WO2006129041A2 - Magnetic position sensor with reduced space requirement - Google Patents

Magnetic position sensor with reduced space requirement Download PDF

Info

Publication number
WO2006129041A2
WO2006129041A2 PCT/FR2006/050501 FR2006050501W WO2006129041A2 WO 2006129041 A2 WO2006129041 A2 WO 2006129041A2 FR 2006050501 W FR2006050501 W FR 2006050501W WO 2006129041 A2 WO2006129041 A2 WO 2006129041A2
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
pole
poles
position sensor
track
Prior art date
Application number
PCT/FR2006/050501
Other languages
French (fr)
Other versions
WO2006129041A3 (en
Inventor
Bertrand Legrand
Laurent Dufour
Olivier Andrieu
Original Assignee
Electricfil Automotive
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electricfil Automotive filed Critical Electricfil Automotive
Publication of WO2006129041A2 publication Critical patent/WO2006129041A2/en
Publication of WO2006129041A3 publication Critical patent/WO2006129041A3/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields

Definitions

  • the object of the invention relates to the technical field of magnetic sensors comprising an encoder element moving in the vicinity of a detection cell, and adapted to locate at least one angular position in the general sense.
  • the object of the invention relates more particularly to the production of a sensor whose encoder is equipped with a series of north poles and south poles mounted alternately.
  • the object of the invention finds a particularly advantageous application in the automotive field where this sensor can be used for example in the context of ignition functions.
  • a magnetic sensor adapted to measure the change in intensity of a magnetic field when a magnetic encoder passes in front of a sensor cell.
  • Such an encoder is constituted by a multipole magnetic ring provided on its circumference with North poles and South poles alternated and regularly spaced at a given pitch. The regular north and south poles are made in large numbers so that such a speed sensor has a good resolution.
  • the detection cell such as a Hall effect probe, for example, delivers a periodic sinusoidal signal.
  • the detection cell is associated with a hysteresis level comparator such as a Schmitt trigger making it possible to obtain clear transitions of the output voltage for distinct values of the magnetic induction depending on whether they vary in increasing or decreasing. descending.
  • a position or velocity sensor implements a Hall effect type probe or a magneto-resistive probe.
  • One of the advantages of using a magneto-resistive probe is to be able to detect variations of the magnetic field components located in the plane of the probe. It is thus possible to design a sensor with limited space.
  • document DE 102 28 663 describes an angular displacement sensor comprising two circular magnetic tracks extending side by side, one of which is formed by a succession of magnetic poles North separated from each other and the other track is formed by a succession of South magnetic poles separated from each other. The magnetic poles are shifted from one track to another so that the magnetic field lines extend obliquely from one track to the other.
  • a magneto-resistive sensing cell is placed between the two tracks to detect the direction of the field between the two tracks. It should be noted that the spacing of the poles in each of the tracks limits the resolution of such a sensor. In addition, shifting the poles from one track to the other reduces the level of the detected magnetic field. Moreover, such a sensor which implements a magneto-resistive probe has a high cost.
  • a sensor with a Hall effect type probe which has a limited cost.
  • a Hall effect type sensor detects only the component of the magnetic field perpendicular to the plane of the probe, which leads to a large size of the sensor.
  • the present invention aims to remedy the drawbacks of the prior art by providing a magnetic position or speed sensor implementing a detection cell having a small footprint.
  • the magnetic position sensor according to the invention comprises: at least one rotary magnetic encoder about an axis, comprising a first and a second circular magnetic track extending side by side and each formed by a succession of alternating north and south magnetic poles, and a detection cell delivering a electrical signal corresponding to the evolution of the magnetic field intensity of the magnetic poles.
  • the magnetic poles of the two tracks are arranged in such a way that a succession of alternately opposite magnetic fields is established, going from one track to the other,
  • the detection cell is mounted to be sensitive to successive magnetic fields of alternating direction passing from one track to the other.
  • FR 2 753 943 to produce an encoder comprising, for each irregular pole, means for correcting the value of the magnetic field created by the irregular pole so that the signal delivered by the passage of the neighboring poles to said irregular poles is symmetrical with respect to the null value of the magnetic field.
  • the sensor according to the invention comprises at least one magnetic singularity formed by a singular pole of a track of different polarity to that of a singular pole of the other track placed opposite it, each singular pole comprising, on the one hand, between two adjacent poles, a different spacing with respect to the spacing pitch between the other poles and, on the other hand, correction means so as to stabilize the magnetic signal delivered by the passage of the poles adjacent to said singular poles.
  • Another object of the invention is to propose an encoder for increasing the level of the magnetic field between the tracks in order to make it possible to detect the passage of the different regular poles.
  • the senor according to the invention comprises means for forcing the magnetic field to be established between the magnetic poles of the two tracks of opposite polarities located vis-à-vis.
  • FIG. 1 is a schematic perspective view showing an embodiment of a position sensor according to the invention.
  • FIG. 2 is a view taken down in a plane of a first exemplary embodiment of an encoder according to the invention.
  • FIG. 3 illustrates the evolution of the magnetic induction obtained during the running of an encoder equipped or not with correction means according to the invention.
  • FIG. 3A illustrates the evolution of the magnetic induction obtained during the running of an encoder according to the invention, with air gaps of different values.
  • Figures 4 to 7 illustrate various alternative embodiments of means for stabilizing the signal in relation to an irregular pole.
  • Figures 8 to 13 illustrate various alternative embodiments of an encoder equipped with means provided to force the magnetic field to pass from one track to another.
  • Figure 1 shows an embodiment of a position sensor I having a magnetic encoder 1 mounted to scroll in front of a fixed detection cell 2.
  • the encoder 1 is constituted in the form of a multipole magnetic ring rotated about its center along an axis A.
  • the encoder 1 includes a first 3a and a second 3b circular magnetic tracks extending side by side and made contiguously or as shown in Fig . 2, separated by an interval ⁇ . It must be considered that the two circular magnetic tracks 3 a , 3 b each extend on one side of a plane of measurement or symmetry P perpendicular to the axis of the encoder A.
  • Each magnetic track comprises a succession of alternating north and south magnetic poles respectively 4 a , 5 a for the track 3 a and 4 b , 5 b for the track 3 b .
  • the magnetic poles 4a, 5, 4b, 5b are arranged to present a regular pitch spacing between two adjacent poles.
  • the angular length of each regular pole 4 a , 4 b 5 a , 5 b is 3 °, taken in a direction parallel to the plane P or the running direction of the encoder.
  • the magnetic poles 4 a , 5 a , 4 b 5 b of the two tracks 3 a , 3 b are arranged in such a way that a succession of magnetic fields alternately in the opposite direction and from a track is established. to the other.
  • the magnetic poles of the two tracks 3a, 3b are arranged so that are established between the opposite polarity poles vis-à-vis and belonging to two tracks, namely between the poles 4a and 5 a -5 b -4 b , a succession of magnetic fields alternately in the opposite direction and intersecting the measurement plane P.
  • the magnetic fields intersecting the measurement plane P being established between two poles of opposite polarities belonging to two different tracks (4 a -5b and 5 a -4b) is represented schematically in a mixed line M.
  • the magnetic poles 4a, 5a, 4b, 5b of the two tracks are arranged so that magnetic fields M established between the two tracks 3, 3b intersect the measurement plane P in a direction perpendicular to measurement plan.
  • the magnetic fields M are parallel to each other and to the axis of rotation A of the encoder.
  • the poles of the tracks are arranged symmetrically on both sides of the plane M being of opposite polarity.
  • the geometric shape of the pole 4, 5a is symmetrical along the plane P to the geometric shape of the pole 4 b, 5 b.
  • Each pole of a track is thus placed vis-à-vis a pole of the other track whose polarity is opposite to his.
  • each track has alternating north and south poles
  • the magnetic field between the two tracks changes direction alternately from a pair of poles 4 a -5 b to the neighboring pair of poles 5 a -4 b .
  • each magnetic field M established between the two tracks 3 and 3b cut the measurement plane P not being perpendicular to this plane.
  • the detection cell 2 is mounted to be sensitive to successive magnetic fields M passing from one track to the other.
  • the detection cell 2 is thus placed above and between the two tracks 3a, 3b.
  • the detection cell 2 is placed in the plane of symmetry P of the encoder, close to the external surface of the encoder.
  • the detection cell 2 is sensitive to transverse magnetic fields, that is to say parallel to the axis of rotation A of the encoder.
  • the sensitive cell 2 is such as a Hall-effect cell, Hall effect differential, or Hall effect with flux concentrator, or even a magneto-resistive cell or a giant magneto-resistant cell (GMR).
  • GMR giant magneto-resistant cell
  • the rotary sensor I as described above makes it possible advantageously to implement a Hall effect type cell mounted to extend substantially in the plane of symmetry P of the encoder perpendicular to the axis of rotation A while being able to measuring a transverse magnetic field, that is to say parallel to the axis of rotation A.
  • the Hall effect sensor 2 can thus be mounted with a small footprint in this plane without having to fold the connecting tabs.
  • the sensor I comprises a multipole encoder 1, each regular pole 4 of which -5 b or 5 a -4 b is formed by a pair of magnetic poles, one of which belongs to the first track and the other at the second track.
  • the multipolar encoder 1 may be equipped with at least one magnetic singularity to locate a position.
  • the encoder 1 is provided with a magnetic singularity 6 formed by a singular pole 6 is formed in the first track 3a and having a polarity different from that of a singular pole 6b arranged vis-à-vis in the second track 3b.
  • the singular pole 6 has a North pole is surrounded by two adjacent South poles 5A while the singular 6b pole is a south pole flanked by two adjacent poles North 4 b.
  • the polarities of the adjacent poles and singular poles can be reversed.
  • a magnetic field is established between the two tracks 3a, 3b and more precisely between the singular poles 6, 6b. Such a magnetic field is detected by the detection cell 2.
  • each single pole 6a, 6b comprises firstly between two adjacent poles, a spacing different from the spacing pitch between the other poles and second correction means 10 the value of its magnetic field so as to stabilize the magnetic signal delivered by the passage of poles adjacent or adjacent said singular pole.
  • each single pole 6a, 6b has an angular length of 15 °.
  • the encoder 1 is constituted by a crown forming a support on which is adhered a ring made of elastomer charged with magnetized particles to form the North and South poles of each of the tracks 3 a , 3 b .
  • the correction means 10 make it possible to correct the value of the magnetic induction created by the singular poles so that it does not disturb the inductions of the neighboring poles.
  • the correction means 10 are determined so that the signal corresponding to the evolution of the magnetic field delivered by the neighboring poles to the magnetic singularity 6 is not disturbed by the magnetic induction created by each singular pole 6 a , 6 b -
  • the regular poles adjacent to the singularity have, seen by the measuring cell, an angular pitch identical to the other regular poles.
  • the signal obtained B, Bi retains a constant period regardless of the width of the gap, that is to say the distance between the detection cell 2 and the magnetic encoder 1.
  • each single pole 6a, 6b comprises as correcting means 10, a gradual magnetization between the two adjacent poles.
  • the level of magnetization of each singular pole 6 a , 6 b evolves between the two adjacent poles so that the level of magnetization in the part The center of the singular pole is greater than the magnetization level of its lateral portions contiguous to the adjacent poles.
  • each singular pole it may be provided to intercalate in each singular pole, a saturated magnetic pole having a polarity opposite to the singular pole.
  • each single pole 6a, 6b comprises as correcting means 10, a corrector lt division, ll b contiguous with each adjacent pole singular pole.
  • a correction pole is interposed between each singular pole and each of the poles adjacent to said singular pole.
  • Each checker ll division, ll b is a non-magnetic pole or the same polarity as the poles adjacent to the singular pole 6, 6b.
  • each checker ll division, ll b has a shape such that each singular pole 6a, 6b has an isosceles trapezoid whose largest base is located on the side of the measuring plane P.
  • the singular poles 6a, 6b have a symmetrical shape with respect to the plane P.
  • each singular pole 6a, 6b is contiguous at its largest base with two adjacent poles.
  • the larger base of each singular pole coincides with the edge of the adjacent track plan to die P.
  • Each checker ll division, ll b thus has a triangular shape.
  • FIG. 5 illustrates another embodiment wherein each singular pole 6 a, 6 b is not contiguous with its adjacent poles.
  • each single pole 6a, 6b has an isosceles trapezoidal shape whose larger base has a length less than the distance separating two adjacent poles. Each single pole 6a, 6b is thus completely separated from its adjacent poles.
  • Figure 6 illustrates another alternative embodiment of the correction lt poles, llb-
  • the corrector lt division, ll b contiguous to an adjacent pole is connected to the corrector pole contiguous to the other pole adjacent by a connecting zone 12 a, 12 b extending along the edge of the track located on the side opposite the edge adjacent the measurement plane P.
  • each single pole 6a, 6b b is surrounded on its sides with the exception of the one placed opposite the other singular pole.
  • the implementation of a connection area 12, 12b for correcting poles can be realized in the variant illustrated in Fig. 4 in which the large base of each singular pole 6 a , 6b is equal to the distance separating the two adjacent poles.
  • FIG. 7 illustrates another alternative embodiment wherein each singular pole 6 a, 6 b extends to the adjacent poles with a limited part of continuity of the width of each adjacent pole.
  • Each checker ll pole, 11b is limited on the surface to obtain continuity between the singular pole and its adjacent pole at the edge of the neighboring track of the measuring plane P.
  • corrective poles ll, 11b are provided with a connecting area 12, 12b as described in Fig. 6.
  • the regular and singular poles of the two tracks have a geometric shape symmetrical with respect to the measurement plane P, while each pole of a track has a polarity opposite to that of the pole. of the other track placed in vis-à-vis.
  • the implementation of the correction means 10, as described above makes it possible to obtain a good accuracy of the measurements taken for the identification of the singularity 6.
  • Another aspect of the invention aims to promote the establishment of magnetic fields from one track to another, that is to say to reduce the establishment of magnetic fields between the poles of the same track.
  • the senor 1 comprises means 15 for forcing the magnetic field to be established between the regular magnetic poles 4 a -5 b and 5 a -4 b of the two tracks, of opposite polarities located opposite each other.
  • Such means 15 make it possible to increase the level of the field magnetic between the tracks and consequently, to increase the signal accuracy and the detection capability with a wide gap.
  • the means 15 for forcing the magnetic field to be established between the two magnetic tracks 3 a , 3 b are formed by the geometrical shape of the poles of the two tracks.
  • the geometric shape of the poles of the same polarity belonging to the two tracks is different from the geometrical shape of the poles having the other polarity.
  • each such pole regular 5 a, 5 b has a bottom surface at regular pole of opposite polarity, namely 4 a, 4 b.
  • Each regular pole 5, 5b extends along a limited width of the track from the adjacent edge of the measuring plane P.
  • each regular pole 5, 5b has a length of constant while each regular pole 4a, 4b has a length of constant value over the entire width of the corresponding track.
  • Each regular pole 5 a, 5 b and defines a non-magnetic region 15 with the edge of the track opposite to that adjacent to the measurement plane P.
  • the tracks 3a, 3b are not symmetrical with respect to the measurement plane P.
  • the tracks are symmetrical with respect to the plane P with an offset pitch equal to one pole.
  • the means 15 for forcing the magnetic field are formed by non-magnetic zones extending between each pole of the two tracks.
  • each regular pole 4a, 5a, 4b, 5b has an identical width taken between the two opposite edges of a track while each non-magnetic region 15 has a constant length over the entire width of the track and separates two consecutive poles of the same track.
  • each regular pole 5a, 5b has a reduced length with respect to that of a regular pole 4 a, 4 b as each regular pole 5a, 5b is flanked by two non-magnetic regions 15.
  • the poles of the track 3 was not built symmetrically to the poles of the track 3 b in relation to measuring plane P.
  • the tracks are symmetrical with respect to the plane P with an offset pitch equal to one pole.
  • each nonmagnetic zone 15 has a length that increases from the edge of the adjacent track of the measurement plane P towards the opposite edge of the track.
  • each nonmagnetic zone 15 has a right triangle shape.
  • each regular pole 5, 5b is separated from its adjacent poles by a non-magnetic region 15 has a shape of isosceles trapezoid while regular poles 4 4 b have a constant length of a non-magnetic area to the other.
  • each pole 5, 5b surrounded by the non-magnetic region 15 has a shape of an isosceles trapezium whose major base corresponds to the distance separating the two adjacent poles, is coincident with the edge of the neighboring track measurement plan P.
  • regular poles 4, 4b have a constant length from one side to the other of the track.
  • each regular pole 5a, 5b is less than the distance between adjacent poles so that said regular pole is surrounded by a nonmagnetic zone 15 except for the side located vis opposite the pole of the other track.
  • each regular pole 5a, 5b is set back from the edge of the adjacent one of the opposite track the measurement plane P, since each non-magnetic area 15 is provided with a connecting portion 16 as illustrated in Fig. 11.
  • the regular pole 5 a , 5 b extends over the entire width of the track so that the connecting portion 16 is removed.
  • each regular pole 5 a, 5 b is surrounded by a non-magnetic region 15, with the exception of its portion located vis-à-vis a pole of the other track.
  • each non-magnetic region 15 has a triangular shape whose apex is turned towards the edge of the adjacent track to the plane P so that each magnetic pole 4, 5a, 4b, 5b has a shape of an isosceles trapezium whose the large base is coincident with the edge of the adjacent track of the measurement plane P and the small base coincides with the edge of the track opposite to the adjacent edge of the measurement plane P.
  • the poles of the tracks are symmetrical by report to measurement plan P.
  • the encoder 1 according to the invention is intended to be mounted on a rotating target in the general sense, from which at least one position is determined.
  • the encoder 1 according to the invention is intended to be mounted on a rotating shaft of a motor vehicle and for example on a transmission shaft of a motor vehicle.
  • the encoder 1 is adapted to be mounted on the drive pulley mounted at the output of the engine of a motor vehicle, that is to say on a distribution pulley or on one of the auxiliary pulleys.
  • the encoder 1 is mounted on the drive pulley located in the axis of the crankshaft, in order to allow detection of the top dead center of ignition of a cylinder.
  • the subject of the invention can also be applied to the production of a sensor comprising a magnetic ring 1 provided with a plurality of irregular poles Pi making it possible to locate several positions.
  • the magnetic ring 1 comprises, for example, four irregular poles Pi for locating the position of the cylinders of an engine.
  • the encoder 1 is mounted integral with the camshaft of a motor vehicle engine.
  • the encoder 1 can be mounted on the camshaft with only one irregular pole.
  • the encoder 1 is intended to be mounted inside a support plate of a dynamic seal for a transmission shaft, mounted between the crankshaft and the gearbox of an engine of a motor vehicle.
  • the encoder 1 is rotated by the transmission shaft and is mounted in close relation with at least one detection cell 2 mounted on the support plate of the seal, to form a position sensor.
  • the encoder 1 according to the invention is rotated on a motor shaft of a motor vehicle or is rotated by the crankshaft or the camshaft of a motor vehicle.
  • engine of a motor vehicle being mounted inside the engine block of such a vehicle, in proximity relation of a sensor cell 2 to form a position sensor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

The invention concerns a rotary position sensor comprising: at least one magnetic encoder (1) rotating about an axis (A), including first (3a) and second (3b) circular magnetic tracks extending adjacent and consisting each of a series of alternating North and South magnetic poles (4a, 5a-4b, 5b); and a detection cell (2) delivering an electric signal corresponding to the evolution of the intensity of the magnetic field of the magnetic poles. The invention is characterized in that the magnetic poles (4a, 5a-4b, 5b) of the two tracks are arranged such that there is provided a succession of magnetic fields (M) alternately in opposite direction, passing from one track to the other; the detection cell (2) is mounted so as to be sensitive to the successive magnetic fields (M) of alternate direction passing from one track to the other.

Description

CAPTEUR MAGNETIQUE DE POSITION A ENCOMBREMENT REDUIT MAGNETIC POSITION SENSOR WITH REDUCED SIZE
L'objet de l'invention concerne le domaine technique des capteurs magnétiques comportant un élément codeur se déplaçant à proximité d'une cellule de détection, et adapté pour repérer au moins une position angulaire au sens général.The object of the invention relates to the technical field of magnetic sensors comprising an encoder element moving in the vicinity of a detection cell, and adapted to locate at least one angular position in the general sense.
L'objet de l'invention concerne plus particulièrement la réalisation d'un capteur dont le codeur est équipé d'une série de pôles nord et pôles sud montés de manière alternée.The object of the invention relates more particularly to the production of a sensor whose encoder is equipped with a series of north poles and south poles mounted alternately.
L'objet de l'invention trouve une application particulièrement avantageuse dans le domaine automobile où ce capteur peut être utilisé par exemple dans le cadre des fonctions d'allumage.The object of the invention finds a particularly advantageous application in the automotive field where this sensor can be used for example in the context of ignition functions.
Il est connu dans le domaine préféré ci-dessus, de mettre en œuvre un capteur magnétique adapté pour mesurer le changement d'intensité d'un champ magnétique lorsqu'un codeur magnétique défile devant une cellule de détection. Un tel codeur est constitué par un anneau magnétique multipolaire pourvu sur sa circonférence de pôles Nord et de pôles Sud alternés et régulièrement espacés selon un pas donné. Les pôles réguliers Nord et Sud sont réalisés en nombre élevé afin qu'un tel capteur de vitesse possède une bonne résolution. La cellule de détection telle qu'une sonde à effet Hall par exemple, délivre un signal sinusoïdal périodique. La cellule de détection est associée à un comparateur de niveau à hystérésis tel qu'un trigger de Schmitt permettant d'obtenir des transitions franches de la tension de sortie pour des valeurs distinctes de l'induction magnétique selon qu'elles varient en croissant ou en décroissant.It is known in the preferred field above, to implement a magnetic sensor adapted to measure the change in intensity of a magnetic field when a magnetic encoder passes in front of a sensor cell. Such an encoder is constituted by a multipole magnetic ring provided on its circumference with North poles and South poles alternated and regularly spaced at a given pitch. The regular north and south poles are made in large numbers so that such a speed sensor has a good resolution. The detection cell, such as a Hall effect probe, for example, delivers a periodic sinusoidal signal. The detection cell is associated with a hysteresis level comparator such as a Schmitt trigger making it possible to obtain clear transitions of the output voltage for distinct values of the magnetic induction depending on whether they vary in increasing or decreasing. descending.
Pour permettre de déterminer au moins une position correspondant par exemple au point mort haut d'allumage d'un cylindre, il peut être envisagé soit de supprimer plusieurs pôles magnétiques en laissant subsister un espace vide, soit de remplacer un ou plusieurs pôles d'un signe donné par un ou plusieurs pôles d'un signe contraire. Il est ainsi réalisé un pôle dit irrégulier ou singulier présentant d'une part une aimantation d'un signe opposé au signe de ces deux pôles adjacents, et d'autre part un écartement différent par rapport au pas d'écartement des autres pôles.To make it possible to determine at least one position corresponding, for example, to the top dead center of ignition of a cylinder, it may be envisaged either to eliminate several magnetic poles while leaving a void space, or to replace one or more poles of a sign given by one or more poles of an opposite sign. It is thus realized a pole said irregular or singular presenting on the one hand a magnetization of a sign opposite to the sign of these two adjacent poles, and secondly a different spacing from the spacing pitch of the other poles.
Un capteur de position ou de vitesses met en œuvre une sonde de type à effet Hall ou une sonde magnéto-résistive. Un des avantages de l'utilisation d'une sonde magnéto-résistive est de pouvoir détecter des variations des composantes du champ magnétique situées dans le plan de la sonde. Il est ainsi possible de concevoir un capteur avec un encombrement limité. A cet égard, le document DE 102 28 663 décrit un capteur de déplacement angulaire comportant deux pistes magnétiques circulaires s'étendant côte à côte dont l'une est formée par une succession de pôles magnétiques Nord séparés les uns des autres et dont l'autre piste est formée par une succession de pôles magnétiques Sud séparés les uns des autres. Les pôles magnétiques sont décalés d'une piste à l'autre de sorte que les lignes de champ magnétiques s'étendent en biais d'une piste à l'autre. Une cellule de détection magnéto-résistive est placée entre les deux pistes pour détecter la direction du champ s'établissant entre les deux pistes. Il est à noter que l'espacement des pôles dans chacune des pistes limite la résolution d'un tel capteur. De plus, le décalage des pôles d'une piste à l'autre réduit le niveau du champ magnétique détecté. Par ailleurs, un tel capteur qui met en œuvre une sonde magnéto-résistive présente un coût élevé.A position or velocity sensor implements a Hall effect type probe or a magneto-resistive probe. One of the advantages of using a magneto-resistive probe is to be able to detect variations of the magnetic field components located in the plane of the probe. It is thus possible to design a sensor with limited space. In this respect, document DE 102 28 663 describes an angular displacement sensor comprising two circular magnetic tracks extending side by side, one of which is formed by a succession of magnetic poles North separated from each other and the other track is formed by a succession of South magnetic poles separated from each other. The magnetic poles are shifted from one track to another so that the magnetic field lines extend obliquely from one track to the other. A magneto-resistive sensing cell is placed between the two tracks to detect the direction of the field between the two tracks. It should be noted that the spacing of the poles in each of the tracks limits the resolution of such a sensor. In addition, shifting the poles from one track to the other reduces the level of the detected magnetic field. Moreover, such a sensor which implements a magneto-resistive probe has a high cost.
Pour remédier à cet inconvénient de coût, il est connu un capteur avec une sonde du type à effet Hall qui présente un coût limité. Cependant, une sonde de type à effet Hall détecte uniquement la composante du champ magnétique perpendiculaire au plan de la sonde, ce qui conduit à un encombrement important du capteur.To overcome this cost disadvantage, it is known a sensor with a Hall effect type probe which has a limited cost. However, a Hall effect type sensor detects only the component of the magnetic field perpendicular to the plane of the probe, which leads to a large size of the sensor.
La présente invention vise à remédier aux inconvénients de l'art antérieur en proposant un capteur magnétique de position ou de vitesses mettant en œuvre une cellule de détection présentant un encombrement réduit. Pour atteindre un tel objectif, le capteur de position magnétique selon l'invention comporte : - au moins un codeur magnétique rotatif autour d'un axe, comportant une première et une deuxième pistes magnétiques circulaires s'étendant côte à côte et formées chacune par une succession de pôles magnétiques alternés Nord et Sud, - et une cellule de détection délivrant un signal électrique correspondant à l'évolution de l'intensité du champ magnétique des pôles magnétiques.The present invention aims to remedy the drawbacks of the prior art by providing a magnetic position or speed sensor implementing a detection cell having a small footprint. To achieve such an objective, the magnetic position sensor according to the invention comprises: at least one rotary magnetic encoder about an axis, comprising a first and a second circular magnetic track extending side by side and each formed by a succession of alternating north and south magnetic poles, and a detection cell delivering a electrical signal corresponding to the evolution of the magnetic field intensity of the magnetic poles.
Selon l'invention :According to the invention:
- les pôles magnétiques des deux pistes sont agencés de manière que s'établissent une succession de champs magnétiques alternativement de sens opposé, allant d'une piste à l'autre,the magnetic poles of the two tracks are arranged in such a way that a succession of alternately opposite magnetic fields is established, going from one track to the other,
- la cellule de détection est montée pour être sensible aux champs magnétiques successifs de sens alterné passant d'une piste à l'autre.the detection cell is mounted to be sensitive to successive magnetic fields of alternating direction passing from one track to the other.
Lorsque le codeur comporte au moins un pôle irrégulier et afin d'obtenir une bonne précision de mesure, il est connu par exemple par le brevetWhen the encoder comprises at least one irregular pole and in order to obtain good measurement accuracy, it is known for example from the patent
FR 2 753 943 de réaliser un codeur comprenant pour chaque pôle irrégulier, des moyens de correction de la valeur du champ magnétique créé par le pôle irrégulier de manière que le signal délivré par le passage des pôles voisins auxdits pôles irréguliers soient symétriques par rapport à la valeur nulle du champ magnétique.FR 2 753 943 to produce an encoder comprising, for each irregular pole, means for correcting the value of the magnetic field created by the irregular pole so that the signal delivered by the passage of the neighboring poles to said irregular poles is symmetrical with respect to the null value of the magnetic field.
La mise en œuvre d'un tel codeur permet d'obtenir en sortie de la cellule de détection du capteur, un signal magnétique dont la période est constante pour ce qui concerne les pôles réguliers. Il en résulte une bonne précision de mesure ainsi réalisée notamment pour le repérage du pôle irrégulier.The implementation of such an encoder makes it possible to obtain at the output of the sensor detection cell a magnetic signal whose period is constant with respect to the regular poles. This results in a good measurement accuracy thus achieved especially for the identification of the irregular pole.
Si la solution technique décrite dans ce brevet donne satisfaction en pratique, une telle technique ne permet pas de mettre en œuvre une cellule de détection dans un encombrement réduit.If the technical solution described in this patent is satisfactory in practice, such a technique does not allow to implement a detection cell in a small footprint.
Un autre objet de l'invention est donc de proposer un capteur avec un encombrement limité tout en possédant une bonne précision pour le repérage, notamment du pôle irrégulier. Pour atteindre un tel objectif, le capteur selon l'invention comporte au moins une singularité magnétique formée par un pôle singulier d'une piste de polarité différente à celle d'un pôle singulier de l'autre piste placé en vis-à- vis, chaque pôle singulier comportant d'une part, entre deux pôles adjacents, un écartement différent par rapport au pas d'écartement entre les autres pôles et d'autre part, des moyens de correction de manière à stabiliser le signal magnétique délivré par le passage des pôles adjacents auxdits pôles singuliers.Another object of the invention is therefore to provide a sensor with limited space while having a good accuracy for tracking, including the irregular pole. To achieve such an objective, the sensor according to the invention comprises at least one magnetic singularity formed by a singular pole of a track of different polarity to that of a singular pole of the other track placed opposite it, each singular pole comprising, on the one hand, between two adjacent poles, a different spacing with respect to the spacing pitch between the other poles and, on the other hand, correction means so as to stabilize the magnetic signal delivered by the passage of the poles adjacent to said singular poles.
Un autre objet de l'invention vise à proposer un codeur permettant d'augmenter le niveau du champ magnétique entre les pistes afin de permettre de détecter le passage des différents pôles réguliers.Another object of the invention is to propose an encoder for increasing the level of the magnetic field between the tracks in order to make it possible to detect the passage of the different regular poles.
Pour atteindre un tel objectif, le capteur selon l'invention comporte des moyens pour forcer le champ magnétique à s'établir entre les pôles magnétiques des deux pistes de polarités opposées situées en vis-à-vis. Diverses autres caractéristiques ressortent de la description faite ci-dessous en référence aux dessins annexés qui montrent, à titre d'exemples non limitatifs, des formes de réalisation de l'objet de l'invention.To achieve such an objective, the sensor according to the invention comprises means for forcing the magnetic field to be established between the magnetic poles of the two tracks of opposite polarities located vis-à-vis. Various other characteristics appear from the description given below with reference to the accompanying drawings which show, by way of non-limiting examples, embodiments of the subject of the invention.
La Figure 1 est une vue schématique en perspective montrant un exemple de réalisation d'un capteur de position conforme à l'invention. La Figue 2 est une vue ramenée dans un plan d'un premier exemple de réalisation d'un codeur conforme à l'invention.Figure 1 is a schematic perspective view showing an embodiment of a position sensor according to the invention. FIG. 2 is a view taken down in a plane of a first exemplary embodiment of an encoder according to the invention.
La Figure 3 illustre l'évolution de l'induction magnétique obtenue lors du défilement d'un codeur équipé ou non de moyens de correction conformes à l'invention. La Figure 3A illustre l'évolution de l'induction magnétique obtenue lors du défilement d'un codeur conforme à l'invention, avec des entrefers de valeurs différentes.FIG. 3 illustrates the evolution of the magnetic induction obtained during the running of an encoder equipped or not with correction means according to the invention. FIG. 3A illustrates the evolution of the magnetic induction obtained during the running of an encoder according to the invention, with air gaps of different values.
Les Figures 4 à 7 illustrent diverses variantes de réalisation de moyens permettant de stabiliser le signal en relation d'un pôle irrégulier. Les Figures 8 à 13 illustrent diverses variantes de réalisation d'un codeur équipé de moyens pourvus pour forcer le champ magnétique à passer d'une piste à l'autre.Figures 4 to 7 illustrate various alternative embodiments of means for stabilizing the signal in relation to an irregular pole. Figures 8 to 13 illustrate various alternative embodiments of an encoder equipped with means provided to force the magnetic field to pass from one track to another.
La Figure 1 montre un exemple de réalisation d'un capteur de position I comportant un codeur magnétique 1 monté pour défiler devant une cellule de détection 2 fixe. Le codeur 1 est constitué sous la forme d'un anneau magnétique multipolaire entraîné en rotation autour de son centre selon un axe A.Figure 1 shows an embodiment of a position sensor I having a magnetic encoder 1 mounted to scroll in front of a fixed detection cell 2. The encoder 1 is constituted in the form of a multipole magnetic ring rotated about its center along an axis A.
Conformément à l'invention et tel que cela ressort plus précisément de la Figure 2, le codeur 1 comporte une première 3a et une deuxième 3b pistes magnétiques circulaires s'étendant côte à côte et réalisées de manière jointive ou comme illustré sur la Fig. 2, séparées par un intervalle Δ. Il doit être considéré que les deux pistes magnétiques circulaires 3a, 3b s'étendent chacune d'un côté d'un plan de mesure ou de symétrie P perpendiculaire à l'axe du codeur A.In accordance with the invention and as seen more clearly in Figure 2, the encoder 1 includes a first 3a and a second 3b circular magnetic tracks extending side by side and made contiguously or as shown in Fig . 2, separated by an interval Δ. It must be considered that the two circular magnetic tracks 3 a , 3 b each extend on one side of a plane of measurement or symmetry P perpendicular to the axis of the encoder A.
Chaque piste magnétique comporte une succession de pôles magnétiques alternés Nord et Sud respectivement 4a, 5a pour la piste 3a et 4b, 5b pour la piste 3b. Les pôles magnétiques 4a, 5a, 4b, 5b sont aménagés pour présenter un pas régulier d'écartement entre deux pôles voisins. Par exemple, la longueur angulaire de chaque pôle régulier 4a, 4b 5a, 5b est de 3°, prise selon une direction parallèle au plan P ou à la direction de défilement du codeur.Each magnetic track comprises a succession of alternating north and south magnetic poles respectively 4 a , 5 a for the track 3 a and 4 b , 5 b for the track 3 b . The magnetic poles 4a, 5, 4b, 5b are arranged to present a regular pitch spacing between two adjacent poles. For example, the angular length of each regular pole 4 a , 4 b 5 a , 5 b is 3 °, taken in a direction parallel to the plane P or the running direction of the encoder.
Conformément à l'invention, les pôles magnétiques 4a, 5a, 4b 5b des deux pistes 3a, 3b sont agencées de manière que s'établissent une succession de champs magnétiques alternativement de sens opposé et allant d'une piste à l'autre. Les pôles magnétiques des deux pistes 3a, 3b sont agencés de manière que s'établissent entre les pôles de polarités opposées en vis-à-vis et appartenant aux deux pistes, à savoir entre les pôles 4a-5b et 5a-4b, une succession de champs magnétiques alternativement de sens contraire et coupant le plan de mesure P. Dans l'exemple illustré à la Figure 2, les champs magnétiques coupant le plan de mesure P s'établissant entre deux pôles de polarités opposées appartenant à deux pistes différentes (4a-5b et 5a-4b) est représenté à titre schématique selon un trait mixte M.According to the invention, the magnetic poles 4 a , 5 a , 4 b 5 b of the two tracks 3 a , 3 b are arranged in such a way that a succession of magnetic fields alternately in the opposite direction and from a track is established. to the other. The magnetic poles of the two tracks 3a, 3b are arranged so that are established between the opposite polarity poles vis-à-vis and belonging to two tracks, namely between the poles 4a and 5 a -5 b -4 b , a succession of magnetic fields alternately in the opposite direction and intersecting the measurement plane P. In the example illustrated in FIG. 2, the magnetic fields intersecting the measurement plane P being established between two poles of opposite polarities belonging to two different tracks (4 a -5b and 5 a -4b) is represented schematically in a mixed line M.
Selon une caractéristique préférée de réalisation illustrée à la Fig. 2, les pôles magnétiques 4a, 5a, 4b, 5b des deux pistes sont agencés de manière que les champs magnétiques M s'établissant entre les deux pistes 3a, 3b coupent le plan de mesure P selon une direction perpendiculaire au plan de mesure. Dans cet exemple, les champs magnétiques M sont parallèles entre eux et à l'axe de rotation A du codeur. Selon cet exemple de réalisation, les pôles des pistes sont disposés de manière symétrique de part et d'autre du plan M en étant de polarité opposée. En d'autres termes, la forme géométrique des pôles 4a, 5a est symétrique selon le plan P à la forme géométrique des pôles 4b, 5b. Chaque pôle d'une piste se trouve ainsi placé en vis-à-vis d'un pôle de l'autre piste dont la polarité est opposée à la sienne. De plus, comme chaque piste comporte des pôles alternativement Nord et Sud, le champ magnétique s'établissant entre les deux pistes change de sens alternativement d'une paire de pôles 4a-5b à la paire de pôles voisine 5a-4b. Bien entendu, il pourrait être envisagé que chaque champ magnétique M s'établissant entre les deux pistes 3a et 3b coupe le plan de mesure P en n'étant pas perpendiculaire à ce plan.According to a preferred embodiment characteristic illustrated in FIG. 2, the magnetic poles 4a, 5a, 4b, 5b of the two tracks are arranged so that magnetic fields M established between the two tracks 3, 3b intersect the measurement plane P in a direction perpendicular to measurement plan. In this example, the magnetic fields M are parallel to each other and to the axis of rotation A of the encoder. According to this embodiment, the poles of the tracks are arranged symmetrically on both sides of the plane M being of opposite polarity. In other words, the geometric shape of the pole 4, 5a is symmetrical along the plane P to the geometric shape of the pole 4 b, 5 b. Each pole of a track is thus placed vis-à-vis a pole of the other track whose polarity is opposite to his. In addition, since each track has alternating north and south poles, the magnetic field between the two tracks changes direction alternately from a pair of poles 4 a -5 b to the neighboring pair of poles 5 a -4 b . Of course, it could be envisaged that each magnetic field M established between the two tracks 3 and 3b cut the measurement plane P not being perpendicular to this plane.
Selon une autre caractéristique de l'invention, la cellule de détection 2 est montée pour être sensible aux champs magnétiques successifs M passant d'une piste à l'autre. La cellule de détection 2 est donc placée au dessus et entre les deux pistes 3a, 3b. Avantageusement, la cellule de détection 2 est placée dans le plan de symétrie P du codeur, à proximité de la surface externe du codeur. Dans l'exemple illustré sur les dessins, la cellule de détection 2 est sensible aux champs magnétiques transversaux, c'est-à-dire parallèle à l'axe de rotation A du codeur. Par exemple, la cellule sensible 2 est telle qu'une cellule à effet Hall, à effet Hall différentiel, ou à effet Hall avec concentrateur de flux, voire même une cellule magnéto-résistive ou une cellule magnéto-résistante géante (GMR). Le capteur rotatif I tel que décrit ci-dessus permet de mettre en œuvre avantageusement une cellule de type à effet Hall monté pour s'étendre sensiblement dans le plan de symétrie P du codeur perpendiculaire à l'axe de rotation A tout en étant apte à mesurer un champ magnétique transversal, c'est-à-dire parallèle à l'axe de rotation A. La cellule de détection 2 à effet Hall peut ainsi être monté avec un encombrement réduit dans ce plan sans être obligé de procéder à un pliage des pattes de raccordement.According to another characteristic of the invention, the detection cell 2 is mounted to be sensitive to successive magnetic fields M passing from one track to the other. The detection cell 2 is thus placed above and between the two tracks 3a, 3b. Advantageously, the detection cell 2 is placed in the plane of symmetry P of the encoder, close to the external surface of the encoder. In the example illustrated in the drawings, the detection cell 2 is sensitive to transverse magnetic fields, that is to say parallel to the axis of rotation A of the encoder. For example, the sensitive cell 2 is such as a Hall-effect cell, Hall effect differential, or Hall effect with flux concentrator, or even a magneto-resistive cell or a giant magneto-resistant cell (GMR). The rotary sensor I as described above makes it possible advantageously to implement a Hall effect type cell mounted to extend substantially in the plane of symmetry P of the encoder perpendicular to the axis of rotation A while being able to measuring a transverse magnetic field, that is to say parallel to the axis of rotation A. The Hall effect sensor 2 can thus be mounted with a small footprint in this plane without having to fold the connecting tabs.
Il ressort de la description qui précède que le capteur I comporte un codeur multipolaire 1 dont chaque pôle régulier 4a-5b ou 5a-4b est formé par une paire de pôles magnétiques dont l'un appartient à la première piste et l'autre à la deuxième piste. Bien entendu, le codeur multipolaire 1 peut être équipé d'au moins une singularité magnétique afin de repérer une position. Dans l'exemple illustré à la Fîg. 2, le codeur 1 est pourvu d'une singularité magnétique 6 formée par un pôle singulier 6a aménagé dans la première piste 3a et présentant une polarité différente de celle d'un pôle singulier 6b aménagé en vis-à-vis dans la deuxième piste 3b. Dans l'exemple illustré, le pôle singulier 6a est un pôle Nord encadré par deux pôles adjacents Sud 5a tandis que le pôle singulier 6b est un pôle Sud encadré par deux pôles adjacents Nord 4b. Bien entendu, les polarités des pôles adjacents et des pôles singuliers peuvent être inversés. Ainsi, pour chaque singularité magnétique 6, un champ magnétique s'établit entre les deux pistes 3a, 3b et plus précisément entre les pôles singuliers 6a, 6b. Un tel champ magnétique est détecté par la cellule de détection 2.It follows from the foregoing description that the sensor I comprises a multipole encoder 1, each regular pole 4 of which -5 b or 5 a -4 b is formed by a pair of magnetic poles, one of which belongs to the first track and the other at the second track. Of course, the multipolar encoder 1 may be equipped with at least one magnetic singularity to locate a position. In the example illustrated in Fîg. 2, the encoder 1 is provided with a magnetic singularity 6 formed by a singular pole 6 is formed in the first track 3a and having a polarity different from that of a singular pole 6b arranged vis-à-vis in the second track 3b. In the example shown, the singular pole 6 has a North pole is surrounded by two adjacent South poles 5A while the singular 6b pole is a south pole flanked by two adjacent poles North 4 b. Of course, the polarities of the adjacent poles and singular poles can be reversed. Thus, for each magnetic singularity 6, a magnetic field is established between the two tracks 3a, 3b and more precisely between the singular poles 6, 6b. Such a magnetic field is detected by the detection cell 2.
Selon une caractéristique avantageuse de réalisation, chaque pôle singulier 6a, 6b comporte d'une part entre ses deux pôles adjacents, un écartement différent par rapport au pas d'écartement entre les autres pôles et d'autre part des moyens de correction 10 de la valeur de son champ magnétique de manière à stabiliser le signal magnétique délivré par le passage des pôles adjacents ou voisins audit pôle singulier. Dans l'exemple illustré, chaque pôle singulier 6a, 6b possède une longueur angulaire de 15°. Par exemple, le codeur 1 est constitué par une couronne formant un support sur laquelle est adhérisée une bague réalisée en élastomère chargée de particules magnétisées pour constituer les pôles Nord et Sud de chacune des pistes 3a, 3b.According to an advantageous characteristic of the invention, each single pole 6a, 6b comprises firstly between two adjacent poles, a spacing different from the spacing pitch between the other poles and second correction means 10 the value of its magnetic field so as to stabilize the magnetic signal delivered by the passage of poles adjacent or adjacent said singular pole. In the illustrated example, each single pole 6a, 6b has an angular length of 15 °. For example, the encoder 1 is constituted by a crown forming a support on which is adhered a ring made of elastomer charged with magnetized particles to form the North and South poles of each of the tracks 3 a , 3 b .
Les moyens de correction 10 permettent de corriger la valeur de l'induction magnétique créée par les pôles singuliers de sorte qu'elle ne perturbe pas les inductions des pôles voisins. Ainsi, les moyens de correction 10 sont déterminés de manière que le signal correspondant à l'évolution du champ magnétique délivré par les pôles voisins à la singularité magnétique 6 ne soit pas perturbé par l'induction magnétique créée par chaque pôle singulier 6a, 6b-The correction means 10 make it possible to correct the value of the magnetic induction created by the singular poles so that it does not disturb the inductions of the neighboring poles. Thus, the correction means 10 are determined so that the signal corresponding to the evolution of the magnetic field delivered by the neighboring poles to the magnetic singularity 6 is not disturbed by the magnetic induction created by each singular pole 6 a , 6 b -
Tel qu'illustré à la Fig. 3, en l'absence des moyens de correction 10 conformes à l'invention, il apparaît ainsi, sur la courbe A, une dérive en amplitude et en phase de l'induction, qui est d'autant plus accentuée que le pôle régulier est proche du pôle singulier 6a, 6b- II s'ensuit un déphasage dans le signal d'induction. L'examen de la courbe B permet de constater que l'induction magnétique créée par la singularité 6 ne vient pas perturber le champ d'induction magnétique des pôles réguliers voisins. Le signal donnant le changement de l'intensité du champ magnétique délivré par les pôles réguliers voisins au pôle singulier 6, présente une période constante sur tous les pôles réguliers, même ceux voisins de la singularité 6. Ainsi, les pôles réguliers voisins de la singularité, possèdent, vu par la cellule de mesure, un pas angulaire identique aux autres pôles réguliers. Comme cela ressort plus précisément de la Fig. 3A, le signal obtenu B, Bi conserve une période constante quelle que soit la largeur de l'entrefer, c'est-à-dire la distance entre la cellule de détection 2 et le codeur magnétique 1.As illustrated in FIG. 3, in the absence of the correction means 10 according to the invention, it thus appears, on the curve A, a drift amplitude and phase of the induction, which is all the more accentuated that the regular pole is close to the singular pole 6 a , 6 b - There follows a phase shift in the induction signal. Examination of the curve B makes it possible to observe that the magnetic induction created by the singularity 6 does not disturb the magnetic induction field of the adjacent regular poles. The signal giving the change in the intensity of the magnetic field delivered by the adjacent regular poles to the singular pole 6 has a constant period on all the regular poles, even those adjacent to the singularity 6. Thus, the regular poles adjacent to the singularity , have, seen by the measuring cell, an angular pitch identical to the other regular poles. As is more particularly apparent from FIG. 3A, the signal obtained B, Bi retains a constant period regardless of the width of the gap, that is to say the distance between the detection cell 2 and the magnetic encoder 1.
Dans l'exemple de réalisation illustré à la Fig. 2, chaque pôle singulier 6a, 6b comporte en tant que moyens de correction 10, une aimantation graduelle entre les deux pôles adjacents. Avantageusement, le niveau d'aimantation de chaque pôle singulier 6a, 6b évolue entre les deux pôles adjacents de manière que le niveau d'aimantation dans la partie centrale du pôle singulier soit supérieur au niveau d'aimantation de ses parties latérales contiguës au pôles adjacents.In the exemplary embodiment illustrated in FIG. 2, each single pole 6a, 6b comprises as correcting means 10, a gradual magnetization between the two adjacent poles. Advantageously, the level of magnetization of each singular pole 6 a , 6 b evolves between the two adjacent poles so that the level of magnetization in the part The center of the singular pole is greater than the magnetization level of its lateral portions contiguous to the adjacent poles.
Selon un autre exemple de réalisation d'une aimantation graduelle de chaque pôle singulier, il peut être prévu d'intercaler dans chaque pôle singulier, un pôle magnétique saturé possédant une polarité opposée au pôle singulier.According to another embodiment of a gradual magnetization of each singular pole, it may be provided to intercalate in each singular pole, a saturated magnetic pole having a polarity opposite to the singular pole.
Dans l'exemple illustré à la Figure 4, chaque pôle singulier 6a, 6b comporte en tant que moyens de correction 10, un pôle correcteur lla, llb contigu à chaque pôle adjacent du pôle singulier. En d'autres termes, un pôle correcteur est intercalé entre chaque pôle singulier et chacun des pôles adjacents audit pôle singulier. Chaque pôle correcteur lla, llb est un pôle non aimanté ou de même polarité que les pôles adjacents au pôle singulier 6a, 6b. Dans l'exemple de réalisation illustré à la Fîg. 4, chaque pôle correcteur lla, llb présente une forme telle que chaque pôle singulier 6a, 6b possède une forme de trapèze isocèle dont la plus grande base est située du côté du plan de mesure P. Les pôles singuliers 6a, 6b présentent une forme symétrique par rapport au plan P.In the example shown in Figure 4, each single pole 6a, 6b comprises as correcting means 10, a corrector lt division, ll b contiguous with each adjacent pole singular pole. In other words, a correction pole is interposed between each singular pole and each of the poles adjacent to said singular pole. Each checker ll division, ll b is a non-magnetic pole or the same polarity as the poles adjacent to the singular pole 6, 6b. In the exemplary embodiment illustrated in FIG. 4, each checker ll division, ll b has a shape such that each singular pole 6a, 6b has an isosceles trapezoid whose largest base is located on the side of the measuring plane P. The singular poles 6a, 6b have a symmetrical shape with respect to the plane P.
Dans l'exemple illustré à la Fîg. 4, chaque pôle singulier 6a, 6b est contigu au niveau de sa plus grande base avec ses deux pôles adjacents. En d'autres termes, la plus grande base de chaque pôle singulier est confondue avec le bord de la piste voisine du plan de meure P. Chaque pôle correcteur lla, llb possède ainsi une forme triangulaire.In the example illustrated in Fîg. 4, each singular pole 6a, 6b is contiguous at its largest base with two adjacent poles. In other words, the larger base of each singular pole coincides with the edge of the adjacent track plan to die P. Each checker ll division, ll b thus has a triangular shape.
La Figure 5 illustre un autre exemple de réalisation dans lequel chaque pôle singulier 6a, 6b n'est pas contigu avec ses pôles adjacents. Selon cet exemple de réalisation, chaque pôle singulier 6a, 6b possède une forme en trapèze isocèle dont la plus grande base possède une longueur inférieure à la distance séparant les deux pôles adjacents. Chaque pôle singulier 6a, 6b se trouve ainsi séparé complètement de ses pôles adjacents.Figure 5 illustrates another embodiment wherein each singular pole 6 a, 6 b is not contiguous with its adjacent poles. According to this embodiment, each single pole 6a, 6b has an isosceles trapezoidal shape whose larger base has a length less than the distance separating two adjacent poles. Each single pole 6a, 6b is thus completely separated from its adjacent poles.
La Figure 6 illustre une autre variante de réalisation des pôles correcteurs lla, llb- Selon cet exemple de réalisation, le pôle correcteur lla, llb contigu à un pôle adjacent est relié au pôle correcteur contigu de l'autre pôle adjacent par une zone de liaison 12a, 12b s'étendant selon le bord de la piste situé du côté opposé au bord voisin du plan de mesure P. Selon cette variante, chaque pôle singulier 6a, 6b est entouré sur ses côtés à l'exception de celui placé en regard de l'autre pôle singulier. Bien entendu, la mise en œuvre d'une zone de liaison 12a, 12b pour les pôles correcteurs peut être réalisée dans la variante illustrée à la Fig. 4 dans laquelle la grande base de chaque pôle singulier 6a, 6b est égale à la distance séparant les deux pôles adjacents.Figure 6 illustrates another alternative embodiment of the correction lt poles, llb- According to this exemplary embodiment, the corrector lt division, ll b contiguous to an adjacent pole is connected to the corrector pole contiguous to the other pole adjacent by a connecting zone 12 a, 12 b extending along the edge of the track located on the side opposite the edge adjacent the measurement plane P. In this embodiment, each single pole 6a, 6b b is surrounded on its sides with the exception of the one placed opposite the other singular pole. Of course, the implementation of a connection area 12, 12b for correcting poles can be realized in the variant illustrated in Fig. 4 in which the large base of each singular pole 6 a , 6b is equal to the distance separating the two adjacent poles.
La Figure 7 illustre une autre variante de réalisation dans laquelle chaque pôle singulier 6a, 6b s'étend jusqu'aux pôles adjacents avec une partie de continuité limitée sur la largeur de chaque pôle adjacent. Chaque pôle correcteur lla, 11b est limité en surface pour obtenir une continuité entre le pôle singulier et ses pôles adjacents, du côté du bord de la piste voisin du plan de mesure P. Bien entendu, il peut être prévu que les pôles correcteurs lla, 11b soient pourvus d'une zone de liaison 12a, 12b telle que décrite à la Fig. 6.Figure 7 illustrates another alternative embodiment wherein each singular pole 6 a, 6 b extends to the adjacent poles with a limited part of continuity of the width of each adjacent pole. Each checker ll pole, 11b is limited on the surface to obtain continuity between the singular pole and its adjacent pole at the edge of the neighboring track of the measuring plane P. Of course, it may be provided that corrective poles ll, 11b are provided with a connecting area 12, 12b as described in Fig. 6.
Dans les exemples décrits ci-dessus, il doit être considéré que les pôles réguliers et singuliers des deux pistes présentent une forme géométrique symétrique par rapport au plan de mesure P, tandis que chaque pôle d'une piste possède une polarité opposée à celle du pôle de l'autre piste placée en vis-à-vis. Par ailleurs, la mise en œuvre des moyens de correction 10, tels que décrits ci-dessus, permet d'obtenir une bonne précision des mesures réalisées pour le repérage de la singularité 6.In the examples described above, it should be considered that the regular and singular poles of the two tracks have a geometric shape symmetrical with respect to the measurement plane P, while each pole of a track has a polarity opposite to that of the pole. of the other track placed in vis-à-vis. Moreover, the implementation of the correction means 10, as described above, makes it possible to obtain a good accuracy of the measurements taken for the identification of the singularity 6.
Un autre aspect de l'invention vise à favoriser l'établissement de champs magnétiques d'une piste à l'autre c'est-à-dire à réduire l'établissement de champs magnétiques entre les pôles d'une même piste.Another aspect of the invention aims to promote the establishment of magnetic fields from one track to another, that is to say to reduce the establishment of magnetic fields between the poles of the same track.
Selon une autre caractéristique conforme à l'invention qui ressort plus particulièrement des Fig. 8 à 13, le capteur 1 comporte des moyens 15 pour forcer le champ magnétique à s'établir entre les pôles magnétiques réguliers 4a-5b et 5a-4b des deux pistes, de polarités opposées situées en vis-à-vis. De tels moyens 15 permettent d'augmenter le niveau du champ magnétique entre les pistes et par suite, d'augmenter la précision du signal et la capacité de détection avec un large entrefer.According to another characteristic according to the invention which more particularly emerges from FIGS. 8 to 13, the sensor 1 comprises means 15 for forcing the magnetic field to be established between the regular magnetic poles 4 a -5 b and 5 a -4 b of the two tracks, of opposite polarities located opposite each other. . Such means 15 make it possible to increase the level of the field magnetic between the tracks and consequently, to increase the signal accuracy and the detection capability with a wide gap.
Selon une forme de réalisation illustrée à la Fig. 8, les moyens 15 pour forcer le champ magnétique à s'établir entre les deux pistes magnétiques 3a, 3b sont formés par la forme géométrique des pôles des deux pistes. Ainsi, la forme géométrique des pôles de même polarité appartenant aux deux pistes est différente de la forme géométrique des pôles présentant l'autre polarité. Tel que cela ressort de la Fig. 8, chaque pôle régulier par exemple 5a, 5b possède une surface inférieure au pôle régulier de polarité opposée, à savoir 4a, 4b. Chaque pôle régulier 5a, 5b s'étend selon une largeur limitée de la piste à partir du bord voisin du plan de mesure P. Sur cette largeur de la piste, chaque pôle régulier 5a, 5b possède une longueur de valeur constante tandis que chaque pôle régulier 4a, 4b possède une longueur de valeur constante sur toute la largeur de la piste correspondante. Chaque pôle régulier 5a, 5b délimite ainsi une zone non magnétique 15 avec le bord de la piste opposé à celui voisin du plan de mesure P. Les pistes 3a, 3b ne sont pas symétriques par rapport au plan de mesure P. Les pistes sont symétriques par rapport au plan P avec un pas de décalage égal à un pôle. Selon une autre variante de réalisation illustrée à la Fig. 9, les moyens 15 pour forcer le champ magnétique sont formés par des zones non magnétiques s'étendant entre chaque pôle des deux pistes. Dans l'exemple illustré, chaque pôle régulier 4a, 5a, 4b, 5b possède une largeur identique prise entre les deux bords opposés d'une piste tandis que chaque zone non magnétique 15 possède une longueur constante sur toute la largeur de la piste et sépare deux pôles consécutifs d'une même piste. Dans l'exemple illustré, chaque pôle régulier 5a, 5b présente une longueur réduite par rapport à celle d'un pôle régulier 4a, 4b puisque chaque pôle régulier 5a, 5b se trouve encadré par deux zones non magnétiques 15. Il est à noter que dans cet exemple de réalisation, les pôles de la piste 3a ne sont pas aménagés de manière symétrique aux pôles de la piste 3b par rapport au plan de mesure P. Les pistes sont symétriques par rapport au plan P avec un pas de décalage égal à un pôle.According to an embodiment illustrated in FIG. 8, the means 15 for forcing the magnetic field to be established between the two magnetic tracks 3 a , 3 b are formed by the geometrical shape of the poles of the two tracks. Thus, the geometric shape of the poles of the same polarity belonging to the two tracks is different from the geometrical shape of the poles having the other polarity. As can be seen from FIG. 8, each such pole regular 5 a, 5 b has a bottom surface at regular pole of opposite polarity, namely 4 a, 4 b. Each regular pole 5, 5b extends along a limited width of the track from the adjacent edge of the measuring plane P. On this track width, each regular pole 5, 5b has a length of constant while each regular pole 4a, 4b has a length of constant value over the entire width of the corresponding track. Each regular pole 5 a, 5 b and defines a non-magnetic region 15 with the edge of the track opposite to that adjacent to the measurement plane P. The tracks 3a, 3b are not symmetrical with respect to the measurement plane P. The tracks are symmetrical with respect to the plane P with an offset pitch equal to one pole. According to another variant embodiment illustrated in FIG. 9, the means 15 for forcing the magnetic field are formed by non-magnetic zones extending between each pole of the two tracks. In the example illustrated, each regular pole 4a, 5a, 4b, 5b has an identical width taken between the two opposite edges of a track while each non-magnetic region 15 has a constant length over the entire width of the track and separates two consecutive poles of the same track. In the example illustrated, each regular pole 5a, 5b has a reduced length with respect to that of a regular pole 4 a, 4 b as each regular pole 5a, 5b is flanked by two non-magnetic regions 15. note that in this embodiment, the poles of the track 3 was not built symmetrically to the poles of the track 3 b in relation to measuring plane P. The tracks are symmetrical with respect to the plane P with an offset pitch equal to one pole.
Dans un autre exemple de réalisation illustré à la Fig. 10, chaque zone non magnétique 15 possède une longueur qui croît du bord de la piste voisin du plan de mesure P en direction du bord opposé de la piste. Tel que cela ressort de la Fig. 10, chaque zone non magnétique 15 possède une forme de triangle rectangle. Ainsi, chaque pôle régulier 5a, 5b qui est séparé de ses pôles voisins, par une zone non magnétique 15, présente une forme de trapèze isocèle tandis que les pôles réguliers 4a 4b possèdent une longueur constante d'une zone non magnétique à l'autre.In another exemplary embodiment illustrated in FIG. 10, each nonmagnetic zone 15 has a length that increases from the edge of the adjacent track of the measurement plane P towards the opposite edge of the track. As can be seen from FIG. 10, each nonmagnetic zone 15 has a right triangle shape. Thus, each regular pole 5, 5b is separated from its adjacent poles by a non-magnetic region 15 has a shape of isosceles trapezoid while regular poles 4 4 b have a constant length of a non-magnetic area to the other.
Selon une autre variante de réalisation illustrée à la Fig. 11, les deux zones non magnétiques 15 situées de part et d'autre d'un pôle régulier sont reliées par une partie de liaison 16 qui s'étend sur le bord de la piste situé à l'opposé du bord voisin au plan de mesure. Dans l'exemple illustré à la Fig. 11 qui dérive directement de l'exemple illustré à la Fig. 10, chaque pôle 5a, 5b entouré par la zone non magnétique 15 possède une forme de trapèze isocèle dont la plus grande base correspondant à la distance séparant les deux pôles adjacents, est confondue avec le bord de la piste voisin du plan de mesure P. Les pôles réguliers 4a, 4b possèdent une longueur constante d'un bord à l'autre de la piste.According to another variant embodiment illustrated in FIG. 11, the two non-magnetic zones 15 located on either side of a regular pole are connected by a connecting part 16 which extends on the edge of the track located opposite the adjacent edge to the measurement plane . In the example illustrated in FIG. 11 which derives directly from the example illustrated in FIG. 10, each pole 5, 5b surrounded by the non-magnetic region 15 has a shape of an isosceles trapezium whose major base corresponds to the distance separating the two adjacent poles, is coincident with the edge of the neighboring track measurement plan P. regular poles 4, 4b have a constant length from one side to the other of the track.
Bien entendu, il peut être prévu, comme illustré à la Fig. 12, que la plus grande base de chaque pôle régulier 5a, 5b soit inférieure à la distance entre les pôles adjacents de sorte que ledit pôle régulier se trouve entouré par une zone non magnétique 15 à l'exception du côté situé en vis-à-vis du pôle de l'autre piste.Of course, it can be provided, as illustrated in FIG. 12 that the larger base of each regular pole 5a, 5b is less than the distance between adjacent poles so that said regular pole is surrounded by a nonmagnetic zone 15 except for the side located vis opposite the pole of the other track.
Dans l'exemple illustré à la Fig. 12, chaque pôle régulier 5a, 5b s'étend en retrait du bord de la piste opposé de celui voisin du plan de mesure P puisque chaque zone non magnétique 15 est pourvue d'une partie de liaison 16 telle qu'illustrée à la Fig. 11. Bien entendu, il peut être envisagé que le pôle régulier 5a, 5b s'étende sur toute la largeur de la piste de sorte que la partie de liaison 16 est supprimée. A l'inverse, il est à noter que dans l'exemple illustré à la Fig. 9, il peut être prévu une partie de liaison 16 entre les deux zones non magnétiques 15 voisines à deux pôles adjacents. Selon cette variante, chaque pôle régulier 5a, 5b est entouré d'une zone non magnétique 15, à l'exception de sa partie située en vis-à-vis d'un pôle de l'autre piste.In the example illustrated in FIG. 12, each regular pole 5a, 5b is set back from the edge of the adjacent one of the opposite track the measurement plane P, since each non-magnetic area 15 is provided with a connecting portion 16 as illustrated in Fig. 11. Of course, it can be envisaged that the regular pole 5 a , 5 b extends over the entire width of the track so that the connecting portion 16 is removed. Conversely, it should be noted that in the example illustrated in FIG. 9, there can be provided a connecting portion 16 between the two adjacent non-magnetic zones 15 at two adjacent poles. According to this variant, each regular pole 5 a, 5 b is surrounded by a non-magnetic region 15, with the exception of its portion located vis-à-vis a pole of the other track.
Dans l'exemple illustré à la Fig. 13, chaque zone non magnétique 15 possède une forme triangulaire dont la pointe est tournée vers le bord de la piste voisin au plan P de sorte que chaque pôle magnétique 4a, 5a, 4b, 5b possède une forme de trapèze isocèle dont la grande base est confondue avec le bord de la piste voisine du plan de mesure P et la petite base est confondue avec le bord de la piste opposé au bord voisin du plan de mesure P. Selon cette variante, les pôles des pistes sont symétriques par rapport au plan de mesure P.In the example illustrated in FIG. 13, each non-magnetic region 15 has a triangular shape whose apex is turned towards the edge of the adjacent track to the plane P so that each magnetic pole 4, 5a, 4b, 5b has a shape of an isosceles trapezium whose the large base is coincident with the edge of the adjacent track of the measurement plane P and the small base coincides with the edge of the track opposite to the adjacent edge of the measurement plane P. According to this variant, the poles of the tracks are symmetrical by report to measurement plan P.
Le codeur 1 selon l'invention, tel que décrit ci-dessus, est destiné à être monté sur une cible tournante au sens général, à partir de laquelle au moins une position est déterminée. Selon une caractéristique préférée de réalisation, le codeur 1 selon l'invention est destiné à être monté sur un arbre tournant d'un véhicule automobile et par exemple sur un arbre de transmission d'un véhicule automobile. Par exemple, le codeur 1 est apte à être monté sur la poulie d'entraînement montée en sortie du moteur d'un véhicule automobile, c'est-à-dire sur une poulie de distribution ou sur l'une des poulies auxiliaires. Selon une caractéristique avantageuse, le codeur 1 est monté sur la poulie d'entraînement se trouvant dans l'axe du vilebrequin, afin de permettre une détection du point mort haut d'allumage d'un cylindre. II est à noter que l'objet de l'invention peut également être appliqué à la réalisation d'un capteur comportant un anneau magnétique 1 muni de plusieurs pôles irréguliers Pi permettant de repérer plusieurs positions. D'une manière avantageuse, l'anneau magnétique 1 comporte, par exemple, quatre pôles irréguliers Pi permettant de repérer la position des cylindres d'un moteur. Dans ce cas, le codeur 1 est monté solidaire de l'arbre à cames d'un moteur de véhicule automobile. Bien entendu, le codeur 1 peut être monté sur l'arbre à cames en ayant un seul pôle irrégulier.The encoder 1 according to the invention, as described above, is intended to be mounted on a rotating target in the general sense, from which at least one position is determined. According to a preferred embodiment, the encoder 1 according to the invention is intended to be mounted on a rotating shaft of a motor vehicle and for example on a transmission shaft of a motor vehicle. For example, the encoder 1 is adapted to be mounted on the drive pulley mounted at the output of the engine of a motor vehicle, that is to say on a distribution pulley or on one of the auxiliary pulleys. According to an advantageous characteristic, the encoder 1 is mounted on the drive pulley located in the axis of the crankshaft, in order to allow detection of the top dead center of ignition of a cylinder. It should be noted that the subject of the invention can also be applied to the production of a sensor comprising a magnetic ring 1 provided with a plurality of irregular poles Pi making it possible to locate several positions. Advantageously, the magnetic ring 1 comprises, for example, four irregular poles Pi for locating the position of the cylinders of an engine. In this case, the encoder 1 is mounted integral with the camshaft of a motor vehicle engine. Of course, the encoder 1 can be mounted on the camshaft with only one irregular pole.
Selon une autre caractéristique préférée de mise en œuvre, le codeur 1 selon l'invention est destiné à être monté à l'intérieur d'une plaque de support d'un joint d'étanchéité dynamique pour un arbre de transmission, montée entre le vilebrequin et la boîte de vitesses d'un moteur d'un véhicule automobile. Le codeur 1 est entraîné en rotation par l'arbre de transmission et se trouve monté en relation de proximité d'au moins une cellule de détection 2 montée sur la plaque de support du joint d'étanchéité, afin de constituer un capteur de position.According to another preferred embodiment, the encoder 1 according to the invention is intended to be mounted inside a support plate of a dynamic seal for a transmission shaft, mounted between the crankshaft and the gearbox of an engine of a motor vehicle. The encoder 1 is rotated by the transmission shaft and is mounted in close relation with at least one detection cell 2 mounted on the support plate of the seal, to form a position sensor.
Selon une autre caractéristique préférée de mise en œuvre, le codeur 1 selon l'invention est calé en rotation sur un arbre d'un moteur d'un véhicule automobile ou est entraîné en rotation par le vilebrequin ou l'arbre à cames d'un moteur d'un véhicule automobile, en étant monté à l'intérieur du bloc moteur d'un tel véhicule, en relation de proximité d'une cellule de détection 2 afin de constituer un capteur de position.According to another preferred embodiment, the encoder 1 according to the invention is rotated on a motor shaft of a motor vehicle or is rotated by the crankshaft or the camshaft of a motor vehicle. engine of a motor vehicle, being mounted inside the engine block of such a vehicle, in proximity relation of a sensor cell 2 to form a position sensor.
L'invention n'est pas limitée aux exemples décrits et représentés, car diverses modifications peuvent y être apportées sans sortir de son cadre. The invention is not limited to the examples described and shown, since various modifications can be made without departing from its scope.

Claims

REVENDICATIONS
1 - Capteur rotatif de position comportant :1 - Rotary position sensor comprising:
- au moins un codeur magnétique (1) rotatif autour d'un axe (A), comportant une première (3a) et une deuxième (3b) pistes magnétiques circulaires s'étendant côte à côte et formées chacune par une succession de pôles magnétiques alternés Nord et Sud (4a, 5a-4b, 5b),at least one magnetic encoder (1) rotatable around an axis (A), comprising a first (3a) and a second (3b) circular magnetic strip extending side by side and each formed by a succession of alternating magnetic poles North and South (4 a , 5 a -4b, 5b),
- et une cellule de détection (2) délivrant un signal électrique correspondant à l'évolution de l'intensité du champ magnétique des pôles magnétiques, caractérisé en ce que :- and a detection cell (2) delivering an electrical signal corresponding to the evolution of the magnetic field intensity of the magnetic poles, characterized in that:
- les pôles magnétiques (4a, 5a-4b, 5b) des deux pistes sont agencés de manière que s'établissent une succession de champs magnétiques (M) alternativement de sens opposé, allant d'une piste à l'autre,- the magnetic poles (4 a, 5 a -4 b, 5b) of the two tracks are arranged so as to establish a succession of magnetic fields (H) alternately in opposite directions, going from one track to another,
- la cellule de détection (2) est montée pour être sensible aux champs magnétiques successifs (M) de sens alterné passant d'une piste à l'autre.- The detection cell (2) is mounted to be sensitive to successive magnetic fields (M) of alternating direction passing from one track to another.
2 - Capteur rotatif de position selon la revendication 1, caractérisé en ce que les deux pistes magnétiques circulaires (3a, 3b) s'étendent chacune d'un côté d'un plan de mesure (P) perpendiculaire à l'axe (A) du codeur et dans lequel est placée la cellule de détection (2).2 - rotary position sensor according to claim 1, characterized in that the two circular magnetic tracks (3 a , 3 b ) each extend on one side of a measuring plane (P) perpendicular to the axis ( A) of the encoder and in which is placed the detection cell (2).
3 - Capteur rotatif de position selon la revendication 2, caractérisé en ce que les pôles magnétiques (4a, 5a-4b, 5b) des deux pistes sont agencés de manière que s'établissent entre les pôles de polarités opposées en vis-à-vis appartenant à deux pistes (4a-5b ; 5a-4b), une succession de champs magnétiques (M) coupant le plan de mesure selon une direction de préférence sensiblement perpendiculaire au plan de mesure (P).3 - Rotary position sensor according to claim 2, characterized in that the magnetic poles (4 a, 5 a -4 b, 5b) of the two tracks are arranged that are established between the opposite polarity poles vis with respect to two tracks (4 a -5b; 5 a -4b), a succession of magnetic fields (M) intersecting the measurement plane in a direction preferably substantially perpendicular to the measurement plane (P).
4 - Capteur rotatif de position selon l'une des revendications 1 à 3, caractérisé en ce que les deux pistes magnétiques (3a, 3b) sont jointives ou séparées par un intervalle (Δ). 5 - Capteur rotatif de position selon la revendication 1 ou 2, caractérisé en ce que la cellule de détection (2) est une cellule à effet Hall, à effet Hall différentielle ou à effet Hall avec concentrateur de flux.4 - rotary position sensor according to one of claims 1 to 3, characterized in that the two magnetic tracks (3 a , 3b) are joined or separated by a gap (Δ). 5 - rotational position sensor according to claim 1 or 2, characterized in that the sensor cell (2) is a Hall effect cell, Hall effect or Hall effect with flux concentrator.
6 - Capteur rotatif de position selon l'une des revendications 1 à 5, caractérisé en ce qu'il comporte au moins une singularité magnétique (6) formée par un pôle singulier (6a) d'une piste de polarité différente à celle d'un pôle singulier (6b) de l'autre piste placé en vis-à-vis, chaque pôle singulier (6a, 6b) comportant d'une part, entre deux pôles adjacents, un écartement différent par rapport au pas d'écartement entre les autres pôles et d'autre part, des moyens de correction (10) de manière à stabiliser le signal magnétique délivré par le passage des pôles adjacents auxdits pôles singuliers.6 - Rotary position sensor according to one of claims 1 to 5, characterized in that it comprises at least one magnetic singularity (6) formed by a singular pole (6 a ) of a different polarity track to that of a singular pole (6 b) of the other track placed vis-à-vis, each single pole (6 a, 6 b) having a part between two adjacent poles, a spacing different from the no spacing between the other poles and secondly, correction means (10) so as to stabilize the magnetic signal delivered by the passage of the poles adjacent to said singular poles.
7 - Capteur rotatif de position selon la revendication 6, caractérisé en ce que chaque pôle singulier (6a, 6b) comporte en tant que moyens de correction (10), une aimantation graduelle entre les deux pôles adjacents.7 - Rotary position sensor according to claim 6, characterized in that each single pole (6a, 6b) is provided as correction means (10), a gradual magnetization between the two adjacent poles.
8 - Capteur rotatif de position selon la revendication 7, caractérisé en ce que le niveau d'aimantation de chaque pôle singulier (6a, 6b) évolue entre les deux pôles adjacents de manière que le niveau d'aimantation dans la partie centrale du pôle singulier soit supérieur au niveau d'aimantation de ses parties latérales contiguës aux pôles adjacents.8 - rotary position sensor according to claim 7, characterized in that the magnetization level of each singular pole (6 a , 6 b ) evolves between the two adjacent poles so that the magnetization level in the central part of the singular pole is greater than the magnetization level of its lateral portions contiguous to the adjacent poles.
9 - Capteur rotatif de position selon la revendication 6, caractérisé en ce que chaque pôle singulier (6a, 6b) comporte en tant que moyens de correction (10), un pôle correcteur (lla, llb) contigu à chaque pôle adjacent. 10 - Capteur rotatif de position selon la revendication 9, caractérisé en ce que chaque pôle correcteur (lla, llb) est un pôle non aimanté ou de même polarité que les pôles adjacents.9 - Rotary position sensor according to claim 6, characterized in that each single pole (6a, 6b) is provided as correction means (10), a corrector pole (lt, lt b) adjacent each adjacent pole . 10 - rotary position sensor according to claim 9, characterized in that each correction pole (ll a , llb) is a non-magnetized pole or the same polarity as the adjacent poles.
11 - Capteur rotatif de position selon la revendication 9 ou 10, caractérisé en ce que chaque pôle correcteur (lla, llb) présente une forme telle que chaque pôle singulier (6a, 6b) possède une forme de trapèze isocèle dont la plus grande base est située du côté du plan de mesure (P). 12 - Capteur rotatif de position selon la revendication 9, 10 ou 11, caractérisé en ce que le pôle correcteur (lla, llb) contigu à un pôle adjacent est relié du pôle correcteur contigu de l'autre pôle adjacent par une zone de liaison (12a, 12b) située le long de la piste du côté opposé au plan de mesure (P).11 - The rotary position sensor of claim 9 or 10, characterized in that each loop pole (II a, IIb) has a shape such that each single pole (6a, 6b) has a shape of an isosceles trapezium whose larger base is located on the side of the measurement plane (P). 12 - rotary position sensor according to claim 9, 10 or 11, characterized in that the corrector pole (ll a , ll b ) contiguous to an adjacent pole is connected to the adjoining corrective pole of the other adjacent pole by a zone of connection (12 a, 12 b) located along the track of the opposite side to the measuring plane (P).
13 - Capteur rotatif de position selon l'une des revendications 6 à 12, caractérisé en ce que les pôles magnétiques (4a, 5a, 4b, 5b) des deux pistes présentent une forme géométrique symétrique par rapport au plan de mesure (P), chaque pôle (4a, 5a-4b,5b) d'une piste possédant une polarité opposée à celle du pôle de l'autre piste placé en vis-à-vis.13 - Rotary position sensor according to one of claims 6 to 12, characterized in that the magnetic poles (4 a, 5 a, 4 b, 5 b) of the two tracks have a geometric shape symmetrical with respect to the measurement plane (P), each pole (4, 5a -4 b, 5b) of a track having an opposite polarity to the pole of the other track placed vis-à-vis.
14 - Capteur rotatif de position selon l'une des revendications 1 à 5, caractérisé en ce qu'il comporte des moyens (15) pour forcer le champ magnétique à s'établir entre les pôles magnétiques des deux pistes de polarités opposées situées en vis-à-vis. 15 - Capteur rotatif de position selon la revendication 14, caractérisé en ce que les moyens (15) pour forcer le champ magnétique, sont formés par la forme géométrique des pôles des deux pistes de même polarité qui est différente de la forme géométrique des pôles des deux pistes présentant l'autre polarité. 16 - Capteur rotatif de position selon la revendication 15, caractérisé en ce que les moyens (15) pour forcer le champ magnétique sont formés pour chaque piste, par des zones non magnétiques s'étendant entre chaque pôle de même polarité et les pôles adjacents.14 - rotary position sensor according to one of claims 1 to 5, characterized in that it comprises means (15) for forcing the magnetic field to be established between the magnetic poles of the two opposite polarity tracks located screwed -a-vis. 15 - rotational position sensor according to claim 14, characterized in that the means (15) for forcing the magnetic field, are formed by the geometric shape of the poles of the two tracks of the same polarity which is different from the geometric shape of the poles of the two tracks with the other polarity. 16 - rotational position sensor according to claim 15, characterized in that the means (15) for forcing the magnetic field are formed for each track, by non-magnetic areas extending between each pole of the same polarity and the adjacent poles.
17 - Capteur rotatif de position selon la revendication 16, caractérisé en ce que chaque zone non magnétique (15) présente une longueur constante d'un bord à l'autre de la piste.17 - rotary position sensor according to claim 16, characterized in that each non-magnetic zone (15) has a constant length from one edge to the other of the track.
18 - Capteur rotatif de position selon la revendication 16, caractérisé en chaque zone non magnétique (15) possède une longueur qui croît du bord de la piste situé du côté du plan de mesure en direction du bord opposé de la piste. 19 - Capteur rotatif de position selon la revendication 17 ou 18, caractérisé en ce que chaque zone non magnétique (15) possède une partie de liaison (16) entre deux pôles adjacents, s'étendant sur le côté de la piste situé du côté opposé du plan de mesure. 20 - Capteur rotatif de position selon la revendication 18, caractérisé en ce que chaque zone non magnétique (15) possède une forme triangulaire de sorte que chaque pôle magnétique (4a, 4b, 5a, 5b) possède une forme de trapèze isocèle.The rotary position sensor according to claim 16, characterized in that each non-magnetic zone (15) has a length which increases from the edge of the track located on the measurement plane side towards the opposite edge of the track. 19 - rotary position sensor according to claim 17 or 18, characterized in that each non-magnetic zone (15) has a connecting portion (16) between two adjacent poles, extending on the side of the track located on the opposite side the measurement plan. 20 - The rotary position sensor of claim 18, characterized in that each non-magnetic region (15) has a triangular shape so that each magnetic pole (4 a, 4 b, 5 a, 5 b) has a trapezium-shaped isosceles.
21 - Capteur rotatif de position selon l'une des revendications 1 à 20, caractérisé en ce que le codeur (1) est calé en rotation sur un arbre tournant d'un véhicule automobile.21 - Rotary position sensor according to one of claims 1 to 20, characterized in that the encoder (1) is set in rotation on a rotating shaft of a motor vehicle.
22 - Capteur rotatif de position selon la revendication 21, caractérisé en ce que le codeur (1) est monté sur l'arbre d'un moteur d'un véhicule automobile. 23 - Capteur rotatif de position selon la revendication 21, caractérisé en ce que le codeur (1) est monté sur un arbre de transmission d'un véhicule automobile. 22 - Rotary position sensor according to claim 21, characterized in that the encoder (1) is mounted on the shaft of an engine of a motor vehicle. 23 - Rotary position sensor according to claim 21, characterized in that the encoder (1) is mounted on a transmission shaft of a motor vehicle.
PCT/FR2006/050501 2005-06-01 2006-06-01 Magnetic position sensor with reduced space requirement WO2006129041A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0505550A FR2886726B1 (en) 2005-06-01 2005-06-01 MAGNETIC POSITION SENSOR WITH REDUCED SIZE
FR0505550 2005-06-01

Publications (2)

Publication Number Publication Date
WO2006129041A2 true WO2006129041A2 (en) 2006-12-07
WO2006129041A3 WO2006129041A3 (en) 2007-01-25

Family

ID=35462398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/050501 WO2006129041A2 (en) 2005-06-01 2006-06-01 Magnetic position sensor with reduced space requirement

Country Status (2)

Country Link
FR (1) FR2886726B1 (en)
WO (1) WO2006129041A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102252697A (en) * 2011-04-14 2011-11-23 上海交通大学 Composite encoding type swirling-flow grid absolute position sensor with differential structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1126999A (en) * 1966-08-05 1968-09-11 Siemens Ag A magnetic storage medium
JPS635214A (en) * 1986-06-25 1988-01-11 Canon Electronics Inc Magnetic encoder apparatus
JPH03282213A (en) * 1990-03-30 1991-12-12 Japan Servo Co Ltd Magnetic encoder
WO2001042753A1 (en) * 1999-12-06 2001-06-14 Robert Bosch Gmbh Device for measuring the angle and/or the angular velocity of a rotatable body and/or the torque acting upon said body
FR2808324A1 (en) * 2000-04-26 2001-11-02 Ectricfil Industire L High resolution position sensor, has magnetic coder having magnetic tracks with field generating elements that are angularly displaced one after the other with respect to the scanning cells
FR2827955A1 (en) * 2001-07-27 2003-01-31 Electricfil Position sensor coder for crankshafts has field inflection free irregular pole, e.g., for use in motor vehicle ignition system
DE10228663A1 (en) * 2002-06-27 2004-01-22 Philips Intellectual Property & Standards Gmbh Arrangement for determining the position of a body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1126999A (en) * 1966-08-05 1968-09-11 Siemens Ag A magnetic storage medium
JPS635214A (en) * 1986-06-25 1988-01-11 Canon Electronics Inc Magnetic encoder apparatus
JPH03282213A (en) * 1990-03-30 1991-12-12 Japan Servo Co Ltd Magnetic encoder
WO2001042753A1 (en) * 1999-12-06 2001-06-14 Robert Bosch Gmbh Device for measuring the angle and/or the angular velocity of a rotatable body and/or the torque acting upon said body
FR2808324A1 (en) * 2000-04-26 2001-11-02 Ectricfil Industire L High resolution position sensor, has magnetic coder having magnetic tracks with field generating elements that are angularly displaced one after the other with respect to the scanning cells
FR2827955A1 (en) * 2001-07-27 2003-01-31 Electricfil Position sensor coder for crankshafts has field inflection free irregular pole, e.g., for use in motor vehicle ignition system
DE10228663A1 (en) * 2002-06-27 2004-01-22 Philips Intellectual Property & Standards Gmbh Arrangement for determining the position of a body

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 012, no. 203 (P-715), 11 juin 1988 (1988-06-11) & JP 63 005214 A (CANON ELECTRONICS INC), 11 janvier 1988 (1988-01-11) *
PATENT ABSTRACTS OF JAPAN vol. 016, no. 105 (P-1325), 16 mars 1992 (1992-03-16) & JP 03 282213 A (JAPAN SERVO CO LTD), 12 décembre 1991 (1991-12-12) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102252697A (en) * 2011-04-14 2011-11-23 上海交通大学 Composite encoding type swirling-flow grid absolute position sensor with differential structure

Also Published As

Publication number Publication date
WO2006129041A3 (en) 2007-01-25
FR2886726A1 (en) 2006-12-08
FR2886726B1 (en) 2007-09-21

Similar Documents

Publication Publication Date Title
EP1801544B1 (en) Magnetic position sensor with optimised detection
EP0871014B1 (en) Magnetic encoder with an index pulse
EP1549910B1 (en) Variable reluctance position sensor
WO2006018543A1 (en) Irregular saturate pole position sensor
FR2952175B1 (en) MAGNETIC MEMBER FORMING ENCODER FOR USE IN A POSITION MEASUREMENT SYSTEM.
EP2326919B1 (en) Linear or rotary position sensor with a permanent magnet for detecting a ferromagnetic target
EP2496914B1 (en) Bidirectional magnetic position sensor having field rotation
EP1857783B1 (en) Position sensor encoder, with stabilising effect for resetting the magnetic induction to zero
FR2757943A1 (en) ENCODER FOR POSITION SENSOR AND SENSOR BY APPLYING
FR2880682A1 (en) POSITION SENSOR WITH CYCLIC IMBALANCE
FR2724723A1 (en) INCREMENTAL SENSOR OF SPEED AND / OR POSITION.
FR2827955A1 (en) Position sensor coder for crankshafts has field inflection free irregular pole, e.g., for use in motor vehicle ignition system
FR3019892B1 (en) MEASURING DEVICE FOR NON-CONTACT ENTRY OF A ROTATION ANGLE
FR2882140A1 (en) POSITION SENSOR WITH COMPENSATED MAGNETIC POLES
WO2006129041A2 (en) Magnetic position sensor with reduced space requirement
FR2808325A1 (en) HIGH RESOLUTION POSITION SENSOR
FR3018113A1 (en) MAGNETIC SENSOR FOR DETERMINING THE RELATIVE POSITION BETWEEN A MAGNETIC TARGET AND A MEASURING SYSTEM
FR2858849A1 (en) Multipole magnetic encoder for internal combustion engine, has marking section that is limited from two sides of non magnetized central zone by magnetic poles in form of strips and of same polarization
WO2005003686A2 (en) Position sensor by detection of a tangential magnetic field
FR2837569A1 (en) Speed sensor for mobile targets, has probe placed along OZ axis of sensor such that when tooth of mobile target is absent, magnetic induction of magnet passes through a probe along direction opposite to magnetization direction
EP2313746A2 (en) Multiple-pole encoder for position sensor, and detection device comprising such encoder with at least one position sensor
EP1600738B1 (en) Magnetic detection device with a dual magnetic flux path
WO2004092682A2 (en) Contactless magnetic sensor for determination of the linear position of a moving body
EP1570238A1 (en) Very high-resolution position sensor
EP0964225B1 (en) Inductive magnetic sensor with reference index

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06764824

Country of ref document: EP

Kind code of ref document: A2