WO2006123628A1 - Radar and radar system - Google Patents

Radar and radar system Download PDF

Info

Publication number
WO2006123628A1
WO2006123628A1 PCT/JP2006/309688 JP2006309688W WO2006123628A1 WO 2006123628 A1 WO2006123628 A1 WO 2006123628A1 JP 2006309688 W JP2006309688 W JP 2006309688W WO 2006123628 A1 WO2006123628 A1 WO 2006123628A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
road
radar
side wall
observation
Prior art date
Application number
PCT/JP2006/309688
Other languages
French (fr)
Japanese (ja)
Inventor
Yuji Hirogari
Toru Ishii
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Publication of WO2006123628A1 publication Critical patent/WO2006123628A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to an in-vehicle radar using an electromagnetic wave and a radar system thereof.
  • the present invention relates to a vehicle-mounted radar and a radar system for observing a target at a position with poor visibility.
  • Patent Document 1 driving conditions such as road equipment, other cars and pedestrians are detected by a radar or the like attached to a traffic light, and traffic safety at intersections and bending points is improved by traffic light control and warning information.
  • Patent Document 2 a plurality of imaging devices are provided on the hood, bumper, etc. of the own vehicle, and the images are displayed on the monitor to improve the visibility of the driver, when entering an intersection or bending point, or at the time of parking, etc. In addition, the visibility in the vicinity of the vehicle is improved, and safety is enhanced.
  • FIG. 1 (A) shows a conceptual diagram of radar observation in a general on-vehicle radar.
  • the position of the target 2 is captured by the radar beam 4 by shaking the radar beam 4 left and right by a predetermined angle.
  • Target 2 is observed at the position of (R, ⁇ s) from the directivity angle ( ⁇ s) of this radar beam and the distance (R) to target 2 (hereinafter, the observed position is referred to as the observation position).
  • O the observation position of
  • Patent Document 1 Japanese Patent Laid-Open No. 11-110685
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-238594
  • the radar beam is irradiated in the direction of the directivity angle (0 s) from the radar beam transmission / reception point (O) of the vehicle 1.
  • This radar beam is reflected by the reflection point (S) on the side wall 5A and is irradiated to the position of the target (hereinafter referred to as the target position) (P).
  • This radar beam is diffusely reflected at the target position (P), and some of the reflected waves are also reflected at the target position (P) force through the reflection point (S) on the side wall 5A. Received.
  • the radar beam is reflected by the side wall 5A in this way, the observation position (R, ⁇ s) is not at the actual target position P, even though there is no target at the observation position (R, ⁇ s). If a target is present in ⁇ s), it will be detected.
  • a target detection position hereinafter referred to as virtual image position
  • the radar determines whether the observation position (R, ⁇ s) is an actual target or a virtual image. I could't judge. Therefore, in the case of intersections and sideways that have no prospective interest, it is impossible to grasp the state of the target, and it is impossible to grasp the correct target position and target speed.
  • the present invention uses a radar to observe the virtual image position Q even if it is a target at a position P on the side road that is shielded outside the field of view by a shield or the like, and coordinates of the virtual image position Q.
  • the purpose is to provide a technology to grasp the actual condition of the target based on the above.
  • the present invention comprises observation means for transmitting an electromagnetic wave beam and receiving a reflected wave from the target of the beam and measuring the observation position of the target.
  • the road information acquisition means for acquiring information on the direction of the side road that is connected to an intersection or a bending point and is relatively close to the own vehicle, and the own vehicle on a plane parallel to the road surface.
  • a coordinate position extracting means for obtaining an observation position of the target in a plane coordinate system passing through the beam transmission / reception point and having a parallel axis parallel to the direction of the lateral path and a vertical axis perpendicular to the coordinate axis; Is provided.
  • the observation position is obtained by a plane coordinate system (hereinafter, this coordinate system is expressed as an XY coordinate system) including a parallel axis parallel to the lateral path and a vertical axis perpendicular to the horizontal path.
  • this coordinate system even if the observation position is the virtual image position Q (Qx, Qy), the actual target position P (Px, Py) and the virtual image position Q (Qx, Qy) are the same in parallel.
  • the coordinate position (X coordinate) on the axis is obtained. Therefore, the coordinate position ( ⁇ ) on the parallel axis of the actual target can be obtained regardless of whether the observation position is a virtual image position or an actual target position.
  • the information on the direction of the side road is information on the laying direction of the side road on which the target travels, information on the side wall and the position of the building, information on the center axis of the road, etc. Any information can be used as long as it can estimate the direction of the reflection surface of the radar beam based on the information.
  • the target position can be determined regardless of whether the observation position is a virtual image position or an actual target position.
  • the coordinate position on the parallel axis can be obtained.
  • the road information acquisition unit acquires information on the position of the entrance from the intersection or the bending point to the side road, and A target lateral path distance detecting means for obtaining a distance from the coordinate position of the observation position on the parallel axis and the coordinate position on the parallel axis of the lateral path entrance to the lateral path entrance of the target is provided.
  • the information power about the entrance of the sideway The position of the sideway entrance (Tx, Ty ) Then, the distance from the coordinate position (Tx) on the parallel axis of the entrance of this side road and the coordinate position (Px) on the parallel axis of the target position to the side entrance of the target along the parallel axis. (L) can be obtained. Therefore, regardless of whether the observation position is a virtual image position or an actual target position, the observation position force can also determine the distance (L) to the side entrance.
  • the information related to the entrance of the side road is information such as the position of the stop line at the connection position between the intersection and the side road.
  • this information for example, from car navigation systems, radar observation results, road infrastructure, etc., the target from the target to the entrance to the sideway, regardless of whether the observation position is a virtual image position or an actual target position. Can be obtained.
  • the present invention measures the speed of the target in the beam direction together with the observation position of the target by the observation means, and determines the speed of the target in the beam direction.
  • Target motion detection means for determining the speed of the target in the parallel axis direction based on the beam directing direction and the direction of the lateral path is provided.
  • the velocity (V) in the parallel axis direction of the target is obtained from the velocity (V) in the beam direction of the target obtained by radar observation.
  • the speed (V) of the target in the direction of the parallel axis can be regarded as the speed of the actual target. Therefore, regardless of whether the observation position is a virtual image position or an actual target position, the actual target speed (V) can be estimated from the observed target beam velocity W).
  • the present invention provides the motion detection unit, wherein the parallel movement of the target is performed based on the speed in the parallel axis direction of the target obtained a plurality of times at regular intervals. Find the axial acceleration.
  • the acceleration ( ⁇ ) in the parallel axis direction of the target is obtained from the velocity (V) in the beam direction of the target obtained by radar observation.
  • the traveling direction of the target is the parallel axis direction. Therefore, the acceleration ( ⁇ ) of the target can be estimated regardless of whether the observation position is a virtual image position or an actual target position.
  • the present invention provides an approach determination for determining whether or not the target is approaching the host vehicle from the speed of the target in the parallel axis direction. Means. As described above, according to the present invention, it is possible to determine whether or not a state force is approaching an intersection or the like regardless of whether the observation position is a virtual image position or an actual target position.
  • the present invention provides a means for determining whether the target can be stopped at a predetermined distance to the entrance of the side road, and when determining that the target cannot be stopped, Means for issuing a warning or automatically decelerating the driver.
  • the present invention it is possible to make traffic at intersections and inflection points where visibility is unnoticeable by a warning to the driver or an instruction to automatically decelerate.
  • the movement of the target can be estimated by velocity (V) and acceleration (oc), and if the target is assumed to move forward by the distance (L) to the entrance of the side road and stop, it is necessary to do so.
  • the velocity (V) and acceleration (ex) at the current position can be estimated, and whether or not the target can be stopped can be determined based on whether or not these are realistic values.
  • the road information acquisition unit acquires information on the position of the first side wall and the position of the second side wall of the side road, and If there is no observation position in a region between the first side wall and the second side wall in the coordinate system, virtual image determination means for determining the observation position as a virtual image position is provided.
  • the target it is determined whether or not the target is positioned on the side road from the position of the side wall provided on the side road and the observation position of the target. Then, if the observation position of the target is on the side road, it can be considered that the actual position of the target has been observed, and if the observation position of the target is not on the side road, the position of the virtual image of the target is determined. It can be considered as observed.
  • the information on the position of the first side wall and the position of the second side wall of the side road is, for example, the installation position of the side wall or the position of the building, and the direction of the side wall that reflects the radar beam is If it can be estimated.
  • the present invention provides a method in which, when the observation position is determined to be a virtual image position by the virtual image determination unit, the observation position of the first or second side wall is set to the observation position.
  • a new observation position is obtained by coordinate calculation using the side wall surface that is close to and reflects the beam as an axis of symmetry, and the new observation position falls within a region sandwiched between the first side wall and the second side wall.
  • the coordinate operation is repeated until the area between the first side wall and the second side wall is Target position estimating means for estimating the observed position as the actual position of the target.
  • the actual target position P (Px, Py) can be estimated from the virtual image position Q (Qx, Qy) of the target.
  • the road information acquisition unit acquires information by measuring a lateral road.
  • the present invention further includes the above-described radar and a car navigation system, and the road information acquisition means acquires information used in the car navigation system.
  • the present invention further includes the above-described radar and a communication device, and the road information acquisition means is used in a road facility provided at an intersection using the communication device. Get information.
  • a virtual image is observed even if it is a target on a side road that is shielded outside the field of view by a shielding object or the like, and an actual target is detected based on the virtual image.
  • the state can be grasped. And even if the vehicle is in a state before entering the intersection or in a shallow state, it is possible to provide a radar that grasps the situation of the side road without requiring road infrastructure.
  • FIG. 1 is a conceptual diagram for explaining observation of a target with a conventional radar.
  • FIG. 2 is a conceptual diagram illustrating a plane coordinate system used for target observation according to the present invention.
  • FIG. 3 is a conceptual diagram illustrating calculation of target coordinates according to the present invention.
  • FIG. 4 is a conceptual diagram illustrating calculation of a target velocity according to the present invention.
  • FIG. 5 is a block diagram of a radar according to an embodiment.
  • FIG. 6 is a processing flowchart of the DSP according to the embodiment.
  • the plane coordinate system consists of a parallel axis parallel to the side wall 7A of the reflection point (S) and a vertical axis.
  • the crossing angle ( ⁇ ) between the side wall 7A and the radar beam shown in the figure is based on the radar directivity angle ( ⁇ s) and the angle of the side wall relative to the head direction of the vehicle 6 (0 w) as follows: Represented by an expression
  • the coordinate transformation function of the virtual image position Q (Qx, Qy) from the polar coordinate system to the planar coordinate system is expressed by the following equation.
  • the observation distance (R) is the distance through the reflection point S from the transmission / reception point O of the radar beam to the target position P.
  • the observation distance (R) and the directivity angle ( ⁇ s) can be obtained as radar output, and the side wall angle ( ⁇ w) and the position of the reflection point (Sx, Sy) are used to acquire information power such as car navigation. If you can This target position P (Px, Py) can be calculated.
  • the coordinate position (Px) on the parallel axis of the target position P and the coordinate position (Qx) on the parallel axis of the virtual image position Q show the same value. That is, in this plane coordinate system, the coordinate position on the vertical axis where the coordinate position on the parallel axis is equal differs between the virtual image position and the actual target position. Therefore, by finding the observation position in a plane coordinate system with the direction of the side road as the reference coordinate axis, whether the observation position is a virtual image position or an actual target position, it is on the parallel axis of the actual target. The coordinate position (Px) can be obtained.
  • the observation distance (R) and the directivity angle ( ⁇ s) can be obtained as radar output, and the side wall angle ( ⁇ w) and the coordinate position (Tx) on the parallel axis at the entrance to the side road are Assuming that it can be obtained as an output, the distance (L) to the target entrance of the target can be calculated.
  • the actual target position P (Px, Py) is expressed by the following formula.
  • the beam transmission / reception point 0 (0, 0) of the vehicle 6 the beam reflection point Sn (Sx (n), Sy (n)) on the side wall 7A, and the beam reflection point Sn + 1 (Sx (n + 1)) on the side wall 7B , Sy (n + 1)).
  • the target position in this case The position P can be calculated.
  • the target position P can be calculated by repeating the same method even when the reflection of the radar beam is two or more times as shown here.
  • the target position calculation method described above is a method for calculating a target position when a radar beam is reflected multiple times on a road surrounded by two parallel side walls.
  • the target position can be calculated even when the road is surrounded by side walls or even on a power road if the inclination can be detected by a car navigation system or the like.
  • Fig. 3 (B) in the case of a side road surrounded by side walls 7A and 7B of different angles, first, Qn to Qn + in the coordinate system with the parallel axis parallel to side wall 7A at reflection point Sn as the reference coordinate axis Ask for one.
  • Qn + 1 is converted into a coordinate system in which the parallel axis parallel to the side wall 7B at the reflection point Sn + 1 is the reference coordinate axis.
  • the actual target position P is obtained from Qn + 1 in this coordinate system.
  • Qn obtained from the radar output, the angle of the side wall relative to the head direction of the own vehicle 6 obtained from the information power of car navigation etc. ( ⁇ 1) and ( ⁇ 2), reflection
  • the target position P can be calculated from the point positions Sn and Sn + 1.
  • the relative velocity (Vr) in the parallel axis direction of the target is first estimated from the relative velocity (V) in the beam direction of the target.
  • the relational expression between the relative velocity (Vr) in the parallel axis direction of the target and the relative velocity W) in the beam direction of the target is shown below.
  • Vr Vr '/ cos ( ⁇ )
  • V ' Vr' -Vs X cos ( ⁇ s)
  • the radar force directivity angle ( ⁇ s) and the relative velocity (V) in the beam direction are obtained, and the absolute speed (Vs) of the vehicle 6 is obtained from the vehicle speed sensor, etc.
  • the relative speed (Vr) of the target in the parallel axis direction and the absolute speed (V) of the target in the parallel axis direction can be calculated.
  • the observation position When a virtual image is observed, the observation position is located deeper than the sideways (observed deeper than the buildings and side walls). For this reason, if the road shape can be obtained from a car navigation system, it can be easily determined whether the observation position is an actual target position or a virtual image position. That is, from the coordinates (Sx, Sy) of the reflection point S, the following formula is established when the observation position is a virtual image.
  • the observation position is a virtual image position.
  • the right route and the left route are considered as the horizontal route, and if it is determined that the target is running backward on the route that should have moved away, it can be determined to be a virtual image. It is possible to determine that the observation position is a virtual image position even when
  • (W) is the width of the line on one side
  • (Qs) is the coordinate position on the vertical axis of the side wall 7B of the horizontal path on the lower side of the figure.
  • the time (Ts) during which the vehicle stops can be calculated by the following equation based on the acceleration (a) and speed (V) of the target.
  • Tc ⁇ — V (V 2 + 2X a XL) V2 ⁇ / a
  • the acceleration ( ⁇ ) is not within the realizable range (for example, ⁇ ⁇ —0.IX G, where G is the gravitational acceleration), it can be determined that the target cannot be stopped.
  • Embodiment of this invention for detecting each state of a target using the method shown above
  • the configuration of the radar according to the above will be described.
  • FIG. 5 is a block diagram showing a configuration of the entire system including an on-vehicle radar and various units connected to the radar.
  • the radar front end 30 also constitutes forces such as a millimeter wave circuit 10, a DSP (Digital Signal Processor) 15, an antenna 21, and a scan unit 22.
  • Various external devices can be connected to the radar front end 30.
  • a car navigation system 25, an ACC controller 26, and a display controller 29 are connected.
  • the scan unit 22 scans the direction of the beam of the antenna 21 over a predetermined range, for example, by mechanical reciprocation according to a control signal from the DSP 15.
  • the millimeter wave circuit 10 modulates the oscillation frequency of VCOll with the modulation data set by the DSP 15 and outputs it to the antenna 21 via the circulator. Also, part of the VCOll oscillation signal is input to the mixer as a local oscillation signal via the force bra.
  • the antenna 21 transmits a millimeter wave beam and receives a reflected signal from the transmission direction.
  • the received signal is input to the mixer via the circulator, and the received signal and the local oscillation signal are mixed by the mixer. From this mixed signal, frequency components other than the necessary frequency are removed by LPF12 to generate an intermediate frequency signal (IF signal).
  • the IF signal is sampled by the AD converter 13 to generate a digital IF signal. This digital IF signal is then fed to DSP 15.
  • the digital IF signal force also detects the target.
  • modulation data is given to the millimeter wave circuit 10 and a control signal for controlling the directivity direction of the antenna 21 is output to the scan unit 22 so that the radar beam transmitted from the antenna 21 is directed to a predetermined direction. Observe the detection range at.
  • the FFT unit 16 of the DSP 15 performs spectrum modulation of the digital IF signal in order to detect the target from the digital IF signal. Then, the observation position / velocity calculation unit 17 detects the presence of a target within the radar beam search range from the spectrum obtained by the FFT unit 16, and calculates the radar beam traveling distance (R) to the target. Find the relative velocity W) of the target in the beam direction.
  • the radar beam up to the target obtained by the observation position / velocity calculation unit 17 is displayed.
  • the travel distance (R) of the system and the relative velocity W in the beam direction of the target are obtained.
  • the directivity direction ( ⁇ s) of the radar beam is obtained from the control signal of the scan unit 22.
  • the carna pigation system 25 obtain the information on the side road that your vehicle is traveling to. Then, various operations described later are performed by various means characterized by the present invention, and the target information obtained by the various operations is supplied to the ACC controller 26 and the display controller 29.
  • the ACC controller 26 Based on information such as the position and speed of the target given from the DSP 15, the ACC controller 26 performs vehicle speed control for limiting the approach speed to an intersection or the like, for example, below a certain speed. Therefore, control data for avoiding a collision with a target such as a vehicle traveling on a side road is given to the brake control unit 27 and the engine control unit 28.
  • the brake control unit 27 and the engine control unit 28 perform engine control and brake control based on the control data given from the ACC controller 26.
  • the display information of the target information power intersection is controlled. Therefore, control data for display control of warning information is given to the display controller 29. Based on the control data, the display controller 29 displays various indications on warning lamps and displays.
  • the arithmetic processing unit 18 also obtains information about the car navigation isotropic force.
  • the car navigation system 25 obtain information on the map, the position of the vehicle, and the direction of the side wall, and calculate the position of the side wall in the plane coordinate system from the information on the map and the direction of the side wall. Then, calculate the position of the side wall surface, the vehicle position, and the radar beam pointing angular force reflection point.
  • road information of road facility power provided at the intersection is obtained via a communication device.
  • the position of the side wall surface in the plane coordinate system is calculated from the road information, the distance to the wall surface and the directivity angle are obtained by radar observation, and the position of the host vehicle is calculated.
  • the position of the reflection point is also calculated based on the position, the vehicle position, and the pointing angular force of the radar beam.
  • a target that is continuous at a fixed position is extracted as a side wall surface by radar observation, and the position in the plane coordinate system is calculated.
  • the position of the host vehicle is calculated from the distance to the wall surface and the directivity angle acquired by radar observation, and the position of the side wall surface and the host vehicle, and the directivity angle force reflection point of the radar beam are calculated.
  • the approach of the side road is detected from the road information. Note that this approach to the side road is detected based on the road information and the vehicle position.
  • the position of the side wall may be extracted by radar observation, and the approach detection may be performed by extracting features of intersections and inflection points (detection of side wall discontinuities, etc.).
  • a virtual image is observed even if it is a target on the side of a road that is shielded outside the field of view by a shielding object, and an actual object is based on the virtual image. You can grasp the condition of the mark.
  • this radar even if the vehicle is in a state before entering the intersection or in a shallow state, it is possible to grasp the situation of the side road without requiring road infrastructure and notify the driver of the intersection. You can help with safer traffic.
  • the present invention can be similarly applied to a monopulse radar other than the above-described radar using spectral modulation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Traffic Control Systems (AREA)

Abstract

A radar front end (30) acquires information about the orientation of a side road from a car navigation system (25). An operation processing section (18) determines the observation position of an object in a plane coordinate system that is on a plane parallel with the pavement and uses a parallel axis passing the beam transmitting/receiving point in its own car and parallel with the orientation of a side road and a perpendicular axis perpendicular to the orientation of a side road as coordinate axes. Furthermore, a decision is made whether the observation position is the position of a virtual image or not, and coordinate calculation is repeated using an approximate sidewall face as a symmetric axis if it is the position of a virtual image, thus calculating the position of an actual object.

Description

明 細 書  Specification
レーダおよびレーダシステム  Radar and radar system
技術分野  Technical field
[0001] 本発明は、電磁波を利用した車載用のレーダおよびそのレーダシステムに関する。  The present invention relates to an in-vehicle radar using an electromagnetic wave and a radar system thereof.
より詳しくは、見通しの悪い位置の物標を観測する車載用のレーダおよびそのレーダ システムに関する。  More specifically, the present invention relates to a vehicle-mounted radar and a radar system for observing a target at a position with poor visibility.
背景技術  Background art
[0002] 自動車などが、丁字路 ·十字路などの交差点や L字路 'カーブ路などの屈曲点に進 入する際には、減速 '徐行一時停止などを行い、交差点や屈曲点に接続する道路 のうち、自走路とは異なる方向の道路 (以下、横路という。)の安全を確認してから進 入を行う必要がある。しかし、見通しの利かない横路の安全を確認するには、ボンネ ット部分をある程度侵入させないと横路の状況が確認できず危険であった。  [0002] When a car enters a bending point such as an intersection such as a lane or a crossroad or an L-shaped road 'curve road', it slows down, slows down, etc., and connects to the intersection or bending point. Of these, it is necessary to enter the road after confirming the safety of the road in the direction different from the self-propelled road (hereinafter referred to as the side road). However, in order to confirm the safety of unfamiliar sideways, it was dangerous because the condition of the sideway could not be confirmed unless the bonnet part was infiltrated to some extent.
[0003] そこで、ボンネット部分をほとんど侵入させること無く横路の状況を確認する技術が 公知である。  [0003] Therefore, a technique for confirming the condition of a side road without almost intruding the bonnet portion is known.
特許文献 1では、信号機に併設したレーダなどにより道路設備や他の自動車や歩 行者などの運転状況を検知し、信号機の制御や警告情報により交差点や屈曲点の 通行の安全性を向上させる。  In Patent Document 1, driving conditions such as road equipment, other cars and pedestrians are detected by a radar or the like attached to a traffic light, and traffic safety at intersections and bending points is improved by traffic light control and warning information.
また、特許文献 2では、自車のボンネットやバンパーなどに複数の撮像装置を設け 、その撮像をモニタに表示することでドライバーの視認性を高め、交差点や屈曲点に 進入する際や駐車時などに自車近傍の視認性を高め、安全性を高めている。  Also, in Patent Document 2, a plurality of imaging devices are provided on the hood, bumper, etc. of the own vehicle, and the images are displayed on the monitor to improve the visibility of the driver, when entering an intersection or bending point, or at the time of parking, etc. In addition, the visibility in the vicinity of the vehicle is improved, and safety is enhanced.
[0004] しかし、これらの従来技術では高度な道路インフラが整って!/、る路地でしか、横路 の確認ができな力つたり、また、車体近傍の状況しか情報を得ることができな力つたり 、それぞれに問題を有し、充分な安全性を提供するに至らなカゝつた。  [0004] However, with these conventional technologies, advanced road infrastructure is in place! /, The power that can confirm the side roads only in the alleys, and the power that can only obtain information in the vicinity of the vehicle body In other words, each had problems and led to the provision of sufficient safety.
[0005] ところで、他車等の物標の位置や速度を離れた位置力も計測する技術としてミリ波 レーダ技術がある。そのミリ波レーダ技術を用いた車載用のレーダでは速度を持つ 物標を他車と判定し、速度を持たない物標を道路設備と判定することで、離れた位置 の物標を把握できる。 [0006] ここで、図 1 (A)に一般的な車載のレーダにおけるレーダ観測の概念図を示す。図 1に示すように、自車 1が物標 2をレーダ観測する際には、レーダビーム 4を左右に所 定角づつ振ることで、レーダビーム 4により物標 2の位置を捉える。このレーダビーム の指向角( Θ s)と物標 2までの距離 (R)とから (R、 Θ s)の位置に物標 2が観測される( 以下、この観測した位置の事を観測位置という。 ) o [0005] By the way, there is a millimeter wave radar technique as a technique for measuring the position force away from the position and speed of a target such as another vehicle. The in-vehicle radar using the millimeter-wave radar technology can recognize a target at a distant location by determining a target with speed as another vehicle and determining a target without speed as road equipment. Here, FIG. 1 (A) shows a conceptual diagram of radar observation in a general on-vehicle radar. As shown in Fig. 1, when the own vehicle 1 performs radar observation of the target 2, the position of the target 2 is captured by the radar beam 4 by shaking the radar beam 4 left and right by a predetermined angle. Target 2 is observed at the position of (R, Θ s) from the directivity angle (Θ s) of this radar beam and the distance (R) to target 2 (hereinafter, the observed position is referred to as the observation position). ) O
特許文献 1:特開平 11― 110685号公報  Patent Document 1: Japanese Patent Laid-Open No. 11-110685
特許文献 2:特開 2000— 238594号公報  Patent Document 2: Japanese Patent Laid-Open No. 2000-238594
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] このようなレーダを用いて交差点ゃ横路などの道路状況を把握することが考えられ る。しかし、このようにして物標の状態把握ができるのは、あくまでも充分に見通しの 利く交差点や横路の場合である。  [0007] It is conceivable to use such a radar to grasp road conditions such as intersections and sideways. However, it is only in the case of intersections and crossways where the target status can be ascertained with sufficient visibility.
[0008] 図 1 (B)の場面では、自車 1のレーダビームの送受信点(O)から指向角( 0 s)の方 向に、レーダビームを照射する。このレーダビームは側壁 5Aの反射点(S)により反射 され、そして物標の位置(以下、物標位置) (P)に照射される。このレーダビームは物 標位置 (P)で乱反射し、一部の反射波が物標位置 (P)力も再び側壁 5Aの反射点 (S )を介して自車 1のレーダの送受信点(O)に受信される。このようにレーダビームが側 壁 5Aで反射されてしまうと、観測位置 (R, Θ s)には物標が存在しないにもかかわら ず、実際の物標位置 Pではなぐその観測位置 (R, Θ s)に物標が存在すると検出し てしまう。このような、実際の物標位置 Pと異なる物標の検出位置(以下、虚像位置) Q を観測した場合、レーダはその観測位置 (R、 Θ s)が実際の物標なのか虚像なのか 判定することができな力つた。そのため見通しの利力ない交差点や横路の場合、物 標の状態把握ができず、正し ヽ物標位置ゃ物標速度などを把握することができなか つた o  In the scene of FIG. 1 (B), the radar beam is irradiated in the direction of the directivity angle (0 s) from the radar beam transmission / reception point (O) of the vehicle 1. This radar beam is reflected by the reflection point (S) on the side wall 5A and is irradiated to the position of the target (hereinafter referred to as the target position) (P). This radar beam is diffusely reflected at the target position (P), and some of the reflected waves are also reflected at the target position (P) force through the reflection point (S) on the side wall 5A. Received. If the radar beam is reflected by the side wall 5A in this way, the observation position (R, Θ s) is not at the actual target position P, even though there is no target at the observation position (R, Θ s). If a target is present in Θ s), it will be detected. When such a target detection position (hereinafter referred to as virtual image position) Q that is different from the actual target position P is observed, the radar determines whether the observation position (R, Θ s) is an actual target or a virtual image. I couldn't judge. Therefore, in the case of intersections and sideways that have no prospective interest, it is impossible to grasp the state of the target, and it is impossible to grasp the correct target position and target speed.
[0009] そこで本発明は、レーダを用いて、たとえ遮蔽物などで視野外に遮蔽された横路上 の位置 Pの物標であっても、虚像位置 Qを観測し、その虚像位置 Qの座標を基に実 際の物標の状態を把握する技術を提供することを目的とする。  [0009] Therefore, the present invention uses a radar to observe the virtual image position Q even if it is a target at a position P on the side road that is shielded outside the field of view by a shield or the like, and coordinates of the virtual image position Q. The purpose is to provide a technology to grasp the actual condition of the target based on the above.
[0010] そして、車両が交差点に進入する前の状態又は浅く進入した状態であっても、道路 インフラを必要とせずに横路の状況を把握するレーダの提供を図る。 [0010] And even if the vehicle is in the state before entering the intersection, Providing a radar that can grasp the situation of the side road without the need for infrastructure.
課題を解決するための手段  Means for solving the problem
[0011] 上記課題を解決するために、本発明は、電磁波のビームを送信するとともに該ビー ムの物標からの反射波を受信して、前記物標の観測位置を測定する観測手段を備 えた車載用のレーダにおいて、交差点または屈曲点に接続し、自車に対して相対的 に接近する横路の向きに関する情報を取得する道路情報取得手段と、路面との平行 面上で且つ、自車における前記ビームの送受信点を通り、前記横路の向きに平行な 平行軸と垂直な垂直軸とを座標軸とした平面座標系での、前記物標の観測位置を求 める座標位置抽出手段と、を備える。  In order to solve the above problems, the present invention comprises observation means for transmitting an electromagnetic wave beam and receiving a reflected wave from the target of the beam and measuring the observation position of the target. In the in-vehicle radar, the road information acquisition means for acquiring information on the direction of the side road that is connected to an intersection or a bending point and is relatively close to the own vehicle, and the own vehicle on a plane parallel to the road surface. A coordinate position extracting means for obtaining an observation position of the target in a plane coordinate system passing through the beam transmission / reception point and having a parallel axis parallel to the direction of the lateral path and a vertical axis perpendicular to the coordinate axis; Is provided.
[0012] このように本発明では、横路に平行な平行軸と垂直な垂直軸からなる平面座標系( 以下、この座標系を X—Y座標系として表現する。)で観測位置を求める。すると、こ の平面座標系では、観測位置が虚像位置 Q (Qx、 Qy)であっても、実際の物標位置 P (Px、 Py)と虚像位置 Q (Qx、 Qy)とで同一な平行軸上の座標位置 (X座標)が求ま る。そのため、観測位置が虚像位置なのか実際の物標位置なのかによらずに実際の 物標の平行軸上の座標位置(Ρχ)を求めることができる。  As described above, in the present invention, the observation position is obtained by a plane coordinate system (hereinafter, this coordinate system is expressed as an XY coordinate system) including a parallel axis parallel to the lateral path and a vertical axis perpendicular to the horizontal path. In this plane coordinate system, even if the observation position is the virtual image position Q (Qx, Qy), the actual target position P (Px, Py) and the virtual image position Q (Qx, Qy) are the same in parallel. The coordinate position (X coordinate) on the axis is obtained. Therefore, the coordinate position (Ρχ) on the parallel axis of the actual target can be obtained regardless of whether the observation position is a virtual image position or an actual target position.
[0013] なお、ここで横路の向きに関する情報とは、物標が走行する横路の敷設の向きに関 する情報、側壁や建物の位置に関する情報、道路の中心軸に関する情報などであつ て、その情報を基にレーダビームの反射面の向きを推定できる情報で有ればどのよう な情報でも良い。これらの情報を例えばカーナビゲーシヨンシステムや道路インフラ など力 の報知情報、レーダ観測の観測結果など力 得ることで、観測位置が虚像 位置なのか実際の物標位置なのかによらずに物標の平行軸上の座標位置を求める ことができる。  [0013] Here, the information on the direction of the side road is information on the laying direction of the side road on which the target travels, information on the side wall and the position of the building, information on the center axis of the road, etc. Any information can be used as long as it can estimate the direction of the reflection surface of the radar beam based on the information. By obtaining such information as force notification information such as car navigation systems and road infrastructures, radar observation results, etc., the target position can be determined regardless of whether the observation position is a virtual image position or an actual target position. The coordinate position on the parallel axis can be obtained.
[0014] また、上記課題を解決するために、本発明は、前記道路情報取得手段で、前記交 差点または前記屈曲点から前記横路への入り口の位置に関する情報を取得し、前 記物標の観測位置の前記平行軸上の座標位置と、前記横路の入り口の前記平行軸 上の座標位置とから、前記物標の前記横路の入り口までの距離を求める物標横路距 離検知手段を備える。  [0014] Further, in order to solve the above-described problem, in the present invention, the road information acquisition unit acquires information on the position of the entrance from the intersection or the bending point to the side road, and A target lateral path distance detecting means for obtaining a distance from the coordinate position of the observation position on the parallel axis and the coordinate position on the parallel axis of the lateral path entrance to the lateral path entrance of the target is provided.
[0015] このように本発明では、横路の入り口に関する情報力 横路入り口の位置 (Tx、 Ty )を求める。すると、この横路の入り口の平行軸上の座標位置 (Tx)と前述の物標位 置の平行軸上の座標位置 (Px)とから、平行軸に沿った物標の横路入り口までの距 離 (L)を求めることができる。そのため、観測位置が虚像位置なのか実際の物標位置 なのかによらずに、観測位置力も横路入り口までの距離 (L)を求めることができる。 [0015] As described above, in the present invention, the information power about the entrance of the sideway The position of the sideway entrance (Tx, Ty ) Then, the distance from the coordinate position (Tx) on the parallel axis of the entrance of this side road and the coordinate position (Px) on the parallel axis of the target position to the side entrance of the target along the parallel axis. (L) can be obtained. Therefore, regardless of whether the observation position is a virtual image position or an actual target position, the observation position force can also determine the distance (L) to the side entrance.
[0016] なお、横路の入り口に関する情報とは、例えば交差点と横路との接続位置にある停 止線の位置などにっ 、ての情報である。この情報を例えばカーナビゲーシヨンシステ ムゃレーダ観測結果、道路インフラなど力 得ることで、観測位置が虚像位置なのか 実際の物標位置なのかによらずに、物標から横路入り口までの物標の距離を求める ことができる。 [0016] Note that the information related to the entrance of the side road is information such as the position of the stop line at the connection position between the intersection and the side road. By obtaining this information, for example, from car navigation systems, radar observation results, road infrastructure, etc., the target from the target to the entrance to the sideway, regardless of whether the observation position is a virtual image position or an actual target position. Can be obtained.
[0017] また、上記課題を解決するために、本発明は、前記観測手段で、前記物標の観測 位置とともに、物標のビーム方向の速度を測定し、前記物標のビーム方向の速度と 前記ビームの指向方向と前記横路の向きとに基づいて前記物標の前記平行軸方向 の速度を求める物標運動検知手段を備える。  [0017] Further, in order to solve the above-described problem, the present invention measures the speed of the target in the beam direction together with the observation position of the target by the observation means, and determines the speed of the target in the beam direction. Target motion detection means for determining the speed of the target in the parallel axis direction based on the beam directing direction and the direction of the lateral path is provided.
[0018] このように本発明では、レーダ観測により得た物標のビーム方向の速度 (V )から 、物標の平行軸方向の速度 (V)を求める。物標の進行方向を平行軸方向と同一だと 仮定すると、この物標の平行軸方向の速度 (V)は、実際の物標の速度とみなすこと ができる。そのため、観測位置が虚像位置なのか実際の物標位置なのかによらずに 、観測した物標のビーム方向の速度 W )から、実際の物標の速度 (V)を推定でき る。  As described above, in the present invention, the velocity (V) in the parallel axis direction of the target is obtained from the velocity (V) in the beam direction of the target obtained by radar observation. Assuming that the direction of movement of the target is the same as the direction of the parallel axis, the speed (V) of the target in the direction of the parallel axis can be regarded as the speed of the actual target. Therefore, regardless of whether the observation position is a virtual image position or an actual target position, the actual target speed (V) can be estimated from the observed target beam velocity W).
[0019] また、上記課題を解決するために、本発明は、前記運動検知手段では、一定時間 ごとに複数回求めた前記物標の前記平行軸方向の速度により、前記物標の前記平 行軸方向の加速度を求める。  [0019] Further, in order to solve the above-described problem, the present invention provides the motion detection unit, wherein the parallel movement of the target is performed based on the speed in the parallel axis direction of the target obtained a plurality of times at regular intervals. Find the axial acceleration.
[0020] このように本発明では、レーダ観測により得た物標のビーム方向の速度 (V )から 、物標の前記平行軸方向の加速度(ο を求める。物標の進行方向が平行軸方向と みなすことで、観測位置が虚像位置なのか実際の物標位置なのかによらずに、物標 の加速度(α )を推定できる。  As described above, in the present invention, the acceleration (ο) in the parallel axis direction of the target is obtained from the velocity (V) in the beam direction of the target obtained by radar observation. The traveling direction of the target is the parallel axis direction. Therefore, the acceleration (α) of the target can be estimated regardless of whether the observation position is a virtual image position or an actual target position.
[0021] また、上記課題を解決するために、本発明は、前記物標の前記平行軸方向の速度 から前記物標が自車へと接近して ヽるカゝ否かを判定する接近判定手段を備える。 [0022] このように本発明では、観測位置が虚像位置なのか実際の物標位置なのかによら ずに、物標が交差点などに接近している状態力否かを判定できる。 [0021] Further, in order to solve the above-mentioned problem, the present invention provides an approach determination for determining whether or not the target is approaching the host vehicle from the speed of the target in the parallel axis direction. Means. As described above, according to the present invention, it is possible to determine whether or not a state force is approaching an intersection or the like regardless of whether the observation position is a virtual image position or an actual target position.
[0023] また、上記課題を解決するために、本発明は、前記物標が前記横路の入り口まで 所定距離で停止可能な状態かを判定する手段と、停止不可能と判定した場合に、運 転者に対して警告を発する若しくは自動的に減速する命令を発する手段と、を備え る。  [0023] Further, in order to solve the above problems, the present invention provides a means for determining whether the target can be stopped at a predetermined distance to the entrance of the side road, and when determining that the target cannot be stopped, Means for issuing a warning or automatically decelerating the driver.
[0024] このように本発明によれば、運転者に対しての警告や自動的に減速する命令など により、見通しの利かないような交差点や屈曲点での通行をより安全にできる。物標 の運動は速度 (V)、加速度( oc )により推定することができ、また、物標が横路の入り 口までの距離 (L)だけ進んで力 停止すると仮定すれば、そのために必要な現在位 置での速度 (V)や加速度( ex )を推定でき、それらが現実的な値かどうかによつて、そ の物標が停止可能か否かを判定することもできる。  [0024] As described above, according to the present invention, it is possible to make traffic at intersections and inflection points where visibility is unnoticeable by a warning to the driver or an instruction to automatically decelerate. The movement of the target can be estimated by velocity (V) and acceleration (oc), and if the target is assumed to move forward by the distance (L) to the entrance of the side road and stop, it is necessary to do so. The velocity (V) and acceleration (ex) at the current position can be estimated, and whether or not the target can be stopped can be determined based on whether or not these are realistic values.
[0025] また、上記課題を解決するために、本発明は、前記道路情報取得手段で、前記横 路の第 1の側壁の位置と第 2の側壁の位置とに関する情報を取得し、前記平面座標 系での、第 1の側壁と第 2の側壁とに挟まれた領域に、前記観測位置がなければ、前 記観測位置を虚像の位置と判定する虚像判定手段を備える。  [0025] Further, in order to solve the above-mentioned problem, in the present invention, the road information acquisition unit acquires information on the position of the first side wall and the position of the second side wall of the side road, and If there is no observation position in a region between the first side wall and the second side wall in the coordinate system, virtual image determination means for determining the observation position as a virtual image position is provided.
[0026] このように本発明では、横路に設けられた側壁の位置と物標の観測位置とから物標 が横路上に位置する力否かを判定する。すると、物標の観測位置が横路上であれば 、実際の物標の位置を観測できたとみなすことができ、また、物標の観測位置が横路 上でなければ、物標の虚像の位置を観測したものとみなすことができる。  In this way, in the present invention, it is determined whether or not the target is positioned on the side road from the position of the side wall provided on the side road and the observation position of the target. Then, if the observation position of the target is on the side road, it can be considered that the actual position of the target has been observed, and if the observation position of the target is not on the side road, the position of the virtual image of the target is determined. It can be considered as observed.
[0027] なお、横路の第 1の側壁の位置と第 2の側壁の位置とに関する情報とは、例えば側 壁の設置位置や建物の位置などであって、レーダビームを反射する側壁の向きが推 定できるものであればょ 、。  [0027] The information on the position of the first side wall and the position of the second side wall of the side road is, for example, the installation position of the side wall or the position of the building, and the direction of the side wall that reflects the radar beam is If it can be estimated.
[0028] また、上記課題を解決するために、本発明は、前記虚像判定手段で前記観測位置 が虚像の位置と判定された場合には、第 1または第 2の側壁のうち前記観測位置に 近接し、前記ビームを反射した側壁面を対称軸とした座標演算により新たな観測位 置を求め、前記新たな観測位置が、第 1の側壁と第 2の側壁とに挟まれた領域に収ま るまで、前記座標演算を繰り返し、第 1の側壁と第 2の側壁とに挟まれた領域に収ま つた観測位置を、実際の前記物標の位置と推定する物標位置推定手段を備える。 [0028] Further, in order to solve the above-described problem, the present invention provides a method in which, when the observation position is determined to be a virtual image position by the virtual image determination unit, the observation position of the first or second side wall is set to the observation position. A new observation position is obtained by coordinate calculation using the side wall surface that is close to and reflects the beam as an axis of symmetry, and the new observation position falls within a region sandwiched between the first side wall and the second side wall. The coordinate operation is repeated until the area between the first side wall and the second side wall is Target position estimating means for estimating the observed position as the actual position of the target.
[0029] このように本発明によれば、物標の虚像位置 Q (Qx、 Qy)から、実際の物標位置 P ( Px、 Py)を推定できる。  As described above, according to the present invention, the actual target position P (Px, Py) can be estimated from the virtual image position Q (Qx, Qy) of the target.
[0030] また、上記課題を解決するために、本発明は、前記道路情報取得手段は横路に対 する計測によって情報を取得する。  [0030] Further, in order to solve the above-described problem, in the present invention, the road information acquisition unit acquires information by measuring a lateral road.
[0031] また、上記課題を解決するために、本発明は、上述のレーダとカーナビゲーシヨン システムとをさらに備え、前記道路情報取得手段は前記カーナビゲーシヨンシステム で用いられる情報を取得する。 [0031] Further, in order to solve the above problems, the present invention further includes the above-described radar and a car navigation system, and the road information acquisition means acquires information used in the car navigation system.
[0032] また、上記課題を解決するために、本発明は、上述のレーダと通信装置とをさらに 備え、前記道路情報取得手段は前記通信装置を使用して交差点に設けられた道路 設備で用いられる情報を取得する。 [0032] In order to solve the above problems, the present invention further includes the above-described radar and a communication device, and the road information acquisition means is used in a road facility provided at an intersection using the communication device. Get information.
発明の効果  The invention's effect
[0033] 以上のように本発明によれば、たとえ遮蔽物などで視野外に遮蔽された横路上の 位置の物標であっても虚像を観測し、その虚像を基に実際の物標の状態を把握でき る。そして、車両が交差点に進入する前の状態又は浅く進入した状態であっても、道 路インフラを必要とせずに横路の状況を把握するレーダを提供できる。  [0033] As described above, according to the present invention, a virtual image is observed even if it is a target on a side road that is shielded outside the field of view by a shielding object or the like, and an actual target is detected based on the virtual image. The state can be grasped. And even if the vehicle is in a state before entering the intersection or in a shallow state, it is possible to provide a radar that grasps the situation of the side road without requiring road infrastructure.
図面の簡単な説明  Brief Description of Drawings
[0034] [図 1]従来のレーダでの物標の観測を説明する概念図である。 [0034] FIG. 1 is a conceptual diagram for explaining observation of a target with a conventional radar.
[図 2]本発明に係る物標観測に用いる平面座標系を説明する概念図である。  FIG. 2 is a conceptual diagram illustrating a plane coordinate system used for target observation according to the present invention.
[図 3]本発明に係る物標座標の算出を説明する概念図である。  FIG. 3 is a conceptual diagram illustrating calculation of target coordinates according to the present invention.
[図 4]本発明に係る物標速度の算出を説明する概念図である。  FIG. 4 is a conceptual diagram illustrating calculation of a target velocity according to the present invention.
[図 5]実施形態に係るレーダのブロック図である。  FIG. 5 is a block diagram of a radar according to an embodiment.
[図 6]実施形態に係る DSPの処理フロー図である。  FIG. 6 is a processing flowchart of the DSP according to the embodiment.
符号の説明  Explanation of symbols
[0035] 1、6—自車 2 物標 4 レーダビーム 5、 7 側壁 10— ミリ波回路 11— VCO 12-LPF 13— ADコンバータ 15— DSP [0035] 1, 6—Own vehicle 2 Target 4 Radar beam 5, 7 Side wall 10—Millimeter wave circuit 11—VCO 12-LPF 13—AD converter 15—DSP
16— FFT部 17—観測位置 ·速度算出部 18 演算処理部 21—ァ ンテナ 22 スキャンユニット 25—力一ナビゲーシヨンシステム 26— A CCコントローラ 27—ブレーキコントロールユニット 28—エンジンコントロー ルユニット 29—表示コントローラ 30—レーダフロントエンド 16—FFT unit 17—Observation position / velocity calculation unit 18 Arithmetic processing unit 21—Antenna 22 Scan unit 25—Rikiichi navigation system 26—A CC controller 27—brake control unit 28—engine control unit 29—display controller 30—radar front end
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0036] ここで、レーダ力も遮蔽された位置の物標を虚像として観測する場合の、物標の状 態を把握する方法にっ 、て説明する。 Here, a method for grasping the state of the target when the target at the position where the radar force is also shielded is observed as a virtual image will be described.
[0037] 〈物標の平行軸上の座標位置の算出〉 <Calculation of coordinate position on parallel axis of target>
図 2に示す平面座標系での虚像位置 Qと物標位置 Pとの関係を説明する。平面座 標系は反射点(S)の側壁 7Aに平行な平行軸と、垂直な垂直軸とからなる。  The relationship between the virtual image position Q and the target position P in the plane coordinate system shown in Fig. 2 is explained. The plane coordinate system consists of a parallel axis parallel to the side wall 7A of the reflection point (S) and a vertical axis.
この平面座標系では、自車 6からのビーム送受信点 0(0, 0)、側壁 7Aの反射点 S ( In this plane coordinate system, the beam transmission / reception point 0 (0, 0) from the vehicle 6 and the reflection point S (
Sx、 Sy)とした場合には物標位置 P(Px、 Py)及び虚像位置 Q(Qx、 Qy)の関係は 次式で表される。 When Sx, Sy), the relationship between the target position P (Px, Py) and the virtual image position Q (Qx, Qy) is expressed by the following equation.
Px = Qx  Px = Qx
Py = Sy- (Qy-Sy) = 2XSy-Qy  Py = Sy- (Qy-Sy) = 2XSy-Qy
また、図中に示す側壁 7Aとレーダビームとの交差角( Θ )はレーダの指向角( Θ s) と自車 6の車首方向に対する相対的な側壁の角度( 0 w)とから以下の式で表される  Also, the crossing angle (Θ) between the side wall 7A and the radar beam shown in the figure is based on the radar directivity angle (Θ s) and the angle of the side wall relative to the head direction of the vehicle 6 (0 w) as follows: Represented by an expression
Θ = Θ w- Θ s Θ = Θ w-Θ s
また、極座標系から平面座標系への虚像位置 Q(Qx、 Qy)の座標変換関数は、次 の式で表される。なお、ここで、観測距離 (R)は、レーダビームの送受信点 Oから物 標位置 Pまでの反射点 Sを介した距離である。  The coordinate transformation function of the virtual image position Q (Qx, Qy) from the polar coordinate system to the planar coordinate system is expressed by the following equation. Here, the observation distance (R) is the distance through the reflection point S from the transmission / reception point O of the radar beam to the target position P.
Qx=RXcos( Θ ) =RXcos( Θ w- Θ s) ··· (1)  Qx = RXcos (Θ) = RXcos (Θ w- Θ s) (1)
Qy=RXsin( θ ) =RXsin( Θ w- Θ s) · · · (2)  Qy = RXsin (θ) = RXsin (Θ w- Θ s) (2)
そのため、極座標系から平面座標系への物標位置 P(Px、 Py)の座標変換関数は 、次の式で表される。  Therefore, the coordinate transformation function of the target position P (Px, Py) from the polar coordinate system to the planar coordinate system is expressed by the following equation.
Px = Qx=RXcos( Θ ) =RXcos( Θ w— Θ s) · · · (3)  Px = Qx = RXcos (Θ) = RXcos (Θ w— Θ s) (3)
Py = 2XSy-Qy=2XSy-RXsin( Θ w- Θ s) · · · (4)  Py = 2XSy-Qy = 2XSy-RXsin (Θw-Θs) (4)
ここで、観測距離 (R)と指向角( Θ s)とはレーダの出力として得ることができ、側壁の 角度( Θ w)と反射点の位置 (Sx、 Sy)がカーナビ等の情報力 取得できるとすると、 この物標位置 P (Px、 Py)が算出できる。 Here, the observation distance (R) and the directivity angle (Θ s) can be obtained as radar output, and the side wall angle (Θ w) and the position of the reflection point (Sx, Sy) are used to acquire information power such as car navigation. If you can This target position P (Px, Py) can be calculated.
[0038] また、物標位置 Pの平行軸上の座標位置 (Px)と虚像位置 Qの平行軸上の座標位 置 (Qx)とは同一の値を示す。即ち、この平面座標系においては、虚像位置と実際の 物標位置との間で平行軸上の座標位置が等しぐ垂直軸上の座標位置が異なるもの となる。このため、横路の向きを基準の座標軸とした平面座標系で観測位置を求める ことで、その観測位置が虚像位置であろうと実際の物標位置であろうと、実際の物標 の平行軸上の座標位置(Px)を求めることができる。  [0038] The coordinate position (Px) on the parallel axis of the target position P and the coordinate position (Qx) on the parallel axis of the virtual image position Q show the same value. That is, in this plane coordinate system, the coordinate position on the vertical axis where the coordinate position on the parallel axis is equal differs between the virtual image position and the actual target position. Therefore, by finding the observation position in a plane coordinate system with the direction of the side road as the reference coordinate axis, whether the observation position is a virtual image position or an actual target position, it is on the parallel axis of the actual target. The coordinate position (Px) can be obtained.
[0039] また、このような平面座標系では、横路の入り口の平行軸上の座標位置 (Tx)に関 する情報がカーナビ等により取得できれば、実際の物標位置から横路の入り口まで の横路距離 (L)を以下の式で推定できる。  [0039] In such a plane coordinate system, if information about the coordinate position (Tx) on the parallel axis of the entrance of the side road can be obtained by a car navigation system or the like, the side road distance from the actual target position to the entrance of the side road (L) can be estimated by the following equation.
L = Px-Tx = Qx-Tx=RX cos ( Θ w- Θ s)— Τχ· · · (5)  L = Px-Tx = Qx-Tx = RX cos (Θ w-Θ s) — Τχ · · (5)
ここで、観測距離 (R)と指向角( Θ s)とはレーダの出力として得ることができ、側壁 角度( Θ w)と横路入り口の平行軸上の座標位置 (Tx)とがカーナビ等の出力として 得ることができるとすると、正確な物標の横路の入り口までの距離 (L)が算出できる。  Here, the observation distance (R) and the directivity angle (Θ s) can be obtained as radar output, and the side wall angle (Θ w) and the coordinate position (Tx) on the parallel axis at the entrance to the side road are Assuming that it can be obtained as an output, the distance (L) to the target entrance of the target can be calculated.
[0040] 〈物標位置の算出〉  <Calculation of target position>
上述のようにレーダビームが一度だけ反射する場合では無ぐレーダビームが複数 回反射する場合での、物標位置の算出方法について説明する。図 3 (A)で示すよう に平行な 2側壁 7A、 7Bに囲まれる直線の道路の場合、以下の式で実際の物標位置 P (Px、 Py)が表される。ここで、自車 6のビーム送受信点 0 (0, 0)、側壁 7Aのビーム 反射点 Sn(Sx (n)、 Sy (n) )、側壁 7Bのビーム反射点 Sn+ 1 (Sx (n+ 1)、 Sy (n+ 1 ) )とする。また、側壁 7Bを反射面とした物標位置 Pの虚像位置 Qn+ 1 (Qx (n+ 1)、 Qy (n+ 1) )、側壁 7Aを反射面とした虚像位置 Qn+ 1の虚像位置 Qn (Qx (n)、 Qy (n) )とする。  As described above, a method for calculating the target position when the radar beam is reflected only once and the radar beam is reflected multiple times will be described. In the case of a straight road surrounded by two parallel side walls 7A and 7B as shown in Fig. 3 (A), the actual target position P (Px, Py) is expressed by the following formula. Here, the beam transmission / reception point 0 (0, 0) of the vehicle 6, the beam reflection point Sn (Sx (n), Sy (n)) on the side wall 7A, and the beam reflection point Sn + 1 (Sx (n + 1)) on the side wall 7B , Sy (n + 1)). In addition, the virtual image position Qn + 1 (Qx (n + 1), Qy (n + 1)) of the target position P with the side wall 7B as the reflecting surface, and the virtual image position Qn (Qx (Qx ( n), Qy (n)).
[0041] Px=Qx(n+ l) =Qx(n)  [0041] Px = Qx (n + l) = Qx (n)
Py= 2 X Sy(n+ l) -Qy (n+ l)  Py = 2 X Sy (n + l) -Qy (n + l)
Qy(n+ l) = 2 X Sy(n) -Qy (n)  Qy (n + l) = 2 X Sy (n) -Qy (n)
ここで、虚像位置 Qnをレーダの出力として得ることができ、反射点位置 Sn+ 1と反 射点位置 Snをカーナビ等の出力として得ることができるとすると、この場合の物標位 置 Pが算出できる。 Here, if the virtual image position Qn can be obtained as the radar output, and the reflection point position Sn + 1 and the reflection point position Sn can be obtained as the output of the car navigation system, the target position in this case The position P can be calculated.
[0042] なお、レーダビームの反射がここで示した 2回以上の場合であっても、同様な方法 を繰り返すことで物標位置 Pが算出できる。  [0042] It should be noted that the target position P can be calculated by repeating the same method even when the reflection of the radar beam is two or more times as shown here.
[0043] なお、上記物標位置の算出方法は平行な 2側壁に囲まれる道路での複数回レーダ ビームが反射される場合での物標位置の算出方法であつたが、各反射点の座標と傾 きがカーナビ等によって検出できれば平行でな 、側壁に囲まれた道路の場合や、力 ーブ路であっても物標位置を算出できる。図 3 (B)に示すように異なる角度の側壁 7 A、 7Bで囲まれた横路の場合、まず反射点 Snでの側壁 7Aと平行な平行軸を基準の 座標軸とした座標系で Qnから Qn+ 1を求める。次に、反射点 Sn+ 1での側壁 7Bに 平行な平行軸を基準の座標軸とした座標系に Qn+ 1を変換する。次に、この座標系 で Qn+ 1から実際の物標位置 Pを求める。このようにして、レーダの出力から得た Qn と、カーナビ等の情報力 得た自車 6の車首方向に対する相対的な側壁の角度であ る( θ 1)と( Θ 2)と、反射点位置である Snと Sn+ 1とから、この物標位置 Pが算出でき る。  [0043] The target position calculation method described above is a method for calculating a target position when a radar beam is reflected multiple times on a road surrounded by two parallel side walls. The target position can be calculated even when the road is surrounded by side walls or even on a power road if the inclination can be detected by a car navigation system or the like. As shown in Fig. 3 (B), in the case of a side road surrounded by side walls 7A and 7B of different angles, first, Qn to Qn + in the coordinate system with the parallel axis parallel to side wall 7A at reflection point Sn as the reference coordinate axis Ask for one. Next, Qn + 1 is converted into a coordinate system in which the parallel axis parallel to the side wall 7B at the reflection point Sn + 1 is the reference coordinate axis. Next, the actual target position P is obtained from Qn + 1 in this coordinate system. In this way, Qn obtained from the radar output, the angle of the side wall relative to the head direction of the own vehicle 6 obtained from the information power of car navigation etc. (θ1) and (Θ2), reflection The target position P can be calculated from the point positions Sn and Sn + 1.
[0044] 〈物標速度の算出〉  [0044] <Calculation of target velocity>
次に、測定した物標のビーム方向の速度 W )とビームの指向角( Θ s)と横路の 方向( Θ w)とに基づいて物標の平行軸方向の速度 (V)を算出する方法を説明する。 レーダ観測ではビーム方向の相対速度 W )を検出する。  Next, a method for calculating the velocity (V) of the target in the parallel axis direction based on the measured velocity W of the target beam W), the beam directivity angle (Θ s), and the direction of the lateral path (Θ w). Will be explained. In the radar observation, the relative velocity W) in the beam direction is detected.
[0045] 図 4 (A)に示すように、この物標のビーム方向の相対速度 (V )から、まず、物標 の平行軸方向の相対速度 (Vr)を推定する。以下に物標の平行軸方向の相対速度( Vr)と物標のビーム方向の相対速度 W )との関係式を示す。 [0045] As shown in Fig. 4 (A), the relative velocity (Vr) in the parallel axis direction of the target is first estimated from the relative velocity (V) in the beam direction of the target. The relational expression between the relative velocity (Vr) in the parallel axis direction of the target and the relative velocity W) in the beam direction of the target is shown below.
Vr=Vr' /cos ( θ )  Vr = Vr '/ cos (θ)
また、図 4 (B)に示すように、自車 6の走行の絶対速度 (Vs)と上記物標の相対速度 (Vr)とを基に実際の物標の平行軸方向の速度 (V)を求めることができる。まず、物 標のビーム方向の絶対速度 (V' )の算出式を以下に示す。  In addition, as shown in Fig. 4 (B), the speed (V) in the parallel axis direction of the actual target based on the absolute speed (Vs) of the traveling of the host vehicle 6 and the relative speed (Vr) of the target. Can be requested. First, the formula for calculating the absolute velocity (V ') in the beam direction of the target is shown below.
V' =Vr' -Vs X cos ( Θ s)  V '= Vr' -Vs X cos (Θ s)
また、この物標のビーム方向の絶対速度 (V^ )から物標の平行軸方向の絶対速度 (V)を算出する算出式を以下に示す。 V=V' /cos ( θ ) = (Vr' -Vs X cos ( Θ s) ) /cos ( θ ) The calculation formula for calculating the absolute velocity (V) in the parallel axis direction of the target from the absolute velocity (V ^) in the beam direction of the target is shown below. V = V '/ cos (θ) = (Vr' -Vs X cos (Θ s)) / cos (θ)
•••(6)  ••• (6)
なお、前述のようにレーダ力 指向角( Θ s)とビーム方向の相対速度 (V )とを取 得し、また、車速センサなどから自車 6の走行の絶対速度 (Vs)を取得し、カーナビ等 力 の情報力 角( Θ )を取得することで、この物標の平行軸方向の相対速度 (Vr)や 物標の平行軸方向の絶対速度 (V)などを算出できる。  As described above, the radar force directivity angle (Θ s) and the relative velocity (V) in the beam direction are obtained, and the absolute speed (Vs) of the vehicle 6 is obtained from the vehicle speed sensor, etc. By acquiring the information force angle (Θ) of the car navigation system force, the relative speed (Vr) of the target in the parallel axis direction and the absolute speed (V) of the target in the parallel axis direction can be calculated.
[0046] また、この物標の平行軸方向の絶対速度 (V)の所定時間での変化量力 物標の加 速度(ひ)を算出できる。時間 (T)で物標の平行軸方向の絶対速度 (V)が V(n)から V (n+ 1)に変化したものとすると、物標の加速度( α )は以下の式で表される。 [0046] Further, it is possible to calculate the change amount force acceleration (h) of the target in a predetermined time of the absolute velocity (V) in the parallel axis direction of the target. Assuming that the absolute velocity (V) in the parallel axis direction of the target changes from V (n) to V (n + 1) at time (T), the acceleration (α) of the target is expressed by the following equation: .
Figure imgf000012_0001
Figure imgf000012_0001
このように、物標の速度と加速度とを算出できるために、物標の運動を把握できる。  Thus, since the speed and acceleration of the target can be calculated, the movement of the target can be grasped.
[0047] 〈虚像の判定〉  <Decision of virtual image>
虚像を観測した場合、観測位置が横路よりも奥に位置する (建物や側壁よりも奥に 観測される)。そのため、道路形状がカーナビ等力 取得できれば、容易に観測位置 が実際の物標位置であるのか、虚像位置であるのかが判定できる。即ち、反射点 Sの 座標(Sx、 Sy)から、観測位置が虚像である場合には以下の式が成り立つ。  When a virtual image is observed, the observation position is located deeper than the sideways (observed deeper than the buildings and side walls). For this reason, if the road shape can be obtained from a car navigation system, it can be easily determined whether the observation position is an actual target position or a virtual image position. That is, from the coordinates (Sx, Sy) of the reflection point S, the following formula is established when the observation position is a virtual image.
Qy>Sy - (8)  Qy> Sy-(8)
このようにして観測位置が虚像位置であると判定できる。  In this way, it can be determined that the observation position is a virtual image position.
[0048] なお、横路に右路線、左路線を考えた場合に、物標が遠ざかるはずの路線を逆走 しているように判定された場合には虚像であると判定できるため、以下の式を同時に 満たす場合にも、観測位置が虚像位置であると判定できる。  [0048] If the right route and the left route are considered as the horizontal route, and if it is determined that the target is running backward on the route that should have moved away, it can be determined to be a virtual image. It is possible to determine that the observation position is a virtual image position even when
Qy-Qs>W · · · (9)  Qy-Qs> W (9)
V>0 · · · (10)  V> 0
ここで図 4に示すように、上記 (W)は片側の路線の幅であり、上記 (Qs)は、図下側 の横路の側壁 7Bの垂直軸上の座標位置である。このように、片側の路線の幅 (W)な どがカーナビ等からの情報により取得できる場合には、より高精度に虚像が判定でき る。  Here, as shown in FIG. 4, (W) is the width of the line on one side, and (Qs) is the coordinate position on the vertical axis of the side wall 7B of the horizontal path on the lower side of the figure. Thus, when the width (W) of the route on one side can be obtained from information from a car navigation system, a virtual image can be determined with higher accuracy.
[0049] 〈物標の停止判定〉 次に、横路を走行する物標の運動状態力 その物標が交差点又は屈曲点に進入 する際に、速やかに停止可能な速度で進入するの力否かを判定する方法について 説明する。 [0049] <Target stop judgment> Next, a description will be given of a method for determining whether or not a target is moving at a speed at which the target can quickly stop when the target enters an intersection or inflection point.
そのため、停止位置で物標が停止可能かを判定し停止位置で止まれな!/、と判定し た場合には警告を発して、自車 6の安全性を向上させることができる。なお、この物標 の停止判定には、物標の加速度を使用して判定を行う方法と、物標の加速度を使用 せずに判定を行う方法とがある。  Therefore, it is determined whether the target can be stopped at the stop position, and when it is determined that the target cannot be stopped at the stop position! /, A warning is issued and the safety of the host vehicle 6 can be improved. There are two methods for determining whether or not a target is stopped: a method in which the target acceleration is used and a method in which the target acceleration is not used.
[0050] まず、物標の加速度を使用して判定を行う方法について説明する。物標の加速度( a )と速度 (V)とにより車両が停止する時間 (Ts)が以下の式により算出できる。 First, a method for performing determination using the acceleration of a target will be described. The time (Ts) during which the vehicle stops can be calculated by the following equation based on the acceleration (a) and speed (V) of the target.
Ts=-V/a  Ts = -V / a
なお、加速度( OC )が正のときは物標は停止せず、負の場合のみ停止する。 すると、物標が停止するまでに走行する距離 (Ls)は以下の式で表される。 When the acceleration (OC) is positive, the target does not stop, only when it is negative. Then, the distance traveled before the target stops (Ls) is expressed by the following equation.
Ls=VXTs + 0. 5X a XTs2 Ls = VXTs + 0.5X a XTs 2
この物標が停止するまでに走行する距離 (Ls)と、前述の物標の位置から横路の入 り口までの距離 (L)とを比較する。  Compare the distance traveled before the target stops (Ls) and the distance from the target position described above to the entrance to the side road (L).
L>Ls--- (11)  L> Ls --- (11)
この(11)式が成り立つ場合に、物標は停止可能であると判定できる。  If this equation (11) holds, it can be determined that the target can be stopped.
[0051] また、次に物標の加速度を使用せずに判定を行う方法について説明する。 [0051] Next, a method of performing determination without using the acceleration of the target will be described.
物標の検出速度 Vと前述の物標の位置力 横路の入り口までの距離 (L)とから、物 標が停止するために必要な時間 (Tc)は、以下の式で表される。  The time required for the target to stop (Tc) based on the target detection speed V and the above-mentioned target position force distance (L) to the side entrance is expressed by the following equation.
Tc={— V士(V2 + 2X a XL) V2} / a Tc = {— V (V 2 + 2X a XL) V2 } / a
ここで、時間 Tcで速度 Vが 0になり停止する場合の物標の加速度( oc )は以下の式 で表される。  Here, the acceleration (oc) of the target when the velocity V stops at time Tc and stops is expressed by the following equation.
a =V2/(2XL) ··· (12) a = V 2 / (2XL) (12)
このため、この加速度(α)が実現可能な範囲内で無い場合 (例えば α<— 0. IX Gの場合、ただし、 Gは重力加速度である。 )に、物標は停止できないと判定できる。  Therefore, when the acceleration (α) is not within the realizable range (for example, α <—0.IX G, where G is the gravitational acceleration), it can be determined that the target cannot be stopped.
[0052] 〈構成例〉 <Configuration example>
以上に示した方法を用いて、物標の各状態を検出するための、本発明の実施形態 に係るレーダの構成について説明する。 Embodiment of this invention for detecting each state of a target using the method shown above The configuration of the radar according to the above will be described.
[0053] 図 5は車載用のレーダおよびそれに接続される各種ユニットなどを含むシステム全 体の構成を示すブロック図である。図 5においてレーダフロントエンド 30は、ミリ波回 路 10、 DSP (Digital Signal Processor) 15、アンテナ 21、スキャンユニット 22な ど力も構成している。また、このレーダフロントエンド 30には様々な外部装置が接続 できるが、ここではカーナビゲーシヨンシステム 25、 ACCコントローラ 26、表示コント ローラ 29を接続している。  FIG. 5 is a block diagram showing a configuration of the entire system including an on-vehicle radar and various units connected to the radar. In FIG. 5, the radar front end 30 also constitutes forces such as a millimeter wave circuit 10, a DSP (Digital Signal Processor) 15, an antenna 21, and a scan unit 22. Various external devices can be connected to the radar front end 30. Here, a car navigation system 25, an ACC controller 26, and a display controller 29 are connected.
[0054] スキャンユニット 22では、 DSP15からの制御信号に従って、例えば機械的往復運 動により、アンテナ 21のビームの向きを所定範囲に亘つて走査する。  [0054] The scan unit 22 scans the direction of the beam of the antenna 21 over a predetermined range, for example, by mechanical reciprocation according to a control signal from the DSP 15.
[0055] また、ミリ波回路 10は、 DSP15により設定された変調データで VCOl lの発振周波 数を変調し、サーキユレータを経由してアンテナ 21へ出力する。また、 VCOl lの発 振信号の一部を力ブラを介して局部発振信号としてミキサに入力する。アンテナ 21 では、ミリ波ビームを送信するとともに、送信方向からの反射信号を受信する。また、 受信信号をサーキユレータを経由してミキサに入力し、ミキサで、その受信信号と局 部発振信号とを混合する。この混合した信号からは必要な周波数以外の周波数成分 を LPF12で除去して中間周波信号 (IF信号)を発生する。そしてこの IF信号を ADコ ンバータ 13でサンプリングすることでディジタル IF信号を発生する。そしてこのディジ タル IF信号を DSP 15へ与える。  Further, the millimeter wave circuit 10 modulates the oscillation frequency of VCOll with the modulation data set by the DSP 15 and outputs it to the antenna 21 via the circulator. Also, part of the VCOll oscillation signal is input to the mixer as a local oscillation signal via the force bra. The antenna 21 transmits a millimeter wave beam and receives a reflected signal from the transmission direction. Also, the received signal is input to the mixer via the circulator, and the received signal and the local oscillation signal are mixed by the mixer. From this mixed signal, frequency components other than the necessary frequency are removed by LPF12 to generate an intermediate frequency signal (IF signal). The IF signal is sampled by the AD converter 13 to generate a digital IF signal. This digital IF signal is then fed to DSP 15.
[0056] DSP15では、ディジタル IF信号力も物標の検出を行う。また、ミリ波回路 10に対し て変調データを与えるとともに、アンテナ 21の指向方向を制御する制御信号をスキヤ ンユニット 22に対して出力して、アンテナ 21から送信するレーダビームを所定方位へ 向けることで探知範囲の観測を行う。  [0056] In the DSP 15, the digital IF signal force also detects the target. In addition, modulation data is given to the millimeter wave circuit 10 and a control signal for controlling the directivity direction of the antenna 21 is output to the scan unit 22 so that the radar beam transmitted from the antenna 21 is directed to a predetermined direction. Observe the detection range at.
[0057] DSP15の FFT部 16ではディジタル IF信号から物標の検出を行うため、ディジタル IF信号のスペクトル変調を行う。そして、観測位置'速度算出部 17では、 FFT部 16 で求めたスペクトルから、レーダビームの探査範囲内での物標の存在を検出し、その 物標までのレーダビームの進行距離 (R)と物標のビーム方向の相対速度 W )を 求める。  [0057] The FFT unit 16 of the DSP 15 performs spectrum modulation of the digital IF signal in order to detect the target from the digital IF signal. Then, the observation position / velocity calculation unit 17 detects the presence of a target within the radar beam search range from the spectrum obtained by the FFT unit 16, and calculates the radar beam traveling distance (R) to the target. Find the relative velocity W) of the target in the beam direction.
[0058] 演算処理部 18では、観測位置 ·速度算出部 17により求めた物標までのレーダビー ムの進行距離 (R)と物標のビーム方向の相対速度 W )を取得する。また、スキヤ ンユニット 22の制御信号からレーダビームの指向方向( Θ s)を求める。また、カーナ ピゲーシヨンシステム 25から自車の走行する横路ゃ接近する横路につ!、ての情報を 取得する。そして、本発明の特徴とする様々な手段により後述する各種演算を行い、 各種演算により求めた物標の情報を ACCコントローラ 26、表示コントローラ 29へ与 える。 [0058] In the calculation processing unit 18, the radar beam up to the target obtained by the observation position / velocity calculation unit 17 is displayed. The travel distance (R) of the system and the relative velocity W in the beam direction of the target are obtained. Further, the directivity direction (Θ s) of the radar beam is obtained from the control signal of the scan unit 22. Also, from the carna pigation system 25, obtain the information on the side road that your vehicle is traveling to. Then, various operations described later are performed by various means characterized by the present invention, and the target information obtained by the various operations is supplied to the ACC controller 26 and the display controller 29.
[0059] ACCコントローラ 26は、 DSP15から与えられた物標の位置や速度など情報に基 づいて、例えば交差点などへの進入速度を一定速度以下に制限する自動車速制御 を行う。そのため、横路を走行する車両等の物標との衝突回避のための制御データ を、ブレーキコントロールユニット 27およびエンジンコントロールユニット 28に対して 与える。ブレーキコントロールユニット 27およびエンジンコントロールユニット 28は、 A CCコントローラ 26から与えられた制御データに基づいてエンジンの制御およびブレ ーキの制御を行う。  [0059] Based on information such as the position and speed of the target given from the DSP 15, the ACC controller 26 performs vehicle speed control for limiting the approach speed to an intersection or the like, for example, below a certain speed. Therefore, control data for avoiding a collision with a target such as a vehicle traveling on a side road is given to the brake control unit 27 and the engine control unit 28. The brake control unit 27 and the engine control unit 28 perform engine control and brake control based on the control data given from the ACC controller 26.
[0060] また、物標の情報力 交差点の警告情報の表示制御などを行う。そのため、警告情 報の表示制御のための制御データを表示コントローラ 29に対して与える。表示コント ローラ 29は制御データに基づ 、て警告ランプやディスプレイなどに様々な表示を行  [0060] Also, the display information of the target information power intersection is controlled. Therefore, control data for display control of warning information is given to the display controller 29. Based on the control data, the display controller 29 displays various indications on warning lamps and displays.
[0061] 〈処理例〉 <Processing example>
次に、 DSP15での処理の実施例を図 6に基づいて説明する。  Next, an embodiment of processing in the DSP 15 will be described with reference to FIG.
[0062] (S1) まず、 FFT部 16で求めたスペクトルを、観測位置 ·速度算出部 17でスぺタト ル変調して、物標の観測位置 (R、 0 )、ビーム方向の物標の相対速度 (V )を算 出する。 [0062] (S1) First, the spectrum obtained by the FFT unit 16 is spectrally modulated by the observation position / velocity calculation unit 17, and the target observation position (R, 0) and the target in the beam direction are Calculate the relative speed (V).
[0063] (S2) 次に、演算処理部 18ではカーナビ等力も情報を取得する。カーナビゲーショ ンシステム 25から情報を得る場合には、地図、自車の位置、側壁面の向きの情報を 取得し、地図および側壁面の向きの情報から側壁面の平面座標系での位置を算出 し、側壁面位置と自車位置、およびレーダビームの指向角力 反射点の位置を算出 する。  [0063] (S2) Next, the arithmetic processing unit 18 also obtains information about the car navigation isotropic force. When obtaining information from the car navigation system 25, obtain information on the map, the position of the vehicle, and the direction of the side wall, and calculate the position of the side wall in the plane coordinate system from the information on the map and the direction of the side wall. Then, calculate the position of the side wall surface, the vehicle position, and the radar beam pointing angular force reflection point.
[0064] なお、同様に交差点に設けられた道路設備力 の道路情報を通信装置を介して取 得する場合には、道路情報により側壁面の平面座標系での位置を算出し、また、レ ーダ観測により壁面までの距離と指向角とを取得して自車の位置を算出し、側壁面 位置と自車位置、およびレーダビームの指向角力も反射点の位置を算出する。 [0064] In the same way, road information of road facility power provided at the intersection is obtained via a communication device. When obtaining the position, the position of the side wall surface in the plane coordinate system is calculated from the road information, the distance to the wall surface and the directivity angle are obtained by radar observation, and the position of the host vehicle is calculated. The position of the reflection point is also calculated based on the position, the vehicle position, and the pointing angular force of the radar beam.
[0065] また、レーダの観測結果力も道路情報を取得する場合には、レーダ観測により、固 定位置で連続する物標を側壁面として抽出して、その平面座標系での位置を算出し 、また、レーダ観測により取得した壁面までの距離と指向角とから自車の位置を算出 し、側壁面位置と自車位置、およびレーダビームの指向角力 反射点の位置を算出 する。  [0065] Further, when road information is also acquired for the radar observation result force, a target that is continuous at a fixed position is extracted as a side wall surface by radar observation, and the position in the plane coordinate system is calculated. In addition, the position of the host vehicle is calculated from the distance to the wall surface and the directivity angle acquired by radar observation, and the position of the side wall surface and the host vehicle, and the directivity angle force reflection point of the radar beam are calculated.
[0066] (S3) 次に、道路情報から横路の接近の検出を行う。なお、この横路の接近の検出 は、道路情報と自車位置に基づいて行う。なお、レーダ観測により側壁の位置を抽出 し、その交差点や屈曲点の特徴抽出 (側壁の不連続点の検出など)により接近検出 を行っても良い。  (S3) Next, the approach of the side road is detected from the road information. Note that this approach to the side road is detected based on the road information and the vehicle position. In addition, the position of the side wall may be extracted by radar observation, and the approach detection may be performed by extracting features of intersections and inflection points (detection of side wall discontinuities, etc.).
ここで、横路の接近が検出されない場合には処理を終了する。  Here, when the approach of the side road is not detected, the process is terminated.
[0067] (S4) また、横路の接近が検出された場合には、上述の(1) (2)式により、観測位置 [0067] (S4) In addition, when approaching a side road is detected, the observation position is determined by the above-mentioned equation (1) (2).
(R、 Θ )を極座標系力 平面座標系での観測位置 Q (Qx、 Qy)に変換する。  (R, Θ) is converted to the observation position Q (Qx, Qy) in the polar coordinate system plane coordinate system.
[0068] (S5) (S6) (S7) 次に、その平面座標系での観測位置力 上述の(5)式により、横 路距離 (L)を算出する。また、上述の (6)式により、物標速度 (V)を算出する。また、 上述の(7)式により、物標加速度( ex )を算出する。 [0068] (S5) (S6) (S7) Next, the observed positional force in the plane coordinate system The lateral path distance (L) is calculated by the above-described equation (5). In addition, the target velocity (V) is calculated by the above equation (6). In addition, the target acceleration (ex) is calculated by the above equation (7).
[0069] (S8) 次に、上述の(8) (9) ( 10)式により、道路形状力もその観測位置 Q (Qx、Qy) が実際の物標位置力虚像位置かを判定する。 [0069] (S8) Next, according to the above-described equations (8), (9), and (10), the road shape force is determined whether the observation position Q (Qx, Qy) is the actual target position force virtual image position.
[0070] (S9) 虚像の場合には、上述の(3) (4)式により、実際の物標位置 P (Px、Py)の算 出を行う。 [0070] (S9) In the case of a virtual image, the actual target position P (Px, Py) is calculated according to the above equations (3) and (4).
[0071] (S 10) 実際の物標位置 P (Px、Py)が求まると、上述の(11) ( 12)式により、物標の 接近判定を行う。物標が安全に停止可能か否かの判定を行う。物標が安全に停止可 能な場合には、処理を終了する。  [0071] (S 10) When the actual target position P (Px, Py) is obtained, the approach of the target is determined by the above-described equations (11) and (12). Determine whether the target can be safely stopped. If the target can be safely stopped, the process ends.
[0072] (S l l) (S 12) 物標が安全に停止可能で無い場合には ACCコントローラ 26への制 御コマンドを生成するとともに表示コントローラ 29への表示データを生成する。すると 、 ACCコントローラ 26では、制御コマンドに基づいてブレーキコントロールユニット 27 を制御して、ブレーキをかけ、また、エンジンコントロールユニット 28を制御してェンジ ンのトルクを制御する。また、表示コントローラ 29では表示データに基づいて運転者 に警告情報を報知する。 (Sll) (S 12) If the target cannot be stopped safely, a control command to the ACC controller 26 is generated and display data to the display controller 29 is generated. Then, the ACC controller 26 uses the brake control unit 27 based on the control command. To control the brakes and the engine control unit 28 to control the engine torque. The display controller 29 notifies the driver of warning information based on the display data.
[0073] 以上のように、本実施例のレーダでは、たとえ遮蔽物などで視野外に遮蔽された横 路上の位置の物標であっても虚像を観測し、その虚像を基に実際の物標の状態を把 握できる。そして、このレーダを用いることで車両が交差点に進入する前の状態又は 浅く進入した状態であっても、道路インフラを必要とせずに横路の状況を把握して、 運転者に報知することで交差点での交通をより安全に援助できる。  [0073] As described above, in the radar according to the present embodiment, a virtual image is observed even if it is a target on the side of a road that is shielded outside the field of view by a shielding object, and an actual object is based on the virtual image. You can grasp the condition of the mark. By using this radar, even if the vehicle is in a state before entering the intersection or in a shallow state, it is possible to grasp the situation of the side road without requiring road infrastructure and notify the driver of the intersection. You can help with safer traffic.
[0074] なお、本発明は以上に示したスペクトル変調を用いたレーダ以外でも、モノパルス 方式のレーダにつ 、ても同様に実施できる。  It should be noted that the present invention can be similarly applied to a monopulse radar other than the above-described radar using spectral modulation.

Claims

請求の範囲 The scope of the claims
[1] 電磁波のビームを送信するとともに該ビームの物標からの反射波を受信して、前記 物標の観測位置を測定する観測手段を備えた車載用のレーダにおいて、  [1] In an on-vehicle radar equipped with observation means for transmitting an electromagnetic wave beam and receiving a reflected wave from the target of the beam and measuring the observation position of the target,
交差点または屈曲点に接続し、自車に対して相対的に接近する横路の向きに関す る情報を取得する道路情報取得手段と、  Road information acquisition means for acquiring information about the direction of a side road that is connected to an intersection or inflection point and is relatively close to the vehicle;
路面との平行面上で且つ、自車における前記ビームの送受信点を通り、前記横路 の向きに平行な平行軸と垂直な垂直軸とを座標軸とした平面座標系での、前記物標 の観測位置を求める座標位置抽出手段と、を備えたレーダ。  Observation of the target in a plane coordinate system on a plane parallel to the road surface and passing through the beam transmission / reception point of the vehicle and having a parallel axis parallel to the direction of the lateral road and a vertical axis perpendicular to the coordinate axis. A radar comprising coordinate position extraction means for obtaining a position.
[2] 前記道路情報取得手段で、前記交差点または前記屈曲点から前記横路への、入り 口の位置に関する情報を取得し、  [2] The road information acquisition means acquires information on the position of the entrance from the intersection or the bending point to the side road,
前記物標の観測位置の前記平行軸上の座標位置と、前記横路の入り口の前記平 行軸上の座標位置とから、前記物標の前記横路の入り口までの距離を求める物標横 路距離検知手段、を備えた請求項 1に記載のレーダ。  Target trajectory distance for determining the distance from the coordinate position on the parallel axis of the observation position of the target and the coordinate position on the horizontal axis of the entrance of the traverse to the entrance of the trajectory of the target The radar according to claim 1, further comprising detection means.
[3] 前記観測手段で、前記物標の観測位置とともに、物標のビーム方向の速度を測定 し、 [3] The observation means measures the velocity in the beam direction of the target together with the observation position of the target,
前記物標のビーム方向の速度と前記ビームの指向方向と前記横路の向きとに基づ いて前記物標の前記平行軸方向の速度を求める物標運動検知手段、を備えた請求 項 1又は請求項 2に記載のレーダ。  The target motion detection means for obtaining the speed of the target in the parallel axis direction based on the speed of the target in the beam direction, the direction of the beam, and the direction of the lateral path. Item 3. The radar according to item 2.
[4] 前記運動検知手段は、一定時間ごとに複数回求めた前記物標の前記平行軸方向 の速度により、前記物標の前記平行軸方向の加速度を求める請求項 3に記載のレー ダ。 4. The radar according to claim 3, wherein the motion detection means obtains the acceleration of the target in the parallel axis direction based on the speed of the target in the parallel axis direction obtained a plurality of times at regular intervals.
[5] 前記物標の前記平行軸方向の速度から前記物標が自車へと接近しているか否か を判定する接近判定手段、を備えた請求項 3又は請求項 4に記載のレーダ。  [5] The radar according to claim 3 or 4, further comprising an approach determining unit that determines whether or not the target is approaching the host vehicle from the speed of the target in the parallel axis direction.
[6] 前記物標が前記横路の入り口まで所定距離で停止可能な状態かを判定する手段 と、停止不可能と判定した場合に、運転者に対して警告を発する若しくは自動的に 減速する命令を発する手段と、を備えた請求項 1〜5のいずれか 1項に記載のレーダ  [6] Means for determining whether the target can be stopped at a predetermined distance to the entrance of the side road, and a command to issue a warning or automatically decelerate to the driver when it is determined that the target cannot be stopped The radar according to any one of claims 1 to 5, further comprising: means for emitting
[7] 前記道路情報取得手段で、前記横路の第 1の側壁の位置と第 2の側壁の位置とに 関する情報を取得し、 [7] In the road information acquisition means, the position of the first side wall and the position of the second side wall of the side road Information about
前記平面座標系での、第 1の側壁と第 2の側壁とに挟まれた領域に、前記観測位 置がなければ、前記観測位置を虚像の位置と判定する虚像判定手段、を備えた請 求項 1〜6のいずれか 1項に記載のレーダ。  If there is no observation position in a region between the first side wall and the second side wall in the plane coordinate system, virtual image determination means for determining the observation position as a virtual image position is provided. The radar according to any one of claims 1 to 6.
[8] 前記虚像判定手段で前記観測位置が虚像の位置と判定された場合には、第 1また は第 2の側壁のうち前記観測位置に近接し、前記ビームを反射した側壁面を対称軸 とした座標演算により新たな観測位置を求め、 [8] When the observation position is determined to be a virtual image position by the virtual image determination means, the side wall surface that is close to the observation position and reflects the beam on the first or second side wall is symmetrical. A new observation position is obtained by coordinate calculation as
前記新たな観測位置が、第 1の側壁と第 2の側壁とに挟まれた領域に収まるまで、 前記座標演算を繰り返し、第 1の側壁と第 2の側壁とに挟まれた領域に収まった観測 位置を、実際の前記物標の位置と推定する物標位置推定手段、を備えた請求項 7に 記載のレーダ。  The coordinate calculation is repeated until the new observation position falls within the area sandwiched between the first side wall and the second side wall, and the new observation position falls within the area sandwiched between the first side wall and the second side wall. The radar according to claim 7, further comprising target position estimating means for estimating an observation position as an actual position of the target.
[9] 前記道路情報取得手段は横路に対する計測によって情報を取得する請求項 1〜8 の!、ずれ力 1項に記載のレーダ。  [9] The road information acquisition means according to any one of claims 1 to 8, wherein the road information acquisition means acquires information by measuring a lateral road! The radar according to item 1.
[10] 請求項 1〜8のいずれ力 1項に記載のレーダとカーナビゲーシヨンシステムとをさら に備え、前記道路情報取得手段は前記カーナビゲーシヨンシステムで用いられる情 報を取得するレーダシステム。 [10] A radar system further comprising the radar according to any one of claims 1 to 8 and the car navigation system, wherein the road information acquisition means acquires information used in the car navigation system.
[11] 請求項 1〜8のいずれか 1項に記載のレーダと通信装置とをさらに備え、前記道路 情報取得手段は前記通信装置を使用して交差点に設けられた道路設備で用いられ る情報を取得するレーダシステム。 [11] The radar according to any one of claims 1 to 8, further comprising a communication device, wherein the road information acquisition means is information used in road equipment provided at an intersection using the communication device. To get radar system.
PCT/JP2006/309688 2005-05-17 2006-05-16 Radar and radar system WO2006123628A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-144445 2005-05-17
JP2005144445 2005-05-17

Publications (1)

Publication Number Publication Date
WO2006123628A1 true WO2006123628A1 (en) 2006-11-23

Family

ID=37431200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309688 WO2006123628A1 (en) 2005-05-17 2006-05-16 Radar and radar system

Country Status (1)

Country Link
WO (1) WO2006123628A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010086077A (en) * 2008-09-29 2010-04-15 Denso Corp Vehicle detection system for collision precaution
JP2012118867A (en) * 2010-12-02 2012-06-21 Toyota Motor Corp Road shape estimation apparatus
JP2013250151A (en) * 2012-05-31 2013-12-12 Fujitsu Ten Ltd Rader device and signal processing method
JP2015230566A (en) * 2014-06-04 2015-12-21 トヨタ自動車株式会社 Driving support device
WO2019008716A1 (en) * 2017-07-06 2019-01-10 マクセル株式会社 Non-visible measurement device and non-visible measurement method
CN111460065A (en) * 2020-03-26 2020-07-28 杭州海康威视数字技术股份有限公司 Method and device for positioning radar in map
WO2021010083A1 (en) * 2019-07-18 2021-01-21 ソニー株式会社 Information processing device, information processing method, and information processing program
CN112415502A (en) * 2019-08-21 2021-02-26 丰田自动车株式会社 Radar apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05278522A (en) * 1992-03-31 1993-10-26 Honda Motor Co Ltd Circumference monitoring device for vehicle
JP2001116839A (en) * 1999-10-22 2001-04-27 Fujitsu Ten Ltd Sensor for intervehicular distance
JP2001202599A (en) * 2000-01-20 2001-07-27 Fujitsu Ltd Radar wave repeater for reporting approach and display device
JP2003044994A (en) * 2001-05-25 2003-02-14 Honda Motor Co Ltd Dangerous vehicle extracting device, dangerous vehicle information providing device and its program
JP2004171152A (en) * 2002-11-18 2004-06-17 Mazda Motor Corp Vehicular information providing device
JP2004301649A (en) * 2003-03-31 2004-10-28 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Radar system for detecting vehicle or the like

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05278522A (en) * 1992-03-31 1993-10-26 Honda Motor Co Ltd Circumference monitoring device for vehicle
JP2001116839A (en) * 1999-10-22 2001-04-27 Fujitsu Ten Ltd Sensor for intervehicular distance
JP2001202599A (en) * 2000-01-20 2001-07-27 Fujitsu Ltd Radar wave repeater for reporting approach and display device
JP2003044994A (en) * 2001-05-25 2003-02-14 Honda Motor Co Ltd Dangerous vehicle extracting device, dangerous vehicle information providing device and its program
JP2004171152A (en) * 2002-11-18 2004-06-17 Mazda Motor Corp Vehicular information providing device
JP2004301649A (en) * 2003-03-31 2004-10-28 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Radar system for detecting vehicle or the like

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010086077A (en) * 2008-09-29 2010-04-15 Denso Corp Vehicle detection system for collision precaution
JP2012118867A (en) * 2010-12-02 2012-06-21 Toyota Motor Corp Road shape estimation apparatus
JP2013250151A (en) * 2012-05-31 2013-12-12 Fujitsu Ten Ltd Rader device and signal processing method
JP2015230566A (en) * 2014-06-04 2015-12-21 トヨタ自動車株式会社 Driving support device
CN105280021A (en) * 2014-06-04 2016-01-27 丰田自动车株式会社 Driving assistance apparatus
WO2019008716A1 (en) * 2017-07-06 2019-01-10 マクセル株式会社 Non-visible measurement device and non-visible measurement method
WO2021010083A1 (en) * 2019-07-18 2021-01-21 ソニー株式会社 Information processing device, information processing method, and information processing program
CN112415502A (en) * 2019-08-21 2021-02-26 丰田自动车株式会社 Radar apparatus
CN112415502B (en) * 2019-08-21 2024-05-24 丰田自动车株式会社 Radar apparatus
CN111460065A (en) * 2020-03-26 2020-07-28 杭州海康威视数字技术股份有限公司 Method and device for positioning radar in map
CN111460065B (en) * 2020-03-26 2023-12-01 杭州海康威视数字技术股份有限公司 Positioning method and device of radar in map

Similar Documents

Publication Publication Date Title
US10437257B2 (en) Autonomous driving system
CN107807634B (en) Driving assistance device for vehicle
US9934690B2 (en) Object recognition apparatus and vehicle travel controller using same
JP6257989B2 (en) Driving assistance device
WO2006123628A1 (en) Radar and radar system
CN110217225B (en) Vehicle control device, vehicle control method, and storage medium
US9896098B2 (en) Vehicle travel control device
CN109643495B (en) Periphery monitoring device and periphery monitoring method
CN109760674B (en) Vehicle control apparatus
JPWO2007111130A1 (en) Radar device and moving body
JPH1116099A (en) Automobile traveling supporting device
JP2015110403A (en) Travel control device, server, and on-vehicle device
US11514790B2 (en) Collaborative perception for autonomous vehicles
CN112119282A (en) Information processing apparatus, mobile apparatus, method, and program
CN110471085A (en) A kind of rail detection system
JP6547785B2 (en) Target detection device
WO2021002219A1 (en) Vehicle control device
JP5898539B2 (en) Vehicle driving support system
EP3835823B1 (en) Information processing device, information processing method, computer program, information processing system, and moving body device
WO2019008716A1 (en) Non-visible measurement device and non-visible measurement method
JP3666332B2 (en) Pedestrian detection device
CN112486161A (en) Vehicle control device, vehicle control method, and storage medium
JP2019067295A (en) Vehicle control device, vehicle control method, and program
KR20190078944A (en) Augmented reality head up display system for railway train
JP2021049845A (en) Remote parking system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06746402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP