WO2006123785A1 - Electrolyte composition - Google Patents

Electrolyte composition Download PDF

Info

Publication number
WO2006123785A1
WO2006123785A1 PCT/JP2006/310049 JP2006310049W WO2006123785A1 WO 2006123785 A1 WO2006123785 A1 WO 2006123785A1 JP 2006310049 W JP2006310049 W JP 2006310049W WO 2006123785 A1 WO2006123785 A1 WO 2006123785A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
electrolyte composition
iodine
solar cell
dye
Prior art date
Application number
PCT/JP2006/310049
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi Uchida
Akio Maeda
Shigeru Hagiwara
Original Assignee
Nippoh Chemicals Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippoh Chemicals Co., Ltd. filed Critical Nippoh Chemicals Co., Ltd.
Priority to JP2007516354A priority Critical patent/JP4982361B2/en
Publication of WO2006123785A1 publication Critical patent/WO2006123785A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to an electrolyte composition. Specifically, the present invention relates to an electrolyte composition that can improve durability and design performance of a dye-sensitized solar cell or the like.
  • an acid-reducing pair is used as the electrolyte of the dye-sensitized solar cell.
  • iodine (I-) and iodide are used because of their excellent reaction rate.
  • An organic electrolyte solution is generally used.
  • a cyclodextrin which is a cyclic polysaccharide
  • an electrolytic solution containing a redox couple see, for example, JP 2004-235011 A and JP 2005-71895 A.
  • an electrolytic solution containing an iodine-cyclodextrin inclusion product hereinafter also simply referred to as “CDI”
  • CDI an iodine-cyclodextrin inclusion product
  • Solar cells a photoelectric conversion element using the same
  • the inclusion of iodine in cyclodextrin reduces the toxicity of iodine and provides a safe photoelectric conversion element (solar cell).
  • JP-A-2005-71895 discloses cyclodextrin, which is a cyclic polysaccharide, and an organic molten salt compound (so-called so-called compound). , An ionic liquid) and iodine. According to such a technique, the addition of cyclodextrin suppresses the decrease in ionic conductivity in the electrolyte accompanying the addition of the ionic liquid, and can improve the conversion efficiency.
  • a solar cell is a power generation system that uses sunlight as an energy source.
  • the members (semiconductor electrode and counter electrode) constituting the solar cell are substantially transparent.
  • the electrolyte layer of the solar cell also exhibits a dark brown color. Therefore, since the solar cells cannot be arranged in places where the aesthetics may be impaired by the arrangement of dark brown cells, the places where the cells can be arranged are limited. For example, if solar cells are arranged side by side on the outer wall of a building, the entire outer wall of the building will exhibit a dark brown color, which is not preferable in view of the scenery.
  • the restriction of the location of the solar cells in this way has resulted in restrictions on the use of solar cells, which has been one of the factors that hinder the spread of solar cells.
  • an object of the present invention is to provide a powerful means.
  • the present invention includes a medium and an iodine-cyclodextrin inclusion compound having an average particle diameter of 20 m or less that is hardly soluble in the medium. Characteristic electrolyte compositions are provided.
  • a dye-sensitized solar cell (hereinafter, also simply referred to as "solar cell") in which an electrolyte layer includes the above electrolyte composition.
  • FIG. 1 is an explanatory diagram for explaining the absolute maximum length used to define the particle diameter of poorly soluble CDI.
  • FIG. 2 is a cross-sectional view showing one preferred embodiment of a solar cell provided by the present invention.
  • FIG. 3 is a diagram showing the results of absorbance measurement in Examples.
  • the present invention includes a medium, and an iodine monocyclodextrin inclusion complex having an average particle diameter of 20 m or less that is hardly soluble in the medium.
  • An electrolyte composition is provided.
  • the electrolyte composition of the present embodiment first includes a medium.
  • the electrolyte composition of the present form is a liquid composition.
  • the solvent it is preferable that the solvent is electrochemically inactive, the relative dielectric constant is high, and the viscosity is low.
  • solvents having strong properties include: -tolyl solvents such as methoxypropio-tolyl and methoxyacetonitrile, y-petit-latatones, laterotonic solvents such as valerolatatane, ethylene carbonate Carbonate solvents such as propylene carbonate, ether solvents such as dioxane, jetyl ether, ethylene glycol dialkyl ether, methanol, ethanol Alcohols, alcohol solvents such as polypropylene glycol monoalkyl ether, aprotic polar solvents such as dimethyl sulfoxide and sulfolane, glycol solvents such as ethylene glycol and polyethylene glycol, aliphatic quaternary ammonium salts Examples include ionic liquids such as imidazolium salts.
  • nitrile solvent, rataton solvent, carbonate solvent, glycol solvent, and ionic liquid are preferably used as the viewpoint power that is excellent in the above-described characteristics, and more preferably nitrile solvent is used. It is done. Note that only one of these solvents may be used alone, or two or more of them may be used in combination.
  • the medium is not limited to a liquid (that is, a solvent), and may be a solid (for example, a gel).
  • a liquid that is, a solvent
  • a solid for example, a gel
  • the solid medium include polypyrrole, copper iodide, and copper thiocyanide.
  • the electrolyte composition of the present embodiment includes CDI.
  • the iodine-cyclodextrin inclusion compound has a structure in which iodine is included in the cyclodextrin.
  • the electrolyte composition of this embodiment is used in the electrolyte layer of a dye-sensitized solar cell, the clathrated iodine is oxidized (I
  • Cyclodextrin is a compound in which D-darcoviranose is bound cyclically by 1, 4 bonds. Cyclodextrins are roughly classified into ex-cyclodextrin (6), ⁇ -cyclodextrin (7), and ⁇ -cyclodextrin (8), depending on the number of D-Dalcobilanose.
  • the CDI contained in the electrolyte composition of the present embodiment is CDI that is hardly soluble in the medium contained in the electrolyte composition (hereinafter, also simply referred to as “slightly soluble CDI”).
  • hardly soluble CDI hardly dissolves in the electrolyte composition, so that the dark brown coloration caused by iodine can be remarkably reduced in the electrolyte composition of this embodiment. Therefore, according to the electrolyte composition of this embodiment, the design performance of the solar cell can be improved.
  • “Slightly soluble in the medium” means that when the medium is liquid (ie, the medium is a solvent), the solubility in a solvent at 25 ° C. is 5. OmgZmL or less. To do.
  • the hardly soluble CDI contained in the electrolyte composition of the present embodiment is not particularly limited as long as it is hardly soluble in the medium contained in the electrolyte composition. That is, when the medium is a solvent, the solubility in a solvent at 25 ° C. should be 5. OmgZmL or less. The solubility is preferably 1. OmgZmL or less, more preferably 0.1 mgZmL or less.
  • Examples of the cyclodextrin constituting the hardly soluble CDI include / 3-cyclodextrin. In this embodiment, it is particularly preferable to use cyclodextrin because an excellent effect can be obtained. However, other cyclodextrins may be used in some cases. In addition, newly developed poorly soluble CDI may be used.
  • the cyclodextrin constituting the hardly soluble CDI contained in the electrolyte composition of the present embodiment may be only one type or two or more types.
  • the poorly soluble CDI contained in the electrolyte composition of the present embodiment is controlled to a value having a small particle size.
  • the average particle diameter of the hardly soluble CDI contained in the electrolyte composition of the present embodiment is 20 ⁇ m or less, preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less.
  • the average particle size is within the range of force, the dispersibility of the hardly soluble CDI in the electrolyte composition can be improved.
  • the electrolyte composition may be damaged in materials such as titanium oxide and the like that constitute the semiconductor electrode when the electrolyte composition is used in, for example, a dye-sensitized solar cell. There is also a risk of it.
  • the lower limit value of the average particle diameter of the hardly soluble CDI is not particularly limited, but is preferably 0.01 m or more, more preferably 0.1 m or more in consideration of ease of production.
  • the shape of the hardly soluble CDI particles is not limited to a spherical shape, and may be a plate shape, a needle shape, a column shape, a square shape, or the like.
  • the shape of the particles can be appropriately selected in consideration of desired characteristics.
  • the particle shape is other than spherical, the particle shape is not uniform. Therefore, in the case of force, the absolute maximum particle length is used as the average particle size.
  • the “absolute maximum length” means the maximum distance L among the distances between any two points on the contour line of the particle 1 as shown in FIG.
  • average particle diameter of poorly soluble CDI examples include centrifugal sedimentation light transmission method, laser diffraction Z scattering method, electrical detection method, and image analysis method.
  • the value of the average particle diameter obtained by the measurement method is different, the value obtained by the method described in Examples described later is adopted as the average particle diameter.
  • the content of poorly soluble CDI in the electrolyte composition of the present embodiment is not particularly limited, but is preferably 0.005 to 0.4M, more preferably 0.01 to 0, based on the total amount of the medium. 3M, more preferably 0.05-0.2M. If the content of the hardly soluble CDI is too small, there is a possibility that a sufficient generated current cannot be obtained. On the other hand, if the content of poorly soluble CDI is too large, the color of the electrolytic solution becomes dark and there is a risk that light transmission may be hindered.
  • the electrolyte composition of the present embodiment may contain other components as long as the effects of the present invention are not impaired.
  • electrolyte composition examples include electrolytes other than CDI, bases, and cyclodextrins that do not include iodine.
  • the power generation characteristics when the electrolyte composition of the present embodiment is used for an electrolyte layer of a solar cell can be improved.
  • powerful electrolytes include metal iodide salts such as lithium iodide, sodium iodide, potassium iodide, cesium iodide, and calcium iodide; tetraalkylammonium iodide and pyridinium iodide.
  • Quaternary ammonium iodide salts such as sodium iodide, imidazolium iodide; metal bromide salts such as lithium bromide, sodium bromide, potassium bromide, cesium bromide, calcium bromide; tetraalkylammonium bromide, Quaternary ammonium bromide salts such as pyridinium bromide; metal complexes such as ferrocyanate-ferricyanate, ferucene-ferricium ion; sodium polysulfate, alkylthiol alkyldis Sulfur compounds such as rufide; viologen dye; hydroquinone-quinone; organic molten salts such as 1 propyl 2, 3 dimethylimidazolium-iodine (DMPII) It is.
  • metal bromide salts such as lithium bromide, sodium bromide, potassium bromide, cesium bromide, calcium bromide
  • the efficiency of electron transfer between the electrolyte layer and the semiconductor electrode or the counter electrode can be improved.
  • the base include 4-61: 1; -butylpyridine (4-8-?),? ⁇ -Methyl benzimidazole, 2 picoline, 2, 6-lutidine and the like.
  • a pyrimidine ring-containing base may be added.
  • Cyclodextrins that do not include iodine contain I — produced from soot as power generation proceeds.
  • cyclodextrin that does not include iodine is present in the electrolyte composition of the present embodiment, the effects of storing iodine and forming a conductive path can be exhibited.
  • the specific form of cyclodextrin to be added is not particularly limited, and conventionally known cyclodextrins can be added. However, if the amount of cyclodextrin (for example, methyl- ⁇ -cyclodextrin) that can form CDI that is easily soluble in the solvent by inclusion of iodine is too large, it will be difficult in the original electrolyte composition.
  • the ratio of those that are clathrated to form a clathrate compound is particularly limited. However, it is preferably 40 to 99% by mass, more preferably 60 to 97% by mass or more, and still more preferably 80 to 95% by mass. If this ratio is too small, there is a problem that the ratio of iodine atoms dissolved in the medium is relatively increased, and the iodine color exhibited by the electrolyte becomes conspicuous. On the other hand, if this ratio is too large, the amount of iodine that functions as a redox system is reduced, and the battery performance may be reduced.
  • the content of each component other than the poorly soluble CDI in the electrolyte composition of the present embodiment is not particularly limited, and is appropriately adjusted in consideration of the content of the hardly soluble CDI that is an essential component and desired characteristics. sell.
  • the form of the electrolyte composition of the present embodiment is not particularly limited, and may be a liquid composition or a solid (eg, gel) composition depending on the type of medium. .
  • the electrolyte composition of the present embodiment is preferably a liquid composition.
  • a gel composition in addition to a gelling agent and a polymerization initiator, a force that may contain a polymer or a polymerizable monomer that can constitute the matrix of the gel. Specific forms of these components are particularly limited. Instead, conventionally known knowledge can be referred to as appropriate.
  • the electrolyte composition of the present embodiment can be produced without using a special technique. For example, desired By preparing a slightly soluble CDI having an average particle size of 1 and other necessary additives, adding them to a separately prepared medium to a desired concentration, and stirring to obtain a uniform dispersion. The electrolyte composition of this embodiment is obtained. In addition, after adding a hardly soluble CDI to obtain a dispersion, an electrolyte composition may be obtained by removing the insoluble hardly soluble CDI. In other words, the supernatant of the dispersion after addition of poorly soluble CDI can also be used as a liquid electrolyte composition. In this embodiment, the means for removing poorly soluble CDI, the removal ratio, etc. are not particularly limited, taking into consideration the desired color tone of the electrolyte and the desired battery performance when the electrolyte is used in elements such as solar cells. Can be set as appropriate.
  • the poorly soluble CDI When preparing the poorly soluble CDI, it may be prepared by synthesizing itself, or when the product is sold, it may be prepared by purchasing the product. Conventionally known synthesis methods can be used without any particular limitation on the method of synthesizing poorly soluble CDI by itself. For example, by reacting j8-cyclodextrin, iodine, and an iodine solubilizing aid (for example, yowi potato) in water, poorly soluble CDI, 1 / 3-cyclodextrin, can be synthesized. However, other approaches can also be employed.
  • the average particle diameter of the prepared poorly soluble CDI can be controlled to a desired value by performing pulverization.
  • Specific means for the pulverization process are not particularly limited. Examples thereof include a ball mill, a jet mill, a counter collision process, a roller mill, and a bead mill.
  • the pulverization conditions such as the pulverization time are not particularly limited, and can be appropriately set in consideration of a desired average particle size value.
  • a gel electrolyte composition can be produced by performing a polymerization treatment.
  • the specific form of the polymerization treatment is not particularly limited, and can be appropriately selected depending on the kind of the polymerization initiator to be added.
  • heat treatment may be performed as a polymerization treatment.
  • the electrolyte composition of the present embodiment can be preferably used as an electrolyte constituting an electrolyte layer of a dye-sensitized solar cell. That is, according to another embodiment of the present invention, a photoelectrode in which a transparent electrode and a semiconductor electrode are laminated, a counter electrode, and an electrolyte layer sandwiched between the semiconductor electrode and the counter electrode of the photoelectrode A dye-sensitized solar cell having Thus, the dye layer is a dye-sensitized solar cell, characterized in that the electrolyte layer contains the above-described electrolyte composition.
  • a preferred embodiment of the solar cell of the present embodiment will be described with reference to the drawings.
  • the solar cell of this embodiment a conventionally known embodiment can be similarly adopted for the solar cell except that the electrolyte layer includes the above-described electrolyte composition. Therefore, the technical scope of the solar cell of this embodiment is not limited only to the following embodiment and the illustrated embodiment.
  • FIG. 2 is a cross-sectional view showing a preferred embodiment of the solar cell of the present embodiment.
  • the dimensional ratios in the drawings are exaggerated, and the illustrated form may be different from the actual one.
  • solar cell 10 mainly includes photoelectrode 100, counter electrode 200, electrolyte layer 400 sandwiched between photoelectrode 100 and counter electrode 200 by spacer 300, and force. It is configured.
  • the photoelectrode 100 mainly has a two-layer structure consisting of a transparent electrode 120, a semiconductor electrode 140, and the like, and the semiconductor electrode 140 is disposed on the electrolyte layer 400 side.
  • the solar cell 10 is a power generation system that uses energy of light such as sunlight.
  • power generation occurs in the solar cell 10 first, the sensitizing dye adsorbed on the semiconductor electrode 140 is excited by the energy of the irradiated light, and electrons are transferred from the excited sensitizing dye to the semiconductor electrode 140. Injected. Then, the electrons injected into the semiconductor electrode 140 are collected by the transparent electrode 120 and taken out to the outside, and perform electrical work on the external load.
  • each member constituting the solar cell 10 will be described in detail.
  • the transparent electrode 120 is an electrode that is disposed on the side on which irradiation light (for example, sunlight) that is an energy source of the solar cell 10 is incident, and constitutes the photoelectrode 100 together with a semiconductor electrode 140 described later.
  • the transparent electrode 120 has a configuration in which a transparent conductive film 124 is formed on the semiconductor electrode 140 side of a glass substrate that is the transparent substrate 122.
  • a transparent electrode used for a liquid crystal panel or the like is illustrated.
  • Examples of a strong transparent electrode include fluorine-doped tin oxide coated glass, indium tin oxide coated glass, zinc oxide: aluminum coated glass, and antimony doped oxide-tin coated glass.
  • a force in which a glass substrate is used as the transparent substrate 122 constituting the transparent electrode 124 The transparent substrate 122 may be made of other materials. Examples of other materials include a transparent plastic substrate and a transparent inorganic crystal. Note that the shape and size of the transparent electrode 120 are not particularly limited. In some cases, a protective layer (not shown) having a force such as an antireflection film may be further disposed on the surface of the transparent electrode 120 on the transparent substrate 122 side.
  • the transparent electrode 120 a commercially available product may be purchased, or a transparent conductive film 124 may be formed on the surface of the transparent substrate 122.
  • a transparent conductive film 124 may be formed on the surface of the transparent substrate 122.
  • the method for forming the transparent conductive film 124 on the surface of the transparent substrate 122 include thin film formation techniques such as spray coating, vacuum deposition, sputtering, CVD, and sol-gel.
  • a semiconductor electrode 140 is arranged on the surface of the transparent electrode 120 on the transparent conductive film 124 side.
  • the semiconductor electrode 140 is in contact with an electrolyte contained in an electrolyte layer, which will be described later, and functions as a means for transmitting electrons injected from a sensitizing dye, which will be described later, to the transparent electrode 120.
  • the material constituting the semiconductor electrode 120 is not particularly limited, and examples thereof include conventionally known oxide semiconductor particles. Specific examples include titanium oxide, zinc oxide, tin oxide, niobium oxide, indium oxide, tungsten oxide, zirconium oxide, lanthanum oxide, tungsten oxide, strontium titanate, and barium titanate. Among them, anatase-type titanium dioxide is preferably used from the viewpoint of high long-term stability against chemicals.
  • the average particle size of the oxide semiconductor particles is not particularly limited, and is preferably about 10 to 30 nm.
  • a dispersion liquid containing oxide semiconductor particles is prepared, and the dispersion liquid is applied to the surface of the transparent conductive film 124.
  • the dispersion liquid may be applied to the substrate, dried as necessary, and then fired.
  • a surfactant for example, a surfactant, a viscosity modifier, etc.
  • the solvent is not particularly limited, but examples thereof include water, organic solvents, and solvents. These mixed solvents can be widely used.
  • the means for applying the obtained dispersion and the means for drying and baking the obtained coating film may be appropriately selected from conventionally known means without particular limitations.
  • a sensitizing dye (not shown) is attached to the particle surface of the constituent material of the semiconductor electrode 140 (for example, anatase type titanium dioxide).
  • the sensitizing dye is excited by light energy of irradiation light such as sunlight (preferably having a wavelength in the visible light region to an infrared light region, more preferably 420 to 800 nm), and returns to a ground state.
  • the semiconductor electrode 140 has a function of transmitting electrons to the particles of the constituent material. It should be noted that holes (h +) remain in the sensitizing dye after the electrons are transferred to the semiconductor electrode 140, but this hole is a reductant of a redox pair (for example, ⁇ ) contained in the electrolyte in the electrolyte layer 400 described later.
  • an acid body for example, I-
  • sensitizing dye is not particularly limited as long as it has the above function, and conventionally known forms can be appropriately employed.
  • sensitizing dyes include metal complexes and organic dyes.
  • metal complexes include N3 dye (ruthenium (2, 2'-bipyridylo 4, 4, -dicarboxylate) (NCS) ⁇ 2 ⁇ 0), N719 dye (ruthenium (
  • NCS 2, 2'-bibilidyl 1,4'-dicarboxylate
  • organic dyes examples include ⁇ -2877 coumarin dye (produced by Hayashibara Biochemical Laboratories Co., Ltd.), D-102 merocyanine dye (produced by Mitsubishi Paper Industries, Ltd.), D-149 indoline dye. (Mitsubishi Paper Co., Ltd.). Of course, other sensitizing dyes may be used.
  • the method for attaching the sensitizing dye to the particle surface of the constituent material of the semiconductor electrode 140 is not particularly limited, and a conventionally known method such as a chemical adsorption method or a physical adsorption method may be used.
  • a dye solution is prepared by adding a sensitizing dye to an appropriate solvent.
  • the solvent is not particularly limited, but -tolyl solvents such as acetonitrile and petit-tolyl; alcohol solvents such as tert-butanol and ethanol; and mixed solvents thereof can be used.
  • the semiconductor electrode 140 is immersed in the dye solution.
  • a sensitizing dye can be attached to the particle surface of the constituent material of the semiconductor electrode 140 by performing a drying treatment. When the dye solution is heated to reflux during immersion, the sensitizing dye adsorbs. Can be promoted.
  • the counter electrode 200 is an electrode disposed on the side facing the photoelectrode 100 (that is, the side facing the side on which the irradiation light is incident).
  • the counter electrode 200 is an oxidant (for example, I ") of a redox pair contained in the electrolyte in the electrolyte layer 400 described later.
  • the oxidant is reduced to a reductant (eg, ⁇ ).
  • a reductant eg, ⁇
  • restoration is oxidized by the hole which a sensitizing dye has on the surface of the semiconductor electrode 140 as mentioned above, and returns to an oxidized body. By repeating this, the power generation cycle proceeds.
  • a material constituting the counter electrode 200 for example, a material similar to that used for a liquid crystal panel, a silicon solar cell, or the like can be used. Specifically, the same material as exemplified for the transparent electrode 120 may be used. For example, a configuration in which a transparent substrate and a transparent conductive film are laminated is exemplified. In the case of a hook-like form, the transparent conductive film is disposed on the electrolyte layer 400 side.
  • a thin film electrode 220 is preferably disposed on the surface of the counter electrode 200 on the electrolyte layer 400 side (when the counter electrode 200 has a laminated structure of a transparent substrate and a transparent conductive film, the surface of the transparent conductive film), as shown in FIG.
  • a thin film electrode 220 is preferably disposed.
  • the strong metal thin-film electrode 220 By arranging the strong metal thin-film electrode 220, transfer of electrons between the counter electrode 200 and the oxidation-reduction pair in the electrolyte layer 400 can proceed smoothly.
  • the material which comprises the metal thin film electrode 220 is not restrict
  • the counter electrode 200 a commercially available product may be purchased, or the transparent electrode 120 may be produced by a method similar to the production method described above.
  • the method of forming the metal thin film electrode 220 on the surface of the counter electrode 200 on the electrolyte layer 400 side is not particularly limited, and the method described above as a method of forming the transparent conductive film 124 on the surface of the transparent substrate 122 (for example, Sputtering methods) can be used as well.
  • Spacer 300 functions as a means for providing a space for holding electrolyte layer 400 described later.
  • the material constituting the spacer 300 is not particularly limited.
  • silica Examples thereof include beads and rosin beads. These materials are usually sealed with a noda for the purpose of preventing electrolyte leakage from the electrolyte layer 400.
  • the noinder for sealing the spacer constituent material is not particularly limited, and examples thereof include epoxy resin, silicone resin, olefin-based resin, and ionomer resin.
  • the electrolyte layer 400 includes an electrolyte.
  • the solar cell of this embodiment is characterized in that it includes the above-described electrolyte composition. Since the specific form of the electrolyte composition is as described above, detailed description thereof is omitted here.
  • the electrolyte composition provided by one embodiment of the present invention includes a hardly soluble CDI having a predetermined average particle diameter, and these are dispersed in a medium. I—and acting as a redox couple
  • Concentration is the minimum concentration necessary for the power generation reaction to proceed to a very low level. For this reason, in the electrolyte composition, the dark brown coloration caused by iodine is significantly reduced as compared with the conventional electrolyte composition for solar cells. Therefore, also in the electrolyte layer 400 of the solar cell of the present embodiment including the electrolyte composition, coloration caused by iodine can be reduced. Therefore, the solar cell of this embodiment can be placed at a place where it has been difficult to place the solar cell because of its iodine color. That is, according to this embodiment, a solar cell with excellent design performance can be provided.
  • the solar cell of this embodiment is also excellent in durability. This is presumed to be due to the following reasons. In other words, in conventional solar cells, I present in the electrolyte
  • the solar cell to which the electrolyte composition can be applied is a dye-sensitized solar cell. It is not limited only to solar cells.
  • the electrolyte composition provided by the present invention comprises The present invention can be widely applied to a system using an elementary redox medium. For example, it can be applied to a water splitting system using a combination with a dye-sensitized photocatalyst in addition to a battery.
  • the battery provided by the present invention is parallel or in series with conventionally used single crystal silicon solar cells, polycrystalline silicon solar cells, amorphous silicon solar cells, compound semiconductor solar cells, etc. It may be used as an assembled battery that is connected.
  • the specific forms of these batteries and systems are not particularly limited, and conventionally known knowledge can be appropriately referred to.
  • 3-methoxypropio-tolyl (3-MPN) was prepared as a solvent.
  • iodine- ⁇ -cyclodextrin inclusion complex (“BCDI-20”, manufactured by Niho Ho Chemical Co., Ltd.) was prepared as poorly soluble CDI.
  • the solubility of CDI in 3-MPN at 25 ° C is less than 0.1 mgZmL.
  • the hardly soluble CDI prepared in the above was pulverized using a ball mill to obtain a fine powder.
  • the average particle size of the fine powder obtained was measured by the laser diffraction Z-scattering method.
  • Example 2 Except that the concentration of the iodine- ⁇ -cyclodextrin inclusion complex at the time of preparing the electrolytic solution was set to 0.1% (Example 2) and 0.2% (Example 3). Uniform dispersions were obtained by the same method as in Example 1, and these were used as the electrolytic solutions in the Examples.
  • Example 2 A uniform dispersion exhibiting a roaring brown color was obtained in the same manner as in Example 1 except that it was added at a concentration, and this was used as the electrolyte of Comparative Example 1.
  • a conductive glass substrate manufactured by Nippon Sheet Glass Co., Ltd., thickness: 1 mm
  • the glass substrate is composed of two layers: a transparent substrate and a transparent conductive film (thickness: 750 A).
  • a dispersion particle concentration: 30% by mass
  • anatase-type titanium dioxide particles average particle size: 21 nm
  • a nitric acid aqueous solution pH 7.0
  • V is the open circuit voltage (V)
  • J is the short circuit current density (mAZcm 2 )
  • FF is
  • P is irradiation light intensity (mWZcm 2 ).
  • Example 2 A uniform dispersion was obtained in the same manner as in Example 1 except that BCDI-20 having an average particle size of 30 ⁇ m was used, and this was used as the electrolyte of Comparative Example 4.
  • a dye-sensitized solar cell was prepared by the same method as described in the above-mentioned "Measurement of photoelectric conversion efficiency" except that the electrolytic solution of Comparative Example 4 obtained above was used. Tried.

Abstract

This invention provides means that, in solar batteries such as dye-sensitized solar batteries, can suppress iodine-derived coloration of solar battery cells without causing a lowering in photoelectric conversion efficiency with the elapse of time. An electrolyte composition comprising a medium and an iodine-cyclodextrin inclusion compound, which is hardly soluble in the medium and has an average particle diameter of not more than 20 μm is incorporated in an electrolyte layer in a solar cell.

Description

明 細 書  Specification
電解質組成物  Electrolyte composition
技術分野  Technical field
[0001] 本発明は、電解質組成物に関する。詳細には、本発明は、色素増感型太陽電池等 の耐久性およびデザイン性能を向上させうる電解質組成物に関する。  [0001] The present invention relates to an electrolyte composition. Specifically, the present invention relates to an electrolyte composition that can improve durability and design performance of a dye-sensitized solar cell or the like.
背景技術  Background art
[0002] 近年、環境問題に対する意識の高まりを背景として、太陽光をエネルギ源とする発 電システムである太陽電池の開発が盛んになされている。  In recent years, against the background of increasing awareness of environmental problems, solar cells, which are power generation systems using sunlight as an energy source, have been actively developed.
[0003] 従来、太陽電池を構成する素子の材料として、単結晶シリコン、多結晶シリコン、非 晶質シリコン等のシリコン材料のほか、有機顔料や有機色素を用いる太陽電池が提 案されている。これらの有機材料を採用する太陽電池によれば、光を吸収する色素 分子を、電子輸送性の分子や物質種および正孔輸送性の分子や物質種と組み合わ せることで、比較的高い変換効率が得られる。なかでも、スイスのグレッツエル博士ら によって開発された色素増感型太陽電池は、特に高 、変換効率を達成しうることから 、近年注目を集めている。色素増感型太陽電池はまた、安価な半導体材料を用いて 製造可能であり、発電に利用可能な光の波長領域が広いという利点をも有している。  [0003] Conventionally, solar cells using organic pigments and organic dyes have been proposed as materials for elements constituting solar cells, in addition to silicon materials such as single crystal silicon, polycrystalline silicon, and amorphous silicon. According to solar cells that employ these organic materials, relatively high conversion efficiency can be achieved by combining dye molecules that absorb light with molecules and substance species that transport electrons and hole transport molecules and substance species. Is obtained. Among them, the dye-sensitized solar cell developed by Dr. Gretzell of Switzerland has attracted attention in recent years because it can achieve particularly high conversion efficiency. Dye-sensitized solar cells can also be manufactured using inexpensive semiconductor materials, and have the advantage that the wavelength range of light that can be used for power generation is wide.
[0004] ここで、色素増感型太陽電池の電解質には酸ィ匕還元対が用いられるが、力 うな酸 化還元対としては、反応速度に優れる点で、ヨウ素 (I ―)およびヨウ化物イオン (Γ)を  [0004] Here, an acid-reducing pair is used as the electrolyte of the dye-sensitized solar cell. However, as a powerful oxidation-reduction pair, iodine (I-) and iodide are used because of their excellent reaction rate. Ion (Γ)
3  Three
含む有機電解液が一般的に用いられている。  An organic electrolyte solution is generally used.
[0005] 従来、 I _Zl_  [0005] Traditionally, I _Zl_
3 酸化還元対を含む電解液中に、環状多糖類であるシクロデキストリン をさらに含有させる技術が開示されている(例えば、特開 2004— 235011号公報お よび特開 2005— 71895号公報を参照)。具体的には、特開 2004— 235011号公 報には、ヨウ素—シクロデキストリン包接ィ匕物(以下、単に「CDI」とも称する)を含有す る電解液およびこれを用いた光電変換素子 (太陽電池)が開示されている。力 うな 技術によれば、シクロデキストリンへのヨウ素の包接によりヨウ素の毒性が低減され、 安全な光電変換素子 (太陽電池)が提供されるとしている。また、特開 2005— 7189 5号公報には、環状多糖類であるシクロデキストリンと、有機溶融塩ィ匕合物(いわゆる 、イオン性液体)と、ヨウ素と、を含む電解質組成物が開示されている。かような技術 によれば、シクロデキストリンの添カ卩によって、イオン性液体の添加に伴う電解質中の イオン伝導性の低下が抑制され、変換効率を向上させうるとしている。 3 A technology is disclosed in which a cyclodextrin, which is a cyclic polysaccharide, is further contained in an electrolytic solution containing a redox couple (see, for example, JP 2004-235011 A and JP 2005-71895 A). . Specifically, in the publication of Japanese Patent Application Laid-Open No. 2004-235011, an electrolytic solution containing an iodine-cyclodextrin inclusion product (hereinafter also simply referred to as “CDI”) and a photoelectric conversion element using the same ( Solar cells). According to the powerful technology, the inclusion of iodine in cyclodextrin reduces the toxicity of iodine and provides a safe photoelectric conversion element (solar cell). JP-A-2005-71895 discloses cyclodextrin, which is a cyclic polysaccharide, and an organic molten salt compound (so-called so-called compound). , An ionic liquid) and iodine. According to such a technique, the addition of cyclodextrin suppresses the decrease in ionic conductivity in the electrolyte accompanying the addition of the ionic liquid, and can improve the conversion efficiency.
発明の開示  Disclosure of the invention
[0006] ところで、太陽電池は、太陽光をエネルギ源とする発電システムである。このため、 太陽電池を構成する部材 (半導体電極や対極)は、実質的に透明である。しかしなが ら、電解液に含まれるヨウ素は特有の暗褐色を呈することから、太陽電池の電解質層 もまた、暗褐色を呈してしまうという問題があった。従って、暗褐色のセルの配置によ り美観が損なわれる虞のある場所には太陽電池セルを配置することができないため、 配置可能な場所が制限されていた。例えば、太陽電池セルをビルの外壁などに並べ て配置しょうとすると、ビルの外壁の全面が暗褐色を呈することとなってしまい、景観 上好ましくない。また、このように配置場所が制限されることによって、太陽電池の用 途も制限を受ける結果となり、太陽電池の普及を妨げる一因ともなつていた。  Incidentally, a solar cell is a power generation system that uses sunlight as an energy source. For this reason, the members (semiconductor electrode and counter electrode) constituting the solar cell are substantially transparent. However, since iodine contained in the electrolyte exhibits a characteristic dark brown color, the electrolyte layer of the solar cell also exhibits a dark brown color. Therefore, since the solar cells cannot be arranged in places where the aesthetics may be impaired by the arrangement of dark brown cells, the places where the cells can be arranged are limited. For example, if solar cells are arranged side by side on the outer wall of a building, the entire outer wall of the building will exhibit a dark brown color, which is not preferable in view of the scenery. In addition, the restriction of the location of the solar cells in this way has resulted in restrictions on the use of solar cells, which has been one of the factors that hinder the spread of solar cells.
[0007] 太陽電池の電解質に含まれるヨウ素に起因する力 うな色調の問題は、前記文献 に記載のようなシクロデキストリンを添加する技術によっても解決されてはいない。な お、ヨウ素に起因する太陽電池セルの呈色を抑制する手段として、電解液中のヨウ素 濃度を低くすることが考えられるが、かような手段によると光電変換効率が経時的に 低下する虞があり、現実的ではない。  [0007] The problem of color tone due to iodine contained in the electrolyte of the solar cell has not been solved even by the technique of adding cyclodextrin as described in the above-mentioned document. As a means for suppressing the coloration of solar cells caused by iodine, it is conceivable to lower the iodine concentration in the electrolytic solution. However, the photoelectric conversion efficiency may decrease over time by such means. Is not realistic.
[0008] 以上のように、経時的な光電変換効率の低下を引き起こすことなぐヨウ素に起因 する太陽電池セルの呈色を抑制しうる手段の開発が強く望まれているのが現状であ る。  [0008] As described above, there is a strong demand for the development of means that can suppress the coloration of solar cells caused by iodine without causing a decrease in photoelectric conversion efficiency over time.
[0009] そこで本発明は、力 うな手段を提供することを目的とする。  Accordingly, an object of the present invention is to provide a powerful means.
[0010] 本発明者らは、上記の課題を解決すベぐ鋭意研究を行った。その結果、太陽電 池の電解質層において、ヨウ素(具体的には、 I―) [0010] The present inventors have conducted intensive research to solve the above problems. As a result, in the electrolyte layer of the solar cell, iodine (specifically, I-)
3 が電解質中に溶解していると、電 解質層が暗褐色を呈することを見出した。そして、力 うな知見に基づき、媒体に溶 けにくい CDIを微細化し、電解質層中に分散させることによって、従来と同等の変換 効率を維持しつつ、ヨウ素に起因する呈色を著しく低減させうることを見出し、本発明 を完成させるに至った。 [0011] すなわち、本発明の一形態によれば、媒体と、前記媒体に対して難溶性で、平均 粒子径が 20 m以下のヨウ素一シクロデキストリン包接ィ匕合物と、を含むことを特徴と する、電解質組成物が提供される。 It was found that when 3 was dissolved in the electrolyte, the electrolyte layer was dark brown. Based on this powerful knowledge, CDI, which is difficult to dissolve in the medium, is refined and dispersed in the electrolyte layer, so that the coloration caused by iodine can be significantly reduced while maintaining the same conversion efficiency as before. As a result, the present invention has been completed. [0011] That is, according to one aspect of the present invention, it includes a medium and an iodine-cyclodextrin inclusion compound having an average particle diameter of 20 m or less that is hardly soluble in the medium. Characteristic electrolyte compositions are provided.
[0012] また、本発明の他の形態によれば、電解質層が上記の電解質組成物を含む、色素 増感型太陽電池 (以下、単に「太陽電池」とも称する)が提供される。 [0012] According to another aspect of the present invention, there is provided a dye-sensitized solar cell (hereinafter, also simply referred to as "solar cell") in which an electrolyte layer includes the above electrolyte composition.
[0013] 本発明のさらに他の目的、特徴および特質は、以後の説明および添付図面に例示 される好ましい実施の形態を参酌することによって、明らかになるであろう。 [0013] Still other objects, features, and characteristics of the present invention will become apparent by referring to the following description and preferred embodiments exemplified in the accompanying drawings.
図面の簡単な説明  Brief Description of Drawings
[0014] [図 1]難溶性 CDIの粒子径の定義に用いられる絶対最大長を説明するための解説図 である。  [0014] FIG. 1 is an explanatory diagram for explaining the absolute maximum length used to define the particle diameter of poorly soluble CDI.
[0015] [図 2]本発明により提供される太陽電池の好ま U、一実施形態を示す断面図である。  FIG. 2 is a cross-sectional view showing one preferred embodiment of a solar cell provided by the present invention.
[0016] [図 3]実施例における吸光度測定の結果を示す図である。 FIG. 3 is a diagram showing the results of absorbance measurement in Examples.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下、本発明を実施するための好ましい一実施形態について説明する力 本発明 の技術的範囲は下記の形態のみには制限されない。 [0017] In the following, the ability to describe a preferred embodiment for carrying out the present invention The technical scope of the present invention is not limited to the following form.
[0018] 本発明の一形態によれば、媒体と、前記媒体に対して難溶性で、平均粒子径が 20 m以下のヨウ素一シクロデキストリン包接ィ匕合物と、を含むことを特徴とする、電解 質組成物が提供される。 [0018] According to one aspect of the present invention, it includes a medium, and an iodine monocyclodextrin inclusion complex having an average particle diameter of 20 m or less that is hardly soluble in the medium. An electrolyte composition is provided.
[0019] まず、本形態の電解質組成物の構成について説明する。 [0019] First, the configuration of the electrolyte composition of the present embodiment will be described.
[0020] 本形態の電解質組成物は、第 1に、媒体を含む。 [0020] The electrolyte composition of the present embodiment first includes a medium.
[0021] 媒体の具体的な形態については特に制限はない。一例を挙げると、色素増感型太 陽電池の電解質の溶媒として従来公知の溶媒が適宜採用されうる。力 うな形態に よれば、本形態の電解質組成物は、液状組成物である。溶媒の特性としては、電気 化学的に不活性で、比誘電率が高ぐ粘度が低いことが好ましい。力 うな特性を有 する溶媒の一例を挙げると、メトキシプロピオ-トリル、メトキシァセトニトリル等の-トリ ル系溶媒、 y—プチ口ラタトン、バレロラタトン等のラタトン系溶媒、エチレンカーボネ ート、プロピレンカーボネート等のカーボネート系溶媒、ジォキサン、ジェチルエーテ ル、エチレングリコールジアルキルエーテル等のエーテル系溶媒、メタノール、ェタノ ール、ポリプロピレングリコールモノアルキルエーテル等のアルコール系溶媒、ジメチ ルスルホキシド、スルホラン等の非プロトン性極性溶媒、エチレングリコール、ポリェチ レンダリコール等のグリコール系溶媒、脂肪族第 4級アンモ-ゥム塩ゃイミダゾリゥム 塩等のイオン性液体などが挙げられる。なかでも、上述した特性に優れるという観点 力 は、二トリル系溶媒、ラタトン系溶媒、カーボネート系溶媒、グリコール系溶媒、お よびイオン性液体が好ましく用いられ、より好ましくは、二トリル系溶媒が用いられる。 なお、これらの溶媒は、 1種のみが単独で用いられてもよいし、 2種以上が併用されて ちょい。 There are no particular restrictions on the specific form of the medium. For example, a conventionally known solvent can be appropriately employed as a solvent for the electrolyte of the dye-sensitized solar cell. According to the strong form, the electrolyte composition of the present form is a liquid composition. As the characteristics of the solvent, it is preferable that the solvent is electrochemically inactive, the relative dielectric constant is high, and the viscosity is low. Examples of solvents having strong properties include: -tolyl solvents such as methoxypropio-tolyl and methoxyacetonitrile, y-petit-latatones, laterotonic solvents such as valerolatatane, ethylene carbonate Carbonate solvents such as propylene carbonate, ether solvents such as dioxane, jetyl ether, ethylene glycol dialkyl ether, methanol, ethanol Alcohols, alcohol solvents such as polypropylene glycol monoalkyl ether, aprotic polar solvents such as dimethyl sulfoxide and sulfolane, glycol solvents such as ethylene glycol and polyethylene glycol, aliphatic quaternary ammonium salts Examples include ionic liquids such as imidazolium salts. Among these, nitrile solvent, rataton solvent, carbonate solvent, glycol solvent, and ionic liquid are preferably used as the viewpoint power that is excellent in the above-described characteristics, and more preferably nitrile solvent is used. It is done. Note that only one of these solvents may be used alone, or two or more of them may be used in combination.
[0022] なお、媒体は液状のもの (すなわち、溶媒)に限定されず、固体状 (例えば、ゲル状 )のものであってもよい。固体状の媒体としては、例えば、ポリピロール、ヨウ化銅、チ オシアン化銅などが例示される。  [0022] Note that the medium is not limited to a liquid (that is, a solvent), and may be a solid (for example, a gel). Examples of the solid medium include polypyrrole, copper iodide, and copper thiocyanide.
[0023] 本形態の電解質組成物は、第 2に、 CDIを含む。  [0023] Secondly, the electrolyte composition of the present embodiment includes CDI.
[0024] ヨウ素ーシクロデキストリン包接化合物(CDI)は、ヨウ素がシクロデキストリンに包接 された構造を有する。本形態の電解質組成物が色素増感型太陽電池の電解質層に 用いられる場合には、包接されたヨウ素が、酸化体 (I  [0024] The iodine-cyclodextrin inclusion compound (CDI) has a structure in which iodine is included in the cyclodextrin. When the electrolyte composition of this embodiment is used in the electrolyte layer of a dye-sensitized solar cell, the clathrated iodine is oxidized (I
3―)および還元体 (Γ)を行き来 することで、電解質層における酸化還元対として機能する。  By moving back and forth between 3-) and reductant (Γ), it functions as a redox pair in the electrolyte layer.
[0025] 「シクロデキストリン」とは、 D—ダルコビラノースがひ 1 , 4 結合により環状に結 合した化合物である。シクロデキストリンは、自身を構成する D—ダルコビラノースの 数によって、 ex—シクロデキストリン(6個)、 β—シクロデキストリン(7個)、および γ - シクロデキストリン (8個)に大きく分類される。  [0025] "Cyclodextrin" is a compound in which D-darcoviranose is bound cyclically by 1, 4 bonds. Cyclodextrins are roughly classified into ex-cyclodextrin (6), β-cyclodextrin (7), and γ-cyclodextrin (8), depending on the number of D-Dalcobilanose.
[0026] 本形態の電解質組成物に含まれる CDIは、当該電解質組成物に含まれる媒体に 対して難溶性の CDI (以下、単に「難溶性 CDI」とも称する)である。難溶性 CDIは、 当然ながら電解質組成物においてほとんど溶解しないため、本形態の電解質組成物 はヨウ素に起因する暗褐色の呈色が著しく低減されうる。従って、本形態の電解質組 成物によれば、太陽電池のデザイン性能の向上が図られる。なお、「媒体に対して難 溶性である」とは、媒体が液状である(すなわち、媒体が溶媒である)場合には、 25°C の溶媒に対する溶解度が 5. OmgZmL以下であることを意味する。溶解度の測定方 法としては、実験化学講座 1—基本操作 I、第 4版、(社)日本化学会編、 151— 159 頁に記載の方法を用いるものとする。また、媒体が固体状である場合であっても、媒 体を固化させる前の液状段階において CDIが上記で定義された難溶性を呈すれば 、 CDIを懸濁状に分散させて固化させることが可能となり、本形態の電解質組成物と しての作用効果が発揮されうる。 [0026] The CDI contained in the electrolyte composition of the present embodiment is CDI that is hardly soluble in the medium contained in the electrolyte composition (hereinafter, also simply referred to as “slightly soluble CDI”). Naturally, hardly soluble CDI hardly dissolves in the electrolyte composition, so that the dark brown coloration caused by iodine can be remarkably reduced in the electrolyte composition of this embodiment. Therefore, according to the electrolyte composition of this embodiment, the design performance of the solar cell can be improved. “Slightly soluble in the medium” means that when the medium is liquid (ie, the medium is a solvent), the solubility in a solvent at 25 ° C. is 5. OmgZmL or less. To do. As a method of measuring solubility, Experimental Chemistry Course 1—Basic Operation I, 4th edition, edited by The Chemical Society of Japan, 151—159 The method described on page shall be used. Further, even when the medium is in a solid state, if the CDI exhibits poor solubility as defined above in the liquid stage before the medium is solidified, the CDI may be dispersed and solidified in a suspended state. Thus, the function and effect of the electrolyte composition of the present embodiment can be exhibited.
[0027] 本形態の電解質組成物に含まれる難溶性 CDIは、電解質組成物に含まれる媒体 に対して難溶性であればよぐ特に限定されない。すなわち、媒体が溶媒である場合 には、 25°Cの溶媒に対する溶解度が 5. OmgZmL以下であればよい。前記溶解度 は、好ましくは 1. OmgZmL以下であり、より好ましくは 0. lmgZmL以下である。難 溶性 CDIを構成するシクロデキストリンとしては、例えば、 /3—シクロデキストリンなど が挙げられる。本形態において —シクロデキストリンを用いると、優れた効果が得ら れるため特に好ましい。ただし、場合によっては、その他のシクロデキストリンが用いら れてもよい。また、新たに開発された難溶性 CDIが用いられてもよい。なお、本形態 の電解質組成物に含まれる難溶性 CDIを構成するシクロデキストリンは、 1種のみで あってもよいし、 2種以上であってもよい。  [0027] The hardly soluble CDI contained in the electrolyte composition of the present embodiment is not particularly limited as long as it is hardly soluble in the medium contained in the electrolyte composition. That is, when the medium is a solvent, the solubility in a solvent at 25 ° C. should be 5. OmgZmL or less. The solubility is preferably 1. OmgZmL or less, more preferably 0.1 mgZmL or less. Examples of the cyclodextrin constituting the hardly soluble CDI include / 3-cyclodextrin. In this embodiment, it is particularly preferable to use cyclodextrin because an excellent effect can be obtained. However, other cyclodextrins may be used in some cases. In addition, newly developed poorly soluble CDI may be used. The cyclodextrin constituting the hardly soluble CDI contained in the electrolyte composition of the present embodiment may be only one type or two or more types.
[0028] 本形態の電解質組成物に含まれる難溶性 CDIは、粒子径カ S小さい値に制御され ている。具体的には、本形態の電解質組成物に含まれる難溶性 CDIの平均粒子径 は、 20 μ m以下であり、好ましくは 15 μ m以下であり、より好ましくは 10 μ m以下であ る。平均粒子径が力ような範囲内の値であると、電解質組成物における難溶性 CDI の分散性が向上しうる。また、難溶性 CDIの平均粒子径が 20 mを超えると、電解 質組成物が例えば色素増感型太陽電池に用いられた場合に、半導体電極を構成す る酸ィ匕チタンなどの材料を損傷してしまう虞もある。なお、難溶性 CDIの平均粒子径 の下限値については特に制限されないが、製造の容易さなどを考慮すると、 0. 01 m以上が好ましぐ 0. 1 m以上がより好ましい。また、難溶性 CDIの粒子の形状は 球状のみに制限されず、板状、針状、柱状、角状などの形態であってもよい。粒子の 形状は、所望の特性を考慮して適宜選択されうる。粒子の形状が球状以外の場合に は粒子の形状が一様ではな 、ため、力 うな場合には粒子の絶対最大長を粒子の 平均粒径とする。ここで「絶対最大長」とは、図 1に示すように、粒子 1の輪郭線上の 任意の 2点間の距離のうち、最大の距離 Lをいう。ここで、難溶性 CDIの平均粒子径 の測定方法としては、遠心沈降光透過法、レーザー回折 Z散乱法、電気的検知法、 画像解析法などが挙げられる。ここで、測定手法により得られる平均粒子径の値が異 なる場合には、後述する実施例に記載の手法により得られた値を平均粒子径として 採用するものとする。 [0028] The poorly soluble CDI contained in the electrolyte composition of the present embodiment is controlled to a value having a small particle size. Specifically, the average particle diameter of the hardly soluble CDI contained in the electrolyte composition of the present embodiment is 20 μm or less, preferably 15 μm or less, more preferably 10 μm or less. When the average particle size is within the range of force, the dispersibility of the hardly soluble CDI in the electrolyte composition can be improved. In addition, if the average particle diameter of poorly soluble CDI exceeds 20 m, the electrolyte composition may be damaged in materials such as titanium oxide and the like that constitute the semiconductor electrode when the electrolyte composition is used in, for example, a dye-sensitized solar cell. There is also a risk of it. The lower limit value of the average particle diameter of the hardly soluble CDI is not particularly limited, but is preferably 0.01 m or more, more preferably 0.1 m or more in consideration of ease of production. The shape of the hardly soluble CDI particles is not limited to a spherical shape, and may be a plate shape, a needle shape, a column shape, a square shape, or the like. The shape of the particles can be appropriately selected in consideration of desired characteristics. When the particle shape is other than spherical, the particle shape is not uniform. Therefore, in the case of force, the absolute maximum particle length is used as the average particle size. Here, the “absolute maximum length” means the maximum distance L among the distances between any two points on the contour line of the particle 1 as shown in FIG. Here, average particle diameter of poorly soluble CDI Examples of the measuring method include centrifugal sedimentation light transmission method, laser diffraction Z scattering method, electrical detection method, and image analysis method. Here, when the value of the average particle diameter obtained by the measurement method is different, the value obtained by the method described in Examples described later is adopted as the average particle diameter.
[0029] 本形態の電解質組成物における難溶性 CDIの含有量は特に制限されないが、媒 体の全量に対して、好ましくは 0. 005〜0. 4Mであり、より好ましくは 0. 01〜0. 3M であり、さらに好ましくは 0. 05〜0. 2Mである。難溶性 CDIの含有量が少なすぎると 、充分な発電電流が得られない虞がある。一方、難溶性 CDIの含有量が多すぎると、 電解液の色が濃くなり、光の透過が妨げられる虞がある。  [0029] The content of poorly soluble CDI in the electrolyte composition of the present embodiment is not particularly limited, but is preferably 0.005 to 0.4M, more preferably 0.01 to 0, based on the total amount of the medium. 3M, more preferably 0.05-0.2M. If the content of the hardly soluble CDI is too small, there is a possibility that a sufficient generated current cannot be obtained. On the other hand, if the content of poorly soluble CDI is too large, the color of the electrolytic solution becomes dark and there is a risk that light transmission may be hindered.
[0030] 本形態の電解質組成物は、本発明の作用効果を損なわない限り、その他の成分を 含んでもよい。  [0030] The electrolyte composition of the present embodiment may contain other components as long as the effects of the present invention are not impaired.
[0031] 電解質組成物に含まれうるその他の成分としては、例えば、 CDI以外の電解質、塩 基、ヨウ素を包接しな ヽシクロデキストリンなどが挙げられる。  [0031] Examples of other components that can be included in the electrolyte composition include electrolytes other than CDI, bases, and cyclodextrins that do not include iodine.
[0032] CDI以外の電解質の添カ卩により、本形態の電解質組成物を太陽電池の電解質層 に用いた場合の発電特性が向上しうる。力 うな電解質としては、例えば、ヨウ化リチ ゥム、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化セシウム、ヨウ化カルシウム等の金属ヨウ 化物塩;ヨウ化テトラアルキルアンモ-ゥム、ヨウ化ピリジ-ゥム、ヨウ化イミダゾリゥム等 の第 4級アンモ-ゥムヨウ化物塩;臭化リチウム、臭化ナトリウム、臭化カリウム、臭化 セシウム、臭化カルシウム等の金属臭化物塩;臭化テトラアルキルアンモ-ゥム、臭化 ピリジ-ゥム等の第 4級アンモ-ゥム臭化物塩;フエロシアン酸塩—フェリシアン酸塩、 フエ口セン—フエリシ-ゥムイオン等の金属錯体;ポリ硫ィ匕ナトリウム、アルキルチオ一 ル アルキルジスルフイド等の硫黄化合物;ピオロゲン色素;ヒドロキノンーキノン; 1 プロピル 2, 3 ジメチルイミダゾリゥム—ヨウ素(DMPII)等の有機溶融塩などが 挙げられる。  [0032] By adding an electrolyte other than CDI, the power generation characteristics when the electrolyte composition of the present embodiment is used for an electrolyte layer of a solar cell can be improved. Examples of powerful electrolytes include metal iodide salts such as lithium iodide, sodium iodide, potassium iodide, cesium iodide, and calcium iodide; tetraalkylammonium iodide and pyridinium iodide. Quaternary ammonium iodide salts such as sodium iodide, imidazolium iodide; metal bromide salts such as lithium bromide, sodium bromide, potassium bromide, cesium bromide, calcium bromide; tetraalkylammonium bromide, Quaternary ammonium bromide salts such as pyridinium bromide; metal complexes such as ferrocyanate-ferricyanate, ferucene-ferricium ion; sodium polysulfate, alkylthiol alkyldis Sulfur compounds such as rufide; viologen dye; hydroquinone-quinone; organic molten salts such as 1 propyl 2, 3 dimethylimidazolium-iodine (DMPII) It is.
[0033] 塩基の添加により、電解質層と半導体電極または対極との間での電子の授受効率 が向上しうる。塩基としては、例えば、 4ー 61:1;—ブチルピリジン(4ー丁8?)、?^ーメチ ルベンズイミダゾール、 2 ピコリン、 2, 6—ルチジンなどが挙げられる。光電変換効 率および耐久性を向上させる目的で、ピリミジン環含有塩基を添加してもよい。 [0034] ヨウ素を包接しないシクロデキストリンは、発電の進行に伴って厂から生成した I —を [0033] By adding a base, the efficiency of electron transfer between the electrolyte layer and the semiconductor electrode or the counter electrode can be improved. Examples of the base include 4-61: 1; -butylpyridine (4-8-?),? ^ -Methyl benzimidazole, 2 picoline, 2, 6-lutidine and the like. For the purpose of improving photoelectric conversion efficiency and durability, a pyrimidine ring-containing base may be added. [0034] Cyclodextrins that do not include iodine contain I — produced from soot as power generation proceeds.
3 包接し、 CDIを生成しうる。このため、本形態の電解質組成物に、ヨウ素を包接しない シクロデキストリンが存在すると、ヨウ素の貯蔵や導電パスの形成という作用を発揮し うる。添加されるシクロデキストリンの具体的な形態は特に制限されず、従来公知のシ クロデキストリンが添加されうる。ただし、ヨウ素を包接することにより溶媒に対して易 溶解性の CDIを形成しうるシクロデキストリン (例えば、メチル一 β—シクロデキストリ ン)の添加量が多すぎると、当初の電解質組成物において難溶性 CDIを用いていた 意味が減弱してしまい、ひいては本発明の作用効果が充分に得られなくなる虞があ る。このため、ヨウ素を包接しないシクロデキストリンが本形態の電解質組成物に添カロ される場合、当該シクロデキストリンとしては、難溶性 CDIを構成するシクロデキストリ ンとして上述したものが用いられることが好まし 、。  3 Can be included to generate CDI. For this reason, when cyclodextrin that does not include iodine is present in the electrolyte composition of the present embodiment, the effects of storing iodine and forming a conductive path can be exhibited. The specific form of cyclodextrin to be added is not particularly limited, and conventionally known cyclodextrins can be added. However, if the amount of cyclodextrin (for example, methyl-β-cyclodextrin) that can form CDI that is easily soluble in the solvent by inclusion of iodine is too large, it will be difficult in the original electrolyte composition. The meaning of using soluble CDI may be attenuated, and as a result, the effects of the present invention may not be sufficiently obtained. For this reason, when cyclodextrin that does not include iodine is added to the electrolyte composition of the present embodiment, it is preferable to use the cyclodextrin described above as cyclodextrin constituting hardly soluble CDI. Better ,.
[0035] なお、本形態の電解質組成物において、組成物中に存在するヨウ素原子 (I)のうち 、シクロデキストリンに包接されて包接ィ匕合物となっているものの割合は、特に制限さ れることはないが、好ましくは 40〜99質量%であり、より好ましくは 60〜97質量%以 上であり、さらに好ましくは 80〜95質量%である。この割合が小さすぎると、媒体に 溶解しているヨウ素原子の割合が相対的に増加し、電解質の呈するヨウ素色が目立 つようになってしまうという問題がある。一方、この割合が大きすぎると、レドックス系と して機能するヨウ素の量が少なくなり、電池としての能力が低下する虞がある。  [0035] In the electrolyte composition of the present embodiment, among the iodine atoms (I) present in the composition, the ratio of those that are clathrated to form a clathrate compound is particularly limited. However, it is preferably 40 to 99% by mass, more preferably 60 to 97% by mass or more, and still more preferably 80 to 95% by mass. If this ratio is too small, there is a problem that the ratio of iodine atoms dissolved in the medium is relatively increased, and the iodine color exhibited by the electrolyte becomes conspicuous. On the other hand, if this ratio is too large, the amount of iodine that functions as a redox system is reduced, and the battery performance may be reduced.
[0036] なお、本形態の電解質組成物における難溶性 CDI以外の各成分の含有量は特に 制限されず、必須成分である難溶性 CDIの含有量や所望の特性を考慮して適宜調 節されうる。  [0036] The content of each component other than the poorly soluble CDI in the electrolyte composition of the present embodiment is not particularly limited, and is appropriately adjusted in consideration of the content of the hardly soluble CDI that is an essential component and desired characteristics. sell.
[0037] 本形態の電解質組成物の形態は特に制限されず、媒体の種類に応じて、液状組 成物であってもよいし、固体状 (例えば、ゲル状)組成物であってもよい。ただし、キヤ リアの拡散の観点からは、本形態の電解質組成物は液状組成物であることが好まし い。なお、ゲル状組成物の場合には、ゲル化剤や重合開始剤に加えて、ゲルのマトリ ックスを構成しうるポリマーまたは重合性モノマーを含みうる力 これらの成分の具体 的な形態は特に制限されず、従来公知の知見が適宜参照されうる。  [0037] The form of the electrolyte composition of the present embodiment is not particularly limited, and may be a liquid composition or a solid (eg, gel) composition depending on the type of medium. . However, from the viewpoint of carrier diffusion, the electrolyte composition of the present embodiment is preferably a liquid composition. In the case of a gel composition, in addition to a gelling agent and a polymerization initiator, a force that may contain a polymer or a polymerizable monomer that can constitute the matrix of the gel. Specific forms of these components are particularly limited. Instead, conventionally known knowledge can be referred to as appropriate.
[0038] 本形態の電解質組成物は、特別な手法を用いずに製造可能である。例えば、所望 の平均粒子径の難溶性 CDIおよびその他必要な添加剤を準備し、これらを別途準 備した媒体中に所望の濃度となるように添加し、撹拌して、均一な分散体とすることに より、本形態の電解質組成物が得られる。なお、難溶性 CDIを添加して分散体を得 た後、不溶の難溶性 CDIを除去することにより、電解質組成物を得てもよい。すなわ ち、難溶性 CDI添加後の分散体の上澄み液もまた、液状電解質組成物として用いら れうるのである。なお、この形態において、難溶性 CDIの除去手段、除去割合などは 特に制限されず、電解質の所望の色調や、電解質が太陽電池等の素子に用いられ た場合の所望の電池性能などを考慮して、適宜設定されうる。 [0038] The electrolyte composition of the present embodiment can be produced without using a special technique. For example, desired By preparing a slightly soluble CDI having an average particle size of 1 and other necessary additives, adding them to a separately prepared medium to a desired concentration, and stirring to obtain a uniform dispersion. The electrolyte composition of this embodiment is obtained. In addition, after adding a hardly soluble CDI to obtain a dispersion, an electrolyte composition may be obtained by removing the insoluble hardly soluble CDI. In other words, the supernatant of the dispersion after addition of poorly soluble CDI can also be used as a liquid electrolyte composition. In this embodiment, the means for removing poorly soluble CDI, the removal ratio, etc. are not particularly limited, taking into consideration the desired color tone of the electrolyte and the desired battery performance when the electrolyte is used in elements such as solar cells. Can be set as appropriate.
[0039] 難溶性 CDIを準備する際には、自ら合成することにより準備してもよいし、商品が巿 販されている場合には、当該商品を購入することにより準備してもよい。難溶性 CDI を自ら合成する手法について特に制限はなぐ従来公知の合成手法が用いられうる 。例えば、 j8—シクロデキストリン、ヨウ素、およびヨウ素溶解助剤(例えば、ヨウィ匕カリ ゥムなど)を水中で反応させることにより、難溶性 CDIであるヨウ素一 /3—シクロデキス トリンが合成されうる。ただし、その他の手法もまた、採用されうる。  [0039] When preparing the poorly soluble CDI, it may be prepared by synthesizing itself, or when the product is sold, it may be prepared by purchasing the product. Conventionally known synthesis methods can be used without any particular limitation on the method of synthesizing poorly soluble CDI by itself. For example, by reacting j8-cyclodextrin, iodine, and an iodine solubilizing aid (for example, yowi potato) in water, poorly soluble CDI, 1 / 3-cyclodextrin, can be synthesized. However, other approaches can also be employed.
[0040] 準備した難溶性 CDIの粒子径が大き ヽ場合には、粉砕処理を施すことにより、平均 粒子径が所望の値に制御されうる。粉砕処理の具体的な手段は特に制限されない 力 例えば、ボールミル、ジェットミル、対向衝突処理、ローラミル、ビーズミルなどが 挙げられる。粉砕時間等の粉砕処理条件も特に制限されず、所望の平均粒子径の 値を考慮して、適宜設定されうる。  [0040] When the particle diameter of the prepared poorly soluble CDI is large, the average particle diameter can be controlled to a desired value by performing pulverization. Specific means for the pulverization process are not particularly limited. Examples thereof include a ball mill, a jet mill, a counter collision process, a roller mill, and a bead mill. The pulverization conditions such as the pulverization time are not particularly limited, and can be appropriately set in consideration of a desired average particle size value.
[0041] 本形態の電解質組成物が重合開始剤を含む場合には、重合処理を施すことにより 、ゲル状の電解質組成物が製造されうる。重合処理の具体的な形態は特に制限され ず、添加される重合開始剤の種類に応じて、適宜選択されうる。例えば、熱重合開始 剤であるァゾ系開始剤が添加される場合には、重合処理として熱処理を施せばよい  [0041] When the electrolyte composition of the present embodiment contains a polymerization initiator, a gel electrolyte composition can be produced by performing a polymerization treatment. The specific form of the polymerization treatment is not particularly limited, and can be appropriately selected depending on the kind of the polymerization initiator to be added. For example, when a azo initiator that is a thermal polymerization initiator is added, heat treatment may be performed as a polymerization treatment.
[0042] 本形態の電解質組成物は、好ましくは、色素増感型太陽電池の電解質層を構成す る電解質として用いられうる。すなわち、本発明の他の形態によれば、透明電極およ び半導体電極が積層されてなる光電極と、対極と、前記光電極の前記半導体電極と 前記対極とによって挟持された、電解質層と、を有する色素増感型太陽電池であつ て、前記電解質層が、上述した電解質組成物を含むことを特徴とする、色素増感型 太陽電池である。以下、図面を参照しながら、本形態の太陽電池の好ましい一実施 形態を説明する。なお、本形態の太陽電池においては、電解質層が上述した電解質 組成物を含むこと以外は、太陽電池について従来公知の形態が同様に採用されうる 。従って、下記の形態および図示する形態のみに、本形態の太陽電池の技術的範 囲が限定されるわけではない。 [0042] The electrolyte composition of the present embodiment can be preferably used as an electrolyte constituting an electrolyte layer of a dye-sensitized solar cell. That is, according to another embodiment of the present invention, a photoelectrode in which a transparent electrode and a semiconductor electrode are laminated, a counter electrode, and an electrolyte layer sandwiched between the semiconductor electrode and the counter electrode of the photoelectrode A dye-sensitized solar cell having Thus, the dye layer is a dye-sensitized solar cell, characterized in that the electrolyte layer contains the above-described electrolyte composition. Hereinafter, a preferred embodiment of the solar cell of the present embodiment will be described with reference to the drawings. In addition, in the solar cell of this embodiment, a conventionally known embodiment can be similarly adopted for the solar cell except that the electrolyte layer includes the above-described electrolyte composition. Therefore, the technical scope of the solar cell of this embodiment is not limited only to the following embodiment and the illustrated embodiment.
[0043] 図 2は、本形態の太陽電池の好ま 、一実施形態を示す断面図である。なお、説 明の都合上、図面の寸法比率は誇張されており、図示する形態が実際とは異なる場 合がある。  FIG. 2 is a cross-sectional view showing a preferred embodiment of the solar cell of the present embodiment. For convenience of explanation, the dimensional ratios in the drawings are exaggerated, and the illustrated form may be different from the actual one.
[0044] 図 2に示す形態において、太陽電池 10は、主として、光電極 100と、対極 200と、ス ぺーサ 300により光電極 100と対極 200との間に挟持された電解質層 400と、力も構 成されている。また、光電極 100は、主として、透明電極 120と、半導体電極 140と、 カゝらなる 2層構造を有し、前記半導体電極 140が、電解質層 400側に配置されてい る。  In the form shown in FIG. 2, solar cell 10 mainly includes photoelectrode 100, counter electrode 200, electrolyte layer 400 sandwiched between photoelectrode 100 and counter electrode 200 by spacer 300, and force. It is configured. The photoelectrode 100 mainly has a two-layer structure consisting of a transparent electrode 120, a semiconductor electrode 140, and the like, and the semiconductor electrode 140 is disposed on the electrolyte layer 400 side.
[0045] 太陽電池 10は、太陽光などの光のエネルギを利用する発電システムである。太陽 電池 10において発電が起こる際には、まず、半導体電極 140に吸着されている増感 色素が、照射された光のエネルギにより励起され、励起した増感色素から半導体電 極 140へと電子が注入される。そして、半導体電極 140に注入された電子は、透明 電極 120に集められて外部に取り出され、外部負荷に対して電気的仕事をなす。以 下、太陽電池 10を構成する各部材について詳細に説明する。  [0045] The solar cell 10 is a power generation system that uses energy of light such as sunlight. When power generation occurs in the solar cell 10, first, the sensitizing dye adsorbed on the semiconductor electrode 140 is excited by the energy of the irradiated light, and electrons are transferred from the excited sensitizing dye to the semiconductor electrode 140. Injected. Then, the electrons injected into the semiconductor electrode 140 are collected by the transparent electrode 120 and taken out to the outside, and perform electrical work on the external load. Hereinafter, each member constituting the solar cell 10 will be described in detail.
[0046] 透明電極 120は、太陽電池 10のエネルギ源である照射光(例えば、太陽光)が入 射する側に配置される電極であって、後述する半導体電極 140とともに光電極 100 を構成する。図 2に示す形態において、透明電極 120は、透明基板 122であるガラス 基板の半導体電極 140側に透明導電膜 124が形成されてなる構成を有する。透明 導電膜 124の構成材料としては、例えば、液晶パネル等に用いられる透明電極が例 示される。力 うな透明電極の形態としては、例えば、フッ素ドープ酸化錫コートガラ ス、インジウム錫ォキシドコートガラス、酸化亜鉛:アルミニウムコートガラス、アンチモ ンドープ酸ィ匕錫コートガラスなどが挙げられる。 [0047] 図 2に示す形態においては、透明電極 124を構成する透明基板 122としてガラス基 板が用いられている力 透明基板 122はその他の材料により構成されてもよい。その 他の材料としては、例えば、透明プラスチック基板、透明無機物結晶体などが挙げら れる。なお、透明電極 120の形状やサイズについては、特に制限されない。また、場 合によっては、透明電極 120の透明基板 122側の面に、反射防止膜など力もなる保 護層(図示せず)がさらに配置されてもよい。 The transparent electrode 120 is an electrode that is disposed on the side on which irradiation light (for example, sunlight) that is an energy source of the solar cell 10 is incident, and constitutes the photoelectrode 100 together with a semiconductor electrode 140 described later. . In the form shown in FIG. 2, the transparent electrode 120 has a configuration in which a transparent conductive film 124 is formed on the semiconductor electrode 140 side of a glass substrate that is the transparent substrate 122. As a constituent material of the transparent conductive film 124, for example, a transparent electrode used for a liquid crystal panel or the like is illustrated. Examples of a strong transparent electrode include fluorine-doped tin oxide coated glass, indium tin oxide coated glass, zinc oxide: aluminum coated glass, and antimony doped oxide-tin coated glass. In the form shown in FIG. 2, a force in which a glass substrate is used as the transparent substrate 122 constituting the transparent electrode 124 The transparent substrate 122 may be made of other materials. Examples of other materials include a transparent plastic substrate and a transparent inorganic crystal. Note that the shape and size of the transparent electrode 120 are not particularly limited. In some cases, a protective layer (not shown) having a force such as an antireflection film may be further disposed on the surface of the transparent electrode 120 on the transparent substrate 122 side.
[0048] 透明電極 120としては、市販の商品を購入したものであってもよいし、自ら透明基 板 122の表面に透明導電膜 124を形成したものであってもよい。透明基板 122の表 面に透明導電膜 124を形成する手法としては、例えば、スプレーコーティング法、真 空蒸着法、スパッタリング法、 CVD法、ゾルゲル法などの薄膜形成技術が挙げられる  As the transparent electrode 120, a commercially available product may be purchased, or a transparent conductive film 124 may be formed on the surface of the transparent substrate 122. Examples of the method for forming the transparent conductive film 124 on the surface of the transparent substrate 122 include thin film formation techniques such as spray coating, vacuum deposition, sputtering, CVD, and sol-gel.
[0049] 透明電極 120の透明導電膜 124側の面には、図 2に示すように、半導体電極 140 が配置されている。半導体電極 140は、後述する電解質層に含まれる電解質と接触 し、同じく後述する増感色素から注入された電子を透明電極 120へと伝達するため の手段として機能する。半導体電極 120を構成する材料は特に制限されないが、例 えば、従来公知の酸ィ匕物半導体粒子が挙げられる。具体的には、酸化チタン、酸ィ匕 亜鉛、酸化錫、酸化ニオブ、酸化インジウム、酸化タングステン、酸ィ匕ジルコニウム、 酸化ランタン、酸ィ匕タンタル、チタン酸ストロンチウム、チタン酸バリウムが挙げられる 。なかでも、薬品に対する長期安定性が高いという観点カゝらは、アナターゼ型ニ酸化 チタンが好ましく用いられる。酸ィ匕物半導体粒子の平均粒子径は特に制限されない 力 好ましくは 10〜30nm程度である。 As shown in FIG. 2, a semiconductor electrode 140 is arranged on the surface of the transparent electrode 120 on the transparent conductive film 124 side. The semiconductor electrode 140 is in contact with an electrolyte contained in an electrolyte layer, which will be described later, and functions as a means for transmitting electrons injected from a sensitizing dye, which will be described later, to the transparent electrode 120. The material constituting the semiconductor electrode 120 is not particularly limited, and examples thereof include conventionally known oxide semiconductor particles. Specific examples include titanium oxide, zinc oxide, tin oxide, niobium oxide, indium oxide, tungsten oxide, zirconium oxide, lanthanum oxide, tungsten oxide, strontium titanate, and barium titanate. Among them, anatase-type titanium dioxide is preferably used from the viewpoint of high long-term stability against chemicals. The average particle size of the oxide semiconductor particles is not particularly limited, and is preferably about 10 to 30 nm.
[0050] 透明電極 120の透明導電膜 124側の面に半導体電極 140を形成する手法として は、例えば、酸化物半導体粒子を含む分散液を調製し、当該分散液を透明導電膜 1 24の表面に塗布し、必要に応じて乾燥させ、その後に焼成するという手法が挙げら れる。  [0050] As a method of forming the semiconductor electrode 140 on the surface of the transparent electrode 120 on the transparent conductive film 124 side, for example, a dispersion liquid containing oxide semiconductor particles is prepared, and the dispersion liquid is applied to the surface of the transparent conductive film 124. For example, it may be applied to the substrate, dried as necessary, and then fired.
[0051] 分散液を調製するには、酸化物半導体粒子、および必要に応じてその他の添加剤  [0051] To prepare the dispersion, oxide semiconductor particles, and other additives as required
(例えば、界面活性剤や粘度調節剤など)を、適当な溶媒に添加し、撹拌により均一 に分散させればよい。溶媒は特に制限されないが、例えば、水、有機溶媒、およびこ れらの混合溶媒などが広く用いられうる。得られた分散液の塗布手段、得られた塗膜 の乾燥および焼成手段についても特に制限はなぐ従来公知の手段が適宜選択さ れて用いられうる。 (For example, a surfactant, a viscosity modifier, etc.) may be added to an appropriate solvent and uniformly dispersed by stirring. The solvent is not particularly limited, but examples thereof include water, organic solvents, and solvents. These mixed solvents can be widely used. The means for applying the obtained dispersion and the means for drying and baking the obtained coating film may be appropriately selected from conventionally known means without particular limitations.
[0052] 半導体電極 140の構成材料 (例えば、アナターゼ型ニ酸化チタン)の粒子表面に は、増感色素(図示せず)が付着している。この増感色素は、太陽光のような照射光( 好ましくは、可視光領域〜赤外光領域の波長、より好ましくは 420〜800nmの波長 を有する)の光エネルギにより励起され、基底状態に戻る際に、半導体電極 140の構 成材料の粒子に電子を伝達する機能を有する。なお、半導体電極 140へ電子を渡し た後の増感色素にはホール (h+)が残るが、このホールは後述する電解質層 400中 の電解質に含まれる酸化還元対の還元体 (例えば、 Γ)を、酸ィ匕体 (例えば、 I―)へ  A sensitizing dye (not shown) is attached to the particle surface of the constituent material of the semiconductor electrode 140 (for example, anatase type titanium dioxide). The sensitizing dye is excited by light energy of irradiation light such as sunlight (preferably having a wavelength in the visible light region to an infrared light region, more preferably 420 to 800 nm), and returns to a ground state. At this time, the semiconductor electrode 140 has a function of transmitting electrons to the particles of the constituent material. It should be noted that holes (h +) remain in the sensitizing dye after the electrons are transferred to the semiconductor electrode 140, but this hole is a reductant of a redox pair (for example, Γ) contained in the electrolyte in the electrolyte layer 400 described later. To an acid body (for example, I-)
3 と酸化することにより消滅する。  3 disappears by oxidation.
[0053] 増感色素の具体的な形態は、上記の機能を有するのであれば特に制限されず、従 来公知の形態が適宜採用されうる。増感色素の一例としては、例えば、金属錯体ゃ 有機色素が挙げられる。金属錯体としては、例えば、 N3色素 (ルテニウム(2, 2'ービ ピリジルー 4, 4,ージカルボキシレート) (NCS) · 2Η 0)、 N719色素(ルテニウム( [0053] The specific form of the sensitizing dye is not particularly limited as long as it has the above function, and conventionally known forms can be appropriately employed. Examples of sensitizing dyes include metal complexes and organic dyes. Examples of metal complexes include N3 dye (ruthenium (2, 2'-bipyridylo 4, 4, -dicarboxylate) (NCS) · 2Η 0), N719 dye (ruthenium (
2 2 2  2 2 2
2, 2 '—ビビリジル一 4, 4'—ジカルボキシレート) (NCS) · 2 (テトラプチルアンモ- 2, 2'-bibilidyl 1,4'-dicarboxylate) (NCS) · 2 (tetraptyl ammo-
2 2 twenty two
ゥム))などが挙げられ、有機色素としては、例えば、 ΝΚΧ— 2877クマリン色素 (株式 会社林原生物化学研究所製)、 D— 102メロシアニン色素 (三菱製紙株式会社製)、 D— 149インドリン色素(三菱製紙株式会社製)などが挙げられる。その他の増感色 素が用いられても、勿論よい。  Examples of organic dyes include ΝΚΧ-2877 coumarin dye (produced by Hayashibara Biochemical Laboratories Co., Ltd.), D-102 merocyanine dye (produced by Mitsubishi Paper Industries, Ltd.), D-149 indoline dye. (Mitsubishi Paper Co., Ltd.). Of course, other sensitizing dyes may be used.
[0054] 半導体電極 140の構成材料の粒子表面に増感色素を付着させる手法は特に制限 されず、化学吸着法や物理吸着法などの従来公知の手法が用いられうる。物理吸着 法の一例を挙げると、まず、増感色素を適当な溶媒に添加して色素溶液を調製する 。溶媒は特に制限されないが、ァセトニトリル、プチ口-トリル等の-トリル系溶媒; ter tーブタノール、エタノール等のアルコール系溶媒;およびこれらの混合溶媒などが用 いられうる。次いで、この色素溶液に、半導体電極 140を浸漬させる。さらに必要に 応じて乾燥処理を施すことにより、半導体電極 140の構成材料の粒子表面に増感色 素が付着しうる。なお、浸漬時に色素溶液を加熱還流させると、増感色素の吸着が 促進されうる。 [0054] The method for attaching the sensitizing dye to the particle surface of the constituent material of the semiconductor electrode 140 is not particularly limited, and a conventionally known method such as a chemical adsorption method or a physical adsorption method may be used. As an example of the physical adsorption method, first, a dye solution is prepared by adding a sensitizing dye to an appropriate solvent. The solvent is not particularly limited, but -tolyl solvents such as acetonitrile and petit-tolyl; alcohol solvents such as tert-butanol and ethanol; and mixed solvents thereof can be used. Next, the semiconductor electrode 140 is immersed in the dye solution. Further, if necessary, a sensitizing dye can be attached to the particle surface of the constituent material of the semiconductor electrode 140 by performing a drying treatment. When the dye solution is heated to reflux during immersion, the sensitizing dye adsorbs. Can be promoted.
[0055] 対極 200は、光電極 100に対向する側(すなわち、照射光が入射する側に対向す る側)に配置される電極である。対極 200は、後述する電解質層 400中の電解質に 含まれる酸化還元対の酸化体 (例えば、 I ")  The counter electrode 200 is an electrode disposed on the side facing the photoelectrode 100 (that is, the side facing the side on which the irradiation light is incident). The counter electrode 200 is an oxidant (for example, I ") of a redox pair contained in the electrolyte in the electrolyte layer 400 described later.
3 に電子を渡す機能を有する。これにより 3 has a function to deliver electrons. This
、当該酸化体は、還元体 (例えば、 Γ)へと還元される。なお、還元により生成する還 元体は、上述したように半導体電極 140の表面にて増感色素の有するホールにより 酸化され、酸化体へと戻る。これを繰り返すことにより、発電サイクルが進行するので ある。 The oxidant is reduced to a reductant (eg, Γ). In addition, the reduced body produced | generated by reduction | restoration is oxidized by the hole which a sensitizing dye has on the surface of the semiconductor electrode 140 as mentioned above, and returns to an oxidized body. By repeating this, the power generation cycle proceeds.
[0056] 対極 200を構成する材料としては、例えば、液晶パネルやシリコン太陽電池などに 用いられているのと同様の材料が用いられうる。具体的には、上記の透明電極 120 について例示したのと同様の材料が用いられうる。例えば、透明基板と透明導電膜と が積層されてなる構成が例示される。カゝような形態の場合には、透明導電膜が電解 質層 400側に配置される。  [0056] As a material constituting the counter electrode 200, for example, a material similar to that used for a liquid crystal panel, a silicon solar cell, or the like can be used. Specifically, the same material as exemplified for the transparent electrode 120 may be used. For example, a configuration in which a transparent substrate and a transparent conductive film are laminated is exemplified. In the case of a hook-like form, the transparent conductive film is disposed on the electrolyte layer 400 side.
[0057] 対極 200の電解質層 400側の表面 (対極 200が透明基板と透明導電膜との積層構 造を有する場合には、透明導電膜の表面)には、図 2に示すように、金属薄膜電極 2 20が配置されることが好ましい。力 うな金属薄膜電極 220を配置することにより、対 極 200と電解質層 400中の酸化還元対との間の電子の授受がスムーズに進行しうる 。金属薄膜電極 220を構成する材料は特に制限されないが、例えば、白金、金など の金属や、炭素、導電性高分子などの導電性材料が挙げられる。なかでも、白金を 用いて金属薄膜電極 220を構成すると、電子の授受がより一層スムーズに行われうる  [0057] On the surface of the counter electrode 200 on the electrolyte layer 400 side (when the counter electrode 200 has a laminated structure of a transparent substrate and a transparent conductive film, the surface of the transparent conductive film), as shown in FIG. A thin film electrode 220 is preferably disposed. By arranging the strong metal thin-film electrode 220, transfer of electrons between the counter electrode 200 and the oxidation-reduction pair in the electrolyte layer 400 can proceed smoothly. Although the material which comprises the metal thin film electrode 220 is not restrict | limited in particular, For example, electroconductive materials, such as metals, such as platinum and gold | metal | money, carbon, and a conductive polymer, are mentioned. In particular, when the metal thin film electrode 220 is made of platinum, the transfer of electrons can be performed more smoothly.
[0058] 対極 200としては、市販の商品を購入したものであってもよいし、透明電極 120に ついて上述した作製方法と同様の方法により、自ら作製したものであってもよい。 As the counter electrode 200, a commercially available product may be purchased, or the transparent electrode 120 may be produced by a method similar to the production method described above.
[0059] 対極 200の電解質層 400側の表面に金属薄膜電極 220を形成する手法は特に制 限されず、透明基板 122の表面に透明導電膜 124を形成する手法として上述した手 法 (例えば、スパッタリング法)が同様に用いられうる。 [0059] The method of forming the metal thin film electrode 220 on the surface of the counter electrode 200 on the electrolyte layer 400 side is not particularly limited, and the method described above as a method of forming the transparent conductive film 124 on the surface of the transparent substrate 122 (for example, Sputtering methods) can be used as well.
[0060] スぺーサ 300は、後述する電解質層 400を保持する空間を提供するための手段と して機能する。スぺーサ 300を構成する材料は特に制限されないが、例えば、シリカ ビーズ、榭脂製ビーズなどが挙げられる。これらの材料は通常、電解質層 400からの 電解質の漏洩を防止する目的で、ノインダにより封止される。スぺーサの構成材料を 封止するためのノインダは特に制限されないが、例えば、エポキシ榭脂、シリコーン 榭脂、ォレフィン系榭脂、アイオノマー榭脂などが挙げられる。 Spacer 300 functions as a means for providing a space for holding electrolyte layer 400 described later. The material constituting the spacer 300 is not particularly limited. For example, silica Examples thereof include beads and rosin beads. These materials are usually sealed with a noda for the purpose of preventing electrolyte leakage from the electrolyte layer 400. The noinder for sealing the spacer constituent material is not particularly limited, and examples thereof include epoxy resin, silicone resin, olefin-based resin, and ionomer resin.
[0061] 電解質層 400は電解質を含む。本形態の太陽電池は、上述した電解質組成物を 含む点に特徴を有する。この電解質組成物の具体的な形態については、上述した通 りであるため、ここでは詳細な説明を省略する。  [0061] The electrolyte layer 400 includes an electrolyte. The solar cell of this embodiment is characterized in that it includes the above-described electrolyte composition. Since the specific form of the electrolyte composition is as described above, detailed description thereof is omitted here.
[0062] 上述したように、本発明の一形態により提供される電解質組成物は所定の平均粒 子径を有する難溶性 CDIを含み、これらが媒体中に分散されてなる構成を有する。 酸化還元対として作用する I—および  [0062] As described above, the electrolyte composition provided by one embodiment of the present invention includes a hardly soluble CDI having a predetermined average particle diameter, and these are dispersed in a medium. I—and acting as a redox couple
3 Γのうち、暗褐色を呈する成分である I—は、電  3 Of Γ, I—
3 解質中では主に CDIに包接された形態で存在すると考えられている。従って、 CDI に包接されずに液中に溶解している I—の  3 It is thought that during dismantling, it exists mainly in the form of inclusion in CDI. Therefore, it is not included in CDI and dissolved in the liquid.
3 濃度は極めて低ぐ発電反応が進行する のに必要な最低限の濃度である。このため、当該電解質組成物は、従来の太陽電池 用電解質組成物と比較して、ヨウ素に起因する暗褐色の呈色が著しく低減されてい る。従って、当該電解質組成物を含む本形態の太陽電池の電解質層 400において もまた、ヨウ素に起因する呈色が低減されうる。よって本形態の太陽電池は、従来そ のヨウ素色のために配置することが困難であった場所にも配置されることが可能とな る。すなわち、本形態によれば、デザイン性能に優れる太陽電池が提供されうる。  3 Concentration is the minimum concentration necessary for the power generation reaction to proceed to a very low level. For this reason, in the electrolyte composition, the dark brown coloration caused by iodine is significantly reduced as compared with the conventional electrolyte composition for solar cells. Therefore, also in the electrolyte layer 400 of the solar cell of the present embodiment including the electrolyte composition, coloration caused by iodine can be reduced. Therefore, the solar cell of this embodiment can be placed at a place where it has been difficult to place the solar cell because of its iodine color. That is, according to this embodiment, a solar cell with excellent design performance can be provided.
[0063] また、本形態の太陽電池は、耐久性にも優れる。これは以下の理由によるものと推 定される。すなわち、従来の太陽電池においては、電解質中に存在する I [0063] In addition, the solar cell of this embodiment is also excellent in durability. This is presumed to be due to the following reasons. In other words, in conventional solar cells, I present in the electrolyte
3—の一部が Part of 3—
I "→1 +厂の反応により分解し、生成した Iが電解質層の外部に消化してしまうといIt is decomposed by the reaction of I "→ 1 + 厂 and the generated I is digested outside the electrolyte layer.
3 2 2 3 2 2
う問題があった。これに対し、本形態の太陽電池においては、上述したように、発電 反応の進行に必要な I—のみが電解質中に溶解しており、その他の I—は CDIに包接  There was a problem. On the other hand, in the solar cell of this embodiment, as described above, only I— necessary for the progress of the power generation reaction is dissolved in the electrolyte, and other I— is included in CDI.
3 3  3 3
された形態で存在しているために、従来問題となっていた上記のような I  The above I, which has been a problem in the past due to the existence of
2の昇華が抑 制されうる。その結果、太陽電池の耐久性が向上しうるのである。  Sublimation of 2 can be suppressed. As a result, the durability of the solar cell can be improved.
[0064] 以上、本発明により提供される電解質組成物の用途を、色素増感型太陽電池を例 に挙げて詳細に説明したが、当該電解質組成物が適用可能な太陽電池は色素増感 型太陽電池のみには限定されない。本発明により提供される電解質組成物は、ヨウ 素レドックス媒体を用いるシステムに広く適用可能であり、例えば電池以外にも色素 増感光触媒との組み合わせによる水分解システムなどにも適用されうる。また、本発 明により提供される電池は、従来用いられている単結晶シリコン型太陽電池、多結晶 シリコン型太陽電池、非晶質シリコン型太陽電池、化合物半導体太陽電池などと並 列または直列に接続されてなる組電池として用いられてもよい。なお、これらの電池 やシステムの具体的な形態は特に制限されず、従来公知の知見が適宜参照されうる 実施例 [0064] Although the use of the electrolyte composition provided by the present invention has been described in detail above by taking a dye-sensitized solar cell as an example, the solar cell to which the electrolyte composition can be applied is a dye-sensitized solar cell. It is not limited only to solar cells. The electrolyte composition provided by the present invention comprises The present invention can be widely applied to a system using an elementary redox medium. For example, it can be applied to a water splitting system using a combination with a dye-sensitized photocatalyst in addition to a battery. In addition, the battery provided by the present invention is parallel or in series with conventionally used single crystal silicon solar cells, polycrystalline silicon solar cells, amorphous silicon solar cells, compound semiconductor solar cells, etc. It may be used as an assembled battery that is connected. The specific forms of these batteries and systems are not particularly limited, and conventionally known knowledge can be appropriately referred to.
[0065] 次に実施例を用いて本発明をより詳細に説明するが、下記の実施例は本発明の技 術的範囲に何ら影響を及ぼすことはない。  [0065] Next, the present invention will be described in more detail with reference to examples. However, the following examples do not affect the technical scope of the present invention.
[0066] <実施例 1 > <Example 1>
まず、溶媒として、 3—メトキシプロピオ-トリル(3— MPN)を準備した。  First, 3-methoxypropio-tolyl (3-MPN) was prepared as a solvent.
[0067] 一方、難溶性 CDIとして、ヨウ素一 β—シクロデキストリン包接ィ匕合物(日宝化学株 式会社製、「BCDI— 20」)を準備した。 25°Cの 3— MPNに対する当該 CDIの溶解 度は、 0. lmgZmL以下である。 [0067] On the other hand, iodine-β-cyclodextrin inclusion complex (“BCDI-20”, manufactured by Niho Ho Chemical Co., Ltd.) was prepared as poorly soluble CDI. The solubility of CDI in 3-MPN at 25 ° C is less than 0.1 mgZmL.
[0068] 次 、で、準備した難溶性 CDIを、ボールミルを用 、て粉砕し、微粉末とした。得られ た微粉末の平均粒子径を、レーザー回折 Z散乱法により測定したところ、 で めつに。 Next, the hardly soluble CDI prepared in the above was pulverized using a ball mill to obtain a fine powder. The average particle size of the fine powder obtained was measured by the laser diffraction Z-scattering method.
[0069] 上記で準備した溶媒である 3— MPNに、上記で得た難溶性 CDI (BCDI— 20)の 微粉末 (0. 05M)、ヨウ化物塩であるヨウ化リチウム (Lil) (0. 1M)、塩基である 4— t ert ブチルピリジン (4 TBP) (0. 5M)、および有機溶融塩化合物である 1 プロ ピル— 2, 3 ジメチルイミダゾリゥム—ヨウ素(DMPII) (0. 6M)を添カ卩し、撹拌によ り均一な分散液を得て、これを本実施例の電解質組成物 (電解液)とした。  [0069] To 3-MPN, the solvent prepared above, fine powder (0.05 M) of the poorly soluble CDI (BCDI-20) obtained above, lithium iodide (Lil) (0. 1M), the base 4-tert butyl pyridine (4 TBP) (0.5M), and the organic molten salt compound 1-propyl-2,3 dimethylimidazolium-iodine (DMPII) (0.6M) Then, a uniform dispersion was obtained by stirring, and this was used as the electrolyte composition (electrolyte) of this example.
[0070] <実施例 2および 3 >  <Examples 2 and 3>
電解液を調製する際のヨウ素— β—シクロデキストリン包接ィ匕合物の濃度を、 0. 1 Μ (実施例 2)、および 0. 2Μ (実施例 3)としたこと以外は、上記の実施例 1と同様の 手法により、均一な分散液を得て、これらを各実施例の電解液とした。  Except that the concentration of the iodine-β-cyclodextrin inclusion complex at the time of preparing the electrolytic solution was set to 0.1% (Example 2) and 0.2% (Example 3). Uniform dispersions were obtained by the same method as in Example 1, and these were used as the electrolytic solutions in the Examples.
[0071] <比較例 1 > ヨウ素— β—シクロデキストリン包接ィ匕合物に代えて、ヨウ素単体 (I )を 0. 05Μの [0071] <Comparative Example 1> Instead of iodine-β-cyclodextrin inclusion compound, simple iodine (I)
2  2
濃度で添加したこと以外は、上記の実施例 1と同様の手法により、 Β音褐色を示す均一 な分散液を得て、これを比較例 1の電解液とした。  A uniform dispersion exhibiting a roaring brown color was obtained in the same manner as in Example 1 except that it was added at a concentration, and this was used as the electrolyte of Comparative Example 1.
[0072] <比較例 2 >  [0072] <Comparative Example 2>
ヨウ素一 β—シクロデキストリン包接ィ匕合物に代えて、ヨウ素一メチル一 β—シクロ デキストリン包接ィ匕合物(日宝化学株式会社製、「MCDI」)を 77mgZmL (約 0. 05 M)の濃度で添加したこと以外は、上記の実施例 1と同様の手法により、 B音褐色を示 す均一な溶液を得て、これを比較例 2の電解液とした。本比較例で得られた電解液 につ ヽて吸光度測定を行ったところ、上記の実施例 1で得られた電解液と同一の挙 動を示した。ただし、吸光度そのものの値は、全波長領域に亘つて実施例 1の場合の 2. 6倍であった。  Instead of iodine-β-cyclodextrin inclusion compound, 77 mgZmL (about 0.05 M ) Except that it was added in the same manner as in Example 1 above, a uniform solution showing B-brown color was obtained, and this was used as the electrolyte of Comparative Example 2. When the electrolyte solution obtained in this comparative example was subjected to absorbance measurement, it showed the same behavior as the electrolyte solution obtained in Example 1 above. However, the value of absorbance itself was 2.6 times that in Example 1 over the entire wavelength region.
[0073] <比較例 3 >  [0073] <Comparative Example 3>
上記の比較例 1で得られた電解液に、 j8—シクロデキストリンを 57mg/mL (0. 05 M)の濃度で添加し、暗褐色を示す均一な分散液を得て、これを比較例 3の電解液と した。なお、本比較例で得られた電解液については、後述する吸光度の測定を行わ なかったが、目視により経時的な色調の変化は確認されず、 j8—シクロデキストリン の添加にもかかわらず暗褐色が維持された。このことから、ヨウ素単体を含む電解液 にシクロデキストリンを別途添加しても、電解液の色調を改善させるほどの効果は期 待できな!/ヽことが示される。  To the electrolyte obtained in Comparative Example 1 above, j8-cyclodextrin was added at a concentration of 57 mg / mL (0.05 M) to obtain a uniform dispersion showing a dark brown color. The electrolyte solution was as follows. The electrolyte solution obtained in this Comparative Example was not measured for the absorbance described later, but the change in color tone with time was not visually confirmed, and the dark brown color was observed despite the addition of j8-cyclodextrin. Was maintained. This indicates that even if cyclodextrin is separately added to the electrolyte containing simple iodine, the effect of improving the color tone of the electrolyte cannot be expected!
[0074] <可視光に対する吸光度の測定 >  [0074] <Measurement of Absorbance for Visible Light>
上記の実施例 1〜3並びに比較例 1および 2で得られた電解液について、可視光に 対する吸光度を測定した。  For the electrolyte solutions obtained in Examples 1 to 3 and Comparative Examples 1 and 2, the absorbance to visible light was measured.
[0075] 吸光度の測定には、 UV— VIS吸光光度検出器 (UV— 2450 ;株式会社島津製作 所製)を用い、照射光の波長を 400〜800nmの範囲で走査した。検出器にセットし た試料セルの光照射方向の長さは 10mmであった。なお、ヨウ素化合物であるヨウ素 - β—シクロデキストリンおよびヨウ化リチウムを含まないこと以外は上記の実施例 1と 同様の手法により得た溶液を、コントロールサンプルとして用いた。吸光度測定により 得られた結果を図 3に示す。 [0076] 図 3に示す結果について、増感色素の最適波長である 550nmにおける吸光度を 比較すると、比較例の電解液に比べて、実施例の電解液の吸光度は著しく低減して いることがわかる。また、当然ではあるが、添加する CDIの濃度が低いほど、吸光度 はより小さくなることがわかる。従って、本発明により提供される電解質組成物によれ ば、太陽電池セルにおいて、ヨウ素に起因する呈色が著しく低減されうることが示唆さ れる。 [0075] For the measurement of absorbance, a UV-VIS absorbance detector (UV-2450; manufactured by Shimadzu Corporation) was used, and the wavelength of irradiated light was scanned in the range of 400 to 800 nm. The length of the sample cell set in the detector in the direction of light irradiation was 10 mm. A solution obtained by the same method as in Example 1 except that iodine-β-cyclodextrin and lithium iodide, which are iodine compounds, were not used was used as a control sample. Figure 3 shows the results obtained by measuring the absorbance. [0076] When the absorbance at 550 nm, which is the optimum wavelength of the sensitizing dye, is compared with the results shown in FIG. 3, it can be seen that the absorbance of the electrolyte solution of the example is significantly reduced compared to the electrolyte solution of the comparative example. . Of course, the lower the concentration of CDI added, the lower the absorbance. Therefore, according to the electrolyte composition provided by the present invention, it is suggested that the coloration caused by iodine can be remarkably reduced in the solar battery cell.
[0077] <光電変換効率の測定 >  [0077] <Measurement of photoelectric conversion efficiency>
上記で得た実施例 1および比較例 1の電解液を用い、以下の手法により色素増感 型太陽電池を作製し、光電変換効率を測定した。  Using the electrolyte solutions of Example 1 and Comparative Example 1 obtained above, dye-sensitized solar cells were prepared by the following method, and the photoelectric conversion efficiency was measured.
[0078] まず、透明電極として、導電性ガラス基板 (日本板硝子株式会社製、厚さ: 1mm)を 準備した。当該ガラス基板は、図 2に示すように、透明基板および透明導電膜 (厚さ: 750 A)の 2層から構成される。次いで、準備したガラス基板の片面に、アナターゼ型 二酸ィ匕チタン粒子(平均粒子径: 21nm)を溶媒である硝酸水溶液 (pH7. 0)に分散 させた分散液 (粒子濃度: 30質量%)を塗布し、 500°Cにて 30分間焼成することによ り、ガラス基板の表面に二酸ィ匕チタン力もなる半導体電極 (厚さ: 10 m)を形成した 。その後、 0. 03質量0 /0の N3色素を含有するァセトニトリル Zt—ブタノール混合溶 液 (体積比で 1 : 1)中に、半導体電極形成後のガラス基板を浸漬させ、 30°Cにて 12 時間放置し、半導体電極表面に N3色素を吸着させて、光電極を作製した。 First, a conductive glass substrate (manufactured by Nippon Sheet Glass Co., Ltd., thickness: 1 mm) was prepared as a transparent electrode. As shown in FIG. 2, the glass substrate is composed of two layers: a transparent substrate and a transparent conductive film (thickness: 750 A). Next, a dispersion (particle concentration: 30% by mass) in which anatase-type titanium dioxide particles (average particle size: 21 nm) are dispersed in a nitric acid aqueous solution (pH 7.0) as a solvent on one side of the prepared glass substrate Was applied and baked at 500 ° C. for 30 minutes to form a semiconductor electrode (thickness: 10 m) having a titanium dioxide-titanium force on the surface of the glass substrate. Then, 0. Asetonitoriru Zt- butanol mixed solvent solution containing 03 mass 0/0 of N3 dye (volume ratio 1: 1) during the immersed glass substrate after the semiconductor electrode formation, 12 at 30 ° C The photoelectrode was produced by allowing the N3 dye to be adsorbed on the surface of the semiconductor electrode by allowing it to stand for a period of time.
[0079] 一方、上記で準備したのと同様の導電性ガラス基板をもう 1枚準備し、当該基板の 片面に、スパッタリング法により白金微粒子を担持させて金属薄膜電極を形成し、対 極を作製した。  [0079] On the other hand, another conductive glass substrate similar to that prepared above was prepared, and platinum fine particles were supported on one side of the substrate by sputtering to form a metal thin film electrode, thereby producing a counter electrode. did.
[0080] 上記で作製した光電極および対極を、半導体電極および白金担持層が向かい合う ように、スぺーサ (厚さ: 30 m)を介して積層した。次 、で、実施例 1または比較例 1 で得た電解液を、アイオノマー榭脂フィルム力もなるスぺーサにより提供された間隙 に注入し、色素増感型太陽電池を完成させた。  [0080] The photoelectrode and counter electrode produced above were laminated via a spacer (thickness: 30 m) so that the semiconductor electrode and the platinum support layer faced each other. Next, the electrolytic solution obtained in Example 1 or Comparative Example 1 was injected into the gap provided by the spacer having ionomer resin film power, thereby completing the dye-sensitized solar cell.
[0081] 上記で作製した 2個の色素増感型太陽電池について、光電変換効率を測定した。  [0081] The photoelectric conversion efficiency of the two dye-sensitized solar cells prepared above was measured.
具体的には、ソーラシミュレータ (YSS— 80 ;山下電装株式会社製)を用いて、キセノ ンランプ光源からの擬似太陽光を AMフィルタ (AMI. 5)を通して照射し、電流ー電 圧特性を測定した。この際、照射光の強度は、 lOOmWZcm2であった。なお、光電 変換効率 r?は、下記数式 1により算出した。 Specifically, using a solar simulator (YSS-80; manufactured by Yamashita Denso Co., Ltd.), simulated sunlight from a xenon lamp light source was irradiated through an AM filter (AMI. 5), and current- The pressure characteristics were measured. At this time, the intensity of irradiated light was lOOmWZcm 2 . The photoelectric conversion efficiency r? Was calculated by the following formula 1.
[0082] [数 1] [0082] [Equation 1]
[数式 1 ] η (%) = 。c sc Π · x l 0 0[Formula 1] η (%) =. c sc Π xl 0 0
Figure imgf000018_0001
Figure imgf000018_0001
[0083] 式中、 V は開放電圧 (V)であり、 J は短絡電流密度 (mAZcm2)であり、 F. F.は [0083] where V is the open circuit voltage (V), J is the short circuit current density (mAZcm 2 ), and FF is
OC SC  OC SC
曲線因子 (Filling Factor)であり、 Pは照射光強度 (mWZcm2)である。 Filling factor, P is irradiation light intensity (mWZcm 2 ).
0  0
[0084] その結果、比較例 1の電解液を用いた太陽電池の変換効率は 5. 78%であったの に対し、実施例 1の電解液を用いた太陽電池の変換効率は 5. 55%と、ほぼ同程度 の変換効率を示した。  As a result, the conversion efficiency of the solar cell using the electrolytic solution of Comparative Example 1 was 5.78%, whereas the conversion efficiency of the solar cell using the electrolytic solution of Example 1 was 5.55. %, The conversion efficiency was almost the same.
[0085] よって、ヨウ素に起因する呈色を低減させるベぐ電解質の組成を本発明のような組 成とした場合であっても、これに伴って変換効率が低下する虡はほとんどないことが 示唆される。  [0085] Therefore, even when the composition of the electrolyte that reduces the coloration caused by iodine is configured as in the present invention, there is almost no possibility that the conversion efficiency decreases with this. It is suggested.
[0086] <比較例 4>  [0086] <Comparative Example 4>
平均粒子径が 30 μ mの BCDI— 20を用 、たこと以外は、上記の実施例 1と同様の 手法により、均一な分散液を得て、これを比較例 4の電解液とした。  A uniform dispersion was obtained in the same manner as in Example 1 except that BCDI-20 having an average particle size of 30 μm was used, and this was used as the electrolyte of Comparative Example 4.
[0087] 上記で得た比較例 4の電解液を用いたこと以外は、上記の「光電変換効率の測定」 の欄に記載したのと同様の手法により、色素増感型太陽電池の作製を試みた。  [0087] A dye-sensitized solar cell was prepared by the same method as described in the above-mentioned "Measurement of photoelectric conversion efficiency" except that the electrolytic solution of Comparative Example 4 obtained above was used. Tried.
[0088] その結果、アイオノマー榭脂フィルム力もなるスぺーサにより提供された間隙力 電 解液を注入しょうとしても、 BCDI— 20は全て均一には注入されず、しかも、半導体 電極を構成する二酸化チタン表面の損傷が認められた。これは、電解液中の BCDI —20の粒子径と、スぺーサにより提供された間隙の厚さとが略同一であることに起因 するものと推測される。  [0088] As a result, even if an attempt was made to inject the pore force electrolyte provided by the spacer having ionomer resin film strength, not all BCDI-20 was injected uniformly, and moreover, the dioxide dioxide constituting the semiconductor electrode. Damage to the titanium surface was observed. This is presumed to be due to the fact that the particle size of BCDI-20 in the electrolyte is approximately the same as the thickness of the gap provided by the spacer.
[0089] なお、本出願は、 2005年 5月 19日に出願された日本特許出願第 2005— 14700 5号に基づいており、その開示内容は、参照により全体として引用されている。  [0089] This application is based on Japanese Patent Application No. 2005-147005 filed on May 19, 2005, the disclosure of which is incorporated by reference in its entirety.

Claims

請求の範囲 The scope of the claims
[1] 媒体と、前記媒体に対して難溶性で、平均粒子径が 20 m以下のヨウ素ーシクロ デキストリン包接化合物と、を含むことを特徴とする、電解質組成物。  [1] An electrolyte composition comprising a medium and an iodine-cyclodextrin inclusion compound which is hardly soluble in the medium and has an average particle diameter of 20 m or less.
[2] 前記ヨウ素—シクロデキストリン包接ィ匕合物を構成するシクロデキストリンが、 β—シ クロデキストリンである、請求項 1に記載の電解質組成物。 [2] The electrolyte composition according to claim 1, wherein the cyclodextrin constituting the iodine-cyclodextrin inclusion complex is β-cyclodextrin.
[3] 前記ヨウ素—シクロデキストリン包接ィ匕合物の濃度力 媒体の全量に対して 1〜30 質量%である、請求項 1または 2に記載の電解質組成物。 [3] The electrolyte composition according to claim 1 or 2, wherein the concentration power of the iodine-cyclodextrin inclusion complex is 1 to 30% by mass relative to the total amount of the medium.
[4] 液状組成物である、請求項 1〜3のいずれか 1項に記載の電解質組成物。 [4] The electrolyte composition according to any one of claims 1 to 3, which is a liquid composition.
[5] 前記液状組成物を構成する溶媒が、二トリル系溶媒、ラ外ン系溶媒、カーボネート 系溶媒、グリコール系溶媒、およびイオン性液体力 なる群力 選択される 1種または[5] The solvent constituting the liquid composition is selected from a group force consisting of a nitrile solvent, a Rathan solvent, a carbonate solvent, a glycol solvent, and an ionic liquid force.
2種以上である、請求項 4に記載の電解質組成物。 The electrolyte composition according to claim 4, wherein there are two or more kinds.
[6] 透明電極および半導体電極が積層されてなる光電極と、 [6] a photoelectrode formed by laminating a transparent electrode and a semiconductor electrode;
対極と、  With the counter electrode,
前記光電極の前記半導体電極と前記対極とによって挟持された、電解質層と、 を有する色素増感型太陽電池であって、  An electrolyte layer sandwiched between the semiconductor electrode and the counter electrode of the photoelectrode, and a dye-sensitized solar cell,
前記電解質層が、請求項 1〜5のいずれか 1項に記載の電解質組成物を含むこと を特徴とする、色素増感型太陽電池。  The dye-sensitized solar cell, wherein the electrolyte layer includes the electrolyte composition according to any one of claims 1 to 5.
PCT/JP2006/310049 2005-05-19 2006-05-19 Electrolyte composition WO2006123785A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007516354A JP4982361B2 (en) 2005-05-19 2006-05-19 Electrolyte composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005147005 2005-05-19
JP2005-147005 2005-05-19

Publications (1)

Publication Number Publication Date
WO2006123785A1 true WO2006123785A1 (en) 2006-11-23

Family

ID=37431354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310049 WO2006123785A1 (en) 2005-05-19 2006-05-19 Electrolyte composition

Country Status (3)

Country Link
JP (1) JP4982361B2 (en)
TW (1) TWI389966B (en)
WO (1) WO2006123785A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2296215A1 (en) * 2008-06-24 2011-03-16 Panasonic Electric Works Co., Ltd. Dye-sensitized solar cell
WO2013118709A1 (en) * 2012-02-08 2013-08-15 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element, and dye-sensitized solar cell using photoelectric conversion element
WO2017155046A1 (en) * 2016-03-09 2017-09-14 国立研究開発法人科学技術振興機構 Thermoelectric conversion material, and thermoelectric conversion device, thermochemical battery and thermoelectric sensor having said material
WO2019116865A1 (en) 2017-12-13 2019-06-20 株式会社ダイセル Electrolyte composition and use thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI448504B (en) * 2009-04-17 2014-08-11 Univ Nat Cheng Kung A gelator of an electrolyte and application on a gel-state electrolyte
TWI460426B (en) * 2011-06-21 2014-11-11 Univ Nat Central Method and apparatus of the detection of acidic gases for drugs detection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235011A (en) * 2003-01-30 2004-08-19 Mitsubishi Paper Mills Ltd Electrolyte liquid using iodine-cyclodextrin clathrate compound and photoelectric conversion device using same
JP2004327271A (en) * 2003-04-25 2004-11-18 Toyo Ink Mfg Co Ltd High polymer gel electrolyte and photoelectric conversion element using it
JP2005071895A (en) * 2003-08-27 2005-03-17 Toyo Ink Mfg Co Ltd Electrolyte composition for dye-sensitized photoelectric transfer element, and photoelectric transfer element using it
JP2005093313A (en) * 2003-09-19 2005-04-07 Toyo Ink Mfg Co Ltd Electrolyte composition for dye-sensitized photoelectric conversion element, and photoelectric conversion element using it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235011A (en) * 2003-01-30 2004-08-19 Mitsubishi Paper Mills Ltd Electrolyte liquid using iodine-cyclodextrin clathrate compound and photoelectric conversion device using same
JP2004327271A (en) * 2003-04-25 2004-11-18 Toyo Ink Mfg Co Ltd High polymer gel electrolyte and photoelectric conversion element using it
JP2005071895A (en) * 2003-08-27 2005-03-17 Toyo Ink Mfg Co Ltd Electrolyte composition for dye-sensitized photoelectric transfer element, and photoelectric transfer element using it
JP2005093313A (en) * 2003-09-19 2005-04-07 Toyo Ink Mfg Co Ltd Electrolyte composition for dye-sensitized photoelectric conversion element, and photoelectric conversion element using it

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2296215A1 (en) * 2008-06-24 2011-03-16 Panasonic Electric Works Co., Ltd. Dye-sensitized solar cell
CN102067375A (en) * 2008-06-24 2011-05-18 松下电工株式会社 Dye-sensitized solar cell
EP2296215A4 (en) * 2008-06-24 2011-07-20 Panasonic Elec Works Co Ltd Dye-sensitized solar cell
US8962982B2 (en) 2008-06-24 2015-02-24 Nippon Soda Co., Ltd. Dye-sensitized solar cell
WO2013118709A1 (en) * 2012-02-08 2013-08-15 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element, and dye-sensitized solar cell using photoelectric conversion element
JP2013161751A (en) * 2012-02-08 2013-08-19 Fujifilm Corp Photoelectric conversion element, method of manufacturing the same, and dye-sensitized solar cell using the same
WO2017155046A1 (en) * 2016-03-09 2017-09-14 国立研究開発法人科学技術振興機構 Thermoelectric conversion material, and thermoelectric conversion device, thermochemical battery and thermoelectric sensor having said material
CN108780837A (en) * 2016-03-09 2018-11-09 国立研究开发法人科学技术振兴机构 Thermo-electric converting material, the thermoelectric conversion device with the thermo-electric converting material, heat chemistry battery and pyroelectric sensor
JPWO2017155046A1 (en) * 2016-03-09 2018-11-22 国立研究開発法人科学技術振興機構 Thermoelectric conversion material, thermoelectric conversion device having the same, thermochemical battery, and thermoelectric sensor
CN108780837B (en) * 2016-03-09 2022-03-15 国立研究开发法人科学技术振兴机构 Thermoelectric conversion material, thermoelectric conversion device having the same, thermochemical battery, and thermoelectric sensor
US11367824B2 (en) 2016-03-09 2022-06-21 Japan Science And Technology Agency Thermoelectric conversion material, thermoelectric conversion device having the same, thermo-electrochemical cell and thermoelectric sensor
WO2019116865A1 (en) 2017-12-13 2019-06-20 株式会社ダイセル Electrolyte composition and use thereof

Also Published As

Publication number Publication date
TWI389966B (en) 2013-03-21
JP4982361B2 (en) 2012-07-25
TW200643092A (en) 2006-12-16
JPWO2006123785A1 (en) 2008-12-25

Similar Documents

Publication Publication Date Title
Nogueira et al. Electron transfer dynamics in dye sensitized nanocrystalline solar cells using a polymer electrolyte
Boschloo et al. Electron trapping in porphyrin-sensitized porous nanocrystalline TiO2 electrodes
Miyasaka et al. Photovoltaic performance of plastic dye-sensitized electrodes prepared by low-temperature binder-free coating of mesoscopic titania
Lee et al. Coupling of titania inverse opals to nanocrystalline titania layers in dye-sensitized solar cells
Nusbaumer et al. CoII (dbbip) 22+ complex rivals tri-iodide/iodide redox mediator in dye-sensitized photovoltaic cells
JP5572029B2 (en) Metal complex dye, photoelectric conversion element and photoelectrochemical cell
JP4788761B2 (en) Functional device and manufacturing method thereof
JP5620314B2 (en) Photoelectric conversion element, photoelectrochemical cell, dye for photoelectric conversion element and dye solution for photoelectric conversion element
JP5681716B2 (en) Metal complex dye, photoelectric conversion element and photoelectrochemical cell
JP4982361B2 (en) Electrolyte composition
Jasim et al. Henna (Lawsonia inermis L.) dye-sensitized nanocrystalline titania solar cell
JP2006210102A (en) Photoelectric conversion device and photovoltaic generator using it
Ming et al. The potential of incorporation of binary salts and ionic liquid in P (VP-co-VAc) gel polymer electrolyte in electrochemical and photovoltaic performances
JP4627427B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP2009231008A (en) Electrolyte and dye-sensitized solar cell
JP2008010189A (en) Photoelectric conversion element
JP5678801B2 (en) Photoelectric conversion element
EP2879230A1 (en) Photoelectric conversion layer composition and photoelectric conversion element
Mohan et al. Efficient way of enhancing the efficiency of a quasi-solid-state dye-sensitized solar cell by harvesting the unused higher energy visible light using carbon dots
Zarazúa et al. Impedance Analysis of CdSe Quantum Dot-Sensitized TiO2 Solar Cells Decorated with Au Nanoparticles and P3OT
JP2012051952A (en) Pigment, photoelectric element and photoelectrochemical battery
JP2007188809A (en) Gel electrolyte, photoelectric conversion element and solar cell
JP2008258099A (en) Manufacturing method of photoelectric cell
JP4776182B2 (en) Dye-sensitized solar cell
JP2010262817A (en) Electrolyte for photoelectric conversion element, photoelectric conversion element using the same, and dye-sensitized solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007516354

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06756405

Country of ref document: EP

Kind code of ref document: A1