WO2006129291A2 - Led assembly and module - Google Patents

Led assembly and module Download PDF

Info

Publication number
WO2006129291A2
WO2006129291A2 PCT/IB2006/051765 IB2006051765W WO2006129291A2 WO 2006129291 A2 WO2006129291 A2 WO 2006129291A2 IB 2006051765 W IB2006051765 W IB 2006051765W WO 2006129291 A2 WO2006129291 A2 WO 2006129291A2
Authority
WO
WIPO (PCT)
Prior art keywords
led
electrically
parallel
assembly
conductive
Prior art date
Application number
PCT/IB2006/051765
Other languages
French (fr)
Other versions
WO2006129291A3 (en
Inventor
Robert A. Erhardt
Original Assignee
Koninklijke Philips Electronics, N.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics, N.V. filed Critical Koninklijke Philips Electronics, N.V.
Priority to EP06756046.6A priority Critical patent/EP1891685B1/en
Priority to BRPI0611190-4A priority patent/BRPI0611190A2/en
Priority to CN2006800192927A priority patent/CN101189736B/en
Priority to KR1020087000031A priority patent/KR101256392B1/en
Priority to JP2008514290A priority patent/JP2008543075A/en
Priority to US11/916,128 priority patent/US7830095B2/en
Publication of WO2006129291A2 publication Critical patent/WO2006129291A2/en
Publication of WO2006129291A3 publication Critical patent/WO2006129291A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • H05B45/28Controlling the colour of the light using temperature feedback
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/42Antiparallel configurations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48237Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48464Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area also being a ball bond, i.e. ball-to-ball
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Definitions

  • This invention relates generally to light emitting diodes (LEDs), and more specifically to an LED assembly and module.
  • LEDs Light emitting diodes
  • LEDs are being widely used in a variety of applications, such as traffic signals and signage. LEDs are expected to replace incandescent lamps in automotive applications in the near future and to replace incandescent, halogen, and fluorescent lamps in many general illumination applications within a few years. LEDs provide bright lighting with high efficiency.
  • LEDs present certain problems, however, due to operating characteristics and manufacturing limitations. LEDs exhibit large changes in current with small changes in voltage, so the LED drivers must control current to the LEDs. While one solution has been to limit current by placing a resistor in series with the LEDs, such a solution fails to optimize for functionality and efficiency requirements of particular LEDs in particular applications.
  • the resistors increase the size and expense of LED assemblies. The resistors also generate heat, which must be removed with the heat from the LEDs themselves.
  • LED drivers to compensate for operating characteristic variations are complex and expensive. When multiple color LEDs are used in an LED assembly, either a single driver with multiple outputs or multiple drivers are required: the first increases complexity and the second increases expense.
  • One aspect of the invention provides a light emitting diode (LED) assembly including a substrate having opposing first and second sides, a capacitor having first and second electrically-conductive plates respectively disposed proximate the first and second sides of the substrate, and an anti-parallel LED structure electrically connected to the first electrically- conductive plate and thermally coupled to the substrate.
  • LED light emitting diode
  • adjustable output light emitting diode (LED) module including an LED driver, and at least one LED assembly electrically connected parallel to the LED driver, with the LED assembly having an LED array and a switchable impedance array.
  • the LED array includes at least one anti-parallel LED structure
  • the switchable impedance array includes a plurality of impedance circuits connected in parallel. Each of the plurality of impedance circuits includes a capacitor serially connected to a switch.
  • an adjustable output light emitting diode (LED) module including an LED driver; at least one LED assembly electrically connected parallel to the LED driver, the LED assembly having an LED array and a switchable impedance array, the LED array having at least one LED structure, the switchable impedance array having a plurality of impedance circuits connected in parallel, with each of the plurality of impedance circuits comprising a resistor serially connected to a switch; a controller operably connected to the switchable impedance array to actuate the switches in the plurality of impedance circuits, the controller being responsive to the temperature signal; and a temperature sensor thermally connected to the LED array to generate the temperature signal.
  • LED light emitting diode
  • an adjustable output light emitting diode (LED) system including an anti-parallel LED structure, an impedance array electrically connected in series with the anti-parallel LED structure, means for providing an alternating current to the anti-parallel LED structure, and means for switching impedance of the impedance array.
  • LED light emitting diode
  • FIG. 1 is a schematic diagram of an LED assembly made in accordance with the present invention.
  • FIGS. 2A & 2B are directional views of an LED assembly made in accordance with the present invention
  • FIGS. 3A-3C are directional views of an LED assembly with capacitance plates made in accordance with the present invention
  • FIG. 4 is a schematic diagram of an LED assembly with selectable capacitance made in accordance with the present invention
  • FIGS. 5A-5D are directional views of an LED assembly with selectable capacitance made in accordance with the present invention.
  • FIG. 6 is a schematic diagram of an LED assembly with switchable capacitance made in accordance with the present invention.
  • FIGS. 7A-7E are directional views of an LED assembly with switchable capacitance made in accordance with the present invention.
  • FIG. 8 is a schematic diagram of an adjustable output LED module made in accordance with the present invention.
  • FIG. 1 is a schematic diagram of a light emitting diode (LED) assembly made in accordance with the present invention.
  • the LED assembly 30 includes a capacitor 32 and an anti-parallel LED structure 34 connected in series between a first connection 36 and a second connection 38.
  • the anti-parallel LED structure 34 includes a first LED 40 and a second LED 42 connected in an anti-parallel manner, i.e., the first LED 40 and the second LED 42 are connected with opposite polarizations.
  • the anti-parallel LED structure 34 and the capacitor 32 are matched to compensate for operating characteristics of the anti- parallel LED structure 34.
  • the LED assembly 30 can be driven with an LED driver generating an alternating current as described in U.S. Patent No.
  • FIGS. 2A & 2B are top and side views, respectively, of an LED assembly made in accordance with the present invention.
  • the capacitor 32 includes a first electrically- conductive plate 44 and second electrically-conductive plate 46.
  • a substrate 48 having a first side 50 opposing a second side 52 is disposed between the first electrically-conductive plate 44 and the second electrically-conductive plate 46, with the first and second electrically- conductive plates respectively disposed proximate the first and second sides of the substrate 48.
  • the first connection 36 and the second connection 38 can be used to connect to a printed circuit board or additional electrical components.
  • the first connection 36 is electrically connected to the anti-parallel LED structure 34, which is electrically connected by connector 54 to the first electrically-conductive plate 44.
  • the second connection 38 is electrically connected to the second electrically-conductive plate 46.
  • the anti-parallel LED structure 34 is thermally coupled to the substrate 48. In one embodiment, the anti-parallel LED structure 34 is mounted on the first electrically-conductive plate 44. In another embodiment, the anti- parallel LED structure 34 is mounted on the substrate 48.
  • the substrate 48 can be made of any suitable dielectric providing the desired capacitance for the capacitor 32, such as the dielectric used in multilayer ceramic capacitors.
  • the substrate 48 has a dielectric constant responsive to temperature.
  • the substrate 48 can have a dielectric constant with a peak at a predetermined temperature, such as 100° C. As the anti-parallel LED structure 34 increases the temperature of the substrate 48 below the predetermined temperature, the dielectric constant of the substrate 48 increases, increasing the capacitance of the capacitor 32, increasing the current through the anti-parallel LED structure 34, and maintaining the light output of the anti-parallel LED structure 34.
  • the dielectric constant of the substrate 48 decreases, decreasing the capacitance of the capacitor 32, decreasing the current through the anti-parallel LED structure 34, and limiting temperature and preventing thermal runaway.
  • the temperature coefficient can compensate for one or more anti-parallel LED structures with different operating characteristics than other anti-parallel LED structures mounted on the substrate, balancing the light output for all the anti-parallel LED structures.
  • FIGS. 3A-3C are top, longitudinal cross section, and latitudinal cross section views, respectively, of an LED assembly with capacitance plates made in accordance with the present invention.
  • the schematic diagram is the same as FIG. 1.
  • the first and second electrically-conductive plates of the capacitor are two groups of substantially parallel capacitive plates with the substrate disposed between them to increase the capacitance of the capacitor.
  • Edge connectors can be used to make internal connections in the LED assembly, to make external connections with the LED assembly, and to assemble the LED assembly.
  • the LED assembly 130 includes a first edge connector 60 corresponding to the first connection 36 of FIG. 1, a second edge connector 62 corresponding to the first connection 36 of FIG. 1, and a third edge connector 64.
  • the second edge connector 62 has a first connector portion 66 and a second connector portion 68. In another embodiment, the first connector portion 66 and the second connector portion 68 can be separate parts.
  • the first edge connector 60 is electrically connected to the anti-parallel LED structure 34 by first connector 80 and the anti-parallel LED structure 34 is electrically connected to the third edge connector 64 by second connector 82.
  • the first and second electrically-conductive plates includes a number of first capacitive plates 70 and a number of second capacitive plates 72, respectively.
  • the first capacitive plates 70 are interspersed with and arranged substantially parallel to the second capacitive plates 72. Adjacent capacitive plates alternate between first capacitive plates 70 and second capacitive plates 72 in an ABABA pattern.
  • the substrate 48 is disposed between the first capacitive plates 70 and the second capacitive plates 72.
  • the first capacitive plates 70 are electrically connected to the third edge connector 64 and the second capacitive plates 72 are electrically connected to the first connector portion 66.
  • the capacitive plates are shorter than the width of the LED assembly 130 so that the first capacitive plates 70 are not in contact with the first connector portion 66 and the second capacitive plates 72 are not in contact with the third edge connector 64.
  • the capacitive plates are shorter than the length of the LED assembly 130 to avoid contact with the first edge connector 60 and the second connector portion 68, which are each insulated from the substrate 48 by insulation 76.
  • the portion of the LED assembly 130 receiving the anti-parallel LED structure 34 can be an outermost capacitive plate or part of the substrate 48 as desired.
  • the LED assembly 230 includes a number of LED circuits 90 corresponding to the LED assembly 30 of FIG. 1 connected in parallel between a first connection 92 and a second connection 94.
  • Each of the LED circuits 90 includes a capacitor 32 and an anti-parallel LED structure 34 connected in series between the first connection 92 and the second connection 94.
  • the anti-parallel LED structure 34 includes a first LED 40 and a second LED 42 connected in an anti-parallel manner, i.e., the first LED 40 and the second LED 42 are connected with opposite polarizations.
  • the LED assembly 30 can be driven with an LED driver generating an alternating current as described in U.S. Patent No.
  • FIGS. 5A-5D are top, top detail, bottom, and side views, respectively, of an LED assembly with selectable capacitance made in accordance with the present invention.
  • a number of anti-parallel LED structures are provided in the LED circuits to generate light.
  • One electrically-conductive plate of each capacitor in each LED circuit is an electrically-conductive island. The area of each electrically-conductive island can be selected to provide the desired capacitance for the LED circuit and the associated anti-parallel LED structure.
  • the LED assembly 230 includes substrate 48 having a first side 50 opposing a second side 52.
  • a common connector 96 and a number of electrically-conductive islands 100 are disposed on the first side 50.
  • each electrically-conductive island 100 can be selected to provide the desired capacitance for the LED circuit and the associated anti-parallel LED structure 34. This matching of the anti-parallel LED structure 34 and the capacitor 32 can compensate for operating characteristics of the anti-parallel LED structure 34. Different electrically-conductive islands can have different areas. Anti-parallel LED structures 34 are disposed on the electrically-conductive islands 100 and thermally coupled to the substrate 48. In another embodiment, the anti-parallel LED structures 34 are disposed directly on the substrate 48. First connectors 98 electrically connect the common connector 96 to each anti- parallel LED structure 34 and second connectors 102 electrically connect each anti-parallel LED structure 34 to each electrically-conductive island 100.
  • Second electrically-conductive plate 46 is disposed on the second side 52 of the substrate 48.
  • the common connector 96 and/or the second electrically-conductive plate 46 wrap around an edge of the substrate 48.
  • the common connector 96 and the second electrically-conductive plate 46 can wrap around opposing edges to separate external connections to the LED assembly 230.
  • the second electrically-conductive plate 46 can be divided into second electrically-conductive islands on the second side 52 of the substrate 48 similar to the electrically-conductive islands 100, with each of the second electrically-conductive islands opposite one or more of the electrically-conductive islands 100 as desired for a particular circuit configuration.
  • FIG. 6 is a schematic diagram of an LED assembly with switchable capacitance made in accordance with the present invention.
  • the LED assembly 330 includes an LED array 106 electrically connected in series with a switchable capacitance array 108 between a first connection 92 and a second connection 94.
  • the LED array 106 includes one or more anti- parallel LED structures 34 connected in parallel.
  • the anti-parallel LED structure 34 includes a first LED 40 and a second LED 42 connected in an anti-parallel manner, i.e., the first LED 40 and the second LED 42 are connected with opposite polarizations.
  • the anti-parallel LED structure 34 is not limited to a single pair of LEDs, but can include a number of LEDs connected in serial, parallel, and/or other array configurations as desired.
  • the switchable capacitance array 108 includes one or more capacitance circuits 110 connected in parallel. Each capacitance circuit 110 includes a capacitor 32 and a switch 120 connected in series.
  • the LED assembly 330 can be driven with an LED driver generating an alternating current as described in U.S. Patent No. 6,853,150 incorporated herein by reference in its entirety.
  • FIGS. 7A-7E are top, top detail, bottom, bottom detail, and side views, respectively, of an LED assembly with switchable capacitance made in accordance with the present invention.
  • a number of anti-parallel LED structures are provided in series with switches providing switchable capacitance to control the current through the anti-parallel LED structures.
  • the LED assembly 330 includes substrate 48 having a first side 50 opposing a second side 52.
  • a common connector 96 and a number of electrically-conductive plates 114 are disposed on the first side 50.
  • Anti-parallel LED structures 34 are disposed on the electrically- conductive plates 114 and thermally coupled to the substrate 48. In another embodiment, the anti-parallel LED structures 34 are disposed directly on the substrate 48.
  • First connectors 98 electrically connect the common connector 96 to each anti-parallel LED structure 34 and second connectors 102 electrically connect each anti-parallel LED structure 34 to the electrically-conductive plates 114.
  • Electrically-conductive islands 116 are disposed on the second side 52 of the substrate 48. Switches 120 are disposed on the electrically-conductive islands 116.
  • the switches 120 are disposed directly on the substrate 48.
  • Third connectors 118 electrically connect the electrically-conductive islands 116 to the switches 120 and fourth connectors 122 electrically connect the switches 120 to the common connector 124.
  • the common connector 96 and/or the common connector 124 wrap around an edge of the substrate 48. The common connector 96 and the common connector 124 can wrap around opposing edges to separate external connections to the LED assembly 330.
  • the switches 120 can be DIP switches, driven multiplexed switches, film resistance switches, or the like. In one embodiment, the switches 120 can be responsive to a switch control signal, such as a switch control signal from a controller, to switch the switchable capacitance and current through the anti-parallel LED structures 34 during operation.
  • a switch control signal such as a switch control signal from a controller
  • a number of the LED assemblies 330 can be connected in parallel with an LED driver to provide an adjustable output LED module.
  • FIG. 8 is a schematic diagram of an adjustable output LED module made in accordance with the present invention.
  • Switchable impedance arrays in series with LED arrays control the current through the LED arrays.
  • the current control can account for operating characteristic variations in the LEDs, compensate for light output changes with temperature, limit LED temperature, generate a desired light color and/or intensity, and the like.
  • the adjustable output light emitting diode (LED) module 400 includes an LED driver 152 and at least one LED assembly 148 electrically connected parallel to the LED driver 152.
  • the LED assembly 148 has an LED array 150 with at least one LED structure and a switchable impedance array 154.
  • the switchable impedance array 154 includes a plurality of impedance circuits 156 connected in parallel, each of the plurality of impedance circuits 156 including an impedance device 158 serially connected to a switch 160.
  • the LED driver 152 is an LED driver generating an alternating current
  • the LED structure is an anti-parallel LED structure and the impedance device 158 is a capacitor.
  • the LED structure is a single polarity LED structure, i.e., a structure in which all LEDs are connected with the same polarizations, and the impedance device 158 is a resistor.
  • the switch 160 can be a manual or controlled switch, such as DIP switches, driven multiplexed switches, film resistance switches, or the like. Film resistance switches can be set during manufacture by laser trimming and can provide some or all of the impedance of the impedance device 158.
  • the switches 160 are responsive to a switch control signal 170 from an optional controller 162 operably connected to the switchable impedance array 154 to actuate the switches 160.
  • the adjustable output LED module 400 can also include a temperature sensor 164 thermally connected to the LED array 150 to generate a temperature signal 168, with the controller 162 being responsive to the temperature signal 168.
  • the controller 162 can use the temperature signal 168 to reduce current through the LED array 150 when the temperature signal exceeds a temperature limit and/or to maintain constant light output from the LED array 150 independent of the temperature of the LED array 150.
  • the controller 162 can be a microprocessor and use a lookup table to determine the desired switch position for a particular temperature signal 168.
  • the impedance values of the switchable impedance arrays 154 can be selected to achieve particular effects. In one embodiment, each of the impedance device 158 in one of the switchable impedance arrays 154 have different impedance values than the impedance values of the other impedance devices 158 in the same switchable impedance array 154.
  • the pattern of impedance values for the impedance devices 158 in one of the switchable impedance arrays 154 is 1:2:4:8: . . . 2 (n"1 ⁇ , where n is the number of the impedance devices 158 in the switchable impedance array 154.
  • n is the number of the impedance devices 158 in the switchable impedance array 154.
  • sixteen different impedance values are possible with the different combinations of the switches 160.
  • the LED assemblies 148 can be selected so that each generates different color light, so that the combination of the different color lights at different intensities produces different perceived colors.
  • three LED assemblies 148 can be red, green, and blue light LED assemblies to form a RGB blended light source or four LED assemblies 148 can be red, green, blue, and yellow light LED assemblies to form a RGBY blended light source.
  • the anti-parallel LED structures described are not limited to a single pair of LEDs, but can include a number of LEDs connected in serial, parallel, and/or other array configurations as desired.
  • FIGS. 1-8 are exemplary and that alternative circuits can be used as desired for particular applications.
  • the scope of the invention is indicated in the appended claims, and all changes that come within the meaning and range of equivalents are intended to be embraced therein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Devices (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Led Device Packages (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

A light emitting diode (LED) assembly and module including a substrate (48) having opposing first and second sides (50, 52); a capacitor (32) having first and second electrically-conductive plates (44, 46) respectively disposed proximate the first and second sides (50, 52) of the substrate (48); and an anti-parallel LED structure (34) electrically connected to the first electrically-conductive plate (44) and thermally coupled to the substrate (48).

Description

LED ASSEMBLY AND MODULE
This invention relates generally to light emitting diodes (LEDs), and more specifically to an LED assembly and module.
Light emitting diodes (LEDs) are being widely used in a variety of applications, such as traffic signals and signage. LEDs are expected to replace incandescent lamps in automotive applications in the near future and to replace incandescent, halogen, and fluorescent lamps in many general illumination applications within a few years. LEDs provide bright lighting with high efficiency.
LEDs present certain problems, however, due to operating characteristics and manufacturing limitations. LEDs exhibit large changes in current with small changes in voltage, so the LED drivers must control current to the LEDs. While one solution has been to limit current by placing a resistor in series with the LEDs, such a solution fails to optimize for functionality and efficiency requirements of particular LEDs in particular applications. The resistors increase the size and expense of LED assemblies. The resistors also generate heat, which must be removed with the heat from the LEDs themselves.
Large process variations in the manufacture of LEDs result in large variations in operating characteristics. To account for operating characteristic variations, manufacturers sample the operating characteristics and sort the LEDs into batches having similar operating characteristics, called bins. Examples of bins are voltage bins, which account for voltage differences; flux bins, which account for light output differences at a given drive current; and color bins, which account for color differences. LED drivers to compensate for operating characteristic variations are complex and expensive. When multiple color LEDs are used in an LED assembly, either a single driver with multiple outputs or multiple drivers are required: the first increases complexity and the second increases expense.
It would be desirable to provide an LED assembly and module that overcomes the above disadvantages. One aspect of the invention provides a light emitting diode (LED) assembly including a substrate having opposing first and second sides, a capacitor having first and second electrically-conductive plates respectively disposed proximate the first and second sides of the substrate, and an anti-parallel LED structure electrically connected to the first electrically- conductive plate and thermally coupled to the substrate.
Another aspect of the invention provides adjustable output light emitting diode (LED) module including an LED driver, and at least one LED assembly electrically connected parallel to the LED driver, with the LED assembly having an LED array and a switchable impedance array. The LED array includes at least one anti-parallel LED structure, and the switchable impedance array includes a plurality of impedance circuits connected in parallel. Each of the plurality of impedance circuits includes a capacitor serially connected to a switch.
Another aspect of the invention provides an adjustable output light emitting diode (LED) module including an LED driver; at least one LED assembly electrically connected parallel to the LED driver, the LED assembly having an LED array and a switchable impedance array, the LED array having at least one LED structure, the switchable impedance array having a plurality of impedance circuits connected in parallel, with each of the plurality of impedance circuits comprising a resistor serially connected to a switch; a controller operably connected to the switchable impedance array to actuate the switches in the plurality of impedance circuits, the controller being responsive to the temperature signal; and a temperature sensor thermally connected to the LED array to generate the temperature signal.
Another aspect of the invention provides an adjustable output light emitting diode (LED) system including an anti-parallel LED structure, an impedance array electrically connected in series with the anti-parallel LED structure, means for providing an alternating current to the anti-parallel LED structure, and means for switching impedance of the impedance array.
The foregoing and other features and advantages of the invention will become further apparent from the following detailed description of the presently preferred embodiment, read in conjunction with the accompanying drawings. The detailed description and drawings are merely illustrative of the invention rather than limiting, the scope of the invention being defined by the appended claims and equivalents thereof. Like elements share like reference numbers throughout the drawings.
FIG. 1 is a schematic diagram of an LED assembly made in accordance with the present invention;
FIGS. 2A & 2B are directional views of an LED assembly made in accordance with the present invention; FIGS. 3A-3C are directional views of an LED assembly with capacitance plates made in accordance with the present invention;
FIG. 4 is a schematic diagram of an LED assembly with selectable capacitance made in accordance with the present invention; FIGS. 5A-5D are directional views of an LED assembly with selectable capacitance made in accordance with the present invention;
FIG. 6 is a schematic diagram of an LED assembly with switchable capacitance made in accordance with the present invention;
FIGS. 7A-7E are directional views of an LED assembly with switchable capacitance made in accordance with the present invention; and
FIG. 8 is a schematic diagram of an adjustable output LED module made in accordance with the present invention.
FIG. 1 is a schematic diagram of a light emitting diode (LED) assembly made in accordance with the present invention. The LED assembly 30 includes a capacitor 32 and an anti-parallel LED structure 34 connected in series between a first connection 36 and a second connection 38. The anti-parallel LED structure 34 includes a first LED 40 and a second LED 42 connected in an anti-parallel manner, i.e., the first LED 40 and the second LED 42 are connected with opposite polarizations. In one embodiment, the anti-parallel LED structure 34 and the capacitor 32 are matched to compensate for operating characteristics of the anti- parallel LED structure 34. The LED assembly 30 can be driven with an LED driver generating an alternating current as described in U.S. Patent No. 6,853,150 incorporated herein by reference in its entirety. Those skilled in the art will appreciate that the anti-parallel LED structure 34 is not limited to a single pair of LEDs, but can include a number of LEDs connected in serial, parallel, and/or other array configurations as desired. FIGS. 2A & 2B are top and side views, respectively, of an LED assembly made in accordance with the present invention. The capacitor 32 includes a first electrically- conductive plate 44 and second electrically-conductive plate 46. A substrate 48 having a first side 50 opposing a second side 52 is disposed between the first electrically-conductive plate 44 and the second electrically-conductive plate 46, with the first and second electrically- conductive plates respectively disposed proximate the first and second sides of the substrate 48. The first connection 36 and the second connection 38 can be used to connect to a printed circuit board or additional electrical components. The first connection 36 is electrically connected to the anti-parallel LED structure 34, which is electrically connected by connector 54 to the first electrically-conductive plate 44. The second connection 38 is electrically connected to the second electrically-conductive plate 46. The anti-parallel LED structure 34 is thermally coupled to the substrate 48. In one embodiment, the anti-parallel LED structure 34 is mounted on the first electrically-conductive plate 44. In another embodiment, the anti- parallel LED structure 34 is mounted on the substrate 48.
The substrate 48 can be made of any suitable dielectric providing the desired capacitance for the capacitor 32, such as the dielectric used in multilayer ceramic capacitors. In one embodiment, the substrate 48 has a dielectric constant responsive to temperature. For example, the substrate 48 can have a dielectric constant with a peak at a predetermined temperature, such as 100° C. As the anti-parallel LED structure 34 increases the temperature of the substrate 48 below the predetermined temperature, the dielectric constant of the substrate 48 increases, increasing the capacitance of the capacitor 32, increasing the current through the anti-parallel LED structure 34, and maintaining the light output of the anti-parallel LED structure 34. As the anti-parallel LED structure 34 increases the temperature of the substrate 48 above the predetermined temperature, the dielectric constant of the substrate 48 decreases, decreasing the capacitance of the capacitor 32, decreasing the current through the anti-parallel LED structure 34, and limiting temperature and preventing thermal runaway. The temperature coefficient can compensate for one or more anti-parallel LED structures with different operating characteristics than other anti-parallel LED structures mounted on the substrate, balancing the light output for all the anti-parallel LED structures.
FIGS. 3A-3C are top, longitudinal cross section, and latitudinal cross section views, respectively, of an LED assembly with capacitance plates made in accordance with the present invention. The schematic diagram is the same as FIG. 1. In this embodiment, the first and second electrically-conductive plates of the capacitor are two groups of substantially parallel capacitive plates with the substrate disposed between them to increase the capacitance of the capacitor. Edge connectors can be used to make internal connections in the LED assembly, to make external connections with the LED assembly, and to assemble the LED assembly.
Referring to FIGS. 3A-3C, the LED assembly 130 includes a first edge connector 60 corresponding to the first connection 36 of FIG. 1, a second edge connector 62 corresponding to the first connection 36 of FIG. 1, and a third edge connector 64. The second edge connector 62 has a first connector portion 66 and a second connector portion 68. In another embodiment, the first connector portion 66 and the second connector portion 68 can be separate parts. The first edge connector 60 is electrically connected to the anti-parallel LED structure 34 by first connector 80 and the anti-parallel LED structure 34 is electrically connected to the third edge connector 64 by second connector 82. The first and second electrically-conductive plates includes a number of first capacitive plates 70 and a number of second capacitive plates 72, respectively. The first capacitive plates 70 are interspersed with and arranged substantially parallel to the second capacitive plates 72. Adjacent capacitive plates alternate between first capacitive plates 70 and second capacitive plates 72 in an ABABA pattern. The substrate 48 is disposed between the first capacitive plates 70 and the second capacitive plates 72.
The first capacitive plates 70 are electrically connected to the third edge connector 64 and the second capacitive plates 72 are electrically connected to the first connector portion 66. The capacitive plates are shorter than the width of the LED assembly 130 so that the first capacitive plates 70 are not in contact with the first connector portion 66 and the second capacitive plates 72 are not in contact with the third edge connector 64. The capacitive plates are shorter than the length of the LED assembly 130 to avoid contact with the first edge connector 60 and the second connector portion 68, which are each insulated from the substrate 48 by insulation 76. The portion of the LED assembly 130 receiving the anti-parallel LED structure 34 can be an outermost capacitive plate or part of the substrate 48 as desired. FIG. 4 is a schematic diagram of an LED assembly with selectable capacitance made in accordance with the present invention. The LED assembly 230 includes a number of LED circuits 90 corresponding to the LED assembly 30 of FIG. 1 connected in parallel between a first connection 92 and a second connection 94. Each of the LED circuits 90 includes a capacitor 32 and an anti-parallel LED structure 34 connected in series between the first connection 92 and the second connection 94. The anti-parallel LED structure 34 includes a first LED 40 and a second LED 42 connected in an anti-parallel manner, i.e., the first LED 40 and the second LED 42 are connected with opposite polarizations. The LED assembly 30 can be driven with an LED driver generating an alternating current as described in U.S. Patent No. 6,853,150 incorporated herein by reference in its entirety. FIGS. 5A-5D are top, top detail, bottom, and side views, respectively, of an LED assembly with selectable capacitance made in accordance with the present invention. In this embodiment, a number of anti-parallel LED structures are provided in the LED circuits to generate light. One electrically-conductive plate of each capacitor in each LED circuit is an electrically-conductive island. The area of each electrically-conductive island can be selected to provide the desired capacitance for the LED circuit and the associated anti-parallel LED structure. The LED assembly 230 includes substrate 48 having a first side 50 opposing a second side 52. A common connector 96 and a number of electrically-conductive islands 100 are disposed on the first side 50. The area of each electrically-conductive island 100 can be selected to provide the desired capacitance for the LED circuit and the associated anti-parallel LED structure 34. This matching of the anti-parallel LED structure 34 and the capacitor 32 can compensate for operating characteristics of the anti-parallel LED structure 34. Different electrically-conductive islands can have different areas. Anti-parallel LED structures 34 are disposed on the electrically-conductive islands 100 and thermally coupled to the substrate 48. In another embodiment, the anti-parallel LED structures 34 are disposed directly on the substrate 48. First connectors 98 electrically connect the common connector 96 to each anti- parallel LED structure 34 and second connectors 102 electrically connect each anti-parallel LED structure 34 to each electrically-conductive island 100. Second electrically-conductive plate 46 is disposed on the second side 52 of the substrate 48. In one embodiment, the common connector 96 and/or the second electrically-conductive plate 46 wrap around an edge of the substrate 48. The common connector 96 and the second electrically-conductive plate 46 can wrap around opposing edges to separate external connections to the LED assembly 230. Those skilled in the art will appreciate that the second electrically-conductive plate 46 can be divided into second electrically-conductive islands on the second side 52 of the substrate 48 similar to the electrically-conductive islands 100, with each of the second electrically-conductive islands opposite one or more of the electrically-conductive islands 100 as desired for a particular circuit configuration.
FIG. 6 is a schematic diagram of an LED assembly with switchable capacitance made in accordance with the present invention. The LED assembly 330 includes an LED array 106 electrically connected in series with a switchable capacitance array 108 between a first connection 92 and a second connection 94. The LED array 106 includes one or more anti- parallel LED structures 34 connected in parallel. The anti-parallel LED structure 34 includes a first LED 40 and a second LED 42 connected in an anti-parallel manner, i.e., the first LED 40 and the second LED 42 are connected with opposite polarizations. Those skilled in the art will appreciate that the anti-parallel LED structure 34 is not limited to a single pair of LEDs, but can include a number of LEDs connected in serial, parallel, and/or other array configurations as desired. The switchable capacitance array 108 includes one or more capacitance circuits 110 connected in parallel. Each capacitance circuit 110 includes a capacitor 32 and a switch 120 connected in series. The LED assembly 330 can be driven with an LED driver generating an alternating current as described in U.S. Patent No. 6,853,150 incorporated herein by reference in its entirety.
FIGS. 7A-7E are top, top detail, bottom, bottom detail, and side views, respectively, of an LED assembly with switchable capacitance made in accordance with the present invention. In this embodiment, a number of anti-parallel LED structures are provided in series with switches providing switchable capacitance to control the current through the anti-parallel LED structures.
The LED assembly 330 includes substrate 48 having a first side 50 opposing a second side 52. A common connector 96 and a number of electrically-conductive plates 114 are disposed on the first side 50. Anti-parallel LED structures 34 are disposed on the electrically- conductive plates 114 and thermally coupled to the substrate 48. In another embodiment, the anti-parallel LED structures 34 are disposed directly on the substrate 48. First connectors 98 electrically connect the common connector 96 to each anti-parallel LED structure 34 and second connectors 102 electrically connect each anti-parallel LED structure 34 to the electrically-conductive plates 114. Electrically-conductive islands 116 are disposed on the second side 52 of the substrate 48. Switches 120 are disposed on the electrically-conductive islands 116. In another embodiment, the switches 120 are disposed directly on the substrate 48. Third connectors 118 electrically connect the electrically-conductive islands 116 to the switches 120 and fourth connectors 122 electrically connect the switches 120 to the common connector 124. In one embodiment, the common connector 96 and/or the common connector 124 wrap around an edge of the substrate 48. The common connector 96 and the common connector 124 can wrap around opposing edges to separate external connections to the LED assembly 330.
The switches 120 can be DIP switches, driven multiplexed switches, film resistance switches, or the like. In one embodiment, the switches 120 can be responsive to a switch control signal, such as a switch control signal from a controller, to switch the switchable capacitance and current through the anti-parallel LED structures 34 during operation. A number of the LED assemblies 330 can be connected in parallel with an LED driver to provide an adjustable output LED module.
FIG. 8 is a schematic diagram of an adjustable output LED module made in accordance with the present invention. Switchable impedance arrays in series with LED arrays control the current through the LED arrays. The current control can account for operating characteristic variations in the LEDs, compensate for light output changes with temperature, limit LED temperature, generate a desired light color and/or intensity, and the like.
The adjustable output light emitting diode (LED) module 400 includes an LED driver 152 and at least one LED assembly 148 electrically connected parallel to the LED driver 152. The LED assembly 148 has an LED array 150 with at least one LED structure and a switchable impedance array 154. The switchable impedance array 154 includes a plurality of impedance circuits 156 connected in parallel, each of the plurality of impedance circuits 156 including an impedance device 158 serially connected to a switch 160. When the LED driver 152 is an LED driver generating an alternating current, the LED structure is an anti-parallel LED structure and the impedance device 158 is a capacitor. When the LED driver 152 is an LED driver generating a direct current, the LED structure is a single polarity LED structure, i.e., a structure in which all LEDs are connected with the same polarizations, and the impedance device 158 is a resistor.
The switch 160 can be a manual or controlled switch, such as DIP switches, driven multiplexed switches, film resistance switches, or the like. Film resistance switches can be set during manufacture by laser trimming and can provide some or all of the impedance of the impedance device 158. In one embodiment, the switches 160 are responsive to a switch control signal 170 from an optional controller 162 operably connected to the switchable impedance array 154 to actuate the switches 160. The adjustable output LED module 400 can also include a temperature sensor 164 thermally connected to the LED array 150 to generate a temperature signal 168, with the controller 162 being responsive to the temperature signal 168. The controller 162 can use the temperature signal 168 to reduce current through the LED array 150 when the temperature signal exceeds a temperature limit and/or to maintain constant light output from the LED array 150 independent of the temperature of the LED array 150. The controller 162 can be a microprocessor and use a lookup table to determine the desired switch position for a particular temperature signal 168. The impedance values of the switchable impedance arrays 154 can be selected to achieve particular effects. In one embodiment, each of the impedance device 158 in one of the switchable impedance arrays 154 have different impedance values than the impedance values of the other impedance devices 158 in the same switchable impedance array 154. In another embodiment, the pattern of impedance values for the impedance devices 158 in one of the switchable impedance arrays 154 is 1:2:4:8: . . . 2(n"1}, where n is the number of the impedance devices 158 in the switchable impedance array 154. When there are four different impedance devices 158 in the switchable impedance array 154, sixteen different impedance values are possible with the different combinations of the switches 160. The LED assemblies 148 can be selected so that each generates different color light, so that the combination of the different color lights at different intensities produces different perceived colors. For example, three LED assemblies 148 can be red, green, and blue light LED assemblies to form a RGB blended light source or four LED assemblies 148 can be red, green, blue, and yellow light LED assemblies to form a RGBY blended light source. While the embodiments of the invention disclosed herein are presently considered to be preferred, various changes and modifications can be made without departing from the scope of the invention. The anti-parallel LED structures described are not limited to a single pair of LEDs, but can include a number of LEDs connected in serial, parallel, and/or other array configurations as desired. Those skilled in the art will appreciate that the embodiments described for FIGS. 1-8 are exemplary and that alternative circuits can be used as desired for particular applications. The scope of the invention is indicated in the appended claims, and all changes that come within the meaning and range of equivalents are intended to be embraced therein.

Claims

1. A light emitting diode (LED) assembly comprising: a substrate 48 having opposing first and second sides 50, 52; a capacitor 32 having first and second electrically-conductive plates 44, 46 respectively disposed proximate the first and second sides 50, 52 of the substrate 48; and an anti-parallel LED structure 34 electrically connected to the first electrically- conductive plate 44 and thermally coupled to the substrate 48.
2. The assembly of claim 1 wherein the anti-parallel LED structure 34 is disposed on the first capacitance plate 28.
3. The assembly of claim 1 wherein the substrate 48 has a dielectric constant responsive to temperature.
4. The assembly of claim 1 wherein the substrate 48 has a dielectric constant that peaks at a predetermined temperature.
5. The assembly of claim 1 wherein the anti-parallel LED structure 34 and the capacitor 32 are matched to compensate for operating characteristics of the anti-parallel LED structure 34.
6. The assembly of claim 1 wherein: the first electrically-conductive plate 44 comprises a plurality of first capacitive plates; the second electrically-conductive plate 46 comprises a plurality of second capacitive plates; the first capacitive plates are interspersed with and arranged substantially parallel to the second capacitive plates; and the substrate 48 is disposed between the first capacitive plates and the second capacitive plates.
7. The assembly of claim 1 wherein: the capacitor 32 is a first capacitor; the first electrically-conductive plate 44 is a first electrically-conductive island disposed proximate the first side of the substrate 48; and the anti-parallel LED structure 34 is a first anti-parallel LED structure electrically connected to the first electrically-conductive island; further comprising: a second capacitor having a second electrically-conductive island disposed proximate the first side of the substrate 48 and the second electrically-conductive plate disposed proximate the second side of the substrate 48; a second anti-parallel LED structure electrically connected to the second electrically- conductive island; and a common connector electrically connected to the first and the second anti-parallel LED structures respectively opposite the first and the second electrically-conductive islands.
8. The assembly of claim 7 wherein the first electrically-conductive island and the second electrically-conductive island have different areas.
9. The assembly of claim 1 wherein the capacitor 32 is a first capacitor; the first electrically-conductive plate 44 is a first electrically-conductive plane disposed proximate the first side of the substrate 48; the second electrically-conductive plate 46 is a second electrically-conductive island opposite the first electrically-conductive plane; and the anti-parallel LED structure 34 is a first anti-parallel LED structure electrically connected to the first electrically-conductive plane; further comprising: a first switch electrically connected to the second electrically-conductive island; a second capacitor having the first electrically-conductive plane disposed proximate the first side of the substrate 48 and a third electrically-conductive island disposed opposite the first electrically-conductive plane proximate the second side of the substrate 48; and a second anti-parallel LED structure electrically connected to the first electrically- conductive plane; and a second switch electrically connected to the third electrically-conductive island.
10. The assembly of claim 9 further comprising a common connector electrically connected to the first and the second anti-parallel LED structures respectively opposite the first electrically-conductive plane.
11. The assembly of claim 9 further comprising a common connector electrically connected to the first and the second switches respectively opposite the second and the third electrically- conductive islands.
12. The assembly of claim 9 wherein the first switch is selected from the group consisting of a DIP switch, a driven multiplexed switch, and a film resistance switch.
13. The assembly of claim 9 wherein the first switch is responsive to a switch control signal.
14. An adjustable output light emitting diode (LED) module comprising: an LED driver 152; and at least one LED assembly 148 electrically connected parallel to the LED driver 152, the LED assembly 148 having an LED array 150 and a switchable impedance array 154; wherein the LED array 150 comprises at least one anti-parallel LED structure and the switchable impedance array 154 comprises a plurality of impedance circuits 156 connected in parallel, each of the plurality of impedance circuits 156 comprising a capacitor serially connected to a switch 160.
15. The module of claim 14 further comprising a controller 162 operably connected to the switchable impedance array 154 to actuate the switches 160 in the plurality of impedance circuits 156.
16. The module of claim 15 further comprising a temperature sensor 164 thermally connected to the LED array 150 to generate a temperature signal 168, wherein the controller 162 is responsive to the temperature signal 168.
17. The module of claim 16 wherein the controller 162 is responsive to the temperature signal 168 to reduce current through the LED array 150 when the temperature signal exceeds a temperature limit.
18. The module of claim 16 wherein the controller 162 is responsive to the temperature signal 168 to maintain constant light output from the LED array 150.
19. The module of claim 14 wherein each of the capacitors in one of the switchable impedance arrays 154 have different capacitances than the capacitances of the other capacitors in the one of the switchable impedance arrays 154.
20. The module of claim 14 wherein a pattern of capacitances for the capacitors in one of the switchable impedance arrays 154 is 1:2:4:8: . . . 2(n"1}, where n is the number of the capacitors in the one of the switchable impedance arrays 154.
21. The module of claim 14 wherein the at least one LED assembly 148 comprises a plurality of LED assemblies 148, each of the plurality of LED assemblies 148 generating light of a different color than the other of the plurality of LED assemblies 148.
22. An adjustable output light emitting diode (LED) module comprising: an LED driver; at least one LED assembly electrically connected parallel to the LED driver, the LED assembly having an LED array 150 and a switchable impedance array 154, the LED array 150 having at least one LED structure, the switchable impedance array 154 having a plurality of impedance circuits 156 connected in parallel, each of the plurality of impedance circuits 156 comprising a resistor serially connected to a switch 160; a controller 162 operably connected to the switchable impedance array 154 to actuate the switches 160 in the plurality of impedance circuits 156, the controller 162 being responsive to the temperature signal 168; and a temperature sensor 164 thermally connected to the LED array 150 to generate the temperature signal 168.
23. The module of claim 22 wherein the controller 162 is responsive to the temperature signal 168 to reduce current through the LED array 150 when the temperature signal exceeds a temperature limit.
24. The module of claim 22 wherein the controller 162 is responsive to the temperature signal 168 to maintain constant light output from the LED array 150.
25. The module of claim 22 wherein a pattern of resistance values for the resistors in one of the switchable impedance arrays 154 is 1:2:4:8: . . . 2(n"1}, where n is the number of the resistors in the one of the switchable impedance arrays 154.
26. The module of claim 22 wherein the at least one LED assembly 148 comprises a plurality of LED assemblies 148, each of the plurality of LED assemblies 148 generating light of a different color than the other of the plurality of LED assemblies 148.
27. An adjustable output light emitting diode (LED) system comprising: an anti-parallel LED structure; an impedance array electrically connected in series with the anti-parallel LED structure; means for providing an alternating current to the anti-parallel LED structure; and means for switching impedance of the impedance array.
28. The system of claim 27 further comprising means for controlling the impedance switching means.
29. The system of claim 28 further comprising means for sensing temperature of the anti- parallel LED structure operably connected to the controlling means.
PCT/IB2006/051765 2005-06-02 2006-06-01 Led assembly and module WO2006129291A2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP06756046.6A EP1891685B1 (en) 2005-06-02 2006-06-01 Led assembly and module
BRPI0611190-4A BRPI0611190A2 (en) 2005-06-02 2006-06-01 LED assembly, module and system
CN2006800192927A CN101189736B (en) 2005-06-02 2006-06-01 Led assembly and module
KR1020087000031A KR101256392B1 (en) 2005-06-02 2006-06-01 Led assembly and module
JP2008514290A JP2008543075A (en) 2005-06-02 2006-06-01 LED assembly and module
US11/916,128 US7830095B2 (en) 2005-06-02 2006-06-01 LED assembly and module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US68681205P 2005-06-02 2005-06-02
US60/686,812 2005-06-02

Publications (2)

Publication Number Publication Date
WO2006129291A2 true WO2006129291A2 (en) 2006-12-07
WO2006129291A3 WO2006129291A3 (en) 2007-04-26

Family

ID=37037057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2006/051765 WO2006129291A2 (en) 2005-06-02 2006-06-01 Led assembly and module

Country Status (9)

Country Link
US (1) US7830095B2 (en)
EP (1) EP1891685B1 (en)
JP (2) JP2008543075A (en)
KR (1) KR101256392B1 (en)
CN (1) CN101189736B (en)
BR (1) BRPI0611190A2 (en)
MY (1) MY147397A (en)
TW (1) TW200702824A (en)
WO (1) WO2006129291A2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009153715A3 (en) * 2008-06-17 2010-03-11 Koninklijke Philips Electronics N.V. Light emitting device adapted for ac drive
WO2012009086A1 (en) * 2010-07-14 2012-01-19 General Electric Company System and method for driving light emitting diodes
JP2012504862A (en) * 2008-10-02 2012-02-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ LED circuit layout with improved flicker performance
WO2012045684A1 (en) * 2010-10-04 2012-04-12 Osram Opto Semiconductors Gmbh Luminous device comprising multiple spaced-apart emission regions
WO2014060921A1 (en) * 2012-10-15 2014-04-24 Koninklijke Philips N.V. Led package with capacitive couplings
EP2410817A3 (en) * 2010-07-23 2014-05-21 Advanced Connectek Inc. Light emitting device driving circuit
WO2015036443A1 (en) * 2013-09-12 2015-03-19 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip and optoelectronic component
WO2015050639A1 (en) * 2013-10-03 2015-04-09 Robertson Transformer Co. Capacitive ladder feed for ac led
ITBA20130071A1 (en) * 2013-10-25 2015-04-26 Matteo Console POWER SUPPLY AND DRIVER FOR TURBO LED T8 DIMENSIONS (60CM, 90CM, 120CM, 150CM) WITH VARIABLE CAPACITIVE REACTANCE.
EP3099141A1 (en) * 2015-05-26 2016-11-30 OSRAM GmbH A lighting device and corresponding method
RU2604890C2 (en) * 2011-03-07 2016-12-20 Конинклейке Филипс Н.В. Electroluminescent device
RU2719344C2 (en) * 2015-12-23 2020-04-17 Конинклейке Филипс Н.В. Load device and power supply device for powering load

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8164273B1 (en) * 2007-04-27 2012-04-24 Harrington Richard H Light emitting diode circuits for general lighting
US8896228B2 (en) 2007-04-27 2014-11-25 Rtc Inc. Light emitting diode circuits for general lighting
US7714334B2 (en) * 2007-08-16 2010-05-11 Lin Peter P W Polarless surface mounting light emitting diode
US9443834B2 (en) 2010-09-02 2016-09-13 Micron Technology, Inc. Back-to-back solid state lighting devices and associated methods
US8384294B2 (en) 2010-10-05 2013-02-26 Electronic Theatre Controls, Inc. System and method for color creation and matching
CN101969726B (en) * 2010-10-15 2013-10-30 赵熙 LED driving loop
US8723450B2 (en) 2011-01-12 2014-05-13 Electronics Theatre Controls, Inc. System and method for controlling the spectral content of an output of a light fixture
US8593074B2 (en) 2011-01-12 2013-11-26 Electronic Theater Controls, Inc. Systems and methods for controlling an output of a light fixture
JP2013225629A (en) * 2012-04-23 2013-10-31 Panasonic Corp Lighting circuit and switch
US9543925B2 (en) * 2012-09-03 2017-01-10 Techno Resources Hk Voltage controlled impedance synthesizer
TWI512229B (en) 2012-12-07 2015-12-11 Ind Tech Res Inst Illuminating device
ITMI20130061A1 (en) * 2013-01-17 2014-07-18 St Microelectronics Srl CURRENT DRIVER FOR AN ARRAY OF LED DIODES.
WO2014132164A2 (en) 2013-02-28 2014-09-04 Koninklijke Philips N.V. Simple led package suitable for capacitive driving
US20140368125A1 (en) * 2013-06-09 2014-12-18 Q Technology, Inc. Lighting panel with distributed capacitance
US8957590B1 (en) * 2013-08-15 2015-02-17 Mei-Ling Peng Structure of color mixture synchronization circuit of LED light string
US20150048747A1 (en) * 2013-08-15 2015-02-19 Mei-Ling Peng Structure of color mixing circuit of led light string
US9775200B2 (en) 2014-02-12 2017-09-26 Philips Lighting Holding B.V. Illumination system comprising an array of LEDs
KR102292640B1 (en) * 2015-03-06 2021-08-23 삼성전자주식회사 Light Emitting Device Package and electronic device including light emitting device
DE102017104908A1 (en) 2017-03-08 2018-09-13 Osram Opto Semiconductors Gmbh Arrangement for operating radiation-emitting components, method for producing the arrangement and compensation structure
EP3376828A1 (en) * 2017-03-17 2018-09-19 Valeo Iluminacion Lighting module with configurable electrical network for driving light source thereof
KR102331650B1 (en) * 2019-09-25 2021-11-30 세메스 주식회사 Apparatus for treating substrate, method for treating substrate and nozzle unit
TWM597022U (en) * 2020-03-23 2020-06-11 柏友照明科技股份有限公司 Led illumination device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6853150B2 (en) 2001-12-28 2005-02-08 Koninklijke Philips Electronics N.V. Light emitting diode driver

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2197583B1 (en) * 1972-09-07 1975-10-17 Rhone Poulenc Ind
JPS4985064U (en) * 1972-11-10 1974-07-23
JPS5961917A (en) * 1982-10-01 1984-04-09 松下電器産業株式会社 Composite electronic part
FR2568042B1 (en) * 1984-07-17 1986-09-05 Radiotechnique Compelec TWO-COLOR LIGHT INDICATOR INDICATING THE OPERATING STATE OF A CIRCUIT OF USE
JPH0241649Y2 (en) * 1985-08-30 1990-11-06
JP2622291B2 (en) * 1989-10-06 1997-06-18 アルプス電気株式会社 Dielectric paste
DE4129059A1 (en) 1991-09-02 1993-03-04 Vdo Schindling Light emitting diode circuit including energy storage capacitor - charges capacitor during half-cycles from AC supply, and discharges through diodes of opposite polarity
JP2976625B2 (en) * 1991-10-04 1999-11-10 松下電器産業株式会社 Multilayer ceramic capacitors
KR930015139A (en) * 1991-12-18 1993-07-23 이헌조 Manufacturing method of light emitting diode capable of changing light intensity
JPH05318825A (en) * 1992-05-25 1993-12-03 Toray Ind Inc Light-emitting diode array device
JP3249582B2 (en) * 1992-07-24 2002-01-21 シャープ株式会社 Light emitting device
JP3063412B2 (en) * 1992-08-21 2000-07-12 富士電機株式会社 Variable capacitor
US5289112A (en) * 1992-09-21 1994-02-22 Hewlett-Packard Company Light-emitting diode array current power supply including switched cascode transistors
JP3499255B2 (en) * 1993-05-21 2004-02-23 株式会社半導体エネルギー研究所 Method of manufacturing composite integrated circuit component
US5463280A (en) * 1994-03-03 1995-10-31 National Service Industries, Inc. Light emitting diode retrofit lamp
JPH07273371A (en) * 1994-03-31 1995-10-20 Okaya Electric Ind Co Ltd Light-emitting diode driving circuit
JPH08137429A (en) * 1994-11-14 1996-05-31 Seibu Electric & Mach Co Ltd Display device
JPH08162360A (en) * 1994-12-02 1996-06-21 Taiyo Yuden Co Ltd Laminated capacitor
JPH08250771A (en) 1995-03-08 1996-09-27 Hiyoshi Denshi Kk Variable color led device and led color control device
DE59913341D1 (en) * 1998-03-11 2006-05-24 Siemens Ag led
AUPP536198A0 (en) * 1998-08-20 1998-09-10 Hybrid Electronics Australia Pty Ltd Colour-correction of light-emitting diode pixel modules
US20040201988A1 (en) * 1999-02-12 2004-10-14 Fiber Optic Designs, Inc. LED light string and arrays with improved harmonics and optimized power utilization
US6078148A (en) * 1998-10-09 2000-06-20 Relume Corporation Transformer tap switching power supply for LED traffic signal
DE10013207B4 (en) 2000-03-17 2014-03-13 Tridonic Gmbh & Co Kg Control of light emitting diodes (LEDs)
US6636027B1 (en) * 2000-10-24 2003-10-21 General Electric Company LED power source
JP2003139712A (en) 2001-10-31 2003-05-14 Ccs Inc Led lighting system
US7095053B2 (en) * 2003-05-05 2006-08-22 Lamina Ceramics, Inc. Light emitting diodes packaged for high temperature operation
US6897622B2 (en) * 2003-06-30 2005-05-24 Mattel, Inc. Incremental color blending illumination system using LEDs
JP2005045112A (en) * 2003-07-24 2005-02-17 Matsushita Electric Ind Co Ltd Flexible circuit board incorporating component and its producing process
JP2005067457A (en) * 2003-08-26 2005-03-17 Denso Corp Vehicular illumination control device
US7296913B2 (en) * 2004-07-16 2007-11-20 Technology Assessment Group Light emitting diode replacement lamp

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6853150B2 (en) 2001-12-28 2005-02-08 Koninklijke Philips Electronics N.V. Light emitting diode driver

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8530906B2 (en) 2008-06-17 2013-09-10 Koninklijke Philips N.V. Light emitting device adapted for AC drive
WO2009153715A3 (en) * 2008-06-17 2010-03-11 Koninklijke Philips Electronics N.V. Light emitting device adapted for ac drive
TWI513358B (en) * 2008-06-17 2015-12-11 Koninkl Philips Electronics Nv Light emitting device adapted for ac drive
JP2012504862A (en) * 2008-10-02 2012-02-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ LED circuit layout with improved flicker performance
WO2012009086A1 (en) * 2010-07-14 2012-01-19 General Electric Company System and method for driving light emitting diodes
US9516723B2 (en) 2010-07-14 2016-12-06 General Electric Company System and method for driving light emitting diodes
EP2410817A3 (en) * 2010-07-23 2014-05-21 Advanced Connectek Inc. Light emitting device driving circuit
US9192021B2 (en) 2010-10-04 2015-11-17 Osram Opto Semiconductors Gmbh Luminous device comprising multiple spaced-apart emission regions
WO2012045684A1 (en) * 2010-10-04 2012-04-12 Osram Opto Semiconductors Gmbh Luminous device comprising multiple spaced-apart emission regions
RU2604890C2 (en) * 2011-03-07 2016-12-20 Конинклейке Филипс Н.В. Electroluminescent device
US9386640B2 (en) 2012-10-15 2016-07-05 Koninklijke Philips N.V. LED package with capacitive couplings
WO2014060921A1 (en) * 2012-10-15 2014-04-24 Koninklijke Philips N.V. Led package with capacitive couplings
RU2637402C2 (en) * 2012-10-15 2017-12-04 Филипс Лайтинг Холдинг Б.В. Led-module with capacitive connections
WO2015036443A1 (en) * 2013-09-12 2015-03-19 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip and optoelectronic component
US9853018B2 (en) 2013-09-12 2017-12-26 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip and optoelectronic component
DE102013110041B4 (en) 2013-09-12 2023-09-07 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelectronic semiconductor chip and optoelectronic component
WO2015050639A1 (en) * 2013-10-03 2015-04-09 Robertson Transformer Co. Capacitive ladder feed for ac led
ITBA20130071A1 (en) * 2013-10-25 2015-04-26 Matteo Console POWER SUPPLY AND DRIVER FOR TURBO LED T8 DIMENSIONS (60CM, 90CM, 120CM, 150CM) WITH VARIABLE CAPACITIVE REACTANCE.
EP3099141A1 (en) * 2015-05-26 2016-11-30 OSRAM GmbH A lighting device and corresponding method
RU2719344C2 (en) * 2015-12-23 2020-04-17 Конинклейке Филипс Н.В. Load device and power supply device for powering load

Also Published As

Publication number Publication date
CN101189736B (en) 2010-05-19
JP2012182486A (en) 2012-09-20
KR20080027322A (en) 2008-03-26
EP1891685B1 (en) 2016-11-30
EP1891685A2 (en) 2008-02-27
TW200702824A (en) 2007-01-16
WO2006129291A3 (en) 2007-04-26
JP2008543075A (en) 2008-11-27
US7830095B2 (en) 2010-11-09
JP5438799B2 (en) 2014-03-12
CN101189736A (en) 2008-05-28
US20080218095A1 (en) 2008-09-11
KR101256392B1 (en) 2013-04-25
BRPI0611190A2 (en) 2011-02-22
MY147397A (en) 2012-11-30

Similar Documents

Publication Publication Date Title
US7830095B2 (en) LED assembly and module
US9642207B2 (en) Methods for combining light emitting devices in a white light emitting apparatus that mimics incandescent dimming characteristics and solid state lighting apparatus for general illumination that mimic incandescent dimming characteristics
EP2471346B1 (en) Solid state lighting apparatus with configurable shunts
AU2002321596B2 (en) Illumination system
US9826581B2 (en) Voltage configurable solid state lighting apparatuses, systems, and related methods
JP5454171B2 (en) Drive circuit for semiconductor light source of vehicle lamp, vehicle lamp
US20140232288A1 (en) Solid state lighting apparatuses and related methods
WO1999057945A1 (en) A lamp employing a monolithic led device
WO2014126731A1 (en) Solid state lighting apparatuses and related methods
JP2015534703A5 (en)
AU2002321596A1 (en) Illumination system
US7906915B2 (en) Enhanced trim resolution voltage-controlled dimming LED driving circuit
US11428394B2 (en) Light board for lighting fixture
US10520144B1 (en) Linear LED lighting with adhesive wings
US8344267B2 (en) LED luminous module with crossover connecting element
CN107466136B (en) LED module and light-emitting device
CN217591143U (en) Multifunctional LED driving circuit
WO2015052018A1 (en) Led current setting via dc supply parameter
CN115812341A (en) Lighting strip
CN111988889A (en) LED driving module and lighting lamp

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
REEP Request for entry into the european phase

Ref document number: 2006756046

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006756046

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11916128

Country of ref document: US

Ref document number: 2008514290

Country of ref document: JP

Ref document number: 200680019292.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 5560/CHENP/2007

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087000031

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2006756046

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0611190

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20071129