WO2006128445A1 - Extensometer for high temperatures - Google Patents

Extensometer for high temperatures Download PDF

Info

Publication number
WO2006128445A1
WO2006128445A1 PCT/DE2006/000952 DE2006000952W WO2006128445A1 WO 2006128445 A1 WO2006128445 A1 WO 2006128445A1 DE 2006000952 W DE2006000952 W DE 2006000952W WO 2006128445 A1 WO2006128445 A1 WO 2006128445A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
measuring rods
bearing block
rods
bearings
Prior art date
Application number
PCT/DE2006/000952
Other languages
German (de)
French (fr)
Inventor
Ralf Westerheide
Erhard Haas
Walter Weinschenk
André Schütz
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Publication of WO2006128445A1 publication Critical patent/WO2006128445A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/20Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures
    • G01B5/207Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures using a plurality of fixed, simultaneously operating transducers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/22Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/04Chucks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0222Temperature

Definitions

  • the present invention relates to a device for measuring a change in length of a sample, the device having at least two measuring rods arranged side by side in a measuring plane, a bearing block in which the measuring rods are rotatably mounted in separate first bearings about parallel first axes of rotation perpendicular to the measuring plane. a suspension for the storage block in which the
  • Bearing block is rotatably mounted in a second bearing about a second axis of rotation which is parallel to the first axes of rotation, and comprises a measuring sensor for detecting a change in a distance between the measuring rods.
  • Such devices are also known by the term extensometer.
  • the measurement of the force-deformation behavior is required to determine the elongation behavior, the modulus of elasticity, the
  • Hysterese to obtain the elongation at break and the life of a material under thermomechanical cyclic or static stress. Many materials are loaded with high temperatures, changing temperatures and / or high frequencies. Accordingly, in material testing, measuring systems must be available which also determine a change in length of a sample as a basis for the calculation of the abovementioned material properties allow for changing temperatures, high temperatures and / or high load frequencies.
  • extensometers are also used to measure changes in length, which require direct contact with the sample.
  • two measuring rods which abut directly against the sample to be measured via a frictional connection transmit the change in length directly to a sensor arranged further away from the sample, which measures a change in the distance of the measuring rods.
  • EP 0697095 B1 describes an extensometer suitable for high temperatures, in which the two measuring rods are gimbal-mounted.
  • the dipsticks in this extensometer are preferably made of ceramic or fiber-ceramic materials.
  • the extensometer with a cooling provided direction to cool controlled parts of the extensometer. Such cooling is relatively expensive.
  • Measurement of the change in length of a sample which has two measuring rods arranged side by side in a measuring plane, which are rotatably mounted in a bearing block in separate bearings about parallel first axes of rotation which are perpendicular to the measuring plane. Furthermore, a suspension for the bearing block is provided, in which the bearing block is rotatably mounted in a bearing about a second axis of rotation which is parallel to the first axes of rotation.
  • the dipsticks are made of a high-temperature-resistant material with a thermal expansion coefficient of ⁇ 10 "5 K " 1 .
  • the bearings for the measuring rods and the bearing block are formed in this document as journal bearings.
  • DE 3714185 C3 also relates to a device for measuring the axial elongation of a sample bar with two spaced apart and approximately parallel to each other and against the sample rod by means of spring force pressure rods, which are pivotally mounted on a respective component of the measuring device.
  • the measuring rods are in this case connected in a simple manner by means of pivot bearings, which may consist of rivets, with the frame.
  • the two measuring rods are also simple pivot bearings connected to a bearing block, which in turn is mounted on a spring suspension.
  • No. 4,939,445 shows an extensometer in which two arms whose ends are designed to contact the sample are connected to one another via a rotary joint.
  • No. 4,884,456 describes a complex extensometer in which a parallelogram-type bearing frame is provided for the two measuring rods.
  • the frame parts are connected to one another by means of bending connections, in order to allow unimpeded movement of the two measuring rods along their longitudinal axis.
  • a pivoting movement of the measuring rods is made possible by bending connections.
  • the object of the present invention is to provide a contacting extensometer which is simple in construction and suitable for use at high temperatures.
  • the extensometer should continue to be suitable for a measurement at high frequencies or at least be easily adapted.
  • the object is achieved with the device according to claim 1.
  • Advantageous embodiments of the device are the subject of the dependent claims or can be found in the following description and the embodiments.
  • the proposed device comprises at least two measuring rods arranged side by side in a measuring plane, which are rotatably mounted in separate first bearings in a bearing block about parallel first axes of rotation, which run perpendicular to the measuring plane.
  • the bearing block is rotatably mounted in a second bearing in a suspension about a second axis of rotation which is parallel to the first axes of rotation.
  • the apparatus further comprises at least one measuring sensor for detecting a change in a distance between the measuring rods, which are in frictional contact with the sample during the measurement.
  • the two measuring rods are formed of a harnesstemperaturbestän- ended material, preferably for temperatures> 1000 ° C, with a low thermal expansion coefficient of ⁇ 10 * 10 -6 K '1.
  • the device is characterized primarily by the fact that the first bearings and the second bearing are designed as prism bearings.
  • the two measuring rods each have a constant spacing at the positions of the bearings, since the heat transfer is minimized by the only selective material contact in the prism bearing, so that heating of the bearing block by the heat conduction in the rods is virtually ruled out can.
  • a jamming or change of position due to increased heat conduction through the rods in the storage and thus a falsification of the measurement result can therefore not occur.
  • the measuring rods themselves are stored without play due to the prism bearing.
  • the play-free storage offers particular advantages in a load reversal, ie in measurements on samples under cyclic load.
  • the choice of a prism bearing offers the advantage of a simple, robust and thus interference-resistant construction of the extensometer.
  • the present extensometer is insensitive to changes in the sample surface due to high temperatures, for example by scaling, and can also be used for measurements at high frequencies due to the compact design with a suitable choice of the dimensions of the measuring rods.
  • measuring rods made of lightweight construction material ie preferably with a density of ⁇ 4 g / cm 3 , are selected and / or the measuring rods are made of lightweight construction.
  • the geometric design of the rods which are then not formed from a solid material, but have a corresponding lightweight profile, for example.
  • the measuring rods are designed so that their natural frequency is well above 100 Hz.
  • the length of the bars is chosen to be very short, for example between 100 mm and 180 mm. Due to the choice of a material with a low thermal expansion coefficient in In spite of these short rods, a combination with the prism bearings can be measured at temperatures above 1000 ° C. Of course, the choice of the measuring sensor must also be such that it withstands the temperatures to which it is exposed during the measurement. Preferably, in this case a capacitive measuring sensor is used.
  • suitable materials for the measuring rods are, for example, ceramic materials, alumina or
  • the bearing block consists of such a material with a low thermal expansion coefficient, such as, for example, a ceramic material.
  • the extensometer is very robust and inexpensive to produce due to its simple construction. It is suitable with a suitable choice of materials for measuring the deformation of a sample under mechanical stress at high temperatures of up to 1600 ° C and high frequencies to above 100 Hz. Optionally, a heating of the bearing block by radiation and convection by the additional heat Installation of heat shields can be reduced.
  • the extensometer is particularly suitable for the measurement of samples under changing conditions, such as those in thermomechanical fatigue tests (cyclization of the temperature and / or the mechanical load) or given load cycles, eg.
  • the superposition of Low-cycle-fatigue (Icf) and high-cycle-fatigue (ran) are present.
  • the extensometer can also be used to control testing machines, for example by specifying a length change to be achieved. In non-clearance storage this would be made difficult or impossible by small inaccuracies in the direction reversal (from compression to elongation or vice versa).
  • the backlash of the bearing is determined by the present
  • the sliding surfaces of the prism bearing are additionally provided with a friction-reducing coating in order to be able to realize a lower contact pressure of the measuring rods on the sample.
  • the bearing block can have further prism bearings, in which the measuring rods can also be stored. By suitable arrangement of these further prism bearings, the distance of the measuring rods can then be adjusted stepwise in order to be able to select different measuring lengths.
  • Fig. 2 shows an example of the configuration of the prism support of the bearing block in the
  • Fig. 4 shows an example of a bearing block with additional prism bearings for stepped
  • FIG. 3 shows an overall view of this extensometer, in which, however, the capacitive measuring sensor used in this case is not shown.
  • the extensometer has the two measuring rods 1, which are applied with their tips visible in the figure to a sample to be measured. At the opposite ends of the measuring rods 1, these are pierced with thin pins 2. These pins 2 are firmly connected to the measuring rods 1, for example. Glued into corresponding holes of the measuring rods 1. The pins 2 form the axes of rotation about which the measuring rods 1 are rotatable. The thin pins 2 are held by springs 4 in a prism holder 3 of the bearing block 5. Thus, these pins 2 and indirectly also the measuring rods 1 are mounted without clearance in the bearing block 5.
  • FIG. 1 shows a detailed representation of such a prism mounting in two sectional views from the front and from the side.
  • part of a capacitive measuring sensor is mounted in the region between the bearing block 5 and the tips of the measuring rods 1 adjacent to the sample.
  • the position of the measuring sensor on the measuring rods 1 is freely selectable depending on the desired measuring accuracy and required temperature resistance.
  • the bearing block 5, in which the prism support is located with the prism holder 3 for the pins 2 and thus for the measuring rods 1, is rotatably mounted in a manner similar to the measuring rods 1 in a prism mounting 6 of a rocker 7. As a result, a length compensation of the measuring rods 1 is made possible.
  • FIG. 2 shows this prism support 6 of the bearing block 5 in two sectional views from the front and from the side.
  • the rocker 7 is rotatably mounted on one side of a holder 8 and is pressed by springs 9 against a stop. Depending on the deflection, the springs 9 determine the contact pressure of the measuring rods 1 against the sample. Furthermore, an adjustment unit 10 can still be seen in FIG. 3, which serves for the adjustment of the measuring rods 1 before the beginning of the measurement. This adjustment unit 10 can be removed in the present example.
  • the contact pressure of the measuring rods 1 is set to the sample not defined by springs but via one or more weights.
  • the retaining pins shown in Figure 3 for the springs 9 can be used. The weight is attached to a thin rope, which is guided around one of these retaining pins and attached to the other retaining pin.
  • measuring rods 1 made of aluminum oxide are designed as thin-walled tubes with a length in the range between 100 and 180 mm.
  • the bearing block 5 was made of a ceramic material, which also has a very low coefficient of thermal expansion. By choosing the bearing block 5 from such a material, the influence of temperature changes on the measurement is additionally reduced. With the illustrated extensometer, a measurement accuracy of ⁇ 0.1 ⁇ m could be achieved.
  • the entire extensometer can also be used in vacuum, in protective gas, under pressure and in chambers that are at elevated temperature.
  • the maximum temperature is determined by the choice of materials of construction and the electrical leads for the sensor (s).
  • the further processing of the measurement signals in a known manner as in Extensometers according to the prior
  • the bearing block 5 has a double (ie bilateral) prism bearing for each of the measuring rods 1, such a bearing block can also be provided with further prism bearings.
  • Figure 4 shows the parallel staggered prism shots 3 of the prism bearings with such a bearing block 5.
  • Such an arrangement of the prism bearings allows the measuring rods 1 to be used at different distances from one another, so that the measuring length can be adjusted in steps, for example in steps of 5 mm, up to a maximum measuring length of 50 mm.
  • the term "measuring length” is understood to mean the distance between the two tips of the measuring rods on the sample.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

The invention relates to a device for measuring a change in length of a sample, i.e. to an extensometer. The device comprises at least two measuring rods (1) disposed next to each other in a plane of measurement and received in separate first bearings (3) in a bearing block (5) so as to be rotatable about parallel first axes of rotation that extend at a right angle to the plane of measurement. The bearing block (5) is received in a second bearing (6) in a suspension (7) so as to be rotatable about a second axis of rotation that extends in parallel to the first axes of rotation. The device also comprises at least one measuring sensor for detecting a change in a distance between the measuring rods (1). The inventive device is characterized in that the measuring rods (1) are configured from a high-temperature resistant material having a low thermal expansion coefficient. The first bearings (3) and the second bearing (6) are configured as prismatic bearings. The inventive device allows to carry out measurements at high temperatures and high frequencies.

Description

Extensometer für hohe Temperaturen Extensometer for high temperatures
Technisches AnwendungsgebietTechnical application
Die vorliegende Erfindung betrifft eine Vorrichtung zur Messung einer Längenänderung einer Probe, wobei die Vorrichtung zumindest zwei nebeneinander in einer Messebene angeordnete Messstäbe, einen Lagerblock, in dem die Messstäbe in getrennten ersten Lagerungen um parallele erste Drehachsen drehbar gelagert sind, die senkrecht zur Messebene verlaufen, eine Aufhängung für den Lagerblock, in der derThe present invention relates to a device for measuring a change in length of a sample, the device having at least two measuring rods arranged side by side in a measuring plane, a bearing block in which the measuring rods are rotatably mounted in separate first bearings about parallel first axes of rotation perpendicular to the measuring plane. a suspension for the storage block in which the
Lagerblock in einer zweiten Lagerung um eine zweite Drehachse drehbar gelagert ist, die parallel zu den ersten Drehachsen verläuft, und einen Messsensor zur Erfassung einer Änderung eines Abstandes zwischen den Messstäben umfasst . Derartige Vorrichtungen sind auch unter dem Begriff Extensometer bekannt .Bearing block is rotatably mounted in a second bearing about a second axis of rotation which is parallel to the first axes of rotation, and comprises a measuring sensor for detecting a change in a distance between the measuring rods. Such devices are also known by the term extensometer.
In der Werkstoffprüfung ist die Messung des Kraft- Verformungs-Verhaltens erforderlich, um Aussagen zum Dehnungsverhalten, zum Elastizitätsmodul, zumIn material testing, the measurement of the force-deformation behavior is required to determine the elongation behavior, the modulus of elasticity, the
Hystereseverhalten, zur Bruchdehnung und zur Lebensdauer eines Werkstoffes unter thermomechanischer zyklischer oder statischer Beanspruchung zu erhalten. Viele Werkstoffe werden bei ihrem Einsatz mit hohen Temperaturen, wechselnden Temperaturen und/oder hohen Frequenzen belastet. In der Werkstoffprüfung müssen demnach Messsysteme verfügbar sein, die eine Ermittlung von Längenänderungen einer Probe als Basis für die Berechnung der genannten Werkstoffeigenschaften auch bei wechselnden Temperaturen, hohen Temperaturen und/oder hohen Belastungsfrequenzen ermöglichen.Hystereseverhalten to obtain the elongation at break and the life of a material under thermomechanical cyclic or static stress. Many materials are loaded with high temperatures, changing temperatures and / or high frequencies. Accordingly, in material testing, measuring systems must be available which also determine a change in length of a sample as a basis for the calculation of the abovementioned material properties allow for changing temperatures, high temperatures and / or high load frequencies.
Stand der TechnikState of the art
Neben Messsystemen auf Basis von Dehnmessstreifen sowie berührungslosen optischen MessSystemen werden für die Messung der Längenänderungen auch Extensometer eingesetzt, die einen direkten Kontakt zur Probe erfordern. Bei diesen kontaktierenden Extensometern geben zwei Messstäbe, die über eine reibschlüssige Verbindung direkt an der zu messenden Probe anliegen, die Längenänderung direkt an einen weiter entfernt von der Probe angeordneten Sensor weiter, der eine Abstandsänderung der Messstäbe misst.In addition to measuring systems based on strain gauges and non-contact optical measuring systems, extensometers are also used to measure changes in length, which require direct contact with the sample. In the case of these contacting extensometers, two measuring rods which abut directly against the sample to be measured via a frictional connection transmit the change in length directly to a sensor arranged further away from the sample, which measures a change in the distance of the measuring rods.
Grundsätzlich besteht bei bekannten Extensometern das Problem, dass diese entweder für die Messung bei hohen Frequenzen oder bei hohen Temperaturen ausgelegt sind. Messungen bei hohen Temperaturen erfordern in derBasically, there is the problem with known extensometers that they are designed either for the measurement at high frequencies or at high temperatures. Measurements at high temperatures require in the
Regel lange Messstäbe, um die Wärmeübertragung auf die Lagerungen und den Sensor zu reduzieren. Durch längere Stäbe steigen jedoch die zu bewegenden Massen, so dass ein Einsatz derartiger Extensometer für Messungen bei hohen Belastungsfrequenzen nicht geeignet ist.Usually long dipsticks to reduce heat transfer to the bearings and the sensor. However, longer rods increase the masses to be moved, so that use of such extensometers is not suitable for measurements at high load frequencies.
Die EP 0697095 Bl beschreibt ein für hohe Temperaturen geeignetes Extensometer, bei dem die beiden Messstäbe kardanisch aufgehängt sind. Um die Anforderungen an hohe Temperaturen zu erfüllen, sind die Messstäbe bei diesem Extensometer vorzugsweise aus keramischen oder faserkeramischen Werkstoffen gebildet . Weiterhin ist das Extensometer mit einer Kühlein- richtung versehen, um Teile des Extensometers kontrolliert zu kühlen. Eine derartige Kühlung ist allerdings relativ aufwendig.EP 0697095 B1 describes an extensometer suitable for high temperatures, in which the two measuring rods are gimbal-mounted. In order to meet the requirements of high temperatures, the dipsticks in this extensometer are preferably made of ceramic or fiber-ceramic materials. Furthermore, the extensometer with a cooling provided direction to cool controlled parts of the extensometer. Such cooling is relatively expensive.
Aus der US 4823473 ist ein Extensometer zurFrom US 4823473 is an extensometer for
Messung der Längenänderung einer Probe bekannt, das zwei nebeneinander in einer Messebene angeordnete Messstäbe aufweist, die in einem Lagerblock in getrennten Lagerungen um parallele erste Drehachsen drehbar gelagert sind, die senkrecht zur Messebene verlaufen. Weiterhin ist eine Aufhängung für den Lagerblock vorgesehen, in der der Lagerblock in einer Lagerung um eine zweite Drehachse drehbar gelagert ist, die parallel zu den ersten Drehachsen liegt. Die Mess- stäbe bestehen aus einem hochtemperaturbeständigen Material, das einen thermischen Ausdehnungskoeffizienten von < 10"5 K"1 aufweist. Die Lagerungen für die Messstäbe und den Lagerblock sind bei dieser Druckschrift als Zapfenlagerungen ausgebildet.Measurement of the change in length of a sample is known, which has two measuring rods arranged side by side in a measuring plane, which are rotatably mounted in a bearing block in separate bearings about parallel first axes of rotation which are perpendicular to the measuring plane. Furthermore, a suspension for the bearing block is provided, in which the bearing block is rotatably mounted in a bearing about a second axis of rotation which is parallel to the first axes of rotation. The dipsticks are made of a high-temperature-resistant material with a thermal expansion coefficient of <10 "5 K " 1 . The bearings for the measuring rods and the bearing block are formed in this document as journal bearings.
Die DE 3714185 C3 betrifft ebenfalls eine Vorrichtung zur Messung der axialen Dehnung eines Probestabes mit zwei im Abstand und annähernd parallel zueinander angeordneten und gegen den Probestab mittels Federkraft andrückbaren Messstäben, die an jeweils einem Bauteil der Messvorrichtung schwenkbar gelagert sind. Die Messstäbe sind hierbei in einer einfachen Weise mittels Schwenklager, die in Nieten bestehen können, mit dem Gestell verbunden.DE 3714185 C3 also relates to a device for measuring the axial elongation of a sample bar with two spaced apart and approximately parallel to each other and against the sample rod by means of spring force pressure rods, which are pivotally mounted on a respective component of the measuring device. The measuring rods are in this case connected in a simple manner by means of pivot bearings, which may consist of rivets, with the frame.
Bei dem Extensometer der US 5083465 A sind die beiden Messstäbe ebenfalls über einfache Drehlagerungen mit einem Lagerblock verbunden, der wiederum an einer Federaufhängung gelagert ist.In the extensometer of US 5083465 A, the two measuring rods are also simple pivot bearings connected to a bearing block, which in turn is mounted on a spring suspension.
Die US 4939445 zeigt ein Extensometer, bei dem zwei Arme, deren Enden zur Kontaktierung der Probe ausgebildet sind, über ein Drehgelenk miteinander verbunden sind.No. 4,939,445 shows an extensometer in which two arms whose ends are designed to contact the sample are connected to one another via a rotary joint.
Die US 4884456 beschreibt ein aufwendig aufgebautes Extensometer, bei dem ein parallelogrammartiger Lagerrahmen für die beiden Messstäbe vorgesehen ist. Die Rahmenteile sind über Biegeverbindungen miteinander verbunden, um eine ungehinderte Bewegung der beiden Messstäbe entlang ihrer Längsachse zu ermöglichen. Auch eine Schwenkbewegung der Messstäbe wird durch Biegeverbindungen ermöglicht .No. 4,884,456 describes a complex extensometer in which a parallelogram-type bearing frame is provided for the two measuring rods. The frame parts are connected to one another by means of bending connections, in order to allow unimpeded movement of the two measuring rods along their longitudinal axis. A pivoting movement of the measuring rods is made possible by bending connections.
Die Aufgabe der vorliegenden Erfindung besteht darin, ein kontaktierendes Extensometer anzugeben, das einfach aufgebaut und für den Einsatz bei hohen Temperaturen geeignet ist. Das Extensometer soll weiterhin für eine Messung bei hohen Frequenzen geeignet sein oder zumindest auf einfache Weise angepasst werden können.The object of the present invention is to provide a contacting extensometer which is simple in construction and suitable for use at high temperatures. The extensometer should continue to be suitable for a measurement at high frequencies or at least be easily adapted.
Darstellung der ErfindungPresentation of the invention
Die Aufgabe wird mit der Vorrichtung gemäß Patent- anspruch 1 gelöst. Vorteilhafte Ausgestaltungen der Vorrichtung sind Gegenstand der Unteransprüche oder lassen sich der nachfolgenden Beschreibung sowie den Ausführungsbeispielen entnehmen. Die vorgeschlagene Vorrichtung umfasst zumindest zwei nebeneinander in einer Messebene angeordnete Messstäbe, die in getrennten ersten Lagerungen in einem Lagerblock um parallele erste Drehachsen drehbar gelagert sind, die senkrecht zur Messebene verlaufen. Der Lagerblock ist in einer zweiten Lagerung in einer Aufhängung um eine zweite Drehachse drehbar gelagert, die parallel zu den ersten Drehachsen verläuft. Die Vorrichtung umfasst weiterhin zumindest einen Messsensor zur Erfassung einer Änderung eines Abstandes zwischen den Messstäben, die bei der Messung in reibschlüssigem Kontakt mit der Probe stehen. Die beiden Messstäbe sind aus einem hochtemperaturbestän- digen Material, vorzugsweise für Temperaturen > 1000° C, mit einem geringen thermischen Ausdehnungskoeffizienten von ≤ 10*10~6 K"1 gebildet. Die Vorrichtung zeichnet sich vor allem dadurch aus, dass die ersten Lagerungen und die zweite Lagerung als Prismenlagerungen ausgebildet sind.The object is achieved with the device according to claim 1. Advantageous embodiments of the device are the subject of the dependent claims or can be found in the following description and the embodiments. The proposed device comprises at least two measuring rods arranged side by side in a measuring plane, which are rotatably mounted in separate first bearings in a bearing block about parallel first axes of rotation, which run perpendicular to the measuring plane. The bearing block is rotatably mounted in a second bearing in a suspension about a second axis of rotation which is parallel to the first axes of rotation. The apparatus further comprises at least one measuring sensor for detecting a change in a distance between the measuring rods, which are in frictional contact with the sample during the measurement. The two measuring rods are formed of a hochtemperaturbestän- ended material, preferably for temperatures> 1000 ° C, with a low thermal expansion coefficient of ≤ 10 * 10 -6 K '1. The device is characterized primarily by the fact that the first bearings and the second bearing are designed as prism bearings.
Durch die Wahl von Prismenlagerungen für die Lagerung der Messstäbe und des Lagerblocks besteht nur ein punktueller Kontakt zu den Messstäben. Die beiden Messstäbe weisen hierbei unabhängig von der Temperatur jeweils einen gleich bleibenden Abstand an den Positionen der Lagerung auf, da der Wärmeübergang durch den nur punktuellen Materialkontakt in der Prismenlagerung minimiert ist, so das eine Erwärmung des Lagerblocks durch die Wärmeleitung in den Stäben nahezu ausgeschlossen werden kann. Eine Verklemmung oder Änderung der Position aufgrund einer erhöhten Wärmeleitung durch die Stäbe in die Lagerung und damit eine Verfälschung des Messergebnisses kann daher nicht auftreten. Dies gilt auch für Einflüsse wechselnder Temperaturen. Die Messstäbe selbst sind aufgrund der Prismenlagerung spielfrei gelagert. Die spielfreie Lagerung bietet insbesondere Vorteile bei einer Lastumkehr, d. h. bei Messungen an Proben unter zyklischer Beanspruchung. Auf der anderen Seite bietet die Wahl einer Prismenlagerung den Vorteil eines einfachen, robusten und somit störungsunempfindlichen Aufbaus des Extensometers .Due to the choice of prism bearings for the mounting of the measuring rods and the bearing block, there is only a point contact with the measuring rods. Independently of the temperature, the two measuring rods each have a constant spacing at the positions of the bearings, since the heat transfer is minimized by the only selective material contact in the prism bearing, so that heating of the bearing block by the heat conduction in the rods is virtually ruled out can. A jamming or change of position due to increased heat conduction through the rods in the storage and thus a falsification of the measurement result can therefore not occur. This also applies to influences of changing temperatures. The measuring rods themselves are stored without play due to the prism bearing. The play-free storage offers particular advantages in a load reversal, ie in measurements on samples under cyclic load. On the other hand, the choice of a prism bearing offers the advantage of a simple, robust and thus interference-resistant construction of the extensometer.
Das vorliegende Extensometer ist unempfindlich gegenüber Veränderungen der Probenoberfläche infolge hoher Temperaturen, bspw. durch Verzunderung, und kann aufgrund der kompakten Bauweise bei geeigneter Wahl der Dimensionen der Messstäbe auch für Messungen bei hohen Frequenzen eingesetzt werden. Hierzu werden Messstäbe aus einem Leichtbaumaterial, d.h. vorzugsweise mit einer Dichte von ≤ 4 g/cm3, gewählt und/oder die Messstäbe in Leichtbauweise ausgeführt. Unter derThe present extensometer is insensitive to changes in the sample surface due to high temperatures, for example by scaling, and can also be used for measurements at high frequencies due to the compact design with a suitable choice of the dimensions of the measuring rods. For this purpose, measuring rods made of lightweight construction material, ie preferably with a density of ≦ 4 g / cm 3 , are selected and / or the measuring rods are made of lightweight construction. Under the
Ausführung in Leichtbauweise ist hierbei die geometrische Gestaltung der Stäbe zu verstehen, die dann nicht aus einem Vollmaterial gebildet sind, sondern ein entsprechendes Leichtbauprofil aufweisen, bspw. in Form eines dünnwandigen Rohres oder mit einer unterbrochenen Tragstruktur ausgebildet sind. Für eine Messung bis zu einer Frequenz von 100 Hz sind die Messstäbe hierbei so ausgebildet, dass ihre Eigenfrequenz deutlich oberhalb von 100 Hz liegt. Vorzugsweise wird die Länge der Stäbe hierbei sehr kurz, beispielsweise zwischen 100 mm und 180 mm gewählt . Aufgrund der Wahl aus einem Material mit geringem thermischem Ausdehnungskoeffizienten in Kombination mit den Prismenlagerungen kann trotz dieser kurzen Stäbe eine Messung bei Temperaturen oberhalb von 1000° C erfolgen. Auch die Wahl des Messsensors muss hierbei selbstverständlich so erfolgen, dass dieser den Temperaturen standhält, denen er während der Messung ausgesetzt ist. Vorzugsweise wird hierbei ein kapazitiver Messsensor eingesetzt.Execution in lightweight construction is to be understood here as the geometric design of the rods, which are then not formed from a solid material, but have a corresponding lightweight profile, for example. Are in the form of a thin-walled tube or formed with an interrupted support structure. For a measurement up to a frequency of 100 Hz, the measuring rods are designed so that their natural frequency is well above 100 Hz. Preferably, the length of the bars is chosen to be very short, for example between 100 mm and 180 mm. Due to the choice of a material with a low thermal expansion coefficient in In spite of these short rods, a combination with the prism bearings can be measured at temperatures above 1000 ° C. Of course, the choice of the measuring sensor must also be such that it withstands the temperatures to which it is exposed during the measurement. Preferably, in this case a capacitive measuring sensor is used.
Als geeignete Materialien für die Messstäbe sind bspw. keramische Materialien, Aluminiumoxid oderAs suitable materials for the measuring rods are, for example, ceramic materials, alumina or
Siliziumkarbid geeignet. Vorzugsweise besteht auch der Lagerblock aus einem derartigen Material mit geringem thermischem Ausdehnungskoeffizienten, wie bspw. einem keramischen Material.Silicon carbide suitable. Preferably, the bearing block consists of such a material with a low thermal expansion coefficient, such as, for example, a ceramic material.
Durch die Wahl einer sich selbst justierenden doppelten spielfreien Prismenlagerung in Kombination mit den genannten Materialien wird ein universeller Einsatz des vorliegenden Extensometers ermöglicht. Das Extensometer ist aufgrund seines einfachen Aufbaus sehr robust und kostengünstig herzustellen. Es eignet sich bei geeigneter Wahl der Materialien für die Messung der Verformung einer Probe unter mechanischer Beanspruchung bei hohen Temperaturen von bis zu 1600° C und hohen Frequenzen bis oberhalb von 100 Hz. Gegebenenfalls kann eine Erwärmung des Lagerblocks durch Strahlungs- und Konvektionswärme durch den zusätzlichen Einbau von Wärmeschutzblechen verringert werden. Das Extensometer ist besonders für die Vermessung von Proben unter wechselnden Bedingungen geeignet, wie sie bspw. bei thermomechanischen Ermüdungsversuchen (Zyklierung der Temperatur und/oder der mechanischen Belastung) oder bei vorgegebenen Lastzyklen, bspw. der Überlagerung von low-cycle-fatigue (Icf) und high-cycle-fatigue (lief) vorliegen. Durch die spielfreie Lagerung ist die Genauigkeit der Messsignale hoch. Damit kann das Extensometer auch zur Steuerung von Prüfmaschinen, bspw. durch Vorgabe einer zu erreichenden Längenänderung, verwendet werden. Bei nicht spielfreier Lagerung würde dies durch geringe Ungenauigkeiten bei der Richtungsumkehr (von Stauchung zu Dehnung oder umgekehrt) erschwert oder unmöglich gemacht. Die Spielfreiheit der Lager wird durch den vorliegendenBy choosing a self-adjusting double play-free prism bearing in combination with the materials mentioned a universal use of the present extensometer is possible. The extensometer is very robust and inexpensive to produce due to its simple construction. It is suitable with a suitable choice of materials for measuring the deformation of a sample under mechanical stress at high temperatures of up to 1600 ° C and high frequencies to above 100 Hz. Optionally, a heating of the bearing block by radiation and convection by the additional heat Installation of heat shields can be reduced. The extensometer is particularly suitable for the measurement of samples under changing conditions, such as those in thermomechanical fatigue tests (cyclization of the temperature and / or the mechanical load) or given load cycles, eg. The superposition of Low-cycle-fatigue (Icf) and high-cycle-fatigue (ran) are present. The play-free storage, the accuracy of the measuring signals is high. Thus, the extensometer can also be used to control testing machines, for example by specifying a length change to be achieved. In non-clearance storage this would be made difficult or impossible by small inaccuracies in the direction reversal (from compression to elongation or vice versa). The backlash of the bearing is determined by the present
Aufbau des Extensometers auch bei Temperaturänderungen aufrechterhalten .Structure of the extensometer maintained even with temperature changes.
In bevorzugten Ausgestaltungen der vorliegenden Vorrichtung sind die Gleitflächen der Prismenlagerung zusätzlich mit einer reibungsmindernden Beschichtung versehen, um einen geringeren Anpressdruck der Messstäbe an die Probe realisieren zu können. Weiterhin kann der Lagerblock weitere Prismenlagerungen aufweisen, in denen die Messstäbe ebenfalls gelagert werden können. Durch geeignete Anordnung dieser weiteren Prismenlagerungen lässt sich dann der Abstand der Messstäbe stufenweise einstellen, um unterschiedliche Messlängen wählen zu können.In preferred embodiments of the present device, the sliding surfaces of the prism bearing are additionally provided with a friction-reducing coating in order to be able to realize a lower contact pressure of the measuring rods on the sample. Furthermore, the bearing block can have further prism bearings, in which the measuring rods can also be stored. By suitable arrangement of these further prism bearings, the distance of the measuring rods can then be adjusted stepwise in order to be able to select different measuring lengths.
Kurze Beschreibung der ZeichnungenBrief description of the drawings
Die vorliegende Vorrichtung wird nachfolgend anhand eines Ausführungsbeispieles in Verbindung mit den Zeichnungen ohne Beschränkung des durch dieThe present device is described below by way of an embodiment in conjunction with the drawings without limitation by the
Patentansprüche vorgegebenen Schutzbereichs nochmals beispielhaft erläutert. Hierbei zeigen: Fig. 1 ein Beispiel für die Ausgestaltung der Prismenlagerung für die Messstäbe im Lagerblock in zwei Schnittdarstellungen;Claims specified protection range again exemplified. Hereby show: 1 shows an example of the configuration of the prism support for the measuring rods in the bearing block in two sectional views;
Fig. 2 ein Beispiel für die Ausgestaltung der Prismenlagerung des Lagerblocks in derFig. 2 shows an example of the configuration of the prism support of the bearing block in the
Aufhängung in zwei Schnittdarstellungen;Suspension in two sectional views;
Fig. 3 eine Gesamtdarstellung des Extensometers ohne Messsensor; und3 shows an overall view of the extensometer without measuring sensor; and
Fig. 4 ein Beispiel für einen Lagerblock mit zusätzlichen Prismenlagerungen zur gestuftenFig. 4 shows an example of a bearing block with additional prism bearings for stepped
Einstellung von Tastabständen.Setting of scanning distances.
Wege zur Ausführung der Erfindung Im vorliegenden Beispiel wird eine Ausgestaltung des vorgeschlagenen Extensometers beschrieben, die eine Messung bei hohen Temperaturen von bis zu 1650° C und hohen Frequenzen von mindestens 100 Hz ermöglicht.MODES FOR CARRYING OUT THE INVENTION In the present example, an embodiment of the proposed extensometer is described which enables measurement at high temperatures of up to 1650 ° C. and high frequencies of at least 100 Hz.
Figur 3 zeigt eine Gesamtdarstellung dieses Extensometers, bei der allerdings der hierbei eingesetzte kapazitive Messsensor nicht dargestellt ist. Das Extensometer weist die beiden Messstäbe 1 auf, die mit ihren in der Figur sichtbaren Spitzen an einer zu messenden Probe angelegt werden. An den gegenüberliegenden Enden der Messstäbe 1 sind diese mit dünnen Stiften 2 durchbohrt. Diese Stifte 2 sind fest mit den Messstäben 1 verbunden, bspw. in entsprechende Bohrungen der Messstäbe 1 eingeklebt. Die Stifte 2 bilden die Drehachsen, um die die Messstäbe 1 drehbar sind. Die dünnen Stifte 2 werden durch Federn 4 in einer Prismenaufnahme 3 des Lagerblocks 5 gehalten. Damit sind diese Stifte 2 und indirekt auch die Mess- stäbe 1 spielfrei im Lagerblock 5 gelagert. Figur 1 zeigt hierzu eine Detaildarstellung einer derartigen Prismenlagerung in zwei Schnittansichten von vorne und von der Seite.Figure 3 shows an overall view of this extensometer, in which, however, the capacitive measuring sensor used in this case is not shown. The extensometer has the two measuring rods 1, which are applied with their tips visible in the figure to a sample to be measured. At the opposite ends of the measuring rods 1, these are pierced with thin pins 2. These pins 2 are firmly connected to the measuring rods 1, for example. Glued into corresponding holes of the measuring rods 1. The pins 2 form the axes of rotation about which the measuring rods 1 are rotatable. The thin pins 2 are held by springs 4 in a prism holder 3 of the bearing block 5. Thus, these pins 2 and indirectly also the measuring rods 1 are mounted without clearance in the bearing block 5. FIG. 1 shows a detailed representation of such a prism mounting in two sectional views from the front and from the side.
Auf den beiden Messstäben 1 wird je ein Teil eines kapazitiven Messsensors im Bereich zwischen dem Lagerblock 5 und den an der Probe anliegenden Spitzen der Messstäbe 1 angebracht. Die Position des Messsensors auf den Messstäben 1 ist je nach gewünschter Messgenauigkeit und erforderlicher Temperaturbeständigkeit frei wählbar.On each of the two measuring rods 1, part of a capacitive measuring sensor is mounted in the region between the bearing block 5 and the tips of the measuring rods 1 adjacent to the sample. The position of the measuring sensor on the measuring rods 1 is freely selectable depending on the desired measuring accuracy and required temperature resistance.
Der Lagerblock 5, in dem sich die Prismenlagerung mit der Prismenaufnahme 3 für die Stifte 2 und damit für die Messstäbe 1 befindet, ist in ähnlicher Weise wie die Messstäbe 1 in einer Prismenlagerung 6 einer Wippe 7 drehbar gelagert . Dadurch wird ein Längen- ausgleich der Messstäbe 1 ermöglicht. Figur 2 zeigt diese Prismenlagerung 6 des Lagerblocks 5 in zwei Schnittdarstellungen von vorne und von der Seite.The bearing block 5, in which the prism support is located with the prism holder 3 for the pins 2 and thus for the measuring rods 1, is rotatably mounted in a manner similar to the measuring rods 1 in a prism mounting 6 of a rocker 7. As a result, a length compensation of the measuring rods 1 is made possible. FIG. 2 shows this prism support 6 of the bearing block 5 in two sectional views from the front and from the side.
Die Wippe 7 ist an einer Halterung 8 einseitig drehbar befestigt und wird durch Federn 9 gegen einen Anschlag gedrückt. Die Federn 9 bestimmen je nach Auslenkung die Anpresskraft der Messstäbe 1 gegen die Probe. Weiterhin ist in der Figur 3 noch eine Justageeinheit 10 zu erkennen, die der Justage der Messstäbe 1 vor Beginn der Messung dient. Diese Justageeinheit 10 kann im vorliegenden Beispiel abgenommen werden. In einer alternativen Ausgestaltung wird die Anpresskraft der Messstäbe 1 an die Probe nicht über Federn sondern über ein oder mehrere Gewichte definiert eingestellt. Hierzu können die in der Figur 3 dargestellten Haltestifte für die Federn 9 genutzt werden. Das Gewicht wird an einem dünnen Seil befestigt, das um einen dieser Haltestifte geführt und am anderen Haltestift befestigt wird.The rocker 7 is rotatably mounted on one side of a holder 8 and is pressed by springs 9 against a stop. Depending on the deflection, the springs 9 determine the contact pressure of the measuring rods 1 against the sample. Furthermore, an adjustment unit 10 can still be seen in FIG. 3, which serves for the adjustment of the measuring rods 1 before the beginning of the measurement. This adjustment unit 10 can be removed in the present example. In an alternative embodiment, the contact pressure of the measuring rods 1 is set to the sample not defined by springs but via one or more weights. For this purpose, the retaining pins shown in Figure 3 for the springs 9 can be used. The weight is attached to a thin rope, which is guided around one of these retaining pins and attached to the other retaining pin.
Um die Anforderungen an die hohen Temperaturen und hohen Frequenzen zu erfüllen, werden im vorliegenden Beispiel Messstäbe 1 aus Aluminiumoxid als dünnwandige Rohre mit einer Länge im Bereich zwischen 100 bis 180 mm ausgeführt. Der Lagerblock 5 wurde aus einem keramischen Material hergestellt, das ebenfalls einen sehr geringen thermischen Ausdehnungskoeffizienten aufweist. Durch die Wahl des Lagerblocks 5 aus einem derartigen Material wird der Einfluss von Temperaturwechseln auf die Messung zusätzlich verringert. Mit dem dargestellten Extensometer konnte eine Messgenauigkeit von < 0,1 μm erzielt werden.In order to meet the requirements of the high temperatures and high frequencies, in the present example, measuring rods 1 made of aluminum oxide are designed as thin-walled tubes with a length in the range between 100 and 180 mm. The bearing block 5 was made of a ceramic material, which also has a very low coefficient of thermal expansion. By choosing the bearing block 5 from such a material, the influence of temperature changes on the measurement is additionally reduced. With the illustrated extensometer, a measurement accuracy of <0.1 μm could be achieved.
Das gesamte Extensometer lässt sich auch in Vakuum, in Schutzgas, unter Druck sowie in Kammern einsetzen, die unter erhöhter Temperatur stehen. Die maximale Temperatur wird durch die Wahl der Konstruktionsmaterialien und die elektrischen Zuleitungen für den oder die Messsensoren bestimmt. Die Weiterverarbeitung der Messsignale erfolgt in bekannter Weise wie bei Extensometern gemäß dem Stand derThe entire extensometer can also be used in vacuum, in protective gas, under pressure and in chambers that are at elevated temperature. The maximum temperature is determined by the choice of materials of construction and the electrical leads for the sensor (s). The further processing of the measurement signals in a known manner as in Extensometers according to the prior
Technik. Während in dem Beispiel der Figuren 1 bis 3 der Lagerblock 5 für jeden der Messstäbe 1 eine doppelte (d.h. beidseitige) Prismenlagerung aufweist, kann ein derartiger Lagerblock auch mit weiteren Prismen- lagerungen versehen sein. Dies ist schematisch in Figur 4 angedeutet, die die parallel gegeneinander versetzten Prismenaufnahmen 3 der Prismenlagerungen mit eines derartigen Lagerblocks 5 zeigt. Durch eine derartige Anordnung der Prismenlagerungen lassen sich die Messstäbe 1 in unterschiedlichem Abstand zueinander einsetzen, so dass die Messlänge in Stufen, beispielsweise in Stufen von 5 mm bis zu einer maximalen Messlänge von 50 mm, eingestellt werden kann. Unter Messlänge wird hierbei der Abstand der beiden Spitzen der Messstäbe auf der Probe verstanden. Technology. While in the example of FIGS. 1 to 3 the bearing block 5 has a double (ie bilateral) prism bearing for each of the measuring rods 1, such a bearing block can also be provided with further prism bearings. This is schematically indicated in Figure 4, which shows the parallel staggered prism shots 3 of the prism bearings with such a bearing block 5. Such an arrangement of the prism bearings allows the measuring rods 1 to be used at different distances from one another, so that the measuring length can be adjusted in steps, for example in steps of 5 mm, up to a maximum measuring length of 50 mm. The term "measuring length" is understood to mean the distance between the two tips of the measuring rods on the sample.
BezugszeichenlisteLIST OF REFERENCE NUMBERS
Messstäbedipsticks
Stiftepencils
PrismenaufnähmePrismenaufnähme
Federfeather
Lagerblockbearing block
Prismenlagerungprism storage
Wippeseesaw
Halterungbracket
Federfeather
Justageeinheit adjustment unit

Claims

Patentansprüche claims
1. Vorrichtung zur Messung der Längenänderung einer Probe mit1. Apparatus for measuring the change in length of a sample with
- zumindest zwei nebeneinander in einer Messebene angeordneten Messstäben (1) ,at least two measuring rods (1) arranged next to each other in a measuring plane,
- einem Lagerblock (5) , in dem die Messstäbe (1) in getrennten ersten Lagerungen (3) um parallele erste Drehachsen drehbar gelagert sind, die senkrecht zur Messebene verlaufen, - einer Aufhängung (7) für den Lagerblock (5) , in der der Lagerblock in einer zweiten Lagerung (6) um eine zweite Drehachse drehbar gelagert ist, die parallel zu den ersten Drehachsen verläuft, und- A bearing block (5) in which the measuring rods (1) are rotatably mounted in separate first bearings (3) about parallel first axes of rotation which are perpendicular to the measuring plane, - a suspension (7) for the bearing block (5), in the the bearing block is rotatably mounted in a second bearing (6) about a second axis of rotation, which runs parallel to the first axes of rotation, and
- einem Messsensor zur Erfassung einer Änderung eines Abstandes zwischen den Messstäben (1) ,a measuring sensor for detecting a change in a distance between the measuring rods (1),
- wobei die Messstäbe (1) aus einem hochtemperaturbeständigen Material mit einem thermischen Ausdehnungskoeffizienten von ≤ 10*10"6 K"1 bestehen und - die ersten Lagerungen (3) und die zweite Lagerung- wherein the measuring rods (1) made of a high temperature resistant material having a coefficient of thermal expansion of ≤ 10 * 10 "6 K " 1 and - the first bearings (3) and the second storage
(6) als Prismenlagerungen ausgebildet sind.(6) are designed as prism bearings.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Messstäbe (1) aus einem Leichbaumaterial bestehen und/oder in Leichtbauweise ausgeführt sind.2. Apparatus according to claim 1, characterized in that the measuring rods (1) consist of a lightweight construction material and / or are designed in lightweight construction.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Messstäbe (1) eine Eigenfrequenz aufweisen, die zumindest um einen Faktor von 1,2 oberhalb von 100 Hz liegt.3. Apparatus according to claim 1 or 2, characterized in that in that the measuring rods (1) have a natural frequency which is at least a factor of 1.2 above 100 Hz.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Messstäbe (1) eine Länge von ≤ 200 mm aufweisen.4. Device according to one of claims 1 to 3, characterized in that the measuring rods (1) have a length of ≤ 200 mm.
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet , dass der Lagerblock (5) aus einem Material mit einem thermischen Ausdehnungskoeffizienten von ≤5. Device according to one of claims 1 to 4, characterized in that the bearing block (5) made of a material having a thermal expansion coefficient of ≤
10*10"6 K"1 besteht.10 * 10 "6 K " 1 exists.
6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Lagerblock (5) aus einem Leichtbaumaterial besteht .6. Device according to one of claims 1 to 5, characterized in that the bearing block (5) consists of a lightweight material.
7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass Gleitflächen der Prismenlagerungen (3, 6) eine Beschichtung zur ReibungsVerminderung aufweisen.7. Device according to one of claims 1 to 6, characterized in that sliding surfaces of the prism bearings (3, 6) have a coating for reducing friction.
8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Lagerblock (5) weitere Prismenlagerungen (3) aufweist, die eine stufenweise Einstellung eines Abstandes zwischen den Messstäben (1) ermöglichen. 8. Device according to one of claims 1 to 7, characterized in that the bearing block (5) further prism bearings (3), which allow a gradual adjustment of a distance between the measuring rods (1).
9. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Prismenlagerungen (3, 6) jeweils beidseitig der Messstäbe (1) oder des Lagerblocks (5) angeordnete Aufnahmen (3) für stabförmige9. Device according to one of claims 1 to 8, characterized in that the prism bearings (3, 6) respectively on both sides of the measuring rods (1) or the bearing block (5) arranged receptacles (3) for rod-shaped
Achsen (2) umfassen, die mit den Messstäben (1) oder dem Lagerblock (5) verbunden sind und die Drehachsen bilden.Axes (2), which are connected to the measuring rods (1) or the bearing block (5) and form the axes of rotation.
10. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Messsensor ein kapazitiver Sensor ist, der an den Messstäben (1) befestigt ist.10. Device according to one of claims 1 to 9, characterized in that the measuring sensor is a capacitive sensor which is fixed to the measuring rods (1).
11. Vorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das hochtemperaturstabile Material der Messstäbe (1) für Temperaturen von ≥ 10000C geeignet ist .11. Device according to one of claims 1 to 10, characterized in that the high-temperature-stable material of the measuring rods (1) for temperatures of ≥ 1000 0 C is suitable.
12. Vorrichtung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass eine Anpresskraft der Messstäbe (1) an die Probe über Federelemente (9) einstellbar ist, die die Aufhängung (7) mit einem feststehenden Träger (8) verbinden.12. Device according to one of claims 1 to 11, characterized in that a contact pressure of the measuring rods (1) to the sample via spring elements (9) is adjustable, which connect the suspension (7) with a fixed support (8).
13. Vorrichtung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass eine Anpresskraft der Messstäbe (1) an die Probe über ein oder mehrere Gewichte definiert einstellbar ist, die die Anpresskraft über zumindest ein Umlenkelement an der Aufhängung (7) oder einem feststehenden Träger (8) auf die Messstäbe (1) übertragen. 13. Device according to one of claims 1 to 11, characterized in that a contact pressure of the measuring rods (1) to the sample via one or more weights is set adjustable, the pressing force over at least one deflecting element on the suspension (7) or a fixed support (8) transferred to the measuring rods (1).
PCT/DE2006/000952 2005-06-03 2006-06-02 Extensometer for high temperatures WO2006128445A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200510025608 DE102005025608B3 (en) 2005-06-03 2005-06-03 Extensometer for high temperatures
DE102005025608.2 2005-06-03

Publications (1)

Publication Number Publication Date
WO2006128445A1 true WO2006128445A1 (en) 2006-12-07

Family

ID=36754638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2006/000952 WO2006128445A1 (en) 2005-06-03 2006-06-02 Extensometer for high temperatures

Country Status (2)

Country Link
DE (1) DE102005025608B3 (en)
WO (1) WO2006128445A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102305585A (en) * 2011-08-03 2012-01-04 上海电气核电设备有限公司 Device for measuring lateral swelling capacity of test sample fracture
CN105203584A (en) * 2015-09-16 2015-12-30 河南科技大学 Dilatometer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019125925B4 (en) 2019-09-26 2022-04-21 ZwickRoell Testing Systems GmbH Combination of an oven with a high-temperature extensometer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3714185A1 (en) * 1987-04-29 1988-11-17 Man Technologie Gmbh Method and device for the measurement of the axial flexing of a sample bar
US4823473A (en) * 1986-09-19 1989-04-25 Instron Corporation Extensometer for material testing machine
EP0697095B1 (en) * 1993-05-08 1998-04-01 Industrieanlagen-Betriebsgesellschaft M.B.H. High-temperature extensometer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4939445A (en) * 1986-08-06 1990-07-03 Mts Systems Corporation Pivoted arm capacitive extensometer
US4884456A (en) * 1988-04-26 1989-12-05 Mts Systems Corporation High temperature extensometer system
US5083465A (en) * 1990-12-24 1992-01-28 General Electric Company Probe for an extensometer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4823473A (en) * 1986-09-19 1989-04-25 Instron Corporation Extensometer for material testing machine
DE3714185A1 (en) * 1987-04-29 1988-11-17 Man Technologie Gmbh Method and device for the measurement of the axial flexing of a sample bar
EP0697095B1 (en) * 1993-05-08 1998-04-01 Industrieanlagen-Betriebsgesellschaft M.B.H. High-temperature extensometer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102305585A (en) * 2011-08-03 2012-01-04 上海电气核电设备有限公司 Device for measuring lateral swelling capacity of test sample fracture
CN102305585B (en) * 2011-08-03 2013-05-08 上海电气核电设备有限公司 Device for measuring lateral swelling capacity of test sample fracture
CN105203584A (en) * 2015-09-16 2015-12-30 河南科技大学 Dilatometer
CN105203584B (en) * 2015-09-16 2018-05-22 河南科技大学 Dilatometer

Also Published As

Publication number Publication date
DE102005025608B3 (en) 2006-12-14

Similar Documents

Publication Publication Date Title
DE19941899B4 (en) Surface scanning measuring machine
EP3225320B1 (en) Device and method for measuring the straightness of a rod-shaped workpiece
DE102010052815B4 (en) Apparatus for uniaxial pressure testing of slender test specimens by means of a directed from outside the device initiation of compressive force on the specimen
DE3803926A1 (en) ELASTIC MEASURING DEVICE
DE102005025608B3 (en) Extensometer for high temperatures
CH711324B1 (en) Positioning unit.
CH697712B1 (en) Device for the simultaneous measurement of forces.
DE3714185C2 (en)
DE102007030892A1 (en) Method for measuring flexion moments on a joint and measuring arrangement for carrying out the method
EP0697095B1 (en) High-temperature extensometer
EP0517653A1 (en) Feeler measuring head
DE2900896C2 (en) Thread measuring device
EP0169272A1 (en) Capacitive spacing sensor, particularly for high temperatures
DE3421149C2 (en) Pressure transducer
EP1731877B1 (en) Encoder of a measurement system
DE953922C (en) Work piece gauge or measuring head
DE3714988C2 (en)
DE2832038A1 (en) LINEAR MICROMETER
DE3643724C2 (en)
DE102019125925A1 (en) Combination of an oven with a high temperature extensometer
DE102016003043B4 (en) Measuring device for measuring rotating body macro geometry
DE19840422C2 (en) Device for clamping samples for tensile / compression tests
DE3030877C2 (en)
DE112013006885B4 (en) System for storing specimens
AT520955B1 (en) Measuring device for measuring the distance between two selected points

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase

Ref document number: 06742396

Country of ref document: EP

Kind code of ref document: A1