WO2006123419A1 - Antenna apparatus and mobile communication terminal apparatus - Google Patents
Antenna apparatus and mobile communication terminal apparatus Download PDFInfo
- Publication number
- WO2006123419A1 WO2006123419A1 PCT/JP2005/009242 JP2005009242W WO2006123419A1 WO 2006123419 A1 WO2006123419 A1 WO 2006123419A1 JP 2005009242 W JP2005009242 W JP 2005009242W WO 2006123419 A1 WO2006123419 A1 WO 2006123419A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antenna
- resonance frequency
- switching circuit
- frequency
- resonance
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
- H01Q1/242—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
- H01Q1/243—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
- H01Q5/307—Individual or coupled radiating elements, each element being fed in an unspecified way
- H01Q5/314—Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
- H01Q5/321—Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors within a radiating element or between connected radiating elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0421—Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
Definitions
- the present invention relates to an antenna device that is used in a mobile communication terminal device or the like and can be switched to a wideband resonance frequency, and in particular, two resonance frequencies (which are divided into two or more and different from each other).
- the built-in antenna element having the ⁇ first resonance frequency '' and the ⁇ second resonance frequency '' for example, the second resonance frequency of the first and second resonance frequencies is different from this.
- the means for switching to the “third resonance frequency” or the first and second resonance frequencies can be switched to the “fourth and fifth resonance frequencies” different from the first to third resonance frequencies.
- a multi-channel device having means for switching only the fifth resonance frequency to the “sixth resonance frequency” different from the first to fifth resonance frequencies while the fourth resonance frequency remains fixed when the resonance frequency is switched to this resonance frequency.
- Band antenna was provided It related to the mobile communication terminal unit comprising the antenna device of the antenna device and the child.
- a resonant frequency switching type antenna used for a mobile phone includes a feed pin 103 and a feed cable 104 connected to a feed point 102 of a radiation plate 101 as shown in FIGS. 10 (A) and (B).
- a switching matching circuit 105 are known.
- the power supply voltage Vcc is applied to the series arm consisting of the switching diode CR1 and the parallel capacitor C1
- the bias control voltage is applied to the parallel arm powered by the switching diode CR2 and the series capacitor C2.
- Vcont is applied and the control voltage is turned on and off to match the first and second frequency bands (see, for example, Patent Document 1).
- GSM Global System for Mobile
- An object of the present invention is to provide an antenna device suitable for a mobile phone or the like and a mobile communication terminal device including the antenna device.
- Patent Document 1 Japanese Patent Laid-Open No. 11-122037 (Page 4, FIGS. 1 and 2)
- the antenna device of the present invention is switched to a broadband resonance frequency in which a built-in antenna element having a first resonance frequency and a second resonance frequency is provided that is divided into two or more by reactance elements.
- a possible antenna device wherein the first resonance frequency remains fixed and only the second resonance frequency is different from the first and second resonance frequencies by controlling impedance. It has a configuration with a switching circuit that switches to the resonant frequency. With this configuration, by using the switching circuit, the impedance can be controlled, and only the second resonance frequency can be switched to the third resonance frequency while the first resonance frequency is fixed. It becomes possible to respond.
- the antenna device of the present invention is a wideband including a built-in antenna element having first to sixth resonance frequencies divided by a reactance element, and a plurality of power supply portions of the antenna element.
- the antenna device is switched to the resonance frequency of the antenna element, and is disposed at the end of the antenna element, and the power feeding unit switching circuit that switches the power feeding unit that feeds power to the antenna element, and the power feeding unit is switched by the power feeding unit switching circuit to resonate.
- the frequency is switched from the first and second resonance frequencies to the fourth and fifth resonance frequencies, the impedance is controlled, and only the fifth resonance frequency is changed while the fourth resonance frequency is fixed. It has a configuration that has a switching circuit that switches to 6 resonance frequencies.
- the power feeding unit is changed using a power feeding unit switching circuit arranged at the end of the tena element, and the first and second resonance frequencies are switched to the fourth and fifth resonance frequencies.
- the impedance can be controlled, the fourth resonance frequency can be fixed, and only the fifth resonance frequency can be switched to the sixth resonance frequency. It is possible to cope with a wide frequency range.
- the switching circuit includes a PIN (P Intrinsic N) diode, a FET (Field Effect Transistor) switch, a MEMS (Micro Electro Mechanical Systems) switch, and a SPDT (Single Pole Double Throw). It has either a switch, a GaAs (gallium arsenide) switch, or a solid-state switch. With such a configuration, a switching circuit can be realized using versatile electronic components.
- PIN P Intrinsic N diode
- FET Field Effect Transistor
- MEMS Micro Electro Mechanical Systems
- SPDT Single Pole Double Throw
- the antenna element is configured by a diversity antenna. With such a configuration, the antenna element can be controlled in the optimum directivity direction.
- a mobile communication terminal device of the present invention has a configuration including any one of the antenna devices described above. Therefore, when such an antenna device is used for, for example, a mobile phone, a mobile phone having a wide band and good antenna directivity can be realized. Further, by using such an antenna device for a mobile communication terminal device, the band frequency and antenna directivity of the mobile communication terminal device can be improved. Furthermore, if such a mobile communication terminal apparatus is used for wireless communication with a base station apparatus, broadband and antenna directivity communication can be performed, which is extremely convenient for users. A wireless communication system can be provided.
- FIG. 1 is a perspective view showing an external appearance of a mobile phone according to a first embodiment of the present invention.
- FIG. 2 (A) is a detailed configuration block diagram of an antenna portion of the antenna device provided in the mobile phone according to the first embodiment of the present invention, and (B) is a detailed circuit of the switching circuit in (A).
- FIG. 3 is an explanatory diagram showing a configuration of an L-shaped and inverted L-shaped antenna of the antenna device according to the first embodiment of the present invention.
- FIG. 4 is a block diagram showing the configuration of the antenna device according to the first embodiment of the present invention.
- FIG. 5 (A) to (C) are IL—PIL applied to the antenna device of the first embodiment of the present invention.
- FIG. 6 Diagram showing an example of VSWR characteristics of IL PILA shown in Fig. 4.
- FIG. 7 (A) is a VSWR characteristic diagram of the antenna device when the switching circuit according to the present invention is not operated, and (B) is a VSWR characteristic diagram of the antenna device when the switching circuit is operated.
- FIG. 8 (A) is a detailed block diagram of the antenna portion of the antenna device provided in the mobile phone according to the second embodiment of the present invention, and (B) is a detailed circuit of the switching circuit in (A).
- FIG. 9 (A) is a VSWR characteristic diagram of the antenna device when the switching circuit according to the second embodiment of the present invention is not operated, and (B) is a VSWR characteristic of the antenna device when the switching circuit is operated.
- FIG. 10 (A) is a perspective view showing the structure of a conventional mobile phone antenna
- FIG. 10 (B) is a circuit diagram showing the configuration.
- 10 is a mobile phone (terminal device for mobile communication)
- 21 is the LCD screen
- 40A and 40B are built-in antennas (antenna devices)
- 41 is an antenna switching control unit
- 4a and 4d are power supply units
- 5a and 5b are power supply switching circuits
- FIG. 1 shows a mobile phone (mobile communication terminal device) 10 provided with the antenna device 4 of the present invention.
- the mobile phone 10 includes a main body 1 having a key operation unit, a liquid crystal screen, and the like.
- the flip part 2 having 21 has a foldable casing structure that can be opened and closed by a hinge 3 having a rotation axis.
- the antenna device 4 of the cellular phone includes a switching circuit 4c in addition to the built-in antenna 40, the power feeding unit 4a, the matching circuit 4b, and the like.
- the built-in antenna 40 is an L-shaped or inverted L-shaped antenna (IL PILA, which will be described later), and is located near the tip side of the main body 1 (this is referred to as “built-in antenna 40A”) and the flip section 2. It is provided on both sides of the base end (this is called “built-in antenna 40B”), but it may be installed at any one of these positions. In the present embodiment, description will be given by taking the built-in antenna 40A provided on the distal end side of the main body 1 as an example. The built-in antenna has the same configuration regardless of where it is installed.
- the built-in antenna 40A includes an antenna element 402 ("first resonance") divided into two (or three or more) by a reactance element 401, as shown in FIGS. Frequency fl ”; about 880 to 960 MHz) and an antenna element 403 (“ second resonance frequency f2 ”; about 1710 to 190 MHz) and a ground plane 404 serving as a ground. That is, as shown in FIG. 3, the built-in antenna 40A is divided into two parts by a reactance element 401, and has a first resonance frequency fl and a second resonance frequency f2. The impedance is controlled by using a switching circuit 4c (see Fig. 2 (B)) arranged in the vicinity of the feeding section 4a of the built-in antenna 40A.
- the reactance element 401 is provided in a slit (not shown) formed near the center of the two antenna elements 402 and 4003.
- switching circuit 4c is connected to matching circuit 4b arranged in the vicinity of feeding portion 4a of built-in antenna 40A, and controls matching impedance. That is, the switching circuit 4c has a fixed frequency (for example, a range of about 880 MHz to 960 MHz, which is the first resonance frequency fl), and a second resonance frequency f2 (a range of about 1710 MHz to 1990 MHz). Is matched to a specific frequency different from this (for example, a range of about 1920 MHz to 2170 MHz, which is the “third resonance frequency f 3”).
- the switching circuit 4c is composed of a PIN diode, a FET switch, a MEMS switch, a solid state switch, and the like.
- the switching circuit 4c can appropriately switch only the second resonance frequency f2 to the third resonance frequency f3, an antenna device corresponding to a wideband multiband can be realized. That is, in the present embodiment, by controlling the impedance using the switching circuit 4c, the second resonance frequency f2 can be switched to the third resonance frequency f3 while the first resonance frequency fl is fixed. .
- the switching circuit 4 c is controlled by an antenna switching control unit 41, and the antenna switching control unit 41 is controlled by a main control unit 42.
- the main control unit 42 performs control at the time of radio unit transmission / reception.
- the output is connected to the input of a transmission BPF (Band Pass Filter) 43.
- Send BP The output of F43 is connected to the input of the power amplifier 44, and the output of the power amplifier 44 is connected to the input of the isolator 45.
- This isolator 45 constitutes a DC input variation, and has functions such as stable operation of the amplifier and prevention of intermodulation, and each antenna for transmission and reception that requires output is provided by a single antenna. It is connected to duplexer 46, which is a component for sharing.
- the output of the duplexer 46 is connected to the matching circuit 4b.
- the input of the duplexer 47 is connected to the output of the matching circuit 4b, and the output of the duplexer 47 is connected to a reception LNA (Low Noise Amplifier) 48.
- This receiving LNA 48 is connected to the input of the receiving BPF 49.
- the output of the reception BPF4 9 is connected to the input of the main control unit 42.
- the antenna switching control unit 41 via the reception signal level detection circuit 42A of the main control unit 42 controls the switching circuit 4c described above. The operation of is controlled. That is, the reception signal level detection circuit 42A in the control unit 42 selects a high frequency band of the reception electric field level, and the antenna switching control unit 41 selects and switches the band. In this embodiment, a high-performance antenna system that can maintain stable communication quality can be provided by configuring in this way.
- FIG. 5 is a schematic configuration diagram of IL-PILA (described later) applied to the present invention.
- FIG. 6 is a diagram showing an example of the VSWR characteristic of IL-PILA shown in FIG.
- reactance elements 401 are divided and loaded on linear or plate-like antenna elements 402 and 403 having an L-shape or an inverted L-shape.
- each of the divided antenna elements 402 and 403 is a wideband multi-frequency antenna that resonates in two or more frequency bands (that is, the first resonance frequency fl and the second resonance frequency f2). Realized.
- Such a multi-frequency antenna is called an inductance-loaded plate-type inverted L antenna (commonly known as IL-PILA).
- the IL PILA constituting the antenna elements 402, 403 is divided into two elements (that is, high-frequency element elements).
- An inductance component 4C is loaded between 4A and the low-frequency element 4B).
- high lap In the wave number band for example, about 1710 MHz to 1990 MHz, which is the second resonance frequency f2
- the portion after loading the inductance component 4C is regarded as open.
- the portion after the inductance component 4C is loaded also flows so that current flows. Determine the constant.
- the inductance component 4C uses a characteristic of flowing a low-frequency current but not a high-frequency current.
- the high-frequency band as shown in Fig. 5 (B)
- only the high-frequency element element 4A is configured.
- the low frequency band as shown in FIG. 5C, a configuration is realized in which the high frequency element element 4A and the low frequency element element 4B are connected in series.
- the antenna elements 412 and 4 13 can achieve a VSWR characteristic as shown in Fig. 6 and realize a triple-band dual-resonance antenna by adopting such an IL-PILA configuration.
- FIG. 7 shows the case where the switching circuit 4c arranged in the vicinity of the feeding portion 4a of the antenna elements 402 and 403 is not operated in the antenna configuration shown in FIG. 2, and the VSW R characteristics when the switching circuit 4c is operated. It is a figure which shows an example. 7A shows a case where the switching circuit 4c is not operated, and FIG. 7B shows a case where the switching circuit 4c is operated. In both cases, the horizontal axis represents frequency, and the vertical axis represents VSWR (Voltage Standing Wave Ratio).
- VSWR Voltage Standing Wave Ratio
- Fig. 7 show an example of VSWR characteristics at 880MHz to 2170MHz.
- the switching circuit 4c is not operated.
- the first resonance frequency f1 from about 880MHz to 960MHz appears first, and then from about 1710MHz to 1990MHz.
- the second resonance frequency f2 appears.
- the impedance is controlled by operating the switching circuit 4c arranged in the vicinity of the feeding part 4a of the antenna elements 402 and 403, as shown in FIG.
- the resonance frequency up to (resonance frequency fl) is still fixed, and only the resonance frequency up to about 1710 MHz to l 990 MHz (second resonance frequency f2) is about 1920 MHz to 2170 MHz (third resonance frequency f3). It is switched to the resonance frequency. As a result, a multi-frequency antenna that resonates in three frequency bands fl to f3 can be realized.
- FIG. 8 shows an antenna device provided in a mobile communication terminal device according to the second embodiment of the present invention.
- the antenna device of the present embodiment is an antenna element.
- Power supply unit switching circuits 5a and 5b for changing the power supply state are provided at each end of 402 and 403, respectively.
- the power feeding unit switching circuits 5a and 5b switch the power feeding state to the antenna elements 402 and 403 to one of them.
- the antenna element 402 can be changed from the first and second resonance frequencies to the fourth and fifth resonance frequencies (specifically for any co-frequency). It is configured to switch to an appropriate frequency value (to be described later).
- the switching circuit 4c controls the impedance, so that the fourth resonance frequency f4 remains fixed and only the fifth resonance frequency f5 is changed to the sixth resonance frequency f6 (also in this case, the frequency A multi-frequency antenna that switches the value to (described later) is realized.
- the “fourth resonance frequency f4” is in the range of about 830 to 960 MHz
- the “fifth resonance frequency f5” is in the range of about 1710 to 1880 MHz
- the “sixth resonance frequency f6” is in the range of about 1850 to 1990 MHz. is there.
- FIG. 9 shows a case where, in the antenna configuration shown in FIG. 8, for example, the feeder switching circuit 5a disposed at the end of the antenna element 402 is operated to switch the feeder 4a to the feeder 4d.
- FIG. 6 is a diagram showing an example of VSWR characteristics when the switching circuit 4c arranged in the vicinity of the power feeding unit 4d of the antenna element 403 is not operated and when it is operated.
- 9A shows the case where the switching circuit 4c is not operated
- FIG. 9B shows the case where the switching circuit 4c is operated.
- the horizontal axis represents frequency and the vertical axis represents VSWR.
- FIG. 9 show an example of VSWR characteristics in the range of 830MHz to 1990MHz.
- VSWR is 3 or less, what was the first and second resonance frequencies 1S
- switching circuit 4c in Fig. 9 (A) is not operated, first, about 830 MHz to 960 MHz (fourth resonance frequency f4 ) Appears, followed by a resonance frequency of about 1710 MHz to 1880 MHz (fifth resonance frequency f 5).
- the conventional antenna device occupies a large occupied volume, impairs the design of a mobile phone or the like, or it is difficult to mount electrical components.
- the antenna device of the present invention solves the above-mentioned conventional problems, and can provide a built-in small antenna suitable for a mobile phone that can be used in a wide band compatible with a multi-mode system. Furthermore, antenna directivity can be further improved by making the antenna device a diversity antenna configuration.
- the antenna device of the present invention can be used not only for a mobile phone but also for any mobile communication terminal device.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Transceivers (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
To maintain the resonance frequencies of a wide band usable in a multimode system, while allowing a diversity reception. A switching circuit (4c) located in the vicinity of a feeding part (4a) of an antenna element (402) is used to control the impedance and maintain a first resonance frequency, while switching only a second resonance frequency to a third resonance frequency. When a feeding part switching circuit (5b) is activated to switch from the feeding part to a feeding part (4d) to switch the first and second resonance frequencies to fourth and fifth resonance frequencies, the switching circuit (4c) can be used to control the impedance, while switching only the fifth resonance frequency to a sixth resonance frequency.
Description
明 細 書 Specification
アンテナ装置および移動体通信用端末装置 ANTENNA DEVICE AND MOBILE COMMUNICATION TERMINAL DEVICE
技術分野 Technical field
[0001] 本発明は、移動体通信用の端末装置などに用いられ広帯域の共振周波数に切替 えることができるアンテナ装置に係り、特に 2つ以上に分割されて互いに異なる 2つの 共振周波数 (これを、「第 1の共振周波数」及び「第 2の共振周波数」とよぶ)を有する 内蔵型のアンテナ素子において、例えば第 1、第 2の共振周波数のうち第 2の共振周 波数をこれとは異なる「第 3の共振周波数」へ切替える手段、あるいは第 1、第 2の共 振周波数を第 1〜第 3の共振周波数とは異なる「第 4、第 5の共振周波数」へ切替える ことができるとともに、この共振周波数に切替えたときに第 4の共振周波数は固定のま ま第 5の共振周波数のみを第 1〜第 5の共振周波数とは異なる「第 6の共振周波数」 へ切替える手段を有する、マルチバンドアンテナが設けられたアンテナ装置およびこ のアンテナ装置を備えた移動体通信用端末装置に関する。 TECHNICAL FIELD [0001] The present invention relates to an antenna device that is used in a mobile communication terminal device or the like and can be switched to a wideband resonance frequency, and in particular, two resonance frequencies (which are divided into two or more and different from each other). In the built-in antenna element having the `` first resonance frequency '' and the `` second resonance frequency '', for example, the second resonance frequency of the first and second resonance frequencies is different from this. The means for switching to the “third resonance frequency” or the first and second resonance frequencies can be switched to the “fourth and fifth resonance frequencies” different from the first to third resonance frequencies. A multi-channel device having means for switching only the fifth resonance frequency to the “sixth resonance frequency” different from the first to fifth resonance frequencies while the fourth resonance frequency remains fixed when the resonance frequency is switched to this resonance frequency. Band antenna was provided It related to the mobile communication terminal unit comprising the antenna device of the antenna device and the child.
背景技術 Background art
[0002] 従来、携帯電話機に使用する共振周波数切替え式アンテナは、図 10 (A)および( B)に示すように、放射平板 101の給電点 102に接続された給電ピン 103と給電ケー ブル 104との間に切替え整合回路 105を設けたものが知られている。また、この切替 え整合回路 105については、それぞれ、スイッチングダイオード CR1と並列コンデン サ C1からなる直列アームには電源電圧 Vccを、スイッチングダイオード CR2と直列コ ンデンサ C2と力 なる並列アームにはバイアス制御電圧 Vcontを与え、制御電圧を オン、オフすることで、第 1、第 2の周波数帯域に整合させる構成のものが知られてい る (例えば、特許文献 1参照)。 Conventionally, a resonant frequency switching type antenna used for a mobile phone includes a feed pin 103 and a feed cable 104 connected to a feed point 102 of a radiation plate 101 as shown in FIGS. 10 (A) and (B). And a switching matching circuit 105 are known. For the switching matching circuit 105, the power supply voltage Vcc is applied to the series arm consisting of the switching diode CR1 and the parallel capacitor C1, and the bias control voltage is applied to the parallel arm powered by the switching diode CR2 and the series capacitor C2. A configuration is known in which Vcont is applied and the control voltage is turned on and off to match the first and second frequency bands (see, for example, Patent Document 1).
[0003] しかしながら、このような従来のアンテナ構成では、 GSM (Global System for Mobile However, with such a conventional antenna configuration, GSM (Global System for Mobile
Communication) /DCb (Digital communication bystem) /PC (Personal Communication) / DCb (Digital communication bystem) / PC (Personal
Communications Services) /UMTS (Universal Mobile Telecommunication System) などのマルチモードシステムに対応させようとした場合、複数の周波数帯域を同時に 確保することが困難である。また、マルチモードシステムに対応させようとすると共振
周波数の帯域が広くなるため、アンテナ装置の占有体積が大きくなる。このような事 情から、携帯電話機などにおける電気部品や電子部品などの実装スペースが狭まつ たり、実装スペースがなくなったり、あるいは携帯電話機などとしてのデザイン性を損 なったりするおそれがある。 When trying to support multi-mode systems such as (Communication Services) / UMTS (Universal Mobile Telecommunication System), it is difficult to secure multiple frequency bands at the same time. Also, if you try to support a multimode system, Since the frequency band is widened, the occupied volume of the antenna device is increased. From such a situation, there is a risk that the mounting space for electrical parts and electronic parts in a mobile phone or the like may be narrowed, the mounting space may be lost, or the design of the mobile phone or the like may be impaired.
[0004] 本発明は、このような問題を解決するためになされたもので、 GSMZDCSZPCS [0004] The present invention has been made to solve such problems, and GSMZDCSZPCS
ZUMTSシステムなどのマルチモードシステムで使用が可能な広帯域の共振周波 数を確保し、かつダイバーシチ受信を可能にするとともに、電気部品或いは電子部 品などの実装スペースを確保でき、しかもデザイン性を損なうことがな ヽ携帯電話機 などに好適なアンテナ装置およびこのアンテナ装置を備えた移動体通信用端末装 置を提供することを目的とするものである。 Ensuring a wide-band resonance frequency that can be used in a multi-mode system such as the ZUMTS system, enabling diversity reception, and securing mounting space for electrical or electronic components, and impairing design An object of the present invention is to provide an antenna device suitable for a mobile phone or the like and a mobile communication terminal device including the antenna device.
特許文献 1 :特開平 11一 122037号公報 (第 4頁、第 1図および第 2図) Patent Document 1: Japanese Patent Laid-Open No. 11-122037 (Page 4, FIGS. 1 and 2)
発明の開示 Disclosure of the invention
[0005] 本発明のアンテナ装置は、リアクタンス素子により 2つ以上に分割され第 1の共振周 波数と第 2の共振周波数とを有する内蔵型のアンテナ素子が設けられた、広帯域の 共振周波数に切替え可能なアンテナ装置であって、インピーダンスを制御することで 、前記第 1の共振周波数は固定状態のまま、前記第 2の共振周波数のみを前記第 1 、第 2の共振周波数とは異なる第 3の共振周波数へ切替える切替え回路を有する構 成としている。この構成により、切替え回路を用いることで、インピーダンスを制御し、 第 1の共振周波数は固定のまま、第 2の共振周波数のみを第 3の共振周波数へ切替 えることができるので、広帯域な周波数に対応することが可能となる。 [0005] The antenna device of the present invention is switched to a broadband resonance frequency in which a built-in antenna element having a first resonance frequency and a second resonance frequency is provided that is divided into two or more by reactance elements. A possible antenna device, wherein the first resonance frequency remains fixed and only the second resonance frequency is different from the first and second resonance frequencies by controlling impedance. It has a configuration with a switching circuit that switches to the resonant frequency. With this configuration, by using the switching circuit, the impedance can be controlled, and only the second resonance frequency can be switched to the third resonance frequency while the first resonance frequency is fixed. It becomes possible to respond.
[0006] また、本発明のアンテナ装置は、リアクタンス素子により分割された第 1の共振周波 数乃至第 6の共振周波数を有する内蔵型のアンテナ素子と、前記アンテナ素子の給 電部を複数有する広帯域の共振周波数に切替えるアンテナ装置であって、前記アン テナ素子端に配置し、前記アンテナ素子へ給電する前記給電部を切替える給電部 切替え回路と、前記給電部切替え回路により前記給電部を切替え、共振周波数を第 1、第 2の共振周波数から第 4、第 5の共振周波数へ切替えた場合に、インピーダンス を制御し、前記第 4の共振周波数は固定のまま、前記第 5の共振周波数のみを第 6 の共振周波数へ切替える切替え回路を有する構成としている。この構成により、アン
テナ素子端に配置した給電部切替え回路を用いて給電部を変更し、第 1、第 2の共 振周波数を第 4、第 5の共振周波数へ切替える。ここで、給電部近傍に配置した切替 え回路を用いることで、インピーダンスを制御し、第 4の共振周波数は固定のまま、第 5の共振周波数のみを第 6の共振周波数へ切替えることができ、広帯域な周波数に 対応することが可能となる。 [0006] Further, the antenna device of the present invention is a wideband including a built-in antenna element having first to sixth resonance frequencies divided by a reactance element, and a plurality of power supply portions of the antenna element. The antenna device is switched to the resonance frequency of the antenna element, and is disposed at the end of the antenna element, and the power feeding unit switching circuit that switches the power feeding unit that feeds power to the antenna element, and the power feeding unit is switched by the power feeding unit switching circuit to resonate. When the frequency is switched from the first and second resonance frequencies to the fourth and fifth resonance frequencies, the impedance is controlled, and only the fifth resonance frequency is changed while the fourth resonance frequency is fixed. It has a configuration that has a switching circuit that switches to 6 resonance frequencies. With this configuration, The power feeding unit is changed using a power feeding unit switching circuit arranged at the end of the tena element, and the first and second resonance frequencies are switched to the fourth and fifth resonance frequencies. Here, by using a switching circuit arranged in the vicinity of the power feeding unit, the impedance can be controlled, the fourth resonance frequency can be fixed, and only the fifth resonance frequency can be switched to the sixth resonance frequency. It is possible to cope with a wide frequency range.
[0007] また、本発明のアンテナ装置は、前記切替え回路が、 PIN (P Intrinsic N)ダイォー ド、 FET (Field Effect Transistor)スイツテ、 MEMS (Micro Electro Mechanical Systems)スィッチ、 SPDT (Single Pole Double Throw)スィッチ、 GaAs (ガリウム砒素 )スィッチ、またはソリッドステートスィッチの何れかを備えている。このような構成により 、汎用性のある電子部品を用いて切替え回路を実現することができる。 In the antenna device of the present invention, the switching circuit includes a PIN (P Intrinsic N) diode, a FET (Field Effect Transistor) switch, a MEMS (Micro Electro Mechanical Systems) switch, and a SPDT (Single Pole Double Throw). It has either a switch, a GaAs (gallium arsenide) switch, or a solid-state switch. With such a configuration, a switching circuit can be realized using versatile electronic components.
[0008] また、本発明のアンテナ装置においては、前記アンテナ素子が、ダイバーシチアン テナによって構成している。このような構成により、アンテナ素子を最適な指向方向へ 帘 U御することができる。 [0008] Further, in the antenna device of the present invention, the antenna element is configured by a diversity antenna. With such a configuration, the antenna element can be controlled in the optimum directivity direction.
[0009] また、本発明の移動体通信用端末装置は、上記の何れかに記載のアンテナ装置を 備える構成を有している。従って、このようなアンテナ装置を、例えば携帯電話機など に用いれば、広帯域、かつ、アンテナ指向性のよい携帯電話機を実現できる。また、 このようなアンテナ装置を移動体通信用端末装置に用いることによって、移動体通信 用端末装置の帯域周波数やアンテナ指向性を向上させることもできる。さらには、こ のような移動体通信用端末装置を用いて基地局装置と無線通信を行えば、広帯域、 かつ、アンテナ指向性のよい通信を行うことができ、ユーザに対して極めて使い勝手 のよ 、無線通信システムを提供できる。 [0009] Further, a mobile communication terminal device of the present invention has a configuration including any one of the antenna devices described above. Therefore, when such an antenna device is used for, for example, a mobile phone, a mobile phone having a wide band and good antenna directivity can be realized. Further, by using such an antenna device for a mobile communication terminal device, the band frequency and antenna directivity of the mobile communication terminal device can be improved. Furthermore, if such a mobile communication terminal apparatus is used for wireless communication with a base station apparatus, broadband and antenna directivity communication can be performed, which is extremely convenient for users. A wireless communication system can be provided.
図面の簡単な説明 Brief Description of Drawings
[0010] [図 1]本発明の第 1の実施形態に係る携帯電話機の外観を示す斜視図 FIG. 1 is a perspective view showing an external appearance of a mobile phone according to a first embodiment of the present invention.
[図 2] (A)は本発明の第 1の実施形態に係る携帯電話機に備えたアンテナ装置のァ ンテナ部分の詳細な構成ブロック図、(B)は (A)における切替え回路の詳細な回路 図 [FIG. 2] (A) is a detailed configuration block diagram of an antenna portion of the antenna device provided in the mobile phone according to the first embodiment of the present invention, and (B) is a detailed circuit of the switching circuit in (A). Figure
[図 3]本発明の第 1の実施形態に係るアンテナ装置の L型および逆 L型形状のアンテ ナの構成を示す説明図
[図 4]本発明の第 1の実施形態に係るアンテナ装置の構成を示すブロック図 FIG. 3 is an explanatory diagram showing a configuration of an L-shaped and inverted L-shaped antenna of the antenna device according to the first embodiment of the present invention. FIG. 4 is a block diagram showing the configuration of the antenna device according to the first embodiment of the present invention.
[図 5] (A)から (C)は本発明の第 1の実施形態のアンテナ装置に適用される IL— PIL [FIG. 5] (A) to (C) are IL—PIL applied to the antenna device of the first embodiment of the present invention.
Aの概略的な原理を示す説明図 Explanatory drawing showing the general principle of A
[図 6]図 4に示す IL PILAの VSWR特性の一例を示す図 [Fig. 6] Diagram showing an example of VSWR characteristics of IL PILA shown in Fig. 4.
[図 7] (A)は本発明に係る切替え回路を動作させない場合のンテナ装置の VSWR特 性図、(B)は切替え回路を動作させた場合のアンテナ装置の VSWR特性図 [FIG. 7] (A) is a VSWR characteristic diagram of the antenna device when the switching circuit according to the present invention is not operated, and (B) is a VSWR characteristic diagram of the antenna device when the switching circuit is operated.
[図 8] (A)は本発明の第 2の実施形態に係る携帯電話機に備えたアンテナ装置のァ ンテナ部分の詳細な構成ブロック図、(B)は (A)における切替え回路の詳細な回路 図 [FIG. 8] (A) is a detailed block diagram of the antenna portion of the antenna device provided in the mobile phone according to the second embodiment of the present invention, and (B) is a detailed circuit of the switching circuit in (A). Figure
[図 9] (A)は本発明の第 2の実施形態に係る切替え回路を動作させない場合のアン テナ装置の VSWR特性図、(B)は切替え回路を動作させた場合のアンテナ装置の VSWR特性図 [FIG. 9] (A) is a VSWR characteristic diagram of the antenna device when the switching circuit according to the second embodiment of the present invention is not operated, and (B) is a VSWR characteristic of the antenna device when the switching circuit is operated. Figure
[図 10] (A)は従来の携帯電話機用アンテナの構造を示す斜視図、(B)はその構成を 示す回路図 FIG. 10 (A) is a perspective view showing the structure of a conventional mobile phone antenna, and FIG. 10 (B) is a circuit diagram showing the configuration.
符号の説明 Explanation of symbols
1は本体部 1 is the body
10は携帯電話機 (移動体通信用端末装置) 10 is a mobile phone (terminal device for mobile communication)
2はフリップ部 2 is flip part
21は液晶画面 21 is the LCD screen
3はヒンジ部 3 is the hinge
4はアンテナ装置 4 is an antenna device
40A、 40Bは内蔵アンテナ(アンテナ装置) 40A and 40B are built-in antennas (antenna devices)
41はアンテナ切替え制御部 41 is an antenna switching control unit
42は主制御部 42 is the main control unit
42Aは受信信号レベル検出回路 42A is the received signal level detection circuit
43は送信 BPF 43 is transmission BPF
44はパワーアンプ 44 is a power amplifier
45はアイソレータ
46、 47は共用器 45 is an isolator 46 and 47 are duplexers
48〖ま受信 LNA 48mm reception LNA
49は受信 BPF 49 is receiving BPF
4Aは高周波用エレメント素子 4A is a high-frequency element
4Bは低周波用エレメント素子 4B is a low-frequency element
4Cはインダクタンス成分 4C is the inductance component
4a、 4dは給電部 4a and 4d are power supply units
4bは整合回路 4b is a matching circuit
4cは切替え回路 4c is a switching circuit
401はリアクタンス素子 401 is a reactance element
403はアンテナ素子 403 is an antenna element
404は地板 404 is the ground plane
5a、 5bは給電部切替え回路 5a and 5b are power supply switching circuits
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 以下、本発明の実施の形態について、添付図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[第 1の実施形態] [First embodiment]
図 1は、本発明のアンテナ装置 4を備えた携帯電話機 (移動体通信用端末装置) 1 0を示すものであり、この携帯電話機 10は、キー操作部を備える本体部 1と、液晶画 面 21を備えるフリップ部 2とが回転軸を持つヒンジ 3によって開閉自在な折畳式の筐 体構造を有している。 FIG. 1 shows a mobile phone (mobile communication terminal device) 10 provided with the antenna device 4 of the present invention. The mobile phone 10 includes a main body 1 having a key operation unit, a liquid crystal screen, and the like. The flip part 2 having 21 has a foldable casing structure that can be opened and closed by a hinge 3 having a rotation axis.
また、この携帯電話機のアンテナ装置 4には、図 2に示すように、内蔵アンテナ 40、 給電部 4a、整合回路 4bなどの他に、切替え回路 4cを備えている。 Further, as shown in FIG. 2, the antenna device 4 of the cellular phone includes a switching circuit 4c in addition to the built-in antenna 40, the power feeding unit 4a, the matching circuit 4b, and the like.
[0013] 内蔵アンテナ 40は、 L型又は逆 L型形状のアンテナ(後述する IL PILA)であつ て、本体部 1の先端側(これを「内蔵アンテナ 40A」とよぶ)およびフリップ部 2寄りの 基端側(これを「内蔵アンテナ 40B」とよぶ)の双方に設けて!/ヽるが、これらの何れか 一方の位置に設置されていてもよい。なお、本実施形態では、本体部 1の先端側に 設けた内蔵アンテナ 40Aを例にして説明を行う。また、内蔵アンテナは、いずれの位 置に設置する場合でも全く同じ構成である。
[0014] 内蔵アンテナ 40Aは、図 2 (A)及び図 3に示すように、リアクタンス素子 401によつ て 2つ(3つ以上でもよい)に分割されたアンテナ素子 402 (「第 1の共振周波数 fl」; 約 880〜960MHz)及びアンテナ素子 403 (「第 2の共振周波数 f2」;約 1710〜19 90MHz)と、グランドとなる地板 404とを備える。即ち、内蔵アンテナ 40Aは、図 3に 示すように、リアクタンス素子 401により 2つに分割され第 1の共振周波数 flと第 2の 共振周波数 f 2とを有するものであり、本体部 1の先端側に収納されており、内蔵アン テナ 40Aの給電部 4aの近傍に配置された切替え回路 4c (図 2 (B)参照)を用いてィ ンピーダンスを制御する。なお、リアクタンス素子 401は、 2つのアンテナ素子 402、 4 03のほぼ中央部付近に形成された図示外のスリットに設けてある。 [0013] The built-in antenna 40 is an L-shaped or inverted L-shaped antenna (IL PILA, which will be described later), and is located near the tip side of the main body 1 (this is referred to as “built-in antenna 40A”) and the flip section 2. It is provided on both sides of the base end (this is called “built-in antenna 40B”), but it may be installed at any one of these positions. In the present embodiment, description will be given by taking the built-in antenna 40A provided on the distal end side of the main body 1 as an example. The built-in antenna has the same configuration regardless of where it is installed. [0014] The built-in antenna 40A includes an antenna element 402 ("first resonance") divided into two (or three or more) by a reactance element 401, as shown in FIGS. Frequency fl ”; about 880 to 960 MHz) and an antenna element 403 (“ second resonance frequency f2 ”; about 1710 to 190 MHz) and a ground plane 404 serving as a ground. That is, as shown in FIG. 3, the built-in antenna 40A is divided into two parts by a reactance element 401, and has a first resonance frequency fl and a second resonance frequency f2. The impedance is controlled by using a switching circuit 4c (see Fig. 2 (B)) arranged in the vicinity of the feeding section 4a of the built-in antenna 40A. The reactance element 401 is provided in a slit (not shown) formed near the center of the two antenna elements 402 and 4003.
[0015] 一方、切替え回路 4cは、図 2 (B)に示すように、内蔵アンテナ 40Aの給電部 4a近 傍に配置した整合回路 4bと接続されており、整合インピーダンスの制御を行う。即ち 、この切替え回路 4cは、ある周波数 (例えば、第 1の共振周波数 flである約 880MH z〜960MHzの範囲)を固定状態とし、かつ、第 2の共振周波数 f2 (約 1710MHz〜 1990MHzの範囲)をこれとは異なる特定の周波数 (例えば、「第 3の共振周波数 f 3」 である約 1920MHz〜2170MHzの範囲)にあわせた整合をとる。これ〖こより、第 1の 共振周波数 flは固定状態のまま、第 2の共振周波数 f2のみを第 3の共振周波数 f3 へ切替えることができる多周波アンテナを実現している。なお、この切替え回路 4cは 、 PINダイオード、 FETスィッチ、 MEMSスィッチ、ソリッドステートスィッチなどで構 成する。 On the other hand, as shown in FIG. 2 (B), switching circuit 4c is connected to matching circuit 4b arranged in the vicinity of feeding portion 4a of built-in antenna 40A, and controls matching impedance. That is, the switching circuit 4c has a fixed frequency (for example, a range of about 880 MHz to 960 MHz, which is the first resonance frequency fl), and a second resonance frequency f2 (a range of about 1710 MHz to 1990 MHz). Is matched to a specific frequency different from this (for example, a range of about 1920 MHz to 2170 MHz, which is the “third resonance frequency f 3”). This realizes a multi-frequency antenna that can switch only the second resonance frequency f2 to the third resonance frequency f3 while keeping the first resonance frequency fl fixed. The switching circuit 4c is composed of a PIN diode, a FET switch, a MEMS switch, a solid state switch, and the like.
[0016] このように、切替え回路 4cにより、第 2の共振周波数 f2のみを第 3の共振周波数 f3 へ適宜に切替えることが可能となるので、広帯域なマルチバンドに対応したアンテナ 装置を実現できる。即ち、本実施形態では、切替え回路 4cを用いてインピーダンスを 制御することで、第 1の共振周波数 flは固定のまま、第 2の共振周波数 f2のみを第 3 の共振周波数 f3へ切替えることができる。 [0016] Thus, since the switching circuit 4c can appropriately switch only the second resonance frequency f2 to the third resonance frequency f3, an antenna device corresponding to a wideband multiband can be realized. That is, in the present embodiment, by controlling the impedance using the switching circuit 4c, the second resonance frequency f2 can be switched to the third resonance frequency f3 while the first resonance frequency fl is fixed. .
[0017] なお、切替え回路 4cは、図 4に示すように、アンテナ切替え制御部 41によってその 制御がなされており、またこのアンテナ切替え制御部 41は、主制御部 42で制御され ている。この主制御部 42は、無線部送受信の際の制御を行なうものであり、送信側に ついては、出力が送信 BPF (Band Pass Filter) 43の入力に接続されている。送信 BP
F43は、出力がパワーアンプ 44の入力に接続されているとともに、パワーアンプ 44の 出力はアイソレータ 45の入力に接続されている。このアイソレータ 45は、直流入力変 を構成するものであり、アンプの安定動作や混変調の防止等の機能を有してお り、出力が必要な送信と受信の各フィルタを 1本のアンテナで共用するための部品で ある共用器 46に接続されている。なお、この共用器 46の出力は、整合回路 4bに接 続されている。 As shown in FIG. 4, the switching circuit 4 c is controlled by an antenna switching control unit 41, and the antenna switching control unit 41 is controlled by a main control unit 42. The main control unit 42 performs control at the time of radio unit transmission / reception. On the transmission side, the output is connected to the input of a transmission BPF (Band Pass Filter) 43. Send BP The output of F43 is connected to the input of the power amplifier 44, and the output of the power amplifier 44 is connected to the input of the isolator 45. This isolator 45 constitutes a DC input variation, and has functions such as stable operation of the amplifier and prevention of intermodulation, and each antenna for transmission and reception that requires output is provided by a single antenna. It is connected to duplexer 46, which is a component for sharing. The output of the duplexer 46 is connected to the matching circuit 4b.
[0018] 一方、受信側については、整合回路 4bの出力に共用器 47の入力が接続されてい るとともに、共用器 47の出力が受信 LNA (Low Noise Amplifier) 48に接続されている 。この受信 LNA48は、受信 BPF49の入力に接続されている。また、この受信 BPF4 9の出力が主制御部 42の入力に接続されており、この主制御部 42の受信信号レべ ル検出回路 42Aを介したアンテナ切替え制御部 41により、前述の切替え回路 4cの 動作が制御されている。即ち、制御部 42内の受信信号レベル検出回路 42Aにより、 受信電界レベルの高!ヽ周波数帯域を選択し、アンテナ切替え制御部 41で帯域を切 替え選択する。本実施形態では、このように構成することにより、安定した通信品質を 保つことができるなど、高性能なアンテナシステムを提供できる。 On the other hand, on the reception side, the input of the duplexer 47 is connected to the output of the matching circuit 4b, and the output of the duplexer 47 is connected to a reception LNA (Low Noise Amplifier) 48. This receiving LNA 48 is connected to the input of the receiving BPF 49. The output of the reception BPF4 9 is connected to the input of the main control unit 42. The antenna switching control unit 41 via the reception signal level detection circuit 42A of the main control unit 42 controls the switching circuit 4c described above. The operation of is controlled. That is, the reception signal level detection circuit 42A in the control unit 42 selects a high frequency band of the reception electric field level, and the antenna switching control unit 41 selects and switches the band. In this embodiment, a high-performance antenna system that can maintain stable communication quality can be provided by configuring in this way.
[0019] 次に、本実施形態の動作原理について、図 5および図 6を参照しながら詳細に説明 する。なお、図 5は、本発明に適用される IL— PILA (後述する)の概略的な構成図で ある。また、図 6は、図 5に示す IL— PILAの VSWR特性の一例を示す図である。 本実施形態では、 L型又は逆 L型の形状をした線状又は板状のアンテナ素子 402 , 403に対してリアクタンス素子 401を分割装荷している。これにより、分割された各 々のアンテナ素子 402, 403は、広帯域であって 2つ以上の周波数帯域 (すなわち、 第 1の共振周波数 flと第 2の共振周波数 f2)で共振する多周波アンテナを実現して いる。このような多周波アンテナは、インダクタンス装荷型板状逆 Lアンテナ( Inductance Load-type Plate-type Inverted— L Antenna:通称、 IL— PILA)と呼ばれ ている。 Next, the operation principle of the present embodiment will be described in detail with reference to FIGS. 5 and 6. FIG. 5 is a schematic configuration diagram of IL-PILA (described later) applied to the present invention. FIG. 6 is a diagram showing an example of the VSWR characteristic of IL-PILA shown in FIG. In the present embodiment, reactance elements 401 are divided and loaded on linear or plate-like antenna elements 402 and 403 having an L-shape or an inverted L-shape. Accordingly, each of the divided antenna elements 402 and 403 is a wideband multi-frequency antenna that resonates in two or more frequency bands (that is, the first resonance frequency fl and the second resonance frequency f2). Realized. Such a multi-frequency antenna is called an inductance-loaded plate-type inverted L antenna (commonly known as IL-PILA).
[0020] 図 5 (A)に示すように、アンテナ素子 402, 403 (図 2 (A)又は図 3参照)を構成する IL PILAは、 2つに分割されたエレメント(つまり、高周波用エレメント素子 4Aと低周 波用エレメント素子 4B)の間にインダクタンス成分 4Cを装荷している。そして、高周
波数帯域 (例えば、第 2の共振周波数 f2である約 1710MHz〜1990MHz)では、ィ ンダクタンス成分 4Cを装荷した以降の部分 (つまり、低周波用エレメント素子 4Bの部 分)をオープンとみなす。また、低周波数帯域 (例えば、第 1の共振周波数 flである 約 880MHz〜960MHz)では、インダクタンス成分 4Cを装荷した以降の部分(低周 波用エレメント素子 4Bの部分)〖こも電流が流れるように定数を決定する。つまり、イン ダクタンス成分 4Cは、低周波電流を流すが高周波電流を流さない特性を利用して、 高周波数帯域では、図 5 (B)に示すように、高周波用エレメント素子 4Aのみの構成と し、低周波数帯域では、図 5 (C)に示すように、高周波用エレメント素子 4Aと低周波 用エレメント素子 4Bが直列に接続される構成を実現している。アンテナ素子 412, 4 13は、このような IL— PILAの構成にすることにより、図 6に示すような VSWR特性を 得て、トリプルバンド対応の 2共振アンテナを実現できる。 [0020] As shown in Fig. 5 (A), the IL PILA constituting the antenna elements 402, 403 (see Fig. 2 (A) or Fig. 3) is divided into two elements (that is, high-frequency element elements). An inductance component 4C is loaded between 4A and the low-frequency element 4B). And high lap In the wave number band (for example, about 1710 MHz to 1990 MHz, which is the second resonance frequency f2), the portion after loading the inductance component 4C (that is, the portion of the low-frequency element element 4B) is regarded as open. Also, in the low frequency band (for example, about 880 MHz to 960 MHz, which is the first resonance frequency fl), the portion after the inductance component 4C is loaded (the portion of the low frequency element element 4B) also flows so that current flows. Determine the constant. In other words, the inductance component 4C uses a characteristic of flowing a low-frequency current but not a high-frequency current. In the high-frequency band, as shown in Fig. 5 (B), only the high-frequency element element 4A is configured. In the low frequency band, as shown in FIG. 5C, a configuration is realized in which the high frequency element element 4A and the low frequency element element 4B are connected in series. The antenna elements 412 and 4 13 can achieve a VSWR characteristic as shown in Fig. 6 and realize a triple-band dual-resonance antenna by adopting such an IL-PILA configuration.
[0021] 次に、図 7は、図 2に示すアンテナ構成においてアンテナ素子 402, 403の給電部 4aの近傍に配置した切替え回路 4cを動作させな 、場合と、動作させた場合の VSW R特性の一例を示す図である。なお、図 7 (A)は切替え回路 4cを動作させない場合、 図 7 (B)は切替え回路 4cを動作させた場合を示す。何れも横軸に周波数を示し、縦 軸に VSWR (Voltage Standing Wave Ratio:電圧定在波比)を示している。 Next, FIG. 7 shows the case where the switching circuit 4c arranged in the vicinity of the feeding portion 4a of the antenna elements 402 and 403 is not operated in the antenna configuration shown in FIG. 2, and the VSW R characteristics when the switching circuit 4c is operated. It is a figure which shows an example. 7A shows a case where the switching circuit 4c is not operated, and FIG. 7B shows a case where the switching circuit 4c is operated. In both cases, the horizontal axis represents frequency, and the vertical axis represents VSWR (Voltage Standing Wave Ratio).
図 7に示すこれらの特性図では、 880MHz〜2170MHzにおける VSWR特性の 一例を示している。 VSWRを 3以下とした場合は、切替え回路 4cを動作させない図 7 (A)のときは、最初に約 880MHz〜960MHzまでの第 1の共振周波数 f 1が現われ 、次に約 1710MHz〜1990MHzまでの第 2の共振周波数 f2が現われている。しか し、アンテナ素子 402, 403の給電部 4aの近傍に配置した切替え回路 4cを動作させ ることによってインピーダンスの制御を行うと、図 7 (B)のように、約 880MHz〜960 MHz (第 1の共振周波数 fl)までの共振周波数は固定状態のまま、約 1710MHz〜l 990MHz (第 2の共振周波数 f2)までの共振周波数のみ力 約 1920MHz〜2170 MHz (第 3の共振周波数 f 3)までの共振周波数へ切替えられる。この結果、 3つの周 波数帯域 fl〜f3で共振する多周波アンテナを実現することができる。 These characteristics shown in Fig. 7 show an example of VSWR characteristics at 880MHz to 2170MHz. When VSWR is 3 or less, the switching circuit 4c is not operated.In Fig. 7 (A), the first resonance frequency f1 from about 880MHz to 960MHz appears first, and then from about 1710MHz to 1990MHz. The second resonance frequency f2 appears. However, when the impedance is controlled by operating the switching circuit 4c arranged in the vicinity of the feeding part 4a of the antenna elements 402 and 403, as shown in FIG. The resonance frequency up to (resonance frequency fl) is still fixed, and only the resonance frequency up to about 1710 MHz to l 990 MHz (second resonance frequency f2) is about 1920 MHz to 2170 MHz (third resonance frequency f3). It is switched to the resonance frequency. As a result, a multi-frequency antenna that resonates in three frequency bands fl to f3 can be realized.
[0022] [第 2の実施形態] [0022] [Second Embodiment]
以下、本発明の第 2の実施形態について、図 8及び図 9を参照しながら詳細に説明
する。なお、本実施形態において、第 1の実施形態と同一部分には同一符号を付し て重複説明を避ける。 Hereinafter, the second embodiment of the present invention will be described in detail with reference to FIGS. 8 and 9. To do. In the present embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals to avoid redundant description.
図 8は、本発明の第 2の実施形態に係る移動体通信用端末装置に備えたアンテナ 装置を示すものであり、本実施形態のアンテナ装置は、第 1の実施形態と異なり、ァ ンテナ素子 402、 403の各端部に、給電状態の変更を行う給電部切替え回路 5a、 5 bをそれぞれ備えている。 FIG. 8 shows an antenna device provided in a mobile communication terminal device according to the second embodiment of the present invention. Unlike the first embodiment, the antenna device of the present embodiment is an antenna element. Power supply unit switching circuits 5a and 5b for changing the power supply state are provided at each end of 402 and 403, respectively.
[0023] この給電部切替え回路 5a、 5bは、アンテナ素子 402、 403への給電状態を何れか 一方に切替えるものである。例えば、給電点を給電部 4aから給電部 4dに切替えるこ とにより、アンテナ素子 402を第 1、第 2の共振周波数から、第 4、第 5の共振周波数( 何れの共進周波数についても、具体的な周波数値を後に説明する)へ切替えるよう に構成されている。この場合に、切替え回路 4cがインピーダンスの制御をすることに より、第 4の共振周波数 f4は固定のまま、第 5の共振周波数 f5のみを第 6の共振周波 数 f 6 (これについても、周波数値を後に説明する)へ切替える多周波アンテナを実現 している。なお、ここで、「第 4の共振周波数 f4」は約 830〜960MHz、「第 5の共振 周波数 f5」は約 1710〜1880MHz、「第 6の共振周波数 f6」は約 1850〜1990MH zの範囲にある。 The power feeding unit switching circuits 5a and 5b switch the power feeding state to the antenna elements 402 and 403 to one of them. For example, by switching the feeding point from the feeding unit 4a to the feeding unit 4d, the antenna element 402 can be changed from the first and second resonance frequencies to the fourth and fifth resonance frequencies (specifically for any co-frequency). It is configured to switch to an appropriate frequency value (to be described later). In this case, the switching circuit 4c controls the impedance, so that the fourth resonance frequency f4 remains fixed and only the fifth resonance frequency f5 is changed to the sixth resonance frequency f6 (also in this case, the frequency A multi-frequency antenna that switches the value to (described later) is realized. Here, the “fourth resonance frequency f4” is in the range of about 830 to 960 MHz, the “fifth resonance frequency f5” is in the range of about 1710 to 1880 MHz, and the “sixth resonance frequency f6” is in the range of about 1850 to 1990 MHz. is there.
[0024] 次に、図 9は、図 8に示すアンテナ構成において、例えばアンテナ素子 402の端部 に配置した給電部切替え回路 5aを動作させ、給電部 4aを給電部 4dに切替えた場合 にお 、て、アンテナ素子 403の給電部 4dの近傍に配置した切替え回路 4cを動作さ せない場合と、動作させた場合の VSWR特性の一例を示す図である。なお、図 9 (A )は切替え回路 4cを動作させない場合、図 9 (B)は切替え回路 4cを動作させた場合 を示す。何れも横軸に周波数を示し縦軸に VSWRを示して 、る。 Next, FIG. 9 shows a case where, in the antenna configuration shown in FIG. 8, for example, the feeder switching circuit 5a disposed at the end of the antenna element 402 is operated to switch the feeder 4a to the feeder 4d. FIG. 6 is a diagram showing an example of VSWR characteristics when the switching circuit 4c arranged in the vicinity of the power feeding unit 4d of the antenna element 403 is not operated and when it is operated. 9A shows the case where the switching circuit 4c is not operated, and FIG. 9B shows the case where the switching circuit 4c is operated. In both cases, the horizontal axis represents frequency and the vertical axis represents VSWR.
[0025] 図 9に示すこれらの特性図では、 830MHz〜1990MHzにおける VSWR特性の 一例を示している。 VSWRを 3以下とした場合、第 1、第 2の共振周波数であったもの 1S 図 9 (A)の切替え回路 4cを動作させないときは、最初に約 830MHz〜960MH z (第 4の共振周波数 f4)までの共振周波数が現われ、次に約 1710MHz〜1880M Hz (第 5の共振周波数 f 5)までの共振周波数が現われている。ここで、アンテナ素子 403の給電部 4dの近傍に配置した切替え回路 4cを動作させることによって、約 830
MHz〜960MHz (第 4の共振周波数 f4)までの共振周波数は固定のまま、約 1710 MHz〜1880MHz (第 5の共振周波数 f5)までの共振周波数のみが、約 1850MHz 〜1990MHz (第 6の共振周波数 f6)までの共振周波数へ切替わる。この結果、 6つ の周波数帯域 fl〜f6で共振する多周波アンテナを実現することができる。 [0025] These characteristic diagrams shown in Fig. 9 show an example of VSWR characteristics in the range of 830MHz to 1990MHz. When VSWR is 3 or less, what was the first and second resonance frequencies 1S When switching circuit 4c in Fig. 9 (A) is not operated, first, about 830 MHz to 960 MHz (fourth resonance frequency f4 ) Appears, followed by a resonance frequency of about 1710 MHz to 1880 MHz (fifth resonance frequency f 5). Here, by operating the switching circuit 4c arranged in the vicinity of the feeding portion 4d of the antenna element 403, about 830 The resonance frequency from MHz to 960 MHz (fourth resonance frequency f4) remains fixed, and only the resonance frequency from approximately 1710 MHz to 1880 MHz (fifth resonance frequency f5) is approximately 1850 MHz to 1990 MHz (sixth resonance frequency). Switch to the resonance frequency up to f6). As a result, a multi-frequency antenna that resonates in the six frequency bands fl to f6 can be realized.
[0026] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。 [0026] Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. is there.
産業上の利用可能性 Industrial applicability
[0027] 以上説明したように、従来、 GSMシステムなどのトライバンドに対応した携帯電話 機などに内蔵の小型アンテナ装置は多く存在する力 これらを GSMZDCSZPCS ZUMTSなどのマルチモードシステムに対応させようとした場合、従来のアンテナ装 置では占有体積が大きくなつたり、携帯電話機などのデザイン性を損ねたり、あるい は、電気部品などの実装が難し力つた。一方、本発明のアンテナ装置は、上記従来 の問題を解決し、マルチモードシステムに対応した広帯域で使用できる携帯電話機 などに好適な内蔵型の小型アンテナを提供することが可能となる。さらに、アンテナ 装置をダイバーシチアンテナの構成にすることによってアンテナ指向性を一段と向上 させることがでさる。 [0027] As explained above, there are many small antenna devices built in mobile phones that support tri-bands such as GSM systems, and so on, so that they tried to make them compatible with multi-mode systems such as GSMZDCSZPCS ZUMTS. In some cases, the conventional antenna device occupies a large occupied volume, impairs the design of a mobile phone or the like, or it is difficult to mount electrical components. On the other hand, the antenna device of the present invention solves the above-mentioned conventional problems, and can provide a built-in small antenna suitable for a mobile phone that can be used in a wide band compatible with a multi-mode system. Furthermore, antenna directivity can be further improved by making the antenna device a diversity antenna configuration.
本発明のアンテナ装置は、携帯電話機などに限らずあらゆる移動体通信用端末装 置に利用することもできる。
The antenna device of the present invention can be used not only for a mobile phone but also for any mobile communication terminal device.
Claims
[1] リアクタンス素子により 2つ以上に分割され第 1の共振周波数と第 2の共振周波数と を有する内蔵型のアンテナ素子が設けられた、広帯域の共振周波数に切替え可能 なアンテナ装置であって、 [1] An antenna device that is divided into two or more by a reactance element and is provided with a built-in antenna element having a first resonance frequency and a second resonance frequency, and is switchable to a broadband resonance frequency,
インピーダンスを制御することで、前記第 1の共振周波数は固定状態のまま、前記 第 2の共振周波数のみを前記第 1、第 2の共振周波数とは異なる第 3の共振周波数 へ切替える切替え回路を有するアンテナ装置。 A switching circuit that switches only the second resonance frequency to a third resonance frequency different from the first and second resonance frequencies while controlling the impedance while the first resonance frequency remains fixed. Antenna device.
[2] リアクタンス素子により分割された第 1の共振周波数乃至第 6の共振周波数を有す る内蔵型のアンテナ素子と、前記アンテナ素子の給電部を複数有する広帯域の共振 周波数に切替えるアンテナ装置であって、 [2] An antenna device that switches to a wideband resonance frequency having a built-in antenna element having first to sixth resonance frequencies divided by a reactance element and a plurality of feeding portions of the antenna element. And
前記アンテナ素子端に配置し、前記アンテナ素子へ給電する前記給電部を切替え る給電部切替え回路と、 A power feeding unit switching circuit that is disposed at the end of the antenna element and switches the power feeding unit that feeds power to the antenna element;
前記給電部切替え回路により前記給電部を切替え、共振周波数を第 1、第 2の共 振周波数から第 4、第 5の共振周波数へ切替えた場合に、インピーダンスを制御し、 前記第 4の共振周波数は固定のまま、前記第 5の共振周波数のみを第 6の共振周波 数へ切替える切替え回路を有するアンテナ装置。 When the power feeding unit is switched by the power feeding unit switching circuit and the resonance frequency is switched from the first and second resonance frequencies to the fourth and fifth resonance frequencies, the impedance is controlled, and the fourth resonance frequency Is an antenna device having a switching circuit that switches only the fifth resonance frequency to the sixth resonance frequency while maintaining a fixed value.
[3] 前記切替え回路は、 PINダイオード、 FETスィッチ、 MEMSスィッチ、 SPDTスィッ チ、 GaAsスィッチ、またはソリッドステートスィッチの何れかを備えた請求項 1又は 2 に記載のアンテナ装置。 [3] The antenna device according to claim 1 or 2, wherein the switching circuit includes any one of a PIN diode, a FET switch, a MEMS switch, an SPDT switch, a GaAs switch, and a solid-state switch.
[4] 前記アンテナ素子は、ダイバーシチアンテナによって構成している請求項 1乃至 3 の何れか 1項に記載のアンテナ装置。 [4] The antenna device according to any one of claims 1 to 3, wherein the antenna element is configured by a diversity antenna.
[5] 請求項 1乃至 4記載の何れか 1項に記載のアンテナ装置を備える移動体通信用端 末装置。
[5] A mobile communication terminal device comprising the antenna device according to any one of claims 1 to 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2005/009242 WO2006123419A1 (en) | 2005-05-20 | 2005-05-20 | Antenna apparatus and mobile communication terminal apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2005/009242 WO2006123419A1 (en) | 2005-05-20 | 2005-05-20 | Antenna apparatus and mobile communication terminal apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006123419A1 true WO2006123419A1 (en) | 2006-11-23 |
Family
ID=37431003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2005/009242 WO2006123419A1 (en) | 2005-05-20 | 2005-05-20 | Antenna apparatus and mobile communication terminal apparatus |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2006123419A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013140758A1 (en) * | 2012-03-21 | 2013-09-26 | 日本電気株式会社 | Antenna device |
EP2220871A4 (en) * | 2007-12-14 | 2018-01-17 | Microsoft Technology Licensing, LLC | Computing device with configurable antenna |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002076750A (en) * | 2000-08-24 | 2002-03-15 | Murata Mfg Co Ltd | Antenna device and radio equipment equipped with it |
JP2003179426A (en) * | 2001-12-13 | 2003-06-27 | Matsushita Electric Ind Co Ltd | Antenna device and portable radio system |
JP3469880B2 (en) * | 2001-03-05 | 2003-11-25 | ソニー株式会社 | Antenna device |
JP2004040596A (en) * | 2002-07-05 | 2004-02-05 | Matsushita Electric Ind Co Ltd | Multiple frequency antenna for portable radio equipment |
JP2005150937A (en) * | 2003-11-12 | 2005-06-09 | Murata Mfg Co Ltd | Antenna structure and communication apparatus provided with the same |
-
2005
- 2005-05-20 WO PCT/JP2005/009242 patent/WO2006123419A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002076750A (en) * | 2000-08-24 | 2002-03-15 | Murata Mfg Co Ltd | Antenna device and radio equipment equipped with it |
JP3469880B2 (en) * | 2001-03-05 | 2003-11-25 | ソニー株式会社 | Antenna device |
JP2003179426A (en) * | 2001-12-13 | 2003-06-27 | Matsushita Electric Ind Co Ltd | Antenna device and portable radio system |
JP2004040596A (en) * | 2002-07-05 | 2004-02-05 | Matsushita Electric Ind Co Ltd | Multiple frequency antenna for portable radio equipment |
JP2005150937A (en) * | 2003-11-12 | 2005-06-09 | Murata Mfg Co Ltd | Antenna structure and communication apparatus provided with the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2220871A4 (en) * | 2007-12-14 | 2018-01-17 | Microsoft Technology Licensing, LLC | Computing device with configurable antenna |
WO2013140758A1 (en) * | 2012-03-21 | 2013-09-26 | 日本電気株式会社 | Antenna device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8674889B2 (en) | Tunable antenna arrangement | |
JP4302738B2 (en) | Improvements in or related to wireless terminals | |
US7616158B2 (en) | Multi mode antenna system | |
US7804457B2 (en) | Multi-band antenna with inductor and/or capacitor | |
US6693594B2 (en) | Optimal use of an electrically tunable multiband planar antenna | |
KR101090274B1 (en) | Antenna device and portable radio communication device comprising such an antenna device | |
US8780007B2 (en) | Handheld device and planar antenna thereof | |
WO2011024280A1 (en) | Antenna device and communication device | |
JP4704287B2 (en) | Antenna device and portable radio | |
EP2491613B1 (en) | Reconfigurable antenna | |
WO2005109569A1 (en) | Multi-band antenna, circuit substrate, and communication device | |
EP2038962A1 (en) | Multiband multimode compact antenna system | |
WO2006098089A1 (en) | Antenna assembly and radio communication apparatus employing same | |
JPWO2009019782A1 (en) | ANTENNA DEVICE AND PORTABLE RADIO DEVICE | |
WO2011034197A1 (en) | Antenna, wireless communication device, and antenna configuring method | |
JP2009538037A (en) | Antenna device and portable radio communication device comprising such an antenna device | |
JP2001136019A (en) | Inverted-f antenna and radio unit using the same | |
KR20070051292A (en) | Antenna device and portable radio communication device comprising such an antenna device | |
CN103026548A (en) | Portable wireless device | |
WO2013007868A1 (en) | Loop antenna arrangement | |
WO2006030708A1 (en) | Frequency variable antenna and wireless communication apparatus | |
US7928914B2 (en) | Multi-frequency conductive-strip antenna system | |
JP2008294635A (en) | Antenna unit and portable radio apparatus | |
WO2006123419A1 (en) | Antenna apparatus and mobile communication terminal apparatus | |
WO2009081512A1 (en) | Wireless communication terminal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 05741567 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |