WO2006126311A1 - Balloon and balloon catheter - Google Patents

Balloon and balloon catheter Download PDF

Info

Publication number
WO2006126311A1
WO2006126311A1 PCT/JP2006/302385 JP2006302385W WO2006126311A1 WO 2006126311 A1 WO2006126311 A1 WO 2006126311A1 JP 2006302385 W JP2006302385 W JP 2006302385W WO 2006126311 A1 WO2006126311 A1 WO 2006126311A1
Authority
WO
WIPO (PCT)
Prior art keywords
balloon
layer
elastomer
base material
polyamide elastomer
Prior art date
Application number
PCT/JP2006/302385
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsuharu Korogi
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005167638A external-priority patent/JP4967258B2/en
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Publication of WO2006126311A1 publication Critical patent/WO2006126311A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1075Balloon catheters with special features or adapted for special applications having a balloon composed of several layers, e.g. by coating or embedding

Definitions

  • the present invention relates to a medical balloon and a balloon catheter including the balloon.
  • angioplasty PTA is performed to improve the blood flow on the peripheral side of the blood vessel by expanding the stenosis or occlusion site of the blood vessel.
  • Percutaneous Transluminal Angioplasty ⁇ PTCA Percutaneous Transluminal Coronary Angioplasty, etc.
  • Balloon catheters are mainly used as a set of guide catheter and guide wire to dilate a stenotic site in a coronary artery.
  • the guide catheter is first inserted into the femoral artery, the tip is positioned at the entrance of the coronary artery via the aorta, and then the guide wire penetrating the balloon catheter is coronated.
  • Advance beyond the stenosis site of the artery then advance the balloon catheter along the guidewire, inflate with the balloon positioned at the stenosis site and dilate the stenosis site, and deflate the balloon It is removed outside the body.
  • the neuron catheter is not limited to treating arterial stenosis but is useful for many medical applications including insertion into blood vessels as well as insertion into various body cavities.
  • Norane provided at the distal portion of the catheter shaft is required to have various characteristics due to its role of expanding the stenosis in the blood vessel.
  • High pressure strength is required to expand the calcified hard stenosis.
  • a high degree of flexibility is required in order to be positioned at a bent stenosis site.
  • a sufficiently thin balloon is required in order to be located at a stenosis site having a very high stenosis degree of 99%. Taking these characteristics together, balloons are required to be thin and have high membrane strength and high flexibility. A number of methods have been disclosed so far regarding balloon thinning, high strength, and dimensional stabilization during expansion.
  • JP-A 63-183070 discloses a balloon made of polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • This noren is thin, has high strength and has excellent dimensional stability.
  • the lack of flexibility and pinhole destruction occur as disadvantages.
  • pinhole destruction is not preferable because a high stress is locally applied to the blood vessel wall when the balloon breaks in the blood vessel, and the risk of causing damage to the blood vessel wall is extremely high.
  • JP-T-09-509860 discloses a balloon made of a block copolymer elastomer. This balloon has moderate elasticity and flexibility, but when trying to achieve sufficient dimensional stability, the balloon film thickness must be increased, and as a result, the passage through the constriction is impaired. .
  • Japanese Patent Application Laid-Open No. 09-164191 discloses a catheter nolon comprising a cylindrical portion and a catheter joint, wherein the balloon is made of a high-strength polymer, and the base layer A balloon having a coating layer which is close to the high-strength polymer formed on at least one surface of the material and has a flexible polymer force close to elongation at break and has a wall thickness of 25 m or less is disclosed. Yes. However, it is disclosed that the ratio of the Shore hardness of the polyamide elastomer forming the inner layer to the Shore hardness of the polyamide elastomer forming the base layer is 0.70 or more and 0.993 or less.
  • Patent Document 1 JP-A 63-183070
  • Patent Document 2 No. 09-509860
  • Patent Document 3 Japanese Patent Laid-Open No. 09-164191
  • an object of the present invention is to provide a medical balloon that has the same film thickness but has sufficient pressure resistance and dimensional stability when compared with balloons of other configurations.
  • the present invention solves the above-described problems and includes the following configuration. Snow The
  • a balloon for a medical catheter that has the strength of a polyamide elastomer.
  • the balloon has a base material layer made of a polyamide elastomer and has a lower bending elastic modulus than the base material layer inside the base material layer.
  • a balloon for a medical catheter that has the power of a polyamide elastomer, the balloon comprising a base material layer made of a polyamide elastomer, and a polyamide elastomer having a Shore hardness lower than that of the base material layer inside the base material layer.
  • the polyamide elastomer strength of the inner layer is selected from a polyetheramide elastomer and a polyetheresteramide elastomer
  • the polyamide elastomer of the outer layer is selected from a polyetheramide elastomer and a polyetheresteramide elastomer.
  • a balloon for a medical catheter comprising a polyether ester amide elastomer, wherein the balloon has a base layer also comprising a polyether ester amide elastomer, and has a Shore hardness inside the base layer than the base layer.
  • a balloon characterized in that the ratio of 62 X y + 14 to 62 ⁇ ⁇ + 14 is from 0.70 to 0.93, where y is the hard segment weight ratio of the amide elastomer.
  • a balloon catheter provided with a foldable balloon used for medical treatment for the purpose of expansion operation characterized in that it has a balloon described in (1) N A balloon catheter.
  • a medical balloon having sufficient pressure resistance and dimensional stability when compared to a balloon having the same film thickness but having another configuration.
  • FIG. 1 is a graph showing the relationship between balloon film thickness and breaking pressure.
  • FIG. 2 is a graph showing the relationship between the balloon film thickness and the diameter expansion rate.
  • FIG. 3 is a graph showing the relationship between balloon film thickness and breaking pressure.
  • FIG. 4 is a graph showing the relationship between balloon film thickness and diameter expansion rate.
  • a catheter for medical use having a polyamide elastomer force, the balloon comprising a base material layer made of a polyamide elastomer, and a base material layer on the inner side of the base material layer than the base material layer.
  • a balloon characterized by having an inner layer having a low bending elastic modulus and a polyamide elastomer having a large elongation at break and a great strength.
  • the balloon and the balloon catheter of the present invention are medical catheter balloons made of a polyamide elastomer, the balloon comprising a base material layer also made of a polyamide elastomer and the base.
  • the hardness of the polyamide elastomer is a force that can be used with any hardness depending on the flexibility required of the balloon. Preferably, it has a Shore D hardness of 25 to 72, and more preferably a Shore D hardness of 50 to 72. Is used.
  • the fracture pressure when compared at the same film thickness is the ratio of the Shore hardness of the polyamide elastomer that forms the inner layer of the norene of the present invention to the Shore hardness that forms the base material layer. If it is smaller than 0.70, the target cannot be achieved because the fracture pressure when compared at the same film thickness is small, and if it is larger than 0.93, all of them are formed only by the same base material layer. Compared to the lane, the improvement effect of high pressure strength and low expansion rate is insufficient.
  • the ratio of the Shore hardness of the polyamide elastomer forming the inner layer of the balloon of the present invention to the Shore hardness forming the base material layer is more preferably from 0.78 to 0.93.
  • the Shore hardness of the polyamide elastomer that forms the base layer of the balloon of the present invention is preferably 60D or more. From the viewpoint of flexibility and insertability into the lesion, the polyamide elastomer forming the base material layer preferably has a Shore hardness of 78D or less. In addition, the Shore hardness referred to in this specification means a value measured by IS0868.
  • the present invention provides a balloon for a medical catheter that is also a polyetheresteramide elastomer, the balloon comprising a base material layer that also has a polyetheresteramide elastomer force, Inside the base material layer is an inner layer which is also a polyether ester amide elastomer having a lower Shore hardness than the base material layer.
  • the hard segment weight ratio of the polyether ester amide elastomer forming the base material layer is set to X
  • the hard segment weight ratio of the polyether ester amide elastomer forming the inner layer is y, it is a force of 62 Xy + 14 to 62 X X + 14 ⁇ ). 70 or more and 0.9 or less Provide a balloon to do.
  • the weight ratio of the hard segment is determined by measuring the weight of the polyamide part and the weight of the polyether part by P ⁇ -NMR and calculating the weight ratio of the polyamide part.
  • the method for producing the balloon of the present invention is not particularly limited, but a tube having an inner layer having a Shore hardness lower than that of the base material layer on the inner side of the base material layer that also has a polyamide elastomer having a high elastic modulus (Parison) ) By extrusion molding, and the parison is biaxially stretch blow molded.
  • examples of the polyamide elastomer include polyether ester amide elastomers and polyamide ether elastomers.
  • Polyether ester amide elastomers are preferred from the viewpoint of better dimensional stability of balloons with higher yield strength.
  • the polyamide elastomer of the inner layer is preferably a polyether ester amide elastomer from the viewpoint of better dimensional stability of the balloon.
  • the polyamide elastomer of the outer layer is preferably a polyether ester amide elastomer from the viewpoint of better dimensional stability of the balloon.
  • polyetheresteramide elastomer a block copolymer comprising a hard segment and a soft segment is used.
  • a block copolymer using a hard segment made of polyamide and a soft segment also having a polyether strength is used.
  • polyamide constituting this hard segment polyamide 6, 6-6, 6-10, 6-12, 11, 12 and the like can be used.
  • polyamide 12 is preferable.
  • polyether constituting the soft segment polyethylene glycol, polypropylene glycol, polytetramethylene glycol and the like can be used. Particularly, polytetramethylene glycol is preferable.
  • the ratio of the overall cross-sectional area of the cross-sectional area of the inner layer of the balloon of the present invention is preferably 0.01 to 0.25.
  • the cross-sectional area means the cross-sectional area when the balloon is cut into a ring perpendicular to the longitudinal direction of the balloon.
  • the inner layer and the outer layer may be measured in the same manner as the method of measuring the cross section of the parison by observing the balloon by cutting it into a ring perpendicular to the longitudinal axis direction and magnifying with a microscope. There is a method of calculating the ratio by calculating the cross-sectional area.
  • the cross-sectional area ratio of the inner layer is smaller than 0.01, the effect of reducing the film thickness while maintaining high fracture pressure and high dimensional stability is poor. Point force that reduces dimensional stability is not preferable.
  • the cross-sectional area ratio of the inner layer is more preferably 0.02 force to 0.20, and still more preferably 0.03 force to 0.15.
  • an outer layer that is one of the most powerful polyamide elastomers on the outside of the base material layer has low elastic modulus and high elongation at break. It exists, but ...
  • a polyamide elastomer having a bending elastic modulus lower than 300 MPa and a breaking elongation larger than 380% is provided outside the base material layer.
  • an inner layer that is a polyamide elastomer marker having a Shore hardness lower than that of the base material layer is provided inside the base material layer, and the base material layer of the polyamide elastomer that forms the inner layer has a Shore hardness.
  • the ratio of the polyamide elastomer that forms the Shore hardness is 0.70 or more and 0.93 or less.
  • the polyamide elastomer having a low flexural modulus and a large breaking elongation include polyether ester amide elastomer and polyether amide elastomer. From the viewpoint of better dimensional stability of the balloon, a polyester ester amide elastomer is preferred as the polyamide elastomer having a low elastic modulus and a large elongation at break.
  • An outer layer that has the strength of a polyamide elastomer that has a low elastic modulus and a large breaking elongation exists outside the base material layer, and a balloon that does not have an inner layer inside the base material layer has the same film thickness when compared. Because the pressure resistance is inferior!
  • the flexural modulus referred to in this specification is a value measured by IS0178.
  • the elongation at break referred to in this specification is a value measured by ASTM D638.
  • PEBAX7233 A parison with a base layer strength of PEBAX7233 (manufactured by Elfachem) and an inner layer of PEBAX6333 with a ratio of 0.09 to the total cross-sectional area of the inner layer was formed by extrusion.
  • PEBAX7233 has a flexural modulus of 730 MPa and an elongation at break of 360%.
  • PEBAX6333 has a flexural modulus of 290 MPa and an elongation at break of 440%.
  • a biaxial stretch blow molding was performed under various molding conditions to obtain a balloon having a thickness of 20 m to 23 m.
  • the film thickness of the balloon was measured with a micrometer, and the average of the thicknesses at the center, right side, and left side of the straight tube portion of the balloon was taken as the film thickness.
  • These balloons were placed in a water bath filled with 37 ° C physiological saline, and the pressure was increased by 0.2 atm using physiological saline.
  • the outer diameter was measured by holding for 1 second at each pressure. The pressure was continuously increased until the balloon was broken, and the breaking pressure of the balloon was measured.
  • the diameter expansion rate was calculated when the pressure was increased from 12 atm to 22 atm. Table 1 shows the measured values.
  • Figure 1 shows the relationship between film thickness and burst pressure
  • Figure 2 shows the relationship between film thickness and diameter expansion rate. The diameter expansion rate was calculated using the following formula.
  • Base layer layer SPEBAX7233, outer layer force PEBAX6333, inner layer PEBAX6333 has a three-layer structure, the ratio of the inner layer cross-sectional area to the total cross-sectional area is 0.06, and the ratio of the outer layer cross-sectional area to the total cross-sectional area is 0.03.
  • the parison was molded by extrusion. A biaxial stretch blow molding was performed under various molding conditions to obtain a balloon having a diameter of 3. Omm and a film thickness of 20 ⁇ m to 24 ⁇ m. The breaking pressure and the diameter expansion rate of the balloon were measured in the same manner as in Example 1. Table 1 shows the measured values. Fig. 1 shows the relationship between film thickness and burst pressure, and Fig. 2 shows the relationship between film thickness and diameter expansion rate.
  • a double layer structure with PEBAX7233 as the base material layer and PEBAX6333 as the inner layer, and a ratio of the inner layer cross-sectional area to the total cross-sectional area of 0.05 was formed by extrusion molding.
  • Biaxial stretch blow molding was performed under various conditions to obtain balloons having a diameter of 3. Omm and a thickness of 19 ⁇ m to 23 ⁇ m.
  • the breaking pressure and the diameter expansion rate of the balloon were measured in the same manner as in Example 1.
  • Table 1 shows the measured values.
  • Figure 1 shows the relationship between film thickness and burst pressure
  • Figure 2 shows the relationship between film thickness and diameter expansion rate.
  • a parison having a two-layer structure with a base material layer of PEBAX7233 and an inner layer of PEBAX6333 and a ratio of the inner layer cross-sectional area to the total cross-sectional area of 0.20 was formed by extrusion molding. Balloon with diameter of 3. Omm and thickness of 21 ⁇ m to 24 ⁇ m by biaxial stretch blow molding under various conditions Got. The breaking pressure and expansion rate of the balloon were measured in the same manner as in Example 1. Table 1 shows the measured values. Figure 1 shows the relationship between film thickness and burst pressure, and Figure 2 shows the relationship between film thickness and expansion rate.
  • a single layer structure of PEBAX7233 was formed by extrusion. Biaxial stretch blow molding was performed under various molding conditions to obtain balloons with a diameter of 3. Omm and a film thickness of 21 ⁇ m to 25 ⁇ m. The breaking pressure and the diameter expansion rate of the balloon were measured in the same manner as in Example 1. Table 2 shows the measured values. Fig. 1 shows the relationship between film thickness and burst pressure, and Fig. 2 shows the relationship between film thickness and diameter expansion rate.
  • a parison having a two-layer structure consisting of a base material layer SPEBAX7233 and an outer layer force SPEBAX6333 and having an outer layer cross-sectional area ratio of 0.09 was formed by extrusion molding.
  • Biaxial stretch blow molding was performed under various molding conditions to obtain balloons with a diameter of 3. Omm and a film thickness of 22 ⁇ m to 25 ⁇ m.
  • the breaking pressure and diameter expansion rate of the balloon were measured in the same manner as in Example 1.
  • Table 2 shows the measured values.
  • Figure 1 shows the relationship between film thickness and burst pressure
  • Figure 2 shows the relationship between film thickness and expansion rate.
  • a parison having a two-layer structure with a base material layer of PEBAX7233 and an inner layer of PEBAX6333 and a sectional area ratio of the inner layer of 0.40 was formed by extrusion molding.
  • Balloons having a diameter of 3. Omm and a thickness of 19 ⁇ m to 23 ⁇ m were formed by biaxial stretch blow molding under various molding conditions. Balloon breaking pressure and expansion rate were measured in the same manner as in Example 1.
  • Table 2 shows the measured values.
  • Figure 1 shows the relationship between film thickness and burst pressure
  • Figure 2 shows the relationship between film thickness and expansion rate.
  • PEBAX7233 has a Shore hardness of 72D and PEBAX6333 has a Shore hardness of 63D.
  • the ratio of the inner layer Shore hardness to the substrate layer Shore hardness is 0.88.
  • the temperature is in the range of 60 ° C and 110 ° C
  • the pressure is in the range of 3MPa, 5.5MPa
  • the inner diameter of the nozzle is 0.6mm
  • the outer diameter of the nozzle is 1.5mm.
  • a balloon having a diameter of 6 mm and a thickness of 28 ⁇ m and 36 ⁇ m was obtained by biaxial stretch blow molding.
  • the film thickness of the balloon was measured with a micrometer, and the average thickness of the three points of the center, right side and left side of the straight tube portion of the balloon was taken as the film thickness.
  • Fig. 3 shows the relationship between the film thickness and the burst pressure
  • Fig. 4 shows the relationship between the film thickness and the diameter expansion rate.
  • the diameter expansion rate was calculated using the following formula.
  • a parison having a base layer of PEBAX7233 and an inner layer of PEBAX5533 and a ratio of the inner layer cross-sectional area to the total cross-sectional area of 0.06 was formed by extrusion molding.
  • PEBAX5 533 has a Shore hardness of 55D.
  • the ratio of the Shore hardness of the inner layer to the Shore hardness of the base material layer is 0.76.
  • a biaxial stretch blow molding was performed under various molding conditions to obtain a balloon having a diameter of 6 mm and a film thickness of 32 to 36 m.
  • the breaking pressure and diameter expansion rate of the balloon were measured in the same manner as in Example 5. The measured values are shown in Table 3 above, the relationship between film thickness and breaking pressure is shown in Fig. 3, and the relationship between film thickness and diameter expansion rate is shown. This is shown in Fig. 4.
  • a single layer structure of PEBAX7233 was formed by extrusion.
  • a balun having a diameter of 6 mm and a film thickness of 44 ⁇ m to 48 ⁇ m was obtained by biaxial stretching blow molding under various molding conditions.
  • the breaking pressure and diameter expansion rate of the balloon were measured in the same manner as in Example 5. The measured values are shown in Table 24, the relationship between film thickness and breaking pressure is shown in Fig. 3, and the relationship between film thickness and diameter expansion rate is shown. Shown in 4.
  • a parison having a two-layer structure consisting of a base material layer SPEBAX7233 and an outer layer force SPEBAX4033 and having an outer layer cross-sectional area ratio of 0.09 was formed by extrusion molding.
  • PEBAX2533 has a Shore hardness of 25D.
  • the ratio of the Shore hardness of the inner layer to the Shore hardness of the base layer is 0.58.
  • Biaxial stretch blow molding was performed under various molding conditions to obtain a balloon having a diameter of 6 mm and a film thickness of 35 ⁇ m to 43 ⁇ m.
  • the fracture pressure and diameter expansion rate of the balloon were measured in the same manner as in Example 5 (results are shown in Table 4 above), and the relationship between film thickness and fracture pressure is shown in Fig. 3, and the relationship between film thickness and expansion rate. This is shown in Fig. 4.
  • a parison having a two-layer structure consisting of a base material layer SPEBAX7233 and an outer layer force SPEBAX2533 and having an outer layer cross-sectional area ratio of 0.09 was formed by extrusion molding.
  • the ratio of the Shore hardness of the inner layer to the Shore hardness of the base layer is 0.35.
  • Biaxial stretch blow molding was performed under various molding conditions to obtain balloons having a diameter of 6 mm and a film thickness of 29 ⁇ m to 39 ⁇ m.
  • the fracture pressure and diameter expansion rate of the balloon were measured in the same manner as in Example 5 (results are shown in Table 4 above), and the relationship between film thickness and fracture pressure is shown in Fig. 3, and the relationship between film thickness and expansion rate. This is shown in Fig. 4.
  • a parison having a two-layer structure consisting of a base material layer SPEBAX7233 and an outer layer force SPEBAX7033 and having an outer layer cross-sectional area ratio of 0.08 was formed by extrusion molding.
  • PEBAX7033 has a Shore hardness of 70D.
  • the ratio of the Shore hardness of the inner layer to the Shore hardness of the base layer is 0.96.
  • Biaxial stretch blow molding was performed under various molding conditions to obtain balloons having a diameter of 6 mm and a film thickness of 42 ⁇ m to 45 ⁇ m.
  • the fracture pressure and diameter expansion rate of the balloon were measured in the same manner as in Example 5 (results are shown in Table 4 above), and the relationship between film thickness and fracture pressure is shown in Fig. 3, and the relationship between film thickness and expansion rate. This is shown in Fig. 4.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Pulmonology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Materials For Medical Uses (AREA)

Abstract

A balloon for catheters for medical use which is made of polyamide elastomers. This balloon comprises a base layer which is made of a polyamide elastomer and an inner layer which is provided within the base layer and made of another polyamide elastomer having a lower elastic modulus and a larger elongation at break or a lower Shore hardness each than the base layer. Thus, it is possible to provide a balloon for catheters which can be thinned while sustaining sufficient compression strength and dimensional stability and has such flexibility as facilitating the insertion into a curved and narrow part.

Description

ノ レーンおよびノ レーン力テーテノレ  Nolane and Nolane Force Tetenore
技術分野  Technical field
[0001] 本発明は医療用バルーンおよび該バルーンを備えたバルーンカテーテルに関する 背景技術  TECHNICAL FIELD [0001] The present invention relates to a medical balloon and a balloon catheter including the balloon.
[0002] 従来、血管などの脈管において狭窄あるいは閉塞が生じた場合、脈管の狭窄部位 あるいは閉塞部位を拡張して、血管末梢側の血流を改善するために行なう脈管成形 術 PTA: Percutaneous Transluminal Angioplasty ^ PTCA: Percutaneous Translumin al Coronary Angioplastyなど)は、多くの医療機関において多数の術例があり、この 種の症例における手術としては一般的になっている。  Conventionally, when stenosis or occlusion occurs in a blood vessel such as a blood vessel, angioplasty PTA is performed to improve the blood flow on the peripheral side of the blood vessel by expanding the stenosis or occlusion site of the blood vessel. Percutaneous Transluminal Angioplasty ^ PTCA: Percutaneous Transluminal Coronary Angioplasty, etc.) has many surgical cases in many medical institutions, and it is a common procedure for this type of case.
[0003] バルーンカテーテルは、主に冠状動脈の狭窄部位を拡張するために、ガイドカテ 一テルとガイドワイヤーとのセットで使用される。このバルーンカテーテルを用いた脈 管成形術は、まずガイドカテーテルを大腿動脈カゝら挿入して大動脈を経て冠状動脈 の入口に先端を位置させた後、バルーンカテーテルを貫通させたガイドワイヤーを冠 状動脈の狭窄部位を超えて前進させ、その後バルーンカテーテルをガイドワイヤー に沿って前進させ、バルーンを狭窄部位に位置させた状態で膨張させて狭窄部位を 拡張する手順で行ない、そしてバルーンを収縮させて体外に除去するのである。しか し、ノ レーンカテーテルは、動脈狭窄の治療だけに限定されず、血管の中への挿入 、ならびに種々の体腔への挿入を含む多くの医療的用途に有用である。  [0003] Balloon catheters are mainly used as a set of guide catheter and guide wire to dilate a stenotic site in a coronary artery. In angioplasty using this balloon catheter, the guide catheter is first inserted into the femoral artery, the tip is positioned at the entrance of the coronary artery via the aorta, and then the guide wire penetrating the balloon catheter is coronated. Advance beyond the stenosis site of the artery, then advance the balloon catheter along the guidewire, inflate with the balloon positioned at the stenosis site and dilate the stenosis site, and deflate the balloon It is removed outside the body. However, the neuron catheter is not limited to treating arterial stenosis but is useful for many medical applications including insertion into blood vessels as well as insertion into various body cavities.
[0004] カテーテルシャフトの遠位部に設けられたノ レーンは血管内の狭窄部を拡張する ヽうその役割から種々の特性が要求される。石灰化した硬 ヽ狭窄部位を拡張する ために高 、耐圧強度が必要である。また屈曲した狭窄部位に位置させるためには高 い柔軟性が必要になる。また、狭窄度が 99%といった極めて高い狭窄度を有する狭 窄部位に位置させるためには柔軟性のみならず、バルーンが十分に薄いことが要求 される。これらの特性を総合すると、バルーンは薄ぐ膜強度が高ぐ柔軟性が高いこ とが要求される。 これまでバルーンの薄肉化や高強度化、拡張時の寸法安定化に関して、幾多の方 法が開示されている。 [0004] Norane provided at the distal portion of the catheter shaft is required to have various characteristics due to its role of expanding the stenosis in the blood vessel. High pressure strength is required to expand the calcified hard stenosis. In addition, a high degree of flexibility is required in order to be positioned at a bent stenosis site. In addition, in order to be located at a stenosis site having a very high stenosis degree of 99%, not only flexibility but also a sufficiently thin balloon is required. Taking these characteristics together, balloons are required to be thin and have high membrane strength and high flexibility. A number of methods have been disclosed so far regarding balloon thinning, high strength, and dimensional stabilization during expansion.
[0005] 例えば、特開昭 63— 183070号公報ではポリエチレンテレフタレート(PET)による バルーンが開示されている。このノ レーンは薄肉、高強度を実現し寸法安定性にも 優れている。しかし、柔軟性に欠けること、ピンホール破壊が起こることがデメリットとし てあげられる。特にピンホール破壊は、血管内でバルーンが破壊した場合に血管壁 に高い応力が局所的に加わり、血管壁の損傷を招く危険性が極めて高いため好まし くない。  [0005] For example, JP-A 63-183070 discloses a balloon made of polyethylene terephthalate (PET). This noren is thin, has high strength and has excellent dimensional stability. However, the lack of flexibility and pinhole destruction occur as disadvantages. In particular, pinhole destruction is not preferable because a high stress is locally applied to the blood vessel wall when the balloon breaks in the blood vessel, and the risk of causing damage to the blood vessel wall is extremely high.
[0006] 特表平 09— 509860公報には、ブロックコポリマーエラストマ一からなるバルーンが 提示されている。このバルーンは適度な弾性と柔軟性を兼ね備えるが、十分な寸法 安定性を実現しょうとした場合にバルーン膜厚を厚くせざるをえず、その結果狭窄部 の通過性が損なわれるという欠点がある。  [0006] JP-T-09-509860 discloses a balloon made of a block copolymer elastomer. This balloon has moderate elasticity and flexibility, but when trying to achieve sufficient dimensional stability, the balloon film thickness must be increased, and as a result, the passage through the constriction is impaired. .
[0007] 特開平 09— 164191号公報には、筒状部と、カテーテル接合部とを備えるカテー テル用ノ レーンであって、該バルーンは高強度ポリマーからなる基材層と、該基材 層の少なくとも一面に形成された前記高強度ポリマーと破壊点伸びが近くかつ柔軟 な柔軟性ポリマー力もなる被覆層を有し、前記筒状部の肉厚が 25 m以下であるバ ルーンが開示されている。しかし、内層を形成するポリアミドエラストマ一のショァ硬度 の基材層を形成するポリアミドエラストマ一のショァ硬度に対する比が 0. 70以上 0. 9 3以下であることが開示されて ヽな 、。  [0007] Japanese Patent Application Laid-Open No. 09-164191 discloses a catheter nolon comprising a cylindrical portion and a catheter joint, wherein the balloon is made of a high-strength polymer, and the base layer A balloon having a coating layer which is close to the high-strength polymer formed on at least one surface of the material and has a flexible polymer force close to elongation at break and has a wall thickness of 25 m or less is disclosed. Yes. However, it is disclosed that the ratio of the Shore hardness of the polyamide elastomer forming the inner layer to the Shore hardness of the polyamide elastomer forming the base layer is 0.70 or more and 0.993 or less.
特許文献 1:特開昭 63— 183070号  Patent Document 1: JP-A 63-183070
特許文献 2:特表平 09 - 509860号  Patent Document 2: No. 09-509860
特許文献 3:特開平 09— 164191号  Patent Document 3: Japanese Patent Laid-Open No. 09-164191
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] そこで、本発明は、同じ膜厚であるが他の構成のバルーンと比較した場合、十分な 耐圧強度と寸法安定性を有する医療用バルーンを提供することを課題とする。 [0008] Therefore, an object of the present invention is to provide a medical balloon that has the same film thickness but has sufficient pressure resistance and dimensional stability when compared with balloons of other configurations.
課題を解決するための手段  Means for solving the problem
[0009] 本発明は、上記課題を解決したものであって、次に示す構成を内容とする。すなわ ち、 [0009] The present invention solves the above-described problems and includes the following configuration. Snow The
(1) ポリアミドエラストマ一力もなる医療用カテーテル用バルーンであって、該バル ーンはポリアミドエラストマ一からなる基材層と、該基材層の内側に基材層よりも曲げ 弾性率が低ぐ破断伸びが大きいポリアミドエラストマ一からなる内層があることを特 徴とするバルーン。  (1) A balloon for a medical catheter that has the strength of a polyamide elastomer. The balloon has a base material layer made of a polyamide elastomer and has a lower bending elastic modulus than the base material layer inside the base material layer. A balloon characterized by having an inner layer made of a polyamide elastomer having a large breaking elongation.
(2) 医療用カテーテル用バルーンであって、内層の断面積のバルーン全体の断面 積に対する比が 0. 01力ら 0. 25である(1)に記載のバルーン。  (2) The balloon for medical catheter according to (1), wherein the ratio of the cross-sectional area of the inner layer to the cross-sectional area of the entire balloon is 0.01 force and 0.25.
(3) ポリアミドエラストマ一力もなる医療用カテーテル用バルーンであって、該バル ーンはポリアミドエラストマ一からなる基材層と、該基材層の内側に基材層よりもショァ 硬度が低いポリアミドエラストマ一力もなる内層があり、ここで、該内層を形成するポリ アミドエラストマーのショァ硬度の基材層を形成するポリアミドエラストマ一のショァ硬 度に対する比が 0. 70以上 0. 93以下であることを特徴とするバルーン。  (3) A balloon for a medical catheter that has the power of a polyamide elastomer, the balloon comprising a base material layer made of a polyamide elastomer, and a polyamide elastomer having a Shore hardness lower than that of the base material layer inside the base material layer. There is an inner layer which can be used as a force, and the ratio of the polyamide elastomer forming the inner layer to the Shore hardness of the polyamide elastomer forming the base material layer is from 0.70 to 0.93. Characteristic balloon.
(4) 該内層のポリアミドエラストマ一力 ポリエーテルアミドエラストマーとポリエーテ ルエステルアミドエラストマーから選択され、該外層のポリアミドエラストマ一が、ポリエ 一テルアミドエラストマーとポリエーテルエステルアミドエラストマーカ、ら選択される、 ( 3)載のバルーン。  (4) The polyamide elastomer strength of the inner layer is selected from a polyetheramide elastomer and a polyetheresteramide elastomer, and the polyamide elastomer of the outer layer is selected from a polyetheramide elastomer and a polyetheresteramide elastomer. 3) The balloon.
(5) 該バルーンの基材層のショァ硬度力 60D以上 78D以下であることを特徴とす る(3)または (4)に記載のバルーン。  (5) The balloon according to (3) or (4), wherein the base layer of the balloon has a Shore hardness of 60D or more and 78D or less.
(6) バルーンの全断面積に対する、該内層の断面積の比は 0. 01〜0. 25である、 (3)な!ヽし(5) Vヽずれかのバルーン。  (6) The ratio of the cross-sectional area of the inner layer to the total cross-sectional area of the balloon is 0.01 to 0.25. (3) No (5) V-shaped balloon.
(7) さらに、基材層の外側に曲げ弾性率が 300MPaよりも低ぐ破断伸びが 380% よりも大きなポリアミドエラストマ一力もなる外層が存在する、 (1)な 、し (6) V、ずれか のノ ノレーン。  (7) Furthermore, there is an outer layer on the outside of the base material layer where the flexural modulus is lower than 300 MPa and the elongation at break is greater than 380%. (1) Yes (6) V No nolane.
(8) ポリエーテルエステルアミドエラストマーからなる医療用カテーテル用バルーン であって、該バルーンはポリエーテルエステルアミドエラストマーカもなる基材層と、 該基材層の内側に基材層よりもショァ硬度が低いポリエーテルエステルアミドエラスト マーカゝらなる内層があり、ここで、該基材層を形成するポリエーテルエステルアミドエ ラストマーのハードセグメント重量比を Xとし、該内層を形成するポリエーテルエステル アミドエラストマーのハードセグメント重量比を yとしたとき、 62 X y + 14の 62 Χ χ+ 14 に対する比が 0. 70以上 0. 93以下であることを特徴とするバルーン。 (8) A balloon for a medical catheter comprising a polyether ester amide elastomer, wherein the balloon has a base layer also comprising a polyether ester amide elastomer, and has a Shore hardness inside the base layer than the base layer. There is an inner layer consisting of a low polyether ester amide elastomer marker, where the hard segment weight ratio of the polyether ester amide elastomer that forms the base layer is X, and the polyether ester that forms the inner layer A balloon characterized in that the ratio of 62 X y + 14 to 62 Χ χ + 14 is from 0.70 to 0.93, where y is the hard segment weight ratio of the amide elastomer.
(9) 拡張操作を目的とする医療に使用される折り畳み可能なバルーンを備えたバ ルーンカテーテルであって、(1)な 、し (8) V、ずれか記載のバルーンを備えたことを 特徴とするバルーンカテーテル。  (9) A balloon catheter provided with a foldable balloon used for medical treatment for the purpose of expansion operation, characterized in that it has a balloon described in (1) N A balloon catheter.
発明の効果  The invention's effect
[0010] 本発明によれば、同じ膜厚であるが他の構成のバルーンと比較した場合、十分な 耐圧強度と寸法安定性を有する医療用バルーンが、提供される。  [0010] According to the present invention, there is provided a medical balloon having sufficient pressure resistance and dimensional stability when compared to a balloon having the same film thickness but having another configuration.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]バルーンの膜厚と破壊圧の関係を示す図である。  FIG. 1 is a graph showing the relationship between balloon film thickness and breaking pressure.
[図 2]バルーンの膜厚と径拡張率の関係を示す図である。  FIG. 2 is a graph showing the relationship between the balloon film thickness and the diameter expansion rate.
[図 3]バルーンの膜厚と破壊圧の関係を示す図である。  FIG. 3 is a graph showing the relationship between balloon film thickness and breaking pressure.
[図 4]バルーンの膜厚と径拡張率の関係を示す図である。  FIG. 4 is a graph showing the relationship between balloon film thickness and diameter expansion rate.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 本発明の 1側面では、ポリアミドエラストマ一力もなる医療用カテーテル用ノ レーン であって、該バルーンはポリアミドエラストマ一からなる基材層と、該基材層の内側に 基材層よりも曲げ弾性率が低ぐ破断伸びが大きいポリアミドエラストマ一力もなる内 層があることを特徴とするバルーンが提供される。  [0012] In one aspect of the present invention, there is provided a catheter for medical use having a polyamide elastomer force, the balloon comprising a base material layer made of a polyamide elastomer, and a base material layer on the inner side of the base material layer than the base material layer. There is provided a balloon characterized by having an inner layer having a low bending elastic modulus and a polyamide elastomer having a large elongation at break and a great strength.
[0013] 本発明の別の側面では、本発明のバルーンおよびバルーンカテーテルは、ポリアミ ドエラストマーからなる医療用カテーテル用バルーンであって、該バルーンはポリアミ ドエラストマーカもなる基材層と、該基材層の内側に基材層よりもショァ硬度が低いポ リアミドエラストマーカ なる内層があり、内層を形成するポリアミドエラストマ一のショ ァ硬度の基材層を形成するポリアミドエラストマ一のショァ硬度に対する比が 0. 70以 上 0. 93以下であることを特徴とする。ポリアミドエラストマ一の硬度は、バルーンに要 求される柔軟性によりあらゆる硬度のものが用いられる力 好適にはショァ D硬度で 2 5から 72のもの力 更には好適にはショァ D硬度で 50から 72のものが用いられる。  [0013] In another aspect of the present invention, the balloon and the balloon catheter of the present invention are medical catheter balloons made of a polyamide elastomer, the balloon comprising a base material layer also made of a polyamide elastomer and the base. There is an inner layer of polyamide elastomer that has a lower Shore hardness than the base material layer inside the material layer, and the ratio of the Shore hardness of the polyamide elastomer that forms the inner layer to the Shore hardness of the polyamide elastomer that forms the base layer Is 0.70 or more and 0.93 or less. The hardness of the polyamide elastomer is a force that can be used with any hardness depending on the flexibility required of the balloon. Preferably, it has a Shore D hardness of 25 to 72, and more preferably a Shore D hardness of 50 to 72. Is used.
[0014] この側面では、同じ膜厚で比較した場合の破壊圧本発明のノ レーンの内層を形成 するポリアミドエラストマ一のショァ硬度の基材層を形成するショァ硬度に対する比が 0. 70よりも小さいと、同じ膜厚で比較した場合の破壊圧が小さくなるため目的を達成 することができず、 0. 93よりも大きいと全て同一の基材層のみで形成されたノ レーン と比べて、耐圧強度大、拡張率小という改良効果が不十分である。 In this aspect, the fracture pressure when compared at the same film thickness is the ratio of the Shore hardness of the polyamide elastomer that forms the inner layer of the norene of the present invention to the Shore hardness that forms the base material layer. If it is smaller than 0.70, the target cannot be achieved because the fracture pressure when compared at the same film thickness is small, and if it is larger than 0.93, all of them are formed only by the same base material layer. Compared to the lane, the improvement effect of high pressure strength and low expansion rate is insufficient.
[0015] 本発明のバルーンの内層を形成するポリアミドエラストマ一のショァ硬度の基材層を 形成するショァ硬度に対する比はより好ましくは 0. 78以上 0. 93以下である。  [0015] The ratio of the Shore hardness of the polyamide elastomer forming the inner layer of the balloon of the present invention to the Shore hardness forming the base material layer is more preferably from 0.78 to 0.93.
寸法安定性が求められる脈管形成術用バルーンに適する観点から、本発明のバル 一ンの基材層を形成するポリアミドエラストマ一のショァ硬度は 60D以上であることが 好ましい。柔軟性および、病変部への挿入性の観点から、基材層を形成するポリアミ ドエラストマーのショァ硬度は 78D以下であることが好ましい。なお、本明細書にいう ショァ硬度は、 IS0868により測定した値を意味する。  From the viewpoint of being suitable for an angioplasty balloon that requires dimensional stability, the Shore hardness of the polyamide elastomer that forms the base layer of the balloon of the present invention is preferably 60D or more. From the viewpoint of flexibility and insertability into the lesion, the polyamide elastomer forming the base material layer preferably has a Shore hardness of 78D or less. In addition, the Shore hardness referred to in this specification means a value measured by IS0868.
[0016] 本発明の別の態様では、本発明は、ポリエーテルエステルアミドエラストマーカもな る医療用カテーテル用バルーンであって、該バルーンはポリエーテルエステルアミド エラストマ一力もなる基材層と、該基材層の内側に基材層よりもショァ硬度が低いポリ エーテルエステルアミドエラストマーカもなる内層があり、ここで、該基材層を形成す るポリエーテルエステルアミドエラストマーのハードセグメント重量比を Xとし、該内層 を形成するポリエーテルエステルアミドエラストマーのハードセグメント重量比を yとし たとき、 62 Xy+ 14の 62 X X+ 14に対する it力^). 70以上 0. 93以下であることを特 徴とするバルーンを提供する。ハードセグメントの重量比は、 P^—NMRによってポリ アミド部分の重量とポリエーテル部分の重量を測定し、ポリアミド部分の重量比を算 出する。  [0016] In another aspect of the present invention, the present invention provides a balloon for a medical catheter that is also a polyetheresteramide elastomer, the balloon comprising a base material layer that also has a polyetheresteramide elastomer force, Inside the base material layer is an inner layer which is also a polyether ester amide elastomer having a lower Shore hardness than the base material layer. Here, the hard segment weight ratio of the polyether ester amide elastomer forming the base material layer is set to X When the hard segment weight ratio of the polyether ester amide elastomer forming the inner layer is y, it is a force of 62 Xy + 14 to 62 X X + 14 ^). 70 or more and 0.9 or less Provide a balloon to do. The weight ratio of the hard segment is determined by measuring the weight of the polyamide part and the weight of the polyether part by P ^ -NMR and calculating the weight ratio of the polyamide part.
[0017] 本発明のバルーンの製造方法については特に限定はないが、弾性率が高いポリア ミドエラストマーカもなる基材層の内側に基材層よりもショァ硬度が低い内層が存在 するチューブ (パリソン)を押出成形により成形し、該パリソンを二軸延伸ブロー成形 する方法がある。  [0017] The method for producing the balloon of the present invention is not particularly limited, but a tube having an inner layer having a Shore hardness lower than that of the base material layer on the inner side of the base material layer that also has a polyamide elastomer having a high elastic modulus (Parison) ) By extrusion molding, and the parison is biaxially stretch blow molded.
[0018] 上記いずれの側面についても、前記ポリアミドエラストマ一としては、ポリエーテルエ ステルアミドエラストマー、およびポリアミドエーテルエラストマ一が挙げられる。降伏 強度が高ぐバルーンの寸法安定性がより良いという観点から、ポリエーテルエステ ルアミドエラストマーが好まし 、。 [0019] 該内層のポリアミドエラストマ一としては、バルーンの寸法安定性がより良いという観 点からポリエーテルエステルアミドエラストマーが好ましい。 In any of the above aspects, examples of the polyamide elastomer include polyether ester amide elastomers and polyamide ether elastomers. Polyether ester amide elastomers are preferred from the viewpoint of better dimensional stability of balloons with higher yield strength. [0019] The polyamide elastomer of the inner layer is preferably a polyether ester amide elastomer from the viewpoint of better dimensional stability of the balloon.
[0020] 該外層のポリアミドエラストマ一としては、バルーンの寸法安定性がより良いという観 点からポリエーテルエステルアミドエラストマーが好ましい。  [0020] The polyamide elastomer of the outer layer is preferably a polyether ester amide elastomer from the viewpoint of better dimensional stability of the balloon.
[0021] 前記ポリエーテルエステルアミドエラストマーとしては、ハードセグメントとソフトセグメ ントからなるブロック共重合体が用いられる。好適にはポリアミドからなるハードセグメ ントと、ポリエーテル力もなるソフトセグメントを用いたブロック共重合体が用いられる。 更にこのハードセグメントを構成するポリアミドには、ポリアミド 6、 6-6、 6-10、 6-12、 11、 12等が使用できる力 特にポリアミド 12が好ましい。更にソフトセグメントを構成 するポリエーテルには、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラ メチレングリコール等が使用できる力 特にポリテトラメチレングリコールが好ましい。  [0021] As the polyetheresteramide elastomer, a block copolymer comprising a hard segment and a soft segment is used. Preferably, a block copolymer using a hard segment made of polyamide and a soft segment also having a polyether strength is used. Further, as the polyamide constituting this hard segment, polyamide 6, 6-6, 6-10, 6-12, 11, 12 and the like can be used. Particularly, polyamide 12 is preferable. Furthermore, as the polyether constituting the soft segment, polyethylene glycol, polypropylene glycol, polytetramethylene glycol and the like can be used. Particularly, polytetramethylene glycol is preferable.
[0022] 上記いずれの側面においても、寸法安定であるという観点から、本発明のバルーン の内層の断面積の、全体の断面積の比は 0. 01-0. 25であることが好ましい。ここ で 、う断面積とは、バルーン長手軸方向に対して垂直にバルーンを輪切りにしたとき の断面積を意味する。  [0022] In any of the above aspects, from the viewpoint of dimensional stability, the ratio of the overall cross-sectional area of the cross-sectional area of the inner layer of the balloon of the present invention is preferably 0.01 to 0.25. Here, the cross-sectional area means the cross-sectional area when the balloon is cut into a ring perpendicular to the longitudinal direction of the balloon.
[0023] 内層断面積比率の測定方法としては、押出成形により成形されたパリソンをニ軸延 伸ブロー成形して製造する場合、二軸延伸ブロー成形する前のパリソンを輪切りにし た断面を顕微鏡で拡大して観察し、パリソンの内径、外径、外層と内層の間の境界面 が形成する中間径を測定し、内円、外円、中間円がそれぞれ真円と仮定して外層、 内層の各断面積を内径、外径、中間径力 算出して比率を算出し、それをバルーン の内層の断面積比率とする方法がある。  [0023] As a method of measuring the cross-sectional area ratio of the inner layer, when a parison formed by extrusion molding is produced by biaxial stretch blow molding, a cross section of the parison before biaxial stretch blow molding is cut with a microscope. Magnified observation, measure the inner diameter of the parison, the outer diameter, and the intermediate diameter formed by the interface between the outer layer and the inner layer, and assume that the inner circle, outer circle, and middle circle are true circles, respectively. There is a method of calculating the ratio by calculating the inner diameter, outer diameter, and intermediate diameter force for each cross-sectional area, and using this as the cross-sectional area ratio of the inner layer of the balloon.
[0024] また、その他の測定方法としては、バルーンを長手軸方向に垂直に輪切りにして顕 微鏡で拡大して観察し、上記パリソンの断面を測定するのと同様の方法で内層、外 層の断面積を算出して比を算出する方法がある。  [0024] As another measurement method, the inner layer and the outer layer may be measured in the same manner as the method of measuring the cross section of the parison by observing the balloon by cutting it into a ring perpendicular to the longitudinal axis direction and magnifying with a microscope. There is a method of calculating the ratio by calculating the cross-sectional area.
[0025] 内層の断面積比が 0. 01より小さいと高い破壊圧、高い寸法安定性を維持しながら 膜厚を薄くすることができる効果が乏しくなり、 0. 25より大きいとバルーン拡張時の 寸法安定性が低下する点力 好ましくない。内層の断面積比はより好ましくは 0. 02 力ら 0. 20、更に好ましく ίま 0. 03力ら 0. 15ある。 [0026] 上記いずれの側面においても、本発明のバルーンおよびバルーンカテーテルにお いては、柔軟性を上げる観点から、基材層の外側に弾性率が低く破断伸びが大きな ポリアミドエラストマ一力 なる外層が存在して 、てもよ 、。 [0025] If the cross-sectional area ratio of the inner layer is smaller than 0.01, the effect of reducing the film thickness while maintaining high fracture pressure and high dimensional stability is poor. Point force that reduces dimensional stability is not preferable. The cross-sectional area ratio of the inner layer is more preferably 0.02 force to 0.20, and still more preferably 0.03 force to 0.15. [0026] In any of the above aspects, in the balloon and balloon catheter of the present invention, from the viewpoint of increasing flexibility, an outer layer that is one of the most powerful polyamide elastomers on the outside of the base material layer has low elastic modulus and high elongation at break. It exists, but ...
上記いずれの側面においても、本発明のノ レーンにおいては、好ましくは、柔軟性 を上げる観点から、基材層の外側に曲げ弾性率が 300MPaよりも低ぐ破断伸びが 380%よりも大きなポリアミドエラストマ一力もなる外層が存在していてもよい。この場 合、基材層の内側に、該基材層の内側に基材層よりもショァ硬度が低いポリアミドエ ラストマーカ なる内層があり、内層を形成するポリアミドエラストマ一のショァ硬度の 基材層を形成するポリアミドエラストマ一のショァ硬度に対する比が 0. 70以上 0. 93 以下であることが本発明の効果を得るために必須である。前記曲げ弾性率が低く破 断伸びが大きなポリアミドエラストマ一としてはポリエーテルエステルアミドエラストマ 一、ポリエーテルアミドエラストマーが挙げられる。バルーンの寸法安定性がより良い という観点から、前記弾性率が低く破断伸びが大きなポリアミドエラストマ一としてはポ リエ一テルエステルアミドエラストマーが好まし ヽ。  In any of the above aspects, in the norene of the present invention, preferably, from the viewpoint of increasing flexibility, a polyamide elastomer having a bending elastic modulus lower than 300 MPa and a breaking elongation larger than 380% is provided outside the base material layer. There may be an outer layer that can be as powerful as possible. In this case, an inner layer that is a polyamide elastomer marker having a Shore hardness lower than that of the base material layer is provided inside the base material layer, and the base material layer of the polyamide elastomer that forms the inner layer has a Shore hardness. In order to obtain the effects of the present invention, it is essential that the ratio of the polyamide elastomer that forms the Shore hardness is 0.70 or more and 0.93 or less. Examples of the polyamide elastomer having a low flexural modulus and a large breaking elongation include polyether ester amide elastomer and polyether amide elastomer. From the viewpoint of better dimensional stability of the balloon, a polyester ester amide elastomer is preferred as the polyamide elastomer having a low elastic modulus and a large elongation at break.
[0027] 基材層の外側に弾性率が低く破断伸びが大きなポリアミドエラストマ一力もなる外 層が存在し、基材層の内側に内層が存在しないバルーンは、同じ膜厚で比較した場 合の耐圧強度が劣るので好ましくな!/、。  [0027] An outer layer that has the strength of a polyamide elastomer that has a low elastic modulus and a large breaking elongation exists outside the base material layer, and a balloon that does not have an inner layer inside the base material layer has the same film thickness when compared. Because the pressure resistance is inferior!
なお、本明細書にいう曲げ弾性率は、 IS0178により測定された値である。なお、本 明細書にいう破断伸びは、 ASTMD638により測定された値である。  The flexural modulus referred to in this specification is a value measured by IS0178. The elongation at break referred to in this specification is a value measured by ASTM D638.
実施例  Example
[0028] (実施例 1) [0028] (Example 1)
基材層力 PEBAX7233 (エルフ ·ァトケム製)、内層が PEBAX6333という 2層構造 であり、内層断面積の全体断面積に対する比が 0. 09であるパリソンを押出成形によ り成形した。 PEBAX7233の曲げ弾性率は 730MPaであり、破断伸びは 360%であ る。 PEBAX6333の曲げ弾性率は 290MPaであり、破断伸びは 440%である。様々 な成形条件により二軸延伸ブロー成形して厚さ 20 m〜23 mの膜厚のバルーン を得た。ここでバルーンの膜厚はマイクロメーターにより測定し、バルーンの直管部の 中央、右側、左側の 3点の厚さを平均したものを膜厚とした。 これらのバルーンを 37°Cの生理食塩水を満たした水槽中に配置し、生理食塩水を 用いて 0. 2atmずつ圧力を上昇させた。各圧力で 1秒間保持して外径を測定した。 バルーンが破壊するまで圧力を上昇させ続けバルーンの破壊圧を測定した。圧力を 12atmから 22atmへ上昇させたときの径拡張率を算出した。測定値を表 1に示す。 膜厚と破壊圧の関係を図 1に、膜厚と径拡張率の関係を図 2に示した。なお、径拡張 率は以下の式で算出した。 A parison with a base layer strength of PEBAX7233 (manufactured by Elfachem) and an inner layer of PEBAX6333 with a ratio of 0.09 to the total cross-sectional area of the inner layer was formed by extrusion. PEBAX7233 has a flexural modulus of 730 MPa and an elongation at break of 360%. PEBAX6333 has a flexural modulus of 290 MPa and an elongation at break of 440%. A biaxial stretch blow molding was performed under various molding conditions to obtain a balloon having a thickness of 20 m to 23 m. Here, the film thickness of the balloon was measured with a micrometer, and the average of the thicknesses at the center, right side, and left side of the straight tube portion of the balloon was taken as the film thickness. These balloons were placed in a water bath filled with 37 ° C physiological saline, and the pressure was increased by 0.2 atm using physiological saline. The outer diameter was measured by holding for 1 second at each pressure. The pressure was continuously increased until the balloon was broken, and the breaking pressure of the balloon was measured. The diameter expansion rate was calculated when the pressure was increased from 12 atm to 22 atm. Table 1 shows the measured values. Figure 1 shows the relationship between film thickness and burst pressure, and Figure 2 shows the relationship between film thickness and diameter expansion rate. The diameter expansion rate was calculated using the following formula.
[0029] [数 1] バ / ン内圧力 2 2atmの時の径一バノ -ン内圧力 1 2 atmの時の径 ν ι ηη
Figure imgf000010_0001
ノ / "ン内圧力 2 2 atmの時の径
[0029] [ Equation 1] Diameter when the pressure inside the vane is 2 atm 1 Diameter when the pressure inside the vane is 1 2 atm ν ι ηη
Figure imgf000010_0001
No./"Inner pressure 2 2 atm diameter
[0030] (実施例 2) [0030] (Example 2)
基材層カ SPEBAX7233、外層力PEBAX6333、内層が PEBAX6333という 3層 構造であり、内層断面積の全体断面積に対する比が 0. 06であり、外層断面積の全 体断面積に対する比が 0. 03であるパリソンを押出成形により成形した。様々な成形 条件により二軸延伸ブロー成形して直径 3. Omm、膜厚 20 μ m〜24 μ mであるバル ーンを得た。実施例 1と同様の方法でバルーンの破壊圧と径拡張率を測定した。測 定値を表 1に示す。膜厚と破壊圧の関係を図 1に、膜厚と径拡張率の関係を図 2に示 した。  Base layer layer SPEBAX7233, outer layer force PEBAX6333, inner layer PEBAX6333 has a three-layer structure, the ratio of the inner layer cross-sectional area to the total cross-sectional area is 0.06, and the ratio of the outer layer cross-sectional area to the total cross-sectional area is 0.03. The parison was molded by extrusion. A biaxial stretch blow molding was performed under various molding conditions to obtain a balloon having a diameter of 3. Omm and a film thickness of 20 μm to 24 μm. The breaking pressure and the diameter expansion rate of the balloon were measured in the same manner as in Example 1. Table 1 shows the measured values. Fig. 1 shows the relationship between film thickness and burst pressure, and Fig. 2 shows the relationship between film thickness and diameter expansion rate.
[0031] (実施例 3)  [Example 3]
基材層が PEBAX7233、内層が PEBAX6333という 2層構造であり、内層断面積 の全体断面積に対する比が 0. 05であるノ^ソンを押出成形により成形した。様々な 条件で二軸延伸ブロー成形して直径 3. Omm、厚さ 19 μ m〜23 μ mのバルーンを 得た。実施例 1と同様の方法でバルーンの破壊圧と径拡張率を測定した。測定値を 表 1に示す。膜厚と破壊圧の関係を図 1に、膜厚と径拡張率の関係を図 2に示した。  A double layer structure with PEBAX7233 as the base material layer and PEBAX6333 as the inner layer, and a ratio of the inner layer cross-sectional area to the total cross-sectional area of 0.05 was formed by extrusion molding. Biaxial stretch blow molding was performed under various conditions to obtain balloons having a diameter of 3. Omm and a thickness of 19 μm to 23 μm. The breaking pressure and the diameter expansion rate of the balloon were measured in the same manner as in Example 1. Table 1 shows the measured values. Figure 1 shows the relationship between film thickness and burst pressure, and Figure 2 shows the relationship between film thickness and diameter expansion rate.
[0032] (実施例 4)  [Example 4]
基材層が PEBAX7233、内層が PEBAX6333という 2層構造からなり、内層断面 積の全体断面積に対する比が 0. 20であるパリソンを押出成形により成形した。様々 な条件で二軸延伸ブロー成形して直径 3. Omm、厚さ 21 μ m〜24 μ mのバルーン を得た。実施例 1と同様の方法でバルーンの破壊圧と拡張率を測定した。測定値を 表 1に示す。膜厚と破壊圧の関係を図 1に、膜厚と拡張率の関係を図 2に示した。 A parison having a two-layer structure with a base material layer of PEBAX7233 and an inner layer of PEBAX6333 and a ratio of the inner layer cross-sectional area to the total cross-sectional area of 0.20 was formed by extrusion molding. Balloon with diameter of 3. Omm and thickness of 21 μm to 24 μm by biaxial stretch blow molding under various conditions Got. The breaking pressure and expansion rate of the balloon were measured in the same manner as in Example 1. Table 1 shows the measured values. Figure 1 shows the relationship between film thickness and burst pressure, and Figure 2 shows the relationship between film thickness and expansion rate.
[表 1]  [table 1]
Figure imgf000011_0001
Figure imgf000011_0001
[0034] (比較例 1) [0034] (Comparative Example 1)
PEBAX7233からなる単層構造のノ^ソンを押出成形により成形した。様々な成形 条件により二軸延伸ブロー成形して直径 3. Omm、膜厚 21 μ m〜25 μ mであるバル ーンを得た。実施例 1と同様の方法でバルーンの破壊圧と径拡張率を測定した。測 定値を表 2に示す。膜厚と破壊圧の関係を図 1に、膜厚と径拡張率の関係を図 2に示 した。  A single layer structure of PEBAX7233 was formed by extrusion. Biaxial stretch blow molding was performed under various molding conditions to obtain balloons with a diameter of 3. Omm and a film thickness of 21 μm to 25 μm. The breaking pressure and the diameter expansion rate of the balloon were measured in the same manner as in Example 1. Table 2 shows the measured values. Fig. 1 shows the relationship between film thickness and burst pressure, and Fig. 2 shows the relationship between film thickness and diameter expansion rate.
[0035] (比較例 2)  [0035] (Comparative Example 2)
基材層カ SPEBAX7233、外層力 SPEBAX6333からなる 2層構造であり、外層の断面 積比が 0. 09であるパリソンを押出成形により成形した。様々な成形条件で二軸延伸 ブロー成形して直径 3. Omm、膜厚 22 μ m〜25 μ mのバルーンを得た。実施例 1と 同様の方法でバルーンの破壊圧と径拡張率を測定した。測定値を表 2に示す。膜厚 と破壊圧の関係を図 1に、膜厚と拡張率の関係を図 2に示した。  A parison having a two-layer structure consisting of a base material layer SPEBAX7233 and an outer layer force SPEBAX6333 and having an outer layer cross-sectional area ratio of 0.09 was formed by extrusion molding. Biaxial stretch blow molding was performed under various molding conditions to obtain balloons with a diameter of 3. Omm and a film thickness of 22 μm to 25 μm. The breaking pressure and diameter expansion rate of the balloon were measured in the same manner as in Example 1. Table 2 shows the measured values. Figure 1 shows the relationship between film thickness and burst pressure, and Figure 2 shows the relationship between film thickness and expansion rate.
[0036] (比較例 3) [0036] (Comparative Example 3)
基材層が PEBAX7233、内層が PEBAX6333という 2層構造であり、内層の断面積 比が 0. 40であるパリソンを押出成形により成形した。様々な成形条件によりニ軸延 伸ブロー成形して直径 3. Omm、厚さ 19 μ m〜23 μ mのバルーンを成形した。実施 例 1と同様の方法でバルーンの破壊圧と拡張率を測定した。測定値を表 2に示す。 膜厚と破壊圧の関係を図 1に、膜厚と拡張率の関係を図 2に示した。  A parison having a two-layer structure with a base material layer of PEBAX7233 and an inner layer of PEBAX6333 and a sectional area ratio of the inner layer of 0.40 was formed by extrusion molding. Balloons having a diameter of 3. Omm and a thickness of 19 μm to 23 μm were formed by biaxial stretch blow molding under various molding conditions. Balloon breaking pressure and expansion rate were measured in the same manner as in Example 1. Table 2 shows the measured values. Figure 1 shows the relationship between film thickness and burst pressure, and Figure 2 shows the relationship between film thickness and expansion rate.
[0037] [表 2] 比較例 比較例 比較例 [0037] [Table 2] Comparative Example Comparative Example Comparative Example
膜厚 破壊圧 拡張率 膜厚 破壊圧 拡 膜厚 破壊圧 拡張率  Film thickness Breaking pressure expansion rate Film thickness Breaking pressure expansion Film thickness Breaking pressure expansion rate
[0038] (実施例 5) [Example 5]
基材層が PEBAX7233 (エルフ ·アトケム製)、内層が PEBAX6333でという 2層構 造であり、内層断面積の全体断面積に対する比が 0. 09であるパリソンを押出成形に より成形した。 PEBAX7233のショァ硬度は 72Dであり、 PEBAX6333のショァ硬度 は 63Dである。内層のショァ硬度の基材層のショァ硬度に対する比は 0. 88である。 様々な成形条件により温度を 60°C 110°Cの範囲で、圧力を 3MPa 5. 5MPaの 範囲で、ノ リソンの内径を 0. 6mm力ら 0. 9mm、ノ リソンの外径を 1. 5mmから 2. 0 mmまでの範囲で二軸延伸ブロー成形して直径 6mm、厚さ 28 μ m 36 μ mの膜厚 のバルーンを得た。ここでバルーンの膜厚はマイクロメーターにより測定し、バルーン の直管部の中央、右側、左側の 3点の厚さを平均したものを膜厚とした。  A parison with a base layer of PEBAX7233 (manufactured by Elf Atchem) and an inner layer of PEBAX6333 with a ratio of the inner layer cross-sectional area to the total cross-sectional area of 0.09 was formed by extrusion molding. PEBAX7233 has a Shore hardness of 72D and PEBAX6333 has a Shore hardness of 63D. The ratio of the inner layer Shore hardness to the substrate layer Shore hardness is 0.88. Under various molding conditions, the temperature is in the range of 60 ° C and 110 ° C, the pressure is in the range of 3MPa, 5.5MPa, the inner diameter of the nozzle is 0.6mm, and the outer diameter of the nozzle is 1.5mm. To 2.0 mm, a balloon having a diameter of 6 mm and a thickness of 28 μm and 36 μm was obtained by biaxial stretch blow molding. Here, the film thickness of the balloon was measured with a micrometer, and the average thickness of the three points of the center, right side and left side of the straight tube portion of the balloon was taken as the film thickness.
これらのバルーンを 37°Cの生理食塩水を満たした水槽中に配置し、生理食塩水を 用いて 0. 2atmずつ圧力を上昇させた。各圧力で 1秒間保持して外径を測定した。 バルーンが破壊するまで圧力を上昇させ続けバルーンの破壊圧を測定した。圧力を lOatmから 18atmへ上昇させたときの径拡張率を算出した。測定値を表 3に示す。  These balloons were placed in a water bath filled with 37 ° C physiological saline, and the pressure was increased by 0.2 atm using physiological saline. The outer diameter was measured by holding for 1 second at each pressure. The pressure was continuously increased until the balloon was broken, and the breaking pressure of the balloon was measured. The diameter expansion rate was calculated when the pressure was increased from lOatm to 18atm. Table 3 shows the measured values.
[0039] [表 3]
Figure imgf000012_0001
[0039] [Table 3]
Figure imgf000012_0001
[0040] 膜厚と破壊圧の関係を図 3に、膜厚と径拡張率の関係を図 4に示した。なお、径拡張 率は以下の式で算出した。  [0040] Fig. 3 shows the relationship between the film thickness and the burst pressure, and Fig. 4 shows the relationship between the film thickness and the diameter expansion rate. The diameter expansion rate was calculated using the following formula.
[0041] [数 2] ペルーン内圧力 1 8 atmの時の径ーパルーン内圧力 1 0 atmの時の径. [0041] [Numerical equation 2] Diameter when pressure inside Peroon is 18 atm-Diameter when pressure inside Paroon is 10 atm.
径拡酵 (%)= 100 Diameter expansion (%) = 100
~ン内圧力 8atmの時の径 [0042] (実施例 6) Diameter when the internal pressure is 8 atm [Example 6]
基材層が PEBAX7233、内層が PEBAX5533という 2層構造であり、内層断面積の 全体断面積に対する比が 0. 06であるパリソンを押出成形により成形した。 PEBAX5 533のショァ硬度は 55Dである。内層のショァ硬度の基材層に対するショァ硬度に対 する比は 0. 76である。様々な成形条件により二軸延伸ブロー成形して直径 6mm、 膜厚 32〜36 mであるバルーンを得た。実施例 5と同様の方法でバルーンの破壊 圧と径拡張率を測定して、測定値を上記表 3に、膜厚と破壊圧の関係を図 3に、膜厚 と径拡張率の関係を図 4に示した。  A parison having a base layer of PEBAX7233 and an inner layer of PEBAX5533 and a ratio of the inner layer cross-sectional area to the total cross-sectional area of 0.06 was formed by extrusion molding. PEBAX5 533 has a Shore hardness of 55D. The ratio of the Shore hardness of the inner layer to the Shore hardness of the base material layer is 0.76. A biaxial stretch blow molding was performed under various molding conditions to obtain a balloon having a diameter of 6 mm and a film thickness of 32 to 36 m. The breaking pressure and diameter expansion rate of the balloon were measured in the same manner as in Example 5. The measured values are shown in Table 3 above, the relationship between film thickness and breaking pressure is shown in Fig. 3, and the relationship between film thickness and diameter expansion rate is shown. This is shown in Fig. 4.
[0043] (比較例 4)  [0043] (Comparative Example 4)
PEBAX7233からなる単層構造のノ^ソンを押出成形により成形した。様々な成形 条件により二軸延伸ブロー成形して直径 6mm、膜厚 44 μ m〜48 μ mであるバル一 ンを得た。実施例 5と同様の方法でバルーンの破壊圧と径拡張率を測定して、測定 値を表 24に、膜厚と破壊圧の関係を図 3に、膜厚と径拡張率の関係を図 4に示した。  A single layer structure of PEBAX7233 was formed by extrusion. A balun having a diameter of 6 mm and a film thickness of 44 μm to 48 μm was obtained by biaxial stretching blow molding under various molding conditions. The breaking pressure and diameter expansion rate of the balloon were measured in the same manner as in Example 5. The measured values are shown in Table 24, the relationship between film thickness and breaking pressure is shown in Fig. 3, and the relationship between film thickness and diameter expansion rate is shown. Shown in 4.
[0044] [表 4]
Figure imgf000013_0001
[0044] [Table 4]
Figure imgf000013_0001
[0045] (比較例 5)  [0045] (Comparative Example 5)
基材層カ SPEBAX7233、外層力 SPEBAX4033からなる 2層構造であり、外層の断面 積比が 0. 09であるパリソンを押出成形により成形した。 PEBAX2533のショァ硬度 は 25Dである。内層のショァ硬度の基材層に対するショァ硬度に対する比は 0. 58で ある。様々な成形条件で二軸延伸ブロー成形して直径 6mm、膜厚 35 μ m〜43 μ m のバルーンを得た。実施例 5と同様の方法でバルーンの破壊圧と径拡張率を測定し て (結果は上記表 4に示す)、膜厚と破壊圧の関係を図 3に、膜厚と拡張率の関係を 図 4に示した。  A parison having a two-layer structure consisting of a base material layer SPEBAX7233 and an outer layer force SPEBAX4033 and having an outer layer cross-sectional area ratio of 0.09 was formed by extrusion molding. PEBAX2533 has a Shore hardness of 25D. The ratio of the Shore hardness of the inner layer to the Shore hardness of the base layer is 0.58. Biaxial stretch blow molding was performed under various molding conditions to obtain a balloon having a diameter of 6 mm and a film thickness of 35 μm to 43 μm. The fracture pressure and diameter expansion rate of the balloon were measured in the same manner as in Example 5 (results are shown in Table 4 above), and the relationship between film thickness and fracture pressure is shown in Fig. 3, and the relationship between film thickness and expansion rate. This is shown in Fig. 4.
[0046] (比較例 6) [Comparative Example 6]
基材層カ SPEBAX7233、外層力 SPEBAX2533からなる 2層構造であり、外層の断面 積比が 0. 09であるパリソンを押出成形により成形した。 PEBAX2533のショァ硬度 は 25Dである。内層のショァ硬度の基材層に対するショァ硬度に対する比は 0. 35で ある。様々な成形条件で二軸延伸ブロー成形して直径 6mm、膜厚 29 μ m〜39 μ m のバルーンを得た。実施例 5と同様の方法でバルーンの破壊圧と径拡張率を測定し て (結果は上記表 4に示す)、膜厚と破壊圧の関係を図 3に、膜厚と拡張率の関係を 図 4に示した。 A parison having a two-layer structure consisting of a base material layer SPEBAX7233 and an outer layer force SPEBAX2533 and having an outer layer cross-sectional area ratio of 0.09 was formed by extrusion molding. PEBAX2533 Shore hardness Is 25D. The ratio of the Shore hardness of the inner layer to the Shore hardness of the base layer is 0.35. Biaxial stretch blow molding was performed under various molding conditions to obtain balloons having a diameter of 6 mm and a film thickness of 29 μm to 39 μm. The fracture pressure and diameter expansion rate of the balloon were measured in the same manner as in Example 5 (results are shown in Table 4 above), and the relationship between film thickness and fracture pressure is shown in Fig. 3, and the relationship between film thickness and expansion rate. This is shown in Fig. 4.
(比較例 7)  (Comparative Example 7)
基材層カ SPEBAX7233、外層力 SPEBAX7033からなる 2層構造であり、外層の断面 積比が 0. 08であるパリソンを押出成形により成形した。 PEBAX7033のショァ硬度 は 70Dである。内層のショァ硬度の基材層に対するショァ硬度に対する比は 0. 96で ある。様々な成形条件で二軸延伸ブロー成形して直径 6mm、膜厚 42 μ m〜45 μ m のバルーンを得た。実施例 5と同様の方法でバルーンの破壊圧と径拡張率を測定し て (結果は上記表 4に示す)、膜厚と破壊圧の関係を図 3に、膜厚と拡張率の関係を 図 4に示した。 A parison having a two-layer structure consisting of a base material layer SPEBAX7233 and an outer layer force SPEBAX7033 and having an outer layer cross-sectional area ratio of 0.08 was formed by extrusion molding. PEBAX7033 has a Shore hardness of 70D. The ratio of the Shore hardness of the inner layer to the Shore hardness of the base layer is 0.96. Biaxial stretch blow molding was performed under various molding conditions to obtain balloons having a diameter of 6 mm and a film thickness of 42 μm to 45 μm. The fracture pressure and diameter expansion rate of the balloon were measured in the same manner as in Example 5 (results are shown in Table 4 above), and the relationship between film thickness and fracture pressure is shown in Fig. 3, and the relationship between film thickness and expansion rate. This is shown in Fig. 4.

Claims

請求の範囲 The scope of the claims
[1] ポリアミドエラストマ一力もなる医療用カテーテル用バルーンであって、該ノ レーンは ポリアミドエラストマ一力もなる基材層と、該基材層の内側に基材層よりも曲げ弾性率 が低ぐ破断伸びが大きいポリアミドエラストマ一からなる内層があることを特徴とする ノ ノレーン。  [1] A balloon for a medical catheter that also has the strength of a polyamide elastomer, which is a base material layer that also has the power of a polyamide elastomer, and a fracture that has a lower bending elastic modulus than the base material layer inside the base material layer Nonylene, characterized in that it has an inner layer made of a polyamide elastomer with high elongation.
[2] 医療用カテーテル用バルーンであって、内層の断面積のバルーン全体の断面積に 対する比が 0. 01力ら 0. 25である請求項 1に記載のバルーン。  2. The balloon for medical catheter according to claim 1, wherein the ratio of the cross-sectional area of the inner layer to the cross-sectional area of the entire balloon is 0.01 force or 0.25.
[3] ポリアミドエラストマ一力もなる医療用カテーテル用バルーンであって、該ノ レーンは ポリアミドエラストマ一力 なる基材層と、該基材層の内側に基材層よりもショァ硬度 が低いポリアミドエラストマ一力もなる内層があり、ここで、該内層を形成するポリアミド エラストマ一のショァ硬度の基材層を形成するポリアミドエラストマ一のショァ硬度に 対する比が 0. 70以上 0. 93以下であることを特徴とするノ レーン。  [3] A balloon for a medical catheter that also has the strength of a polyamide elastomer, the nolane comprising a base material layer that has the strength of a polyamide elastomer, and a polyamide elastomer that has a Shore hardness lower than that of the base material layer inside the base material layer. There is also an inner layer that has a force, wherein the ratio of the polyamide elastomer that forms the inner layer to the Shore hardness of the polyamide elastomer that forms the base layer is 0.70 or more and 0.93 or less. Nolane.
[4] 該内層のポリアミドエラストマ一力 ポリエーテルアミドエラストマーとポリエーテルエス テルアミドエラストマーから選択され、該外層のポリアミドエラストマ一力 ポリエーテル アミドエラストマーとポリエーテルエステルアミドエラストマーカも選択される、請求項 3 記載のバルーン。 [4] A polyamide elastomer elastomer and a polyether ester amide elastomer selected from the polyamide elastomer of the inner layer, and a polyamide amide elastomer and a polyether ester amide elastomer of the outer layer are also selected. 3 Balloon described.
[5] 該バルーンの基材層のショァ硬度力 60D以上 78D以下であることを特徴とする請 求項 3または 4に記載のバルーン。  [5] The balloon according to claim 3 or 4, wherein the base material layer of the balloon has a Shore hardness of 60D or more and 78D or less.
[6] バルーンの全断面積に対する、該内層の断面積の比は 0. 01〜0. 25である、請求 項 3な!、し 51/、ずれかのバルーン。 6. The ratio of the cross-sectional area of the inner layer to the total cross-sectional area of the balloon is 0.01 to 0.25, and the balloon of any one of 51 and 51 /.
[7] さらに、基材層の外側に曲げ弾性率が 300MPaよりも低ぐ破断伸びが 380%よりも 大きなポリアミドエラストマ一からなる外層が存在する、請求項 1ないし 6いずれかの ノ ノレーン。 7. The nonylene according to any one of claims 1 to 6, further comprising an outer layer made of a polyamide elastomer having a bending elastic modulus lower than 300 MPa and a breaking elongation larger than 380% outside the base material layer.
[8] ポリエーテルエステルアミドエラストマーカ、らなる医療用カテーテル用ノ レーンであつ て、該バルーンはポリエーテルエステルアミドエラストマーカもなる基材層と、該基材 層の内側に基材層よりもショァ硬度が低いポリエーテルエステルアミドエラストマーか らなる内層があり、ここで、該基材層を形成するポリエーテルエステルアミドエラストマ 一のハードセグメント重量比を Xとし、該内層を形成するポリエーテルエステルアミドエ ラストマーのハードセグメント重量比を yとしたとき、 62 X y + 14の 62 X x+ 14に対す る比が 0. 70以上 0. 93以下であることを特徴とするノ レーン。 [8] A polyether ester amide elastomer, which is a medical catheter lane, wherein the balloon has a base layer that also becomes a polyether ester amide elastomer, and a base layer on the inside of the base layer. There is an inner layer made of a polyether ester amide elastomer having a low Shore hardness, where the hard segment weight ratio of the polyether ester amide elastomer forming the base layer is X, and the polyether ester amide forming the inner layer D A lane characterized in that the ratio of 62 X y + 14 to 62 X x + 14 is from 0.70 to 0.93, where y is the hard segment weight ratio of the lastomer.
拡張操作を目的とする医療に使用される折り畳み可能なバルーンを備えたバルーン カテーテルであって、請求項 1な!、し 8 、ずれか記載のバルーンを備えたことを特徴 とするバルーンカテーテル。 A balloon catheter having a foldable balloon used for medical treatment for an expansion operation, wherein the balloon catheter includes the balloon according to any one of claims 1 to 8.
PCT/JP2006/302385 2005-05-27 2006-02-10 Balloon and balloon catheter WO2006126311A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-155650 2005-05-27
JP2005155650 2005-05-27
JP2005-167638 2005-06-08
JP2005167638A JP4967258B2 (en) 2004-06-10 2005-06-08 Balloon and balloon catheter

Publications (1)

Publication Number Publication Date
WO2006126311A1 true WO2006126311A1 (en) 2006-11-30

Family

ID=37451744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302385 WO2006126311A1 (en) 2005-05-27 2006-02-10 Balloon and balloon catheter

Country Status (2)

Country Link
TW (1) TW200702004A (en)
WO (1) WO2006126311A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007075256A1 (en) * 2005-12-20 2007-07-05 Advanced Cardiovascular Systems, Inc. Non-compliant multilayered balloon for a catheter
US8052638B2 (en) 2008-11-26 2011-11-08 Abbott Cardiovascular Systems, Inc. Robust multi-layer balloon
US8070719B2 (en) 2008-11-26 2011-12-06 Abbott Cardiovascular Systems, Inc. Low compliant catheter tubing
US8444608B2 (en) 2008-11-26 2013-05-21 Abbott Cardivascular Systems, Inc. Robust catheter tubing
JPWO2013094541A1 (en) * 2011-12-20 2015-04-27 株式会社カネカ Production method of balloon for expansion
US9056190B2 (en) 2006-06-30 2015-06-16 Abbott Cardiovascular Systems Inc. Balloon catheter tapered shaft having high strength and flexibility and method of making same
US9132259B2 (en) 2012-11-19 2015-09-15 Abbott Cardiovascular Systems Inc. Multilayer balloon for a catheter
US9216274B2 (en) 2007-12-17 2015-12-22 Abbott Cardiovascular Systems Inc. Catheter having transitioning shaft segments
US9265918B2 (en) 2008-09-03 2016-02-23 Boston Scientific Scimed, Inc. Multilayer medical balloon
US9352135B2 (en) 2010-09-14 2016-05-31 Abbott Cardiovascular Systems Inc. Method for forming catheter balloon
US9707380B2 (en) 2012-07-05 2017-07-18 Abbott Cardiovascular Systems Inc. Catheter with a dual lumen monolithic shaft
US9855400B2 (en) 2001-09-19 2018-01-02 Abbott Cardiovascular Systems, Inc. Catheter with a multilayered shaft section having a polyimide layer
US10406329B2 (en) 2011-05-26 2019-09-10 Abbott Cardiovascular Systems, Inc. Through tip for catheter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09164191A (en) * 1995-10-11 1997-06-24 Terumo Corp Balloon for catheter, balloon catheter and catheter for expanding blood vessel
JP2000515036A (en) * 1996-07-23 2000-11-14 シメッド ライフ システムズ インコーポレイテッド High compliance high strength balloon for catheter suitable for gastrointestinal lesion treatment
JP2001029450A (en) * 1999-05-18 2001-02-06 Kanegafuchi Chem Ind Co Ltd Medical polymer blend material and medical balloon using the same
JP2004298363A (en) * 2003-03-31 2004-10-28 Nippon Zeon Co Ltd Balloon for balloon catheter and production method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09164191A (en) * 1995-10-11 1997-06-24 Terumo Corp Balloon for catheter, balloon catheter and catheter for expanding blood vessel
JP2000515036A (en) * 1996-07-23 2000-11-14 シメッド ライフ システムズ インコーポレイテッド High compliance high strength balloon for catheter suitable for gastrointestinal lesion treatment
JP2001029450A (en) * 1999-05-18 2001-02-06 Kanegafuchi Chem Ind Co Ltd Medical polymer blend material and medical balloon using the same
JP2004298363A (en) * 2003-03-31 2004-10-28 Nippon Zeon Co Ltd Balloon for balloon catheter and production method thereof

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9855400B2 (en) 2001-09-19 2018-01-02 Abbott Cardiovascular Systems, Inc. Catheter with a multilayered shaft section having a polyimide layer
US8388575B2 (en) 2005-12-20 2013-03-05 Abbott Cardiovascular Systems Inc. Non-compliant multilayered balloon for a catheter
US9707381B2 (en) 2005-12-20 2017-07-18 Abbott Cardiovascular Systems Inc. Non-compliant multilayered balloon for a catheter
US10166371B2 (en) 2005-12-20 2019-01-01 Abbott Cardiovascular Systems Inc. Non-compliant multilayered balloon for a catheter
WO2007075256A1 (en) * 2005-12-20 2007-07-05 Advanced Cardiovascular Systems, Inc. Non-compliant multilayered balloon for a catheter
US8394055B2 (en) 2005-12-20 2013-03-12 Abbott Cardiovascular Systems Inc. Non-compliant multilayered balloon for a catheter
US9211392B2 (en) 2005-12-20 2015-12-15 Abbott Cardiovascular Systems Inc. Non-compliant multilayered balloon for a catheter
US9095689B2 (en) 2005-12-20 2015-08-04 Abbott Cardiovascular Systems Inc. Non-compliant multilayered balloon for a catheter
US7828766B2 (en) 2005-12-20 2010-11-09 Advanced Cardiovascular Systems, Inc. Non-compliant multilayered balloon for a catheter
US8535596B2 (en) 2005-12-20 2013-09-17 Abbott Cardiovascular Systems, Inc. Non-compliant multilayered balloon for a catheter
US9056190B2 (en) 2006-06-30 2015-06-16 Abbott Cardiovascular Systems Inc. Balloon catheter tapered shaft having high strength and flexibility and method of making same
US10245352B2 (en) 2006-06-30 2019-04-02 Abbott Cardiovascular Systems Inc. Catheter shaft having high strength and flexibility
US9205223B2 (en) 2006-06-30 2015-12-08 Abbott Cardiovascular Systems Inc Balloon catheter shaft having high strength and flexibility
US9968713B2 (en) 2006-06-30 2018-05-15 Abbott Cardiovascular Systems Inc. Balloon catheter shaft having high strength and flexibility
US9468744B2 (en) 2007-12-17 2016-10-18 Abbott Cardiovascular Systems Inc. Catheter having transitioning shaft segments
US9216274B2 (en) 2007-12-17 2015-12-22 Abbott Cardiovascular Systems Inc. Catheter having transitioning shaft segments
US9265918B2 (en) 2008-09-03 2016-02-23 Boston Scientific Scimed, Inc. Multilayer medical balloon
US11357892B2 (en) 2008-09-03 2022-06-14 Boston Scientific Scimed, Inc. Multilayer medical balloon
US10286115B2 (en) 2008-09-03 2019-05-14 Boston Scientific Scimed, Inc. Multilayer medical balloon
US8613722B2 (en) 2008-11-26 2013-12-24 Abbott Cardiovascular Systems, Inc. Robust multi-layer balloon
US9381325B2 (en) 2008-11-26 2016-07-05 Abbott Cadiovascular Systems, Inc. Robust catheter tubing
US9539368B2 (en) 2008-11-26 2017-01-10 Abbott Cardiovascular Systems, Inc. Robust catheter tubing
US9669196B2 (en) 2008-11-26 2017-06-06 Abbott Cardiovascular Systems, Inc. Robust multi-layer balloon
US8052638B2 (en) 2008-11-26 2011-11-08 Abbott Cardiovascular Systems, Inc. Robust multi-layer balloon
US8070719B2 (en) 2008-11-26 2011-12-06 Abbott Cardiovascular Systems, Inc. Low compliant catheter tubing
US8444608B2 (en) 2008-11-26 2013-05-21 Abbott Cardivascular Systems, Inc. Robust catheter tubing
US9579492B2 (en) 2010-09-14 2017-02-28 Abbott Cardiovascular Systems Inc. Method for forming catheter balloon
US9352135B2 (en) 2010-09-14 2016-05-31 Abbott Cardiovascular Systems Inc. Method for forming catheter balloon
US10406329B2 (en) 2011-05-26 2019-09-10 Abbott Cardiovascular Systems, Inc. Through tip for catheter
US11383070B2 (en) 2011-05-26 2022-07-12 Abbott Cardiovascular Systems Inc. Through tip for catheter
JPWO2013094541A1 (en) * 2011-12-20 2015-04-27 株式会社カネカ Production method of balloon for expansion
US9707380B2 (en) 2012-07-05 2017-07-18 Abbott Cardiovascular Systems Inc. Catheter with a dual lumen monolithic shaft
US9821147B2 (en) 2012-11-19 2017-11-21 Abbott Cardiovascular Systems Inc. Multilayer balloon for a catheter
US9132259B2 (en) 2012-11-19 2015-09-15 Abbott Cardiovascular Systems Inc. Multilayer balloon for a catheter

Also Published As

Publication number Publication date
TW200702004A (en) 2007-01-16

Similar Documents

Publication Publication Date Title
WO2006126311A1 (en) Balloon and balloon catheter
US8025943B2 (en) Medical device balloons containing thermoplastic elastomers
US10166371B2 (en) Non-compliant multilayered balloon for a catheter
EP0738168B1 (en) Medical device balloons containing thermoplastic elastomers
EP1787673B1 (en) Catheter
US6270522B1 (en) High pressure catheter balloon
WO2000067831A1 (en) Balloon catheter
JP2001516621A (en) Polyether block amide catheter balloon
JP4967258B2 (en) Balloon and balloon catheter
JP4815657B2 (en) Medical polymer blend material and medical balloon using this material
JPH10314297A (en) Balloon catheter and manufacture of balloon used therefor
JP2005319289A (en) Catheter balloon
JP2007061258A (en) Balloon and balloon catheter
WO2023199634A1 (en) Balloon for balloon catheter
WO2023176182A1 (en) Balloon for balloon catheters
CA2173139C (en) Medical device balloons containing thermoplastic elastomers
JP4402218B2 (en) Balloon catheter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06713527

Country of ref document: EP

Kind code of ref document: A1