such as the wafer 10, and the acceleration sensor itself or It is necessary to place sensor components (such as mirrors). However, it is very difficult to arrange an acceleration sensor or a mirror directly on the wafer 10. This is because the distance between Ueno 10 and the lens (objective lens) 5 is usually only about 3 mm. Furthermore, even if an acceleration sensor or mirror can be arranged directly on the wafer 10, the acceleration sensor or mirror or the like will adversely affect the measurement and the cache process for the wafer 10 that is the original purpose. [0010] Further, many semiconductor manufacturing apparatuses are placed under harsh conditions such as a vacuum apparatus such as the vacuum chamber 1 or the generation of plasma. Therefore, in conventional semiconductor manufacturing equipment, it is possible in principle to perform measurement by placing an acceleration sensor or mirror experimentally, but it is very difficult to ensure accurate sensor operation over a long period of time. Have difficulty
[0011] また、電子ビームを用いた半導体製造装置又は半導体検査装置の場合、非常に 高度な真空状態の維持が装置の安定動作にとって必須である。ところが、加速度セ ンサ又はレーザ振動測定装置などを真空チャンバ 1等の真空装置内に入れると、そ の装置内が汚染されてしまうこともあるといった課題もある。 [0011] In the case of a semiconductor manufacturing apparatus or semiconductor inspection apparatus using an electron beam, maintaining a very high vacuum state is essential for stable operation of the apparatus. However, when an acceleration sensor or a laser vibration measuring device is placed in a vacuum device such as the vacuum chamber 1, the inside of the device may be contaminated.
[0012] 本発明は、このような従来技術の課題を解決するためになされたものであり、半導 体製造装置自体又は半導体製造装置の製造対象物又は検査対象物などの振動状 態について、その半導体製造装置の本来の製造動作又は検査動作を阻害すること なぐ良好に検出できる半導体製造装置を提供することを目的とする。  [0012] The present invention has been made in order to solve the above-described problems of the prior art. Regarding the vibration state of a semiconductor manufacturing apparatus itself or a manufacturing object or an inspection object of a semiconductor manufacturing apparatus, It is an object of the present invention to provide a semiconductor manufacturing apparatus that can detect well without hindering the original manufacturing operation or inspection operation of the semiconductor manufacturing apparatus.
また、本発明は、半導体製造装置の本来の構成要素とは別に振動センサを設ける ことなぐその半導体製造装置の製造対象物又は検査対象物の振動状態について 良好に検出できる半導体製造装置を提供することを目的とする。  In addition, the present invention provides a semiconductor manufacturing apparatus that can satisfactorily detect the vibration state of a manufacturing object or an inspection object of the semiconductor manufacturing apparatus without providing a vibration sensor separately from the original components of the semiconductor manufacturing apparatus. With the goal.
課題を解決するための手段  Means for solving the problem
[0013] 上記課題を解決するため、本発明の半導体製造装置は、半導体ウェハ自体と半導 体ウェハを加工してなるものとのいずれかである半導体基板について、加工又は計 測する半導体製造装置であって、前記半導体基板と該半導体基板の近傍又は周辺 に配置されている周辺物との間に生じる電気容量を測定する容量測定手段を有する ことを特徴とする。  In order to solve the above problems, a semiconductor manufacturing apparatus according to the present invention processes or measures a semiconductor substrate that is either a semiconductor wafer itself or a semiconductor wafer processed. And it has a capacity | capacitance measurement means which measures the electrical capacitance which arises between the said semiconductor substrate and the peripheral thing arrange | positioned in the vicinity of the semiconductor substrate, or the periphery.
本発明の半導体製造装置によれば、容量測定手段によって半導体基板と周辺物と の間に生じる電気容量を測定することができる。例えば、半導体基板が第 1の電極と なり、周辺物 (例えば、レンズ 5 (図 1参照))が第 2の電極となり、半導体基板と周辺物 との間の空間が絶縁物となる。そして、第 1の電極、第 2の電極及び絶縁物でコンデ ンサ (容量)が構成される。この電気容量が時間の経過にかかわらず一定である場合 、第 1の電極と第 2の電極との間隔は一定であるとみなすことができる。したがって、こ の場合は、半導体基板が振動していないとみなすことができる。一方、前記電気容量 が時間の経過によって変動する場合、第 1の電極と第 2の電極との間隔が変動してい るとみなすことができる。したがって、この場合は、半導体基板が振動しているとみな すことができる。そして第 1の電極と第 2の電極との間隔と電気容量とは反比例するの で、電気容量の変動の大きさを見ることで振動の大きさを検出することもできる。 According to the semiconductor manufacturing apparatus of the present invention, the capacitance generated between the semiconductor substrate and the peripheral object can be measured by the capacitance measuring means. For example, the semiconductor substrate becomes the first electrode, the peripheral object (for example, the lens 5 (see FIG. 1)) becomes the second electrode, and the space between the semiconductor substrate and the peripheral object becomes the insulator. A capacitor (capacitance) is formed by the first electrode, the second electrode, and the insulator. When this electric capacity is constant regardless of the passage of time, the distance between the first electrode and the second electrode can be regarded as constant. Therefore, this In this case, it can be considered that the semiconductor substrate is not vibrating. On the other hand, when the electric capacity varies with the passage of time, it can be considered that the interval between the first electrode and the second electrode varies. Therefore, in this case, it can be considered that the semiconductor substrate is vibrating. Since the distance between the first electrode and the second electrode and the electric capacity are inversely proportional, it is possible to detect the magnitude of the vibration by looking at the magnitude of the fluctuation of the electric capacity.
そこで、本発明は、半導体製造装置の本来の構成要素とは別に振動センサを設け ることなぐその半導体製造装置の製造対象物又は検査対象物の振動状態につい て良好に検出することができる。すなわち、半導体製造装置の製造対象物又は検査 対象物の振動状態について、本来の製造動作又は検査動作を阻害することなく良 好に検出することができる。  Therefore, the present invention can satisfactorily detect the vibration state of the manufacturing object or inspection object of the semiconductor manufacturing apparatus without providing a vibration sensor separately from the original components of the semiconductor manufacturing apparatus. That is, the vibration state of the manufacturing object or inspection object of the semiconductor manufacturing apparatus can be detected well without hindering the original manufacturing operation or inspection operation.
[0014] また、本発明の半導体製造装置は、少なくとも前記半導体基板を収納するものであ つて電子ビームの放出が可能なように雰囲気制御されたチャンバと、前記半導体基 板に向けて電子ビームを放出する電子ビーム源とを有し、前記容量測定手段は、前 記チャンバ内に配置された前記半導体基板と前記周辺物との間に生じる電気容量を 測定するものであることを特徴とする。 [0014] Further, the semiconductor manufacturing apparatus of the present invention contains at least the semiconductor substrate and is controlled in an atmosphere so that an electron beam can be emitted, and the electron beam is directed toward the semiconductor substrate. An electron beam source that emits light, and the capacitance measuring unit measures an electric capacitance generated between the semiconductor substrate disposed in the chamber and the peripheral object.
本発明の半導体製造装置によれば、チャンバ内の雰囲気を汚染することなぐチヤ ンバ内の製造対象物又は検査対象物の振動状態について、良好に検出することが できる。  According to the semiconductor manufacturing apparatus of the present invention, it is possible to satisfactorily detect the vibration state of a manufacturing object or an inspection object in a chamber that does not contaminate the atmosphere in the chamber.
[0015] また、本発明の半導体製造装置は、前記容量測定手段が測定値を逐次出力する ものであり、前記容量測定手段の出力の時間経過に対する変化状態を解析する波 形解析手段を有することを特徴とする。  [0015] Further, in the semiconductor manufacturing apparatus of the present invention, the capacitance measuring unit sequentially outputs measurement values, and has a waveform analyzing unit that analyzes a change state of the output of the capacitance measuring unit with respect to time. It is characterized by.
本発明の半導体製造装置によれば、波形解析手段によって電気容量の時間経過 に対する変化状態を解析するので、製造対象物又は検査対象物などの振動の大き さのみならず、振動原因がどこにあるかなども検出することができる。例えば、波形解 析手段によって電気容量の時間経過に対する変化状態 (波形)を FFT(Fast Fourier Transform:高速フーリエ変換)解析することにより、振動の大きさ、その振動原因の 箇所などを検出することができる。  According to the semiconductor manufacturing apparatus of the present invention, since the change state of the capacitance with time is analyzed by the waveform analysis means, not only the magnitude of the vibration of the manufacturing object or the inspection object but also where the vibration is located. Can also be detected. For example, it is possible to detect the magnitude of the vibration, the location of the cause of the vibration, etc. by analyzing the change state (waveform) of the capacitance with the passage of time by waveform analysis means by FFT (Fast Fourier Transform) it can.
[0016] また、本発明の半導体製造装置は、前記波形解析手段の出力に基づいて、前記 半導体基板及び前記半導体製造装置の少なくとも一方の振動状態を検出する振動 検出手段を有することを特徴とする。 [0016] Further, the semiconductor manufacturing apparatus of the present invention is based on the output of the waveform analysis means. It has a vibration detecting means for detecting a vibration state of at least one of the semiconductor substrate and the semiconductor manufacturing apparatus.
本発明の半導体製造装置によれば、例えば、波形解析手段が FFT解析して得た 波形に基づいて、振動検出手段が振動の大きさ及びその振動原因の位置などを特 定することができる。  According to the semiconductor manufacturing apparatus of the present invention, for example, based on the waveform obtained by the FFT analysis by the waveform analysis means, the vibration detection means can identify the magnitude of the vibration and the position of the vibration cause.
[0017] また、本発明の半導体製造装置は、前記半導体基板に前記電子ビームが照射さ れている時の前期容量測定手段の出力と、前記半導体基板に前記電子ビームが照 射されて 、な 、時の前期容量測定手段の出力とに基づ!/、て、前記半導体基板及び 前記半導体製造装置の少なくとも一方の振動状態を検出する振動検出手段を有す ることを特徴とする。  [0017] Further, in the semiconductor manufacturing apparatus of the present invention, the output of the previous capacity measurement means when the electron beam is irradiated on the semiconductor substrate, and the electron beam is irradiated on the semiconductor substrate. And a vibration detecting means for detecting a vibration state of at least one of the semiconductor substrate and the semiconductor manufacturing apparatus based on the output of the previous capacity measuring means.
本発明の半導体製造装置によれば、例えば、振動原因が電子ビーム源又はその 関連装置にあるか、それ以外に振動原因があるか、などを検出することができる。  According to the semiconductor manufacturing apparatus of the present invention, it is possible to detect, for example, whether the cause of vibration is in the electron beam source or the related apparatus or whether there is another cause of vibration.
[0018] また、本発明の半導体製造装置は、前記振動検出手段が、前記半導体基板に前 記電子ビームが照射されて 、る時の前期容量測定手段の出力に基づ 、て前記振動 状態を検出したときは振動があると判断し、前記半導体基板に前記電子ビームが照 射されて 、な 、時の前期容量測定手段の出力に基づ!/、て前記振動状態を検出した ときは振動がないと判断した場合、電子ビーム源そのものが振動していると判断する ものであることを特徴とする。  [0018] Further, in the semiconductor manufacturing apparatus of the present invention, the vibration detection unit is configured to display the vibration state based on the output of the previous capacity measurement unit when the semiconductor substrate is irradiated with the electron beam. When detected, it is determined that there is vibration, and the electron beam is irradiated onto the semiconductor substrate. Based on the output of the previous capacity measuring means, the vibration is detected when the vibration state is detected. If it is determined that there is no electron beam source, it is determined that the electron beam source itself is vibrating.
[0019] また、本発明の半導体製造装置は、前記容量測定手段が前記半導体基板に生じ る電流 (基板電流)に基づ 、て前記電気容量を測定するものであることを特徴とする 基板電流は、半導体基板と周辺物とがなす電気容量の大きさの関数になることを、 本願の発明者が実験などで見出した。  [0019] In the semiconductor manufacturing apparatus of the present invention, the capacitance measuring unit measures the electric capacity based on a current (substrate current) generated in the semiconductor substrate. The inventors of the present application have found through experiments and the like that this is a function of the magnitude of the capacitance formed by the semiconductor substrate and the peripheral material.
そこで、本発明の半導体製造装置によれば、例えば、基板電流に基づいて半導体 基板の加工形状又は電気的な特性を検査する半導体製造装置にお!ヽて、別段の振 動センサを設けることなぐ半導体基板などの振動状態を良好に検出することができ る。換言すれば、半導体基板の加工形状又は電気的な特性を検出するセンサを、振 動センサとしても用いることができる。ここで、半導体基板の加工形状又は電気的な 特性の検出と振動の検出とは、同時に行うこともできる。 Therefore, according to the semiconductor manufacturing apparatus of the present invention, for example, a separate vibration sensor is not provided in a semiconductor manufacturing apparatus that inspects the processing shape or electrical characteristics of a semiconductor substrate based on the substrate current. The vibration state of a semiconductor substrate or the like can be detected well. In other words, a sensor that detects a processed shape or electrical characteristics of a semiconductor substrate can also be used as a vibration sensor. Here, the processing shape of the semiconductor substrate or electrical The characteristic detection and the vibration detection can be performed simultaneously.
[0020] また、本発明の半導体製造装置は、前記容量測定手段が、前記半導体基板に電 子ビーム、イオンビーム、光、電磁波のいずれかが照射されたことによって該半導体 基板に生じる電流 (基板電流)に基づ ヽて前記電気容量を測定するものであることを 特徴とする。  [0020] Further, in the semiconductor manufacturing apparatus of the present invention, the capacitance measuring means generates an electric current generated in the semiconductor substrate when the semiconductor substrate is irradiated with one of an electron beam, an ion beam, light, and an electromagnetic wave (substrate The electric capacity is measured based on a current.
本発明の半導体製造装置によれば、電子ビーム、イオンビーム、光、電磁波などの 各種のプローブを用いて、半導体基板の加工形状又は電気的な特性を検出できると ともに、半導体基板などの振動状態を良好に検出することができる。また、電子ビー ム、イオンビーム、光、電磁波などを用いて半導体基板に加工処理を施しながら、同 時に半導体基板などの振動状態を検出することもできる。  According to the semiconductor manufacturing apparatus of the present invention, the processing shape or electrical characteristics of the semiconductor substrate can be detected using various probes such as an electron beam, ion beam, light, and electromagnetic wave, and the vibration state of the semiconductor substrate or the like can be detected. Can be detected satisfactorily. It is also possible to detect the vibration state of the semiconductor substrate or the like while processing the semiconductor substrate using an electron beam, ion beam, light, electromagnetic wave, or the like.
[0021] また、本発明の半導体製造装置は、前記容量測定手段が、前記半導体基板に電 子ビームを照射した時に生じる二次電子を検出する二次電子検出手段と、前記二次 電子検出手段の出力の時間経過に対する変化状態を解析する波形解析手段とを有 してなることを特徴とする。 [0021] Further, in the semiconductor manufacturing apparatus of the present invention, the capacitance measuring means detects secondary electrons generated when the semiconductor substrate is irradiated with an electron beam, and the secondary electron detecting means. And a waveform analysis means for analyzing a change state of the output with respect to time.
二次電子の大きさは、半導体基板と周辺物とがなす電気容量の大きさの関数にな ることを、本願の発明者が実験などで見出した。  The inventor of the present application has found through experiments and the like that the size of the secondary electrons is a function of the size of the electric capacity formed by the semiconductor substrate and the peripheral material.
そこで、本発明の半導体製造装置によれば、例えば、二次電子検出手段の出力に 基づいて半導体基板の加工形状又は電気的な特性を検査する半導体製造装置に おいて、別段の振動センサを設けることなぐ半導体基板などの振動状態を良好に検 出することができる。換言すれば、半導体基板の加工形状又は電気的な特性を検出 するセンサを、振動センサとしても用いることができる。ここで、半導体基板の加工形 状又は電気的な特性の検出と振動の検出とは、同時に行うこともできる。  Therefore, according to the semiconductor manufacturing apparatus of the present invention, for example, a separate vibration sensor is provided in the semiconductor manufacturing apparatus that inspects the processing shape or electrical characteristics of the semiconductor substrate based on the output of the secondary electron detection means. The vibration state of the semiconductor substrate can be detected well. In other words, a sensor that detects a processed shape or electrical characteristics of a semiconductor substrate can also be used as a vibration sensor. Here, the detection of the processing shape or electrical characteristics of the semiconductor substrate and the detection of vibration can be performed simultaneously.
[0022] また、本発明の半導体製造装置は、前記容量測定手段が、前記半導体基板に生 じる電流を検出する基板電流検出手段と、前記半導体基板に電子ビームを照射した 時に生じる二次電子を検出する二次電子検出手段と、前記基板電流検出手段の出 力及び前記二次電子検出手段の出力の時間経過に対する変化状態を解析する波 形解析手段とを有してなることを特徴とする。 [0022] Further, in the semiconductor manufacturing apparatus of the present invention, the capacitance measuring means detects substrate current detecting means for detecting a current generated in the semiconductor substrate, and secondary electrons generated when the semiconductor substrate is irradiated with an electron beam. A secondary electron detecting means for detecting the substrate current, and a waveform analyzing means for analyzing a change state of the output of the substrate current detecting means and the output of the secondary electron detecting means with time. To do.
本発明の半導体製造装置によれば、例えば、基板電流検出手段及び二次電子検 出手段の出力に基づ!/、て半導体基板の加工形状又は電気的な特性を高精度に検 查でき、さらに、別段の振動センサを設けることなぐ半導体基板などの振動状態を 高精度に検出することができる。 According to the semiconductor manufacturing apparatus of the present invention, for example, the substrate current detection means and the secondary electron detector. Based on the output of the output means, it is possible to detect the processing shape or electrical characteristics of the semiconductor substrate with high accuracy, and also detect the vibration state of the semiconductor substrate, etc. without providing a separate vibration sensor with high accuracy. can do.
[0023] また、本発明の半導体製造装置は、前記波形解析手段が、前記基板電流検出手 段の出力と前記二次電子検出手段の出力との差分について解析する差分解析手段 を有することを特徴とする。 [0023] Further, the semiconductor manufacturing apparatus of the present invention is characterized in that the waveform analysis means includes difference analysis means for analyzing a difference between an output of the substrate current detection means and an output of the secondary electron detection means. And
本発明の半導体製造装置によれば、例えば、基板電流検出手段の出力と二次電 子検出手段の出力とに共通に含まれている電気的なノイズを除去して、高精度に振 動成分を測定することができる。  According to the semiconductor manufacturing apparatus of the present invention, for example, electrical noise that is commonly included in the output of the substrate current detection means and the output of the secondary electron detection means is removed, and the vibration component is accurately detected. Can be measured.
[0024] また、本発明の半導体製造装置は、所望パターンを前記半導体基板に転写するた めの露光処理に用いられる光又は電磁波を該半導体基板に照射する照射手段を有 し、前記容量測定手段は、前記露光処理を行うために前記照射手段の近傍又は周 辺に配置された前記半導体基板に生じる電流 (基板電流)に基づ!/ヽて前記電気容量 を測定するものであることを特徴とする。 [0024] Further, the semiconductor manufacturing apparatus of the present invention has irradiation means for irradiating the semiconductor substrate with light or electromagnetic waves used for exposure processing for transferring a desired pattern to the semiconductor substrate, and the capacitance measuring means. Is for measuring the electric capacity based on the current (substrate current) generated in the semiconductor substrate disposed in the vicinity of or around the irradiation means for performing the exposure process. And
本発明の半導体製造装置によれば、露光装置において露光されている半導体基 板の振動状態について、電気容量の測定を介して良好に検出することができる。した がって、露光装置において振動を除去することが可能となり、より高精度な露光が可 能となる。  According to the semiconductor manufacturing apparatus of the present invention, it is possible to satisfactorily detect the vibration state of the semiconductor substrate exposed in the exposure apparatus through measurement of electric capacitance. Therefore, vibration can be removed in the exposure apparatus, and exposure with higher accuracy is possible.
[0025] また、本発明の半導体製造装置は、前記波形解析手段の出力値と所定の基準値と を比較することにより、半導体基板及び前記半導体製造装置の少なくとも一方の振 動状態が所定値よりも大きいか否か判断する判断手段と、前記判断手段によって振 動状態が所定値よりも大きいと判断されたときに、少なくとも警告を示す情報を表示 手段に表示させる管理手段とを有することを特徴とする。  In the semiconductor manufacturing apparatus of the present invention, the vibration state of at least one of the semiconductor substrate and the semiconductor manufacturing apparatus is more than a predetermined value by comparing the output value of the waveform analyzing means with a predetermined reference value. Determining means for determining whether or not the vibration state is greater than a predetermined value by the determining means, and management means for displaying at least information indicating a warning on the display means. And
本発明の半導体製造装置によれば、例えば半導体基板について加工又は計測し ているときに、その半導体基板が所定値以上に振動した場合に警告表示をすること ができる。したがって、大きな振動状態で加工又は計測したことによる不良デバイス の発生等を未然に検出することもできる。  According to the semiconductor manufacturing apparatus of the present invention, for example, when a semiconductor substrate is processed or measured, a warning can be displayed when the semiconductor substrate vibrates to a predetermined value or more. Therefore, it is possible to detect the occurrence of a defective device due to processing or measurement in a large vibration state.
[0026] また、本発明の半導体製造装置は、前記波形解析手段の出力値と所定の基準値と を比較することにより、半導体基板及び前記半導体製造装置の少なくとも一方の振 動状態が所定値よりも大きいか否か判断する判断手段と、前記判断手段によって振 動状態が所定値よりも大きいと判断されたときに、少なくとも前記加工又は計測につ いて前記半導体製造装置の動作を停止させる管理手段とを有することを特徴とする 本発明の半導体製造装置によれば、例えば半導体基板について加工又は計測し ているときに、その半導体基板が所定値以上に振動した場合にその加工又は計測 動作を停止することができる。したがって、大きな振動状態で加工又は計測し続ける ことを回避することができる。 [0026] Further, the semiconductor manufacturing apparatus of the present invention includes an output value of the waveform analysis means and a predetermined reference value. The determination means for determining whether or not the vibration state of at least one of the semiconductor substrate and the semiconductor manufacturing apparatus is greater than a predetermined value, and the determination means determines that the vibration state is greater than the predetermined value. And a management means for stopping the operation of the semiconductor manufacturing apparatus at least for the processing or measurement. According to the semiconductor manufacturing apparatus of the present invention, for example, processing or measuring a semiconductor substrate is performed. When the semiconductor substrate vibrates to a predetermined value or more, the processing or measurement operation can be stopped. Therefore, it is possible to avoid continuing processing or measuring in a large vibration state.
[0027] また、本発明の半導体製造装置は、前記波形解析手段の出力値と所定の基準値と を比較することにより、半導体基板及び前記半導体製造装置の少なくとも一方の振 動状態が所定値よりも大きいか否か判断する判断手段と、前記判断手段によって振 動状態が所定値よりも大きいと判断されたときに前記半導体製造装置によって加工 又は計測された前記半導体基板に係るデバイスであることを示す情報を、少なくとも 記憶手段に記憶させる振動経歴作成手段とを有することを特徴とする。  In the semiconductor manufacturing apparatus of the present invention, the vibration state of at least one of the semiconductor substrate and the semiconductor manufacturing apparatus is more than a predetermined value by comparing the output value of the waveform analyzing means with a predetermined reference value. And a device related to the semiconductor substrate processed or measured by the semiconductor manufacturing apparatus when the vibration state is determined to be larger than a predetermined value by the determination unit. It has a vibration history creating means for storing at least information to be stored in the storage means.
本発明の半導体製造装置によれば、所定値よりも大きい振動状態で加工又は計測 されたデバイス (振動時のデバイス)であるか否かを識別することができる。そこで、例 えば、振動時のデバイスについては、製品としない、又は他のデバイスよりも厳重に 検査するなどの措置をすることが可能となる。したがって、本発明は、信頼性の高い デバイスを提供することが可能となる。  According to the semiconductor manufacturing apparatus of the present invention, it is possible to identify whether a device is processed or measured in a vibration state larger than a predetermined value (device during vibration). Therefore, for example, it is possible to take measures such as not inspecting the device during vibration, or inspecting it more strictly than other devices. Therefore, the present invention can provide a highly reliable device.
[0028] また、本発明の半導体製造装置は、前記半導体基板が載置されるステージと、前 記ステージにおける異なる複数の位置に前記半導体基板を載置したときのそれぞれ について、前記容量測定手段が測定した電気容量に基づいて、前記ステージの各 位置の振動状態について検出する位置依存性検出手段とを有することを特徴とする 本発明の半導体製造装置によれば、ステージにおける各位置について振動状態を 検出することができる。したがって、ステージにおいて振動が大きい位置又は小さい 位置を検出することができ、その振動対策なども効果的に実行することが可能となる [0029] また、本発明の半導体製造装置は、前記半導体基板が載置ものであって移動可能 であるステージと、前記ステージの移動動作と、前記容量測定手段の測定値の時間 変化との対応関係に基づいて、前記加工又は計測に影響を及ぼす振動が生じたか 否か判断する時間依存性検出手段とを有することを特徴とする。 [0028] Further, in the semiconductor manufacturing apparatus of the present invention, the capacitance measuring means includes a stage on which the semiconductor substrate is placed and a case where the semiconductor substrate is placed at a plurality of different positions on the stage. According to the semiconductor manufacturing apparatus of the present invention, the vibration state is detected for each position on the stage. The semiconductor manufacturing apparatus of the present invention includes a position dependency detection unit that detects the vibration state of each position of the stage based on the measured capacitance. Can be detected. Therefore, it is possible to detect a position where the vibration is large or small on the stage, and it is possible to effectively take measures against the vibration. [0029] Further, the semiconductor manufacturing apparatus of the present invention provides a correspondence between the stage on which the semiconductor substrate is mounted and movable, the moving operation of the stage, and the time change of the measurement value of the capacitance measuring means. And a time dependency detecting means for determining whether or not a vibration affecting the machining or measurement has occurred based on the relationship.
本発明の半導体製造装置によれば、例えば、ステージの移動に伴って半導体基板 が振動して、その移動が停止して力 ある時間後に半導体基板の振動がおさまること などについて検出できる。そして、例えば移動停止時力 振動がおさまった時までの 時間がある基準時間よりも長い場合は、加工又は計測に影響を及ぼす振動が生じた と判断することもできる。したがって、本発明によれば、ステージについての振動対策 が行い易くなり、信頼性の高いデバイスを提供し易くなる。  According to the semiconductor manufacturing apparatus of the present invention, for example, it is possible to detect that the semiconductor substrate vibrates with the movement of the stage, and the movement of the semiconductor substrate stops after a certain period of time after the movement stops. For example, when the time until the force vibration at the time of movement stop is longer than a certain reference time, it can be determined that the vibration affecting the machining or measurement has occurred. Therefore, according to the present invention, it is easy to take a vibration countermeasure for the stage, and it is easy to provide a highly reliable device.
[0030] また、本発明の半導体製造装置は、前記半導体製造装置の構成部材における前 記半導体基板に直接接触している構成部材以外の構成部材の振動を検出する振動 センサと、前記容量測定手段の出力と前記振動センサの出力とに基づいて、前記半 導体基板の加工又は計測に影響を与える振動と該振動の発生源とについて解析す る解析手段とを有することを特徴とする。  [0030] Further, the semiconductor manufacturing apparatus of the present invention includes a vibration sensor that detects vibrations of constituent members other than the constituent members that are in direct contact with the semiconductor substrate in the constituent members of the semiconductor manufacturing device, and the capacitance measuring unit. And analyzing means for analyzing the vibration affecting the processing or measurement of the semiconductor substrate and the source of the vibration based on the output of the vibration sensor and the output of the vibration sensor.
本発明の半導体製造装置によれば、容量測定手段の出力と、振動センサ (加速度 センサ等)の出力とに基づいて、半導体基板の加工又は計測時の振動について解 析することができる。そこで、本発明は、異なる構成のセンサにより、かつ異なる検出 位置で振動状態を検出するので、半導体製造装置の製造対象物又は検査対象物 の振動状態について、より高精度に解析することが可能となる。  According to the semiconductor manufacturing apparatus of the present invention, vibration during processing or measurement of a semiconductor substrate can be analyzed based on the output of the capacitance measuring means and the output of the vibration sensor (acceleration sensor or the like). In view of this, the present invention detects vibration states at different detection positions using sensors having different configurations, so that the vibration state of a manufacturing object or inspection object of a semiconductor manufacturing apparatus can be analyzed with higher accuracy. Become.
発明の効果  The invention's effect
[0031] 本発明によれば、半導体製造装置の本来の構成要素とは別に振動センサを設ける ことなぐまた、振動センサを半導体基板に取り付けることなぐ振動測定が可能とな る。したがって、半導体製造装置の本来の製造動作又は検査動作を阻害することな ぐその半導体製造装置及び半導体基板の振動状態を良好に検出することができる According to the present invention, it is possible to perform vibration measurement without providing a vibration sensor separately from the original components of the semiconductor manufacturing apparatus and without attaching the vibration sensor to the semiconductor substrate. Therefore, the vibration state of the semiconductor manufacturing apparatus and the semiconductor substrate can be detected well without hindering the original manufacturing operation or inspection operation of the semiconductor manufacturing apparatus.
。そこで、本発明は、その振動測定の結果を用いて半導体製造装置の不具合を改良 すること (例えば防振構造)などが良好にできるようになる。 また、本発明によれば、真空中に置いて発生する振動も測定が可能であり、センサ による真空チャンバ内の汚染やセンサ自身の破壊などにつ!、て考慮する必要がなく なる。 . Therefore, the present invention can improve the defect of the semiconductor manufacturing apparatus using the vibration measurement result (for example, a vibration-proof structure). In addition, according to the present invention, vibration generated in a vacuum can be measured, so that it is not necessary to consider the contamination in the vacuum chamber by the sensor or the destruction of the sensor itself.
[0032] また、本発明は、電子ビーム又は光を使った半導体デバイスの製造装置又は評価 •測定装置に限らず、電磁波又はイオンをプローブ (媒体)とする半導体デバイスの 製造装置又は評価'測定装置に適用することもできる。  In addition, the present invention is not limited to a semiconductor device manufacturing apparatus or evaluation / measurement apparatus using an electron beam or light. The semiconductor device manufacturing apparatus or evaluation 'measuring apparatus uses an electromagnetic wave or ion as a probe (medium). It can also be applied to.
また、エッチング装置や CVD (Chemical Vapor Deposition:化学蒸着法)装置など どのような製造装置であっても、その装置が発生する振動にしたがって容量変化を起 こす装置あるいは振動に比例して変化する電気信号が取り出せる装置であれば、本 発明を適用することができる。  In addition, in any manufacturing equipment such as an etching equipment or CVD (Chemical Vapor Deposition) equipment, the capacity changes according to the vibration generated by the equipment or the electric power that changes in proportion to the vibration. The present invention can be applied to any device that can extract a signal.
[0033] また、本発明によれば、半導体製造装置についての振動解析を容易かつ高精度に 行うことが可能となり、半導体製造装置に振動が生じない状態をその装置を改善する ことにより作り出すことができるようになる。また、本発明によれば、振動に起因する装 置異常を自動的に検出し、この検出に応じて警報の表示、装置の動作停止などを行 うことができ、その振動に起因する装置異常についてのデータを記録に残すこともで きる。そこで、振動に起因する装置の異常動作で生じる不具合発生を未然に防ぐこと ができる。また、万一不具合が起こっても記録に残っているデータに基づいて、その 不具合につ ヽての解析及び対処を容易に実行することが可能となる。  [0033] Further, according to the present invention, vibration analysis of a semiconductor manufacturing apparatus can be performed easily and with high accuracy, and a state in which no vibration occurs in the semiconductor manufacturing apparatus can be created by improving the apparatus. become able to. In addition, according to the present invention, a device abnormality caused by vibration can be automatically detected, and an alarm can be displayed and the operation of the device can be stopped in response to the detection. You can also record data about Therefore, it is possible to prevent problems occurring due to abnormal operation of the device due to vibration. In addition, even if a failure occurs, it is possible to easily execute analysis and countermeasures for the failure based on the data remaining in the record.
[0034] また、本発明によれば、容量測定手段の出力と他の振動センサ (加速度センサなど )で検出された信号とを組み合わせて、より複雑な振動解析を行うこともできる。  [0034] Further, according to the present invention, it is possible to perform more complicated vibration analysis by combining the output of the capacitance measuring means and a signal detected by another vibration sensor (acceleration sensor or the like).
図面の簡単な説明  Brief Description of Drawings
[0035] [図 1]本発明の第 1実施形態に係る半導体製造装置を示す説明図である。 FIG. 1 is an explanatory view showing a semiconductor manufacturing apparatus according to a first embodiment of the present invention.
[図 2]同上の半導体製造装置について FFT解析した結果の例を示す波形図である。  FIG. 2 is a waveform diagram showing an example of FFT analysis results for the semiconductor manufacturing apparatus same as above.
[図 3]振動対策を施した後の半導体製造装置について FFT解析した結果の例を示 す波形図である。  FIG. 3 is a waveform diagram showing an example of the result of FFT analysis of a semiconductor manufacturing apparatus after taking measures against vibration.
[図 4]本発明の第 2実施形態に係る半導体製造装置を示す説明図である。  FIG. 4 is an explanatory view showing a semiconductor manufacturing apparatus according to a second embodiment of the present invention.
[図 5]本発明の第 3実施形態に係る半導体製造装置を示す説明図である。  FIG. 5 is an explanatory view showing a semiconductor manufacturing apparatus according to a third embodiment of the present invention.
[図 6]本発明の第 4実施形態に係る半導体製造装置を示す説明図である。 [図 7]本発明の第 5実施形態に係る半導体製造装置を示す説明図である。 圆 8]本発明の第 6実施形態に係る半導体製造装置を示す説明図である。 圆 9]本発明の第 7実施形態に係る半導体製造装置を示す説明図である。 圆 10]従来の半導体製造装置の一例を示す説明図である。 FIG. 6 is an explanatory view showing a semiconductor manufacturing apparatus according to a fourth embodiment of the present invention. FIG. 7 is an explanatory view showing a semiconductor manufacturing apparatus according to a fifth embodiment of the present invention. 8] An explanatory diagram showing a semiconductor manufacturing apparatus according to a sixth embodiment of the present invention. 9] An explanatory view showing a semiconductor manufacturing apparatus according to a seventh embodiment of the present invention. [10] It is an explanatory view showing an example of a conventional semiconductor manufacturing apparatus.
符号の説明 Explanation of symbols
1…真空チャンパ  1 ... Vacuum champer
2…電子ビーム源  2 ... Electron beam source
2a…スィッチ  2a ... Switch
3…電子ビーム  3 ... electron beam
4…電子ビーム鏡筒  4 ... Electron beam column
5…レンズ  5 ... Lens
6···トレイ  6 ... Tray
7···ΧΥステージ  7 ··· ΧΥ stage
8…基板電流検出装置  8 ... Board current detector
9…波形解析装置  9… Waveform analyzer
10···ウエノヽ  10 ...
11···波形記録装置  11. Waveform recorder
12···二次電子検出器  12 ... Secondary electron detector
13···二次電子検出装置  13 ... Secondary electron detector
14…波形解析装置  14… Waveform analyzer
21…筐体  21 ... Case
22···光源  22 ... Light source
23…光  23 ... light
24…光学系  24 ... Optical system
25· "レンズ  25 "lens
26···トレイ  26 ··· Tray
27···ΧΥステージ  27 ··· ΧΥ Stage
28···基板電流検出装置 29…波形解析装置 28 ... Substrate current detector 29… Waveform analyzer
30…管理装置  30 ... Management device
31· ··表示装置  31 ··· Display device
41…振動センサ  41… Vibration sensor
42· ··信号増幅装置  42..Signal amplifier
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0037] 次に、本発明を実施するための最良の形態について図面を参照して説明する。  Next, the best mode for carrying out the present invention will be described with reference to the drawings.
[0038] (第 1実施形態)  [0038] (First embodiment)
図 1は、本発明の第 1実施形態に係る半導体製造装置を示す説明図である。本実 施形態は、半導体製造装置の内部に置かれたウェハ 10に生じる基板電流を測定し 、その基板電流の周波数分析を行うことで、その半導体製造装置の構成部品又はゥ ェハ 10の何れが振動して 、るのかを見つける装置及び方法に関するものである。す なわち、本実施形態の半導体製造装置は、ウェハ 10とウェハ 10の近傍又は周辺に 配置されている周辺物との間に生じる電気容量について基板電流を介して測定して 、振動分析するものである。  FIG. 1 is an explanatory view showing a semiconductor manufacturing apparatus according to the first embodiment of the present invention. In the present embodiment, the substrate current generated in the wafer 10 placed inside the semiconductor manufacturing apparatus is measured, and the frequency analysis of the substrate current is performed, so that either the component of the semiconductor manufacturing apparatus or the wafer 10 is analyzed. The present invention relates to an apparatus and a method for finding out whether or not the object vibrates. That is, the semiconductor manufacturing apparatus according to the present embodiment measures vibrations by measuring the electric capacity generated between the wafer 10 and the peripheral object arranged in the vicinity of the wafer 10 through the substrate current. It is.
[0039] 本半導体製造装置は、電子ビーム 3を用いて、ウェハ 10についてカ卩ェ又は計測す る装置である。ウェハ 10は、例えばシリコンなどの半導体ウェハ自体であり、その半 導体ウェハ自体を分割した半導体基板であってもよ 、。  The semiconductor manufacturing apparatus is an apparatus for measuring or measuring the wafer 10 using the electron beam 3. The wafer 10 is a semiconductor wafer itself such as silicon, for example, and may be a semiconductor substrate obtained by dividing the semiconductor wafer itself.
[0040] 本半導体製造装置は、真空チャンバ 1と、電子ビーム源 2と、電子ビーム鏡筒 4と、 レンズ (対物レンズ) 5と、トレイ 6と、 XYステージ 7と、基板電流検出装置 8と、波形解 析装置 9とを有して構成されている。真空チャンバ 1は、電子ビーム 3が放出できるよ うに雰囲気制御するための容器又は部屋である。真空チャンバ 1の中に、電子ビーム 源 2の一部、電子ビーム鏡筒 4、レンズ 5、トレイ 6、 XYステージ 7及びウェハ 10が配 置されている。  The semiconductor manufacturing apparatus includes a vacuum chamber 1, an electron beam source 2, an electron beam column 4, a lens (objective lens) 5, a tray 6, an XY stage 7, and a substrate current detection device 8. And a waveform analyzer 9. The vacuum chamber 1 is a container or a room for controlling the atmosphere so that the electron beam 3 can be emitted. In the vacuum chamber 1, a part of the electron beam source 2, an electron beam column 4, a lens 5, a tray 6, an XY stage 7 and a wafer 10 are arranged.
[0041] 電子ビーム源 2は、電子ビーム 3を放出するものである。電子ビーム鏡筒 4は、電子 ビーム 3が通る筒であり、電子ビーム 3について収束又は拡散させるレンズ 5などを支 持するものである。レンズ 5は、電子ビーム 3がウェハ 10の表面上に焦点を作るように 、電子ビーム 3を収束する対物レンズをなすものである。レンズ 5は、コイルからなり、 そのコイルに電流を流して磁界を作り、その磁界で電子ビームを収束するものであるThe electron beam source 2 emits an electron beam 3. The electron beam column 4 is a tube through which the electron beam 3 passes, and supports a lens 5 that converges or diffuses the electron beam 3. The lens 5 forms an objective lens that converges the electron beam 3 so that the electron beam 3 is focused on the surface of the wafer 10. Lens 5 consists of a coil, A current is passed through the coil to create a magnetic field and the electron beam is converged by the magnetic field.
。トレイ 6は、ウェハ 10を保持するものである。トレイ 6は、 XYステージ 7の上に載置さ れている。 XYステージ 7は、 X方向及び Y方向に精密に移動可能な台である。 XYス テージ 7を移動させることにより、ウェハ 10の所望位置に電子ビーム 3を照射すること ができる。 . The tray 6 holds the wafer 10. The tray 6 is placed on the XY stage 7. The XY stage 7 is a stage that can be moved precisely in the X and Y directions. By moving the XY stage 7, the electron beam 3 can be irradiated to a desired position of the wafer 10.
[0042] 基板電流検出装置 8は、ウェハ 10への電子ビーム 3の照射によってそのウェハ 10 に生じる電流である基板電流を検出するものである。基板電流検出装置 8は、ウェハ 10とウェハ 10の近傍又は周辺に配置されている周辺物(レンズ 5など)との間に生じ る電気容量を測定する容量測定手段をなしている。波形解析装置 9は、基板電流検 出装置 8の出力を逐次入力して波形解析するものである。例えば波形解析装置 9は 、基板電流について FFT解析する。  The substrate current detection device 8 detects a substrate current that is a current generated in the wafer 10 when the wafer 10 is irradiated with the electron beam 3. The substrate current detection device 8 constitutes a capacitance measuring means for measuring an electric capacitance generated between the wafer 10 and a peripheral object (such as the lens 5) arranged in the vicinity of or around the wafer 10. The waveform analysis device 9 is for sequentially inputting the output of the substrate current detection device 8 and analyzing the waveform. For example, the waveform analyzer 9 performs FFT analysis on the substrate current.
[0043] ウェハ 10に生じる基板電流は非常に小さな電流 (例えば数 pA)である。そこで、基 板電流を検出中において半導体製造装置又はウェハ 10が振動することは、測定値 の精度低下及び安定性を損なう原因になる。  [0043] The substrate current generated in the wafer 10 is a very small current (for example, several pA). Therefore, the vibration of the semiconductor manufacturing apparatus or the wafer 10 during the detection of the substrate current causes a decrease in accuracy of measurement values and a loss of stability.
[0044] ところで、本半導体製造装置において振動対策が万全かどうかは、基板電流の周 波数解析を行うことで知ることができる。シリコン力もなるウェハ 10と本半導体製造装 置とは、電気容量を形成している。電気容量とは、一般にコンデンサと呼ばれる電気 素子のことである。コンデンサとは絶縁体を 2つの金属(電極)で挟んだ構造のことを 指し、コンデンサには電荷が蓄積される性質がある。例えば、コンデンサをなす 2つの 電極における一方の電極をウェハ 10が構成し、他方の電極をレンズ 5が構成し、ゥ ェハ 10とレンズ 5との間の空間が絶縁体を構成していると考えられる。  By the way, whether or not the countermeasure for vibration is perfect in this semiconductor manufacturing apparatus can be known by performing frequency analysis of the substrate current. The wafer 10 that also has silicon power and the semiconductor manufacturing apparatus form an electric capacity. The electric capacity is an electric element generally called a capacitor. A capacitor refers to a structure in which an insulator is sandwiched between two metals (electrodes). A capacitor has the property of storing electric charge. For example, if one of the two electrodes forming the capacitor is formed by the wafer 10, the other electrode is formed by the lens 5, and the space between the wafer 10 and the lens 5 forms an insulator. Conceivable.
[0045] コンデンサに蓄積される電荷量は、コンデンサを構成する 2つの電極の距離に逆比 例して大きくなることが知られている。したがって、振動などが起きて電極の間隔が変 化するとそれに伴ってコンデンサ容量も変化する。つまり、この電気容量は振動ととも に変動するため、容量の変化を検出することで振動の様子を知ることができる。  [0045] It is known that the amount of charge accumulated in a capacitor increases in inverse proportion to the distance between two electrodes constituting the capacitor. Therefore, if the electrode spacing changes due to vibrations etc., the capacitance of the capacitor changes accordingly. In other words, since this electric capacity fluctuates with vibration, it is possible to know the state of vibration by detecting the change in capacity.
[0046] これらの電気容量は、ウェハ 10とレンズ 5との間だけでなぐウエノ、 10とトレイ 6との 間、又はウェハ 10と真空チャンバ(筐体) 1との間などいたるところに存在している。  [0046] These electric capacities exist everywhere, such as between the wafer 10 and the lens 5 alone, between the wafer 10 and the tray 6, or between the wafer 10 and the vacuum chamber (housing) 1. ing.
[0047] 電気容量の変化を知る方法としては、容量をなす電極に電圧を加えてその電極を 流れる電流量を測定する方法、又は容量構成物に予め蓄えられている電荷が容量 の変化に伴って作る電流を測定する方法などが挙げられる。電気容量の変化を知る 方法としては、その他にも、ブリッジ法などまったく電流を流さない方法もあり、どの方 法を用いても力まわない。なお、ブリッジ法とは、センサを含めて 4つのインピーダンス でブリッジを構成し、そのブリッジの平衡をとることでセンサのインピーダンスの変化を 検出するものである。 [0047] As a method of knowing the change in the electric capacity, a voltage is applied to the electrode forming the capacity, Examples include a method of measuring the amount of current flowing, or a method of measuring a current generated by a change in capacitance due to a charge previously stored in a capacitive component. There are other methods for knowing the change in capacitance, such as the bridge method, in which no current flows, and any method can be used. The bridge method is to detect changes in the impedance of the sensor by configuring the bridge with four impedances including the sensor and balancing the bridge.
[0048] 図 1に示すように、ウェハ 10は XYステージ 7上に配置されたトレイ 6の上に載せら れている。ウェハ 10とトレイ 6とは導電性ゴムなどで電気的に接続されている。トレイ 6 力 は基板電流を測定するための配線が伸びて 、る。その配線は基板電流検出装 置 8の入力端に接続されて 、る。  As shown in FIG. 1, the wafer 10 is placed on the tray 6 disposed on the XY stage 7. The wafer 10 and the tray 6 are electrically connected with conductive rubber or the like. The tray 6 force extends the wiring for measuring the substrate current. The wiring is connected to the input terminal of the substrate current detection device 8.
[0049] 基板電流検出装置 8は、入力した微小な電流 (基板電流)を増幅し、取り扱いやす い電圧信号に変換する。この電圧信号は、時間の関数として記録される。例えば、 4 OkHz又は 4MHzなどのサンプリング周期で基板電流波形信号を取り込み、デジタ ル信号に変換して記憶する。このデジタル信号は、波形解析装置 9に送られて FFT 解析される。  [0049] The substrate current detection device 8 amplifies the input minute current (substrate current) and converts it into a voltage signal that is easy to handle. This voltage signal is recorded as a function of time. For example, a substrate current waveform signal is captured at a sampling period such as 4 OkHz or 4 MHz, converted into a digital signal, and stored. This digital signal is sent to the waveform analyzer 9 for FFT analysis.
[0050] 図 2は、上記半導体製造装置の波形解析装置 9によって FFT解析した結果例を示 す波形図である。すなわち、ウェハ 10の基板電流の波形についての FFT解析の結 果例である。図 2において、横軸は周波数を示し、縦軸は信号強度 (ピーク強度)を 示している。図 2は振動対策を行う前の半導体製造装置についての解析例である。  FIG. 2 is a waveform diagram showing an example of the result of FFT analysis performed by the waveform analysis apparatus 9 of the semiconductor manufacturing apparatus. In other words, this is an example of the result of FFT analysis of the waveform of the substrate current of the wafer 10. In Fig. 2, the horizontal axis represents frequency, and the vertical axis represents signal intensity (peak intensity). Figure 2 shows an example of analysis of a semiconductor manufacturing device before taking measures against vibration.
[0051] 図 2に示すように、いくつかのピークが検出される力 それぞれのピークはウェハ 10 の振動又は半導体製造装置の振動、あるいは電源ノイズに対応している。例えば 10 OHzのピークはウェハ 10の振動に起因しており、ウェハ 10の支持方法に問題がある ことを示して 、る。 300Hzに出て 、るピークは半導体製造装置(レンズ 5又は真空チ ヤンバ 1など)の振動を表している。これらは、実験的に確認したものである。このよう な波形解析装置 9の出力についての解析は、人手で行ってもよいが、例えば波形解 析装置 9が振動検出手段としても機能することによって自動的に行ってもよい。すな わち、波形解析装置 9は、 FFT解析して出力した図 2に示すような波形に基づいてゥ ェハ 10及び半導体製造装置の少なくとも一方の振動状態を検出することとしてもよ い。 [0051] As shown in FIG. 2, the force at which several peaks are detected. Each peak corresponds to vibration of the wafer 10, vibration of the semiconductor manufacturing apparatus, or power supply noise. For example, the peak of 10 OHz is caused by the vibration of the wafer 10, indicating that there is a problem with the method of supporting the wafer 10. The peak at 300 Hz represents the vibration of the semiconductor manufacturing equipment (such as lens 5 or vacuum chamber 1). These have been confirmed experimentally. Such an analysis of the output of the waveform analysis device 9 may be performed manually, but may be performed automatically, for example, when the waveform analysis device 9 also functions as a vibration detection means. That is, the waveform analyzer 9 may detect the vibration state of at least one of the wafer 10 and the semiconductor manufacturing apparatus based on the waveform shown in FIG. 2 output by FFT analysis. Yes.
[0052] 図 3は、図 2に示すような FFT解析によって知り得た振動原因について、振動対策 を施した後における半導体製造装置の波形解析装置 9の FFT解析した結果例を示 す波形図である。すなわち、図 3は、振動対策を施した後の基板電流の解析例であ る。  [0052] Fig. 3 is a waveform diagram showing an example of the result of FFT analysis of the waveform analysis device 9 of the semiconductor manufacturing equipment after taking countermeasures against the vibration cause obtained by the FFT analysis as shown in Fig. 2. is there. In other words, Fig. 3 shows an example of analyzing the substrate current after taking measures against vibration.
[0053] 図 3は、図 2と比較すると明らかなように、振動のピークが消え去り、製造装置及び 測定装置の品質劣化の原因になる振動原因が除去されたことを示している。  FIG. 3 shows that the vibration peak disappears and the cause of the vibration causing the quality deterioration of the manufacturing apparatus and the measuring apparatus has been removed, as is clear when compared with FIG.
[0054] (第 2実施形態)  [0054] (Second Embodiment)
図 4は、本発明の第 2実施形態に係る半導体製造装置を示す説明図である。図 4に おいて図 1の半導体製造装置の構成要素と同一のものには同一符号を付けている。 本実施形態の半導体製造装置と第 1実施形態の半導体製造装置との相違点は、ス イッチ 2a及び波形記録装置 11が本半導体製造装置に設けられている点である。  FIG. 4 is an explanatory view showing a semiconductor manufacturing apparatus according to the second embodiment of the present invention. In FIG. 4, the same components as those of the semiconductor manufacturing apparatus of FIG. The difference between the semiconductor manufacturing apparatus of the present embodiment and the semiconductor manufacturing apparatus of the first embodiment is that the switch 2a and the waveform recording apparatus 11 are provided in the semiconductor manufacturing apparatus.
[0055] スィッチ 2aは、電子ビーム源 2の動作を ONZOFFするスィッチである。スィッチ 2a が ONのとき電子ビーム源 2は動作して電子ビーム 3を放射し、スィッチ 2aが ONのと き電子ビーム源 2は動作を停止して電子ビーム 3を放射しない。なお、スィッチ 2aとし ては、電子ビーム 3の伝播路上に配置したシャツタ等で構成してもよい。この場合は、 電子ビーム源 2を電子ビーム放射動作の状態としながら、ウェハ 10に電子ビーム 3が 照射されることを ONZOFFすることができる。  The switch 2 a is a switch for turning on and off the operation of the electron beam source 2. When switch 2a is ON, electron beam source 2 operates and emits electron beam 3, and when switch 2a is ON, electron beam source 2 stops operating and does not emit electron beam 3. The switch 2a may be constituted by a shirter or the like disposed on the propagation path of the electron beam 3. In this case, the irradiation of the electron beam 3 onto the wafer 10 can be turned on and off while the electron beam source 2 is in an electron beam radiation operation state.
[0056] 波形記録装置 11は、基板電流検出装置 8の出力である基板電流の波形を記録す るものである。波形記録装置 11で記録された波形は、波形解析装置 9で解析され振 動分析される。  The waveform recording device 11 records the waveform of the substrate current that is the output of the substrate current detection device 8. The waveform recorded by the waveform recorder 11 is analyzed by the waveform analyzer 9 and subjected to vibration analysis.
[0057] 半導体製造装置が起因の振動成分は電子ビーム 3を照射しているときとそうでない ときで、変化する場合がある。したがって、電子ビーム 3の照射時と非照射時のデータ (例えば波形記憶装置 11に記憶されたデータ)を比較することで、より詳細な振動を 知ることができる。例えば、電子ビーム照射時にノイズが観察され、そうで無い場合は 観察されない場合には、電子ビーム源 3そのものが振動していることが分かる。このよ うな振動状態又は振動要因を検出する振動検出手段としての機能は波形解析装置 9が持つこととしてもよい。 [0058] (第 3実施形態) [0057] The vibration component caused by the semiconductor manufacturing apparatus may vary between when the electron beam 3 is irradiated and when it is not. Therefore, by comparing the data at the time of irradiation with the electron beam 3 and the data at the time of non-irradiation (for example, data stored in the waveform storage device 11), more detailed vibration can be known. For example, noise is observed during electron beam irradiation, and if not, it can be seen that the electron beam source 3 itself is vibrating. The waveform analysis device 9 may have a function as a vibration detection means for detecting such a vibration state or a vibration factor. [0058] (Third embodiment)
図 5は、本発明の第 3実施形態に係る半導体製造装置を示す説明図である。図 5に おいて図 1の半導体製造装置の構成要素と同一のものには同一符号を付けている。 本実施形態の半導体製造装置は、 SEM (Scanning Electron Microscope:走查形電 子顕微鏡)のような二次電子画像を取得する装置に本発明を適用したものである。 S EMは、数 nm程度に細く絞った電子ビーム 3を測定対象(ウェハ 10)の表面に走査 させ、これで生じる二次電子を二次電子検出器 12及び二次電子検出装置 13で取得 することで、測定対象の表面の凹凸状態示す画像を生成する装置である。また、波 形解析装置 14は、二次電子検出装置 13の出力の時間経過に対する変化状態を解 祈して、ウェハ 10又は本半導体製造装置の振動状態を解析するものである。  FIG. 5 is an explanatory view showing a semiconductor manufacturing apparatus according to the third embodiment of the present invention. In FIG. 5, the same components as those of the semiconductor manufacturing apparatus of FIG. The semiconductor manufacturing apparatus of the present embodiment is an application of the present invention to an apparatus for acquiring a secondary electron image, such as a scanning electron microscope (SEM). The SEM scans the surface of the object to be measured (wafer 10) with the electron beam 3 narrowed down to a few nanometers, and the secondary electrons generated thereby are acquired by the secondary electron detector 12 and the secondary electron detector 13. This is an apparatus that generates an image showing the uneven state of the surface of the measurement target. The waveform analyzer 14 analyzes the vibration state of the wafer 10 or the semiconductor manufacturing apparatus by praying for the change state of the output of the secondary electron detector 13 over time.
[0059] SEMなどにおいても振動が起こると画像がぼけたり歪んだりして、性能の劣化が起 こる。例えばウェハ 10が振動するとレンズ 5からウェハ 10までの距離が変化するため フォーカスのぼけなどが発生し、ウェハ 10で発生する二次電子の量はその変調を受 ける。したがって、ウェハ 10及び半導体製造装置の振動を除去することはその装置 性能を最大限に引き出すために非常に重要である。  [0059] When vibration occurs in an SEM or the like, the image is blurred or distorted, resulting in performance degradation. For example, when the wafer 10 vibrates, the distance from the lens 5 to the wafer 10 changes, so that a focus blur occurs, and the amount of secondary electrons generated in the wafer 10 is modulated. Therefore, eliminating the vibrations of the wafer 10 and the semiconductor manufacturing equipment is very important for maximizing the performance of the equipment.
[0060] 本実施形態では、次のようにして装置の振動を測定する。まず、半導体製造装置 内に、製造工程が施されていない表面領域を有するウェハ 10をセットする。すなわち 、 XYステージ 7の上にトレィ 6を介してウェハ 10を配置する。そして、ウェハ 10上に 電子ビーム 3を走査させる、又はウェハ 10の特定の場所に電子ビーム 3を照射させる 。このときに発生する二次電子をシンチレータなど力 なる二次電子検出器 12で検 出して電気信号に変換する。この電気信号を記憶装置に記憶し、さらに波形解析装 置 14において FFT解析を行い、周波数スペクトラムを得る。これら周波数スぺクトラ ム力 振動源を特定し、半導体製造装置の調整及び改良を行う。  In the present embodiment, the vibration of the apparatus is measured as follows. First, a wafer 10 having a surface region that has not been subjected to a manufacturing process is set in a semiconductor manufacturing apparatus. That is, the wafer 10 is arranged on the XY stage 7 through the tray 6. Then, the electron beam 3 is scanned on the wafer 10 or a specific place on the wafer 10 is irradiated with the electron beam 3. Secondary electrons generated at this time are detected by a powerful secondary electron detector 12 such as a scintillator and converted into an electrical signal. This electrical signal is stored in a storage device, and further subjected to FFT analysis in the waveform analysis device 14 to obtain a frequency spectrum. These frequency spectrum force vibration sources are identified and semiconductor manufacturing equipment is adjusted and improved.
[0061] (第 4実施形態)  [0061] (Fourth embodiment)
図 6は、本発明の第 4実施形態に係る半導体製造装置を示す説明図である。図 6に おいて図 1又は図 5の半導体製造装置の構成要素と同一のものには同一符号を付 けている。本実施形態の半導体製造装置は、図 1に示す第 1実施形態の半導体製造 装置と図 5に示す第 3実施形態の半導体製造装置とを組み合わせたものである。 [0062] すなわち、本実施形態では、二次電子検出器 12から得られる信号と基板電流検出 装置 8から得られる信号との両方 (以下、単に「両者」という。)を用いて振動解析を行 う例を示している。場合によっては、両者が同じ周波数にピークを持つこともある。ま た、そうでない場合もある。本半導体製造装置は、それらの性質を利用して振動の原 因を追究する。微小な振動を検出する場合、周辺の電気的なノイズと区別するため に、両者の信号の差分を解析することが有利な場合がある。電気的なノイズは両者に 共通に含まれていることが多いので、差分を用いることでより高精度に振動成分を測 定することができる。 FIG. 6 is an explanatory view showing a semiconductor manufacturing apparatus according to the fourth embodiment of the present invention. In FIG. 6, the same components as those of the semiconductor manufacturing apparatus in FIG. 1 or 5 are denoted by the same reference numerals. The semiconductor manufacturing apparatus of this embodiment is a combination of the semiconductor manufacturing apparatus of the first embodiment shown in FIG. 1 and the semiconductor manufacturing apparatus of the third embodiment shown in FIG. That is, in this embodiment, vibration analysis is performed using both a signal obtained from the secondary electron detector 12 and a signal obtained from the substrate current detection device 8 (hereinafter simply referred to as “both”). An example is shown. In some cases, both may have a peak at the same frequency. It may not be the case. This semiconductor manufacturing equipment uses these properties to investigate the cause of vibration. When detecting minute vibrations, it may be advantageous to analyze the difference between the two signals to distinguish them from the surrounding electrical noise. Since electrical noise is often included in both, the vibration component can be measured with higher accuracy by using the difference.
[0063] (第 5実施形態)  [0063] (Fifth embodiment)
図 7は、本発明の第 5実施形態に係る半導体製造装置を示す説明図である。本実 施形態の半導体製造装置は、光学装置 (例えば露光装置のような製造装置)に本発 明を適用した例である。  FIG. 7 is an explanatory view showing a semiconductor manufacturing apparatus according to the fifth embodiment of the present invention. The semiconductor manufacturing apparatus of the present embodiment is an example in which the present invention is applied to an optical apparatus (for example, a manufacturing apparatus such as an exposure apparatus).
[0064] 本半導体製造装置 (露光装置)は、筐体 21と、光源 22と、光学系 24と、レンズ 25と 、トレイ 26と、 XYステージ 27と、基板電流検出装置 28と、波形解析装置 29とを有し て構成されている。光源 22は、ウェハ 10に対して露光するために用いられる光 23を 出射するものである。光学系 24及びレンズ 25は、光 23について収束等させてウェハ 10の表面上に焦点がくるようにするものである。したがって、光源 22、光学系 24及び レンズ 25は、所望パターンをウェハ 10に転写するための露光処理に用いられる光 2 3をウェハ 10に照射する照射手段をなしている。トレイ 26、 XYステージ 27、基板電 流検出装置 28、波形解析装置 29は、それぞれ図 1のトレイ 6、 XYステージ 7、基板 電流検出装置 8、波形解析装置 9に相当するものである。  [0064] The semiconductor manufacturing apparatus (exposure apparatus) includes a housing 21, a light source 22, an optical system 24, a lens 25, a tray 26, an XY stage 27, a substrate current detection device 28, and a waveform analysis device. 29. The light source 22 emits light 23 used for exposing the wafer 10. The optical system 24 and the lens 25 converge the light 23 so that the light is focused on the surface of the wafer 10. Therefore, the light source 22, the optical system 24, and the lens 25 constitute an irradiating unit that irradiates the wafer 10 with the light 23 used for the exposure process for transferring the desired pattern onto the wafer 10. The tray 26, the XY stage 27, the substrate current detection device 28, and the waveform analysis device 29 correspond to the tray 6, the XY stage 7, the substrate current detection device 8, and the waveform analysis device 9 of FIG.
[0065] 露光装置は、非常に高精度な位置決めを必要とする装置である。そのために、厳 密な温度制御及び高度に精密な XYステージ 27が利用されている。しかし、ウェハ 1 0自身又は XYステージ 27あるいは筐体 21は、いつも外部力もの振動にさらされてお り、その振動が露光精度の劣化の原因となっている。  The exposure apparatus is an apparatus that requires very high precision positioning. For this purpose, strict temperature control and highly precise XY stage 27 are used. However, the wafer 10 itself, the XY stage 27, or the housing 21 is always exposed to vibrations caused by external forces, which causes deterioration of exposure accuracy.
[0066] また、露光装置は、全体的に金属で出来ているので、露光装置に置かれたウェハ 1 0と露光装置との間には電気容量が生じる。例えば、ウェハ 10又は露光装置が振動 すると、ウェハ 10には容量変化に伴う電流が誘起される。この電流を基板電流検出 装置 28で測定し、その測定値の波形にっ ヽて波形解析装置 29で解析することで、 ウェハ 10の振動原因及び露光装置の振動原因を知ることができる。そして、検出し た振動原因について防振対策を施すことで、高性能な露光装置を構成することがで きる。 In addition, since the exposure apparatus is entirely made of metal, an electric capacity is generated between the wafer 10 placed in the exposure apparatus and the exposure apparatus. For example, when the wafer 10 or the exposure apparatus vibrates, a current accompanying a capacitance change is induced in the wafer 10. This current is detected by the substrate current By measuring with the apparatus 28 and analyzing the waveform of the measured value with the waveform analyzing apparatus 29, the cause of vibration of the wafer 10 and the cause of vibration of the exposure apparatus can be known. A high-performance exposure apparatus can be configured by taking anti-vibration measures for the detected cause of vibration.
[0067] (第 6実施形態)  [0067] (Sixth embodiment)
図 8は、本発明の第 6実施形態に係る半導体製造装置を示す説明図である。図 8に おいて図 7の半導体製造装置の構成要素と同一のものには同一符号を付けている。 本実施形態の半導体製造装置は、図 7の半導体製造装置及びその他の上記各実 施形態の半導体製造装置に、警報システムを追加した例である。  FIG. 8 is an explanatory view showing a semiconductor manufacturing apparatus according to the sixth embodiment of the present invention. In FIG. 8, the same components as those of the semiconductor manufacturing apparatus of FIG. The semiconductor manufacturing apparatus of this embodiment is an example in which an alarm system is added to the semiconductor manufacturing apparatus of FIG. 7 and the semiconductor manufacturing apparatuses of the other embodiments described above.
[0068] 製造装置及び評価装置は、設置環境の変化などにより規定以上の振動を受けたと き、所望の性能が発揮出来ない状態になる場合がある。製造又は測定時に振動が 起こっていた力否かが不明であると、その装置で処理されたウェハ 10は正しいプロセ ス処理を受けられない、又は測定値が正しくないという不都合が生じる。そこで、本実 施形態の半導体製造装置では、上記の各実施形態で示した手法又は構成によって 得られる振動信号を用いて、装置管理を行う。  [0068] The manufacturing apparatus and the evaluation apparatus may be in a state where desired performance cannot be exhibited when subjected to vibrations exceeding a specified level due to a change in installation environment or the like. If it is unclear whether or not the force is causing vibration during manufacturing or measurement, the wafer 10 processed by the apparatus cannot be properly processed or the measurement value is not correct. Therefore, in the semiconductor manufacturing apparatus of the present embodiment, the apparatus is managed using the vibration signal obtained by the method or configuration shown in each of the above embodiments.
[0069] 例えば、基板電流検出装置 28は、製造時又は測定時の振動データをリアルタイム で検出する。波形解析装置 29は、基板電流検出装置 28で検出された振動波形に ついてリアルタイムに FFT解析等の振動解析し、ある周波数について生じた振動の ピークの抽出を行う。管理装置 30は、周波数ごとに決められている管理値 (基準値) と実際の測定で得られた振動の強度とを比較する。そして、管理装置 30は、上記ピ ークが管理値を超えた場合は、表示装置 31に警告表示をさせる。  [0069] For example, the substrate current detection device 28 detects vibration data at the time of manufacture or measurement in real time. The waveform analysis device 29 performs vibration analysis such as FFT analysis on the vibration waveform detected by the substrate current detection device 28 in real time, and extracts a vibration peak generated at a certain frequency. The management device 30 compares the management value (reference value) determined for each frequency with the vibration intensity obtained in the actual measurement. Then, the management device 30 displays a warning on the display device 31 when the peak exceeds the management value.
[0070] また、管理装置 30は、上記ピークが管理値を超えた場合は、半導体製造装置の製 造動作又は測定動作を停止させる機能を有してもよい。また、管理装置 30は、上記 ピークが管理値を超えた場合は、半導体製造装置の製造動作又は測定動作を停止 させずに、振動が多いときに製造又は測定されたデバイスである旨を示す情報をホス トコンピュータに発信して管理情報として蓄積させる機能を有してもよい。図 8では、 光学システムを用いた半導体製造装置の例を示して 、るが、電子顕微鏡等の電子ビ ームを用いた装置、又はエッチング装置、 CVD装置など半導体について加工処理 する装置など、どのような装置であっても本実施形態と同様なシステムを構成すること ができる。 In addition, the management device 30 may have a function of stopping the manufacturing operation or the measurement operation of the semiconductor manufacturing apparatus when the peak exceeds the management value. In addition, when the peak exceeds the control value, the management apparatus 30 does not stop the manufacturing operation or measurement operation of the semiconductor manufacturing apparatus, and indicates that the device is manufactured or measured when there is a lot of vibration. May be transmitted to the host computer and stored as management information. FIG. 8 shows an example of a semiconductor manufacturing apparatus using an optical system. However, an apparatus using an electron beam such as an electron microscope, or a semiconductor such as an etching apparatus or a CVD apparatus is processed. A system similar to that of the present embodiment can be configured by any device such as a device to be used.
[0071] また、振動の大きさは、 XYステージ 27上の位置の関数であることもある。例えば、 X Yステージ 27上のある位置にウェハ 10を持っていくと振動が大きく観測され、他のあ る位置にウェハ 10を持っていくと振動が小さくなるといった現象が起こる。本半導体 製造装置は、このようにして観測される振動信号の位置依存性を測定することによつ て、振動源を特定することもできる。例えば、波形解析装置 29又は管理装置 30が位 置依存性検出手段としての機能を有して、 XYステージ 27などにおける振動源を特 定する。  [0071] The magnitude of the vibration may be a function of the position on the XY stage 27. For example, when the wafer 10 is brought to a certain position on the XY stage 27, a large vibration is observed, and when the wafer 10 is brought to another certain position, the vibration becomes small. This semiconductor manufacturing apparatus can also specify the vibration source by measuring the position dependency of the vibration signal observed in this way. For example, the waveform analysis device 29 or the management device 30 has a function as a position dependency detection means, and specifies a vibration source in the XY stage 27 or the like.
[0072] また、振動の大きさは、 XYステージ 27のある動きに関して時間依存性をもつことが ある。例えば、 XYステージ 27の移動に伴ってウェハ 27が振動して、その移動が停 止して力もある時間後にウェハ 27の振動がおさまることなどについて検出する。そし て、例えば移動停止時力 振動がおさまった時までの時間がある基準時間よりも長い 場合は、加工又は計測に影響を及ぼす振動が生じたと判断することもできる。そのよ うな現象にっ ヽては、波形解析装置 29における FFT解析波形の時間依存性を測定 することで、振動源の特定を行うことができる。管理装置 30は、上記のような位置依 存性又は時間依存性に対して予め管理値を定めておき、位置依存性又は時間依存 性についての検出値が管理値を超えた場合は装置の異常を表示したり、装置動作 の自動停止などを行うこともできる。  [0072] In addition, the magnitude of the vibration may have a time dependency with respect to a certain movement of the XY stage 27. For example, it is detected that the wafer 27 vibrates with the movement of the XY stage 27 and that the movement stops and the vibration of the wafer 27 stops after a certain amount of time. And, for example, when the time until the force vibration at the time of movement stop is longer than a certain reference time, it can be determined that the vibration affecting the machining or measurement has occurred. For such a phenomenon, the vibration source can be identified by measuring the time dependence of the FFT analysis waveform in the waveform analyzer 29. The management device 30 sets a management value in advance for the position dependency or time dependency as described above, and if the detected value for the position dependency or time dependency exceeds the control value, the device malfunctions. Can be displayed, and the operation of the equipment can be automatically stopped.
[0073] (第 7実施形態)  [0073] (Seventh embodiment)
図 9は、本発明の第 7実施形態に係る半導体製造装置を示す説明図である。図 9に おいて図 1の半導体製造装置の構成要素と同一のものには同一符号を付けている。 本実施形態の半導体製造装置は、図 1の半導体製造装置に振動センサ 41及び信 号増幅装置 42を組み合わせて、基板電流の波形と振動センサ 41の出力波形とを波 形解析するものである。  FIG. 9 is an explanatory view showing a semiconductor manufacturing apparatus according to the seventh embodiment of the present invention. In FIG. 9, the same components as those of the semiconductor manufacturing apparatus of FIG. The semiconductor manufacturing apparatus of the present embodiment combines the vibration sensor 41 and the signal amplifying apparatus 42 with the semiconductor manufacturing apparatus of FIG. 1, and performs waveform analysis on the waveform of the substrate current and the output waveform of the vibration sensor 41.
[0074] 振動センサ 41は、例えば加速度センサを適用でき、真空チャンバ 1の外側に直接 取り付けられている。信号増幅装置 42は、振動センサ 41の出力信号を増幅して波形 解析装置 9に出力する。例えば、半導体製造装置の外部では常時何らかの振動が 生じている。その外部で生じている振動と、装置内部で生じている振動とを比較する ことで、振動源を特定することが容易になる。振動センサ 41は装置外部で生じている 振動を主に検出でき、基板電流検出装置 8は装置内部で生じている振動を主に検出 できる。そこで、波形解析装置 9は、振動センサ 41からの信号と基板電流との相関を とり、その相関についての波形を解析することで、振動源をより高精度に特定すること ができる。 As the vibration sensor 41, for example, an acceleration sensor can be applied, and it is directly attached to the outside of the vacuum chamber 1. The signal amplifying device 42 amplifies the output signal of the vibration sensor 41 and outputs it to the waveform analyzing device 9. For example, there is always some vibration outside the semiconductor manufacturing equipment. Has occurred. By comparing the vibration generated outside and the vibration generated inside the apparatus, it becomes easy to specify the vibration source. The vibration sensor 41 can mainly detect vibration generated outside the apparatus, and the substrate current detection apparatus 8 can mainly detect vibration generated inside the apparatus. Therefore, the waveform analyzer 9 can identify the vibration source with higher accuracy by correlating the signal from the vibration sensor 41 with the substrate current and analyzing the waveform of the correlation.
[0075] 以上、本発明の実施の形態について説明した力 本発明の半導体製造装置は、上 述の実施形態に限定されるものではなぐ本発明の要旨を逸脱しない範囲内におい て種々変更を加え得ることは勿論である。  [0075] The power described in the embodiments of the present invention has been described above. The semiconductor manufacturing apparatus of the present invention is not limited to the above-described embodiments, and various modifications are made without departing from the scope of the present invention. Of course you get.
例えば、上記実施形態では、電子ビーム又は光を用いる半導体製造装置について 説明したが、本発明はこれに限定されるものではなぐイオンビーム、又は各種の電 磁波を用いた半導体製造装置に本発明を適用することもできる。  For example, in the above embodiment, a semiconductor manufacturing apparatus using an electron beam or light has been described. However, the present invention is not limited to this, and the present invention is applied to a semiconductor manufacturing apparatus using an ion beam or various electromagnetic waves. It can also be applied.
産業上の利用可能性  Industrial applicability
[0076] 本発明は、半導体デバイスの製造、検査、測定又は評価などに用いられる半導体 製造装置に有用である。例えば、半導体ウェハなどの半導体基板に電子ビーム、光 、電磁波又はイオンビームなどを照射する手法を用いる半導体製造装置に、本発明 を適用することができる。 The present invention is useful for a semiconductor manufacturing apparatus used for manufacturing, inspecting, measuring, or evaluating a semiconductor device. For example, the present invention can be applied to a semiconductor manufacturing apparatus that uses a method of irradiating a semiconductor substrate such as a semiconductor wafer with an electron beam, light, electromagnetic wave, or ion beam.

Claims

請求の範囲 The scope of the claims
[1] 半導体ウェハ自体と半導体ウェハを加工してなるものとのいずれかである半導体基 板について、加工又は計測する半導体製造装置であって、  [1] A semiconductor manufacturing apparatus for processing or measuring a semiconductor substrate that is either a semiconductor wafer itself or a semiconductor wafer processed,
前記半導体基板と該半導体基板の近傍又は周辺に配置されている周辺物との間 に生じる電気容量を測定する容量測定手段を有することを特徴とする半導体製造装 置。  A semiconductor manufacturing apparatus comprising a capacity measuring means for measuring an electric capacity generated between the semiconductor substrate and a peripheral object arranged in the vicinity of or around the semiconductor substrate.
[2] 少なくとも前記半導体基板を収納するものであって電子ビームの放出が可能なよう に雰囲気制御されたチャンバと、  [2] a chamber containing at least the semiconductor substrate and controlled in atmosphere so that an electron beam can be emitted;
前記半導体基板に向けて電子ビームを放出する電子ビーム源とを有し、 前記容量測定手段は、前記チャンバ内に配置された前記半導体基板と前記周辺 物との間に生じる電気容量を測定するものであることを特徴とする請求項 1に記載の 半導体製造装置。  An electron beam source that emits an electron beam toward the semiconductor substrate, and the capacitance measuring unit measures an electric capacitance generated between the semiconductor substrate disposed in the chamber and the peripheral object. The semiconductor manufacturing apparatus according to claim 1, wherein:
[3] 前記容量測定手段は、測定値を逐次出力するものであり、  [3] The capacity measuring means sequentially outputs measurement values,
前記容量測定手段の出力の時間経過に対する変化状態を解析する波形解析手段 を有することを特徴とする請求項 1に記載の半導体製造装置。  2. The semiconductor manufacturing apparatus according to claim 1, further comprising a waveform analyzing unit that analyzes a change state of the output of the capacitance measuring unit with respect to time.
[4] 前記波形解析手段の出力に基づいて、前記半導体基板及び前記半導体製造装 置の少なくとも一方の振動状態を検出する振動検出手段を有することを特徴とする 請求項 3に記載の半導体製造装置。  4. The semiconductor manufacturing apparatus according to claim 3, further comprising vibration detecting means for detecting a vibration state of at least one of the semiconductor substrate and the semiconductor manufacturing apparatus based on an output of the waveform analyzing means. .
[5] 前記半導体基板に前記電子ビームが照射されている時の前期容量測定手段の出 力と、前記半導体基板に前記電子ビームが照射されていない時の前期容量測定手 段の出力とに基づいて、前記半導体基板及び前記半導体製造装置の少なくとも一 方の振動状態を検出する振動検出手段を有することを特徴とする請求項 2に記載の 半導体製造装置。  [5] Based on the output of the previous capacity measurement means when the semiconductor substrate is irradiated with the electron beam and the output of the previous capacity measurement means when the semiconductor substrate is not irradiated with the electron beam. 3. The semiconductor manufacturing apparatus according to claim 2, further comprising vibration detecting means for detecting a vibration state of at least one of the semiconductor substrate and the semiconductor manufacturing apparatus.
[6] 前記振動検出手段は、前記半導体基板に前記電子ビームが照射されている時の 前期容量測定手段の出力に基づいて前記振動状態を検出したときは振動があると 判断し、前記半導体基板に前記電子ビームが照射されて!、な!、時の前期容量測定 手段の出力に基づ!/、て前記振動状態を検出したときは振動がな 、と判断した場合、 電子ビーム源そのものが振動していると判断するものであることを特徴とする請求項 5 に記載の半導体製造装置。 [6] The vibration detection means determines that there is vibration when the vibration state is detected based on the output of the previous capacity measurement means when the electron beam is applied to the semiconductor substrate, and the semiconductor substrate When the vibration state is detected, it is determined that there is no vibration based on the output of the previous volume measurement means. 6. The apparatus according to claim 5, wherein it is determined that the object is vibrating. The semiconductor manufacturing apparatus described in 1.
[7] 前記容量測定手段は、前記半導体基板に生じる電流に基づいて前記電気容量を 測定するものであることを特徴とする請求項 1に記載の半導体製造装置。 7. The semiconductor manufacturing apparatus according to claim 1, wherein the capacitance measuring means measures the capacitance based on a current generated in the semiconductor substrate.
[8] 前記容量測定手段は、前記半導体基板に電子ビーム、イオンビーム、光、電磁波 のいずれかが照射されたことによって該半導体基板に生じる電流に基づいて前記電 気容量を測定するものであることを特徴とする請求項 1に記載の半導体製造装置。 [8] The capacitance measuring unit measures the capacitance based on a current generated in the semiconductor substrate when the semiconductor substrate is irradiated with any one of an electron beam, an ion beam, light, and an electromagnetic wave. The semiconductor manufacturing apparatus according to claim 1, wherein:
[9] 前記容量測定手段は、前記半導体基板に電子ビームを照射した時に生じる二次 電子を検出する二次電子検出手段と、前記二次電子検出手段の出力の時間経過に 対する変化状態を解析する波形解析手段とを有してなることを特徴とする請求項 1に 記載の半導体製造装置。 [9] The capacitance measuring unit analyzes a secondary electron detecting unit that detects secondary electrons generated when the semiconductor substrate is irradiated with an electron beam, and analyzes a change state of the output of the secondary electron detecting unit with time. The semiconductor manufacturing apparatus according to claim 1, further comprising: a waveform analysis unit that performs the following.
[10] 前記容量測定手段は、  [10] The capacity measuring means includes:
前記半導体基板に生じる電流を検出する基板電流検出手段と、  Substrate current detection means for detecting current generated in the semiconductor substrate;
前記半導体基板に電子ビームを照射した時に生じる二次電子を検出する二次電 子検出手段と、  Secondary electron detection means for detecting secondary electrons generated when the semiconductor substrate is irradiated with an electron beam;
前記基板電流検出手段の出力及び前記二次電子検出手段の出力の時間経過に 対する変化状態を解析する波形解析手段とを有してなることを特徴とする請求項 1に 記載の半導体製造装置。  2. The semiconductor manufacturing apparatus according to claim 1, further comprising: a waveform analysis unit that analyzes a change state of the output of the substrate current detection unit and the output of the secondary electron detection unit over time.
[11] 前記波形解析手段は、前記基板電流検出手段の出力と前記二次電子検出手段の 出力との差分について解析する差分解析手段を有することを特徴とする請求項 10に 記載の半導体製造装置。  11. The semiconductor manufacturing apparatus according to claim 10, wherein the waveform analysis means includes difference analysis means for analyzing a difference between an output of the substrate current detection means and an output of the secondary electron detection means. .
[12] 所望パターンを前記半導体基板に転写するための露光処理に用いられる光又は 電磁波を該半導体基板に照射する照射手段を有し、  [12] having irradiation means for irradiating the semiconductor substrate with light or electromagnetic waves used in an exposure process for transferring a desired pattern to the semiconductor substrate;
前記容量測定手段は、前記露光処理を行うために前記照射手段の近傍又は周辺 に配置された前記半導体基板に生じる電流に基づいて前記電気容量を測定するも のであることを特徴とする請求項 1に記載の半導体製造装置。  2. The capacitance measuring unit is configured to measure the capacitance based on a current generated in the semiconductor substrate disposed in the vicinity of or around the irradiation unit in order to perform the exposure process. The semiconductor manufacturing apparatus described in 1.
[13] 前記波形解析手段の出力値と所定の基準値とを比較することにより、半導体基板 及び前記半導体製造装置の少なくとも一方の振動状態が所定値よりも大きいか否か 判断する判断手段と、 前記判断手段によって振動状態が所定値よりも大きいと判断されたときに、少なくと も警告を示す情報を表示手段に表示させる管理手段とを有することを特徴とする請 求項 3に記載の半導体製造装置。 [13] Judgment means for judging whether or not the vibration state of at least one of the semiconductor substrate and the semiconductor manufacturing apparatus is larger than a predetermined value by comparing the output value of the waveform analysis means with a predetermined reference value; 4. The semiconductor according to claim 3, further comprising a management unit that causes the display unit to display information indicating at least a warning when the determination unit determines that the vibration state is greater than a predetermined value. Manufacturing equipment.
[14] 前記波形解析手段の出力値と所定の基準値とを比較することにより、半導体基板 及び前記半導体製造装置の少なくとも一方の振動状態が所定値よりも大きいか否か 判断する判断手段と、 [14] A judgment means for judging whether or not a vibration state of at least one of the semiconductor substrate and the semiconductor manufacturing apparatus is larger than a predetermined value by comparing an output value of the waveform analysis means with a predetermined reference value;
前記判断手段によって振動状態が所定値よりも大きいと判断されたときに、少なくと も前記加工又は計測について前記半導体製造装置の動作を停止させる管理手段と を有することを特徴とする請求項 3に記載の半導体製造装置。  The management means for stopping the operation of the semiconductor manufacturing apparatus for the processing or measurement at least when the judgment means judges that the vibration state is larger than a predetermined value. The semiconductor manufacturing apparatus as described.
[15] 前記波形解析手段の出力値と所定の基準値とを比較することにより、半導体基板 及び前記半導体製造装置の少なくとも一方の振動状態が所定値よりも大きいか否か 判断する判断手段と、 [15] A judgment means for judging whether or not the vibration state of at least one of the semiconductor substrate and the semiconductor manufacturing apparatus is larger than a predetermined value by comparing the output value of the waveform analysis means with a predetermined reference value;
前記判断手段によって振動状態が所定値よりも大きいと判断されたときに前記半導 体製造装置によって加工又は計測された前記半導体基板に係るデバイスであること を示す情報を、少なくとも記憶手段に記憶させる振動経歴作成手段とを有することを 特徴とする請求項 3に記載の半導体製造装置。  When the determination unit determines that the vibration state is larger than a predetermined value, at least storage unit stores information indicating that the device is a device related to the semiconductor substrate processed or measured by the semiconductor manufacturing apparatus. 4. The semiconductor manufacturing apparatus according to claim 3, further comprising vibration history creating means.
[16] 前記半導体基板が載置されるステージと、 [16] a stage on which the semiconductor substrate is placed;
前記ステージにおける異なる複数の位置に前記半導体基板を載置したときのそれ ぞれについて、前記容量測定手段が測定した電気容量に基づいて、前記ステージ の各位置の振動状態について検出する位置依存性検出手段とを有することを特徴と する請求項 1に記載の半導体製造装置。  Position dependency detection for detecting the vibration state at each position of the stage based on the capacitance measured by the capacitance measuring means for each of the semiconductor substrates placed at different positions on the stage. The semiconductor manufacturing apparatus according to claim 1, further comprising: means.
[17] 前記半導体基板が載置ものであって移動可能であるステージと、 [17] a stage on which the semiconductor substrate is mounted and movable;
前記ステージの移動動作と、前記容量測定手段の測定値の時間変化との対応関 係に基づいて、前記加工又は計測に影響を及ぼす振動が生じた力否か判断する時 間依存性検出手段とを有することを特徴とする請求項 1に記載の半導体製造装置。  A time dependency detecting means for determining whether or not a force has generated a vibration affecting the processing or measurement based on a correspondence relationship between the moving operation of the stage and a time change of the measurement value of the capacity measuring means; The semiconductor manufacturing apparatus according to claim 1, comprising:
[18] 前記半導体製造装置の構成部材における前記半導体基板に直接接触している構 成部材以外の構成部材の振動を検出する振動センサと、 [18] a vibration sensor for detecting vibration of a component other than the component in direct contact with the semiconductor substrate in the component of the semiconductor manufacturing apparatus;
前記容量測定手段の出力と前記振動センサの出力とに基づいて、前記半導体基 板の加工又は計測に影響を与える振動と該振動の発生源とについて解析する解析 手段とを有することを特徴とする請求項 1に記載の半導体製造装置。 Based on the output of the capacitance measuring means and the output of the vibration sensor, the semiconductor substrate 2. The semiconductor manufacturing apparatus according to claim 1, further comprising analysis means for analyzing a vibration that affects processing or measurement of the plate and a generation source of the vibration.
PCT/JP2005/009944 2005-05-31 2005-05-31 Semiconductor manufacturing apparatus WO2006129348A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/009944 WO2006129348A1 (en) 2005-05-31 2005-05-31 Semiconductor manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/009944 WO2006129348A1 (en) 2005-05-31 2005-05-31 Semiconductor manufacturing apparatus

Publications (1)

Publication Number Publication Date
WO2006129348A1 true WO2006129348A1 (en) 2006-12-07

Family

ID=37481285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009944 WO2006129348A1 (en) 2005-05-31 2005-05-31 Semiconductor manufacturing apparatus

Country Status (1)

Country Link
WO (1) WO2006129348A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05160004A (en) * 1991-12-04 1993-06-25 Canon Inc X-ray exposing mask structure and x-ray exposing device using same
JP2001296926A (en) * 2000-04-14 2001-10-26 Canon Inc Positioning device
JP2002176005A (en) * 2000-12-05 2002-06-21 Ulvac Japan Ltd Method and apparatus for implanting ion
JP2002222850A (en) * 2001-01-25 2002-08-09 Mitsubishi Electric Corp Method for detaching attracted object in electrostatic chuck
JP2003068601A (en) * 2001-08-23 2003-03-07 Nikon Corp Exposure method and aligner
JP2004258379A (en) * 2003-02-26 2004-09-16 Sony Corp Electron beam focus controlling apparatus, posture controlling apparatus for electron beam irradiation head, method for controlling electron beam focus, and method for controlling posture of electron beam irradiation head

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05160004A (en) * 1991-12-04 1993-06-25 Canon Inc X-ray exposing mask structure and x-ray exposing device using same
JP2001296926A (en) * 2000-04-14 2001-10-26 Canon Inc Positioning device
JP2002176005A (en) * 2000-12-05 2002-06-21 Ulvac Japan Ltd Method and apparatus for implanting ion
JP2002222850A (en) * 2001-01-25 2002-08-09 Mitsubishi Electric Corp Method for detaching attracted object in electrostatic chuck
JP2003068601A (en) * 2001-08-23 2003-03-07 Nikon Corp Exposure method and aligner
JP2004258379A (en) * 2003-02-26 2004-09-16 Sony Corp Electron beam focus controlling apparatus, posture controlling apparatus for electron beam irradiation head, method for controlling electron beam focus, and method for controlling posture of electron beam irradiation head

Similar Documents

Publication Publication Date Title
JP6288951B2 (en) Inspection system using scanning electron microscope
JP3732738B2 (en) Semiconductor device inspection equipment
JP4828162B2 (en) Electron microscope application apparatus and sample inspection method
US8334519B2 (en) Multi-part specimen holder with conductive patterns
US9875879B2 (en) Charged particle microscope with vibration detection / correction
JP2006105960A (en) Sample inspection method and device
US5814733A (en) Method of characterizing dynamics of a workpiece handling system
US8981293B2 (en) System for inspecting flat panel display using scanning electron microscope
JP5276921B2 (en) Inspection device
JP2014521932A (en) Electrical inspection of electronic equipment using electron beam induction plasma probe
JP4783801B2 (en) Semiconductor inspection system and apparatus using non-vibrating contact potential difference sensor and controlled irradiation
JPH11265676A (en) Method and device for testing substrate
JP3075468B2 (en) Electron beam drawing method and electron beam drawing apparatus
WO2006129348A1 (en) Semiconductor manufacturing apparatus
JP2007189113A (en) Probe needle contact detecting method and device thereof
JP2021526288A (en) Ion beam analysis equipment based on Mev
JP4286821B2 (en) Semiconductor device inspection equipment
JP6539779B2 (en) Charged particle microscope and sample imaging method
JP4673601B2 (en) Plasma processing equipment
CN113169084A (en) Method for critical dimension measurement on a substrate, and apparatus for inspecting and cutting electronic devices on a substrate
KR20210139470A (en) Inspection System With Grounded Capacitive Sample Proximity Sensor
WO2008053512A1 (en) Semiconductor inspecting apparatus
JP4837718B2 (en) Semiconductor device inspection equipment
JP2002043269A (en) Laser cleaning completion judging apparatus and method
KR20060100028A (en) System for monitering an electrostatic chunk

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05745771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP