WO2006121557A1 - Pregabalin free of lactam and a process for preparation thereof - Google Patents
Pregabalin free of lactam and a process for preparation thereof Download PDFInfo
- Publication number
- WO2006121557A1 WO2006121557A1 PCT/US2006/013360 US2006013360W WO2006121557A1 WO 2006121557 A1 WO2006121557 A1 WO 2006121557A1 US 2006013360 W US2006013360 W US 2006013360W WO 2006121557 A1 WO2006121557 A1 WO 2006121557A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lactam
- pregabalin
- amine
- eluent
- hplc
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C229/00—Compounds containing amino and carboxyl groups bound to the same carbon skeleton
- C07C229/02—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
- C07C229/04—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
- C07C229/06—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton
- C07C229/08—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to hydrogen atoms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N2030/022—Column chromatography characterised by the kind of separation mechanism
- G01N2030/027—Liquid chromatography
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/88—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
- G01N2030/8809—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
- G01N2030/8813—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/88—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
- G01N2030/8809—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
- G01N2030/8813—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
- G01N2030/8818—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials involving amino acids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/86—Signal analysis
- G01N30/8675—Evaluation, i.e. decoding of the signal into analytical information
Definitions
- the present invention relates to (S)-Pregabalin substantially free of lactam, and a process for preparation thereof.
- (S)- ⁇ regabalin is a ⁇ -amino butyric acid or (S)-3-isobutyl (GABA) analogue.
- GABA GABA
- (S)-Pregabalin has been found to activate GAD (L-glutamic acid decarboxylase).
- (S)-Pregabalin has a dose dependent protective effect on-seizure, and is a CNS-active compound.
- (S)-Pregabalin is useful in anticonvulsant therapy, due to its activation of GAD, promoting the production of GABA, one of the brain's major inhibitory neurotransmitters, which is released at 30 percent of the brains synapses.
- (S)-Pregabalin has analgesic, anticonvulsant, and anxiolytic activity.
- (S)-Pregabalin is marketed under the name Lyrica ® by Pfizer, Inc.
- Lyrica ® by Pfizer, Inc.
- (S)-Pregabalin can contain extraneous compounds or impurities that can come from many sources. They can be unreacted starting materials, by-products of the reaction, products of side reactions, or degradation products. Impurities in (S)-Pregabalin or any active pharmaceutical ingredient (API) are undesirable and, in extreme cases, might even be harmful to a patient being treated with a dosage form containing the API.
- API active pharmaceutical ingredient
- impurities in an API may arise from degradation of the API itself, which is related to the stability of the pure API during storage, and the manufacturing process, including the chemical synthesis.
- Process impurities include unreacted starting materials, chemical derivatives of impurities contained in starting materials, synthetic by-products, and degradation products.
- the purity of the API produced in the commercial manufacturing process is clearly a necessary condition for commercialization. Impurities introduced during commercial manufacturing processes must be limited to very small amounts, and are preferably substantially absent.
- the ICH Q7A guidance for API manufacturers requires that process impurities be maintained below set limits by specifying the quality of raw materials, controlling process parameters, such as temperature, pressure, time, and stoichiometric ratios, and including purification steps, such as crystallization, distillation, and liquid- liquid extraction, in the manufacturing process.
- the product mixture of a chemical reaction is rarely a single compound with sufficient purity to comply with pharmaceutical standards. Side products and by-products of the reaction and adjunct reagents used in the reaction will, in most cases, also be present in the product mixture.
- an API such as (S)- pregabalin
- it must be analyzed for purity, typically, by HPLC or TLC analysis, to determine if it is suitable for continued processing and, ultimately, for use in a pharmaceutical product.
- the API need not be absolutely pure, as absolute purity is a theoretical ideal that is typically unattainable. Rather, purity standards are set with the intention of ensuring that an API is as free of impurities as possible, and, thus, is as safe as possible for clinical use.
- the Food and Drug Administration guidelines recommend that the amounts of some impurities be limited to less than 0.1 percent.
- (S)-Pregabalin can contain (S)-Lactam impurity of the following formula,
- the proton source can be an acid from the process or Pregabalin itself.
- (S)- Pregabalin obtained in any kind of process will be contaminated with this impurity.
- the present invention succeeds to provide not only, (S)-Pregabalin substantially free of (S)-Lactam, but also, a process to obtain (S)-Pregabalin substantially free of (S)- Lactam.
- impurities are identified spectroscopically and/or with another physical method, and then associated with a peak position, such as that in a chromatogram, or a spot on a TLC plate.
- a peak position such as that in a chromatogram, or a spot on a TLC plate.
- the impurity can be identified, e.g., by its relative position on the TLC plate and, wherein the position on the plate is measured in cm from the base line of the plate or by its relative position in the chromatogram of the HPLC, where the position in a chromatogram is conventionally measured in minutes between injection of the sample on the column and elution of the particular component through the detector.
- the relative position in the chromatogram is known as the "retention time.”
- the retention time can vary about a mean value based upon the condition of the instrumentation, as well as many other factors.
- practitioners use the "relative retention time" ("RRT") to identify impurities. (Strobel p. 922).
- RRT relative retention time
- the RRT of an impurity is its retention time divided by the retention time of a reference marker. It may be advantageous to select a compound other than the API that is added to, or present in, the mixture in an amount sufficiently large to be detectable and sufficiently low as not to saturate the column, and to use that compound as the reference marker for determination of the RRT.
- a reference standard is similar to a reference marker, which is used for qualitative analysis only, but is used to quantify the amount of the compound of the reference standard in an unknown mixture, as well.
- a reference standard is an "external standard," when a solution of a known concentration of the reference standard and an unknown mixture are analyzed using the same technique. (Strobel p. 924, Snyder p. 549, Snyder, L.R.; Kirkland, JJ. Introduction to Modern Liquid Chromatography, 2nd ed. (John Wiley & Sons: New York 1979)), The amount of the compound in the mixture can be determined by comparing the magnitude of the detector response. See also U.S. Patent No. 6,333,198, incorporated herein by reference.
- the reference standard can also be used to quantify the amount of another compound in the mixture if a "response factor," which compensates for differences in the sensitivity of the detector to the two compounds, has been predetermined. (Strobel p. 894). For this purpose, the reference standard is added directly to the mixture, and is known as an "internal standard.” (Strobel p. 925, Snyder p. 552).
- the reference standard can serve as an internal standard when, without the deliberate addition of the reference standard, an unknown mixture contains a detectable amount of the reference standard compound using the technique known as "standard addition.”
- the "standard addition technique” at least two samples are prepared by adding known and differing amounts of the internal standard. (Strobel pp. 391-393, Snyder pp. 571, 572).
- the proportion of the detector response due to the reference standard present in the mixture without the addition can be determined by plotting the detector response against the amount of the reference standard added to each of the samples, and extrapolating the plot to zero concentration of the reference standard. (See, e.g., Strobel, Fig. 11.4 p. 392).
- the response of a detector in HPLC e.g. UV detectors or refractive index detectors
- the reference standard is the impurity (S)- Lactam in the API. Detection or quantification of the reference standard serves to establish the level of purity of the API. Use of a compound as a standard requires recourse to a sample of substantially pure compound.
- the present invention encompasses Pregabalin substantially free of Lactam.
- the present invention encompasses Pregabalin containing less than 0.015% area by HPLC of Lactam.
- the present invention encompasses a process for obtaining Pregabalin substantially free of Lactam by extracting an acidic mixture containing a complex of Pregabalin with a strong mineral acid, with a C 4-8 alcohol; and combining the organic phase with an organic base.
- the present invention encompasses a process for obtaining Pregabalin containing less than 0.005% area by HPLC of Lactam by extracting an acidic mixture containing a complex of Pregabalin with a strong mineral acid, with a C 4-8 alcohol; and combining the organic phase with an organic base.
- the present invention encompasses a process of determining the presence of a compound in a sample comprising carrying out HPLC or TLC with Lactam as a reference marker.
- the present invention encompasses a method of determining the relative retention time (RRT) of an impurity in a sample of Lactam comprising: a) measuring by HPLC or TLC the relative retention time (RRT) corresponding to Lactam in a reference marker sample; b) determining by HPLC or TLC the relative retention time (RRT) corresponding to Lactam in a sample comprising Lactam and Pregabalin; and c) determining the relative retention time (RRT) of Lactam in the sample by comparing the relative retention time (RRT) of step (a) to the relative retention time (RRT) of step (b).
- the present invention encompasses a process of determining the amount of a compound in a sample comprising carrying out HPLC or TLC with a Lactam as a reference standard.
- the present invention provides a method of determining the amount of an impurity in a sample of Lactam comprising:
- step (a) measuring by HPLC or TLC the area under a peak corresponding to Lactam in a reference standard comprising a known amount of Lactam
- the present invention provides an HPLC method for used to determine the amount of Lactam in Pregabalin sample comprising combining a Pregabalin sample with a mixture of acetonitrile:methanol:buffer in a ratio of about 1:1:8, to obtain a solution; injecting the solution into a 250X4.6 mm Inertsil ODS 3V (or similar) column, followed by eluting the sample from the column at about 50 min using a mixture of acetonitrile:methanol:buffer (1:1:8) (referred to as eluent A) and acetonitrile (referred to as eluent B) as an eluent, and measuring the Lactam content in the relevant sample with a UV detector.
- eluent A acetonitrile:methanol:buffer
- eluent B acetonitrile
- the present invention provides pharmaceutical composition comprising (S)-Pregabalin substantially free of (S)-Lactam and non-acidic pharmaceutically acceptable excipients.
- the present invention provides a process for preparing pharmaceutical formulation comprising mixing (S)-Pregabalin substantially free of (S)- Lactam and a non-acidic pharmaceutically acceptable carrier.
- the present invention provides the use of the (S)-Pregabalin substantially free of (S)-Lactam of the present invention for the manufacture of a pharmaceutical composition.
- Pregabalin refers to either the S-enantiomer of Pregabalin ((S)- Pregabalin) or to Pregabalin racemate.
- Pregabalin racemate contains lactam racemate.
- (S)-Pregabalin contains (S)-lactam.
- CMH refers to either the R- enantiomer of CMH ((R)-CMH) or to CMH racemate.
- substantially free of Lactam refers to Pregabalin containing less than 0.02% area by HPLC of Lactam.
- the present invention provides Pregabalin substantially free of Lactam.
- the present invention provides Pregabalin containing less than 0.015% area by HPLC of Lactam, preferably, less than 0.01% area by HPLC of Lactam, and more preferably, less than 0.005% area by HPLC of Lactam.
- the present invention further provides a process for obtaining Pregabalin substantially free of Lactam by extracting an acidic mixture containing a complex of Pregabalin with a strong mineral acid, with a C 4-8 alcohol; and combining the organic phase with an organic base.
- the strong mineral acid is selected from the group consisting of: HCl, HBr, H 3 PO 4 , and H 2 SO 4 . More preferably, the strong mineral acid is H 2 SO 4 .
- the Lactam remains soluble in the mixture of solvents.
- a precipitate of Pregabalin is obtained. The precipitate of Pregabalin may be recovered by cooling, filtering and drying in a vacuum oven.
- the complex of Pregabalin with a strong mineral acid may be prepared according to any process known to one skilled in the art or according to the process disclosed in U.S. Provisional Application Serial No. 60/679,784, by reacting CMH with bromine, in a Hoffman reaction, under basic conditions, at a temperature of about 6O 0 C to about 85 0 C, to obtain a basic mixture.
- the basic mixture is then combined with a strong mineral acid, to obtain an acidic mixture containing a complex of Pregabalin with the strong mineral acid.
- Pregabalin obtained by the above process is substantially free of Lactam.
- a preferred C 3-8 alcohol is butanol, iso-butanol, 2-butanol, iso-propyl alcohol, pentanol or iso-pentanol.
- the more preferred C 3-8 alcohol is iso-butanol.
- the organic base is selected from the group consisting of: primary amine, secondary amine, tertiary amine and aromatic amine.
- the primary amine, secondary amine and tertiary amine are one OfC 1 to C 6 alkyl amine, more preferably Ci to C 4 alkylamine.
- the aromatic amine is pyridine.
- the more preferred amine is either secondary amine or tertiary amine, more preferably, either secondary C 1 to C 6 alkyl amine or tertiary C 1 to C 6 alkyl amine, more preferably, either secondary C 1 to C 4 alkylamine or tertiary C 1 to C 4 alkylamine and most preferably, tertiary C 1 to C 4 alkylamine.
- the secondary C 1 to C 4 alkylamine is either diisopropylamine or dipropylamine.
- the tertiary Cj to C 4 alkylamine is tributyl amine or triethyl amine. More preferably, the tertiary C 1 to C 4 alkylaim ' ne is tributyl amine.
- the present invention provides a process of determining the presence of a compound in a sample comprising carrying out HPLC or TLC with Lactam as a reference marker.
- the present invention further provides a method of determining the relative retention time (RRT) of an impurity in a sample of Lactam comprising: a) measuring by HPLC or TLC the relative retention time (RRT) corresponding to Lactam in a reference marker sample; b) determining by HPLC or TLC the relative retention time (RRT) corresponding to
- Lactam in a sample comprising Lactam and Pregabalin; and c) determining the relative retention time (RRT) of Lactam in the sample by comparing the relative retention time (RRT) of step (a) to the relative retention time (RRT) of step (b).
- the present invention provides a process of determining the amount of a compound in a sample comprising carrying out HPLC or TLC with a Lactam as a reference standard.
- the present invention provides a method of determining the amount of an impurity in a sample of Lactam comprising:
- step (a) measuring by HPLC or TLC the area under a peak corresponding to Lactam in a reference standard comprising a known amount of Lactam
- the present invention provides an HPLC method used to determine the presence of Lactam in Pregabalin sample comprising combining a Pregabalin sample with a mixture of acetonitrile:methanol:buffer in a ratio of about 1:1:8, to obtain a solution.
- the obtained solution is then injected into a 250X4.6 mm Inertsil ODS 3V (or similar) column, followed by eluting the sample from the column at about 50 min using a mixture of acetonitrile:methanol:buffer (1 :1 :8) (referred to as eluent A) and acetonitrile (referred to as eluent B) as an eluent, and measuring the Lactam content in the relevant sample with a UV detector (preferably at a 210 nm wavelength).
- a UV detector preferably at a 210 nm wavelength
- the buffer contains H 3 PO 4 and an aqueous solution of (NEU) 2 HPO 4 in a concentration of about 0.04M having a pH of about 6.5.
- the eluent used maybe a mixture of eluent A and eluent B, wherein the ratio of them varies over the time, i.e. a gradient eluent.
- the eluent contains 100% of eluent A and 0% of eluent B.
- the eluent contains 100% of eluent A and 0% of eluent B.
- the eluent contains 65% of eluent A and 35% of eluent B.
- the present invention also provides pharmaceutical composition comprising (S)- Pregabalin substantially free of (S)-Lactam and non-acidic pharmaceutically acceptable excipients.
- the present invention further provides a process for preparing pharmaceutical formulation comprising mixing (S)-Pregabalin substantially free of (S)-Lactam and a non- acidic pharmaceutically acceptable carrier.
- the present invention further provides the use of the (S)-Pregabalin substantially free of (S)-Lactam of the present invention for the manufacture of a pharmaceutical composition.
- compositions includes tablets, pills, powders, liquids, suspensions, emulsions, granules, capsules, suppositories, or injection preparations.
- the pharmaceutical composition is preferably formulated without the use of acidic excipients.
- Pharmaceutical compositions containing the Pregabalin of the present invention may be prepared by using diluents or excipients such as fillers, bulking agents, binders, wetting agents, disintegrating agents, surface active agents, and lubricants.
- compositions of the invention can be selected depending on the therapeutic purpose, for example tablets, pills, powders, liquids, suspensions, emulsions, granules, capsules, suppositories, or injection preparations.
- Carriers used include, but are not limited to, lactose, white sugar, sodium chloride, glucose, urea, starch, calcium carbonate, kaolin, crystalline cellulose, silicic acid, and the like.
- Binders used include, but are not limited to, water, ethanol, propanol, simple syrup, glucose solutions, starch solutions, gelatin solutions, carboxymethyl cellulose, shelac, methyl cellulose, potassium phosphate, polyvinylpyrrolidone, and the like.
- Disintegrating agents used include, but are not limited to, dried starch, sodium alginate, agar powder, laminalia powder, sodium hydrogen carbonate, calcium carbonate, fatty acid esters of polyoxyethylene sorbitan, sodium laurylsulfate, monoglyceride of stearic acid, starch, lactose, and the like.
- Disintegration inhibitors used include, but are not limited to, white sugar, stearin, coconut butter, hydrogenated oils, and the like.
- Absorption accelerators used include, but are not limited to, quaternary ammonium base, sodium laurylsulfate, and the like.
- Wetting agents used include, but are not limited to, glycerin, starch, and the like.
- Adsorbing agents used include, but are not limited to, starch, lactose, kaolin, bentonite, colloidal silicic acid, and the like.
- Lubricants used include, but are not limited to, purified talc, stearates, boric acid powder, polyethylene glycol, and the like. Tablets can be further coated with commonly known coating materials such as sugar coated tablets, gelatin film coated tablets, tablets coated with enteric coatings, tablets coated with films, double layered tablets, and multi- layered tablets.
- any commonly known excipient used in the art can be used.
- carriers include, but are not limited to, lactose, starch, coconut butter, hardened vegetable oils, kaolin, talc, and the like.
- Binders used include, but are not limited to, gum arabic powder, tragacanth gum powder, gelatin, ethanol, and the like.
- Disintegrating agents used include, but are not limited to, agar, laminalia, and the like.
- excipients include, but are not limited to, polyethylene glycols, coconut butter, higher alcohols, and esters of higher alcohols, gelatin, and semisynthesized glycerides.
- solutions and suspensions are sterilized and are preferably made isotonic to blood. Injection preparations may use carriers commonly known in the art.
- carriers for injectable preparations include, but are not limited to, water, ethyl alcohol, propylene glycol, ethoxylated isostearyl alcohol, polyoxylated isostearyl alcohol, and fatty acid esters of polyoxyethylene sorbitan.
- water ethyl alcohol
- propylene glycol ethoxylated isostearyl alcohol
- polyoxylated isostearyl alcohol ethoxylated isostearyl alcohol
- Additional ingredients such as dissolving agents, buffer agents, and analgesic agents may be added. If necessary, coloring agents, preservatives, perfumes, seasoning agents, sweetening agents, and other medicines may also be added to the desired preparations.
- Pregabalin contained in a pharmaceutical composition for treating schizophrenia should be sufficient to treat, ameliorate, or reduce the symptoms associated with schizophrenia.
- Pregabalin is present in an amount of about 1% to about 70% by weight, and more preferably from about 1% to about 30% by weight of the dose.
- compositions of the invention may be administered in a variety of methods depending on the age, sex, and symptoms of the patient.
- tablets, pills, solutions, suspensions, emulsions, granules and capsules may be orally administered.
- hij ection preparations may be administered individually or mixed with inj ection transfusions such as glucose solutions and amino acid solutions intravenously.
- the injection preparations may be administered intramuscularly, intracutaneously, subcutaneously or intraperitoneally. Suppositories may be administered into the rectum.
- the dosage of a pharmaceutical composition for treating schizophrenia according to the invention will depend on the method of use, the age, sex, and condition of the patient.
- Pregabalin is administered in an amount from about 0.1 mg/kg to about 10 mg/kg of body weight/day. More preferably, about 1 mg to 200 mg of Pregabalin may be contained in a dose.
- the invention also encompasses methods of making a pharmaceutical formulation comprising combining Pregabalin, and a pharmaceutically acceptable excipient.
- pharmaceutical formulations includes tablets, pills, powders, liquids, suspensions, solutions, emulsions, granules, capsules, suppositories, or injection preparations.
- a reactor (0.2L) was loaded with water (150 ml) and NaOH (32.3 gr) to obtain a solution.
- the solution was cooled to 5 0 C and CMH (30 gr) was added.
- Br 2 (25.9 gr) was added drop wise (15 min) while keeping the temperature below 10 0 C.
- the mixture was heated to 6O 0 C for 15 min and then cooled to RT.
- Iso-butanol was added (90 ml) and then a solution OfH 2 SO 4 (66%) (32 ml) was added.
- the phases were separated, and the aqueous phase was extracted with iso-butanol (75 ml).
- Bu 3 N (32.6 ml) was added to the combined organic phases.
- a reactor (0.2L) was loaded with water (62 ml) and NaOH (13.45 gr) to obtain a solution.
- the solution was cooled to 15 0 C and Br 2 (25.9 gr) was added dropwise (15 min) while keeping the temperature below 10 0 C. After 10 min CMH (12.5 gr) was added.
- the mixture was heated to 60° C for 15 min and then cooled to RT.
- the phases were separated, and the aqueous phase was extracted with Iso-butanol (31 ml).
- To the combined organic phases water (28 ml) and then Bu 3 N (13 gr) were added.
- a reactor (0.5L) was loaded with water (175 ml) and NaOH (37.6 gr) to obtain a solution.
- the solution was cooled to 10 0 C and CMH (35 gr) was added.
- Br 2 (30.24 gr) was added dropwise during a period of 0.5 h.
- the mixture was heated to 60° C for 15 min and then cooled to RT.
- the solution was seperated to 2 portions.
- portion A (equal to 5 gr of CMH) was stirred for 0.5 h at RT 5 Bu 3 N (2.6 gr) was added and the solution was cooled to RT, and stirred for 24h to induce precipitaion. The precipitate was filtered, washed and dried at 55 0 C under vacuum, providing S-Pregabalin with total purity of 99.67% area by HPLC, (S)-Lactam - no detection.
- a reactor (0.2L) was loaded with water (150 ml) and NaOH (32.3 gr) to obtain a solution.
- the solution was cooled to 15 0 C and CMH (30 gr) was added.
- Br 2 (25.9 gr) was added dropwise (15 min) while keeping the temperature below 20 0 C.
- the mixture was heated to 60° C for 15 min and then cooled to RT.
- Iso-butanol was added (150 ml) and then a solution OfH 2 SO 4 (66%) (30 ml) was added.
- the phases were separated, and the aqueous phase was extracted with iso-butanol (75 ml).
- the combined organic phases were separated to 3 portions.
- Bu 3 N (10.4 ml) was added and the mixture was cooled to 2 0 C, and stirred for 2h to induce precipitation.
- the precipitate was filtered, washed and dried at
- Example 5 Preparation of Pregabalin A reactor (0. IL) was loaded with water (50 ml) and NaOH (10.8 gr) to obtain a solution. The solution was cooled to 15 0 C and CMH (10 gr) was added. Br 2 (8.6 gr) was added dropwise (15 min) while keeping the temperature below 20 0 C. The mixture was heated to 60° C for 15 min and then cooled to RT. Iso-butanol was added (60 ml) and then a solution OfH 2 SO 4 (66%) (10 ml) was added. The phases were separated, and the aqueous phase was extracted with iso-butanol (25 ml).
- a reactor (0.5L) was loaded with water (165 ml) and NaOH (35.5 gr) to obtain a solution.
- the solution was cooled to 15 0 C and CMH (33 gr) was added.
- Br 2 (28.51 gr) was added dropwise (15 min) while keeping the temperature below 25 0 C.
- the mixture was heated to 60° C for 15 min and then cooled to 15 5 C.
- Iso-butanol was added (100 ml) and then a solution OfH 2 SO 4 (66%) (33 ml) was added.
- the phases were separated, and the aqueous phase was extracted with iso-butanol (83 ml).
- Example 7 Preparation of Pregabalin A reactor (0. IL) was loaded with water (50 ml) and NaOH (10.8 gr) to obtain a solution. The solution was cooled to 15 0 C and CMH (10 gr) was added. Br 2 (8.6 gr) was added dropwise (15 min) while keeping the temperature below 20 0 C. The mixture was heated to 60 0 C for 15 min and then cooled to RT. Iso-butanol was added (30 ml) and then a solution OfH 2 SO 4 (66%) (10 ml) was added. The phases were separated, and the aqueous phase was extracted with iso-butanol (25 ml). To the combined organic phases water (16.5 ml) and Bu 3 N (10.4 gr) were added.
- a reactor (0.1L) was loaded with water (50 ml) and NaOH (10.8 gr) to obtain a solution.
- the solution was cooled to 15 0 C and CMH (10 gr) was added.
- Br 2 (8.6 gr) was added dropwise (15 min) while keeping the temperature below 20 0 C.
- the mixture was heated to 60° C for 15 min and then cooled to RT.
- Iso-butanol was added (50 ml) and then a solution OfH 2 SO 4 ( 66%) (10 ml) was added.
- the phases were separated, and the aqueous phase was extracted with iso-butanol (25 ml).
- To the combined organic phases water (22.4 ml) and Bu 3 N (10.4 gr) were added.
- Example 9 Preparation of Pregabalin A reactor (0.2L) was loaded with water (125 ml) and NaOH (26.9 gr) to obtain a solution. The solution was cooled to 15 0 C and CMH (10 gr) was added. Br 2 (8.6 gr) was added dropwise (15 min) while keeping the temperature below 20 0 C. The mixture was heated to 60° C for 15 min and then cooled to RT. Iso-butanol was added (75 ml) and then a solution OfH 2 SO 4 — 66% (25 ml) was added. The phases were separated, and the aqueous phase was extracted with iso-butanol (65 ml). The combined organic phases were separated to 3 portions.
- Iso-butanol is added (30 ml) to pregabalin or to a complex of pregabalin with H 2 SO 4 . Afterwards, water (16.5 ml) and Bu 3 N (10.4 gr) are added. The mixture is cooled to 2 0 C, and stirred for 2h to induce precipitation. The precipitate is filtered, washed and dried at 55 0 C under vacuum, providing Pregabalin with total purity 99.3% area by HPLC, Lactam - 0.002% area by HPLC.
- Example 11 Preparation of a pharmaceutical formulation containing (S)-Pregabalin The following material is used for the preparation of Pregabalin tablet formulation:
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Neurosurgery (AREA)
- Biomedical Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicinal Chemistry (AREA)
- Neurology (AREA)
- Engineering & Computer Science (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
The present invention encompasses Pregabalin substantially free of Lactam and a process for obtaining Pregabalin substantially free of Lactam comprising extracting an acidic mixture containing a complex of Pregabalin with a strong mineral acid, with a C3-8 alcohol; and combining the organic phase with an organic base.
Description
PREGABALIN FREE OFLACTAMAND A PROCESS FORPREPARATION
THEREOF
RELATED APPLICATIONS
This application claims the benefit of U.S. provisional application Nos. 60/733,006, filed November 2, 2005; 60/735,069, filed November 8, 2005; 60/679,784, filed May 10, 2005; and 60/689,699, filed June 9, 2005 herein incorporated by reference.
FIELD OF INVENTION
The present invention relates to (S)-Pregabalin substantially free of lactam, and a process for preparation thereof.
BACKGROUND OF THE INVENTION (S)-Pregabalin, (S)-(+)-3-(aminomethyl)-5-methylhexanoic acid, a compound having the chemical structure,
(S)-ρregabalin is a γ-amino butyric acid or (S)-3-isobutyl (GABA) analogue. (S)-Pregabalin has been found to activate GAD (L-glutamic acid decarboxylase). (S)-Pregabalin has a dose dependent protective effect on-seizure, and is a CNS-active compound. (S)-Pregabalin is useful in anticonvulsant therapy, due to its activation of GAD, promoting the production of GABA, one of the brain's major inhibitory neurotransmitters, which is released at 30 percent of the brains synapses. (S)-Pregabalin has analgesic, anticonvulsant, and anxiolytic activity. (S)-Pregabalin is marketed under the name Lyrica ® by Pfizer, Inc. Like any synthetic compound, (S)-Pregabalin can contain extraneous compounds or impurities that can come from many sources. They can be unreacted starting materials, by-products of the reaction, products of side reactions, or degradation products. Impurities in (S)-Pregabalin or any active pharmaceutical ingredient (API) are undesirable and, in extreme
cases, might even be harmful to a patient being treated with a dosage form containing the API.
It is also known in the art that impurities in an API may arise from degradation of the API itself, which is related to the stability of the pure API during storage, and the manufacturing process, including the chemical synthesis. Process impurities include unreacted starting materials, chemical derivatives of impurities contained in starting materials, synthetic by-products, and degradation products.
In addition to stability, which is a factor in the shelf life of the API, the purity of the API produced in the commercial manufacturing process is clearly a necessary condition for commercialization. Impurities introduced during commercial manufacturing processes must be limited to very small amounts, and are preferably substantially absent. For example, the ICH Q7A guidance for API manufacturers requires that process impurities be maintained below set limits by specifying the quality of raw materials, controlling process parameters, such as temperature, pressure, time, and stoichiometric ratios, and including purification steps, such as crystallization, distillation, and liquid- liquid extraction, in the manufacturing process.
The product mixture of a chemical reaction is rarely a single compound with sufficient purity to comply with pharmaceutical standards. Side products and by-products of the reaction and adjunct reagents used in the reaction will, in most cases, also be present in the product mixture. At certain stages during processing of an API, such as (S)- pregabalin, it must be analyzed for purity, typically, by HPLC or TLC analysis, to determine if it is suitable for continued processing and, ultimately, for use in a pharmaceutical product. The API need not be absolutely pure, as absolute purity is a theoretical ideal that is typically unattainable. Rather, purity standards are set with the intention of ensuring that an API is as free of impurities as possible, and, thus, is as safe as possible for clinical use. As discussed above, in the United States, the Food and Drug Administration guidelines recommend that the amounts of some impurities be limited to less than 0.1 percent.
(S)-Lactam which is obtained by an intramolecular cyclization of (S)-Pregabalin under acidic conditions, as described by the following scheme:
wherein the proton source can be an acid from the process or Pregabalin itself. Hence, (S)- Pregabalin obtained in any kind of process, will be contaminated with this impurity. However, the present invention succeeds to provide not only, (S)-Pregabalin substantially free of (S)-Lactam, but also, a process to obtain (S)-Pregabalin substantially free of (S)- Lactam. Generally, side products, by-products, such as the Lactam, and adjunct reagents
(collectively "impurities") are identified spectroscopically and/or with another physical method, and then associated with a peak position, such as that in a chromatogram, or a spot on a TLC plate. (Strobel p. 953, StrobeL H.A.; Heineman, W.R., Chemical Instrumentation: A Systematic Approach, 3rd dd. (Wiley & Sons: New York 1989)). Thereafter, the impurity can be identified, e.g., by its relative position on the TLC plate and, wherein the position on the plate is measured in cm from the base line of the plate or by its relative position in the chromatogram of the HPLC, where the position in a chromatogram is conventionally measured in minutes between injection of the sample on the column and elution of the particular component through the detector. The relative position in the chromatogram is known as the "retention time."
The retention time can vary about a mean value based upon the condition of the instrumentation, as well as many other factors. To mitigate the effects such variations have upon accurate identification of an impurity, practitioners use the "relative retention
time" ("RRT") to identify impurities. (Strobel p. 922). The RRT of an impurity is its retention time divided by the retention time of a reference marker. It may be advantageous to select a compound other than the API that is added to, or present in, the mixture in an amount sufficiently large to be detectable and sufficiently low as not to saturate the column, and to use that compound as the reference marker for determination of the RRT.
Those skilled in the art of drug manufacturing research and development understand that a compound in a relatively pure state can be used as a "reference standard." A reference standard is similar to a reference marker, which is used for qualitative analysis only, but is used to quantify the amount of the compound of the reference standard in an unknown mixture, as well. A reference standard is an "external standard," when a solution of a known concentration of the reference standard and an unknown mixture are analyzed using the same technique. (Strobel p. 924, Snyder p. 549, Snyder, L.R.; Kirkland, JJ. Introduction to Modern Liquid Chromatography, 2nd ed. (John Wiley & Sons: New York 1979)), The amount of the compound in the mixture can be determined by comparing the magnitude of the detector response. See also U.S. Patent No. 6,333,198, incorporated herein by reference.
The reference standard can also be used to quantify the amount of another compound in the mixture if a "response factor," which compensates for differences in the sensitivity of the detector to the two compounds, has been predetermined. (Strobel p. 894). For this purpose, the reference standard is added directly to the mixture, and is known as an "internal standard." (Strobel p. 925, Snyder p. 552).
The reference standard can serve as an internal standard when, without the deliberate addition of the reference standard, an unknown mixture contains a detectable amount of the reference standard compound using the technique known as "standard addition."
In the "standard addition technique", at least two samples are prepared by adding known and differing amounts of the internal standard. (Strobel pp. 391-393, Snyder pp. 571, 572). The proportion of the detector response due to the reference standard present in the mixture without the addition can be determined by plotting the detector response against the amount of the reference standard added to each of the samples, and extrapolating the plot to zero concentration of the reference standard. (See, e.g., Strobel,
Fig. 11.4 p. 392). The response of a detector in HPLC (e.g. UV detectors or refractive index detectors) can be and typically is different for each compound eluting from the HPLC column. Response factors, as known, account for this difference in the response signal of the detector to different compounds eluting from the column. As is known by those skilled in the art, the management of process impurities is greatly enhanced by understanding their chemical structures and synthetic pathways, and by identifying the parameters that influence the amount of impurities in the final product.
In this application the reference standard is the impurity (S)- Lactam in the API. Detection or quantification of the reference standard serves to establish the level of purity of the API. Use of a compound as a standard requires recourse to a sample of substantially pure compound.
SUMMARY OF THE INVENTION
In one embodiment, the present invention encompasses Pregabalin substantially free of Lactam.
In another embodiment, the present invention encompasses Pregabalin containing less than 0.015% area by HPLC of Lactam.
In yet another embodiment, the present invention encompasses a process for obtaining Pregabalin substantially free of Lactam by extracting an acidic mixture containing a complex of Pregabalin with a strong mineral acid, with a C4-8 alcohol; and combining the organic phase with an organic base.
In another embodiment, the present invention encompasses a process for obtaining Pregabalin containing less than 0.005% area by HPLC of Lactam by extracting an acidic mixture containing a complex of Pregabalin with a strong mineral acid, with a C4-8 alcohol; and combining the organic phase with an organic base.
In yet another embodiment, the present invention encompasses a process of determining the presence of a compound in a sample comprising carrying out HPLC or TLC with Lactam as a reference marker.
In one embodiment, the present invention encompasses a method of determining the relative retention time (RRT) of an impurity in a sample of Lactam comprising: a) measuring by HPLC or TLC the relative retention time (RRT) corresponding to Lactam in a reference marker sample;
b) determining by HPLC or TLC the relative retention time (RRT) corresponding to Lactam in a sample comprising Lactam and Pregabalin; and c) determining the relative retention time (RRT) of Lactam in the sample by comparing the relative retention time (RRT) of step (a) to the relative retention time (RRT) of step (b).
In another embodiment, the present invention encompasses a process of determining the amount of a compound in a sample comprising carrying out HPLC or TLC with a Lactam as a reference standard.
hi yet another embodiment, the present invention provides a method of determining the amount of an impurity in a sample of Lactam comprising:
a) measuring by HPLC or TLC the area under a peak corresponding to Lactam in a reference standard comprising a known amount of Lactam; b) measuring by HPLC or TLC the area under a peak corresponding to Lactam in a sample comprising Lactam and Pregabalin; and c) determining the amount of Lactam in the sample by comparing the area of step (a) to the area of step (b). hi one embodiment, the present invention provides an HPLC method for used to determine the amount of Lactam in Pregabalin sample comprising combining a Pregabalin sample with a mixture of acetonitrile:methanol:buffer in a ratio of about 1:1:8, to obtain a solution; injecting the solution into a 250X4.6 mm Inertsil ODS 3V (or similar) column, followed by eluting the sample from the column at about 50 min using a mixture of acetonitrile:methanol:buffer (1:1:8) (referred to as eluent A) and acetonitrile (referred to as eluent B) as an eluent, and measuring the Lactam content in the relevant sample with a UV detector. hi another embodiment, the present invention provides pharmaceutical composition comprising (S)-Pregabalin substantially free of (S)-Lactam and non-acidic pharmaceutically acceptable excipients. hi yet another embodiment, the present invention provides a process for preparing pharmaceutical formulation comprising mixing (S)-Pregabalin substantially free of (S)- Lactam and a non-acidic pharmaceutically acceptable carrier.
In one embodiment, the present invention provides the use of the (S)-Pregabalin substantially free of (S)-Lactam of the present invention for the manufacture of a pharmaceutical composition.
DETAILED DESCRIPTION OF THE INVENTION As used herein, unless specified otherwise, the term "Lactam" refers to either the
S-enantiomer of the Lactam ((S)-Lactam) or to Lactam racemate (Lactam).
(S)-Lactam Lactam
As used herein, unless specified otherwise, the term "Pregabalin" refers to either the S-enantiomer of Pregabalin ((S)- Pregabalin) or to Pregabalin racemate.
(S)-Pregabalin Pregabalin
As used herein, unless specified otherwise, Pregabalin racemate contains lactam racemate.
As used herein, unless specified otherwise, (S)-Pregabalin contains (S)-lactam.
As used herein, unless specified otherwise, the term "CMH" refers to either the R- enantiomer of CMH ((R)-CMH) or to CMH racemate.
As used herein, the term "substantially free of Lactam" refers to Pregabalin containing less than 0.02% area by HPLC of Lactam.
The present invention provides Pregabalin substantially free of Lactam.
The present invention provides Pregabalin containing less than 0.015% area by HPLC of Lactam, preferably, less than 0.01% area by HPLC of Lactam, and more preferably, less than 0.005% area by HPLC of Lactam.
The present invention further provides a process for obtaining Pregabalin substantially free of Lactam by extracting an acidic mixture containing a complex of Pregabalin with a strong mineral acid, with a C4-8 alcohol; and combining the organic phase with an organic base.
Preferably, the strong mineral acid is selected from the group consisting of: HCl, HBr, H3PO4, and H2SO4. More preferably, the strong mineral acid is H2SO4. At the end of the process, the Lactam remains soluble in the mixture of solvents. Preferably, at the end of the process a precipitate of Pregabalin is obtained. The precipitate of Pregabalin may be recovered by cooling, filtering and drying in a vacuum oven.
The complex of Pregabalin with a strong mineral acid may be prepared according to any process known to one skilled in the art or according to the process disclosed in U.S. Provisional Application Serial No. 60/679,784, by reacting CMH with bromine, in a Hoffman reaction, under basic conditions, at a temperature of about 6O0C to about 850C, to obtain a basic mixture. The basic mixture is then combined with a strong mineral acid, to obtain an acidic mixture containing a complex of Pregabalin with the strong mineral acid.
Preferably, Pregabalin obtained by the above process is substantially free of Lactam.
A preferred C3-8 alcohol is butanol, iso-butanol, 2-butanol, iso-propyl alcohol, pentanol or iso-pentanol. The more preferred C3-8 alcohol is iso-butanol.
Preferably, the organic base is selected from the group consisting of: primary amine, secondary amine, tertiary amine and aromatic amine. Preferably, the primary amine, secondary amine and tertiary amine are one OfC1 to C6 alkyl amine, more preferably Ci to C4 alkylamine. Preferably, the aromatic amine is pyridine. The more preferred amine is either secondary amine or tertiary amine, more preferably, either secondary C1 to C6 alkyl amine or tertiary C1 to C6 alkyl amine, more preferably, either secondary C1 to C4 alkylamine or tertiary C1 to C4 alkylamine and most preferably, tertiary C1 to C4 alkylamine. Preferably, the secondary C1 to C4 alkylamine is either diisopropylamine or dipropylamine. Preferably, the tertiary Cj to C4 alkylamine is tributyl
amine or triethyl amine. More preferably, the tertiary C1 to C4 alkylaim'ne is tributyl amine.
The present invention provides a process of determining the presence of a compound in a sample comprising carrying out HPLC or TLC with Lactam as a reference marker.
The present invention further provides a method of determining the relative retention time (RRT) of an impurity in a sample of Lactam comprising: a) measuring by HPLC or TLC the relative retention time (RRT) corresponding to Lactam in a reference marker sample; b) determining by HPLC or TLC the relative retention time (RRT) corresponding to
Lactam in a sample comprising Lactam and Pregabalin; and c) determining the relative retention time (RRT) of Lactam in the sample by comparing the relative retention time (RRT) of step (a) to the relative retention time (RRT) of step (b). The present invention provides a process of determining the amount of a compound in a sample comprising carrying out HPLC or TLC with a Lactam as a reference standard.
The present invention provides a method of determining the amount of an impurity in a sample of Lactam comprising:
a) measuring by HPLC or TLC the area under a peak corresponding to Lactam in a reference standard comprising a known amount of Lactam; b) measuring by HPLC or TLC the area under a peak corresponding to Lactam in a sample comprising Lactam and Pregabalin; and c) determining the amount of Lactam in the sample by comparing the area of step (a) to the area of step (b).
The present invention provides an HPLC method used to determine the presence of Lactam in Pregabalin sample comprising combining a Pregabalin sample with a mixture of acetonitrile:methanol:buffer in a ratio of about 1:1:8, to obtain a solution. The obtained solution is then injected into a 250X4.6 mm Inertsil ODS 3V (or similar) column, followed by eluting the sample from the column at about 50 min using a mixture of acetonitrile:methanol:buffer (1 :1 :8) (referred to as eluent A) and acetonitrile (referred to as eluent B) as an eluent, and measuring the Lactam content in the relevant sample with a UV
detector (preferably at a 210 nm wavelength).
Preferably, the buffer contains H3PO4 and an aqueous solution of (NEU)2HPO4 in a concentration of about 0.04M having a pH of about 6.5.
Preferably, the eluent used maybe a mixture of eluent A and eluent B, wherein the ratio of them varies over the time, i.e. a gradient eluent. At the time 0 minutes, the eluent contains 100% of eluent A and 0% of eluent B. At 6 minutes, the eluent contains 100% of eluent A and 0% of eluent B. At 50 minutes, the eluent contains 65% of eluent A and 35% of eluent B.
The present invention also provides pharmaceutical composition comprising (S)- Pregabalin substantially free of (S)-Lactam and non-acidic pharmaceutically acceptable excipients.
The present invention further provides a process for preparing pharmaceutical formulation comprising mixing (S)-Pregabalin substantially free of (S)-Lactam and a non- acidic pharmaceutically acceptable carrier. The present invention further provides the use of the (S)-Pregabalin substantially free of (S)-Lactam of the present invention for the manufacture of a pharmaceutical composition.
As used herein, the term "pharmaceutical compositions" includes tablets, pills, powders, liquids, suspensions, emulsions, granules, capsules, suppositories, or injection preparations. The pharmaceutical composition is preferably formulated without the use of acidic excipients. Pharmaceutical compositions containing the Pregabalin of the present invention may be prepared by using diluents or excipients such as fillers, bulking agents, binders, wetting agents, disintegrating agents, surface active agents, and lubricants. Various modes of administration of the pharmaceutical compositions of the invention can be selected depending on the therapeutic purpose, for example tablets, pills, powders, liquids, suspensions, emulsions, granules, capsules, suppositories, or injection preparations.
Any excipient commonly known and used widely in the art can be used in the pharmaceutical composition. Carriers used include, but are not limited to, lactose, white sugar, sodium chloride, glucose, urea, starch, calcium carbonate, kaolin, crystalline cellulose, silicic acid, and the like. Binders used include, but are not limited to, water, ethanol, propanol, simple syrup, glucose solutions, starch solutions, gelatin solutions, carboxymethyl cellulose, shelac, methyl cellulose, potassium phosphate,
polyvinylpyrrolidone, and the like. Disintegrating agents used include, but are not limited to, dried starch, sodium alginate, agar powder, laminalia powder, sodium hydrogen carbonate, calcium carbonate, fatty acid esters of polyoxyethylene sorbitan, sodium laurylsulfate, monoglyceride of stearic acid, starch, lactose, and the like. Disintegration inhibitors used include, but are not limited to, white sugar, stearin, coconut butter, hydrogenated oils, and the like. Absorption accelerators used include, but are not limited to, quaternary ammonium base, sodium laurylsulfate, and the like. Wetting agents used include, but are not limited to, glycerin, starch, and the like. Adsorbing agents used include, but are not limited to, starch, lactose, kaolin, bentonite, colloidal silicic acid, and the like. Lubricants used include, but are not limited to, purified talc, stearates, boric acid powder, polyethylene glycol, and the like. Tablets can be further coated with commonly known coating materials such as sugar coated tablets, gelatin film coated tablets, tablets coated with enteric coatings, tablets coated with films, double layered tablets, and multi- layered tablets. When shaping the pharmaceutical composition into pill form, any commonly known excipient used in the art can be used. For example, carriers include, but are not limited to, lactose, starch, coconut butter, hardened vegetable oils, kaolin, talc, and the like. Binders used include, but are not limited to, gum arabic powder, tragacanth gum powder, gelatin, ethanol, and the like. Disintegrating agents used include, but are not limited to, agar, laminalia, and the like.
For the purpose of shaping the pharmaceutical composition in the form of suppositories, any commonly known excipient used in the art can be used. For example, excipients include, but are not limited to, polyethylene glycols, coconut butter, higher alcohols, and esters of higher alcohols, gelatin, and semisynthesized glycerides. When preparing injectable pharmaceutical compositions, solutions and suspensions are sterilized and are preferably made isotonic to blood. Injection preparations may use carriers commonly known in the art. For example, carriers for injectable preparations include, but are not limited to, water, ethyl alcohol, propylene glycol, ethoxylated isostearyl alcohol, polyoxylated isostearyl alcohol, and fatty acid esters of polyoxyethylene sorbitan. One of ordinary skill in the art can easily determine with little or no experimentation the amount of sodium chloride, glucose, or glycerin necessary to make the injectable preparation isotonic.
Additional ingredients, such as dissolving agents, buffer agents, and analgesic agents may be added. If necessary, coloring agents, preservatives, perfumes, seasoning
agents, sweetening agents, and other medicines may also be added to the desired preparations.
The amount of Pregabalin contained in a pharmaceutical composition for treating schizophrenia should be sufficient to treat, ameliorate, or reduce the symptoms associated with schizophrenia. Preferably, Pregabalin is present in an amount of about 1% to about 70% by weight, and more preferably from about 1% to about 30% by weight of the dose.
The pharmaceutical compositions of the invention may be administered in a variety of methods depending on the age, sex, and symptoms of the patient. For example, tablets, pills, solutions, suspensions, emulsions, granules and capsules may be orally administered. hij ection preparations may be administered individually or mixed with inj ection transfusions such as glucose solutions and amino acid solutions intravenously. If necessary, the injection preparations may be administered intramuscularly, intracutaneously, subcutaneously or intraperitoneally. Suppositories may be administered into the rectum. The dosage of a pharmaceutical composition for treating schizophrenia according to the invention will depend on the method of use, the age, sex, and condition of the patient. Preferably, Pregabalin is administered in an amount from about 0.1 mg/kg to about 10 mg/kg of body weight/day. More preferably, about 1 mg to 200 mg of Pregabalin may be contained in a dose. The invention also encompasses methods of making a pharmaceutical formulation comprising combining Pregabalin, and a pharmaceutically acceptable excipient. As used herein, the term "pharmaceutical formulations" includes tablets, pills, powders, liquids, suspensions, solutions, emulsions, granules, capsules, suppositories, or injection preparations. Having described the invention with reference to certain preferred embodiments, other embodiments will become apparent to one skilled in the art from consideration of the specification. The invention is further defined by reference to the following examples describing in detail the preparation of the compound of the present invention. It will be apparent to those skilled in the art that many modifications, both to materials and methods, may be practiced without departing from the scope of the invention.
EXAMPLES The analysis for Lactam is done in Pregabalin crude, by the following method:
HPLC Inertsil ODS 3 V, 250*4.6mm, 5μ. C.N 5020-01802
Eluent A: 80% 0.04M (NEU)2HPO4 adjusted to pH=6.5 with H3PO4
10% Acetonitrile
10% Methanol Eluent B: Acetonitrile Stop time: 50 min Gradient of Eluent: Time (min) Eluent A (%) Eluent B (%)
0 100 0
6 100 0
50 65 35
Equilibration time: lO min
Flow: 0.8 mL/min
Detector: 210 nm
Injection volume: 20 μL
Diluent: Eluent A
Column temperature: 250C
Autosampler temperature: 50C
Detection Limit: 0.002%
Comparative Example:
Analysis of a tablet of the 300 mg dose (expiry date: March 2007), was performed by dissolving the tablet in a mixture of water and methanol in a ratio of 1 to 1, to obtain a solution containing (S)-Pregabalin in a concentration of 6 mg/ml, followed by injecting to the HPLC apparatus. This analysis revealed that the tablet contains 0.02% area by HPLC of (S)-Lactam.
Example 1: Preparation of Pregabalin
A reactor (0.2L) was loaded with water (150 ml) and NaOH (32.3 gr) to obtain a solution. The solution was cooled to 50C and CMH (30 gr) was added. Br2 (25.9 gr) was added drop wise (15 min) while keeping the temperature below 100C. The mixture was heated to 6O0C for 15 min and then cooled to RT. Iso-butanol was added (90 ml) and then a solution OfH2SO4 (66%) (32 ml) was added. The phases were separated, and the aqueous phase was extracted with iso-butanol (75 ml). Bu3N (32.6 ml) was added to the
combined organic phases. The mixture was heated to dissolution and then was cooled to 20C and stirred for 1.5h, to induce precipitation. The precipitate was filtered, washed and dried at 550C under vacuum, providing a 80.4% yield. Total purity: 99.7% area by HPLC, Lactam- 0.005% area by HPLC.
Example 2: Preparation of Pregabalin
A reactor (0.2L) was loaded with water (62 ml) and NaOH (13.45 gr) to obtain a solution. The solution was cooled to 150C and Br2 (25.9 gr) was added dropwise (15 min) while keeping the temperature below 100C. After 10 min CMH (12.5 gr) was added. The mixture was heated to 60° C for 15 min and then cooled to RT. Iso-butanol (62 ml) and then a solution OfH2SO4 (66%) (32 ml) was added. The phases were separated, and the aqueous phase was extracted with Iso-butanol (31 ml). To the combined organic phases water (28 ml) and then Bu3N (13 gr) were added. The mixture was heated to dissolution and then was cooled to 20C, and stirred for Ih to induce precipitaion. The precipitate was filtered, washed and dried at 550C under vacuum, providing a 73.5% yield. Total purity: 98.0% area by HPLC, Lactam- 0.012% area by HPLC.
Example 3: Preparation of Pregabalin
A reactor (0.5L) was loaded with water (175 ml) and NaOH (37.6 gr) to obtain a solution.. The solution was cooled to 10 0C and CMH (35 gr) was added. Br2 (30.24 gr) was added dropwise during a period of 0.5 h. The mixture was heated to 60° C for 15 min and then cooled to RT. The solution was seperated to 2 portions.
Half of first portion (equal to 5 gr of CMH) was stirred for 5 h at RT, then iso- butanol (15 ml) and a solution OfH2SO4 (66%) (5 ml) were added. The phases were separated, and the aqueous phase was extracted with iso-butanol (12 ml). Bu3N (5.2 gr) was added to the combined organic phases. The solution was cooled to 20C, and stirred for 1.5h to induce precipitaion. The precipitate was filtered, washed and dried at 550C under vacuum, providing S-Pregabalin with total purity of 99.3% area by HPLC, (S)-Lactam - 0.011% area by HPLC. The second portion was treated as follows:
Iso-butanol was added (75 ml) then a solution OfH2SO4 (66%) (25 ml) was added. The phases were separated, and the aqueous phase was extracted with iso-butanol (62 ml). The solution was separeted again into two portions (portions A & B).
An amount of portion A (equal to 5 gr of CMH) was stirred for 24 h at RT, Bu3N (2.6 gr) was added and the solution was cooled to 20C, and stirred for 1.5h to induce precipitaion. The precipitate was filtered, washed and dried at 550C under vacuum, providing (S)- Pregabalin with total purity of 99.07% area by HPLC, (S)-Lactam - 0.013% area by HPLC.
An amount of portion A (equal to 5 gr of CMH) was stirred for 0.5 h at RT5 Bu3N (2.6 gr) was added and the solution was cooled to RT, and stirred for 24h to induce precipitaion. The precipitate was filtered, washed and dried at 550C under vacuum, providing S-Pregabalin with total purity of 99.67% area by HPLC, (S)-Lactam - no detection.
Example 4: Preparation of PreRabalin
A reactor (0.2L) was loaded with water (150 ml) and NaOH (32.3 gr) to obtain a solution. The solution was cooled to 15 0C and CMH (30 gr) was added. Br2 (25.9 gr) was added dropwise (15 min) while keeping the temperature below 200C. The mixture was heated to 60° C for 15 min and then cooled to RT. Iso-butanol was added (150 ml) and then a solution OfH2SO4 (66%) (30 ml) was added. The phases were separated, and the aqueous phase was extracted with iso-butanol (75 ml). The combined organic phases were separated to 3 portions. Into portion 1, Bu3N (10.4 ml) was added and the mixture was cooled to 20C, and stirred for 2h to induce precipitation. The precipitate was filtered, washed and dried at
550C under vacuum, providing S-Pregabalin with total purity 99.7% area by HPLC, (S)-
Lactam - 0.008% area by HPLC.
Into portion 3, Water (10 ml) and Bu3N (10.4 ml) were added. The mixture was cooled to 20C, and stirred for 2h to induce precipitation. The precipitate was filtered, washed and dried at 550C under vacuum, providing S-Pregabalin with total purity 99.7% area by HPLC, (S)-Lactam - 0.005% area by HPLC.
Example 5: Preparation of Pregabalin A reactor (0. IL) was loaded with water (50 ml) and NaOH (10.8 gr) to obtain a solution. The solution was cooled to 15 0C and CMH (10 gr) was added. Br2 (8.6 gr) was added dropwise (15 min) while keeping the temperature below 200C. The mixture was heated to 60° C for 15 min and then cooled to RT. Iso-butanol was added (60 ml) and then a solution OfH2SO4 (66%) (10 ml) was added. The phases were separated, and the
aqueous phase was extracted with iso-butanol (25 ml). To the combined organic phases Bu3N (9.9 gr) was added and the mixture was cooled to 20C, and stirred for 2h to incude precipitation. The precipitate was filtered, washed and dried at 550C under vacuum, providing S-Pregabalin with total purity 99.88% area by HPLC, (S)-Lactam - 0.007% area by HPLC.
Example 6: Preparation of Pregabalin
A reactor (0.5L) was loaded with water (165 ml) and NaOH (35.5 gr) to obtain a solution. The solution was cooled to 15 0C and CMH (33 gr) was added. Br2 (28.51 gr) was added dropwise (15 min) while keeping the temperature below 250C. The mixture was heated to 60° C for 15 min and then cooled to 155C. Iso-butanol was added (100 ml) and then a solution OfH2SO4 (66%) (33 ml) was added. The phases were separated, and the aqueous phase was extracted with iso-butanol (83 ml). To the combined organic phases Bu3N (34.2 gr) was added and the mixture was cooled to 20C, and stirred for 2h to induce precipitation. The precipitate was filtered, washed and dried at 550C under vacuum, providing S-Pregabalin with total purity 99.86% area by HPLC, (S)-Lactam - no detection by HPLC.
Example 7: Preparation of Pregabalin A reactor (0. IL) was loaded with water (50 ml) and NaOH (10.8 gr) to obtain a solution. The solution was cooled to 150C and CMH (10 gr) was added. Br2 (8.6 gr) was added dropwise (15 min) while keeping the temperature below 200C. The mixture was heated to 600C for 15 min and then cooled to RT. Iso-butanol was added (30 ml) and then a solution OfH2SO4 (66%) (10 ml) was added. The phases were separated, and the aqueous phase was extracted with iso-butanol (25 ml). To the combined organic phases water (16.5 ml) and Bu3N (10.4 gr) were added. The mixture was cooled to 20C, and stirred for 2h to induce precipitation. The precipitate was filtered, washed and dried at 550C under vacuum, providing Pregabalin with total purity 99.3% area by HPLC, Lactam - 0.002% area by HPLC.
Example 8: Preparation of Pregabalin
A reactor (0.1L) was loaded with water (50 ml) and NaOH (10.8 gr) to obtain a solution. The solution was cooled to 15 0C and CMH (10 gr) was added. Br2 (8.6 gr) was added dropwise (15 min) while keeping the temperature below 200C. The mixture was
heated to 60° C for 15 min and then cooled to RT. Iso-butanol was added (50 ml) and then a solution OfH2SO4 ( 66%) (10 ml) was added. The phases were separated, and the aqueous phase was extracted with iso-butanol (25 ml). To the combined organic phases water (22.4 ml) and Bu3N (10.4 gr) were added. The mixture was cooled to 20C, and stirred for 2h to induce precipitation. The precipitate was filtered, washed and dried at 550C under vacuum, providing Pregabalin with total purity 98.5% area by HPLC, Lactam - 0.005% area by HPLC.
Example 9: Preparation of Pregabalin A reactor (0.2L) was loaded with water (125 ml) and NaOH (26.9 gr) to obtain a solution. The solution was cooled to 15 0C and CMH (10 gr) was added. Br2 (8.6 gr) was added dropwise (15 min) while keeping the temperature below 200C. The mixture was heated to 60° C for 15 min and then cooled to RT. Iso-butanol was added (75 ml) and then a solution OfH2SO4 — 66% (25 ml) was added. The phases were separated, and the aqueous phase was extracted with iso-butanol (65 ml). The combined organic phases were separated to 3 portions. To one portion Bu3N (8.5 gr) was added. The mixture was cooled - 10 0C, and stirred for 2h to induce precipitation. The precipitate was filtered, washed and dried at 550C under vacuum, providing Pregabalin with total purity 99.3% area by HPLC, Lactam - 0.008% area by HPLC.
Example 10:
Iso-butanol is added (30 ml) to pregabalin or to a complex of pregabalin with H2SO4. Afterwards, water (16.5 ml) and Bu3N (10.4 gr) are added. The mixture is cooled to 20C, and stirred for 2h to induce precipitation. The precipitate is filtered, washed and dried at 550C under vacuum, providing Pregabalin with total purity 99.3% area by HPLC, Lactam - 0.002% area by HPLC.
Example 11 : Preparation of a pharmaceutical formulation containing (S)-Pregabalin The following material is used for the preparation of Pregabalin tablet formulation:
Combine corn starch, cellulose, and Pregabalin together in a mixer and mix for 2-4 minutes. Add water to this combination and mix for an addition 1-3 minutes. The resulting mix is spread on trays and dried in convection oven at 45-550C until a moisture level of 1 to 2% is obtained. The dried mix is then milled and added back to the mill mixture and the total is blended for additional 4-5 minutes. Compressed tables of 150 mg, 375 mg and 750 mg are 30 formed using appropriate punches from the total mix. The formulation is measured to contain less than 0.02% lactam.
Claims
1. Pregabalin substantially free of Lactam.
2. Pregabalin containing less than 0.015% area by HPLC of Lactam.
3. Pregabalin of claim 2, containing less than 0.01% area by HPLC of Lactam.
4. Pregabalin of claim 3, containing less than 0.005% area by HPLC of Lactam.
5. (S)-Pregabalin substantially free of (S)-Lactam.
6. (S)-Pregabalin containing less than 0.015% area by HPLC of (S)-Lactam.
7. (S)-Pregabalin of claim 6, containing less than 0.01% area by HPLC of (S)-Lactam.
8. (S)-Pregabalin of claim 7, containing less than 0.005% area by HPLC of (S)-Lactam.
9. A process for obtaining Pregabalin substantially free of Lactam comprising: a) extracting an acidic mixture containing a complex of Pregabalin with a strong mineral acid, with a C3,8 alcohol; b) and combining the organic phase with an organic base.
10. The process of claim 9, wherein the C3-8 alcohol is selected from the group consisting of: butanol, iso-butanol, 2-butanol, iso-propyl alcohol, pentanol and iso-pentanol.
11. The process of claim 10, wherein the C3-8 alcohol is isobutanol.
12. The process of claim 9, wherein the strong mineral acid is selected from the group consisting of: HCl, HBr, H3PO4, and H2SO4.
13. The process of claim 12, wherein the strong mineral acid is H2SO4.
14. The process of claim 9, wherein the organic base is selected from the group consisting of: primary amine, secondary amine, tertiary amine and aromatic amine.
15. The process of claim 14, wherein the primary amine, secondary amine and tertiary amine are one OfC1 to C6 alkyl amine.
16. The process of claim 15, wherein the primary amine, secondary amine and tertiary amine are one of C1 to C4 alkylamine.
17. The process of claim 14, wherein the aromatic amine is pyridine.
18. The process of claim 14, wherein the organic base is secondary amine or tertiary amine.
19. The process of claim 18, wherein the secondary amine or tertiary amine are C] to C6 alkyl amine or tertiary Ci to C6 alkyl amine.
20. The process of claim 19, wherein the secondary amine or tertiary amine are Ci to C4 alkyl amine or tertiary Ci to C4 alkyl amine.
21. The process of claim 20, wherein the secondary amine or tertiary amine is tertiary Ci to C4 alkyl amine.
22. The process of claim 20, wherein the secondary amine is either diisopropylatnine or dipropylamine.
23. The process of claim 21, wherein the tertiary C1 to C4 alkylamine is tributyl amine or triethyl amine.
24. The process of claim 23, wherein the tertiary C1 to C4 alkylamine is tributyl amine.
25. The process of claim 9, wherein a precipitate of Pregabalin is obtained.
26. The process of claim 25, further comprising recovering the precipitate of Pregabalin.
27. The process of claim 26, wherein the recovery includes cooling, filtering and drying.
28. The process of claim 9, wherein the Pregabalin obtained is substantially free of Lactam.
29. A process of determining the presence of a compound in a sample comprising carrying out HPLC or TLC with Lactam as a reference marker.
30. A method of determining the relative retention time (RRT) of an impurity in a sample of Lactam comprising: d) measuring by HPLC or TLC the relative retention time (RRT) corresponding to Lactam in a reference marker sample; e) determining by HPLC or TLC the relative retention time (RRT) corresponding to Lactam in a sample comprising Lactam and Pregabalin; and f) determining the relative retention time (RRT) of Lactam in the sample by comparing the relative retention time (RRT) of step (a) to the relative retention time (RRT) of step (b).
31. A process of determining the amount of a compound in a sample comprising carrying out HPLC or TLC with a Lactam as a reference standard.
32. A method of determining the amount of an impurity in a sample of Lactam comprising: d) measuring by HPLC or TLC the area under a peak corresponding to Lactam in a reference standard comprising a known amount of Lactam; e) measuring by HPLC or TLC the area under a peak corresponding to Lactam in a sample comprising Lactam and Pregabalin; and f) determining the amount of Lactam in the sample by comparing the area of step (a) to the area of step (b).
33. An HPLC method used to determine the presence of Lactam in Pregabalin sample comprising: a) combining a Pregabalin sample with a mixture of acetonitrile:methanol:buffer in a ratio of about 1 : 1 : 8, to obtain a solution; b) injecting the obtained solution into a 250X4.6 mm Inertsil ODS 3V (or similar) column; c) gradient eluting the sample from the column at about 50 min using a mixture of acetonitrile:methanol:buffer (1:1:8) (referred to as eluent A) and acetonitrile (referred to as eluent B) as an eluent; and d) measuring the Lactam content in the relevant sample with a UV detector
(preferably at a 210 nm wavelength).
34. The method of any of the claims 33, wherein the buffer contains H3PO4 and an aqueous solution of (TNEELt)2HPO4 in a concentration of about 0.04M having a pH of about 6.5.
35. The method of the claims 33, wherein the eluent used is a mixture of eluent A and eluent B.
36. The method of the claim 35, wherein the ratio between eluent A and eluent B varies over the time.
37. The method of claim of the claims 33, wherein at the time 0 minutes, the eluent contains 100% of eluent A and 0% of eluent B, at 6 minutes, the eluent contains 100% of eluent A and 0% of eluent B, and at 50 minutes, the eluent contains 65% of eluent A and 35% of eluent B.
38. Pharmaceutical composition comprising (S)-Pregabalin substantially free of (S)- Lactam and non-acidic pharmaceutically acceptable excipients.
39. A process for preparing pharmaceutical formulation comprising mixing (S)-Pregabalin substantially free of (S)-Lactam and a non-acidic pharmaceutically acceptable carrier.
40. The use of the (S)-Pregabalin substantially free of (S)-Lactam of the present invention for the manufacture of a pharmaceutical composition.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06749676A EP1879852A1 (en) | 2005-05-10 | 2006-04-11 | Pregabalin free of lactam and a process for preparation thereof |
IL185033A IL185033A0 (en) | 2005-05-10 | 2007-08-02 | Pregabalin free of lactam and a process for preparation thereof |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US67978405P | 2005-05-10 | 2005-05-10 | |
US60/679,784 | 2005-05-10 | ||
US68969905P | 2005-06-09 | 2005-06-09 | |
US60/689,699 | 2005-06-09 | ||
US73300605P | 2005-11-02 | 2005-11-02 | |
US60/733,006 | 2005-11-02 | ||
US73506905P | 2005-11-08 | 2005-11-08 | |
US60/735,069 | 2005-11-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006121557A1 true WO2006121557A1 (en) | 2006-11-16 |
Family
ID=36646087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2006/013360 WO2006121557A1 (en) | 2005-05-10 | 2006-04-11 | Pregabalin free of lactam and a process for preparation thereof |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1879852A1 (en) |
IL (1) | IL185033A0 (en) |
WO (1) | WO2006121557A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007019071A1 (en) | 2007-04-23 | 2008-10-30 | Ratiopharm Gmbh | Stabilized pharmaceutical composition containing pregabalin |
WO2009046309A2 (en) * | 2007-10-03 | 2009-04-09 | Teva Pharmaceutical Industries Ltd. | Pregabalin -4-eliminate, pregabalin 5-eliminate, their use as reference marker and standard, and method to produce pregabalin containing low levels thereof |
US7586005B2 (en) | 2005-09-19 | 2009-09-08 | Teva Pharmaceutical Industries Ltd. | Asymmetric synthesis of (S)-(+)-3-(aminomethyl)-5-methylhexanoic acid |
US7619112B2 (en) | 2005-05-10 | 2009-11-17 | Teva Pharmaceutical Industries Ltd. | Optical resolution of 3-carbamoylmethyl-5-methyl hexanoic acid |
WO2010115612A3 (en) * | 2009-04-10 | 2011-02-03 | Synthon B.V. | Pregabalin compositions |
US8546112B2 (en) | 2008-05-21 | 2013-10-01 | Sandoz Ag | Process for the stereoselective enzymatic hydrolysis of 5-methyl-3-nitromethyl-hexanoic acid ester |
WO2016075082A1 (en) | 2014-11-10 | 2016-05-19 | Sandoz Ag | Stereoselective reductive amination of alpha-chiral aldehydes using omega-transaminases for the synthesis of precursors of pregabalin and brivaracetam |
WO2023071011A1 (en) | 2021-10-26 | 2023-05-04 | 浙江华海药业股份有限公司 | Method for purifying pregabalin |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996038405A1 (en) * | 1995-06-02 | 1996-12-05 | Warner-Lambert Company | Methods of making (s)-3-(aminomethyl)-5-methylhexanoic acid |
WO1996040617A1 (en) * | 1995-06-07 | 1996-12-19 | Warner-Lambert Company | Method of making (s)-3-(aminomethyl)-5-methylhexanoic acid |
US6333198B1 (en) * | 1998-06-10 | 2001-12-25 | Glaxo Wellcome, Inc. | Compound and its use |
US20020012679A1 (en) * | 1998-08-03 | 2002-01-31 | Societe Laboratoires Des Produits Ethiques - Ethypharm | Process for manufacturing coated gabapentin or pregabalin particles |
-
2006
- 2006-04-11 WO PCT/US2006/013360 patent/WO2006121557A1/en active Application Filing
- 2006-04-11 EP EP06749676A patent/EP1879852A1/en not_active Withdrawn
-
2007
- 2007-08-02 IL IL185033A patent/IL185033A0/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996038405A1 (en) * | 1995-06-02 | 1996-12-05 | Warner-Lambert Company | Methods of making (s)-3-(aminomethyl)-5-methylhexanoic acid |
WO1996040617A1 (en) * | 1995-06-07 | 1996-12-19 | Warner-Lambert Company | Method of making (s)-3-(aminomethyl)-5-methylhexanoic acid |
US6333198B1 (en) * | 1998-06-10 | 2001-12-25 | Glaxo Wellcome, Inc. | Compound and its use |
US20020012679A1 (en) * | 1998-08-03 | 2002-01-31 | Societe Laboratoires Des Produits Ethiques - Ethypharm | Process for manufacturing coated gabapentin or pregabalin particles |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7619112B2 (en) | 2005-05-10 | 2009-11-17 | Teva Pharmaceutical Industries Ltd. | Optical resolution of 3-carbamoylmethyl-5-methyl hexanoic acid |
US7678938B2 (en) | 2005-05-10 | 2010-03-16 | Teva Pharmaceutical Industries Ltd. | Optical resolution of 3-carbamoylmethyl-5-methyl hexanoic acid |
US7586005B2 (en) | 2005-09-19 | 2009-09-08 | Teva Pharmaceutical Industries Ltd. | Asymmetric synthesis of (S)-(+)-3-(aminomethyl)-5-methylhexanoic acid |
US7851651B2 (en) | 2005-09-19 | 2010-12-14 | Teva Pharmaceutical Industries Ltd. | Asymmetric synthesis of (S)-(+)-3-(aminomethyl)-5-methylhexanoic acid |
US7923575B2 (en) | 2005-09-19 | 2011-04-12 | Teva Pharmaceutical Industries Limited | Asymmetric synthesis of (S)-(+)-3-(aminomethyl)-5-methylhexanoic acid |
DE102007019071A1 (en) | 2007-04-23 | 2008-10-30 | Ratiopharm Gmbh | Stabilized pharmaceutical composition containing pregabalin |
WO2009046309A2 (en) * | 2007-10-03 | 2009-04-09 | Teva Pharmaceutical Industries Ltd. | Pregabalin -4-eliminate, pregabalin 5-eliminate, their use as reference marker and standard, and method to produce pregabalin containing low levels thereof |
WO2009046309A3 (en) * | 2007-10-03 | 2009-05-22 | Teva Pharma | Pregabalin -4-eliminate, pregabalin 5-eliminate, their use as reference marker and standard, and method to produce pregabalin containing low levels thereof |
US8546112B2 (en) | 2008-05-21 | 2013-10-01 | Sandoz Ag | Process for the stereoselective enzymatic hydrolysis of 5-methyl-3-nitromethyl-hexanoic acid ester |
WO2010115612A3 (en) * | 2009-04-10 | 2011-02-03 | Synthon B.V. | Pregabalin compositions |
WO2016075082A1 (en) | 2014-11-10 | 2016-05-19 | Sandoz Ag | Stereoselective reductive amination of alpha-chiral aldehydes using omega-transaminases for the synthesis of precursors of pregabalin and brivaracetam |
WO2023071011A1 (en) | 2021-10-26 | 2023-05-04 | 浙江华海药业股份有限公司 | Method for purifying pregabalin |
Also Published As
Publication number | Publication date |
---|---|
EP1879852A1 (en) | 2008-01-23 |
IL185033A0 (en) | 2007-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7462737B2 (en) | Pregabalin free of isobutylglutaric acid and a process for preparation thereof | |
WO2006121557A1 (en) | Pregabalin free of lactam and a process for preparation thereof | |
KR20070088485A (en) | Purification of cinacalcet | |
US7488846B2 (en) | Pregabalin free of lactam and a process for preparation thereof | |
KR100890595B1 (en) | An isolated valacyclovir impurity, process for the preparation of valacyclovir impurity and use as a reference standard | |
JP2007512357A (en) | Method for preparing a form of atorvastatin calcium substantially free of impurities | |
US11179386B2 (en) | Analogs of deutetrabenazine, their preparation and use | |
US20100087650A1 (en) | (1r,1'r)-atracurium salts separation process | |
JP2008510020A6 (en) | Impurities of anastrozole intermediate and use thereof | |
JP2008510020A (en) | Impurities of anastrozole intermediate and use thereof | |
US20090137842A1 (en) | Pregabalin -4-eliminate, pregabalin 5-eliminate, their use as reference marker and standard, and method to produce pregabalin containing low levels thereof | |
EP3985009B1 (en) | B crystal form of tetrahydrothienopyridine compound, preparation method therefor, composition and application | |
EP3858816A1 (en) | Novel method for preparing (-)-cibenzoline succinate | |
CN101171227A (en) | Pregabalin free of lactam and a process for preparation thereof | |
CA3230633A1 (en) | Pyrazolopyrimidine ester compound | |
CN114341155A (en) | Preparation method of peptide amide compound and intermediate thereof | |
EP0532156A1 (en) | Physiologically active diterpenoid | |
JP7193815B1 (en) | Process for producing histamine and its use as a pharmaceutical | |
EP4442689A1 (en) | Crystal form of fused ring derivative, and preparation method therefor and use thereof | |
US20080287447A1 (en) | Methods for preparing eszopiclone | |
CN116283646A (en) | Calcium zinc gluconate impurity and preparation method, detection method and application thereof | |
CN118754876A (en) | Purification method and application of FAP-targeted precursor compound | |
CN116462635A (en) | Pyrazine-1 (2H) -2-oxo compound and preparation method and application thereof | |
MX2007000925A (en) | Purification of cinacalcet | |
JP2011522016A (en) | 4-Bromophenyl 1,4-diazabicyclo [3.2.2] nonane-4-carboxylate fumarate, its crystalline form, preparation and therapeutic use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200680015753.3 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006749676 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 185033 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 7731/DELNP/2007 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |