WO2006126978A1 - Topological near infrared analysis modeling of petroleum refinery products - Google Patents

Topological near infrared analysis modeling of petroleum refinery products Download PDF

Info

Publication number
WO2006126978A1
WO2006126978A1 PCT/US2003/025397 US0325397W WO2006126978A1 WO 2006126978 A1 WO2006126978 A1 WO 2006126978A1 US 0325397 W US0325397 W US 0325397W WO 2006126978 A1 WO2006126978 A1 WO 2006126978A1
Authority
WO
WIPO (PCT)
Prior art keywords
data set
pls
data
topnir
nir
Prior art date
Application number
PCT/US2003/025397
Other languages
French (fr)
Inventor
Yaser R. Sonbul
Original Assignee
Saudi Arabian Oil Company
Aramco Services Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saudi Arabian Oil Company, Aramco Services Company filed Critical Saudi Arabian Oil Company
Priority to PCT/US2003/025397 priority Critical patent/WO2006126978A1/en
Publication of WO2006126978A1 publication Critical patent/WO2006126978A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2823Raw oil, drilling fluid or polyphasic mixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/129Using chemometrical methods

Definitions

  • Chemometrics is used to refer to such computerized mathematical methods and interpretation of chemical data. Statistical analysis plays a central role in Chemometrics, and the main aim is to recognize a pattern in the chemical data generated from spectral analysis instruments.
  • NIR Near-Infrared
  • Chemometrics database construction techniques were introduced in the industry to predict the physical properties and chemical composition of the products.
  • the NIR technique offers enormous potential savings for refiners in monitoring, controlling and optimizing processes.
  • a single NIR can substitute for many traditional analyzers and provide accurate and fast results on physical and chemical properties of process streams and refined products.
  • the chemical constituents and physical phenomena of interest must have direct or indirect absorbance in the NIR region.
  • Fig. 1 is a schematic illustration of the creation of such a database.
  • NIR Chemometrics approaches have been developed for use in nearly every refinery for providing reliable quality control. These are known as PLSNIR (Partial Least Squares NIR) and TOPNIR (Topological NIR). These models allow prediction of the properties of unknown samples directly from their spectra. It must be emphasized that the reliability, accuracy and precision of properly calibrated and maintained NIR process analyzers are essential for the success of NTR as a closed-loop, feed-forward control system for on- stream performance.
  • the method in accordance with the present invention integrates the use of the TOPNIR and PLS techniques into one Chemometrics approach.
  • PLS is used for the first time in treating the TOPNIR database.
  • PLS is used to highlight the outliers
  • PLS is used for suggesting an excellent corrected lab test result on the bad given value.
  • PLS is used to improve the results of the TOPNIR densification process.
  • PLS is used to indicate a wrong densification direction and show where the error is enlarged. All mistaken artificial samples can then be removed from the database and bad real samples may be reedited with good PLS predicted values. Thereafter, the densification process can be repeated with an enhanced level of confidence. This step maintains a balanced equation of the model robustness and accuracy.
  • PLS is used in the method in accordance with the present invention to highlight affected good samples that have been turned bad by misuse of the densification process and prevent the deletion of good samples that should be kept.
  • the present invention is directed to a method of analyzing a substance exhibiting absorption in the near infrared (NIR) region, comprising a data obtaining step of obtaining a first data set of NIR spectroscopic data samples by subjecting the substance to NIR spectroscopy, a generating step of generating a second data set of NIR spectroscopic data samples by processing the - first data set using a partial least squares (PLS) technique, and an identifying step of identifying a component of the substance by performing a topological near infrared (TOPNIR) analysis on the second data set.
  • NIR near infrared
  • the present invention is directed to a method of analyzing a substance exhibiting absorption in the near infrared (NIR) region, comprising a data. obtaining step of obtaining a first data set of NIR spectroscopic data samples by subjecting the substance to NIR spectroscopy, an analysis step of
  • TOPNIR topological near infrared
  • PLS partial least squares
  • Fig. 1 is a schematic illustration of the creation of a Chemometrics database.
  • Fig. 2 is a typical NIR spectrum.
  • Fig. 3 is an illustration of data before densification.
  • Fig. 4 is an illustration of the data of Fig. 3 after densification.
  • Fig. 5 is an illustration of Pirouette PLS generated graphs.
  • Fig. 6 is an illustration of one aspect of TOPNIR modeling.
  • Fig. 7 is an illustration of another aspect of TOPNIR modeling.
  • Fig. 8 is an illustration of another aspect of TOPNIR modeling.
  • Fig. 9 is an illustration of model maintenance.
  • Fig. 10 is an illustration of the full NIR spectrum range.
  • Fig. 11 is a table for comparing results of conventional PLS and TOPNIR models.
  • Fig. 12 is a table for comparing results of the conventional TOPNIR method and the PLS enhanced TOPNIR method in accordance with the present invention.
  • Fig. 13 is a graph of standard deviations of the conventional PLS method, the conventional TOPNIR method and the PLS enhanced TOPNIR method in accordance with the present invention.
  • PLS Partial Least Squares
  • NIR Spectrum A NIR spectrum is obtained from the absorbency measurements from an NIR analyzer, typically as SPC files. TOPNIR and PLS models each have a wavelength range of 4000-4800 nm. A typical NIR spectrum is shown in Fig. 2.
  • Outlier An outlier is a data point that falls well outside of the main population. Outliers result from lab measurement errors, samples from different categories and instrument error. It is important to check for and remove outliers in both the training set and the set of unknowns that the calibration is to be tested on.
  • the model is
  • Cross Validation A process used to validate models whereby the calibration set is divided into calibration and validation subsets.
  • a model is built with the calibration subset and is used to predict the validation subset. This process is repeated using different subsets until every sample has been included in one validation subset. The predicted results are then used to validate the performance of the model.
  • Densification is a process used by TOPNIR to improve the robustness of a model — from the typically 30 samples per stream provided by the
  • TOPNIR is able to make
  • Figs. 3 and 4 show how artificial samples are added using an aggregate plane to display the data before (Fig. 3) and after (Fig. 4 ⁇ densification.
  • Aggregates An NIR spectrum may characterize the sample, but the quantity of data is enormous. Even with 42 bands of wavelength, comparing samples is very difficult. Therefore aggregates are calculations based on the absorbencies at a selection of wavelengths that characterize some property of the process stream, e.g.,
  • a process stream is characterized by a range of components that can be measured either by laboratory analysis or predicted from NIR spectra.
  • a process stream changes for a variety of operating reasons, which may include the base stock, the operating severity of the processing units and the catalyst activity. The variation of all these factors can be seen as the operating envelope for the production process.
  • the well known PLS method creates a simplified representation of the spectroscopic data by a process known as spectral decomposition.
  • the PLS algorithm then calculates the concentration, or property value, weighted average spectrum of all the spectra of the fuels in the calibration matrix. This calculation is followed by a computationally intensive procedure, accomplished by performing outlier detection and removal, and then applying cross-validation calculations for all samples in the training set.
  • a computationally intensive procedure accomplished by performing outlier detection and removal, and then applying cross-validation calculations for all samples in the training set.
  • a calibration model calculated from the remaining samples in the training set is used to predict the concentration (property value) of the removed samples.
  • the residual errors, or the differences between the predicted -and known concentration values, are squared and summed to determine the predicted error. Repeating this cross- validation process for the other samples in the training set results in a redefined regression model useful in predicting the properties of unknown fuels, The results of spectral decomposition give one set of scores and one set of factors (loading
  • the predicted property values may then be compared with those derived by established ASTM procedures. It is critical to establish the , correct number of factors to be used in the correlation files, as the predicted fuel property values calculated from the model depends on how many factors are used in the model. Too few factors will not adequately model the system, while too
  • the Pirouette ® PLS program provides data and graphs to - select the appropriate factor by plotting the Predicted Residual Error Sum.
  • TOPNIR is "delivered” as a configured model based on a standard " set of software functionality.
  • the well known TOPNIR model relies on a large database of samples that are representative of the production process.
  • TOPNIR has an extensive library of samples that allows the TOPNIR modelers to add samples to the database without all the data having to be provided by the analytical laboratory.
  • artificial samples are added to the real samples. This process of densification allows the solution to be tailored uniquely to the production process while requiring a small amount of analytical data. The result is a robust, accurate model that can be extended to
  • Topological modeling allows the updating of the model without the need
  • TOPNIR can differentiate between products directly from the spectrum.
  • a TOPNIR model is developed, a library of reference samples is used to provide poles, such
  • the poles are selected to increase the number of samples in the database from the, e.g., 60 samples supplied by the specific production plant to thousands of samples that provide a robust model over the operating envelope of the plant, as in Figs. 3 and 4 using this densification process.
  • Densification is also used during the process of predicting properties. This secondary densification enables the TOPNIR model to cope with outliers. TOPNIR then works by comparing the spectra of the sample with spectra in a
  • the. properties of the new sample can be predicted from the reference properties of the samples in the database. See
  • FIGs. 7 and 8 for further illustrations of aspects of this well known process.
  • the TOPNIR model can only be guaranteed within the operating envelope. If the operating envelope changes, the spectra will change and the search for neighbors will gradually fail as the operating point leaves the original operating envelope. These changes can be monitored on spectral planes by the position of a sample relative to a box. TOPNIR can cope with multiple process streams operating envelopes.
  • model predictions are accurate as long as the unknown samples are sufficiently similar to the training set samples. Inaccurately predicted samples
  • Model generality is less of a concern when predicting chemical composition than when predicting physical properties. This is because chemical composition is observed directly as peaks in a sample spectrum. However, the physical - properties are inferred from a complicated, correlation of their chemical compositions. Model generality is also less of a concern when modeling an individual process unit, for example, a reformer unit of a given refinery, because •
  • composition of the product does not vary as widely as do blended gasoline grades.
  • NIR predictions can still be quite precise
  • the immediacy and precision of NIR predictions can be more important than their accuracy.
  • PLS is the most commonly used linear calibration method
  • TOPNIR is most
  • the parameters evaluated include factors, loadings and scores.
  • the parameters evaluated include factors, loadings and scores.
  • TOPNIR modeling parameters include poles, boxes, spectral planes and the densification process, as will be explained in the experimental procedure section below.
  • cross validation If there are not enough samples, "leave-one-out" cross validation can be performed. This means leaving one sample out, using the rest of the samples to build a calibration model and then using the model to predict the one that was left out.
  • the advantage of doing cross validation is that, unlike calibration with a
  • the sample being predicted is not included in the calibration model.
  • the model can be tested independently.
  • the calibration can be used to predict future unknowns, assuming that the unknowns are in the same sample population as those used in the calibration set. Whether the unknown is an outlier needs to be tested.
  • the procedure returns to the model validation step, or even to an earlier step, to review the model and make whatever changes are necessary.
  • PLS and TOPNIR are two different Osmometries approaches with a common model development life cycle.
  • Each technique has its own advantages and disadvantages. All the known advantages derived from NIR itself are common to both PLS and TOPNIR, such as analysis speed, accuracy of prediction within ASTM accuracy limits, blending process optimization, crude feed characterization etc.
  • the most widely known PLS disadvantages include the heavy maintenance needed to keep the model operational and updated with the accuracy required, and the large number of samples that are required to enrich the model capability.
  • a separate model has to be constructed for each property, so that for 12 properties predictions, 12 different models have to be constructed. This in turn requires increased work during the models' update.
  • the TOPNIR model has overcome most of these disadvantages because it can provide multi-property model prediction with a wider prediction range, and shorter time for the model update by including the outliers detected.
  • it has been difficult to get-both accuracy and robustness in the TOPNIR model.
  • the TOPNIR standard error of prediction was higher than the PLS because the TOPNIR database had included all the reported sample results, including some badly mistaken reported lab results.
  • the TOPNIR modeling tools do not highlight the outliers in a direct way. Usually, all types of mistakes (typo, instrumental, and operator) are enlarged in TOPNIR modeling during the densification process. Thus, if any of these
  • the TOPNIR modeling and its densification process become even more powerful by using PLS as a statistical tool in TOPNIR modeling to troubleshoot the outliers in the given data base and, if there are outliers, to reedit the suggested correct measured property values.
  • the TOPNIR model is updated according to the PLS outlier removal and properties measurements correction.
  • This improved method in accordance with the present invention will be termed PLS-in-TOPNIR herein.
  • the novel PLS-in-TOPNIR method uses PLS for TOPNIR model purification.
  • the hardware consisted of a laser which was the source of the infrared beam, an interferometer, collimators that focused the beam onto the sample and into the detector and a detector that measured the NIR beam after progressing through the sample.
  • the absorption of the NIR beam through the sample across the wavelength range was determined to form the spectrum. Varying degrees of absorption occur dependent on the chemical characteristics of the sample under investigation, thereby providing a fingerprint of the chemical structure of the sample. See Fig. 10 for the full NIR spectrum range.
  • BGrams A FT-NIR spectrum obtaining tool that is originally provided as a standard package with the ABB BOMEM lab bench analyzer.
  • AIRS Standard ABB Bomem FT-NIR models prediction media software. AU streams and properties PLS models are saved and utilized for unknown samples predictions in this software directory.
  • Pirouette Version 2.7 Comprehensive Chemometrics modeling software used for PLS FT-NIR modeling. It is the ABB Bomem recommended data modeling package.
  • TOPNIR Gasoline Blender Standard TOPMR software used to predict the sample stream quality properties using the TOPNTR developed model. Eutech
  • ABB has purchased the TOPNIR technology.
  • TOPNIR Model Development Package A special package that covers all the TOPNIR activities and tools required to fully maintain a model (in house) ' during its life cycle. This includes adding new properties, deleting properties, adding new streams and troubleshooting prediction problems.
  • the path length is sample dependent, usually ranging from 0.1 to 1 cm.
  • Sample preparation is one of the most crucial steps involved in hydrocarbon (HC) sample analysis.
  • the accuracy and representation of an analysis depend highly on the way the sample is prepared.
  • the temperature of the samples was kept almost constant at room temperature (20 ⁇ 2 0 C) during all
  • the sample cell was dried in air without passing compressed air. It has been found that an in-house compressed air line may introduce some kind of residue from hydrocarbon-based oil which interfaces with NIR spectrum of the sample. 2. Three ' separate washes of the cell by spectra grade pentane or hexanes were then conducted and the cell was subsequently dried in air.
  • sample cell was flushed three times with the sample before a sample was loaded and locked in the cell. During final sample loading process care was taken to avoid locking any air bubbles in the sample.
  • the AIRS software was used to record customized NIR spectra of samples. This software also would periodically and automatically prompt the operator to
  • the interactive software provided with the NIR spectrometer (MB 160) provided menu-driven guidance to the operator from placing the sample cell to collecting the spectral data.
  • FT Fourier-Transform
  • 32 iterations in the chosen NIR spectral range were programmed before an average characteristic spectrum was recorded for a sample.
  • the software automatically and incrementally assigned an NIR spectrum number (for example, AAGXXXX,
  • This software also allowed the operator to record some specific information about the sample, for example, sampling date, time, plant ID, 'a brief
  • Optimizer System as follows: RON, RVP, Distillation points D-IO, and D-50.
  • the five constructed models (four PLS models, one model for each property? and one TOPNIR model for all properties) were validated by predicting 35 new other samples (Validation Set) that were not included in the five models. The obtained predictions were compared to the reference laboratory test results and standard errors of prediction were calculated on each model as shown in Table 1 , as shown in Fig! 11.
  • PLS was used as a statistical tool in TOPNIR modeling to troubleshoot the outliers in the given data base and to reedit the suggested correct measured property values if there is any.
  • the TOPNIR model was updated according to the PLS outlier removal and properties measurements correction.
  • a new TOPNIR prediction on the validation set was recorded in Table 2, as shown in Fig. 12.
  • the method in accordance with the present invention integrates the TOPNIR and PLS techniques into one Chemometrics approach.
  • PLS is used for the first time in treating the TOPNIR database, as follows:
  • PLS is used to highlight the outliers of the TOPNIR database in a systematic order. This result is obtained through the PLS outlier diagnostic curve where all the outliers are ordered according to the size of error. ' The first worst outlier "is. chosen by PLS, followed by the second worst outlier and so on. This aspect of PLS in the inventive method may be considered "TOPNIR model purification. "
  • PLS is a strong tool for suggesting an excellent corrected lab test result on the bad given value. This can be achieved by constructing a PLS model for a property, where all outliers have been removed, and predicting all the excluded outliers. The PLS predicted values on the mistaken lab results will then be easily edited out of the TOPNIR database.
  • This PLS function in the method may be considered "TOPNIR model accuracy enhancement.
  • Table 1 shows the TOPNIR predicted values on a validated set without using PLS to treat the database.
  • all PLS outliers with corrected predictions were edited in the TOPNIR database and the model accuracy (standard errors of predictions) was improved on the measured properties. This aspect may be considered “TOPNIR model accuracy enhancement.
  • Table 3 shows the TOPNIR predicted values on a validated set without using PLS to treat the database.
  • all PLS outliers with corrected predictions were edited in the TOPNIR database and the model accuracy (standard errors of predictions) was improved on the measured properties. This aspect may be considered “TOPNIR model accuracy enhancement.
  • the -TOPNIR densification process is usually done to increase the number of database samples by adding generic artificial samples. This can be an extra source of error in the model if the database includes badly mistaken samples prior to densification.
  • PLS is used to indicate the wrong densification Sirection and show where the error is enlarged. All mistaken artificial samples can then be removed from the database and the bad real samples may be reedited with good PLS predicted values.
  • the densification process can be repeated with an enhanced level of confidence. This step maintains a balanced equation of the model robustness and accuracy.
  • the method of the present invention may advantageously be used in the following areas where NIR techniques are valuable. NIR Refineries Applications:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

A method for analysis of petroleum refinery products comprises performing near infrared (NIR) spectroscopy for the products, processing data by a partial least squares (PLS) technique and identifying constituents of the products by applying a topological near infrared (TOPNIR) analysis to the processed data as shown on Figure 2.

Description

TITLE
TOPOLOGICAL NEAR INFRARED ANALYSIS MODELING OF PETROLEUM REFINERY PRODUCTS
Background of the Invention
Timely information on the quality of feedstocks, process streams and products is crucial in many areas of the oil products and chemicals business, and the need to obtain more information from a given chemical sample has become more acute over the past decade. To this end, analytical chemistry has been transformed into a branch of chemistry with considerable overlap with other areas of science such as physics, mathematics, computer science and Artificial Intelligence science, so that the efficiency and speed of data extraction has increased many times. The term Chemometrics is used to refer to such computerized mathematical methods and interpretation of chemical data. Statistical analysis plays a central role in Chemometrics, and the main aim is to recognize a pattern in the chemical data generated from spectral analysis instruments.
Unfortunately, -many physical test methods are still time consuming and are often performed solely in a quality control laboratory, with the result that the test procedures are not accessible for plant operations. To provide more timely results, Near-Infrared (NIR) analysis, using Chemometrics database construction techniques, was introduced in the industry to predict the physical properties and chemical composition of the products. The NIR technique offers enormous potential savings for refiners in monitoring, controlling and optimizing processes. A single NIR can substitute for many traditional analyzers and provide accurate and fast results on physical and chemical properties of process streams and refined products. In order to use NIR, the chemical constituents and physical phenomena of interest must have direct or indirect absorbance in the NIR region. The time- consuming part of NIR work is the data analysis and modeling phase, where most of the work is done to find the correlation between NIR spectral characteristics and the property, or properties, of interest as measured by more traditional methods. The selected spectrum absorbencies on each sample and the correlated reference lab measurements are utilized as the databases in constructing the Chemometrics models (training-set samples). Fig. 1 is a schematic illustration of the creation of such a database.
So far, two separate NIR Chemometrics approaches have been developed for use in nearly every refinery for providing reliable quality control. These are known as PLSNIR (Partial Least Squares NIR) and TOPNIR (Topological NIR). These models allow prediction of the properties of unknown samples directly from their spectra. It must be emphasized that the reliability, accuracy and precision of properly calibrated and maintained NIR process analyzers are essential for the success of NTR as a closed-loop, feed-forward control system for on- stream performance.
Currently the TOPNIR and PLS modeling techniques, using measured NIR spectra of hydrocarbon streams, are capable of accurately predicting the following fuel, compositional and physical properties for comparison against ASTM approved methods:
RON (Research Octane Number) MON (Motor Octane Number) - RVP (Reid Vapor Pressure)
Density
Distillation Cut Points (IBP, 5%, 10%, 20% , 30% ... 95%, FBP)
Vapor over Liquid Ratio Cloud Point
- Flash Point
Freezing Point
Cetane Number
CFPP (Cold Filter Plugging Point). PIONA (Paraffins, Iso-paraffms, Naphthenes, Aromatics) - % Benzene
% MTBE % Tolraie
% Xylenes
These two Chemometrics modeling approaches each have their own methodology, advantages and disadvantages, and the relative accuracy of the TOPNIR and PLSNIR model predictions as a function of wavelength range and
spectral resolution can be assessed using the same database. Summary of the Invention
The method in accordance with the present invention integrates the use of the TOPNIR and PLS techniques into one Chemometrics approach. In this method, PLS is used for the first time in treating the TOPNIR database. In one aspect of the present invention, PLS is used to highlight the outliers
of the TOPNIR database in a systematic order and then to recorrect a bad test result and avoid wasting the whole set of sample results in the database.
In another aspect of the present invention, PLS is used for suggesting an excellent corrected lab test result on the bad given value.
In a further aspect of the present invention, PLS is used to improve the results of the TOPNIR densification process. In the method accordance with the present invention, PLS is used to indicate a wrong densification direction and show where the error is enlarged. All mistaken artificial samples can then be removed from the database and bad real samples may be reedited with good PLS predicted values. Thereafter, the densification process can be repeated with an enhanced level of confidence. This step maintains a balanced equation of the model robustness and accuracy.
In a further development of this aspect, PLS is used in the method in accordance with the present invention to highlight affected good samples that have been turned bad by misuse of the densification process and prevent the deletion of good samples that should be kept.
Thus, in one embodiment, the present invention is directed to a method of analyzing a substance exhibiting absorption in the near infrared (NIR) region, comprising a data obtaining step of obtaining a first data set of NIR spectroscopic data samples by subjecting the substance to NIR spectroscopy, a generating step of generating a second data set of NIR spectroscopic data samples by processing the - first data set using a partial least squares (PLS) technique, and an identifying step of identifying a component of the substance by performing a topological near infrared (TOPNIR) analysis on the second data set.
' In another embodiment, the present invention is directed to a method of analyzing a substance exhibiting absorption in the near infrared (NIR) region, comprising a data. obtaining step of obtaining a first data set of NIR spectroscopic data samples by subjecting the substance to NIR spectroscopy, an analysis step of
performing a first topological near infrared (TOPNIR) analysis on the first data set to generate a second data set of NIR spectroscopic data samples, a generating step of generating a third data set of NIR spectroscopic data samples by processing the second data set using a partial least squares (PLS) technique, and an identifying step of identifying a component of the substance by performing a second TOPNIR analysis on the third data set.
Brief Description of the Drawings
Fig. 1 is a schematic illustration of the creation of a Chemometrics database.
Fig. 2 is a typical NIR spectrum. Fig. 3 is an illustration of data before densification.
Fig. 4 is an illustration of the data of Fig. 3 after densification. Fig. 5 is an illustration of Pirouette PLS generated graphs. Fig. 6 is an illustration of one aspect of TOPNIR modeling. Fig. 7 is an illustration of another aspect of TOPNIR modeling.
Fig. 8 is an illustration of another aspect of TOPNIR modeling.
Fig. 9 is an illustration of model maintenance.
Fig. 10 is an illustration of the full NIR spectrum range. Fig. 11 is a table for comparing results of conventional PLS and TOPNIR models.
Fig. 12 is a table for comparing results of the conventional TOPNIR method and the PLS enhanced TOPNIR method in accordance with the present invention. Fig. 13 is a graph of standard deviations of the conventional PLS method, the conventional TOPNIR method and the PLS enhanced TOPNIR method in accordance with the present invention.
Detailed Description of the Preferred Embodiments
To aid understanding of the description of the preferred embodiments, the following key words are now defined.
Partial Least Squares (PLS) : PLS is a statistical method and an effective Chemometrics approach for constructing predictive models that was developed in the I960' s by Herman Wold. It has been applied in monitoring and controlling industrial processes. PLS is described in more detail below. NIR Spectrum: A NIR spectrum is obtained from the absorbency measurements from an NIR analyzer, typically as SPC files. TOPNIR and PLS models each have a wavelength range of 4000-4800 nm. A typical NIR spectrum is shown in Fig. 2. Outlier:. An outlier is a data point that falls well outside of the main population. Outliers result from lab measurement errors, samples from different categories and instrument error. It is important to check for and remove outliers in both the training set and the set of unknowns that the calibration is to be tested on.
Calibration Modeling: The process of constructing a model that is used to
predict characteristics or properties of unknown samples. The model is
constructed from a calibration data set with measured multivariate responses and corresponding known sample concentrations or physical characteristics of interest.
Cross Validation: A process used to validate models whereby the calibration set is divided into calibration and validation subsets. A model is built with the calibration subset and is used to predict the validation subset. This process is repeated using different subsets until every sample has been included in one validation subset. The predicted results are then used to validate the performance of the model.
Densification: Densification is a process used by TOPNIR to improve the robustness of a model — from the typically 30 samples per stream provided by the
production plant to hundreds of additional reference samples based on the TOPNIR sample library. By increasing the number of samples, TOPNIR is able to make
predictions across the whole of the operating envelope. Because it performs densification during configuration and during the prediction calculation, the
TOPNIR model is robust and can deal with inliers and outliers. Figs. 3 and 4 show how artificial samples are added using an aggregate plane to display the data before (Fig. 3) and after (Fig. 4} densification. Aggregates: An NIR spectrum may characterize the sample, but the quantity of data is enormous. Even with 42 bands of wavelength, comparing samples is very difficult. Therefore aggregates are calculations based on the absorbencies at a selection of wavelengths that characterize some property of the process stream, e.g.,
Karo = W4060*W4670/W4332/W4485*7.3 +5. The calculation for aggregates is defined during configuration of the TOPNIR model based upon experience of previous models that have worked successfully. The aggregates are used to differentiate products but are not used during the prediction process itself. Therefore, neighbors used during a prediction may not be neighbors on one or all spectral planes.
Operating Envelope: At any point in time a process stream is characterized by a range of components that can be measured either by laboratory analysis or predicted from NIR spectra. A process stream changes for a variety of operating reasons, which may include the base stock, the operating severity of the processing units and the catalyst activity. The variation of all these factors can be seen as the operating envelope for the production process.
The well known PLS method creates a simplified representation of the spectroscopic data by a process known as spectral decomposition. The PLS algorithm then calculates the concentration, or property value, weighted average spectrum of all the spectra of the fuels in the calibration matrix. This calculation is followed by a computationally intensive procedure, accomplished by performing outlier detection and removal, and then applying cross-validation calculations for all samples in the training set. In the cross-validation procedure, a given number of samples, which in the tests set forth below is one, are removed from the calibration data set, and a calibration model calculated from the remaining samples in the training set is used to predict the concentration (property value) of the removed samples. The residual errors, or the differences between the predicted -and known concentration values, are squared and summed to determine the predicted error. Repeating this cross- validation process for the other samples in the training set results in a redefined regression model useful in predicting the properties of unknown fuels, The results of spectral decomposition give one set of scores and one set of factors (loading
vectors) for calibration for each component of interest.
After a calibration model is established, it has to be tested by validation
experiments, in which the calibration is applied to similar fuels that were not part of the training set. The predicted property values may then be compared with those derived by established ASTM procedures. It is critical to establish the , correct number of factors to be used in the correlation files, as the predicted fuel property values calculated from the model depends on how many factors are used in the model. Too few factors will not adequately model the system, while too
many factors will introduce noise vectors in the calibration which will result in less than optimum prediction for samples outside the calibration set.
For example, the Pirouette ® PLS program provides data and graphs to - select the appropriate factor by plotting the Predicted Residual Error Sum. of
Squares (PRESS) versus the factor. See Fig. 5 for Pirouette PLS generated graphs. TOPNIR is "delivered" as a configured model based on a standard" set of software functionality. The well known TOPNIR model relies on a large database of samples that are representative of the production process. TOPNIR has an extensive library of samples that allows the TOPNIR modelers to add samples to the database without all the data having to be provided by the analytical laboratory. Using sophisticated knowledge-based procedures, artificial samples are added to the real samples. This process of densification allows the solution to be tailored uniquely to the production process while requiring a small amount of analytical data. The result is a robust, accurate model that can be extended to
meet new process conditions.
Topological modeling allows the updating of the model without the need
for manual recalibration to accommodate outliers. This significantly reduces conventional model maintenance and downtime. With a new feedstock or product TOPNIR looks for the closest spectral neighbors in a reference database. The new properties are then calculated as a function of the neighboring characteristics. Aggregates that relate to specific chemical families, e.g., olefins, are calculated from the spectrum. Spectral planes are used to describe the configured
envelope using pairs of aggregates. By selecting the correct aggregates and understanding the product boxes from reference samples, TOPNIR can differentiate between products directly from the spectrum. When a TOPNIR model is developed, a library of reference samples is used to provide poles, such
as shown in Fig. 6. The poles are selected to increase the number of samples in the database from the, e.g., 60 samples supplied by the specific production plant to thousands of samples that provide a robust model over the operating envelope of the plant, as in Figs. 3 and 4 using this densification process.
Densification is also used during the process of predicting properties. This secondary densification enables the TOPNIR model to cope with outliers. TOPNIR then works by comparing the spectra of the sample with spectra in a
reference database. If a match is found, then the. properties of the new sample can be predicted from the reference properties of the samples in the database. See
Figs. 7 and 8 for further illustrations of aspects of this well known process.
As the TOPNIR model is based on reference samples and their analytical
data, the TOPNIR model can only be guaranteed within the operating envelope. If the operating envelope changes, the spectra will change and the search for neighbors will gradually fail as the operating point leaves the original operating envelope. These changes can be monitored on spectral planes by the position of a sample relative to a box. TOPNIR can cope with multiple process streams operating envelopes.
Model Accuracy
In general, model predictions are accurate as long as the unknown samples are sufficiently similar to the training set samples. Inaccurately predicted samples
can be added to the training set to develop a rβvised model that has greater generality.
Model generality is less of a concern when predicting chemical composition than when predicting physical properties. This is because chemical composition is observed directly as peaks in a sample spectrum. However, the physical - properties are inferred from a complicated, correlation of their chemical compositions. Model generality is also less of a concern when modeling an individual process unit, for example, a reformer unit of a given refinery, because
the composition of the product (for example, reformate) does not vary as widely as do blended gasoline grades.
Even when the unknown samples are too different from the training set to permit accurate/true predictions, NIR predictions can still be quite precise or
repeatable. Thus, for controlling or optimizing a process unit, the immediacy and precision of NIR predictions can be more important than their accuracy. This is
particularly true when trying to determine changes in process stream properties following a change in operating parameters.
Modeling Process
To determine if NIR spectroscopy is a reasonable alternative to more traditional methods, many important steps have to be followed and. maintained as a recipe for systematic evaluation of the data regardless of the modeling method being used. These steps are considered as the activities required to maintain a model during its life cycle, as . shown in Fig. 9:
1. Examining the Data
Once an appropriate data set has been collected, the first step is always to
examine' the data. This is usually accomplished by examination of plots and/or tables. The primary purpose of this step is to use the human eye to look for obvious errors or features in.lhe data. Because errors can occur in .either/both the measurement variables (e.g., spectra) or characteristic values (e.g., concentrations), it is important to examine both of these sets of numbers in this step. The initial review of the data may indicate the need for preprocessing and/or highlight features or samples in the data set that warrant further, investigation. 2. Data Preprocessing
When the spectral data plots are presented, one must first determine if there is any baseline drift or slope in the spectra. Baseline subtraction, first
derivative and second derivative transformations may be performed to reduce these effects if necessary. There can be random or systematic sources of variation that cause the variation of interest. This unwanted variation might reduce the effectiveness of the model. An understanding of the chemistry or physics underlying these unwanted sources of variation helps with the appropriate selection of processing techniques. 3. Model Estimation The next step is to generate the Chemometrics model and associated prediction diagnostics. Building a good calibration model is the most important step in NIR analysis. Developing a calibration model involves calculating the
regression equation (if it is a PLS model) or topological spectral plans neighbors
analyses (if it is a TOPNIR model) based on the NIR spectra and the known
analyte information. The model is then used to predict the future unknowns. PLS is the most commonly used linear calibration method, and TOPNIR is most
commonly used for nonlinear models. In developing a PLS calibration model, the parameters evaluated include factors, loadings and scores. On the other hand, the
TOPNIR modeling parameters include poles, boxes, spectral planes and the densification process, as will be explained in the experimental procedure section below.
4. Model Validation
The validity of the model must be tested. Usually the way this is done is to split the whole sample set into two sets: one for calibration and the other for
validation. If there are not enough samples, "leave-one-out" cross validation can be performed. This means leaving one sample out, using the rest of the samples to build a calibration model and then using the model to predict the one that was left out. The advantage of doing cross validation is that, unlike calibration with a
full data set, the sample being predicted is not included in the calibration model. Thus, the model can be tested independently.
5. Model Prediction
Finally, the calibration can be used to predict future unknowns, assuming that the unknowns are in the same sample population as those used in the calibration set. Whether the unknown is an outlier needs to be tested.
6. Prediction Validation
Computer methods rarely fail to produce a prediction result given a model and an unknown. It is therefore important that even apparently reasonable results be validated. Being able to validate prediction results is one of the greatest
advantages of using modeling Chemometrics techniques. With the prediction diagnostic tools it is possible to determine when the model is not applicable because of instrument failure or unusual unknown samples. Validation increases the chances of making good decisions based on the outputs of the models by
indicating the confidence that should be placed on the predicted values. As shown in Fig. 9, if the prediction results are not acceptably validated, the procedure returns to the model validation step, or even to an earlier step, to review the model and make whatever changes are necessary.
Thus, PLS and TOPNIR are two different Osmometries approaches with a common model development life cycle. Each technique has its own advantages and disadvantages. All the known advantages derived from NIR itself are common to both PLS and TOPNIR, such as analysis speed, accuracy of prediction within ASTM accuracy limits, blending process optimization, crude feed characterization etc. The most widely known PLS disadvantages include the heavy maintenance needed to keep the model operational and updated with the accuracy required, and the large number of samples that are required to enrich the model capability. Also, a separate model has to be constructed for each property, so that for 12 properties predictions, 12 different models have to be constructed. This in turn requires increased work during the models' update.
PLS also has great difficulty in predicting non-linear properties, and has a narrow range of validity if one is trying to predict different sample types (like summer season) that are not covered in the original PLS constructed model. On the other hand, the TOPNIR model has overcome most of these disadvantages because it can provide multi-property model prediction with a wider prediction range, and shorter time for the model update by including the outliers detected. However, it has been difficult to get-both accuracy and robustness in the TOPNIR model. Previously, when the validation set was predicted by both PLS and TOPNIR, the TOPNIR standard error of prediction was higher than the PLS because the TOPNIR database had included all the reported sample results, including some badly mistaken reported lab results.
The TOPNIR modeling tools do not highlight the outliers in a direct way. Usually, all types of mistakes (typo, instrumental, and operator) are enlarged in TOPNIR modeling during the densification process. Thus, if any of these
mistakes exist in the TOPNIR database, a larger standard error of prediction is usually reported because of the increased densified mistaken sample population.
However, in accordance with the present invention, the TOPNIR modeling and its densification process become even more powerful by using PLS as a statistical tool in TOPNIR modeling to troubleshoot the outliers in the given data base and, if there are outliers, to reedit the suggested correct measured property values. Thus, the TOPNIR model is updated according to the PLS outlier removal and properties measurements correction. This improved method in accordance with the present invention will be termed PLS-in-TOPNIR herein. In this aspect, the novel PLS-in-TOPNIR method uses PLS for TOPNIR model purification. In order to compare the results achieved by the conventional TOPNIR method and by the PLS-in TOPNIR method of the present invention, tests were
run in accordance with the following protocol.
Instrumentation The NIR spectrometer used in the tests was the ABB BOMEM MB-Series
MB 160, which is one of the best performing and most robust analyzer available. Hardware
The hardware consisted of a laser which was the source of the infrared beam, an interferometer, collimators that focused the beam onto the sample and into the detector and a detector that measured the NIR beam after progressing through the sample. The absorption of the NIR beam through the sample across the wavelength range was determined to form the spectrum. Varying degrees of absorption occur dependent on the chemical characteristics of the sample under investigation, thereby providing a fingerprint of the chemical structure of the sample. See Fig. 10 for the full NIR spectrum range.
Software
1. BGrams: A FT-NIR spectrum obtaining tool that is originally provided as a standard package with the ABB BOMEM lab bench analyzer.
2. AIRS: Standard ABB Bomem FT-NIR models prediction media software. AU streams and properties PLS models are saved and utilized for unknown samples predictions in this software directory.
3. Pirouette Version 2.7: Comprehensive Chemometrics modeling software used for PLS FT-NIR modeling. It is the ABB Bomem recommended data modeling package.
4. TOPNIR Gasoline Blender: Standard TOPMR software used to predict the sample stream quality properties using the TOPNTR developed model. Eutech
Company provided this version. ABB has purchased the TOPNIR technology.
5. TOPNIR Model Development Package: A special package that covers all the TOPNIR activities and tools required to fully maintain a model (in house)' during its life cycle. This includes adding new properties, deleting properties, adding new streams and troubleshooting prediction problems.
Experimental Considerations:
When using an NIR analyzer, instrument characteristics such as sensitivity, resolution and signal-to-noise ratio parameters need to be evaluated. The quality of these values is a function of the light source stability, optics throughput, dispersion/filter element accuracy and detector sensitivity in the instrument. The choice of accessories is application dependent. For liquid samples, transmission
and transflectance modes are commonly employed. The path length is sample dependent, usually ranging from 0.1 to 1 cm.
Sample Preparation & Loading
Sample preparation is one of the most crucial steps involved in hydrocarbon (HC) sample analysis. The accuracy and representation of an analysis depend highly on the way the sample is prepared. The temperature of the samples was kept almost constant at room temperature (20 ±20C) during all
analyses. Before the hydrocarbon sample was loaded into the sample cell for recording, the NIR spectrum the NIR cell was washed thoroughly with solvents in
the following order:
1. Three separate washes, preferably by spectra-grade Toluene. Then
the sample cell was dried in air without passing compressed air. It has been found that an in-house compressed air line may introduce some kind of residue from hydrocarbon-based oil which interfaces with NIR spectrum of the sample. 2. Three' separate washes of the cell by spectra grade pentane or hexanes were then conducted and the cell was subsequently dried in air.
Finally the sample cell was flushed three times with the sample before a sample was loaded and locked in the cell. During final sample loading process care was taken to avoid locking any air bubbles in the sample.
The AIRS software was used to record customized NIR spectra of samples. This software also would periodically and automatically prompt the operator to
calibrate and check any wavelength drift by recording NIR spectrum of spectra grade toluene samples.
Sample Analysis and Data Collection
The interactive software provided with the NIR spectrometer (MB 160) provided menu-driven guidance to the operator from placing the sample cell to collecting the spectral data. In the Fourier-Transform (FT) mode, normally 32 iterations in the chosen NIR spectral range were programmed before an average characteristic spectrum was recorded for a sample. The software automatically and incrementally assigned an NIR spectrum number (for example, AAGXXXX,
etc.) of a sample. This software also allowed the operator to record some specific information about the sample, for example, sampling date, time, plant ID, 'a brief
descriptive comment about the sample etc.). For repeatability the NIR spectrum of a sample was collected at different aging times (1-8 weeks after the first spectrum was collected) to assure that the platformate was not degrading on storage. If the successive overlapped spectra showed any significant variation (> than 5%), the properties (RON, etc.) were freshly modeled by TOPNIR and PLSNIR algorithms. The spectrometer would also prompt the operator for a Toluene reference check at every hour interval automatically.
NIR Spectral Modeling:
Once the sample spectrum was collected, its fuel (RON, RVP, etc.) and physical properties (density, distillation cut points, etc.) and compositional characters (paraffrnicity, aromaticity, olefinicity, etc.) were predicted either/both by the, TOPNIR and PLS-in-TOPNIR models.
The off-line NIR spectrum recording and subsequent modeling typically took 7-10 minutes per sample. However, on-line NIR spectrum recording and modeling would typically take 3-5 minutes per sample from spectrum recording phase to predicting phase. In the on-line monitoring the sample preparation and loading, spectrum recording and model predictions are computer controlled and automatically sequenced. Therefore on-line monitoring has a time advantage as well as an accuracy advantage over off-line analysis.
Results
1. Conventional Methods
A training set of 198 samples was modeled in both PLS (using Pirouette
V2.7) and TOPNIR (using TOPNIR Model Development Package) on four selected properties out of 14 properties on a Gasoline stream. The selected properties were the most critical properties needed to operate the MoGas Blender
Optimizer System as follows: RON, RVP, Distillation points D-IO, and D-50.
The five constructed models (four PLS models, one model for each property? and one TOPNIR model for all properties) were validated by predicting 35 new other samples (Validation Set) that were not included in the five models. The obtained predictions were compared to the reference laboratory test results and standard errors of prediction were calculated on each model as shown in Table 1 , as shown in Fig! 11.
2. The PLS4n-TOPNIR Method
Then, in accordance with the present invention, PLS was used as a statistical tool in TOPNIR modeling to troubleshoot the outliers in the given data base and to reedit the suggested correct measured property values if there is any. The TOPNIR model was updated according to the PLS outlier removal and properties measurements correction. A new TOPNIR prediction on the validation set was recorded in Table 2, as shown in Fig. 12.
The calculated standard errors of predictions on the four measured properties and on the three modeling techniques PLS, TOPNIR and the new PLS- in-TOPNIR are all presented in the graph of Fig. 13.
It will be seen from Figs. 11-13 that the PLS-in-TOPNIR method in accordance with the present invention provides significantly improved results.
Thus, the method in accordance with the present invention integrates the TOPNIR and PLS techniques into one Chemometrics approach. In this method, PLS is used for the first time in treating the TOPNIR database, as follows:
1. PLS is used to highlight the outliers of the TOPNIR database in a systematic order. This result is obtained through the PLS outlier diagnostic curve where all the outliers are ordered according to the size of error. ' The first worst outlier "is. chosen by PLS, followed by the second worst outlier and so on. This aspect of PLS in the inventive method may be considered "TOPNIR model purification. "
2. As noted above, all types of errors are possible in the delivered lab results for a particular test for a sample (i.e. typo, instrumental and operator errors). As a result, the sample results may be good for most of the tests and bad for one test only for a given sample. In this case the method makes it possible to recorrect the bad test result and avoid wasting the whole set of sample results in the database.
PLS is a strong tool for suggesting an excellent corrected lab test result on the bad given value. This can be achieved by constructing a PLS model for a property, where all outliers have been removed, and predicting all the excluded outliers. The PLS predicted values on the mistaken lab results will then be easily edited out of the TOPNIR database. This PLS function in the method may be considered "TOPNIR model accuracy enhancement. " For example, Table 1 shows the TOPNIR predicted values on a validated set without using PLS to treat the database. In Table 2, all PLS outliers with corrected predictions were edited in the TOPNIR database and the model accuracy (standard errors of predictions) was improved on the measured properties. This aspect may be considered "TOPNIR model accuracy enhancement. " 3. The -TOPNIR densification process is usually done to increase the number of database samples by adding generic artificial samples. This can be an extra source of error in the model if the database includes badly mistaken samples prior to densification. In the method accordance with the present invention, PLS is used to indicate the wrong densification Sirection and show where the error is enlarged. All mistaken artificial samples can then be removed from the database and the bad real samples may be reedited with good PLS predicted values.
Thereafter, the densification process can be repeated with an enhanced level of confidence. This step maintains a balanced equation of the model robustness and accuracy.
4. It has also been found that the densification process affected some excellent lab data where bad created neighbors surrounded the good sample. If the bad mistaken values were used in the densification, this greatly affected the model performance. The use of PLS in the method in accordance with the present
invention strongly highlights the affected good samples that were turned bad by the misuse of the densification process and prevents the deletion of good samples that should be kept.
The method of the present invention may advantageously be used in the following areas where NIR techniques are valuable. NIR Refineries Applications:
Crude distillation feed and product optimization
Variation in crude oil feed to a CDU limits both unit throughput and
control of product qualities. Current methods of feed analysis are slow and time- consuming. Measurement of product streams demands intensive analytical equipment with a high maintenance cost. NIR enables 'crude TBP and rundown streams to be measured on-line in real time, to maximize feed rate to the unit and optimize product quality.
Gasoline and Diesel blending The optimization of blending different grades of Gasoline and Gasoil using on-line engines and lab conventional methods can be labor intensive, expensive, slow and of doubtful accuracy. Using NIR along with the DCS blender optimizer system will provide safe on-line blending supported with wide range of properties, speed of analyses, accuracy, and with lower operating cost. FCC/Hydrocracker Feed and Product Characterization In many FCC operations the feedstock is not characterized at all. When
extreme changes in feedstock are anticipated, an off-line laboratory characterization may be performed. However, this takes at least a day to
complete, and continuous unit optimization has not therefore been practical. Using NIR, characterization of FCC feed, and of gasoline and cycle oil products, takes place every two minutes. It is therefore possible with NIR to adopt a feed forward strategy, using the availability of feedstock properties in real time.
Applying an NIR analysis to a particular application requires the development of a reliable calibration model. The most important steps involve a thorough consideration of experimental design and multivariate calibration. Once this is established, one can enjoy the advantages of the NIR analysis. Trie speed
of the analysis will save time and avoid many mistakes instantaneously. The speed advantage is so valuable to engineers involved with on-line process monitoring that
instruments are routinely installed in the process line with feedback loops. With
NIR, analyzer samples can be analyzed on-the-spot, dramatically reducing costly and time-consuming laboratory analysis.
Integrated use of both PLS and TOPNIR in one package is a completely new Chemόmetrics approach that should have a great added value in improving the model prediction accuracy. Many other modeling benefits are demonstrated as
a result.

Claims

I CLAIM:
1. .A method of analyzing a substance exhibiting absorption in the near infrared (NIR) region, comprising.: a data obtaining step of obtaining a first data set of NIR spectroscopic data
samples by subjecting the substance to NIR spectroscopy; a generating step of generating a second data set of NIR spectroscopic data samples by processing said first data set using a partial least squares (PLS) technique; and
an identifying step of identifying a component of the substance by performing a topological near infrared (TOPNIR) analysis on said second data set.
2. The method of claim 1, wherein said generating step includes the., steps of: identifying outliers in said first data set; and determining a respective PLS error for each of the identified outliers.
3, The method of claim 2, wherein said generating step further
includes the step of ordering the identified outliers in accordance with the
respective PLS errors.
4. The method of claim 3, wherein said generating step further includes the step of setting said second data set to be said first data set without any of the identified outliers having a respective PLS error greater than a specified value in accordance with said ordering step.
5. The method of claim 3, wherein said generating step further includes the step of setting said second data set to be said first data set with a corrected value for any of the identified outliers having a respective PLS error greater than a specified value in accordance with said ordering step.
6. The method of claim 2, wherein said generating step further includes the step of setting said second data set to be said first data set without any of the identified outliers having a respective PLS error greater than a specified value.
7. The method of claim 2, wherein said generating step further includes the step of setting said second data set to be said first data set with a corrected value for any of the identified outliers having a respective PLS error greater than a specified value.
8. The method of claim 1, wherein said generating step includes the steps of: predicting a corrected test result for a bad data sample in said first data set using a PLS technique; and substituting the corrected test result for the bad data sample.
9. The method of claim 8, wherein said predicting step includes the steps of: identifying outliers in said first data set as bad data samples;
constructing a PLS model for a property of the component based on said first data set with the outliers excluded; generating a corrected test result for each bad data sample by predicting values for the excluded outliers based on the PLS model.
10. The method of claim 1, wherein the substance to be analyzed is a
petroleum refinery product.
11. A method of analyzing a substance exhibiting absorption in the near infrared (NIR) region, comprising: a data obtaining step of obtaining a first data set of real NIR spectroscopic data samples by subjecting the substance to NIR spectroscopy; an analysis step of performing a first topological near infrared (TOPNIR) analysis on said first data set to generate a second data set of NTR spectroscopic
data samples; a generating step of generating a third data set of NIR spectroscopic data
samples by processing said second data set using a partial least squares (PLS)
technique; and an identifying step of identifying a component of the substance by performing a second TOPNIR analysis on said third data set.
12. The method of claim 11, wherein' said analysis step includes the step of TOPNIR densification of said first data set to generate said second data set as including the real data samples of said first data set and at least one artificial data sample.
13. The method of claim 12, wherein said generating step includes the step of using said PLS technique to identify a wrong densification direction of said
TOPNIR densification.
14. The method of claim 13, wherein said generating step includes the step of TOPNIR densification of said second data set with a corrected densification direction based upon the identified wrong densification direction to generate said third data set.
15. The method of claim 12, wherein said generating step includes the steps of: predicting a corrected test result for a bad data sample in said first data set
using said PLS technique; and substituting the corrected test result for the bad data sample to generate said
third data set.
16. The method of claim 15, wherein said generating step includes the step of TOPNIR densification of said second data set to generate said third data
set.
17. The method of claim 16, wherein said generating step includes the steps of; using said PLS technique to identify a good one of the real data samples that has been affected by said TOPNIR densification to appear to be a bad data sample; and including the identified one real data sample in said second data set.
18. The method of claim 12, wherein said generating step includes the
steps of: identifying a good one of the real data samples that has been affected by
said TOPNIR densification to appear to be a bad data sample; and including the identified one real data sample in said second data set.
19. The method of claim 11, wherein the substance to be analyzed is a petroleum refinery product.
PCT/US2003/025397 2003-08-14 2003-08-14 Topological near infrared analysis modeling of petroleum refinery products WO2006126978A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/US2003/025397 WO2006126978A1 (en) 2003-08-14 2003-08-14 Topological near infrared analysis modeling of petroleum refinery products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2003/025397 WO2006126978A1 (en) 2003-08-14 2003-08-14 Topological near infrared analysis modeling of petroleum refinery products

Publications (1)

Publication Number Publication Date
WO2006126978A1 true WO2006126978A1 (en) 2006-11-30

Family

ID=37452301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/025397 WO2006126978A1 (en) 2003-08-14 2003-08-14 Topological near infrared analysis modeling of petroleum refinery products

Country Status (1)

Country Link
WO (1) WO2006126978A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102445428A (en) * 2011-09-19 2012-05-09 中国原子能科学研究院 Analytical method of tetravalent uranium
CN103364368A (en) * 2013-07-12 2013-10-23 南京富岛信息工程有限公司 Rapid detection method for properties of mixed crude oil
EP2799840A1 (en) * 2013-04-30 2014-11-05 Topnir Systems SAS Method for characterising a product by topological spectral analysis
EP2799841A1 (en) * 2013-04-30 2014-11-05 Topnir Systems SAS Method for characterising a product by topological spectral analysis
EP2824443A1 (en) * 2013-07-12 2015-01-14 Topnir Systems SAS Method for transfer between spectrometers
CN106153771A (en) * 2015-08-27 2016-11-23 泸州品创科技有限公司 The stage division of a kind of Chinese liquor base liquor and application
CN106769990A (en) * 2016-11-30 2017-05-31 江西蓝星星火有机硅有限公司 A kind of method of content of siloxane in use near-infrared spectrum analysis sour water
EP3213051B1 (en) * 2014-10-30 2021-02-17 Topnir Systems SAS Method for determining the origin of a mixture of components by spectral analysis
US11702600B2 (en) 2021-02-25 2023-07-18 Marathon Petroleum Company Lp Assemblies and methods for enhancing fluid catalytic cracking (FCC) processes during the FCC process using spectroscopic analyzers
US11802257B2 (en) 2022-01-31 2023-10-31 Marathon Petroleum Company Lp Systems and methods for reducing rendered fats pour point
US11835450B2 (en) 2021-02-25 2023-12-05 Marathon Petroleum Company Lp Methods and assemblies for determining and using standardized spectral responses for calibration of spectroscopic analyzers
US11891581B2 (en) 2017-09-29 2024-02-06 Marathon Petroleum Company Lp Tower bottoms coke catching device
US11898109B2 (en) 2021-02-25 2024-02-13 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of hydrotreating and fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US11905479B2 (en) 2020-02-19 2024-02-20 Marathon Petroleum Company Lp Low sulfur fuel oil blends for stability enhancement and associated methods
US11905468B2 (en) 2021-02-25 2024-02-20 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US11970664B2 (en) 2021-10-10 2024-04-30 Marathon Petroleum Company Lp Methods and systems for enhancing processing of hydrocarbons in a fluid catalytic cracking unit using a renewable additive
US11975316B2 (en) 2019-05-09 2024-05-07 Marathon Petroleum Company Lp Methods and reforming systems for re-dispersing platinum on reforming catalyst
US12000720B2 (en) 2018-09-10 2024-06-04 Marathon Petroleum Company Lp Product inventory monitoring
US12031094B2 (en) 2023-06-22 2024-07-09 Marathon Petroleum Company Lp Assemblies and methods for enhancing fluid catalytic cracking (FCC) processes during the FCC process using spectroscopic analyzers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BAEZA C.: "What is TopNIR? Use TopNIR Technology to Optimize Plant Operations", ABB AAT, 8 April 2002 (2002-04-08), pages 1 - 11 *

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102445428A (en) * 2011-09-19 2012-05-09 中国原子能科学研究院 Analytical method of tetravalent uranium
US20160061720A1 (en) * 2013-04-30 2016-03-03 Topnir Systems Sas Method for Characterising a Product by Means of Topological Spectral Analysis
US10241040B2 (en) 2013-04-30 2019-03-26 Topnir Systems Sas Method for characterizing a product by means of topological spectral analysis
EP2799840A1 (en) * 2013-04-30 2014-11-05 Topnir Systems SAS Method for characterising a product by topological spectral analysis
EP2799841A1 (en) * 2013-04-30 2014-11-05 Topnir Systems SAS Method for characterising a product by topological spectral analysis
WO2014177471A1 (en) * 2013-04-30 2014-11-06 Topnir Systems Sas Method for characterising a product by means of topological spectral analysis
WO2014177472A1 (en) * 2013-04-30 2014-11-06 Topnir Systems Sas Method for characterising a product by means of topological spectral analysis
US10012587B2 (en) 2013-04-30 2018-07-03 Topnir Systems Sas Method for characterising a product by means of topological spectral analysis
EP2824443A1 (en) * 2013-07-12 2015-01-14 Topnir Systems SAS Method for transfer between spectrometers
WO2015004234A1 (en) * 2013-07-12 2015-01-15 Topnir Systems Sas Method for transferring between spectrometers
US9915606B2 (en) 2013-07-12 2018-03-13 Topnir Systems Sas Method for transferring between spectrometers
CN103364368A (en) * 2013-07-12 2013-10-23 南京富岛信息工程有限公司 Rapid detection method for properties of mixed crude oil
EP3213051B1 (en) * 2014-10-30 2021-02-17 Topnir Systems SAS Method for determining the origin of a mixture of components by spectral analysis
CN106153771A (en) * 2015-08-27 2016-11-23 泸州品创科技有限公司 The stage division of a kind of Chinese liquor base liquor and application
CN106769990A (en) * 2016-11-30 2017-05-31 江西蓝星星火有机硅有限公司 A kind of method of content of siloxane in use near-infrared spectrum analysis sour water
US11891581B2 (en) 2017-09-29 2024-02-06 Marathon Petroleum Company Lp Tower bottoms coke catching device
US12000720B2 (en) 2018-09-10 2024-06-04 Marathon Petroleum Company Lp Product inventory monitoring
US11975316B2 (en) 2019-05-09 2024-05-07 Marathon Petroleum Company Lp Methods and reforming systems for re-dispersing platinum on reforming catalyst
US11920096B2 (en) 2020-02-19 2024-03-05 Marathon Petroleum Company Lp Low sulfur fuel oil blends for paraffinic resid stability and associated methods
US11905479B2 (en) 2020-02-19 2024-02-20 Marathon Petroleum Company Lp Low sulfur fuel oil blends for stability enhancement and associated methods
US12031676B2 (en) 2020-03-24 2024-07-09 Marathon Petroleum Company Lp Insulation securement system and associated methods
US11905468B2 (en) 2021-02-25 2024-02-20 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US11898109B2 (en) 2021-02-25 2024-02-13 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of hydrotreating and fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US11906423B2 (en) 2021-02-25 2024-02-20 Marathon Petroleum Company Lp Methods, assemblies, and controllers for determining and using standardized spectral responses for calibration of spectroscopic analyzers
US11885739B2 (en) 2021-02-25 2024-01-30 Marathon Petroleum Company Lp Methods and assemblies for determining and using standardized spectral responses for calibration of spectroscopic analyzers
US11921035B2 (en) 2021-02-25 2024-03-05 Marathon Petroleum Company Lp Methods and assemblies for determining and using standardized spectral responses for calibration of spectroscopic analyzers
US11860069B2 (en) 2021-02-25 2024-01-02 Marathon Petroleum Company Lp Methods and assemblies for determining and using standardized spectral responses for calibration of spectroscopic analyzers
US11835450B2 (en) 2021-02-25 2023-12-05 Marathon Petroleum Company Lp Methods and assemblies for determining and using standardized spectral responses for calibration of spectroscopic analyzers
US11702600B2 (en) 2021-02-25 2023-07-18 Marathon Petroleum Company Lp Assemblies and methods for enhancing fluid catalytic cracking (FCC) processes during the FCC process using spectroscopic analyzers
US11970664B2 (en) 2021-10-10 2024-04-30 Marathon Petroleum Company Lp Methods and systems for enhancing processing of hydrocarbons in a fluid catalytic cracking unit using a renewable additive
US11802257B2 (en) 2022-01-31 2023-10-31 Marathon Petroleum Company Lp Systems and methods for reducing rendered fats pour point
US12031094B2 (en) 2023-06-22 2024-07-09 Marathon Petroleum Company Lp Assemblies and methods for enhancing fluid catalytic cracking (FCC) processes during the FCC process using spectroscopic analyzers

Similar Documents

Publication Publication Date Title
US6897071B2 (en) Topological near infrared analysis modeling of petroleum refinery products
WO2006126978A1 (en) Topological near infrared analysis modeling of petroleum refinery products
US6662116B2 (en) Method for analyzing an unknown material as a blend of known materials calculated so as to match certain analytical data and predicting properties of the unknown based on the calculated blend
EP0726460B1 (en) A method of characterizing hydrocarbon feeds and products using infra-red spectra
EP0871976B1 (en) Method for preparing blend products
EP2350615B1 (en) Method for predicting hydrocarbon process stream stability using near infrared spectra
US11905468B2 (en) Assemblies and methods for enhancing control of fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US20230093452A1 (en) Assemblies and methods for enhancing fluid catalytic cracking (fcc) processes during the fcc process using spectroscopic analyzers
JP2016507113A (en) System, method, and apparatus for determining the characteristics of a product or process stream
US10235481B2 (en) System and method for online measurement of vapor pressure in hydrocarbon process streams
CN112782146A (en) Gasoline olefin content analysis method based on Raman spectrum
US20240132786A1 (en) Assemblies and methods for enhancing control of fluid catalytic cracking (fcc) processes using spectroscopic analyzers
JPH11513795A (en) Transmission cell for measuring (near) infrared spectrum of carbonaceous materials
EP3861320B1 (en) Systems and methods for implicit chemical resolution of vacuum gas oils and fit quality determination
US20170097330A1 (en) Hybrid analyzer for fluid processing processes
JP6752298B2 (en) Systems and methods for measuring vapor pressure in hydrocarbon treatment streams online
CN111829976A (en) Method for predicting composition of gasoline fraction hydrocarbon group of crude oil by near infrared spectrum
CN115248193B (en) On-line multichannel measuring method for oil generated by catalytic reforming process
Gourvénec et al. 38 NIR Spectroscopy Applied to the Oil and Gas Industry
Zanier-Szydlowski et al. Control of refining processes on mid-distillates by near infrared spectroscopy
US12031094B2 (en) Assemblies and methods for enhancing fluid catalytic cracking (FCC) processes during the FCC process using spectroscopic analyzers
Fan et al. Online Determination on the Properties of Naphtha as the Ethylene Feedstock Using Near-Infrared Spectroscopy
Velvarská et al. Comparison of near infrared and Raman spectroscopies for determining the cetane index of hydrogenated gas oil
CA3190475A1 (en) Assemblies and methods for enhancing control of fluid catalytic cracking (fcc) processes using spectroscopic analyzers
CA3190483A1 (en) Assemblies and methods for enhancing fluid catalytic cracking (fcc) processes during the fcc process using spectroscopic analyzers

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase