WO2006121153A1 - Optical pickup and information device - Google Patents

Optical pickup and information device Download PDF

Info

Publication number
WO2006121153A1
WO2006121153A1 PCT/JP2006/309553 JP2006309553W WO2006121153A1 WO 2006121153 A1 WO2006121153 A1 WO 2006121153A1 JP 2006309553 W JP2006309553 W JP 2006309553W WO 2006121153 A1 WO2006121153 A1 WO 2006121153A1
Authority
WO
WIPO (PCT)
Prior art keywords
spherical aberration
information recording
light
light beam
optical pickup
Prior art date
Application number
PCT/JP2006/309553
Other languages
French (fr)
Japanese (ja)
Inventor
Naoharu Yanagawa
Masataka Izawa
Takehisa Okuyama
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Publication of WO2006121153A1 publication Critical patent/WO2006121153A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13925Means for controlling the beam wavefront, e.g. for correction of aberration active, e.g. controlled by electrical or mechanical means
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13922Means for controlling the beam wavefront, e.g. for correction of aberration passive

Definitions

  • the present invention relates to a technical field of an optical pickup that emits light when recording or reproducing data on an information recording medium such as a DVD, and an information device including the optical pickup.
  • an information recording medium for optically recording and reproducing data using a laser beam or the like such as a CD or a DVD
  • Such information recording media have various substrate thicknesses, such as 1.2 mm for CDs, 0.6 mm for DVDs and HD DVDs, for example Blu-ray. If it is a Disc, it has a substrate thickness of 0.1 mm. In order to record or reproduce data on such information recording media having different substrate thicknesses, it is necessary to focus laser light on the recording surface in accordance with the thickness of each substrate.
  • a technique for condensing laser light on a recording surface according to the substrate thickness using an optical pickup provided with a plurality of objective lenses according to the substrate thickness has been developed.
  • a method has been developed in which the position of the collimator lens (condensing lens) in the optical path of the laser beam is changed to focus the laser beam on the recording surface according to the substrate thickness. That is, a method of condensing laser light on the recording surface according to the substrate thickness by changing the magnification of the optical system has been developed. (See Non-Patent Document 1).
  • Patent Document 1 Japanese Patent Laid-Open No. 8-249708
  • Patent Document 2 Japanese Patent Laid-Open No. 5-241095
  • Patent Document 3 Japanese Patent Laid-Open No. 9-128785
  • Non-Patent Document 1 “Next generation optical discs to be unified” Nikkei Electronics September 27, 2004 P112- 113
  • Non-Patent Document 2 Isao ICHIMURA, Fumisada MAEDA, Kiyoshi 0SAT0, Kenji YAMAM0T0, Yutaka KASAMI “Optical recording using blue laser diode (Optical Recording Using a ( ⁇ aN Blue- Violet Laser Diode) '' Jpn.J.Appl.Phys 2000 Vol. 39 P937- 942
  • Patent Document 1 and Patent Document 2 can only roughly correct spherical aberration, and realize a higher quality recording operation or reproducing operation. From a point of view, it can be said that the technology is never satisfactory.
  • spherical aberration that can be distributed over a wide range is generally used for current information recording media in which the substrate thickness is distributed over a range of 1.2 mm to 0.1 mm.
  • the present invention has been made in view of, for example, the above-described conventional problems, and for example, an optical pickup capable of suitably correcting spherical aberration, and an information device including such an optical pickup. It is an issue to provide.
  • an optical pickup is an optical pickup for performing at least one of data recording and reproduction on each of a plurality of types of information recording media, and at least one of recording and reproduction of the data.
  • First spherical aberration correction that corrects the spherical aberration when the light beam irradiated to perform the focusing on the information recording medium is corrected according to the substrate thickness of the information recording medium determined by the determining means
  • a second sphere that corrects the spherical aberration remaining after the correction by the first spherical aberration correcting means to the same degree as or higher than the accuracy of the correction of the spherical aberration by the first spherical aberration correcting means.
  • Surface aberration correction means that corrects the spherical aberration when the light beam irradiated to perform the focusing on the information recording medium is corrected according to the substrate thickness of the information recording medium determined by the determining means
  • a second sphere that corrects the spherical aberration remaining after the correction by the first
  • the irradiation means power of the hologram laser element etc.
  • the medium is irradiated.
  • the spherical aberration is first corrected by the first spherical aberration correcting means.
  • the first spherical aberration correcting means is an information recording medium (that is, a light beam irradiated by the optical pickup, which is discriminated by the operation of the discriminating means provided inside or outside the optical pickup, that is, The spherical aberration is corrected according to the thickness of the substrate of the information recording medium that is the target of data recording or reproduction.
  • rough (that is, rough) spherical aberration correction is performed by using, for example, a previously prepared spherical aberration correction amount table corresponding to the disc type. Is done using.
  • the spherical aberration is further corrected by the second spherical aberration correcting means. That is, the spherical aberration that cannot be removed by the correction of the spherical aberration by the first spherical aberration correcting means is corrected.
  • This second spherical aberration correction means corrects spherical aberration at a level equivalent to the correction of spherical aberration by the first spherical aberration correction means or at a higher precision (or finer) level.
  • the first spherical aberration correction means corrects a relatively rough (in other words, a large level) spherical aberration
  • the second spherical aberration correction means corrects the first spherical aberration correction.
  • Spherical aberration that cannot be removed by correction by means is corrected.
  • the second spherical aberration correction means is the first spherical surface that does not consider a relatively large level of spherical aberration. It is possible to correct spherical aberration that cannot be removed by correction by the convergence correction means.
  • the first spherical aberration correction means corrects the relatively rough spherical aberration. It can be performed. That is, each of the first spherical aberration correcting unit and the second spherical aberration correcting unit has a relationship of complementing each other. In this way, spherical aberration can be corrected in two stages, so that spherical aberration can be corrected more suitably. As a result, the spherical aberration can be made zero or almost zero.
  • the first spherical aberration correcting means and the second spherical aberration correcting means can be applied to the information recording medium having any substrate thickness.
  • the spherical aberration is corrected more suitably for each. Accordingly, it is possible to record or reproduce data on a plurality of types of information recording media having different substrate thicknesses while eliminating the adverse effects of spherical aberration.
  • One aspect of the optical pickup of the present invention is characterized in that the first spherical aberration correction unit is discriminated by a light beam splitting unit that splits the optical beam into a plurality of light bundles and the discrimination unit. Adjusting means for adjusting each of the plurality of light bundles so as to bring the spherical convergence of each of the plurality of light bundles close to substantially zero according to the substrate thickness of the information recording medium.
  • the light beam irradiated from the irradiation unit is divided into a plurality of light beam bundles (for example, a P-polarized light beam and an S-polarized light beam) by the dividing unit.
  • the adjusting means adjusts each light bundle so that the spherical aberration of each of the plurality of light bundles approaches substantially zero according to the substrate thickness of the information recording medium.
  • the substrate thickness of the information recording medium one light bundle that actually records or reproduces data on the information recording medium having the substrate thickness determined by the determining means among a plurality of light bundles.
  • the optical path or the like is adjusted so that the spherical aberration approaches approximately zero.
  • the first spherical aberration correction unit has a predetermined property for the light beam in accordance with a substrate thickness of the information recording medium determined by the determination unit.
  • Conversion means for converting into a light beam; and optical path adjusting means for transmitting the light beam having one property and reflecting the light beam having another property different from the one property.
  • the light beam emitted from the irradiation unit has a predetermined property according to the substrate thickness of the information recording medium determined by the conversion unit (for example, having P-polarized light or Converted into a light beam (having a predetermined polarization mode such as S-polarized light).
  • the optical path adjusting means and the light beam have one property (for example, P-polarized light)
  • the other light beam has other properties (for example, s-polarized light)
  • it can be reflected to change the optical path of the light beam.
  • the optical path length of the optical beam (more specifically, the optical distance between a hologram laser and a collimator lens described later) can be changed according to the substrate thickness. For this reason, it is possible to suitably correct the relatively rough spherical aberration according to the substrate thickness of the information recording medium.
  • the conversion means preferably converts the light beam electrically.
  • the light beam is converted by using a mechanical mechanism that can occupy a relatively large space or have a relatively complicated configuration as disclosed in Patent Document 1 and Patent Document 2 described above. There is no need. Thereby, the configuration of the optical pickup can be made relatively simple, and the size of the optical pickup can be made relatively small.
  • the first spherical aberration correction unit changes the optical path length of the light beam according to the substrate thickness of the information recording medium determined by the determination unit. Thus, the spherical aberration is corrected.
  • the optical path length of the light beam (more specifically, the optical distance between a hologram laser and a collimator lens described later) can be changed according to the substrate thickness. Therefore, it is possible to suitably correct relatively rough spherical aberration according to the substrate thickness of the information recording medium.
  • a plurality of irradiation means for irradiating a plurality of light beams corresponding to each of the plurality of types of information recording media, each having a different distance from the information recording medium.
  • the first spherical aberration correction unit irradiates the light beam to the information recording medium among the plurality of irradiation units according to the substrate thickness of the information recording medium determined by the determination unit.
  • the spherical aberration is corrected by selecting the irradiation means.
  • the irradiation means for irradiating the light beam can be selectively switched according to the substrate thickness of the information recording medium.
  • the optical path length of the light beam (more specifically, the optical distance between a hologram laser and a collimator lens described later) can be changed according to the substrate thickness. Therefore, it is possible to suitably correct relatively rough spherical aberration according to the substrate thickness of the information recording medium.
  • the optical axes of the light beams emitted from the plurality of irradiation means may be different from each other.
  • the optical beam irradiated from other irradiation means excluding at least one irradiation means among the plurality of irradiation means is the information recording medium.
  • a coma aberration correcting unit that corrects coma aberration when the light is focused on may be further provided.
  • coma can also be suitably corrected.
  • the light beams irradiated by the plurality of irradiation means are different from each other as described above, the light beams may be irradiated using the off-axis of the collimator lens.
  • coma generated by irradiating the light beam using the off-axis of the collimator lens can be suitably corrected. Therefore, even when the optical axes of the light beams emitted from each of the plurality of irradiation means are different, data recording or data reproduction can be suitably performed.
  • At least two of the plurality of irradiating units generate the same amount of coma aberration in opposite directions with respect to the collimator lens. (Or arranged at positions shifted by the same amount in the opposite directions with respect to the central axis of the collimator lens)!
  • the first spherical aberration correction unit includes a collimator lens that is movable along the optical axis of the optical beam.
  • the optical distance between a hologram laser (to be described later) and a collimator lens can be changed according to the substrate thickness. For this reason, according to the substrate thickness of the information recording medium
  • the second spherical aberration correcting unit calculates the amount of the spherical aberration based on the reflected light of the light beam from the information recording medium. The spherical aberration is corrected based on the calculated amount of spherical aberration.
  • the second spherical aberration correction unit can correct the spherical aberration while monitoring the actual amount of spherical aberration calculated by the calculation unit.
  • the spherical aberration can be corrected so that the actual amount of spherical aberration calculated by the calculating means becomes substantially zero.
  • a dividing unit that divides the reflected light and a plurality of light receiving units that receive the divided reflected light may further comprise means.
  • the amount of spherical aberration is substantially zero when the level of reflected light received by each of the plurality of light receiving means is the same. be able to. Therefore, by monitoring the level of reflected light received by each of the plurality of light receiving means, it is possible to suitably correct spherical aberration that cannot be removed by the correction by the first spherical aberration correcting means.
  • the second spherical aberration correction means includes a liquid crystal element.
  • the second spherical aberration correction unit is a signal obtained by detecting reflected light of the optical beam, and the recording medium of the optical beam is The spherical aberration is corrected so that the signal level of the signal that changes depending on the spot position on the body (for example, RF signal, LPP signal, wobble signal, CAPA signal, TE signal, pre-pit signal, emboss signal, etc.) is substantially maximized.
  • the second spherical aberration correction unit preferably performs correction of spherical aberration that cannot be removed by correction by the first spherical aberration correction unit by monitoring the signal levels of these signals. be able to.
  • Another aspect of the optical pickup of the present invention includes: a condensing unit that condenses the light beam on the recording medium; and a moving unit that moves the condensing unit along the optical axis of the light beam.
  • the discriminating unit discriminates the substrate thickness based on the waveform of the reflected light of the light beam detected while moving the light collecting unit.
  • the focus of the light beam is adjusted to the surface or recording surface of the information recording medium.
  • an S-shaped curve can be obtained as the reflected light waveform. Therefore, the length (that is, the substrate thickness) between the surface of the information recording medium and the recording surface of the information recording medium can be recognized based on the two S-shaped force curves. Therefore, the substrate thickness of the information recording medium can be suitably determined based on the waveform of the reflected light of the light beam detected while moving the condensing means.
  • a plurality of types of light beams for performing at least one of recording and reproduction of the data on each of the plurality of types of information recording media are irradiated.
  • the substrate thickness may be determined based on the waveform of the reflected light of one type of light beam.
  • the one type of light beam has the maximum data recording capacity among the plurality of types of information recording media. It may be configured to be a light beam corresponding to various information recording media.
  • the substrate thickness can be suitably determined regardless of which type of information recording medium is selectively irradiated with one type of light beam.
  • the light collecting is performed.
  • Measuring means for measuring a moving amount of the moving means by the moving means, and the discriminating means is configured to detect a waveform of the reflected light when the light beam is focused on the surface of the information recording medium. And determining the thickness of the substrate based on the amount of movement of the condensing means until the waveform of the reflected light is detected when the light beam is condensed on the recording surface of the information recording medium. It may be configured as ⁇ .
  • the moving amount of the light collecting means is measured by the measuring means.
  • the amount of movement of the condensing means from when the light beam is focused on the surface of the information recording medium to when the light beam is focused on the recording surface of the information recording medium is as follows:
  • the length (ie, substrate thickness) between the surface of the recording medium and the recording surface of the information recording medium is directly or indirectly shown.
  • the amount of movement of the condensing means from when the first S-shaped curve as the reflected light waveform is obtained until the second S-shaped curve as the reflected light waveform is obtained is This corresponds to the length (ie, substrate thickness) between the surface of the information recording medium and the recording surface of the information recording medium. Therefore, the substrate thickness of the information recording medium can be suitably determined based on the reflected light waveform of the light beam detected while moving the condensing means.
  • irradiation means for irradiating a plurality of types of light beams for performing at least one of recording and reproduction of the data with respect to each of the plurality of types of information recording media. Further, the discriminating unit discriminates the substrate thickness by controlling the irradiating unit to sequentially irradiate the information recording medium with each of the plurality of types of light beams.
  • a light beam that sequentially irradiates a plurality of types of optical beams corresponding to each of a plurality of types of information recording media, and can actually read data on the information recording medium. Determined. Then, the type of the information recording medium is determined from the determined light beam, and as a result, the substrate thickness of the information recording medium is determined.
  • the second spherical aberration correction unit is irradiated with a plurality of data irradiated to perform at least one of recording and reproduction of the data with respect to each of the plurality of types of information recording media.
  • the spherical aberration is corrected after the light beam corresponding to the substrate thickness determined by the determining means is irradiated.
  • the optical beam for actually recording or reproducing data is used.
  • the second spherical aberration correcting unit can suitably correct the spherical aberration.
  • the information device of the present invention is an information device that performs at least one of data recording and reproduction on each of a plurality of types of information recording media, and determines the substrate thickness of the information recording medium.
  • the information recording method wherein the discriminating means discriminates the spherical aberration when the light beam irradiated to perform at least one of recording and reproduction of the data is focused on the information recording medium.
  • a first spherical aberration correcting unit that corrects according to the substrate thickness of the medium; and the spherical aberration remaining after the correction by the first spherical aberration correcting unit is used to correct the spherical aberration by the first spherical aberration correcting unit.
  • the second spherical aberration correcting means for correcting the same or higher accuracy than the second spherical aberration correcting means.
  • a reproducing means for lines are examples of lines.
  • data is recorded on an information recording medium such as an optical disc or information recording while enjoying the same benefits as the various advantages of the optical pickup of the present invention described above.
  • Data recorded on the medium can be reproduced.
  • the optical pickup of the present invention includes the first spherical aberration correcting unit and the second spherical aberration correcting unit. Accordingly, it is possible to suitably correct spherical aberration.
  • the information device of the present invention includes a determining unit, a first spherical aberration correcting unit, a second spherical aberration correcting unit, and a recording / reproducing unit. Therefore, it is possible to record data on the information recording medium and reproduce data recorded on the information recording medium while preferably correcting the spherical aberration.
  • FIG. 1 is a block diagram schematically showing an overall configuration of an information recording / reproducing apparatus including an optical pickup according to an embodiment.
  • FIG. 2 Of the information recording / reproducing apparatus according to the present embodiment, in particular, a more detailed configuration of the pickup. It is a block diagram shown roughly.
  • FIG. 3 is a flowchart conceptually showing a flow of operations of the information recording / reproducing apparatus in the example.
  • IV is an explanatory diagram conceptually showing the amount of movement of the objective lens and the detection signal of the reflected light when calculating the substrate thickness.
  • FIG. 5 is a cross-sectional view conceptually showing one specific configuration of a first spherical aberration correction element and one aspect of correction of spherical aberration by the first spherical aberration correction element.
  • FIG. 6 is a cross-sectional view conceptually showing another specific configuration of the first spherical aberration correcting element and another aspect of correcting the spherical aberration by the first spherical aberration correcting element.
  • FIG. 7 is a cross-sectional view conceptually showing another specific configuration of the first spherical aberration correcting element and another aspect of correcting the spherical aberration by the first spherical aberration correcting element.
  • FIG. 8 is a sectional view conceptually showing the specific structure of a second spherical aberration correction element.
  • FIG. 9 is a plan view conceptually showing an aspect of splitting reflected light when detecting spherical aberration.
  • FIG. 10 is a graph conceptually showing the level of spherical aberration correction of each of the first spherical aberration correcting element and the second spherical aberration correcting element.
  • FIG. 11 is a cross-sectional view schematically showing one configuration of the first spherical correction element movable by a mechanical mechanism.
  • FIG. 12 is a cross-sectional view schematically showing another configuration of the first spherical correction element movable by a mechanical mechanism.
  • FIG. 13 is a block diagram schematically showing a basic configuration of an information recording / reproducing measure according to a first modification.
  • FIG. 14 is a flowchart conceptually showing a flow of operations of the information recording / reproducing measure in accordance with the first modified example.
  • FIG. 15 is a block diagram schematically showing a basic configuration of an information recording / reproducing measure according to a second modification.
  • FIG. 16 is a block diagram schematically showing a basic configuration of an information recording / reproducing measure according to a third modification.
  • FIG. 17 A block that schematically shows the basic configuration of the information recording / reproducing measure according to the third modification.
  • FIG. 1 is a block diagram schematically showing an overall configuration of an information recording / reproducing apparatus 300 including the optical pickup 100 according to the present embodiment.
  • the information recording / reproducing apparatus 300 reproduces data recorded on each of a plurality of types of optical discs 10 having different substrate thicknesses and a function for recording data on each of a plurality of types of optical discs 10 having different substrate thicknesses. With functionality.
  • a CD with a substrate thickness of 1.2 mm, a DVD or HD DVD with a substrate thickness of 0.6 mm, and a Blu-ray Disc with a substrate thickness of 0.1 mm are assumed. And proceed with the explanation.
  • the information recording / reproducing apparatus 300 includes a disk drive 301 in which the optical disk 10 is actually loaded and data is recorded and reproduced, and data recording and recording on the disk drive 301 are performed. And a host computer 302 such as a personal computer for controlling reproduction!
  • the disk drive 301 includes an optical disk 10, a spinner motor 311, an optical pickup 100, a signal recording / reproducing means 313, a CPU (drive control means) 314, a memory 315, a data input / output control means 316, and a bus 317. It is configured.
  • the host computer 302 includes data input / output control means 318, CPU 319, memory 320, nose 321, operation Z display control means 322, operation buttons 323, and display panel 324.
  • the optical pickup 100 is configured to include, for example, a semiconductor laser device and a lens in order to record data on the optical disc 10. More specifically, the optical pickup 100 irradiates the optical disk 10 with the laser light LB as read light at the first power during reproduction, and as write light at the second power while being modulated during recording. The detailed configuration of the optical pickup 100 will be described later (see FIG. 2).
  • the spindle motor 311 rotates and stops the optical disc 10 and operates when accessing the optical disc 10. More specifically, the spindle motor 311 is configured to rotate and stop the optical disc 10 at a predetermined speed while receiving spindle servo from a servo unit (not shown) or the like.
  • the signal recording / reproducing means 313 records and reproduces data with respect to the optical disc 10 by controlling the spindle motor 311 and the optical pickup 100. More specifically, signal recording The reproducing unit 313 includes, for example, a laser diode driver (LD driver), a head amplifier, and the like.
  • the laser diode driver drives the laser chip provided in the optical pickup 100 with current to emit laser light.
  • the head amplifier amplifies the output signal of the optical pickup 100, that is, the reflected light of the laser beam LB, and outputs the amplified signal.
  • the memory 315 is used in general data processing in the disk drive 301 such as a data buffer area and an area used as an intermediate buffer when data is converted into data usable by the signal recording / reproducing means 313. .
  • the memory 315 stores a program for operating as a recorder device, that is, a ROM area in which firmware is stored, a buffer for temporarily storing recording / playback data, and a variable necessary for the operation of the firmware program and the like. RAM area is configured.
  • a CPU (drive control means) 314 is connected to the signal recording / reproducing means 313 and the memory 315 via the bus 317, and controls the entire disk drive 301 by giving instructions to various control means. Normally, software or firmware for operating the CPU 314 is stored in the memory 315.
  • the data input / output control means 316 controls external data input / output to / from the disk drive 301 and stores and retrieves data in / from the data buffer on the memory 315.
  • the drive control command issued from the external host computer 302 connected to the information recording device 300 via an interface such as SCSI or ATAPI is transmitted to the CPU 314 via the data input / output control means 316.
  • the operation Z display control means 322 is for receiving and displaying an operation instruction for the host computer 302, and for example, transmits an instruction by the operation button 323 such as recording and reproduction to the CPU 319.
  • the CPU 319 transmits a control command (command) to the information recording / reproducing device 300 via the data input / output unit 318 based on the instruction information from the operation Z display control unit 322 to control the entire disk drive 301. .
  • the CPU 319 can send a command requesting the disk drive 301 to send the operating status to the host.
  • the operating state of the disk drive 301 such as recording can be grasped.
  • 19 can output the operating state of the disk drive 301 to the display panel 324 such as a fluorescent tube or an LCD via the operation / display control means 322.
  • the memory 320 is an internal storage device used by the host computer 302. For example, a ROM area in which a firmware program such as BIOS (Basic Input / Output System) is stored, an operating system, an operation of an application program, etc.
  • BIOS Basic Input / Output System
  • the RAM area that stores the necessary variables is also configured. Also, it is not shown in the figure via the data input / output control means 318, and may be connected to an external storage device such as a node disk.
  • the disk drive 301 and the host computer 302 in combination as described above is a household device such as a recorder device that records video.
  • This recorder device is a device that records broadcast reception tuners and video signals of external connection terminal power on a disc.
  • the program stored in the memory 320 is executed by the CPU 319 to operate as a recorder device.
  • the disk drive 301 is a disk drive (hereinafter referred to as a drive as appropriate)
  • the host computer 302 is a personal computer or a workstation.
  • a host computer such as a Norsonano computer and a drive are connected via data input / output control means 316 and 318 such as SCSI and ATAPI, and application capabilities such as reading software installed in the host computer 302 are used. Control the disk drive 301.
  • FIG. 2 is a block diagram schematically showing a more detailed configuration of the pickup 100 in the information recording / reproducing apparatus 300 according to the present embodiment.
  • the optical pickup 100 includes a hologram laser 101, a liquid crystal ⁇ 2 plate 102, a first spherical aberration correction element 103, a collimator lens 104, a noise mirror 105, and an aperture limiting element.
  • 106 second spherical aberration correction element 107, objective lens 108, actuator 110, objective lens ⁇ position sensor 110, liquid crystal drive 111, condenser lens 112, hologram element 113, and photodetector 114.
  • the hologram laser 101 constitutes a specific example of the “irradiation means” of the present invention, and a laser chip or a substrate that can emit laser light LB of a plurality of wavelengths (not shown) It has a ram element or the like.
  • the laser chip and the light receiving element are arranged on the same substrate, and the hologram element is provided opposite to the output side of the laser beam LB on the substrate.
  • the laser chip emits a laser beam LB corresponding to the type of the optical disk 10 having a plurality of types.
  • the laser chip irradiates, for example, a laser beam LB (ie, infrared laser beam) having a wavelength of 780 nm, for example, when recording or reproducing data on a CD, for example, data on a DVD.
  • a laser beam LB ie, infrared laser beam
  • the laser chip irradiates, for example, a laser beam LB (ie, infrared laser beam) having a wavelength of 780 nm, for example, when recording or reproducing data on a CD, for example, data on a DVD.
  • laser light LB having a wavelength of 660 nm that is, red laser light
  • laser light LB having a wavelength of 420 nm ie, blue-violet laser light
  • the light receiving element receives the input laser beam LB.
  • the hologram element transmits the laser beam LB output from the laser chip as it is, and also receives a laser beam LB (that is, the reflection of the laser beam LB from the optical disc 10) that is also incident on the surface force opposite to the incident surface of the laser beam LB. Light) is refracted and focused on a light receiving element on the substrate.
  • the hologram laser 11 has functions as a plurality of light sources and detectors.
  • hologram laser 101 including a laser chip and a light receiving element together
  • a configuration including a plurality of laser chips and a plurality of light receiving elements may be employed.
  • the liquid crystal ⁇ 2 plate 102 is a ⁇ 2 plate provided with a liquid crystal element capable of changing the alignment state of liquid crystal molecules.
  • the liquid crystal ⁇ 2 plate 102 changes the orientation state of the liquid crystal molecules, thereby electrically changing the polarization direction of the laser beam LB incident on the liquid crystal ⁇ 2 plate 102 according to the substrate thickness of the optical disk 10. Change to polarized light (or even other polarized light).
  • the liquid crystal substrate 2 plate 102 is configured to change the polarization direction of the laser beam LB under the control of a correction instruction unit 314a described later.
  • the first spherical aberration correcting element 103 together with the liquid crystal ⁇ 2 plate 102 and the collimator lens 104, constitutes one specific example of the “first spherical aberration correcting means” in the present invention, and the incident laser beam LB
  • the optical path of the laser beam LB is changed according to the polarization direction of the laser beam (in other words, according to the substrate thickness of the optical disk 10).
  • the laser beam LB is propagated in one optical path, and negatively polarized laser beam LB is incident.
  • the laser beam LB is propagated in another optical path having an optical path length longer than the one optical path.
  • the first spherical aberration correction element 103 may be configured to change the optical path of the laser beam L under the control of a correction instruction unit 314a described later. Further, the detailed configuration and operation of the first spherical aberration correcting element 103 will be described in detail later (see FIGS. 5 to 7 and the like).
  • the collimator lens 104 converts the incident laser light LB into substantially parallel light and causes the half mirror 105 to radiate humans.
  • the half mirror 105 transmits the laser beam LB incident from the hologram laser 101 side by 90% as it is, and the laser beam LB (that is, the laser beam LB from the optical disk 10 is also incident on the side force of the optical disk 10). Reflected light) is transmitted by 90% and reflected by 10%. The reflected light of 10% reflected by the half mirror 105 is condensed on the photodetectors 114 to 116 via the condenser lens 112 and the hologram element 113.
  • the aperture limiting element 106 includes, for example, a liquid crystal shirt or the like, and the substrate thickness of the optical disc 10
  • the numerical aperture (NA) of the objective lens 108 on the emission side of the laser beam LB is substantially changed according to the type.
  • the liquid crystal shirt is controlled so that the effective numerical aperture of the object lens 108 is “0.65”.
  • the liquid crystal shutter is set so that the substantial numerical aperture of the objective lens 108 becomes “0.85”. Control the cutter.
  • the second spherical aberration correction element 107 constitutes a specific example of “second spherical aberration correction means” of the present invention, and includes, for example, a liquid crystal panel.
  • the second spherical aberration correction element 107 follows the instruction from the liquid crystal drive 111 under the control of the correction instruction unit 314a that operates based on the actual amount of spherical aberration monitored by an aberration amount calculation unit 314c described later.
  • the refractive index in the liquid crystal panel is appropriately changed. More specifically, when the refractive index in the liquid crystal panel changes, the optical path or partial phase of the laser beam LB transmitted through the second spherical aberration correction element 107 changes, and as a result, the spherical aberration is corrected.
  • the objective lens 108 constitutes a specific example of the “condensing unit” of the present invention, and condenses the incident laser beam LB and irradiates it on the recording surface of the optical disc 10.
  • the actuator unit 109 constitutes one specific example of the “moving means” of the present invention, and has a drive mechanism for changing the arrangement position of the objective lens 108. More specifically, the actuator unit 109 moves the position of the objective lens 108 in the focus direction (the Z direction, that is, the left and right direction in FIG. 2).
  • the objective lens Z position sensor 110 constitutes one specific example of the “measuring means” of the present invention, and the absolute or relative position of the objective lens in the Z direction (that is, the light of the laser beam LB). Measure along the axis, or absolute or relative position in the focus direction. Further, the objective lens Z position sensor 110 outputs the measured position of the objective lens in the Z direction to a disc determination unit 314b described later.
  • the liquid crystal drive 111 drives the liquid crystal panel included in the second spherical aberration correction element 107 under the control of a correction instruction unit 314a described later. More specifically, the liquid crystal drive 111 includes the second spherical aberration correction element 107 by applying a predetermined voltage to the second spherical aberration correction element 107 under the control of a correction instruction unit 314a described later. Changes the alignment state of liquid crystal molecules in the liquid crystal panel. As a result, the refractive index in the liquid crystal panel changes partially, and spherical aberration is corrected.
  • the condensing lens 112 fluoresces the reflected light reflected by the half mirror 105.
  • the hologram element 113 is disposed between the condensing lens 112 and the condensing point of the reflected light collected by the condensing lens 112.
  • the hologram element 113 divides the reflected light spot formed on the hologram element 113 into a plurality of divided spot areas, and a part of the reflected light in each spot area is detected by the photodetectors 114 to 116. The light is condensed according to the deviation.
  • a more detailed configuration or operation of the hologram element 113 will be described later in detail (see FIG. 9).
  • the photodetectors 114 to 116 constitute a specific example of the “light receiving means” of the present invention, and receive a part of the reflected light in the plurality of spot regions collected by the hologram element 113, and The light intensity level and the like are detected.
  • the photodetectors 114 to 116 output the detected light intensity level and the like to an aberration amount detection unit 314c described later.
  • the CPU 314 includes a correction instruction unit 314a, a disc determination unit 314b, and an aberration amount detection unit 314c.
  • the correction instruction unit 314a is based on the type (or substrate thickness) of the optical disc 10 output from the disc determination unit 314b, and the first spherical aberration correction element 103 (further, the liquid crystal ⁇ 2 plate 102). To control.
  • the liquid crystal drive 111 that drives the liquid crystal panel in the second spherical aberration correction element 107 is controlled based on the amount of spherical aberration output from the aberration amount detection unit 314c.
  • the correction instruction unit 314a determines the correction amount of the spherical aberration in each of the first spherical aberration correction element 103 and the second spherical aberration correction element 107, and corrects the spherical aberration based on the determined correction amount. As shown, each element in the optical pickup 100 is controlled.
  • the disc discrimination unit 314b constitutes a specific example of the “discrimination unit” in the present invention, and is absolute or relative in the Z direction of the objective lens output from the objective lens Z position sensor 110. Based on the correct position and the detection signal of the reflected light output from the hologram laser 101, the type (or substrate thickness) of the optical disk 10 loaded on the information recording / reproducing apparatus 300 is discriminated. The disc discriminating unit 314b outputs the discriminated type (or substrate thickness) of the optical disc 10 to the correction instruction unit 314a.
  • the aberration amount detection unit 314c constitutes one specific example of the “calculation unit” of the present invention, and is actually generated based on the light intensity level output from the photodetectors 114 to 116. Calculate the amount of spherical aberration.
  • the aberration calculation unit 314c outputs the calculated amount of spherical aberration to the correction instruction unit 314a.
  • FIG. 3 is a flowchart conceptually showing a flow of operations of the information recording / reproducing apparatus 300 in the example.
  • the optical disc 10 having the largest recording capacity has a recording capacity of approximately 25 GB to 27 GB (provided that one side has one layer). Blu-ray Disc.
  • a blue-violet laser beam (that is, a laser beam LB having a wavelength of 420 nm) for recording or reproducing data on the Blu-ray Disc is irradiated from the hologram laser 101 (step S101). At this time, the tracking servo and focus servo remain open.
  • the objective lens 108 is moved in the Z direction by the operation of the actuator unit 109 while irradiating the laser beam LB (step S102). Specifically, it is preferable to move the objective lens 108 so that the objective lens 108 gradually approaches the optical disk 10 (more specifically, the left side force in FIG. 2 is also directed to the right side). Thereafter, the substrate thickness of the optical disc 10 is calculated based on the so-called S-curve detected as the objective lens 108 moves and the position of the objective lens 108 at that time (step S103).
  • FIG. 4 is an explanatory diagram conceptually showing the amount of movement of the objective lens 108 and the detection signal of the reflected light when calculating the substrate thickness.
  • the focal point of the laser beam LB coincides with the surface of the optical disc 10 as the objective lens 108 moves. That is, as the objective lens 108 moves, the laser beam LB is focused on the surface of the optical disc 10. In this case, a so-called S-shaped signal waveform (S-shaped curve) appears in the reflected light detection signal, as shown on the left side of FIG. Thereafter, as shown in the lower part of FIG. 4A, after the objective lens 108 is further moved by the distance d, the focal point of the laser beam LB coincides with the recording surface of the optical disc 10. Even in this case, a so-called S-shaped signal waveform (S-curve) appears in the reflected light detection signal as shown on the right side of FIG.
  • S-shaped signal waveform S-curve
  • the focal point of the laser beam LB is the surface of the optical disk 10 as shown in FIG.
  • the amplitude of the S-shaped signal waveform when it matches is smaller than the amplitude of the S-shaped signal waveform when the focal point of the laser beam LB matches the k recording surface of the optical disc 10.
  • the disc discriminating unit 314b monitors the detection signal of the reflected light output from the hologram laser 101, and after obtaining the first S-shaped signal waveform, the second S-shaped signal waveform is obtained.
  • the amount of movement d of the objective lens 108 until the signal waveform is obtained is calculated from the output of the objective lens Z position sensor 110. Thereby, the substrate thickness of the optical disk 10 is calculated.
  • the moving speed of the objective lens 108 is constant, the time from when the first S-shaped signal waveform is obtained until the second S-shaped signal waveform is obtained.
  • the substrate thickness of the optical disk 10 can also be calculated by detecting ⁇ . That is, by multiplying the moving speed of the objective lens 108 and the time ⁇ between the time when the first S-shaped signal waveform is obtained and the time when the second S-shaped signal waveform is obtained.
  • the substrate thickness of the optical disk 10 can be calculated. As a result, it is not necessary to provide the objective lens Z position sensor 110, and the configuration of the optical pickup 100 can be simplified.
  • the S-shaped signal waveform described above is generally used during a focusing operation, and in the present embodiment, this is used effectively to calculate the substrate thickness of the optical disc 10. I'm out. Accordingly, it is possible to calculate the substrate thickness of the optical disk 10 without increasing the processing load of the information recording / reproducing apparatus 300.
  • the type of the optical disc 10 is determined based on the substrate thickness calculated in step S103 by the operation of the disc determination unit 314b (step S104). Thereafter, rough correction of spherical aberration (that is, correction of spherical aberration by the first spherical aberration correction element 103) is performed under the control of the correction instruction unit 314a (step S105).
  • FIGS. 5 to 7 are sectional views conceptually showing a specific configuration of the first spherical aberration correcting element 103 and a specific mode of correcting the spherical aberration by the first spherical aberration correcting element 103, respectively. .
  • the first spherical aberration correcting element 103a constitutes a specific example of the “optical path adjusting means” of the present invention, and is a prism having a configuration similar to a pen tab rhythm.
  • the spherical aberration correction element 103a includes an incident surface 1031, a light separation surface 1032, mirrors 1033a and 1033b, and an output surface 1034.
  • the incidence surface 1031 and the emission surface 1034 transmit the laser light LB emitted from the hologram laser 101 regardless of the polarization direction.
  • the light separation surface 1032 includes a dielectric multilayer film including a polarization separation film.
  • the light separation surface 1032 selectively transmits a specific polarization component of the laser light LB and the other of the laser light LB. It selectively reflects the polarization component of.
  • the light separation surface 1032 shown in FIG. 5 selectively transmits the P-polarized component of the laser beam LB and selectively reflects the S-polarized component of the laser beam LB.
  • Each of mirrors 1033a and 1033b reflects laser beam LB.
  • Each of the mirrors 1033a and 1033b has the same optical axis as the laser beam LB of the P-polarized component transmitted on the light separation surface 1032 and the laser beam LB of the S-polarized component reflected on the light separation surface 1032. It arrange
  • the optical path length of the P-polarized component laser beam LB and the optical path length of the S-polarized component laser beam LB can be changed. Specifically, the optical path length of the laser beam LB of the P-polarized component is longer than the optical path length of the laser beam LB of the S-polarized component.
  • the liquid crystal ⁇ 2 plate 102 constituting one specific example of the “conversion means” of the present invention is applied to the first spherical aberration correction element 103 according to the substrate thickness of the optical disc 10 under the control of the correction instruction unit 314a.
  • the polarization direction of the incident laser beam LB can be arbitrarily converted (that is, set).
  • the optical path length of the laser beam LB can be changed according to what polarization component the laser beam LB emitted from the liquid crystal ⁇ 2 plate 102 has.
  • the change in the optical path length of the laser beam LB corresponds to the change in the optical distance from the hologram laser 101 to the collimator lens 104.
  • the correction amount of the spherical aberration added to the laser beam LB can be changed.
  • the collimator lens 104 changes, for example, the laser beam LB of a ⁇ -polarized component into a parallel light beam, for example, while it changes, for example, an S-polarized component.
  • laser beam LB For example, a refractive index different from the refractive index given to the P-polarized component is given. This is equivalent to correcting the spherical aberration at a relatively large level. Therefore, by changing the polarization direction of the laser beam LB emitted from the liquid crystal ⁇ 2 plate 102 according to the substrate thickness of the optical disc 10, correction of spherical aberration according to the substrate thickness of the optical disc 10 at a relatively large level. It can be performed.
  • the correction instruction unit 314a transmits the laser beam LB.
  • the liquid crystal ⁇ 2 plate 102 is controlled so that the polarization direction is converted to S-polarized light.
  • the S-polarized component laser light LB is emitted from the liquid crystal ⁇ 2 plate 102, and as a result, the optical path length of the laser light LB becomes relatively short.
  • the correction instruction unit 314a changes the polarization direction of the laser beam LB to P-polarization.
  • the liquid crystal ⁇ 2 plate 102 is controlled so as to convert into As a result, the laser beam LB of the polarization component is emitted from the liquid crystal ⁇ 2 plate 102, and as a result, the optical path length of the laser beam LB becomes relatively long.
  • the optical path length of the laser beam LB can be changed by the same procedure for the optical disc 10 having another substrate thickness (for example, the optical disc 10 having a substrate thickness of 1.2 mm).
  • the correction instruction unit 314a changes the polarization direction of the laser beam LB to S.
  • the liquid crystal ⁇ 2 plate 102 is controlled so as to be converted into polarized light.
  • the laser light LB of the S-polarized component is emitted from the liquid crystal ⁇ 2 plate 102, and as a result, the optical path length of the laser light LB becomes relatively short.
  • the correction instruction unit 314a changes the polarization direction of the laser beam LB to P-polarized light.
  • the liquid crystal display Z2 plate 102 is controlled to be converted into As a result, the liquid crystal ⁇ ⁇ 2 plate 102 emits laser light of P-polarized component L B is emitted, and as a result, the optical path length of the laser beam LB becomes relatively long.
  • a light separation surface 1032, mirrors 1033a and 1033b, etc. are arranged in the first spherical aberration correction element 103a so that the spherical aberration can be suitably corrected for each optical disc 10. It is preferable. Therefore, the arrangement of these constituent elements is such that the type of optical disk 10 (or substrate thickness) that can be handled by the information recording / reproducing apparatus 300 is the wavelength of the laser beam LB corresponding to the type of optical disk 10 or a plurality of types. Considering the amount of spherical aberration that can occur in each of the optical discs 10, and various parameters of the components of the optical system in the optical pickup 100, experimental, empirical, mathematical or theoretical, simulation, etc. It is preferable to individually specify using.
  • the first spherical aberration correction element 103b is a prism including an entrance surface 1031, light separation surfaces 1032a and 1032b, mirrors 1033a and 1033b, and an exit surface 1034. Even in the first spherical aberration correcting element 103b having such a configuration, similarly to the first spherical aberration correcting element 103a described above, the spherical aberration corresponding to the substrate thickness of the optical disk 10 is relatively high. Correction can be performed.
  • the optical path length of the laser beam LB can be changed by providing the above-described light separation surface 1032, mirror 1033, or the like, or similar components, the arrangement and shape of the light separation surface 1032, mirror 1033, etc.
  • the shape of the first spherical aberration correction element 103 and the like can adopt any configuration.
  • the other optical components may be used to further change the optical path length of the laser beam LB.
  • the optical path length of the laser beam LB having a specific property can be selectively changed, it can function as the first spherical aberration correction element 103 described above.
  • the optical path length may be changed based on other properties or characteristics of the laser beam LB in addition to or instead of the polarization component.
  • an element that can set or convert other characteristics or characteristics of the laser beam LB is used as the hologram laser 101 and the first element. It is preferable to dispose it between the spherical aberration correction element 103.
  • the first spherical aberration correction element 103c constitutes a specific example of the “optical path adjusting means” of the present invention, and includes a cuboid calcite (CaCO 3).
  • Calcite has a crystal structure called a sodium nitrate structure and has unique optical properties. That is, calcite separates laser light incident from a specific direction of the crystal into two polarization components (for example, a P-polarization component and an S-polarization component), and for each of the polarization components orthogonal to each other, Have different refractive indices.
  • the size and type of the first spherical aberration correction element 103c are the types of optical discs 10 that the information recording / reproducing apparatus 300 can handle (or (Substrate thickness) and the wavelength of the laser beam LB according to the type of the optical disk 10, the amount of spherical aberration that can occur in each of the multiple types of optical disks 10, and various parameters of the components of the optical system in the optical pickup 100
  • the characteristics of calcite and calcite it is preferable to specify them experimentally, empirically, mathematically or theoretically, or individually using simulation or the like.
  • the laser beam LB having a wavelength corresponding to the optical disc 10 being loaded is irradiated by the operation of the hologram laser 101 (step S106). Specifically, the laser beam LB corresponding to the type of the optical disc 10 determined in step 104 is irradiated. More specifically, if it is determined that the loaded optical disc 10 is, for example, a CD, a laser beam LB having a wavelength of 780 nm (ie, infrared laser beam) is irradiated. If it is determined that the loaded optical disk 10 is, for example, a DVD, a laser beam LB having a wavelength of 660 nm (that is, a red laser beam) is irradiated.
  • a laser beam LB having a wavelength of 420 nm that is, a blue-violet laser beam
  • the focus servo and tracking servo are closed (in other words, the focus servo and tracking servo are switched ON) by the operation of the servo circuit (not shown), and the tracking process and the focusing process are executed. (Step S107).
  • step S108 zero correction of spherical aberration (that is, correction of spherical aberration by the second spherical aberration correction element 107) is performed (step S108), and then data is recorded on the optical disc 10 or the optical disc 10 is recorded. The recorded data is played back (step S109).
  • FIG. 8 is a sectional view conceptually showing the specific configuration of the second spherical aberration correcting element 107
  • FIG. 9 conceptually shows how the reflected light is divided when detecting the spherical aberration.
  • the second spherical aberration correction element 107 includes glass substrates 1071a and 1071b, transparent electrodes 1072a and 1072b, self-directing films 1073a and 1073b, and liquid crystal 1074.
  • Transparent electrodes 1072a and 1072b configured, for example, with ITO (Indium Titan Oxide) force are deposited on the inner surfaces of the glass substrates 1071a and 1071b.
  • alignment films 1073a and 1073b are provided on the inner surfaces of the transparent electrodes 1072a and 1072b to give the liquid crystal molecules in the liquid crystal molecules a predetermined molecular orientation.
  • a liquid crystal 1074 having birefringence such as a nematic liquid crystal is sealed between the alignment films 1073a and 1074b. That is, the liquid crystal 1074 has a birefringence effect in which the refractive index differs between the direction of the optical axis of the liquid crystal molecules in the liquid crystal 1074 and the direction perpendicular thereto.
  • Fig. 8 (b) As shown in Fig. 8 (b), at least one of the transparent electrodes 1072a and 1072b is divided into a matrix, and each of the divided electrode portions (that is, the cells in Fig. 8 (b)) is divided. A different voltage can be applied to the liquid crystal 1074 for each corresponding part).
  • the application of powerful voltages to each of the divided electrode parts is controlled by the operation of the liquid crystal drive 111 that is controlled by the correction instruction part 314a. Is done.
  • the refractive index of the liquid crystal 1074 can be changed in a shape corresponding to the divided electrode portion.
  • the refractive index in the liquid crystal 1074 can be changed into a matrix. Therefore, an optical path difference can be imparted (in other words, the optical path length can be changed) for each beam of the laser beam LB that passes through each matrix portion.
  • the second spherical aberration correcting element 107 uses a liquid crystal 1074 to give an optical path difference.
  • the second spherical aberration correction element 107 has a smaller level than the first spherical aberration correction element 103 that uses the components such as the light separation surface 1032 and the mirror 1033 described above to provide an optical path difference.
  • the optical path difference can be given.
  • the second spherical aberration correction element 107 is compared with the first spherical aberration correction element 103 by controlling the voltage applied to each of the plurality of electrode portions divided according to the spherical aberration. Aberrations can be corrected at a finer level. In other words, the second spherical aberration correction element 107 can correct spherical aberration that cannot be removed by the correction by the first spherical aberration correction element 103.
  • the amount of spherical aberration actually generated by irradiating the optical disc 10 with the laser beam LB is calculated, and the applied voltage is controlled so that the amount of spherical aberration becomes substantially zero.
  • the amount of spherical aberration is calculated based on the intensity distribution of the effective beam spot of the reflected light on the hologram element 113 disposed between the condenser lens 112 and the photodetectors 114 to 116. The In other words, it is calculated based on the light intensity distribution on the far field. As shown in FIG.
  • the reflected light radiated onto the hologram element 113 is, for example, concentrically divided by the hologram element 113 and then condensed on the corresponding photodetectors 114 to 116, respectively.
  • the light corresponding to the outermost peripheral part of the effective beam spot of the reflected light is condensed on the photodetector 114, and the light corresponding to the middle part of the effective beam spot of the reflected light is condensed on the photodetector 115 to be reflected light.
  • the light corresponding to the innermost peripheral portion of the effective beam spot is collected to the photodetector 116.
  • the intensity of the reflected light detected by each of the photodetectors 114 to 116 is output to the aberration amount calculation unit 314c in FIG.
  • the detection is made by each of the photodetectors 114 to 116.
  • the amount of spherical aberration is calculated by comparing the intensities of reflected light with each other. Specifically, if the intensity of the reflected light detected by each of the photodetectors 114 to 116 has the same value, the aberration amount calculation unit 314c calculates the amount of small spherical aberration. On the other hand, if the intensity of the reflected light detected by each of the photodetectors 114 to 116 has a large difference, the aberration amount calculation unit 314c calculates the amount of large spherical aberration.
  • the aberration amount calculation unit 314c further calculates the direction of spherical aberration and the like (that is, information on whether the spherical aberration is generated in the positive direction or the negative direction, for example). Also good. Information such as the calculated amount of spherical aberration is output to the correction instruction unit 314a.
  • the correction instruction unit 314a controls the voltage applied to the liquid crystal 1074 in FIG. 8 so that the second spherical aberration correction element 107 performs correction so that the spherical aberration becomes zero or substantially zero.
  • Controls drive 111 Specifically, the liquid crystal drive 111 is applied so that a voltage capable of realizing a state in which the intensity of the reflected light detected by each of the photodetectors 114 to 116 has an equivalent value is applied to each of the divided electrode portions.
  • Control controls the voltage applied to each of the divided electrode units based on the control of the correction instruction unit 314a. As a result, a state in which the intensity of the reflected light detected by each of the photodetectors 114 to 116 has an equivalent value (that is, a state in which the spherical aberration is zero or substantially zero) is realized.
  • the optical path (optical path length) of the laser beam LB is changed by the first spherical aberration correction element 103, so that The spherical aberration is corrected at a large (in other words, rough) level.
  • the second spherical aberration correction element 107 controls the refractive index of the liquid crystal 1074 in a vigorous manner, thereby correcting spherical aberration that cannot be removed by the correction by the first spherical aberration correction element 103.
  • the second spherical aberration correction element 107 since the first spherical aberration correction element 103 corrects the spherical aberration at a relatively large level, the second spherical aberration correction element 107 considers a relatively large level of spherical aberration. Accordingly, it is possible to suitably correct spherical aberration that cannot be removed by the correction by the first spherical aberration correcting element 103. Further, since the second spherical aberration correction element 107 corrects spherical aberration that cannot be removed by the correction by the first spherical aberration correction element 103, the first spherical aberration correction element 103 has a relatively large level. The spherical aberration can be suitably corrected. That is, the first spherical aberration correction element 103 and the second spherical aberration Each of the difference correction elements 107 has a complementary relationship of correcting spherical aberration that the other party cannot correct.
  • FIG. 10 is a graph conceptually showing the level of spherical aberration correction of each of the first spherical aberration correcting element 103 and the second spherical aberration correcting element 107.
  • the spherical aberration is corrected by the first spherical aberration correction element 103 until the residual aberration amount is approximately “0.02 rais”. Thereafter, the residual aberration remaining after the correction by the first spherical aberration correcting element 103 is corrected by the second spherical aberration correcting element 107 so as to be substantially “0”.
  • the first spherical aberration correction element 103 corrects spherical aberration in the order of mm
  • the second spherical aberration correction element 107 occurs due to the substrate thickness variation in the order of several hundred nm. Spherical aberrations of a level smaller than the mm order are corrected.
  • the spherical aberration correction mode is changed according to the substrate thickness (or type) of the optical disk 10. Therefore, the optical disk 10 having any substrate thickness (specifically, for example, a CD having a substrate thickness of 1.2 mm, a DVD or HD DVD having a substrate thickness of 0.6 mm, and a Blu— ray disc), the first spherical aberration correction element 103 can preferably correct spherical aberration. Then, the second spherical aberration correction element 107 calculates the amount of spherical aberration actually occurring and corrects the spherical aberration while performing, for example, feedback control so that the amount becomes zero or substantially zero. ing.
  • the spherical aberration it is possible to correct the spherical aberration more preferably after recognizing the aspect of the spherical aberration actually occurring.
  • the spherical aberration can be corrected in two levels, the spherical aberration can be corrected more suitably.
  • the spherical aberration can be made zero or almost zero. Therefore, it is possible to preferably record or reproduce data on a plurality of types of optical discs 10 having different substrate thicknesses while suitably eliminating the adverse effects due to spherical aberration.
  • the intensity distribution of reflected light on the far field is used when calculating the amount of spherical aberration. This is due to the fact that it is difficult to recognize the intensity distribution when the reflected light is focused on a small spot. Thus, by using the intensity distribution of the reflected light on the far field, the amount of spherical aberration can be calculated more appropriately and more accurately.
  • the amount of aberration shown in FIG. 10 is merely a specific example, and it goes without saying that the amount of aberration may differ depending on the substrate thickness or the irradiation condition of the laser beam LB.
  • the correction amount by the first spherical aberration correction element 103 may be small, and on the other hand, the correction amount by the second spherical aberration correction element 107 may be large.
  • the optical disk 10 having an extremely different substrate thickness it may be assumed that the correction by the first spherical aberration correction element 103 cannot be suitably performed. In this case, the adverse effect due to the spherical aberration can be suitably eliminated by the correction by the second spherical aberration correcting element 107.
  • the configuration and arrangement of the light separation surface 1032, the mirror 1033, and the like in FIG. 5 are not necessarily fixed.
  • the optical path of the laser beam LB may be changed by changing the configuration or arrangement of the light separation surface 1032, the mirror 1033, or the like according to the polarization direction of the incident laser beam LB.
  • an element that reflects light like a mirror when a voltage is applied, and transmits light like a transmissive film when no voltage is applied may be used.
  • the configuration and arrangement of the light separation surface 1032 and the mirror 1033 may be changed using a mechanical mechanism.
  • the laser beam LB polarized in a specific direction is selectively incident on the first spherical aberration correction element 103. It is configured as follows. However, even if the liquid crystal ⁇ ⁇ 2 plate 102 is omitted, it is possible to use the fact that the laser beam LB is separated into the ⁇ -polarized component and the S-polarized component on the light separation surface 1032 and calcite. The various benefits described above can be enjoyed.
  • the recording operation is not performed by condensing the laser beam LB of one of the polarization components on the recording surface. I use it for playback. If the laser beam LB of the other polarization component is not used for recording or reproducing operation without being collected on the recording surface, the laser beam LB polarized in a specific direction is selectively used as the first spherical aberration correction element. It is possible to enjoy the same benefits as those incident on 103.
  • the first spherical aberration correcting element 103 constitutes one specific example of each of the “dividing means” and the “adjusting means” of the present invention. More specifically, the light separating surface 1032 and calcite force described above constitute one specific example of the “dividing means” of the present invention, and the above-described mirror 1033 and calcite are the “adjusting means (optical path adjusting means) J of the present invention. One specific example is configured.
  • the first spherical aberration correction element 103 is not limited to the specific configuration described above. Furthermore, a configuration including a plurality of first spherical aberration correction elements 103 may be employed.
  • a first spherical aberration correction element used when recording and reproducing data on a Blu-ray Disc and HD DVD as a specific example of the optical disc 10 and a DVD as a specific example of the optical disc 10
  • the first spherical aberration correction element used when recording and reproducing data on the CD may be provided.
  • spherical aberration can be corrected if an element capable of changing the optical path length of the laser beam LB substantially or optically is inserted in the optical path of the laser beam LB. It can be used as the first spherical aberration correction element 103 according to the above.
  • first spherical aberration correction element 103 may be an element movable by a mechanical mechanism as shown in FIGS. 11 and 12.
  • FIGS. 11 and 12 are cross-sectional views schematically showing a configuration of the first spherical correction element 103 movable by a mechanical mechanism.
  • An optical path correction element that can continuously change the thickness of the laser beam LB on the optical path by moving in the orthogonal direction may be used as the first spherical aberration correction element 103.
  • the optical path correction element is moved by the operation of a mechanical mechanism such as a motor in the direction in which the thickness of the optical path correction element in the optical path of the laser beam LB decreases.
  • the positive spherical aberration that occurs when the substrate thickness of the optical disk 10 increases can be canceled by the negative spherical aberration that occurs when the thickness of the optical path correction element in the optical path of the laser beam LB decreases.
  • the optical path correction element is moved by the operation of a mechanical mechanism such as a motor, for example, in the direction of increasing the thickness of the optical path correction element in the optical path of the laser beam LB.
  • the negative spherical aberration that occurs when the substrate thickness of the optical disk 10 is reduced can be canceled by the positive spherical aberration that occurs when the thickness of the optical path correction element in the optical path of the laser beam LB increases.
  • the first spherical correction element 103 shown in FIG. 11 is used, a large level of spherical aberration can be suitably corrected.
  • the thickness of the laser beam LB in the optical path is gradually increased by being inserted in the optical path of the laser beam LB and moving in a direction orthogonal to the optical path of the laser beam LB.
  • An optical path correction element that can be changed may be used as the first spherical aberration correction element 103.
  • the first spherical aberration correction element 103 having the configuration shown in FIGS. 5 to 7 can be used. Note that it is more preferable.
  • the aperture limiting element 106 may be configured to have polarization dependency. That is, the numerical aperture can be selectively changed with respect to the laser beam LB having a predetermined polarization component that is selectively applied to the optical disc 10 according to the type (or substrate thickness) of the optical disc 10. May be. Of course, it does not have to have polarization dependency, or may be configured so as to have wavelength dependency. In this case, the aperture limiting element 106 is configured such that the wavelength of the laser beam LB corresponding to CD is 780 nm, the wavelength of the laser beam LB corresponding to DVD is 660 nm, and the wavelength of the laser beam LB corresponding to HD DVD or Blu-ray Disc.
  • the wavelength transmission filter corresponding to each of 420 nm may be combined.
  • a ⁇ 2 plate made of a predetermined resin may be taken in and out of the optical path of the laser beam LB using a mechanical mechanism.
  • the collimator lens 104 may be configured to move along the optical path of the laser beam LB (in other words, along the optical axis of the collimator lens 104). Even with this configuration, an effect equivalent to the effect of correcting the spherical aberration by the first spherical aberration correcting element 103 described above can be obtained.
  • the second spherical aberration correction element 107 converts the reflected light of the laser beam LB into a hologram. It may be configured to operate based on the signal level such as RF signal, LPP signal, or wobble signal obtained by receiving light with the light receiving element in laser 101! / ⁇ . More specifically, the second spherical aberration correction element 107 is a signal that changes depending on the spot position of the laser beam LB on the optical disc 10 (for example, RF signal, LPP signal, wobble signal, CAPA signal, TE signal, pre-pit signal).
  • the viewpoint power of correcting spherical aberration more easily or efficiently is to correct spherical aberration based on the actual amount of spherical aberration calculated by the aberration amount calculation unit 314c.
  • a focus error signal that is performed under the control of the CPU 314 or the like.
  • the spherical aberration may be corrected at a finer level by using the offset adjustment of the signal.
  • a predetermined offset is added to the target signal level of the focus error signal (that is, the target signal level is set such that a focus position shift occurs according to the focus error signal), so that the laser beam LB
  • spherical aberration can be corrected on the m order.
  • the spherical aberration becomes substantially zero by repeatedly performing the offset adjustment of the focus error signal and the correction of the spherical aberration by the second spherical aberration correction element 107. It is preferable to operate. It can be said that the CPU 314 for performing the offset adjustment of the focus error signal has a configuration corresponding to a specific example of the “second spherical aberration correcting unit” of the present invention.
  • FIG. 13 is a block diagram schematically showing the basic configuration of the information recording / reproducing measure 300a according to the first modification.
  • FIG. 14 is a block diagram of the information recording / reproducing measure 300a according to the first modification. It is a flowchart which shows notionally the flow of operation
  • an information recording / reproducing apparatus 300a according to the first modification has a configuration similar to that of the information recording / reproducing apparatus 300 described above.
  • the information recording / reproducing apparatus 300a according to the first modification does not particularly have the objective lens Z position sensor 110. Therefore, the information recording / reproducing apparatus 300a according to the first modification determines the type (or substrate thickness) of the optical disc 10 by the following method.
  • the information recording / reproducing apparatus 300a irradiates a laser beam LB having a predetermined wavelength among the plurality of laser beams LB corresponding to the plurality of optical disks 10.
  • the disk servo for example, focus servo and tracking servo
  • step S202 rough correction of spherical aberration is performed.
  • step S1 05 correction of spherical aberration by the first spherical aberration correction element 103
  • Step S203 if it is determined that predetermined data on the optical disc 10 can be read (step S203; Yes), the disc ID or the like recorded on the optical disc 10 is obtained ( Step S205). As a result, the type of the optical disc 10 can be determined, and the substrate thickness of the optical disc 10 can be determined based on the determined type of the optical disc 10. Thereafter, similarly to the information recording / reproducing apparatus 300 described above, the laser beam LB having a wavelength corresponding to the optical disc 10 being loaded is irradiated (step S106), and the focus servo and tracking servo are switched on (step S107).
  • Zero correction of spherical aberration that is, correction of spherical aberration by the second spherical aberration correction element 107) is performed (step S108), and then data is recorded on the optical disk 10 or data recorded on the optical disk 10 is reproduced. Is performed (step S109).
  • Step S202 the operation mode of the laser chip on the hologram laser 101 is switched by a laser driver or the like so as to irradiate the laser beam LB having a different wavelength (Step S204). Thereafter, the operation force of steps S202, S105 and S203 is repeated.
  • the optical disk 10 is irradiated while sequentially switching a plurality of types of laser beams LB, and predetermined data on the optical disk 10 is transferred. If it is determined that the data could actually be read, the disk ID is obtained. As a result, the type (or substrate thickness) of the optical disk 10 can be determined. That is, the information recording / reproducing apparatus 300a according to the first modified example irradiates the optical disc 10 with each of a plurality of types of laser beams LB in a brute force manner. Is determined. For this reason, there is no need to provide the objective lens Z position sensor 110 unlike the information recording / reproducing apparatus 300, so that the configuration of the information recording / reproducing apparatus 300a can be made relatively simple.
  • FIG. 15 is a block diagram schematically showing the basic configuration of the information recording / reproducing measure 300b according to the second modification. It should be noted that the same configuration and operation as the information recording / reproducing apparatuses 300 and 300a described above will be given the same reference numerals or step numbers, and detailed description thereof will be omitted. Hereinafter, a configuration and operation different from those of the information recording / reproducing apparatuses 300 and 300a will be described in detail.
  • the optical pickup 10 Ob of the information recording / reproducing apparatus 300b includes a plurality of hologram lasers 101a and 101b, a collimator lens 104, a half mirror 105, and an aperture limiting element. 106, second spherical aberration correction element 107, objective lens 108, actuator 109, objective lens Z position sensor 110, liquid crystal drive circuit 111, condensing lens 112, hologram element 113, and photodetectors 114 to 116 With.
  • the CPU 314 further includes a laser switching instruction unit 314d.
  • the plurality of hologram lasers 101a and 101b are arranged such that the distance to the collimator lens 104 (in other words, the distance to the optical disc 10) is different. Then, the laser switching instruction unit 314d selects which of the plurality of hologram lasers 101a and 101b irradiates the laser beam LB according to the type (or substrate thickness) of the optical disc 10, and a plurality of holograms. Laser light LB is irradiated from a hologram laser selected from among the lasers 101a and 101b.
  • the laser switching instruction unit 314d when recording or reproducing data with respect to a Blu-ray Disc, the laser switching instruction unit 314d is configured to irradiate the laser beam LB from the hologram laser 101a disposed on the side far from the collimator lens 104. Output instructions.
  • the laser switching instruction unit 314d when recording or reproducing data with respect to, for example, HD D VD, the laser switching instruction unit 314d is configured so that the laser beam LB is emitted from the hologram laser 101b disposed on the side closer to the collimator lens 104. Outputs instructions.
  • the spherical aberration that could not be corrected by switching the hologram laser 101a or 101b irradiated with the laser beam LB is the same as the information recording / reproducing apparatus 300 described above.
  • the spherical aberration correction element 107 corrects the spherical aberration at a finer level.
  • FIG. 16 is a block diagram schematically showing the basic configuration of the information recording / reproducing measure 300c according to the third modification. Note that the same reference numerals or step numbers are assigned to the same configurations and operations as those of the information recording / reproducing apparatuses 300, 300a, and 300b described above, and detailed description thereof is omitted. Hereinafter, configurations and operations different from those of the information recording / reproducing apparatuses 300, 300a, and 300b will be described in detail.
  • the information recording / reproducing apparatus 300c according to the third modification has the same configuration as the information recording / reproducing apparatus 300b according to the second modification described above.
  • the hologram laser 101b is disposed on the optical axis of the collimator lens 104, and the hologram laser 101a is disposed outside the optical axis of the collimator lens 104.
  • the hologram laser 101a and the hologram laser 101b (more specifically, the laser beam LB and the hologram laser irradiated from the hologram laser 101a)
  • the inconvenience of interference with the laser beam LB irradiated with the 101b force can also be suppressed, thereby eliminating the adverse effects caused by the interference between the hologram laser 101a and the hologram laser 101b. Recording operation or playback operation can be realized.
  • the holographic laser 101a that corrects this coma aberration is on the optical path of the laser beam LB emitted from the hologram laser 101a and is connected to the hologram laser 101a and the collimator.
  • liquid crystal between the lens 104 A coma aberration correcting element 117 including a panel and the like is arranged.
  • FIG. 17 is a block diagram schematically showing the basic configuration of the information recording / reproducing measure 300d according to the fourth modification.
  • the detailed description is abbreviate
  • a configuration and operation different from those of the information recording / reproducing apparatus 300, 300a, 300b, and 300c will be described in detail.
  • the information recording / reproducing apparatus 300d according to the fourth modification includes the information recording / reproducing apparatus 300b according to the second modification and the information recording / reproducing apparatus 300c according to the third modification. It has the same configuration.
  • the information recording / reproducing apparatus 300d according to the fourth modification is disposed so that the same amount of coma aberration is generated in the opposite direction with respect to the force collimator lens 104 of the hologram lasers 101a and 101b.
  • the amount of coma aberration generated with respect to the laser beam LB irradiated with the power of the hologram lasers 101a and 101b is set, for example, by the hologram laser of the information recording / reproducing apparatus 300c according to the third modification.
  • the amount of coma aberration generated with respect to the laser beam LB irradiated from 101a can be reduced (specifically, halved). Accordingly, the coma aberration correction amount to be corrected by the coma aberration correcting element 117 is also reduced accordingly. Thereby, the coma aberration correcting element 117 can be set relatively easily.
  • the coma aberration correcting element 117 is used in each of the hologram lasers 101a and 101b. It is preferable that the laser beam LB is disposed on the optical path of the laser beam LB irradiated with force and between each of the hologram lasers 101 a and 101 b and the collimator lens 104.
  • the force referred to only spherical aberration correction since spherical aberration correction and focus error signal offset adjustment are closely related, spherical aberration correction and focus error signal offset adjustment are performed alternately to optimize both. It is also included in the technical scope of the present invention.
  • a DVD or the like is described as a specific example of the optical disc, and further, a force that describes a recorder or a player related to the optical disc as an example of a recording / reproducing device.
  • the present invention is not limited to this, and can be applied to other high-density recording or various recording media compatible with a high transfer rate and its recorder or player.
  • An optical pickup and an information device include an optical pickup that emits light when recording data on or reproducing data from an information recording medium such as a DVD, and an information device including the optical pickup. Is available.

Abstract

An optical pickup (100) performs recording and reproduction to and from a plurality of recording mediums (10). The optical pickup is provided with a first spherical aberration correcting means (103) for correcting a spherical aberration corresponding to a substrate thickness of the recording medium, and a second spherical aberration correcting means (107) for correcting the remaining spherical aberration after the correction by the first spherical aberration correcting means, at an accuracy equivalent to that of the spherical aberration correction by the first spherical aberration correcting means or higher.

Description

光ピックアップ及び情報機器  Optical pickup and information equipment
技術分野  Technical field
[0001] 本発明は、例えば DVD等の情報記録媒体に対してデータの記録又はデータの再 生を行う際に光を照射する光ピックアップ及び該光ピックアップを備える情報機器の 技術分野に関する。  [0001] The present invention relates to a technical field of an optical pickup that emits light when recording or reproducing data on an information recording medium such as a DVD, and an information device including the optical pickup.
背景技術  Background art
[0002] 例えば CDや DVD等のように、レーザ光等を用いて光学的にデータの記録や再生 を行う情報記録媒体が開発されている。このような情報記録媒体は様々な基板厚を 有しており、例えば CDであれば 1. 2mmの基板厚を、例えば DVDや HD DVDで あれば 0. 6mmの基板厚を、例えば Blu— ray Discであれば 0. 1mmの基板厚を 有して 、る。このような基板厚の異なる情報記録媒体に対してデータを記録な 、しは 再生するためには、夫々の基板厚に応じてレーザ光を記録面に集光させる必要があ る。このための一の手法として、例えば基板厚に応じた複数の対物レンズを備える光 ピックアップを用いて、基板厚に応じてレーザ光を記録面に集光させる手法が開発さ れている。また他の手法として、レーザ光の光路中におけるコリメータレンズ (集光レ ンズ)の位置を変化させることで、基板厚に応じてレーザ光を記録面に集光させる手 法が開発されている。即ち、光学系の倍率を変換することで、基板厚に応じてレーザ 光を記録面に集光させる手法が開発されている。(非特許文献 1参照)。  [0002] For example, an information recording medium for optically recording and reproducing data using a laser beam or the like, such as a CD or a DVD, has been developed. Such information recording media have various substrate thicknesses, such as 1.2 mm for CDs, 0.6 mm for DVDs and HD DVDs, for example Blu-ray. If it is a Disc, it has a substrate thickness of 0.1 mm. In order to record or reproduce data on such information recording media having different substrate thicknesses, it is necessary to focus laser light on the recording surface in accordance with the thickness of each substrate. As one technique for this purpose, for example, a technique for condensing laser light on a recording surface according to the substrate thickness using an optical pickup provided with a plurality of objective lenses according to the substrate thickness has been developed. As another method, a method has been developed in which the position of the collimator lens (condensing lens) in the optical path of the laser beam is changed to focus the laser beam on the recording surface according to the substrate thickness. That is, a method of condensing laser light on the recording surface according to the substrate thickness by changing the magnification of the optical system has been developed. (See Non-Patent Document 1).
[0003] 他方で、一つの対物レンズでこのような基板厚の異なる情報記録媒体に対してデ ータを記録ないしは再生する際には、夫々の情報記録媒体毎に固有の球面収差が 発生する。この球面収差を補正するべぐレーザ光を複数の光線束に分割した後、 夫々の光線束の球面収差を略零にする技術 (特許文献 1参照)、異なる厚み部分を 有する平行平板のレーザ光の光路上における位置を変える技術 (特許文献 2参照) 、及び液晶パネルを用いる技術 (特許文献 3参照)等が開発されて 、る。  On the other hand, when data is recorded on or reproduced from such information recording media having different substrate thicknesses with a single objective lens, inherent spherical aberration occurs for each information recording medium. . After dividing the laser beam to correct this spherical aberration into a plurality of beam bundles, a technique for making the spherical aberration of each beam bundle substantially zero (see Patent Document 1), parallel plate laser beams having different thickness portions A technique for changing the position of the light on the optical path (see Patent Document 2) and a technique using a liquid crystal panel (see Patent Document 3) have been developed.
[0004] 特許文献 1 :特開平 8— 249708号公報  Patent Document 1: Japanese Patent Laid-Open No. 8-249708
特許文献 2:特開平 5 - 241095号公報 特許文献 3:特開平 9— 128785号公報 Patent Document 2: Japanese Patent Laid-Open No. 5-241095 Patent Document 3: Japanese Patent Laid-Open No. 9-128785
非特許文献 1:「次世代光ディスク 大統一へ」 日経エレクトロニクス 2004年 9月 27 日 P112- 113  Non-Patent Document 1: “Next generation optical discs to be unified” Nikkei Electronics September 27, 2004 P112- 113
非特許文献 2 :イチムライサオ(Isao ICHIMURA)、マエダフミサダ(Fumisada MAEDA )、ォォサトキヨシ(Kiyoshi 0SAT0)、ャマモトケンジ(Kenji YAMAM0T0)、力サミュ タカ(Yutaka KASAMI) 「青色レーザダイオードを用いた光ディスク記録(Optical Dis k Recording Using a (^aN Blue- Violet Laser Diode)」 Jpn.J.Appl.Phys 2000 Vol . 39 P937- 942  Non-Patent Document 2: Isao ICHIMURA, Fumisada MAEDA, Kiyoshi 0SAT0, Kenji YAMAM0T0, Yutaka KASAMI “Optical recording using blue laser diode (Optical Recording Using a (^ aN Blue- Violet Laser Diode) '' Jpn.J.Appl.Phys 2000 Vol. 39 P937- 942
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] し力しながら、特許文献 1や特許文献 2に記載された技術では、球面収差を大まか に補正することができるに過ぎず、より高品質な記録動作ないしは再生動作を実現す るという観点からは、決して満足することができる技術ではないと言えよう。また、特許 文献 3に記載された技術では、基板厚が 1. 2mmカゝら 0. 1mmの範囲に渡って分布 する現状の情報記録媒体に対しては、概して広い範囲に分布し得る球面収差を補 正することができな 、と 、う技術的な問題点を有して 、る。  [0005] However, the techniques described in Patent Document 1 and Patent Document 2 can only roughly correct spherical aberration, and realize a higher quality recording operation or reproducing operation. From a point of view, it can be said that the technology is never satisfactory. In addition, in the technique described in Patent Document 3, spherical aberration that can be distributed over a wide range is generally used for current information recording media in which the substrate thickness is distributed over a range of 1.2 mm to 0.1 mm. However, there is a technical problem that cannot be corrected.
[0006] 本発明は、例えば上述した従来の問題点に鑑みなされたものであり、例えば球面 収差を好適に補正することを可能とならしめる光ピックアップ、及びこのような光ピック アップを備える情報機器を提供することを課題とする。  The present invention has been made in view of, for example, the above-described conventional problems, and for example, an optical pickup capable of suitably correcting spherical aberration, and an information device including such an optical pickup. It is an issue to provide.
課題を解決するための手段  Means for solving the problem
[0007] (光ピックアップ) [0007] (Optical pickup)
本発明の光ピックアップは上記課題を解決するために、複数種類の情報記録媒体 の夫々に対するデータの記録及び再生の少なくとも一方を行うための光ピックアップ であって、前記データの記録及び再生の少なくとも一方を行うために照射される光ビ ームが前記情報記録媒体に集光される際の球面収差を、判別手段により判別された 前記情報記録媒体の基板厚に応じて補正する第 1球面収差補正手段と、前記第 1 球面収差補正手段による補正後に残存する前記球面収差を、前記第 1球面収差補 正手段による前記球面収差の補正の精度と同程度又はより高精度に補正する第 2球 面収差補正手段とを備える。 In order to solve the above problems, an optical pickup according to the present invention is an optical pickup for performing at least one of data recording and reproduction on each of a plurality of types of information recording media, and at least one of recording and reproduction of the data. First spherical aberration correction that corrects the spherical aberration when the light beam irradiated to perform the focusing on the information recording medium is corrected according to the substrate thickness of the information recording medium determined by the determining means And a second sphere that corrects the spherical aberration remaining after the correction by the first spherical aberration correcting means to the same degree as or higher than the accuracy of the correction of the spherical aberration by the first spherical aberration correcting means. Surface aberration correction means.
[0008] 本発明の光ピックアップによれば、第 1球面収差補正手段及び第 2球面収差補正 手段の夫々の動作により球面収差を補正しながら、ホログラムレーザ素子等の照射 手段力 光ビームが情報記録媒体に照射される。これにより、情報記録媒体にデー タを記録したり、或いは情報記録媒体に記録されたデータを再生することができる。  [0008] According to the optical pickup of the present invention, while the spherical aberration is corrected by the respective operations of the first spherical aberration correcting means and the second spherical aberration correcting means, the irradiation means power of the hologram laser element etc. The medium is irradiated. Thereby, data can be recorded on the information recording medium, or data recorded on the information recording medium can be reproduced.
[0009] 具体的には、初めに第 1球面収差補正手段により、球面収差が補正される。このと き、第 1球面収差補正手段は、当該光ピックアップの内部或いは外部に備えられてい る判別手段の動作により判別された、当該光ピックアップにより光ビームが照射され て 、る情報記録媒体 (即ち、データの記録な 、しは再生の対象となって 、る情報記 録媒体)の基板厚に応じて、球面収差の補正を行う。ここでは、第 2球面収差補正手 段と比較して、大まかな (即ち、ラフな)球面収差の補正が、例えば予め作成しておい たディスク種類に対応した球面収差補正量テーブルを使う方法等を用いて行われる 。第 1球面収差補正手段による球面収差の補正がなされた後に、第 2球面収差補正 手段により、球面収差が更に補正される。即ち、第 1球面収差補正手段による球面収 差の補正では除去しきれず残ってしまう球面収差の補正が行われる。この第 2球面 収差補正手段は、第 1球面収差補正手段による球面収差の補正のレベルと同程度 な!、しはより高精度な (或いは、微細な)レベルでの球面収差の補正を行う。  Specifically, the spherical aberration is first corrected by the first spherical aberration correcting means. At this time, the first spherical aberration correcting means is an information recording medium (that is, a light beam irradiated by the optical pickup, which is discriminated by the operation of the discriminating means provided inside or outside the optical pickup, that is, The spherical aberration is corrected according to the thickness of the substrate of the information recording medium that is the target of data recording or reproduction. Here, compared to the second spherical aberration correction method, rough (that is, rough) spherical aberration correction is performed by using, for example, a previously prepared spherical aberration correction amount table corresponding to the disc type. Is done using. After the spherical aberration is corrected by the first spherical aberration correcting means, the spherical aberration is further corrected by the second spherical aberration correcting means. That is, the spherical aberration that cannot be removed by the correction of the spherical aberration by the first spherical aberration correcting means is corrected. This second spherical aberration correction means corrects spherical aberration at a level equivalent to the correction of spherical aberration by the first spherical aberration correction means or at a higher precision (or finer) level.
[0010] まとめると、第 1球面収差補正手段により、相対的にラフな (言い換えれば、大きなレ ベルでの)球面収差の補正がなされ、第 2球面収差補正手段により、第 1球面収差補 正手段による補正では除去できない球面収差の補正がなされる。特に、第 1球面収 差補正手段による相対的にラフな球面収差の補正がなされるがゆえに、第 2球面収 差補正手段は、相対的に大きなレベルの球面収差を考慮することなぐ第 1球面収 差補正手段による補正では除去できない球面収差の補正を行うことができる。また、 第 2球面収差補正手段によって、第 1球面収差補正手段による補正では除去できな い球面収差の補正がなされるがゆえに、第 1球面収差補正手段は、相対的にラフな 球面収差の補正を行うことができる。即ち、第 1球面収差補正手段及び第 2球面収差 補正手段の夫々は、互いに相手方を補完する関係にある。このように、 2段階に分け て球面収差を補正することができるため、より好適に球面収差を補正することができ、 その結果、球面収差を零或いは殆ど零とすることもできる。そして、情報記録媒体の 基板厚に応じた球面収差の補正が行われるため、どのような基板厚を有する情報記 録媒体に対しても、第 1球面収差補正手段及び第 2球面収差補正手段の夫々により 好適に球面収差が補正される。従って、互いに基板厚が異なる複数種類の情報記 録媒体に対して、球面収差による悪影響を排除しながら、データの記録ないしは再 生を行うことができる。 In summary, the first spherical aberration correction means corrects a relatively rough (in other words, a large level) spherical aberration, and the second spherical aberration correction means corrects the first spherical aberration correction. Spherical aberration that cannot be removed by correction by means is corrected. In particular, because the relatively spherical aberration is corrected by the first spherical aberration correction means, the second spherical aberration correction means is the first spherical surface that does not consider a relatively large level of spherical aberration. It is possible to correct spherical aberration that cannot be removed by correction by the convergence correction means. In addition, since the second spherical aberration correction means corrects spherical aberration that cannot be removed by the correction by the first spherical aberration correction means, the first spherical aberration correction means corrects the relatively rough spherical aberration. It can be performed. That is, each of the first spherical aberration correcting unit and the second spherical aberration correcting unit has a relationship of complementing each other. In this way, spherical aberration can be corrected in two stages, so that spherical aberration can be corrected more suitably. As a result, the spherical aberration can be made zero or almost zero. Since the spherical aberration is corrected according to the substrate thickness of the information recording medium, the first spherical aberration correcting means and the second spherical aberration correcting means can be applied to the information recording medium having any substrate thickness. The spherical aberration is corrected more suitably for each. Accordingly, it is possible to record or reproduce data on a plurality of types of information recording media having different substrate thicknesses while eliminating the adverse effects of spherical aberration.
[0011] 本発明の光ピックアップの一の態様は、前記第 1球面収差補正手段は、前記光ビ ームを複数の光線束に分割する光ビーム分割手段と、前記判別手段により判別され た前記情報記録媒体の基板厚に応じて、前記複数の光線束の夫々の前記球面収 差を略零に近づけるように前記複数の光線束の夫々を調整する調整手段とを備える  [0011] One aspect of the optical pickup of the present invention is characterized in that the first spherical aberration correction unit is discriminated by a light beam splitting unit that splits the optical beam into a plurality of light bundles and the discrimination unit. Adjusting means for adjusting each of the plurality of light bundles so as to bring the spherical convergence of each of the plurality of light bundles close to substantially zero according to the substrate thickness of the information recording medium.
[0012] この態様によれば、分割手段により、照射手段より照射される光ビームが複数の光 線束 (例えば、 P偏光の光ビーム及び S偏光の光ビーム等)に分割される。その後、調 整手段により、情報記録媒体の基板厚に応じて、複数の光線束の夫々の球面収差 が略零に近づくように、夫々の光線束が調整される。具体的には、情報記録媒体の 基板厚に応じて、複数の光線束のうち判別手段により判別された基板厚を有する情 報記録媒体に対するデータの記録或いは再生を実際に行う一の光線束の例えば光 路等が、球面収差が略零に近づくように調整される。その結果、情報記録媒体の基 板厚に応じて、相対的にラフな球面収差の補正を好適に行うことができる。 [0012] According to this aspect, the light beam irradiated from the irradiation unit is divided into a plurality of light beam bundles (for example, a P-polarized light beam and an S-polarized light beam) by the dividing unit. Thereafter, the adjusting means adjusts each light bundle so that the spherical aberration of each of the plurality of light bundles approaches substantially zero according to the substrate thickness of the information recording medium. Specifically, according to the substrate thickness of the information recording medium, one light bundle that actually records or reproduces data on the information recording medium having the substrate thickness determined by the determining means among a plurality of light bundles. For example, the optical path or the like is adjusted so that the spherical aberration approaches approximately zero. As a result, it is possible to suitably correct a relatively rough spherical aberration according to the thickness of the information recording medium.
[0013] 本発明の光ピックアップの他の態様は、前記第 1球面収差補正手段は、前記判別 手段により判別された前記情報記録媒体の基板厚に応じて、前記光ビームを所定の 性質を有する光ビームに変換する変換手段と、一の性質を有する前記光ビームを透 過し且つ前記一の性質とは異なる他の性質を有する前記光ビームを反射する光路 調整手段とを備える。  In another aspect of the optical pickup of the present invention, the first spherical aberration correction unit has a predetermined property for the light beam in accordance with a substrate thickness of the information recording medium determined by the determination unit. Conversion means for converting into a light beam; and optical path adjusting means for transmitting the light beam having one property and reflecting the light beam having another property different from the one property.
[0014] この態様によれば、変換手段により、判別された情報記録媒体の基板厚に応じて、 照射手段より照射される光ビームが所定の性質を有する (例えば、 P偏光を有する或 いは S偏光等の所定の偏光態様を有する)光ビームに変換される。その後、光路調 整手段、光ビームが一の性質を有していれば (例えば、 P偏光であれば)、そのまま 透過し、他方光ビームが他の性質を有していれば (例えば、 s偏光であれば)、反射 することで光ビームの光路を変えることができる。これにより、基板厚に応じて光ビー ムの光路長(より具体的には、後述のホログラムレーザとコリメータレンズとの間の光 学的な距離)を変えることができる。このため、情報記録媒体の基板厚に応じて、相 対的にラフな球面収差の補正を好適に行うことができる。 [0014] According to this aspect, the light beam emitted from the irradiation unit has a predetermined property according to the substrate thickness of the information recording medium determined by the conversion unit (for example, having P-polarized light or Converted into a light beam (having a predetermined polarization mode such as S-polarized light). After that, if the optical path adjusting means and the light beam have one property (for example, P-polarized light), If it is transmitted and the other light beam has other properties (for example, s-polarized light), it can be reflected to change the optical path of the light beam. Thereby, the optical path length of the optical beam (more specifically, the optical distance between a hologram laser and a collimator lens described later) can be changed according to the substrate thickness. For this reason, it is possible to suitably correct the relatively rough spherical aberration according to the substrate thickness of the information recording medium.
[0015] この場合、変換手段は、電気的に光ビームを変換することが好ましい。これにより、 上述の特許文献 1や特許文献 2に開示されているような相対的に大きなスペースを 占有しえるないしは相対的に複雑な構成を有し得る機械的機構を用いて光ビームを 変換する必要がなくなる。これにより、光ピックアップの構成を相対的に簡易なものと することができ、また光ピックアップのサイズを相対的に小さくすることができる。  [0015] In this case, the conversion means preferably converts the light beam electrically. As a result, the light beam is converted by using a mechanical mechanism that can occupy a relatively large space or have a relatively complicated configuration as disclosed in Patent Document 1 and Patent Document 2 described above. There is no need. Thereby, the configuration of the optical pickup can be made relatively simple, and the size of the optical pickup can be made relatively small.
[0016] 本発明の光ピックアップの他の態様は、前記第 1球面収差補正手段は、前記判別 手段により判別された前記情報記録媒体の基板厚に応じて、前記光ビームの光路長 を変化させることで前記球面収差を補正する。  In another aspect of the optical pickup of the present invention, the first spherical aberration correction unit changes the optical path length of the light beam according to the substrate thickness of the information recording medium determined by the determination unit. Thus, the spherical aberration is corrected.
[0017] この態様によれば、基板厚に応じて光ビームの光路長(より具体的には、後述のホ ログラムレーザとコリメータレンズとの間の光学的な距離)を変えることができる。この ため、情報記録媒体の基板厚に応じて、相対的にラフな球面収差の補正を好適に 行うことができる。  According to this aspect, the optical path length of the light beam (more specifically, the optical distance between a hologram laser and a collimator lens described later) can be changed according to the substrate thickness. Therefore, it is possible to suitably correct relatively rough spherical aberration according to the substrate thickness of the information recording medium.
[0018] 本発明の光ピックアップの他の態様は、前記情報記録媒体に対する距離が夫々異 なると共に、前記複数種類の情報記録媒体の夫々に対応する複数の光ビームを照 射する複数の照射手段を更に備え、前記第 1球面収差補正手段は、前記判別手段 により判別された前記情報記録媒体の基板厚に応じて、前記複数の照射手段のうち 前記情報記録媒体に前記光ビームを照射する一の照射手段を選択することで、前 記球面収差を補正する。  [0018] In another aspect of the optical pickup of the present invention, a plurality of irradiation means for irradiating a plurality of light beams corresponding to each of the plurality of types of information recording media, each having a different distance from the information recording medium. The first spherical aberration correction unit irradiates the light beam to the information recording medium among the plurality of irradiation units according to the substrate thickness of the information recording medium determined by the determination unit. The spherical aberration is corrected by selecting the irradiation means.
[0019] この態様によれば、情報記録媒体の基板厚に応じて、光ビームを照射する照射手 段を選択的に切り替えることができる。これにより、基板厚に応じて光ビームの光路長 (より具体的には、後述のホログラムレーザとコリメータレンズとの間の光学的な距離) を変えることができる。このため、情報記録媒体の基板厚に応じて、相対的にラフな 球面収差の補正を好適に行うことができる。 [0020] 上述の如く複数の照射手段を備える光ピックアップの態様では、前記複数の照射 手段の夫々から照射される前記光ビームの光軸の夫々が異なるように構成してもよ い。 [0019] According to this aspect, the irradiation means for irradiating the light beam can be selectively switched according to the substrate thickness of the information recording medium. Thereby, the optical path length of the light beam (more specifically, the optical distance between a hologram laser and a collimator lens described later) can be changed according to the substrate thickness. Therefore, it is possible to suitably correct relatively rough spherical aberration according to the substrate thickness of the information recording medium. [0020] In the aspect of the optical pickup provided with a plurality of irradiation means as described above, the optical axes of the light beams emitted from the plurality of irradiation means may be different from each other.
[0021] このように構成すれば、複数の照射手段から照射される光ビームの相互の干渉を 抑止な 、しはなくすことができる。  [0021] With this configuration, it is possible to suppress or eliminate mutual interference of light beams emitted from a plurality of irradiation means.
[0022] 上述の如く複数の照射手段を備える光ピックアップの態様では、前記複数の照射 手段のうち少なくとも一つの照射手段を除く他の照射手段から照射される前記光ビ ームが前記情報記録媒体に集光される際のコマ収差を補正するコマ収差補正手段 を更に備えるように構成してもよい。  [0022] In the aspect of the optical pickup including a plurality of irradiation means as described above, the optical beam irradiated from other irradiation means excluding at least one irradiation means among the plurality of irradiation means is the information recording medium. Further, a coma aberration correcting unit that corrects coma aberration when the light is focused on may be further provided.
[0023] このように構成すれば、上述の球面収差に加えて、コマ収差をも好適に補正するこ とができる。特に、上述の如く複数の照射手段の夫々力 照射される光ビームの光軸 の夫々が異なる場合には、コリメータレンズの軸外を用いて光ビームが照射される場 合が生ずる。このような場合に、コリメータレンズの軸外を用いて光ビームを照射する ことで発生するコマ収差を好適に補正することができる。従って、複数の照射手段の 夫々から照射される光ビームの光軸の夫々が異なる場合であっても、好適にデータ の記録或いはデータの再生を行うことができる。  [0023] With this configuration, in addition to the above-described spherical aberration, coma can also be suitably corrected. In particular, when the optical axes of the light beams irradiated by the plurality of irradiation means are different from each other as described above, the light beams may be irradiated using the off-axis of the collimator lens. In such a case, coma generated by irradiating the light beam using the off-axis of the collimator lens can be suitably corrected. Therefore, even when the optical axes of the light beams emitted from each of the plurality of irradiation means are different, data recording or data reproduction can be suitably performed.
[0024] 上述の如くコマ収差補正手段を備える光ピックアップの態様では、前記複数の照射 手段のうちの少なくとも二つの照射手段は、コリメータレンズに対して互いに逆方向で 同一量のコマ収差を生ずるように配置される(或いは、コリメータレンズの中心軸に対 して互いに逆方向に同一量シフトした位置に配置される)ように構成してもよ!/、。  [0024] In the aspect of the optical pickup including the coma aberration correcting unit as described above, at least two of the plurality of irradiating units generate the same amount of coma aberration in opposite directions with respect to the collimator lens. (Or arranged at positions shifted by the same amount in the opposite directions with respect to the central axis of the collimator lens)!
[0025] このように構成すれば、該二つの照射手段から照射される光ビームに対するコマ収 差の補正量を相対的に小さくすることができる。これにより、コマ収差補正手段の構 成を相対的に簡易なものとすることができる。 [0025] With this configuration, it is possible to relatively reduce the correction amount of the frame difference with respect to the light beams emitted from the two irradiation units. Thereby, the configuration of the coma aberration correcting unit can be made relatively simple.
[0026] 本発明の光ピックアップの他の態様は、前記第 1球面収差補正手段は、前記光ビ ームの光軸に沿って移動可能なコリメータレンズを備える。 In another aspect of the optical pickup of the present invention, the first spherical aberration correction unit includes a collimator lens that is movable along the optical axis of the optical beam.
[0027] この態様によれば、基板厚に応じて、後述のホログラムレーザとコリメータレンズとの 間の光学的な距離を変えることができる。このため、情報記録媒体の基板厚に応じて[0027] According to this aspect, the optical distance between a hologram laser (to be described later) and a collimator lens can be changed according to the substrate thickness. For this reason, according to the substrate thickness of the information recording medium
、相対的にラフな球面収差の補正を好適に行うことができる。 [0028] 本発明の光ピックアップの他の態様は、前記第 2球面収差補正手段は、前記情報 記録媒体からの前記光ビームの反射光に基づいて、前記球面収差の量を算出する 算出手段により算出される前記球面収差の量に基づいて、前記球面収差を補正す る。 Therefore, it is possible to suitably correct relatively rough spherical aberration. In another aspect of the optical pickup of the present invention, the second spherical aberration correcting unit calculates the amount of the spherical aberration based on the reflected light of the light beam from the information recording medium. The spherical aberration is corrected based on the calculated amount of spherical aberration.
[0029] この態様によれば、第 2球面収差補正手段は、算出手段により算出される実際の球 面収差の量をモニタリングしながら、球面収差を補正することができる。具体的には、 例えば算出手段により算出される実際の球面収差の量が略零となるように球面収差 を補正することができる。これにより、第 1球面収差補正手段による補正では除去でき ない球面収差の補正を好適に行うことができる。カロえて、実際の球面収差の量に基 づ 、て球面収差の補正を行うことができるため、比較的容易に球面収差の補正を行 うことができる。  [0029] According to this aspect, the second spherical aberration correction unit can correct the spherical aberration while monitoring the actual amount of spherical aberration calculated by the calculation unit. Specifically, for example, the spherical aberration can be corrected so that the actual amount of spherical aberration calculated by the calculating means becomes substantially zero. Thereby, it is possible to suitably correct spherical aberration that cannot be removed by correction by the first spherical aberration correcting means. Since the spherical aberration can be corrected based on the actual amount of spherical aberration, the spherical aberration can be corrected relatively easily.
[0030] 上述の如く算出される球面収差の量に基づいて球面収差を補正する光ピックアツ プの態様では、前記反射光を分割する分割手段と、該分割された反射光を受光する 複数の受光手段とを更に備えるように構成してもよ 、。  [0030] In the aspect of the optical pickup that corrects the spherical aberration based on the amount of the spherical aberration calculated as described above, a dividing unit that divides the reflected light and a plurality of light receiving units that receive the divided reflected light. And may further comprise means.
[0031] このように構成すれば、複数の受光手段の夫々にお 、て受光される反射光のレべ ルが同等となれば、球面収差の量が略零となっていることを認識することができる。従 つて、複数の受光手段の夫々において受光される反射光のレベルをモニタリングす ることで、第 1球面収差補正手段による補正では除去できない球面収差の補正を好 適に行うことができる。  [0031] With this configuration, it is recognized that the amount of spherical aberration is substantially zero when the level of reflected light received by each of the plurality of light receiving means is the same. be able to. Therefore, by monitoring the level of reflected light received by each of the plurality of light receiving means, it is possible to suitably correct spherical aberration that cannot be removed by the correction by the first spherical aberration correcting means.
[0032] 本発明の光ピックアップの他の態様は、前記第 2球面収差補正手段は、液晶素子 を含む。  In another aspect of the optical pickup of the present invention, the second spherical aberration correction means includes a liquid crystal element.
[0033] この態様によれば、液晶素子を用いて微細なレベルでの球面収差の補正を好適に 且つ比較的容易に行うことができる。  [0033] According to this aspect, it is possible to suitably and relatively easily correct spherical aberration at a fine level using a liquid crystal element.
[0034] 本発明の光ピックアップの他の態様は、前記第 2球面収差補正手段は、前記光ビ ームの反射光を検出することで得られる信号であって、前記光ビームの前記記録媒 体上のスポット位置によって変化する信号 (例えば、 RF信号、 LPP信号、ゥォブル信 号、 CAPA信号、 TE信号、プリピット信号、エンボス信号等)の信号レベルが略最大 となるように前記球面収差を補正する。 [0035] この態様によれば、第 2球面収差補正手段は、これらの信号の信号レベルをモニタ リングすることで、第 1球面収差補正手段による補正では除去できない球面収差の補 正を好適に行うことができる。 In another aspect of the optical pickup of the present invention, the second spherical aberration correction unit is a signal obtained by detecting reflected light of the optical beam, and the recording medium of the optical beam is The spherical aberration is corrected so that the signal level of the signal that changes depending on the spot position on the body (for example, RF signal, LPP signal, wobble signal, CAPA signal, TE signal, pre-pit signal, emboss signal, etc.) is substantially maximized. To do. [0035] According to this aspect, the second spherical aberration correction unit preferably performs correction of spherical aberration that cannot be removed by correction by the first spherical aberration correction unit by monitoring the signal levels of these signals. be able to.
[0036] 本発明の光ピックアップの他の態様は、前記光ビームを前記記録媒体に集光する 集光手段と、前記集光手段を、前記光ビームの光軸に沿って移動させる移動手段と を更に備え、前記判別手段は、前記集光手段を移動させながら検出される前記光ビ ームの反射光の波形に基づ 、て、前記基板厚を判別する。  [0036] Another aspect of the optical pickup of the present invention includes: a condensing unit that condenses the light beam on the recording medium; and a moving unit that moves the condensing unit along the optical axis of the light beam. The discriminating unit discriminates the substrate thickness based on the waveform of the reflected light of the light beam detected while moving the light collecting unit.
[0037] この態様によれば、例えば対物レンズ等の集光手段を移動させながら光ビームを 照射すれば、該光ビームの焦点が情報記録媒体の表面や記録面に合わせられた場 合に、例えば反射光の波形として S字カーブが得られる。従って、係る二つの S字力 ーブに基づいて、情報記録媒体の表面と情報記録媒体の記録面との間の長さ (即ち 、基板厚)を認識することができる。従って、集光手段を移動させながら検出される光 ビームの反射光の波形に基づ 1、て、情報記録媒体の基板厚を好適に判別すること ができる。  [0037] According to this aspect, for example, when the light beam is irradiated while moving a focusing means such as an objective lens, the focus of the light beam is adjusted to the surface or recording surface of the information recording medium. For example, an S-shaped curve can be obtained as the reflected light waveform. Therefore, the length (that is, the substrate thickness) between the surface of the information recording medium and the recording surface of the information recording medium can be recognized based on the two S-shaped force curves. Therefore, the substrate thickness of the information recording medium can be suitably determined based on the waveform of the reflected light of the light beam detected while moving the condensing means.
[0038] 上述の如く集光手段及び移動手段を備える光ピックアップの態様では、前記複数 種類の情報記録媒体の夫々に対する前記データの記録及び再生の少なくとも一方 を行うための複数種類の光ビームを照射する照射手段を更に備え、前記照射手段は 、前記判別手段による判別の際に、前記複数種類の光ビームのうち所定の一の種類 の光ビームを選択的に照射し、前記判別手段は、前記一の種類の光ビームの前記 反射光の波形に基づ ヽて、前記基板厚を判別するように構成してもよ ヽ。  [0038] In the aspect of the optical pickup including the condensing means and the moving means as described above, a plurality of types of light beams for performing at least one of recording and reproduction of the data on each of the plurality of types of information recording media are irradiated. And irradiating means for selectively irradiating a predetermined one type of light beams among the plurality of types of light beams at the time of determination by the determining means. The substrate thickness may be determined based on the waveform of the reflected light of one type of light beam.
[0039] このように構成すれば、複数種類の光ビームの全てを情報記録媒体に照射する必 要がないため、基板厚の判別を効率的に行うことができる。  [0039] With this configuration, it is not necessary to irradiate the information recording medium with all of a plurality of types of light beams, so that the substrate thickness can be determined efficiently.
[0040] 上述の如く一の種類の光ビームを選択的に照射する光ピックアップの態様では、前 記一の種類の光ビームは、前記複数種類の情報記録媒体のうち前記データの記録 容量が最大な情報記録媒体に対応する光ビームであるように構成してもよ 、。  [0040] In the aspect of the optical pickup that selectively irradiates one type of light beam as described above, the one type of light beam has the maximum data recording capacity among the plurality of types of information recording media. It may be configured to be a light beam corresponding to various information recording media.
[0041] このように構成すれば、何れの種類の情報記録媒体に一の種類の光ビームを選択 的に照射しても、好適に基板厚を判別することができる。  [0041] With this configuration, the substrate thickness can be suitably determined regardless of which type of information recording medium is selectively irradiated with one type of light beam.
[0042] 上述の如く集光手段及び移動手段を備える光ピックアップの態様では、前記集光 手段の前記移動手段による移動量を測定する測定手段を更に備え、前記判別手段 は、前記光ビームが前記情報記録媒体の表面に集光されたときの前記反射光の波 形が検出されてから、前記光ビームが前記情報記録媒体の記録面に集光されたとき の前記反射光の波形が検出されるまでの間の前記集光手段の移動量に基づいて、 前記基板厚を判別するように構成してもよ ヽ。 [0042] In the aspect of the optical pickup including the light collecting means and the moving means as described above, the light collecting is performed. Measuring means for measuring a moving amount of the moving means by the moving means, and the discriminating means is configured to detect a waveform of the reflected light when the light beam is focused on the surface of the information recording medium. And determining the thickness of the substrate based on the amount of movement of the condensing means until the waveform of the reflected light is detected when the light beam is condensed on the recording surface of the information recording medium. It may be configured as ヽ.
[0043] このように構成すれば、測定手段により、集光手段の移動量が測定される。このとき 、光ビームの焦点が情報記録媒体の表面に合わせられてから、光ビームの焦点が情 報記録媒体の記録面に合わせられるまでの間の集光手段の移動量は、情報記録媒 体の表面と情報記録媒体の記録面との間の長さ (即ち、基板厚)を直接的にないしは 間接的に示している。言い換えれば、反射光の波形としての一つ目の S字カーブが 得られてから、反射光の波形としての二つ目の S字カーブが得られるまでの間の集光 手段の移動量は、情報記録媒体の表面と情報記録媒体の記録面との間の長さ (即ち 、基板厚)に相当する。従って、集光手段を移動させながら検出される光ビームの反 射光の波形に基づ 、て、情報記録媒体の基板厚を好適に判別することができる。  [0043] With this configuration, the moving amount of the light collecting means is measured by the measuring means. At this time, the amount of movement of the condensing means from when the light beam is focused on the surface of the information recording medium to when the light beam is focused on the recording surface of the information recording medium is as follows: The length (ie, substrate thickness) between the surface of the recording medium and the recording surface of the information recording medium is directly or indirectly shown. In other words, the amount of movement of the condensing means from when the first S-shaped curve as the reflected light waveform is obtained until the second S-shaped curve as the reflected light waveform is obtained is This corresponds to the length (ie, substrate thickness) between the surface of the information recording medium and the recording surface of the information recording medium. Therefore, the substrate thickness of the information recording medium can be suitably determined based on the reflected light waveform of the light beam detected while moving the condensing means.
[0044] 本発明の光ピックアップの他の態様は、前記複数種類の情報記録媒体の夫々に対 する前記データの記録及び再生の少なくとも一方を行うための複数種類の光ビーム を照射する照射手段を更に備え、前記判別手段は、前記複数種類の光ビームの夫 々を順に前記情報記録媒体に照射するように前記照射手段を制御することで、前記 基板厚を判別する。  In another aspect of the optical pickup of the present invention, there is provided irradiation means for irradiating a plurality of types of light beams for performing at least one of recording and reproduction of the data with respect to each of the plurality of types of information recording media. Further, the discriminating unit discriminates the substrate thickness by controlling the irradiating unit to sequentially irradiate the information recording medium with each of the plurality of types of light beams.
[0045] この態様によれば、複数種類の情報記録媒体の夫々に対応する複数種類の光ビ ームを順に照射していき、実際に情報記録媒体上のデータを読み取ることができる 光ビームが判別される。そして、判別された光ビームから情報記録媒体の種類が判 明し、その結果、情報記録媒体の基板厚が判別される。  [0045] According to this aspect, there is provided a light beam that sequentially irradiates a plurality of types of optical beams corresponding to each of a plurality of types of information recording media, and can actually read data on the information recording medium. Determined. Then, the type of the information recording medium is determined from the determined light beam, and as a result, the substrate thickness of the information recording medium is determined.
[0046] 本発明の光ピックアップの他の態様は、前記第 2球面収差補正手段は、前記複数 種類の情報記録媒体の夫々に対する前記データの記録及び再生の少なくとも一方 を行うために照射される複数種類の光ビームのうち、前記判別手段により判別された 基板厚に応じた光ビームが照射された後に、前記球面収差を補正する。  [0046] In another aspect of the optical pickup of the present invention, the second spherical aberration correction unit is irradiated with a plurality of data irradiated to perform at least one of recording and reproduction of the data with respect to each of the plurality of types of information recording media. Among the types of light beams, the spherical aberration is corrected after the light beam corresponding to the substrate thickness determined by the determining means is irradiated.
[0047] この態様によれば、実際にデータの記録或いはデータの再生を行う光ビームを対 象として、第 1球面収差補正手段による補正では除去できなかった球面収差の補正 が第 2球面収差補正手段によって行われる。従って、第 2球面収差補正手段は、球 面収差の補正を好適に行うことができる。 [0047] According to this aspect, the optical beam for actually recording or reproducing data is used. As an elephant, correction of spherical aberration that could not be removed by correction by the first spherical aberration correction means is performed by the second spherical aberration correction means. Therefore, the second spherical aberration correcting unit can suitably correct the spherical aberration.
[0048] (情報機器)  [0048] (Information equipment)
本発明の情報機器は上記課題を解決するために、複数種類の情報記録媒体の夫 々に対するデータの記録及び再生の少なくとも一方を行う情報機器であって、前記 情報記録媒体の基板厚を判別する判別手段と、前記データの記録及び再生の少な くとも一方を行うために照射される光ビームが前記情報記録媒体に集光される際の 球面収差を、前記判別手段により判別された前記情報記録媒体の基板厚に応じて 補正する第 1球面収差補正手段と、前記第 1球面収差補正手段による補正後に残存 する前記球面収差を、前記第 1球面収差補正手段による前記球面収差の補正の精 度と同程度に又はより高精度に補正する第 2球面収差補正手段と、前記光ビームを 前記情報記録媒体に照射することで、前記データの記録及び再生のうち少なくとも 一方を実行する記録再生手段とを備える。  In order to solve the above problems, the information device of the present invention is an information device that performs at least one of data recording and reproduction on each of a plurality of types of information recording media, and determines the substrate thickness of the information recording medium. The information recording method wherein the discriminating means discriminates the spherical aberration when the light beam irradiated to perform at least one of recording and reproduction of the data is focused on the information recording medium. A first spherical aberration correcting unit that corrects according to the substrate thickness of the medium; and the spherical aberration remaining after the correction by the first spherical aberration correcting unit is used to correct the spherical aberration by the first spherical aberration correcting unit. Irradiating the information recording medium with at least one of the data recording and reproduction, the second spherical aberration correcting means for correcting the same or higher accuracy than the second spherical aberration correcting means. And a reproducing means for lines.
[0049] 本発明の情報機器によれば、上述した本発明の光ピックアップが有する各種利益 と同様の利益を享受しながら、例えば光ディスク等の情報記録媒体に対してデータを 記録し、又は情報記録媒体に記録されたデータを再生することができる。  [0049] According to the information device of the present invention, data is recorded on an information recording medium such as an optical disc or information recording while enjoying the same benefits as the various advantages of the optical pickup of the present invention described above. Data recorded on the medium can be reproduced.
[0050] 本発明のこのような作用及び他の利得は次に説明する実施例から明らかにされる。  [0050] These effects and other advantages of the present invention will become apparent from the embodiments described below.
[0051] 以上説明したように、本発明の光ピックアップは、第 1球面収差補正手段及び第 2 球面収差補正手段を備える。従って、球面収差を好適に補正することができる。  [0051] As described above, the optical pickup of the present invention includes the first spherical aberration correcting unit and the second spherical aberration correcting unit. Accordingly, it is possible to suitably correct spherical aberration.
[0052] また、本発明の情報機器は、判別手段、第 1球面収差補正手段、第 2球面収差補 正手段及び記録再生手段を備える。従って、球面収差を好適に補正しつつ、情報記 録媒体にデータを記録したり、情報記録媒体に記録されたデータを再生することがで きる。  [0052] Further, the information device of the present invention includes a determining unit, a first spherical aberration correcting unit, a second spherical aberration correcting unit, and a recording / reproducing unit. Therefore, it is possible to record data on the information recording medium and reproduce data recorded on the information recording medium while preferably correcting the spherical aberration.
図面の簡単な説明  Brief Description of Drawings
[0053] [図 1]本実施例に係る光ピックアップを備える情報記録再生装置の全体的な構成を 概略的に示すブロック図である。  FIG. 1 is a block diagram schematically showing an overall configuration of an information recording / reproducing apparatus including an optical pickup according to an embodiment.
[図 2]本実施例に係る情報記録再生装置のうち特にピックアップのより詳細な構成を 概略的に示すブロック図である。 [FIG. 2] Of the information recording / reproducing apparatus according to the present embodiment, in particular, a more detailed configuration of the pickup. It is a block diagram shown roughly.
[図 3]本実施例に係る情報記録再生装置の動作の流れを概念的に示すフローチヤ ートである。  FIG. 3 is a flowchart conceptually showing a flow of operations of the information recording / reproducing apparatus in the example.
圆 4]基板厚を算出する際の対物レンズの移動量及び反射光の検出信号を概念的 に示す説明図である。 IV] is an explanatory diagram conceptually showing the amount of movement of the objective lens and the detection signal of the reflected light when calculating the substrate thickness.
[図 5]第 1球面収差補正素子の一の具体的構成及び第 1球面収差補正素子による球 面収差の補正の一の態様を概念的に示す断面図である。  FIG. 5 is a cross-sectional view conceptually showing one specific configuration of a first spherical aberration correction element and one aspect of correction of spherical aberration by the first spherical aberration correction element.
[図 6]第 1球面収差補正素子の他の具体的構成及び第 1球面収差補正素子による球 面収差の補正の他の態様を概念的に示す断面図である。  FIG. 6 is a cross-sectional view conceptually showing another specific configuration of the first spherical aberration correcting element and another aspect of correcting the spherical aberration by the first spherical aberration correcting element.
[図 7]第 1球面収差補正素子の他の具体的構成及び第 1球面収差補正素子による球 面収差の補正の他の態様を概念的に示す断面図である。  FIG. 7 is a cross-sectional view conceptually showing another specific configuration of the first spherical aberration correcting element and another aspect of correcting the spherical aberration by the first spherical aberration correcting element.
[図 8]第 2球面収差補正素子の具体的構成を概念的に示す断面図である。  FIG. 8 is a sectional view conceptually showing the specific structure of a second spherical aberration correction element.
圆 9]球面収差を検出する際の反射光の分割の態様を概念的に示す平面図である。 [9] FIG. 9 is a plan view conceptually showing an aspect of splitting reflected light when detecting spherical aberration.
[図 10]第 1球面収差補正素子及び第 2球面収差補正素子の夫々の球面収差の補正 のレベルを概念的に示すグラフである。  FIG. 10 is a graph conceptually showing the level of spherical aberration correction of each of the first spherical aberration correcting element and the second spherical aberration correcting element.
圆 11]機械的機構により移動可能な第 1球面補正素子の一の構成を概略的に示す 断面図である。 [11] FIG. 11 is a cross-sectional view schematically showing one configuration of the first spherical correction element movable by a mechanical mechanism.
[図 12]機械的機構により移動可能な第 1球面補正素子の他の構成を概略的に示す 断面図である。  FIG. 12 is a cross-sectional view schematically showing another configuration of the first spherical correction element movable by a mechanical mechanism.
圆 13]第 1変形例に係る情報記録再生措置の基本的構成を概略的に示すブロック 図である。 [13] FIG. 13 is a block diagram schematically showing a basic configuration of an information recording / reproducing measure according to a first modification.
[図 14]第 1変形例に係る情報記録再生措置の動作の流れを概念的に示すフローチ ヤートである。  FIG. 14 is a flowchart conceptually showing a flow of operations of the information recording / reproducing measure in accordance with the first modified example.
圆 15]第 2変形例に係る情報記録再生措置の基本的構成を概略的に示すブロック 図である。 [15] FIG. 15 is a block diagram schematically showing a basic configuration of an information recording / reproducing measure according to a second modification.
圆 16]第 3変形例に係る情報記録再生措置の基本的構成を概略的に示すブロック 図である。 [16] FIG. 16 is a block diagram schematically showing a basic configuration of an information recording / reproducing measure according to a third modification.
圆 17]第 3変形例に係る情報記録再生措置の基本的構成を概略的に示すブロック 図である。 [17] A block that schematically shows the basic configuration of the information recording / reproducing measure according to the third modification. FIG.
符号の説明  Explanation of symbols
10 光ディスク  10 Optical disc
100 光ピックアップ  100 optical pickup
101 ホログラムレーザ  101 hologram laser
102 液晶 λ Ζ2板  102 LCD λ Ζ2 plates
103 第 1球面収差補正素子  103 First spherical aberration correction element
104 コリメータレンズ  104 Collimator lens
107 第 2球面収差補正素子  107 Second spherical aberration correction element
108 対物レンズ  108 Objective lens
109 ァクチユエータ部  109 Actuator
110 対物レンズ Ζ位置センサ  110 Objective lens Ζ Position sensor
111 液晶ドライブ  111 LCD drive
113 ホログラム素子  113 Hologram element
114' -116 フォトディテクタ  114 '-116 photodetector
117 コマ収差補正素子  117 Coma correction element
300 情報記録再生装置  300 Information recording and playback device
313 信号記録再生手段  313 Signal recording / reproducing means
314 CPU  314 CPU
314a 補正指示部  314a Correction instruction section
314b ディスク判別部  314b Disc discriminator
314c 収差量算出部  314c Aberration calculator
314d レーザ切替指示部  314d Laser switching instruction section
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0055] 以下、本発明を実施するための最良の形態について実施例毎に順に図面に基づ いて説明する。 Hereinafter, the best mode for carrying out the present invention will be described in each embodiment in order with reference to the drawings.
[0056] (記録再生装置の構成) [0056] (Configuration of recording / reproducing apparatus)
初めに、図 1を参照して、本発明の光ピックアップに係る実施例を備える情報記録 再生装置 (即ち、本発明の情報機器に係る実施例)の基本構成について説明する。 ここに、図 1は、本実施例に係る光ピックアップ 100を備える情報記録再生装置 300 の全体的な構成を概略的に示すブロック図である。尚、情報記録再生装置 300は、 異なる基板厚を有する複数種類の光ディスク 10の夫々にデータを記録する機能と、 異なる基板厚を有する複数種類の光ディスク 10の夫々に記録されたデータを再生す る機能とを備える。尚、本実施例では複数種類の光ディスク 10の具体例として、基板 厚が 1. 2mmの CD、基板厚が 0. 6mmの DVDないしは HD DVD及び基板厚が 0 . 1mmの Blu—ray Discを想定して説明を進めていく。 First, referring to FIG. 1, information recording comprising an embodiment according to the optical pickup of the present invention. A basic configuration of the playback apparatus (that is, the embodiment according to the information apparatus of the present invention) will be described. FIG. 1 is a block diagram schematically showing an overall configuration of an information recording / reproducing apparatus 300 including the optical pickup 100 according to the present embodiment. The information recording / reproducing apparatus 300 reproduces data recorded on each of a plurality of types of optical discs 10 having different substrate thicknesses and a function for recording data on each of a plurality of types of optical discs 10 having different substrate thicknesses. With functionality. In this embodiment, as a specific example of a plurality of types of optical disks 10, a CD with a substrate thickness of 1.2 mm, a DVD or HD DVD with a substrate thickness of 0.6 mm, and a Blu-ray Disc with a substrate thickness of 0.1 mm are assumed. And proceed with the explanation.
[0057] 図 1に示すように、情報記録再生装置 300は、実際に光ディスク 10がローデイング され且つデータの記録やデータの再生が行なわれるディスクドライブ 301と、該デイス クドライブ 301に対するデータの記録及び再生を制御するパーソナルコンピュータ等 のホストコンピュータ 302とを備えて!/、る。  As shown in FIG. 1, the information recording / reproducing apparatus 300 includes a disk drive 301 in which the optical disk 10 is actually loaded and data is recorded and reproduced, and data recording and recording on the disk drive 301 are performed. And a host computer 302 such as a personal computer for controlling reproduction!
[0058] ディスクドライブ 301は、光ディスク 10、スピンドノレモータ 311、光ピックアップ 100、 信号記録再生手段 313、 CPU (ドライブ制御手段) 314、メモリ 315、データ入出力 制御手段 316、及びバス 317を備えて構成されている。また、ホストコンピュータ 302 は、データ入出力制御手段 318、 CPU319、メモリ 320、ノ ス 321、操作 Z表示制御 手段 322、操作ボタン 323及び表示パネル 324を備えて構成される。  The disk drive 301 includes an optical disk 10, a spinner motor 311, an optical pickup 100, a signal recording / reproducing means 313, a CPU (drive control means) 314, a memory 315, a data input / output control means 316, and a bus 317. It is configured. The host computer 302 includes data input / output control means 318, CPU 319, memory 320, nose 321, operation Z display control means 322, operation buttons 323, and display panel 324.
[0059] 光ピックアップ 100は、光ディスク 10へのデータの記録を行うために、例えば半導 体レーザ装置とレンズ等を含んで構成される。より詳細には、光ピックアップ 100は、 光ディスク 10に対してレーザ光 LBを、再生時には読み取り光として第 1のパワーで 照射し、記録時には書き込み光として第 2のパワーで且つ変調させながら照射する。 尚、光ピックアップ 100の詳細な構成については後述する(図 2参照)。  The optical pickup 100 is configured to include, for example, a semiconductor laser device and a lens in order to record data on the optical disc 10. More specifically, the optical pickup 100 irradiates the optical disk 10 with the laser light LB as read light at the first power during reproduction, and as write light at the second power while being modulated during recording. The detailed configuration of the optical pickup 100 will be described later (see FIG. 2).
[0060] スピンドルモータ 311は光ディスク 10を回転及び停止させるもので、光ディスク 10 へのアクセス時に動作する。より詳細には、スピンドルモータ 311は、図示しないサー ボユニット等によりスピンドルサーボを受けつつ所定速度で光ディスク 10を回転及び 停止させるように構成されて 、る。  The spindle motor 311 rotates and stops the optical disc 10 and operates when accessing the optical disc 10. More specifically, the spindle motor 311 is configured to rotate and stop the optical disc 10 at a predetermined speed while receiving spindle servo from a servo unit (not shown) or the like.
[0061] 信号記録再生手段 313は、スピンドルモータ 311と光ピックアップ 100を制御するこ とで光ディスク 10に対してデータの記録及び再生を行う。より具体的には、信号記録 再生手段 313は、例えば、レーザダイオードドライバ (LDドライバ)及びヘッドアンプ 等によって構成されている。レーザダイオードドライバは、光ピックアップ 100内に設 けられたレーザチップを電流駆動し、レーザ発光させる。ヘッドアンプは、光ピックァ ップ 100の出力信号、即ち、レーザ光 LBの反射光を増幅し、該増幅した信号を出力 する。 The signal recording / reproducing means 313 records and reproduces data with respect to the optical disc 10 by controlling the spindle motor 311 and the optical pickup 100. More specifically, signal recording The reproducing unit 313 includes, for example, a laser diode driver (LD driver), a head amplifier, and the like. The laser diode driver drives the laser chip provided in the optical pickup 100 with current to emit laser light. The head amplifier amplifies the output signal of the optical pickup 100, that is, the reflected light of the laser beam LB, and outputs the amplified signal.
[0062] メモリ 315は、データのバッファ領域や、信号記録再生手段 313で使用出来るデー タに変換する時の中間ノ ッファとして使用される領域などディスクドライブ 301におけ るデータ処理全般において使用される。また、メモリ 315はこれらレコーダ機器として の動作を行うためのプログラム、即ちファームウェアが格納される ROM領域と、記録 再生データの一時格納用バッファや、ファームウェアプログラム等の動作に必要な変 数が格納される RAM領域などカゝら構成される。  [0062] The memory 315 is used in general data processing in the disk drive 301 such as a data buffer area and an area used as an intermediate buffer when data is converted into data usable by the signal recording / reproducing means 313. . The memory 315 stores a program for operating as a recorder device, that is, a ROM area in which firmware is stored, a buffer for temporarily storing recording / playback data, and a variable necessary for the operation of the firmware program and the like. RAM area is configured.
[0063] CPU (ドライブ制御手段) 314は、信号記録再生手段 313及びメモリ 315と、バス 3 17を介して接続され、各種制御手段に指示を行うことで、ディスクドライブ 301全体の 制御を行う。通常、 CPU314が動作するためのソフトウェア又はファームウェアは、メ モリ 315に格糸内されている。  A CPU (drive control means) 314 is connected to the signal recording / reproducing means 313 and the memory 315 via the bus 317, and controls the entire disk drive 301 by giving instructions to various control means. Normally, software or firmware for operating the CPU 314 is stored in the memory 315.
[0064] データ入出力制御手段 316は、ディスクドライブ 301に対する外部からのデータ入 出力を制御し、メモリ 315上のデータバッファへの格納及び取り出しを行う。情報記録 装置 300と SCSIや、 ATAPIなどのインタフェースを介して接続されて!、る外部のホ ストコンピュータ 302から発行されるドライブ制御命令は、データ入出力制御手段 31 6を介して CPU314に伝達される。また、データも同様にデータ入出力制御手段 31 6を介して、ホストコンピュータ 302とやり取りされる。  The data input / output control means 316 controls external data input / output to / from the disk drive 301 and stores and retrieves data in / from the data buffer on the memory 315. The drive control command issued from the external host computer 302 connected to the information recording device 300 via an interface such as SCSI or ATAPI is transmitted to the CPU 314 via the data input / output control means 316. The Similarly, data is exchanged with the host computer 302 via the data input / output control means 316.
[0065] 操作 Z表示制御手段 322はホストコンピュータ 302に対する動作指示受付と表示 を行うもので、例えば記録や再生といった操作ボタン 323による指示を CPU319に 伝える。 CPU319は、操作 Z表示制御手段 322からの指示情報を元に、データ入出 力手段 318を介して、情報記録再生装置 300に対して制御命令 (コマンド)を送信し 、ディスクドライブ 301全体を制御する。同様に、 CPU319は、ディスクドライブ 301に 対して、動作状態をホストに送信するように要求するコマンドを送信することができる。 これにより、記録中といったディスクドライブ 301の動作状態が把握できるため CPU3 19は、操作/表示制御手段 322を介して蛍光管や LCDなどの表示パネル 324にデ イスクドライブ 301の動作状態を出力することができる。 The operation Z display control means 322 is for receiving and displaying an operation instruction for the host computer 302, and for example, transmits an instruction by the operation button 323 such as recording and reproduction to the CPU 319. The CPU 319 transmits a control command (command) to the information recording / reproducing device 300 via the data input / output unit 318 based on the instruction information from the operation Z display control unit 322 to control the entire disk drive 301. . Similarly, the CPU 319 can send a command requesting the disk drive 301 to send the operating status to the host. As a result, the operating state of the disk drive 301 such as recording can be grasped. 19 can output the operating state of the disk drive 301 to the display panel 324 such as a fluorescent tube or an LCD via the operation / display control means 322.
[0066] メモリ 320は、ホストコンピュータ 302が使用する内部記憶装置であり、例えば BIO S (Basic Input/Output System)等のファームウェアプログラムが格納される ROM領 域、オペレーティングシステムや、アプリケーションプログラム等の動作に必要な変数 等が格納される RAM領域など力も構成される。また、データ入出力制御手段 318を 介して、図示しな! 、ノヽードディスク等の外部記憶装置に接続されて 、てもよ 、。  [0066] The memory 320 is an internal storage device used by the host computer 302. For example, a ROM area in which a firmware program such as BIOS (Basic Input / Output System) is stored, an operating system, an operation of an application program, etc. The RAM area that stores the necessary variables is also configured. Also, it is not shown in the figure via the data input / output control means 318, and may be connected to an external storage device such as a node disk.
[0067] 以上説明した、ディスクドライブ 301とホストコンピュータ 302を組み合わせて使用す る一具体例は、映像を記録するレコーダ機器等の家庭用機器である。このレコーダ 機器は放送受信チューナや外部接続端子力 の映像信号をディスクに記録する機 器である。メモリ 320に格納されたプログラムを CPU319で実行させることでレコーダ 機器としての動作を行っている。また、別の具体例では、ディスクドライブ 301はディ スクドライブ(以下、適宜ドライブと称す)であり、ホストコンピュータ 302はパーソナル コンピュータやワークステーションである。ノ ーソナノレコンピュータ等のホストコンビュ ータとドライブは SCSIや ATAPIといったデータ入出力制御手段 316及び 318を介 して接続されており、ホストコンピュータ 302にインストールされているリーディングソフ トウエア等のアプリケーション力 ディスクドライブ 301を制御する。  One specific example of using the disk drive 301 and the host computer 302 in combination as described above is a household device such as a recorder device that records video. This recorder device is a device that records broadcast reception tuners and video signals of external connection terminal power on a disc. The program stored in the memory 320 is executed by the CPU 319 to operate as a recorder device. In another specific example, the disk drive 301 is a disk drive (hereinafter referred to as a drive as appropriate), and the host computer 302 is a personal computer or a workstation. A host computer such as a Norsonano computer and a drive are connected via data input / output control means 316 and 318 such as SCSI and ATAPI, and application capabilities such as reading software installed in the host computer 302 are used. Control the disk drive 301.
[0068] 続いて、図 2を参照して、本実施例に係る情報記録再生装置 300が備えるピックァ ップ 100のより詳細な構成について説明する。ここに、図 2は、本実施例に係る情報 記録再生装置 300のうち特にピックアップ 100のより詳細な構成を概略的に示すプロ ック図である。  [0068] Next, with reference to FIG. 2, a more detailed configuration of the pick-up 100 included in the information recording / reproducing apparatus 300 according to the present embodiment will be described. FIG. 2 is a block diagram schematically showing a more detailed configuration of the pickup 100 in the information recording / reproducing apparatus 300 according to the present embodiment.
[0069] 図 2に示すように、光ピックアップ 100は、ホログラムレーザ 101と、液晶 λ Ζ2板 10 2と、第 1球面収差補正素子 103と、コリメータレンズ 104と、ノヽーフミラー 105と、開口 制限素子 106と、第 2球面収差補正素子 107と、対物レンズ 108と、ァクチユエータ 1 09と、対物レンズ Ζ位置センサ 110と、液晶ドライブ 111と、集光レンズ 112と、ホログ ラム素子 113と、フォトディテクタ 114から 116とを備える。  As shown in FIG. 2, the optical pickup 100 includes a hologram laser 101, a liquid crystal λ 2 plate 102, a first spherical aberration correction element 103, a collimator lens 104, a noise mirror 105, and an aperture limiting element. 106, second spherical aberration correction element 107, objective lens 108, actuator 110, objective lens Ζ position sensor 110, liquid crystal drive 111, condenser lens 112, hologram element 113, and photodetector 114. 116.
[0070] ホログラムレーザ 101は、本発明の「照射手段」の一具体例を構成しており、図示し ない複数波長のレーザ光 LBを出射可能なレーザチップや基板ゃ受光素子ゃホログ ラム素子などを有して構成されている。レーザチップと受光素子は同一の基板上に配 置されており、ホログラム素子は基板のレーザ光 LBの出力側に対向して設けられて V、る。レーザチップは複数種類ある光ディスク 10の種別に応じたレーザ光 LBを放射 する。より具体的には、レーザチップは、例えば CDに対するデータの記録或いは再 生を行う際には、例えば 780nmの波長を有するレーザ光 LB (即ち、赤外レーザ光) を照射し、例えば DVDに対するデータの記録或いは再生を行う際には、例えば 660 nmの波長を有するレーザ光 LB (即ち、赤レーザ光)を照射し、例えば HD DVDや Blu-ray Discに対するデータの記録或いは再生を行う際には、例えば 420nmの 波長を有するレーザ光 LB (即ち青紫レーザ光)を照射する。受光素子は入力される レーザ光 LBを受光する。ホログラム素子は、レーザチップから出力されたレーザ光 L Bを、そのまま透過させると共に、当該レーザ光 LBの入射面と反対の面力も入射され るレーザ光 LB (即ち、レーザ光 LBの光ディスク 10からの反射光)を屈折させて、基 板上の受光素子に集光させる。このように、ホログラムレーザ 11は、複数の光源及び ディテクタとしての機能を有して 、る。 The hologram laser 101 constitutes a specific example of the “irradiation means” of the present invention, and a laser chip or a substrate that can emit laser light LB of a plurality of wavelengths (not shown) It has a ram element or the like. The laser chip and the light receiving element are arranged on the same substrate, and the hologram element is provided opposite to the output side of the laser beam LB on the substrate. The laser chip emits a laser beam LB corresponding to the type of the optical disk 10 having a plurality of types. More specifically, the laser chip irradiates, for example, a laser beam LB (ie, infrared laser beam) having a wavelength of 780 nm, for example, when recording or reproducing data on a CD, for example, data on a DVD. When recording or reproducing data, for example, when irradiating laser light LB having a wavelength of 660 nm (that is, red laser light) and recording or reproducing data on, for example, an HD DVD or Blu-ray Disc, For example, laser light LB having a wavelength of 420 nm (ie, blue-violet laser light) is irradiated. The light receiving element receives the input laser beam LB. The hologram element transmits the laser beam LB output from the laser chip as it is, and also receives a laser beam LB (that is, the reflection of the laser beam LB from the optical disc 10) that is also incident on the surface force opposite to the incident surface of the laser beam LB. Light) is refracted and focused on a light receiving element on the substrate. Thus, the hologram laser 11 has functions as a plurality of light sources and detectors.
[0071] 尚、レーザチップ及び受光素子等を一つにまとめて備えるホログラムレーザ 101に 代えて、複数のレーザチップや複数の受光素子を別個に備える構成を採用してもよ い。 [0071] Instead of the hologram laser 101 including a laser chip and a light receiving element together, a configuration including a plurality of laser chips and a plurality of light receiving elements may be employed.
[0072] 液晶 λ Ζ2板 102は、液晶分子の配向状態を変化させることができる液晶素子を備 えた λ Ζ2板である。液晶 λ Ζ2板 102は、液晶分子の配向状態を変化させることで 、光ディスク 10の基板厚に応じて、該液晶 λ Ζ2板 102に入射するレーザ光 LBの偏 光方向を電気的に S偏光や Ρ偏光に (或いは、更に他の偏光に)変える。尚、液晶え Ζ2板 102は、後述の補正指示部 314aの制御を受けて、レーザ光 LBの偏光方向を 変えるように構成されて 、る。  [0072] The liquid crystal λ 2 plate 102 is a λ 2 plate provided with a liquid crystal element capable of changing the alignment state of liquid crystal molecules. The liquid crystal λΖ2 plate 102 changes the orientation state of the liquid crystal molecules, thereby electrically changing the polarization direction of the laser beam LB incident on the liquid crystal λΖ2 plate 102 according to the substrate thickness of the optical disk 10. Change to polarized light (or even other polarized light). The liquid crystal substrate 2 plate 102 is configured to change the polarization direction of the laser beam LB under the control of a correction instruction unit 314a described later.
[0073] 第 1球面収差補正素子 103は、液晶 λ Ζ2板 102及びコリメータレンズ 104と共に 本発明における「第一球面収差補正手段」の一具体例を構成しており、入射するレ 一ザ光 LBの偏光方向に応じて (言い換えれば、光ディスク 10の基板厚に応じて)、 レーザ光 LBの光路を変化させる。例えば、 S偏光のレーザ光 LBが入射した場合に は、一の光路において該レーザ光 LBを伝搬させ、 Ρ偏光のレーザ光 LBが入射した 場合には、該一の光路よりも長い光路長を有する他の光路において該レーザ光 LB を伝搬させる。尚、第 1球面収差補正素子 103は、後述の補正指示部 314aの制御 を受けて、レーザ光 Lの光路を変化させるように構成してもよい。また、第 1球面収差 補正素子 103のより詳細な構成及び作用については、後に詳述する(図 5から図 7等 参照)。 The first spherical aberration correcting element 103, together with the liquid crystal λ 2 plate 102 and the collimator lens 104, constitutes one specific example of the “first spherical aberration correcting means” in the present invention, and the incident laser beam LB The optical path of the laser beam LB is changed according to the polarization direction of the laser beam (in other words, according to the substrate thickness of the optical disk 10). For example, when S-polarized laser beam LB is incident, the laser beam LB is propagated in one optical path, and negatively polarized laser beam LB is incident. In this case, the laser beam LB is propagated in another optical path having an optical path length longer than the one optical path. The first spherical aberration correction element 103 may be configured to change the optical path of the laser beam L under the control of a correction instruction unit 314a described later. Further, the detailed configuration and operation of the first spherical aberration correcting element 103 will be described in detail later (see FIGS. 5 to 7 and the like).
[0074] コリメータレンズ 104は、入射したレーザ光 LBを略平行光にして、ハーフミラー 105 に人射させる。  The collimator lens 104 converts the incident laser light LB into substantially parallel light and causes the half mirror 105 to radiate humans.
[0075] ハーフミラー 105は、ホログラムレーザ 101の側から入射するレーザ光 LBをそのま ま 90%透過し、光ディスク 10の側力も入射するレーザ光 LB (即ち、レーザ光 LBの光 ディスク 10からの反射光)を 90%だけ透過し且つ 10%だけ反射する。ハーフミラー 1 05にお 、て反射された 10%の反射光は、集光レンズ 112及びホログラム素子 113を 介してフォトディテクタ 114から 116に集光される。  The half mirror 105 transmits the laser beam LB incident from the hologram laser 101 side by 90% as it is, and the laser beam LB (that is, the laser beam LB from the optical disk 10 is also incident on the side force of the optical disk 10). Reflected light) is transmitted by 90% and reflected by 10%. The reflected light of 10% reflected by the half mirror 105 is condensed on the photodetectors 114 to 116 via the condenser lens 112 and the hologram element 113.
[0076] 開口制限素子 106は、例えば液晶シャツタ等を備えており、光ディスク 10の基板厚  The aperture limiting element 106 includes, for example, a liquid crystal shirt or the like, and the substrate thickness of the optical disc 10
(言い換えれば、種類)に応じて、レーザ光 LBの出射側における対物レンズ 108の 開口数(NA:Numerical Aperture)を実質的に変化させる。例えば、基板厚が 0. 6m mの DVDないしは HD DVDに対するデータの記録或いは再生を行う際には、対 物レンズ 108の実質的な開口数が" 0. 65"となるように液晶シャツタを制御する。他 方、例えば、基板厚が 0. 1mmの Blu— ray Discに対するデータの記録或いは再 生を行う際には、対物レンズ 108の実質的な開口数が" 0. 85"となるように液晶シャ ッタを制御する。  In other words, the numerical aperture (NA) of the objective lens 108 on the emission side of the laser beam LB is substantially changed according to the type. For example, when recording or playing back data on a DVD or HD DVD with a substrate thickness of 0.6 mm, the liquid crystal shirt is controlled so that the effective numerical aperture of the object lens 108 is “0.65”. To do. On the other hand, for example, when recording or reproducing data on a Blu-ray Disc having a substrate thickness of 0.1 mm, the liquid crystal shutter is set so that the substantial numerical aperture of the objective lens 108 becomes “0.85”. Control the cutter.
[0077] 第 2球面収差補正素子 107は、本発明の「第 2球面収差補正手段」の一具体例を 構成しており、例えば液晶パネルを備えている。第 2球面収差補正素子 107は、後述 の収差量算出部 314cがモニタリングしている実際の球面収差の量に基づいて動作 する補正指示部 314aの制御を受ける液晶ドライブ 111からの指示に従 、、液晶パネ ル内の屈折率を適宜変化させる。より具体的には、液晶パネル内の屈折率が変化す ることで、第 2球面収差補正素子 107を透過するレーザ光 LBの光路ないしは部分的 な位相が変化し、その結果、球面収差が補正される。尚、第 2球面収差補正素子 10 7の具体的な構成については、後に詳述する(図 8参照)。 [0078] 対物レンズ 108は、本発明の「集光手段」の一具体例を構成しており、入射するレ 一ザ光 LBを集光して、光ディスク 10の記録面上に照射する。 The second spherical aberration correction element 107 constitutes a specific example of “second spherical aberration correction means” of the present invention, and includes, for example, a liquid crystal panel. The second spherical aberration correction element 107 follows the instruction from the liquid crystal drive 111 under the control of the correction instruction unit 314a that operates based on the actual amount of spherical aberration monitored by an aberration amount calculation unit 314c described later. The refractive index in the liquid crystal panel is appropriately changed. More specifically, when the refractive index in the liquid crystal panel changes, the optical path or partial phase of the laser beam LB transmitted through the second spherical aberration correction element 107 changes, and as a result, the spherical aberration is corrected. Is done. A specific configuration of the second spherical aberration correction element 107 will be described later in detail (see FIG. 8). The objective lens 108 constitutes a specific example of the “condensing unit” of the present invention, and condenses the incident laser beam LB and irradiates it on the recording surface of the optical disc 10.
[0079] ァクチユエータ部 109は、本発明の「移動手段」の一具体例を構成しており、対物レ ンズ 108の配置位置を変更するための駆動機構を有している。より具体的には、ァク チユエータ部 109は、対物レンズ 108の位置をフォーカス方向(Z方向であって、図 2 における左右の方向)に移動させる。  The actuator unit 109 constitutes one specific example of the “moving means” of the present invention, and has a drive mechanism for changing the arrangement position of the objective lens 108. More specifically, the actuator unit 109 moves the position of the objective lens 108 in the focus direction (the Z direction, that is, the left and right direction in FIG. 2).
[0080] 対物レンズ Z位置センサ 110は、本発明の「測定手段」の一具体例を構成しており、 対物レンズの Z方向における絶対的な或いは相対的な位置(即ち、レーザ光 LBの光 軸に沿った方向な 、しはフォーカス方向における絶対的な或 、は相対的な位置)を 測定する。また、対物レンズ Z位置センサ 110は、測定された対物レンズの Z方向に おける位置を、後述のディスク判別部 314bへ出力する。  The objective lens Z position sensor 110 constitutes one specific example of the “measuring means” of the present invention, and the absolute or relative position of the objective lens in the Z direction (that is, the light of the laser beam LB). Measure along the axis, or absolute or relative position in the focus direction. Further, the objective lens Z position sensor 110 outputs the measured position of the objective lens in the Z direction to a disc determination unit 314b described later.
[0081] 液晶ドライブ 111は、後述の補正指示部 314aの制御の下に、第 2球面収差補正素 子 107が備える液晶パネルを駆動する。より具体的には、液晶ドライブ 111は、後述 の補正指示部 314aの制御の下に、所定の電圧を第 2球面収差補正素子 107に印 加することで、第 2球面収差補正素子 107が備える液晶パネル内の液晶分子の配向 状態を変化させる。その結果、液晶パネル内の屈折率が部分的に変化し、球面収差 が補正される。  The liquid crystal drive 111 drives the liquid crystal panel included in the second spherical aberration correction element 107 under the control of a correction instruction unit 314a described later. More specifically, the liquid crystal drive 111 includes the second spherical aberration correction element 107 by applying a predetermined voltage to the second spherical aberration correction element 107 under the control of a correction instruction unit 314a described later. Changes the alignment state of liquid crystal molecules in the liquid crystal panel. As a result, the refractive index in the liquid crystal panel changes partially, and spherical aberration is corrected.
[0082] 集光レンズ 112は、ハーフミラー 105において反射された反射光魏光する。  The condensing lens 112 fluoresces the reflected light reflected by the half mirror 105.
[0083] ホログラム素子 113は、集光レンズ 112と集光レンズ 112により集光された反射光の 集光点との間に配置される。ホログラム素子 113は、該ホログラム素子 113上に形成 される反射光のスポットを、複数の分割されたスポット領域に分割し、且つ夫々のスポ ット領域における反射光の一部を、フォトディテクタ 114から 116の 、ずれかに対応 付けて集光する。尚、ホログラム素子 113のより詳細な構成或いは作用については後 に詳述する(図 9参照)。 The hologram element 113 is disposed between the condensing lens 112 and the condensing point of the reflected light collected by the condensing lens 112. The hologram element 113 divides the reflected light spot formed on the hologram element 113 into a plurality of divided spot areas, and a part of the reflected light in each spot area is detected by the photodetectors 114 to 116. The light is condensed according to the deviation. A more detailed configuration or operation of the hologram element 113 will be described later in detail (see FIG. 9).
[0084] フォトディテクタ 114から 116は、本発明の「受光手段」の一具体例を構成しており、 ホログラム素子 113により集光される複数のスポット領域における反射光の一部を受 光し、その光強度レベル等を検出する。フォトディテクタ 114から 116は、検出された 光強度レベル等を、後述の収差量検出部 314cに出力する。 [0085] また、 CPU314は、その内部に補正指示部 314aと、ディスク判別部 314bと、収差 量検出部 314cとを備える。 The photodetectors 114 to 116 constitute a specific example of the “light receiving means” of the present invention, and receive a part of the reflected light in the plurality of spot regions collected by the hologram element 113, and The light intensity level and the like are detected. The photodetectors 114 to 116 output the detected light intensity level and the like to an aberration amount detection unit 314c described later. In addition, the CPU 314 includes a correction instruction unit 314a, a disc determination unit 314b, and an aberration amount detection unit 314c.
[0086] 補正指示部 314aは、ディスク判別部 314bより出力される光ディスク 10の種類 (或 いは、基板厚)に基づいて、第 1球面収差補正素子 103 (更には、液晶 λ Ζ2板 102 )を制御する。また、収差量検出部 314cより出力される球面収差の量に基づいて、 第 2球面収差補正素子 107内の液晶パネルを駆動する液晶ドライブ 111を制御する 。即ち、補正指示部 314aは、第 1球面収差補正素子 103及び第 2球面収差補正素 子 107の夫々における球面収差の補正量を決定し、且つ決定された補正量に基づく 球面収差の補正が行われるように、光ピックアップ 100内の各素子を制御する。  [0086] The correction instruction unit 314a is based on the type (or substrate thickness) of the optical disc 10 output from the disc determination unit 314b, and the first spherical aberration correction element 103 (further, the liquid crystal λ 2 plate 102). To control. The liquid crystal drive 111 that drives the liquid crystal panel in the second spherical aberration correction element 107 is controlled based on the amount of spherical aberration output from the aberration amount detection unit 314c. That is, the correction instruction unit 314a determines the correction amount of the spherical aberration in each of the first spherical aberration correction element 103 and the second spherical aberration correction element 107, and corrects the spherical aberration based on the determined correction amount. As shown, each element in the optical pickup 100 is controlled.
[0087] ディスク判別部 314bは、本発明における「判別手段」の一具体例を構成しており、 対物レンズ Z位置センサ 110より出力される対物レンズの Z方向における絶対的な或 いは相対的な位置、及びホログラムレーザ 101から出力される反射光の検出信号に 基づ 、て、情報記録再生装置 300にローデイングされて 、る光ディスク 10の種類 (或 いは、基板厚)を判別する。ディスク判別部 314bは、判別された光ディスク 10の種類 (或いは、基板厚)を、補正指示部 314aに出力する。  The disc discrimination unit 314b constitutes a specific example of the “discrimination unit” in the present invention, and is absolute or relative in the Z direction of the objective lens output from the objective lens Z position sensor 110. Based on the correct position and the detection signal of the reflected light output from the hologram laser 101, the type (or substrate thickness) of the optical disk 10 loaded on the information recording / reproducing apparatus 300 is discriminated. The disc discriminating unit 314b outputs the discriminated type (or substrate thickness) of the optical disc 10 to the correction instruction unit 314a.
[0088] 収差量検出部 314cは、本発明の「算出手段」の一具体例を構成しており、フォトデ ィテクタ 114から 116より出力される光強度レベル等に基づ 、て、実際に生じて 、る 球面収差の量を算出する。収差算出部 314cは、算出された球面収差の量を、補正 指示部 314aに出力する。  The aberration amount detection unit 314c constitutes one specific example of the “calculation unit” of the present invention, and is actually generated based on the light intensity level output from the photodetectors 114 to 116. Calculate the amount of spherical aberration. The aberration calculation unit 314c outputs the calculated amount of spherical aberration to the correction instruction unit 314a.
[0089] (情報記録再生装置の動作原理)  [0089] (Operational principle of information recording / reproducing apparatus)
続いて、図 3から図 10を参照して、本実施例に係る情報記録再生装置 300の動作 原理について説明する。ここでは、図 3を参照しながら、本実施例に係る情報記録再 生装置 300の動作の流れの全体を説明すると共に、適宜図 4から図 10を参照しなが ら、より詳細な説明を加えていく。ここに、図 3は、本実施例に係る情報記録再生装置 300の動作の流れを概念的に示すフローチャートである。  Next, the operation principle of the information recording / reproducing apparatus 300 according to the present embodiment will be described with reference to FIGS. Here, the overall operation flow of the information recording / reproducing apparatus 300 according to the present embodiment will be described with reference to FIG. 3, and a more detailed description will be given with reference to FIGS. 4 to 10 as appropriate. I will add. FIG. 3 is a flowchart conceptually showing a flow of operations of the information recording / reproducing apparatus 300 in the example.
[0090] 図 3に示すように、初めに、情報記録再生装置 300がデータの記録或いは再生を 行う対象となる複数種類の光ディスク 10のうち、最大の記録容量を有する光ディスク 10に対応するレーザ光 LBが照射される。具体的には、本実施例に係る情報記録再 生装置 300がデータの記録或いは再生を行う対象となる複数種類の光ディスク 10の うち、最大の記録容量を有する光ディスク 10は、記録容量が概ね 25GBから 27GB ( 但し、片面 1層の場合)である Blu— ray Discである。従って、 Blu— ray Discに対 してデータの記録或いは再生を行うための青紫レーザ光(即ち、 420nmの波長を有 するレーザ光 LB)がホログラムレーザ 101より照射される(ステップ S 101)。このとき、 トラッキングサーボやフォーカスサーボはオープンのままである。 As shown in FIG. 3, first, the laser beam corresponding to the optical disc 10 having the maximum recording capacity among a plurality of types of optical discs 10 to which the information recording / reproducing apparatus 300 performs data recording or reproduction. LB is irradiated. Specifically, the information recording / reproduction according to the present embodiment is performed. Of the multiple types of optical discs 10 to which the live device 300 records and reproduces data, the optical disc 10 having the largest recording capacity has a recording capacity of approximately 25 GB to 27 GB (provided that one side has one layer). Blu-ray Disc. Accordingly, a blue-violet laser beam (that is, a laser beam LB having a wavelength of 420 nm) for recording or reproducing data on the Blu-ray Disc is irradiated from the hologram laser 101 (step S101). At this time, the tracking servo and focus servo remain open.
[0091] 続いて、レーザ光 LBを照射したまま、ァクチユエータ部 109の動作により、対物レン ズ 108を Z方向に移動させる(ステップ S102)。具体的には、対物レンズ 108が光デ イスク 10に徐々に近づいていくように(より詳細には、図 2中左側力も右側に向力つて )、対物レンズ 108を移動させることが好ましい。その後、対物レンズ 108の移動に伴 つて検出される所謂 S字カーブ及びそのときの対物レンズ 108の位置に基づいて、 光ディスク 10の基板厚が算出される (ステップ S103)。  Subsequently, the objective lens 108 is moved in the Z direction by the operation of the actuator unit 109 while irradiating the laser beam LB (step S102). Specifically, it is preferable to move the objective lens 108 so that the objective lens 108 gradually approaches the optical disk 10 (more specifically, the left side force in FIG. 2 is also directed to the right side). Thereafter, the substrate thickness of the optical disc 10 is calculated based on the so-called S-curve detected as the objective lens 108 moves and the position of the objective lens 108 at that time (step S103).
[0092] ここで、基板厚の算出動作について、図 4を参照しながらより詳細に説明する。ここ に、図 4は、基板厚を算出する際の対物レンズ 108の移動量及び反射光の検出信号 を概念的に示す説明図である。  Here, the calculation operation of the substrate thickness will be described in more detail with reference to FIG. FIG. 4 is an explanatory diagram conceptually showing the amount of movement of the objective lens 108 and the detection signal of the reflected light when calculating the substrate thickness.
[0093] 図 4 (a)の上部に示すように、対物レンズ 108の移動に伴い、レーザ光 LBの焦点が 光ディスク 10の表面に合致する。即ち、対物レンズ 108の移動に伴い、レーザ光 LB のフォーカスが光ディスク 10の表面に合わせられる。この場合、反射光の検出信号 には、図 4 (b)の左側に示すように、所謂 S字状の信号波形 (S字カーブ)が現れる。 その後、図 4 (a)の下部に示すように、対物レンズ 108が更に距離 dだけ移動した後 に、レーザ光 LBの焦点が光ディスク 10の記録面に合致する。この場合においても、 反射光の検出信号には、図 4 (b)の右側に示すように、所謂 S字状の信号波形 (S字 カーブ)が現れる。  As shown in the upper part of FIG. 4 (a), the focal point of the laser beam LB coincides with the surface of the optical disc 10 as the objective lens 108 moves. That is, as the objective lens 108 moves, the laser beam LB is focused on the surface of the optical disc 10. In this case, a so-called S-shaped signal waveform (S-shaped curve) appears in the reflected light detection signal, as shown on the left side of FIG. Thereafter, as shown in the lower part of FIG. 4A, after the objective lens 108 is further moved by the distance d, the focal point of the laser beam LB coincides with the recording surface of the optical disc 10. Even in this case, a so-called S-shaped signal waveform (S-curve) appears in the reflected light detection signal as shown on the right side of FIG.
[0094] 尚、光ディスク 10の記録面の反射率と比較して、光ディスク 10の表面の反射率が 小さいことから、図 4 (b)に示すように、レーザ光 LBの焦点が光ディスク 10の表面に 合致したときの S字状の信号波形の振幅は、レーザ光 LBの焦点が光ディスク 10の k 録面に合致したときの S字状の信号波形の振幅よりも小さくなる。  Note that since the reflectance of the surface of the optical disk 10 is smaller than the reflectance of the recording surface of the optical disk 10, the focal point of the laser beam LB is the surface of the optical disk 10 as shown in FIG. The amplitude of the S-shaped signal waveform when it matches is smaller than the amplitude of the S-shaped signal waveform when the focal point of the laser beam LB matches the k recording surface of the optical disc 10.
[0095] このとき、レーザ光 LBが光ディスク 10の表面に合致して力も記録面に合致するまで の間の対物レンズ 108の移動量は、光ディスク 10の基板厚を直接的にないしは間接 的に示している。従って、ディスク判別部 314bは、ホログラムレーザ 101から出力さ れる反射光の検出信号をモニタリングすることで、一つ目の S字状の信号波形が得ら れてから二つ目の S字状の信号波形が得られるまでの間の対物レンズ 108の移動量 dを、対物レンズ Z位置センサ 110の出力より算出する。これにより、光ディスク 10の 基板厚が算出される。 [0095] At this time, until the laser beam LB matches the surface of the optical disc 10 and the force also matches the recording surface. The amount of movement of the objective lens 108 in between indicates the substrate thickness of the optical disc 10 directly or indirectly. Therefore, the disc discriminating unit 314b monitors the detection signal of the reflected light output from the hologram laser 101, and after obtaining the first S-shaped signal waveform, the second S-shaped signal waveform is obtained. The amount of movement d of the objective lens 108 until the signal waveform is obtained is calculated from the output of the objective lens Z position sensor 110. Thereby, the substrate thickness of the optical disk 10 is calculated.
[0096] 尚、対物レンズ 108の移動速度が一定であれば、一つ目の S字状の信号波形が得 られてから二つ目の S字状の信号波形が得られるまでの間の時間 ΔΤを検出すること でも、光ディスク 10の基板厚を算出することができる。即ち、対物レンズ 108の移動 速度と一つ目の S字状の信号波形が得られて力 二つ目の S字状の信号波形が得ら れるまでの間の時間 ΔΤとを掛け合わせることで、光ディスク 10の基板厚を算出する ことができる。これにより、対物レンズ Z位置センサ 110を設ける必要がなくなるため、 光ピックアップ 100の構成をより簡易なものとすることができる。  [0096] If the moving speed of the objective lens 108 is constant, the time from when the first S-shaped signal waveform is obtained until the second S-shaped signal waveform is obtained. The substrate thickness of the optical disk 10 can also be calculated by detecting ΔΤ. That is, by multiplying the moving speed of the objective lens 108 and the time ΔΤ between the time when the first S-shaped signal waveform is obtained and the time when the second S-shaped signal waveform is obtained. The substrate thickness of the optical disk 10 can be calculated. As a result, it is not necessary to provide the objective lens Z position sensor 110, and the configuration of the optical pickup 100 can be simplified.
[0097] 尚、上述した S字状の信号波形は、一般的にフォーカシング動作の際に利用される ものであり、本実施例においては、これを有効に利用して光ディスク 10の基板厚を算 出している。従って、情報記録再生装置 300の処理負荷を増加させることなぐ光デ イスク 10の基板厚を算出することができる。  Note that the S-shaped signal waveform described above is generally used during a focusing operation, and in the present embodiment, this is used effectively to calculate the substrate thickness of the optical disc 10. I'm out. Accordingly, it is possible to calculate the substrate thickness of the optical disk 10 without increasing the processing load of the information recording / reproducing apparatus 300.
[0098] 再び図 3において、続いて、ディスク判別部 314bの動作により、ステップ S103にお いて算出された基板厚に基づいて、光ディスク 10の種類が決定される (ステップ S10 4)。その後、補正指示部 314aの制御の下に、球面収差のラフ補正 (即ち、第 1球面 収差補正素子 103による球面収差の補正)が行われる (ステップ S105)。  In FIG. 3 again, subsequently, the type of the optical disc 10 is determined based on the substrate thickness calculated in step S103 by the operation of the disc determination unit 314b (step S104). Thereafter, rough correction of spherical aberration (that is, correction of spherical aberration by the first spherical aberration correction element 103) is performed under the control of the correction instruction unit 314a (step S105).
[0099] ここで、図 5から図 7を参照して、第 1球面収差補正素子 103の具体的構成及び第 1球面収差補正素子 103による球面収差の補正の具体的な態様 (即ち、ラフ補正の 具体的な態様)について説明する。ここに、図 5から図 7は夫々、第 1球面収差補正 素子 103の具体的構成及び第 1球面収差補正素子 103による球面収差の補正の具 体的な態様を概念的に示す断面図である。  Here, referring to FIG. 5 to FIG. 7, the specific configuration of the first spherical aberration correction element 103 and the specific mode of correction of spherical aberration by the first spherical aberration correction element 103 (ie, rough correction) Will be described. FIGS. 5 to 7 are sectional views conceptually showing a specific configuration of the first spherical aberration correcting element 103 and a specific mode of correcting the spherical aberration by the first spherical aberration correcting element 103, respectively. .
[0100] 図 5に示すように、第 1球面収差補正素子 103aは、本発明の「光路調整手段」の一 具体例を構成しており、ペンタブリズムに類似する構成を有するプリズムである。第 1 球面収差補正素子 103aは、入射面 1031、光分離面 1032、ミラー 1033a及び 103 3b、並びに出射面 1034を備える。 As shown in FIG. 5, the first spherical aberration correcting element 103a constitutes a specific example of the “optical path adjusting means” of the present invention, and is a prism having a configuration similar to a pen tab rhythm. First The spherical aberration correction element 103a includes an incident surface 1031, a light separation surface 1032, mirrors 1033a and 1033b, and an output surface 1034.
[0101] 入射面 1031及び出射面 1034は、ホログラムレーザ 101から照射されるレーザ光 L Bを、その偏光方向によらずに透過する。  The incidence surface 1031 and the emission surface 1034 transmit the laser light LB emitted from the hologram laser 101 regardless of the polarization direction.
[0102] 光分離面 1032は、偏光分離膜を含む誘電体多層膜を含んで構成されており、レ 一ザ光 LBのうち特定の偏光成分を選択的に透過し、レーザ光 LBのうち他の偏光成 分を選択的に反射する。例えば、図 5に示す光分離面 1032は、レーザ光 LBのうち P 偏光成分を選択的に透過し、レーザ光 LBのうち S偏光成分を選択的に反射する。こ のとき、光分離面 1032は、ホログラムレーザ 101からの光軸に対して概ね 45度の角 度を有して配置されることが好まし 、。  [0102] The light separation surface 1032 includes a dielectric multilayer film including a polarization separation film. The light separation surface 1032 selectively transmits a specific polarization component of the laser light LB and the other of the laser light LB. It selectively reflects the polarization component of. For example, the light separation surface 1032 shown in FIG. 5 selectively transmits the P-polarized component of the laser beam LB and selectively reflects the S-polarized component of the laser beam LB. At this time, it is preferable that the light separation surface 1032 be disposed with an angle of approximately 45 degrees with respect to the optical axis from the hologram laser 101.
[0103] ミラー 1033a及び 1033bの夫々は、レーザ光 LBを反射する。ミラー 1033a及び 10 33bの夫々は、光分離面 1032において透過された P偏光成分のレーザ光 LB力 光 分離面 1032において反射された S偏光成分のレーザ光 LBと同一の光軸を有して出 射面から出射するように配置される。  Each of mirrors 1033a and 1033b reflects laser beam LB. Each of the mirrors 1033a and 1033b has the same optical axis as the laser beam LB of the P-polarized component transmitted on the light separation surface 1032 and the laser beam LB of the S-polarized component reflected on the light separation surface 1032. It arrange | positions so that it may radiate | emit from an incident surface.
[0104] このような第 1球面収差補正素子 103により、 P偏光成分のレーザ光 LBの光路長と S偏光成分のレーザ光 LBの光路長とを変えることができる。具体的には、 P偏光成分 のレーザ光 LBの光路長が、 S偏光成分のレーザ光 LBの光路長よりも長くなつて 、る 。このとき、本発明の「変換手段」の一具体例を構成する液晶 λ Ζ2板 102は、補正 指示部 314aの制御の下に、光ディスク 10の基板厚に応じて第 1球面収差補正素子 103に入射するレーザ光 LBの偏光方向を任意に変換 (即ち、設定)することができる 。言い換えれば、液晶 λ Ζ2板 102から出射されるレーザ光 LBがどのような偏光成 分を有しているかに応じて、レーザ光 LBの光路長が変えられる。レーザ光 LBの光路 長が変わることは、ホログラムレーザ 101からコリメータレンズ 104までの光学的な距 離が変わることに相当する。ホログラムレーザ 101からコリメータレンズ 104までの光 学的な距離を変えることで、レーザ光 LBに付加する球面収差の補正量を変えること ができる。より具体的説明すると、ホログラムレーザ 101からコリメータレンズ 104まで の光学的な距離が変わることで、コリメータレンズ 104は、例えば Ρ偏光成分のレーザ 光 LBを例えば平行光束に変える一方で、例えば S偏光成分のレーザ光 LBに対して 例えば P偏光成分に与えた屈折率とは異なる屈折率を与える。これは、球面収差を 相対的に大きなレベルで補正することに相当する。従って、光ディスク 10の基板厚に 応じて液晶 λ Ζ2板 102から出射するレーザ光 LBの偏光方向を変換することで、光 ディスク 10の基板厚に応じた球面収差の相対的に大きなレベルでの補正を行うこと ができる。 With such a first spherical aberration correction element 103, the optical path length of the P-polarized component laser beam LB and the optical path length of the S-polarized component laser beam LB can be changed. Specifically, the optical path length of the laser beam LB of the P-polarized component is longer than the optical path length of the laser beam LB of the S-polarized component. At this time, the liquid crystal λ 2 plate 102 constituting one specific example of the “conversion means” of the present invention is applied to the first spherical aberration correction element 103 according to the substrate thickness of the optical disc 10 under the control of the correction instruction unit 314a. The polarization direction of the incident laser beam LB can be arbitrarily converted (that is, set). In other words, the optical path length of the laser beam LB can be changed according to what polarization component the laser beam LB emitted from the liquid crystal λ 2 plate 102 has. The change in the optical path length of the laser beam LB corresponds to the change in the optical distance from the hologram laser 101 to the collimator lens 104. By changing the optical distance from the hologram laser 101 to the collimator lens 104, the correction amount of the spherical aberration added to the laser beam LB can be changed. More specifically, by changing the optical distance from the hologram laser 101 to the collimator lens 104, the collimator lens 104 changes, for example, the laser beam LB of a Ρ-polarized component into a parallel light beam, for example, while it changes, for example, an S-polarized component. For laser beam LB For example, a refractive index different from the refractive index given to the P-polarized component is given. This is equivalent to correcting the spherical aberration at a relatively large level. Therefore, by changing the polarization direction of the laser beam LB emitted from the liquid crystal λ 2 plate 102 according to the substrate thickness of the optical disc 10, correction of spherical aberration according to the substrate thickness of the optical disc 10 at a relatively large level. It can be performed.
[0105] 例えば、光ディスク 10の一例たる Blu— ray Disc (即ち、基板厚が 0. lmmである 光ディスク 10)に対するデータの記録或いは再生を行う際には、補正指示部 314aは 、レーザ光 LBの偏光方向を S偏光に変換するように液晶 λ Ζ2板 102を制御する。 これにより、液晶 λ Ζ2板 102からは S偏光成分のレーザ光 LBが出射され、その結 果、レーザ光 LBの光路長は相対的に短くなる。他方、光ディスク 10の一例たる HD DVD (即ち、基板厚が 0. 6mmである光ディスク 10)に対するデータの記録或いは 再生を行う際には、補正指示部 314aは、レーザ光 LBの偏光方向を P偏光に変換す るように液晶 λ Ζ2板 102を制御する。これにより、液晶 λ Ζ2板 102からは Ρ偏光成 分のレーザ光 LBが出射され、その結果、レーザ光 LBの光路長は相対的に長くなる  [0105] For example, when recording or reproducing data on a Blu-ray Disc (that is, the optical disc 10 having a substrate thickness of 0.1 mm) as an example of the optical disc 10, the correction instruction unit 314a transmits the laser beam LB. The liquid crystal λ 2 plate 102 is controlled so that the polarization direction is converted to S-polarized light. As a result, the S-polarized component laser light LB is emitted from the liquid crystal λ 2 plate 102, and as a result, the optical path length of the laser light LB becomes relatively short. On the other hand, when recording or reproducing data on an HD DVD (that is, an optical disc 10 having a substrate thickness of 0.6 mm) as an example of the optical disc 10, the correction instruction unit 314a changes the polarization direction of the laser beam LB to P-polarization. The liquid crystal λ 2 plate 102 is controlled so as to convert into As a result, the laser beam LB of the polarization component is emitted from the liquid crystal λ 2 plate 102, and as a result, the optical path length of the laser beam LB becomes relatively long.
[0106] もちろん、他の基板厚を有する光ディスク 10 (例えば、基板厚が 1. 2mmである光 ディスク 10)についても、同様の手順によりレーザ光 LBの光路長を変えることができ る。例えば、光ディスク 10の一例たる DVD (即ち、基板厚が 0. 6mmである光デイス ク 10)に対するデータの記録或いは再生を行う際には、補正指示部 314aは、レーザ 光 LBの偏光方向を S偏光に変換するように液晶 λ Ζ2板 102を制御する。これにより 、液晶 λ Ζ2板 102からは S偏光成分のレーザ光 LBが出射され、その結果、レーザ 光 LBの光路長は相対的に短くなる。このとき、 DVDの基板厚は HD DVDの基板 厚と同じであるため、光ディスク 10からのレーザ光 LBの反射率等を検出したり、或い は光ディスク 10上に記録されているディスクコード等を読み取ることで、光ディスク 10 の種別を更に詳細に識別してもよい。他方、光ディスク 10の一例たる CD (即ち、基 板厚が 1. 2mmである光ディスク 10)に対するデータの記録或いは再生を行う際に は、補正指示部 314aは、レーザ光 LBの偏光方向を P偏光に変換するように液晶え Z2板 102を制御する。これにより、液晶 λ Ζ2板 102からは P偏光成分のレーザ光 L Bが出射され、その結果、レーザ光 LBの光路長は相対的に長くなる。 Of course, the optical path length of the laser beam LB can be changed by the same procedure for the optical disc 10 having another substrate thickness (for example, the optical disc 10 having a substrate thickness of 1.2 mm). For example, when recording or reproducing data on a DVD as an example of the optical disc 10 (that is, the optical disc 10 having a substrate thickness of 0.6 mm), the correction instruction unit 314a changes the polarization direction of the laser beam LB to S. The liquid crystal λ 2 plate 102 is controlled so as to be converted into polarized light. As a result, the laser light LB of the S-polarized component is emitted from the liquid crystal λ 2 plate 102, and as a result, the optical path length of the laser light LB becomes relatively short. At this time, since the DVD substrate thickness is the same as the HD DVD substrate thickness, the reflectivity of the laser beam LB from the optical disc 10 is detected, or the disc code recorded on the optical disc 10 is detected. By reading, the type of the optical disk 10 may be identified in more detail. On the other hand, when recording or reproducing data on a CD (that is, an optical disk 10 having a substrate thickness of 1.2 mm) as an example of the optical disk 10, the correction instruction unit 314a changes the polarization direction of the laser beam LB to P-polarized light. The liquid crystal display Z2 plate 102 is controlled to be converted into As a result, the liquid crystal λ Ζ2 plate 102 emits laser light of P-polarized component L B is emitted, and as a result, the optical path length of the laser beam LB becomes relatively long.
[0107] この場合、夫々の光ディスク 10に対して好適に球面収差を補正することができるよ うに、第 1球面収差補正素子 103a内に光分離面 1032やミラー 1033a及び 1033b 等が配置されていることが好ましい。従ってこれらの構成要素の配置は、当該情報記 録再生装置 300が扱うことができる光ディスク 10の種類 (或いは、基板厚)ゃ光デイス ク 10の種類に応じたレーザ光 LBの波長や複数種類の光ディスク 10の夫々において 生じ得る球面収差の量、更には光ピックアップ 100内における光学系の構成要素の 各種パラメータ等を考慮した上で、実験的、経験的、数学的又は理論的に、若しくは シミュレーション等を用いて個別具体的に指定することが好ましい。 In this case, a light separation surface 1032, mirrors 1033a and 1033b, etc. are arranged in the first spherical aberration correction element 103a so that the spherical aberration can be suitably corrected for each optical disc 10. It is preferable. Therefore, the arrangement of these constituent elements is such that the type of optical disk 10 (or substrate thickness) that can be handled by the information recording / reproducing apparatus 300 is the wavelength of the laser beam LB corresponding to the type of optical disk 10 or a plurality of types. Considering the amount of spherical aberration that can occur in each of the optical discs 10, and various parameters of the components of the optical system in the optical pickup 100, experimental, empirical, mathematical or theoretical, simulation, etc. It is preferable to individually specify using.
[0108] 図 6に示すように、第 1球面収差補正素子 103bは、入射面 1031、光分離面 1032 a及び 1032b、ミラー 1033a及び 1033b、並びに出射面 1034を備えるプリズムであ る。このような構成を有する第 1球面収差補正素子 103bであっても、上述した第 1球 面収差補正素子 103aと同様に、光ディスク 10の基板厚に応じた球面収差の相対的 に大きなレベルでの補正を行うことができる。 As shown in FIG. 6, the first spherical aberration correction element 103b is a prism including an entrance surface 1031, light separation surfaces 1032a and 1032b, mirrors 1033a and 1033b, and an exit surface 1034. Even in the first spherical aberration correcting element 103b having such a configuration, similarly to the first spherical aberration correcting element 103a described above, the spherical aberration corresponding to the substrate thickness of the optical disk 10 is relatively high. Correction can be performed.
[0109] 尚、上述した光分離面 1032やミラー 1033等或いはこれらに類似した構成要素を 備えることでレーザ光 LBの光路長を変えることができれば、光分離面 1032やミラー 1033等の配置や形状、更には第 1球面収差補正素子 103の形状等は任意の構成 を採用することができる。また、上述した P偏光成分及び S偏光成分に加えて又は代 えて、他の偏光成分を用いて更に細力べレーザ光 LBの光路長を変えるように構成し てもよい。また、ある特定の性質を有するレーザ光 LBの光路長を選択的に変えること ができれば、上述した第 1球面収差補正素子 103として機能させることができる。この ため、偏光成分に加えて又は代えて、レーザ光 LBの他の性質ないしは特徴に基づ いて光路長を変えるように構成してもよい。この場合、液晶 λ Ζ2板 102にカ卩えて又 は代えて、レーザ光 LBの他の性質な 、しは特徴を設定な 、しは変換することができ る素子を、ホログラムレーザ 101と第 1球面収差補正素子 103との間に配置すること が好ましい。 [0109] If the optical path length of the laser beam LB can be changed by providing the above-described light separation surface 1032, mirror 1033, or the like, or similar components, the arrangement and shape of the light separation surface 1032, mirror 1033, etc. Furthermore, the shape of the first spherical aberration correction element 103 and the like can adopt any configuration. Further, in addition to or in place of the P-polarized component and the S-polarized component described above, the other optical components may be used to further change the optical path length of the laser beam LB. Further, if the optical path length of the laser beam LB having a specific property can be selectively changed, it can function as the first spherical aberration correction element 103 described above. Therefore, the optical path length may be changed based on other properties or characteristics of the laser beam LB in addition to or instead of the polarization component. In this case, in place of or instead of the liquid crystal λ 2 plate 102, an element that can set or convert other characteristics or characteristics of the laser beam LB is used as the hologram laser 101 and the first element. It is preferable to dispose it between the spherical aberration correction element 103.
[0110] 図 7に示すように、第 1球面収差補正素子 103cは、本発明の「光路調整手段」の一 具体例を構成しており、直方体状の方解石 (CaCO )を含んで構成される。 [0111] 方解石は、硝酸ナトリウム型構造 (sodium nitrate structure)と呼ばれる結晶構造を 有しており、特異な光学的性質を有する。即ち、方解石は、その結晶の特定の方向 から入射するレーザ光を二つの偏光成分 (例えば、 P偏光成分と S偏光成分と)に分 離すると共に、互いに直交する偏光成分の夫々に対して、異なる屈折率を有する。 例えば、 P偏光成分のレーザ光 LBに対しては、屈折率 n= l. 8を有し、他方 S偏光 成分のレーザ光 LBに対しては、屈折率 n= l. 6を有する。従って、二つの偏光成分 を有するレーザ光 LBの夫々は異なる屈折率を有する結晶中を等距離だけ進むため 、夫々のレーザ光 LBの光路長(より具体的には、夫々のレーザ光 LBが空気中を伝 搬したと仮定した場合の光路長)は実質的に変えられる。従って、上述した第 1球面 収差補正素子 103a及び 103bと同様に、光ディスク 10の基板厚に応じた球面収差 の相対的に大きなレベルでの補正を行うことができる。 As shown in FIG. 7, the first spherical aberration correction element 103c constitutes a specific example of the “optical path adjusting means” of the present invention, and includes a cuboid calcite (CaCO 3). . [0111] Calcite has a crystal structure called a sodium nitrate structure and has unique optical properties. That is, calcite separates laser light incident from a specific direction of the crystal into two polarization components (for example, a P-polarization component and an S-polarization component), and for each of the polarization components orthogonal to each other, Have different refractive indices. For example, the laser beam LB of the P-polarized component has a refractive index n = l.8, while the laser beam LB of the S-polarized component has a refractive index n = l.6. Therefore, since each of the laser beams LB having two polarization components travels through the crystal having different refractive indexes by an equal distance, the optical path length of each laser beam LB (more specifically, each laser beam LB is air The optical path length (assuming that it is transmitted inside) can be changed substantially. Therefore, similarly to the first spherical aberration correction elements 103a and 103b described above, it is possible to perform correction at a relatively large level of spherical aberration according to the substrate thickness of the optical disc 10.
[0112] 尚、この場合も、第 1球面収差補正素子 103cのサイズや種類等 (即ち、方解石の サイズや種類等)は、当該情報記録再生装置 300が扱うことができる光ディスク 10の 種類 (或いは、基板厚)や光ディスク 10の種類に応じたレーザ光 LBの波長や複数種 類の光ディスク 10の夫々において生じ得る球面収差の量、更には光ピックアップ 10 0内における光学系の構成要素の各種パラメータや方解石の特性等を考慮した上で 、実験的、経験的、数学的又は理論的に、若しくはシミュレーション等を用いて個別 具体的に指定することが好ましい。  In this case as well, the size and type of the first spherical aberration correction element 103c (that is, the size and type of calcite) are the types of optical discs 10 that the information recording / reproducing apparatus 300 can handle (or (Substrate thickness) and the wavelength of the laser beam LB according to the type of the optical disk 10, the amount of spherical aberration that can occur in each of the multiple types of optical disks 10, and various parameters of the components of the optical system in the optical pickup 100 In consideration of the characteristics of calcite and calcite, it is preferable to specify them experimentally, empirically, mathematically or theoretically, or individually using simulation or the like.
[0113] 再び図 3において、続いて、ホログラムレーザ 101の動作により、ローデイングしてい る光ディスク 10に対応する波長を有するレーザ光 LBが照射される (ステップ S106)。 具体的には、ステップ 104において決定された光ディスク 10の種類に対応するレー ザ光 LBが照射される。より具体的には、ローデイングされた光ディスク 10が例えば C Dであると決定されていれば、 780nmの波長を有するレーザ光 LB (即ち、赤外レー ザ光)が照射される。ローデイングされた光ディスク 10が例えば DVDであると決定さ れていれば、 660nmの波長を有するレーザ光 LB (即ち、赤レーザ光)が照射される 。ローデイングされた光ディスク 10が例えば HD DVDや Blu—ray Discであると決 定されていれば、 420nmの波長を有するレーザ光 LB (即ち青紫レーザ光)が照射さ れる。 [0114] 続いて、図示しないサーボ回路の動作により、フォーカスサーボ及びトラッキングサ ーボがクローズされ(言 、換えれば、フォーカスサーボ及びトラッキングサーボが ON に切り替えられ)、トラッキング処理及びフォーカシング処理が実行される (ステップ S 107)。 In FIG. 3 again, subsequently, the laser beam LB having a wavelength corresponding to the optical disc 10 being loaded is irradiated by the operation of the hologram laser 101 (step S106). Specifically, the laser beam LB corresponding to the type of the optical disc 10 determined in step 104 is irradiated. More specifically, if it is determined that the loaded optical disc 10 is, for example, a CD, a laser beam LB having a wavelength of 780 nm (ie, infrared laser beam) is irradiated. If it is determined that the loaded optical disk 10 is, for example, a DVD, a laser beam LB having a wavelength of 660 nm (that is, a red laser beam) is irradiated. If it is determined that the loaded optical disc 10 is, for example, an HD DVD or a Blu-ray Disc, a laser beam LB having a wavelength of 420 nm (that is, a blue-violet laser beam) is irradiated. [0114] Subsequently, the focus servo and tracking servo are closed (in other words, the focus servo and tracking servo are switched ON) by the operation of the servo circuit (not shown), and the tracking process and the focusing process are executed. (Step S107).
[0115] その後、球面収差のゼロ補正 (即ち、第 2球面収差補正素子 107による球面収差の 補正)が行われた後(ステップ S 108)、光ディスク 10へのデータの記録或いは光ディ スク 10に記録されたデータの再生が行なわれる (ステップ S 109)。  [0115] After that, zero correction of spherical aberration (that is, correction of spherical aberration by the second spherical aberration correction element 107) is performed (step S108), and then data is recorded on the optical disc 10 or the optical disc 10 is recorded. The recorded data is played back (step S109).
[0116] ここで、図 8及び図 9を参照して、第 2球面収差補正素子 107の具体的構成及び第 2球面収差補正素子 107による球面収差の補正の具体的な態様 (即ち、ゼロ補正の 具体的な態様)について説明する。ここに、図 8は、第 2球面収差補正素子 107の具 体的構成を概念的に示す断面図であり、図 9は、球面収差を検出する際の反射光の 分割の態様を概念的に示す平面図である。  Here, referring to FIG. 8 and FIG. 9, the specific configuration of the second spherical aberration correction element 107 and the specific mode of correction of the spherical aberration by the second spherical aberration correction element 107 (ie, zero correction) Will be described. FIG. 8 is a sectional view conceptually showing the specific configuration of the second spherical aberration correcting element 107, and FIG. 9 conceptually shows how the reflected light is divided when detecting the spherical aberration. FIG.
[0117] 図 8 (a)に示すように、第 2球面収差補正素子 107は、ガラス基板 1071a及び 1071 bと、透明電極 1072a及び 1072bと、酉己向膜 1073a及び 1073bと、液晶 1074とを備 える。ガラス基板 1071a及び 1071bの夫々の内面に、例えば ITO (Indium Titan Oxi de)力 構成される透明電極 1072a及び 1072bが蒸着されている。また、透明電極 1 072a及び 1072bの夫々の内面には、液晶 1074に内の液晶分子に所定の分子配 向を与えるための配向膜 1073a及び 1073bが形成されている。この配向膜 1073a 及び 1074bの間に、ネマティック液晶などの複屈折を有する液晶 1074が封入されて いる。即ち、液晶 1074は、液晶 1074内の液晶分子の光学軸方向とこれに垂直な方 向とでその屈折率が異なる複屈折効果を有している。  As shown in FIG. 8 (a), the second spherical aberration correction element 107 includes glass substrates 1071a and 1071b, transparent electrodes 1072a and 1072b, self-directing films 1073a and 1073b, and liquid crystal 1074. Prepare. Transparent electrodes 1072a and 1072b configured, for example, with ITO (Indium Titan Oxide) force are deposited on the inner surfaces of the glass substrates 1071a and 1071b. In addition, alignment films 1073a and 1073b are provided on the inner surfaces of the transparent electrodes 1072a and 1072b to give the liquid crystal molecules in the liquid crystal molecules a predetermined molecular orientation. A liquid crystal 1074 having birefringence such as a nematic liquid crystal is sealed between the alignment films 1073a and 1074b. That is, the liquid crystal 1074 has a birefringence effect in which the refractive index differs between the direction of the optical axis of the liquid crystal molecules in the liquid crystal 1074 and the direction perpendicular thereto.
[0118] 図 8 (b)に示すように、透明電極 1072a及び 1072bの少なくとも一方は、マトリクス 状に分割されており、夫々の分割された電極部(即ち、図 8 (b)のマス目に相当する 部分)毎に、異なる電圧を液晶 1074に印加することができる。分割された複数の電 極部(即ち、透明電極 1072a或いは 1072bを構成する複数のマトリクス部分)の夫々 力もの電圧の印加は、補正指示部 314aの制御を受ける液晶ドライブ 111の動作によ り制御される。  [0118] As shown in Fig. 8 (b), at least one of the transparent electrodes 1072a and 1072b is divided into a matrix, and each of the divided electrode portions (that is, the cells in Fig. 8 (b)) is divided. A different voltage can be applied to the liquid crystal 1074 for each corresponding part). The application of powerful voltages to each of the divided electrode parts (that is, the plurality of matrix parts constituting the transparent electrode 1072a or 1072b) is controlled by the operation of the liquid crystal drive 111 that is controlled by the correction instruction part 314a. Is done.
[0119] このように、分割された複数の電極部毎に異なる電圧を印加することができるため、 分割された電極部に対応する形状で液晶 1074の屈折率を変えることができる。言い 換えれば、液晶 1074内の屈折率をマトリクス状に変えることができる。従って、各マト リクス部分を透過するレーザ光 LBの光束毎に光路差を付与する(言い換えれば、光 路長を変える)ことができる。また、第 2球面収差補正素子 107は、液晶 1074を利用 して光路差を付与している。このため、上述した光分離面 1032やミラー 1033等の構 成要素を用いて光路差を付与する第 1球面収差補正素子 103と比較して、第 2球面 収差補正素子 107は、より小さなレベルでの光路差を付与することができる。また、分 割された電極部分に対応する液晶 1074毎に異なる光路差を付与することができる ため、より細部に渡って異なる光路差を付与することができる。従って、球面収差に応 じて分割された複数の電極部の夫々に印加される電圧を制御することで、第 2球面 収差補正素子 107は、第 1球面収差補正素子 103と比較して、球面収差をより微細 なレベルで補正することができる。言い換えれば、第 2球面収差補正素子 107は、第 1球面収差補正素子 103による補正では除去しきれない球面収差を補正することが できる。 [0119] Thus, different voltages can be applied to each of the plurality of divided electrode parts, The refractive index of the liquid crystal 1074 can be changed in a shape corresponding to the divided electrode portion. In other words, the refractive index in the liquid crystal 1074 can be changed into a matrix. Therefore, an optical path difference can be imparted (in other words, the optical path length can be changed) for each beam of the laser beam LB that passes through each matrix portion. The second spherical aberration correcting element 107 uses a liquid crystal 1074 to give an optical path difference. For this reason, the second spherical aberration correction element 107 has a smaller level than the first spherical aberration correction element 103 that uses the components such as the light separation surface 1032 and the mirror 1033 described above to provide an optical path difference. The optical path difference can be given. Further, since different optical path differences can be given to the liquid crystals 1074 corresponding to the divided electrode parts, different optical path differences can be given in more detail. Therefore, the second spherical aberration correction element 107 is compared with the first spherical aberration correction element 103 by controlling the voltage applied to each of the plurality of electrode portions divided according to the spherical aberration. Aberrations can be corrected at a finer level. In other words, the second spherical aberration correction element 107 can correct spherical aberration that cannot be removed by the correction by the first spherical aberration correction element 103.
[0120] このとき、レーザ光 LBを光ディスク 10に照射することで実際に生じている球面収差 の量を算出し、該球面収差の量が略零になるように、印加される電圧が制御される。 球面収差の量は、図 2と図 9に示すように、集光レンズ 112とフォトディテクタ 114から 116の間に配置されるホログラム素子 113上における反射光の有効ビームスポットの 強度分布に基づいて算出される。言い換えれば、ファーフィールド上の光の強度分 布に基づいて算出される。図 9に示すように、ホログラム素子 113上に照射される反 射光は、ホログラム素子 113によって例えば同心円状に分割された後に、夫々、対応 するフォトディテクタ 114から 116に集光される。例えば、反射光の有効ビームスポッ トのうち最外周部分に対応する光がフォトディテクタ 114へ集光され、反射光の有効 ビームスポットのうち中周部分に対応する光がフォトディテクタ 115へ集光され、反射 光の有効ビームスポットのうち最内周部分に対応する光がフォトディテクタ 116へ集 光される。フォトディテクタ 114から 116の夫々で検出される反射光の強度は、図 2の 収差量算出部 314cへ出力される。  At this time, the amount of spherical aberration actually generated by irradiating the optical disc 10 with the laser beam LB is calculated, and the applied voltage is controlled so that the amount of spherical aberration becomes substantially zero. The As shown in FIGS. 2 and 9, the amount of spherical aberration is calculated based on the intensity distribution of the effective beam spot of the reflected light on the hologram element 113 disposed between the condenser lens 112 and the photodetectors 114 to 116. The In other words, it is calculated based on the light intensity distribution on the far field. As shown in FIG. 9, the reflected light radiated onto the hologram element 113 is, for example, concentrically divided by the hologram element 113 and then condensed on the corresponding photodetectors 114 to 116, respectively. For example, the light corresponding to the outermost peripheral part of the effective beam spot of the reflected light is condensed on the photodetector 114, and the light corresponding to the middle part of the effective beam spot of the reflected light is condensed on the photodetector 115 to be reflected light. The light corresponding to the innermost peripheral portion of the effective beam spot is collected to the photodetector 116. The intensity of the reflected light detected by each of the photodetectors 114 to 116 is output to the aberration amount calculation unit 314c in FIG.
[0121] 図 2の収差量算出部 314cでは、フォトディテクタ 114から 116の夫々で検出される 反射光の強度を相互に比較することで、球面収差の量を算出する。具体的には、フ オトディテクタ 114から 116の夫々で検出される反射光の強度が夫々同等の値を有し ていれば、収差量算出部 314cは、小さな球面収差の量を算出する。他方、フォトデ ィテクタ 114から 116の夫々で検出される反射光の強度が大きな差異を有して 、れ ば、収差量算出部 314cは、大きな球面収差の量を算出する。力!]えて、収差量算出 部 314cは、球面収差の方向等 (即ち、例えばプラス方向及びマイナス方向の何れの 方向に向力つて球面収差が発生しているか等の情報)を更に算出してもよい。算出さ れた球面収差の量等の情報は、補正指示部 314aへ出力される。 [0121] In the aberration amount calculation unit 314c of Fig. 2, the detection is made by each of the photodetectors 114 to 116. The amount of spherical aberration is calculated by comparing the intensities of reflected light with each other. Specifically, if the intensity of the reflected light detected by each of the photodetectors 114 to 116 has the same value, the aberration amount calculation unit 314c calculates the amount of small spherical aberration. On the other hand, if the intensity of the reflected light detected by each of the photodetectors 114 to 116 has a large difference, the aberration amount calculation unit 314c calculates the amount of large spherical aberration. In addition, the aberration amount calculation unit 314c further calculates the direction of spherical aberration and the like (that is, information on whether the spherical aberration is generated in the positive direction or the negative direction, for example). Also good. Information such as the calculated amount of spherical aberration is output to the correction instruction unit 314a.
[0122] 補正指示部 314aは、球面収差が零或いは略零となるような補正を第 2球面収差補 正素子 107に行わせるように、図 8の液晶 1074に印加される電圧を制御する液晶ド ライブ 111を制御する。具体的には、フォトディテクタ 114から 116の夫々で検出され る反射光の強度が同等の値を有するような状態を実現可能な電圧を分割された電極 部の夫々に印加するように液晶ドライブ 111を制御する。液晶ドライブ 111は、補正 指示部 314aの制御に基づき、分割された電極部毎に印加する電圧を制御する。そ の結果、フォトディテクタ 114から 116の夫々で検出される反射光の強度が同等の値 を有するような状態 (即ち、球面収差が零或いは略零となる状態)が実現される。  [0122] The correction instruction unit 314a controls the voltage applied to the liquid crystal 1074 in FIG. 8 so that the second spherical aberration correction element 107 performs correction so that the spherical aberration becomes zero or substantially zero. Controls drive 111. Specifically, the liquid crystal drive 111 is applied so that a voltage capable of realizing a state in which the intensity of the reflected light detected by each of the photodetectors 114 to 116 has an equivalent value is applied to each of the divided electrode portions. Control. The liquid crystal drive 111 controls the voltage applied to each of the divided electrode units based on the control of the correction instruction unit 314a. As a result, a state in which the intensity of the reflected light detected by each of the photodetectors 114 to 116 has an equivalent value (that is, a state in which the spherical aberration is zero or substantially zero) is realized.
[0123] 以上説明したように、本実施例に係る情報記録再生装置 300によれば、第 1球面 収差補正素子 103により、レーザ光 LBの光路 (光路長)が変えられることで、相対的 に大きな (言い換えれば、ラフな)レベルでの球面収差の補正がなされる。また、第 2 球面収差補正素子 107により、液晶 1074の屈折率を細力べ制御することで、第 1球 面収差補正素子 103による補正では除去しきれない球面収差の補正がなされる。特 に、第 1球面収差補正素子 103による相対的に大きなレベルでの球面収差の補正が なされるがゆえに、第 2球面収差補正素子 107は、相対的に大きなレベルの球面収 差を考慮することなぐ第 1球面収差補正素子 103による補正では除去しきれない球 面収差の補正を好適に行うことができる。また、第 2球面収差補正素子 107によって 、第 1球面収差補正素子 103による補正では除去しきれない球面収差の補正がなさ れるがゆえに、第 1球面収差補正素子 103は、相対的に大きなレベルでの球面収差 の補正を好適に行うことができる。即ち、第 1球面収差補正素子 103及び第 2球面収 差補正素子 107の夫々は、互いに相手方が補正しきれない球面収差を補正すると いう、互いを補完する関係にある。 As described above, according to the information recording / reproducing apparatus 300 in the example, the optical path (optical path length) of the laser beam LB is changed by the first spherical aberration correction element 103, so that The spherical aberration is corrected at a large (in other words, rough) level. Further, the second spherical aberration correction element 107 controls the refractive index of the liquid crystal 1074 in a vigorous manner, thereby correcting spherical aberration that cannot be removed by the correction by the first spherical aberration correction element 103. In particular, since the first spherical aberration correction element 103 corrects the spherical aberration at a relatively large level, the second spherical aberration correction element 107 considers a relatively large level of spherical aberration. Accordingly, it is possible to suitably correct spherical aberration that cannot be removed by the correction by the first spherical aberration correcting element 103. Further, since the second spherical aberration correction element 107 corrects spherical aberration that cannot be removed by the correction by the first spherical aberration correction element 103, the first spherical aberration correction element 103 has a relatively large level. The spherical aberration can be suitably corrected. That is, the first spherical aberration correction element 103 and the second spherical aberration Each of the difference correction elements 107 has a complementary relationship of correcting spherical aberration that the other party cannot correct.
[0124] ここで、第 1球面収差補正素子 103及び第 2球面収差補正素子 107の夫々の球面 収差の補正のレベルについて、図 10を参照してより詳細に説明する。ここに、図 10 は、第 1球面収差補正素子 103及び第 2球面収差補正素子 107の夫々の球面収差 の補正のレベルを概念的に示すグラフである。  Here, the level of spherical aberration correction of each of the first spherical aberration correcting element 103 and the second spherical aberration correcting element 107 will be described in more detail with reference to FIG. FIG. 10 is a graph conceptually showing the level of spherical aberration correction of each of the first spherical aberration correcting element 103 and the second spherical aberration correcting element 107.
[0125] 図 10に示すように、第 1球面収差補正素子 103によって、球面収差は、残存収差 量が概ね" 0. 02 rais"程度となるまで補正される。その後、第 1球面収差補正素子 103による補正後に残った残存収差が、第 2球面収差補正素子 107によって、概ね" 0"となるように補正される。具体的には例えば、第 1球面収差補正素子 103により、 m mオーダーで球面収差が補正され、その後、第 2球面収差補正素子 107により、数 百 nmオーダーでの基板厚のばらつきに起因して生ずる mmオーダーよりも小さなレ ベルの球面収差が補正される。その結果、図 10のグラフの最下部の線により示すよう に、球面収差を概ね O rmsにすることもできる。  As shown in FIG. 10, the spherical aberration is corrected by the first spherical aberration correction element 103 until the residual aberration amount is approximately “0.02 rais”. Thereafter, the residual aberration remaining after the correction by the first spherical aberration correcting element 103 is corrected by the second spherical aberration correcting element 107 so as to be substantially “0”. Specifically, for example, the first spherical aberration correction element 103 corrects spherical aberration in the order of mm, and then the second spherical aberration correction element 107 occurs due to the substrate thickness variation in the order of several hundred nm. Spherical aberrations of a level smaller than the mm order are corrected. As a result, as shown by the bottom line of the graph in FIG.
[0126] そして、第 1球面収差補正素子 103では、光ディスク 10の基板厚 (或いは、種類)に 応じて、球面収差の補正の態様を変えている。このため、どのような基板厚を有する 光ディスク 10 (具体的には、例えば基板厚が 1. 2mmの CD、基板厚が 0. 6mmの D VDないしは HD DVD及び基板厚が 0. lmmの Blu— ray Disc)に対しても、第 1 球面収差補正素子 103は、好適に球面収差を補正することができる。そして、第 2球 面収差補正素子 107は、実際に発生している球面収差の量を算出し且つその量が 零或いは略零となるように、例えばフィードバック制御を行 、ながら球面収差を補正し ている。このため、実際に発生している球面収差の態様を認識した上で、より好適に 球面収差を補正することができる。このように、 2段階のレベルに分けて球面収差を補 正することができるため、より好適に球面収差を補正することができ、その結果、球面 収差を零或いは殆ど零とすることもできる。従って、互いに基板厚が異なる複数種類 の光ディスク 10に対して、球面収差による悪影響を好適に排除しながら、データの記 録ないしは再生を好適に行うことができる。  Then, in the first spherical aberration correction element 103, the spherical aberration correction mode is changed according to the substrate thickness (or type) of the optical disk 10. Therefore, the optical disk 10 having any substrate thickness (specifically, for example, a CD having a substrate thickness of 1.2 mm, a DVD or HD DVD having a substrate thickness of 0.6 mm, and a Blu— ray disc), the first spherical aberration correction element 103 can preferably correct spherical aberration. Then, the second spherical aberration correction element 107 calculates the amount of spherical aberration actually occurring and corrects the spherical aberration while performing, for example, feedback control so that the amount becomes zero or substantially zero. ing. For this reason, it is possible to correct the spherical aberration more preferably after recognizing the aspect of the spherical aberration actually occurring. As described above, since the spherical aberration can be corrected in two levels, the spherical aberration can be corrected more suitably. As a result, the spherical aberration can be made zero or almost zero. Therefore, it is possible to preferably record or reproduce data on a plurality of types of optical discs 10 having different substrate thicknesses while suitably eliminating the adverse effects due to spherical aberration.
[0127] 力!]えて、上述した第 1球面収差補正素子 103 (更には、液晶 λ Ζ2板 102)及び第 2球面収差補正素子 107の夫々は、電気的に制御される。このため、相対的に複雑 な構成を必要とするないしは相対的に消費電力が増加し得る機械的機構を採用す る必要がない。これにより、光ピックアップ 100の構成を簡易なものとすることができ、 光ピックアップ 100の更なる小型化を図ることができる。また、光ピックアップ 100の消 費電力の低減を図ることができる。これは、上述の特許文献 1及び 2にはない優れた 利点と言えよう。 [0127] Power! In addition, the first spherical aberration correction element 103 (and the liquid crystal λ 2 plate 102) described above and the first Each of the two spherical aberration correction elements 107 is electrically controlled. For this reason, it is not necessary to adopt a mechanical mechanism that requires a relatively complicated configuration or that can relatively increase power consumption. Thereby, the configuration of the optical pickup 100 can be simplified, and the optical pickup 100 can be further reduced in size. In addition, the power consumption of the optical pickup 100 can be reduced. This is an excellent advantage not found in the above-mentioned Patent Documents 1 and 2.
[0128] 力!]えて、本実施例に係る情報記録再生装置 300によれば、球面収差の量を算出す る際に、ファーフィールド上の反射光の強度分布を利用している。これは、反射光が 微小なスポットに集光された状態では、強度分布を認識しにくいという事実に起因し ている。このようにファーフィールド上の反射光の強度分布を利用することで、より好 適に且つより正確に球面収差の量を算出することができる。  [0128] Power! In addition, according to the information recording / reproducing apparatus 300 in the embodiment, the intensity distribution of reflected light on the far field is used when calculating the amount of spherical aberration. This is due to the fact that it is difficult to recognize the intensity distribution when the reflected light is focused on a small spot. Thus, by using the intensity distribution of the reflected light on the far field, the amount of spherical aberration can be calculated more appropriately and more accurately.
[0129] 尚、図 10に示す収差量はあくまで一具体例であり、基板厚によっては或いはレー ザ光 LBの照射条件等によっては、収差量が異なることがあることは言うまでもない。 例えば、第 1球面収差補正素子 103による補正量が小さくなつてもよいし、他方で第 2球面収差補正素子 107による補正量が大きくなつてもよい。また、基板厚が極端に 異なる光ディスク 10がローデイングされる場合には、第 1球面収差補正素子 103によ る補正を好適に行うことができない場合も想定される。この場合は、第 2球面収差補 正素子 107による補正により、球面収差による悪影響を好適に排除することができる  Note that the amount of aberration shown in FIG. 10 is merely a specific example, and it goes without saying that the amount of aberration may differ depending on the substrate thickness or the irradiation condition of the laser beam LB. For example, the correction amount by the first spherical aberration correction element 103 may be small, and on the other hand, the correction amount by the second spherical aberration correction element 107 may be large. Further, when the optical disk 10 having an extremely different substrate thickness is loaded, it may be assumed that the correction by the first spherical aberration correction element 103 cannot be suitably performed. In this case, the adverse effect due to the spherical aberration can be suitably eliminated by the correction by the second spherical aberration correcting element 107.
[0130] 尚、第 1球面収差補正素子 103においては、図 5の光分離面 1032やミラー 1033 等の構成や配置は固定である必要は必ずしもない。例えば、入射するレーザ光 LB の偏光の方向に応じて光分離面 1032やミラー 1033等の構成や配置を変えることで 、レーザ光 LBの光路を変化させるように構成してもよい。光分離面 1032やミラー 10 33等の構成や配置の変更は、例えば電気的に行うことが好ましい。例えば、例えば 電圧を印加して 、る場合にはミラーの如く光を反射しになり且つ電圧を印加して 、な い場合には透過膜の如く光を透過する素子等を用いてもよい。但し、機械的機構を 用いて光分離面 1032やミラー 1033等の構成や配置の変更を行うように構成しても よい。 [0131] また、図 5から図 7において示した例では、図 2の液晶 λ Ζ2板 102において、予め 特定の方向に偏光するレーザ光 LBが選択的に第 1球面収差補正素子 103に入射 するように構成されている。し力しながら、液晶 λ Ζ2板 102を省略する構成であって も、光分離面 1032や方解石にお ヽてレーザ光 LBが Ρ偏光成分と S偏光成分とに分 離されることを利用すれば、上述した各種利益を享受することができる。即ち、光分 離面 1032や方解石においてレーザ光 LBが Ρ偏光成分と S偏光成分とに分離された 後、何れか一方の偏光成分のレーザ光 LBを記録面に集光させることで記録動作な いしは再生動作に利用する。そして、他方の偏光成分のレーザ光 LBを、記録面に集 光させることなく記録ないしは再生動作に利用しなければ、予め特定の方向に偏光 するレーザ光 LBが選択的に第 1球面収差補正素子 103に入射する場合と同様の利 益を享受することができる。 [0130] In the first spherical aberration correction element 103, the configuration and arrangement of the light separation surface 1032, the mirror 1033, and the like in FIG. 5 are not necessarily fixed. For example, the optical path of the laser beam LB may be changed by changing the configuration or arrangement of the light separation surface 1032, the mirror 1033, or the like according to the polarization direction of the incident laser beam LB. It is preferable to electrically change the configuration and arrangement of the light separation surface 1032 and the mirror 1033, for example. For example, an element that reflects light like a mirror when a voltage is applied, and transmits light like a transmissive film when no voltage is applied may be used. However, the configuration and arrangement of the light separation surface 1032 and the mirror 1033 may be changed using a mechanical mechanism. In the example shown in FIGS. 5 to 7, in the liquid crystal λ 2 plate 102 in FIG. 2, the laser beam LB polarized in a specific direction is selectively incident on the first spherical aberration correction element 103. It is configured as follows. However, even if the liquid crystal λ Ζ2 plate 102 is omitted, it is possible to use the fact that the laser beam LB is separated into the Ρ-polarized component and the S-polarized component on the light separation surface 1032 and calcite. The various benefits described above can be enjoyed. That is, after the laser beam LB is separated into the Ρ-polarized component and the S-polarized component on the light separation surface 1032 and calcite, the recording operation is not performed by condensing the laser beam LB of one of the polarization components on the recording surface. I use it for playback. If the laser beam LB of the other polarization component is not used for recording or reproducing operation without being collected on the recording surface, the laser beam LB polarized in a specific direction is selectively used as the first spherical aberration correction element. It is possible to enjoy the same benefits as those incident on 103.
[0132] この場合は、第 1球面収差補正素子 103が、本発明の「分割手段」及び「調整手段 」の夫々の一具体例を構成する。より具体的には、上述の光分離面 1032や方解石 力 本発明の「分割手段」の一具体例を構成し、上述のミラー 1033や方解石が、本 発明の「調整手段 (光路調整手段) Jの一具体例を構成する。  In this case, the first spherical aberration correcting element 103 constitutes one specific example of each of the “dividing means” and the “adjusting means” of the present invention. More specifically, the light separating surface 1032 and calcite force described above constitute one specific example of the “dividing means” of the present invention, and the above-described mirror 1033 and calcite are the “adjusting means (optical path adjusting means) J of the present invention. One specific example is configured.
[0133] また、第 1球面収差補正素子 103は、上述した具体的な構成に限られないことは言 うまでもない。更には、第 1球面収差補正素子 103を複数備える構成であってもよい 。例えば、光ディスク 10の一具体例としての Blu— ray Discと HD DVDに対してデ ータの記録及び再生を行う際に用いる第 1球面収差補正素子と、光ディスク 10の一 具体例としての DVDと CDに対してデータの記録及び再生を行う際に用いる第 1球 面収差補正素子との二つを備えるように構成してもよい。要は、レーザ光 LBの光路 長を実質的にないしは光学的に変えられることができる素子がレーザ光 LBの光路中 に挿入されていれば、球面収差を補正することができるため、本実施例に係る第 1球 面収差補正素子 103として利用することができる。  [0133] Needless to say, the first spherical aberration correction element 103 is not limited to the specific configuration described above. Furthermore, a configuration including a plurality of first spherical aberration correction elements 103 may be employed. For example, a first spherical aberration correction element used when recording and reproducing data on a Blu-ray Disc and HD DVD as a specific example of the optical disc 10, and a DVD as a specific example of the optical disc 10 The first spherical aberration correction element used when recording and reproducing data on the CD may be provided. In short, spherical aberration can be corrected if an element capable of changing the optical path length of the laser beam LB substantially or optically is inserted in the optical path of the laser beam LB. It can be used as the first spherical aberration correction element 103 according to the above.
[0134] 尚、第 1球面収差補正素子 103は、図 11及び図 12に示すような機械的機構により 移動可能な素子であってもよい。ここに、図 11及び図 12の夫々は、機械的機構によ り移動可能な第 1球面補正素子 103の構成を概略的に示す断面図である。  Note that the first spherical aberration correction element 103 may be an element movable by a mechanical mechanism as shown in FIGS. 11 and 12. Here, each of FIGS. 11 and 12 is a cross-sectional view schematically showing a configuration of the first spherical correction element 103 movable by a mechanical mechanism.
[0135] 図 11に示すように、レーザ光 LBの光路上に挿入され、且つレーザ光 LBの光路に 直交する方向に移動させることでレーザ光 LBの光路上における厚みを連続的に変 えることができる光路補正素子を、第 1球面収差補正素子 103として用いてもよい。こ の場合、光ディスク 10の基板厚が厚くなれば、レーザ光 LBの光路中における光路 補正素子の厚みが減少する方向に向かって、例えばモータ等の機械的機構の動作 により光路補正素子が移動される。これにより、光ディスク 10の基板厚が厚くなること で生ずる正の球面収差を、レーザ光 LBの光路中における光路補正素子の厚みが減 少することで生ずる負の球面収差により打ち消すことができる。他方、光ディスク 10の 基板厚が薄くなれば、レーザ光 LBの光路中における光路補正素子の厚みが増加す る方向に向力つて、例えばモータ等の機械的機構の動作により光路補正素子が移動 される。これにより、光ディスク 10の基板厚が薄くなることで生ずる負の球面収差を、 レーザ光 LBの光路中における光路補正素子の厚みが増加することで生ずる正の球 面収差により打ち消すことができる。このように、図 11に示す第 1球面補正素子 103 を用いても、大きなレベルの球面収差を好適に補正することができる。 As shown in FIG. 11, it is inserted on the optical path of the laser beam LB and on the optical path of the laser beam LB. An optical path correction element that can continuously change the thickness of the laser beam LB on the optical path by moving in the orthogonal direction may be used as the first spherical aberration correction element 103. In this case, as the substrate thickness of the optical disk 10 increases, the optical path correction element is moved by the operation of a mechanical mechanism such as a motor in the direction in which the thickness of the optical path correction element in the optical path of the laser beam LB decreases. The As a result, the positive spherical aberration that occurs when the substrate thickness of the optical disk 10 increases can be canceled by the negative spherical aberration that occurs when the thickness of the optical path correction element in the optical path of the laser beam LB decreases. On the other hand, when the substrate thickness of the optical disk 10 is reduced, the optical path correction element is moved by the operation of a mechanical mechanism such as a motor, for example, in the direction of increasing the thickness of the optical path correction element in the optical path of the laser beam LB. The As a result, the negative spherical aberration that occurs when the substrate thickness of the optical disk 10 is reduced can be canceled by the positive spherical aberration that occurs when the thickness of the optical path correction element in the optical path of the laser beam LB increases. Thus, even when the first spherical correction element 103 shown in FIG. 11 is used, a large level of spherical aberration can be suitably corrected.
[0136] また、図 12に示すように、レーザ光 LBの光路中に挿入され、且つレーザ光 LBの光 路に直交する方向に移動させることでレーザ光 LBの光路中における厚みを段階的 に変えることができる光路補正素子を、第 1球面収差補正素子 103として用いてもよ い。 [0136] Also, as shown in FIG. 12, the thickness of the laser beam LB in the optical path is gradually increased by being inserted in the optical path of the laser beam LB and moving in a direction orthogonal to the optical path of the laser beam LB. An optical path correction element that can be changed may be used as the first spherical aberration correction element 103.
[0137] 但し、上述した機械的機構を有さないことで享受することができる利益を重点的に 考慮すると、図 5から図 7に示した構成の第 1球面収差補正素子 103を用いることが より好ましいことは注記しておく。  However, in consideration of the benefits that can be enjoyed by not having the mechanical mechanism described above, the first spherical aberration correction element 103 having the configuration shown in FIGS. 5 to 7 can be used. Note that it is more preferable.
[0138] また、開口制限素子 106は、偏光依存性を有するように構成してもよい。即ち、光デ イスク 10の種類 (或いは、基板厚)に応じて選択的に光ディスク 10に照射される所定 の偏光成分を有するレーザ光 LBに対して、選択的に開口数を変えられるように構成 してもよい。もちろん、偏光依存性を有していなくともよいし、或いは波長依存性を有 するよう〖こ構成してもよい。この場合、開口制限素子 106は、 CDに対応するレーザ光 LBの波長である 780nm、 DVDに対応するレーザ光 LBの波長である 660nm及び HD DVDや Blu—ray Discに対応するレーザ光 LBの波長である 420nmの夫々 に対応する波長透過フィルタを組み合わせて構成されてもよい。 [0139] また、液晶 λ Ζ2板に代えて、所定の榭脂等から構成される λ Ζ2板を、機械的機 構を用いてレーザ光 LBの光路中に出し入れする構成であってもよい。但し、上述し た機械的機構を有さないことで享受することができる利益を考慮すると、液晶 λ /2 板を用いることが好ましい。 [0138] The aperture limiting element 106 may be configured to have polarization dependency. That is, the numerical aperture can be selectively changed with respect to the laser beam LB having a predetermined polarization component that is selectively applied to the optical disc 10 according to the type (or substrate thickness) of the optical disc 10. May be. Of course, it does not have to have polarization dependency, or may be configured so as to have wavelength dependency. In this case, the aperture limiting element 106 is configured such that the wavelength of the laser beam LB corresponding to CD is 780 nm, the wavelength of the laser beam LB corresponding to DVD is 660 nm, and the wavelength of the laser beam LB corresponding to HD DVD or Blu-ray Disc. The wavelength transmission filter corresponding to each of 420 nm may be combined. [0139] Further, instead of the liquid crystal λ 2 plate, a λ 2 plate made of a predetermined resin may be taken in and out of the optical path of the laser beam LB using a mechanical mechanism. However, in view of the benefits that can be enjoyed by not having the mechanical mechanism described above, it is preferable to use a liquid crystal λ / 2 plate.
[0140] また、コリメータレンズ 104を、レーザ光 LBの光路に沿って(言い換えれば、コリメ一 タレンズ 104の光軸に沿って)移動させるように構成してもよ 、。このように構成しても 、上述した第 1球面収差補正素子 103による球面収差の補正の効果と同等の効果を 得ることができる。  [0140] Further, the collimator lens 104 may be configured to move along the optical path of the laser beam LB (in other words, along the optical axis of the collimator lens 104). Even with this configuration, an effect equivalent to the effect of correcting the spherical aberration by the first spherical aberration correcting element 103 described above can be obtained.
[0141] また、第 2球面収差補正素子 107は、収差量算出部 314cにより算出される実際の 球面収差の量に基づいて動作することに加えて又は代えて、レーザ光 LBの反射光 をホログラムレーザ 101中の受光素子で受光することで得られる RF信号や LPP信号 ゃゥォブル信号等の信号レベルに基づ ヽて動作するように構成してもよ!/ヽ。より具体 的には、第 2球面収差補正素子 107は、光ディスク 10上におけるレーザ光 LBのスポ ット位置によって変化する信号 (例えば RF信号、 LPP信号、ゥォブル信号、 CAPA 信号、 TE信号、プリピット信号、エンボス等)の信号レベルが概ね最大のレベルとな るように(或 、は、記録動作や再生動作に悪影響を概ね及ぼさな 、レベルとなるよう に)、これらの信号レベルをモニタリングしながら球面収差を補正するように構成して もよい。このように構成しても、収差量算出部 314cにより算出される実際の球面収差 の量に基づいた第 2球面収差補正素子 107による球面収差の補正と同様の効果を 得ることができる。但し、収差量算出部 314cにより算出される実際の球面収差の量 に基づけば、球面収差が何れの方向に向力つて発生しているかを認識することがで きる。球面収差が何れの方向に向力つて発生しているかは、 RF信号や LPP信号や ゥォブル信号等の信号レベルからは認識することが困難な 、しは不可能である。この ため、より容易に或いは効率的に球面収差を補正するという観点力もは、収差量算 出部 314cにより算出される実際の球面収差の量に基づいて球面収差を補正するこ とが好ましい。  In addition to or instead of operating based on the actual amount of spherical aberration calculated by the aberration amount calculation unit 314c, the second spherical aberration correction element 107 converts the reflected light of the laser beam LB into a hologram. It may be configured to operate based on the signal level such as RF signal, LPP signal, or wobble signal obtained by receiving light with the light receiving element in laser 101! / ヽ. More specifically, the second spherical aberration correction element 107 is a signal that changes depending on the spot position of the laser beam LB on the optical disc 10 (for example, RF signal, LPP signal, wobble signal, CAPA signal, TE signal, pre-pit signal). , Embossing, etc.) so that the signal level is almost the maximum level (or so that the recording operation and playback operation are not adversely affected), while monitoring these signal levels, You may comprise so that aberration may be corrected. Even with this configuration, it is possible to obtain the same effect as the spherical aberration correction by the second spherical aberration correction element 107 based on the actual spherical aberration amount calculated by the aberration amount calculation unit 314c. However, based on the actual amount of spherical aberration calculated by the aberration amount calculation unit 314c, it is possible to recognize in which direction the spherical aberration is generated. In which direction the spherical aberration is generated, it is difficult or impossible to recognize from the signal level of the RF signal, LPP signal, and wobble signal. For this reason, it is preferable that the viewpoint power of correcting spherical aberration more easily or efficiently is to correct spherical aberration based on the actual amount of spherical aberration calculated by the aberration amount calculation unit 314c.
[0142] また、上述した第 1球面収差補正素子 103及び第 2球面収差補正素子 107による 球面収差の補正にカ卩えて、 CPU314等の制御の下に行われるフォーカスエラー信 号のオフセット調整を利用して、更に微細なレベルで球面収差を補正するように構成 してもよい。これにより、フォーカスエラー信号の目標信号レベルに所定のオフセット を加える(即ち、フォーカスエラー信号によれば焦点の位置ズレが生じているような目 標信号レベルを設定する)ことで、レーザ光 LBの光ディスク 10上におけるスポット径 を調整すると共に、 mオーダーで球面収差を補正することができる。このとき、フォ 一カスエラー信号のオフセット調整を行うと、球面収差が新たに発生することがあり得 る。従って、フォーカスエラー信号のオフセット調整を利用する際には、フォーカスェ ラー信号のオフセット調整と第 2球面収差補正素子 107による球面収差の補正とを 繰り返し行うことで、球面収差が略零となるように動作することが好ましい。そして、こ のようなフォーカスエラー信号のオフセット調整を行う際の CPU314は、本発明の「第 2球面収差補正手段」の一具体例に相当する構成であると言える。 [0142] In addition to the correction of the spherical aberration by the first spherical aberration correction element 103 and the second spherical aberration correction element 107 described above, a focus error signal that is performed under the control of the CPU 314 or the like. The spherical aberration may be corrected at a finer level by using the offset adjustment of the signal. As a result, a predetermined offset is added to the target signal level of the focus error signal (that is, the target signal level is set such that a focus position shift occurs according to the focus error signal), so that the laser beam LB In addition to adjusting the spot diameter on the optical disk 10, spherical aberration can be corrected on the m order. At this time, if the offset adjustment of the focus error signal is performed, a new spherical aberration may occur. Therefore, when the offset adjustment of the focus error signal is used, the spherical aberration becomes substantially zero by repeatedly performing the offset adjustment of the focus error signal and the correction of the spherical aberration by the second spherical aberration correction element 107. It is preferable to operate. It can be said that the CPU 314 for performing the offset adjustment of the focus error signal has a configuration corresponding to a specific example of the “second spherical aberration correcting unit” of the present invention.
[0143] (情報記録再生装置の第 1変形例)  [0143] (First modification of information recording / reproducing apparatus)
続いて、図 13及び図 14を参照して、第 1変形例に係る情報記録再生装置 300aに ついて説明する。ここに、図 13は、第 1変形例に係る情報記録再生措置 300aの基 本的構成を概略的に示すブロック図であり、図 14は、第 1変形例に係る情報記録再 生措置 300aの動作の流れを概念的に示すフローチャートである。尚、上述した情報 記録再生装置 300と同様の構成及び動作については、同一の参照符号ないしはス テツプ番号を付与することで、その詳細な説明を省略する。以下では、上述の情報記 録再生装置 300と異なる構成及び動作について詳細に説明する。  Next, the information recording / reproducing apparatus 300a according to the first modification will be described with reference to FIG. 13 and FIG. FIG. 13 is a block diagram schematically showing the basic configuration of the information recording / reproducing measure 300a according to the first modification. FIG. 14 is a block diagram of the information recording / reproducing measure 300a according to the first modification. It is a flowchart which shows notionally the flow of operation | movement. Note that the same reference numerals or step numbers are assigned to the same configurations and operations as those of the information recording / reproducing apparatus 300 described above, and detailed description thereof is omitted. Hereinafter, a configuration and operation different from those of the information recording / reproducing apparatus 300 will be described in detail.
[0144] 図 13に示すように、第 1変形例に係る情報記録再生装置 300aは、上述した情報記 録再生装置 300と同様の構成を有して 、る。  As shown in FIG. 13, an information recording / reproducing apparatus 300a according to the first modification has a configuration similar to that of the information recording / reproducing apparatus 300 described above.
[0145] 第 1変形例に係る情報記録再生装置 300aは特に、対物レンズ Z位置センサ 110を 有していない。このため、第 1変形例に係る情報記録再生装置 300aは、以下に示す 手法で、光ディスク 10の種類 (或いは、基板厚)を判別する。  [0145] The information recording / reproducing apparatus 300a according to the first modification does not particularly have the objective lens Z position sensor 110. Therefore, the information recording / reproducing apparatus 300a according to the first modification determines the type (or substrate thickness) of the optical disc 10 by the following method.
[0146] 図 14に示すように、第 1変形例に係る情報記録再生装置 300aは、複数の光デイス ク 10に対応する複数のレーザ光 LBのうち所定の波長を有するレーザ光 LBを照射す る(ステップ S201)。その後、ディスクサーボ(例えば、フォーカスサーボ及びトラツキ ングサーボ等)が ONに切り替えられると共に (ステップ S202)、球面収差のラフ補正 (即ち、第 1球面収差補正素子 103による球面収差の補正)が行われる (ステップ S1 05)。 As shown in FIG. 14, the information recording / reproducing apparatus 300a according to the first modification irradiates a laser beam LB having a predetermined wavelength among the plurality of laser beams LB corresponding to the plurality of optical disks 10. (Step S201). After that, the disk servo (for example, focus servo and tracking servo) is switched on (step S202) and rough correction of spherical aberration is performed. (That is, correction of spherical aberration by the first spherical aberration correction element 103) is performed (step S1 05).
[0147] その後、光ディスク 10上の所定のデータを読み取ることができた力否かが判定され る(ステップ S 203)。  [0147] Thereafter, it is determined whether or not it is possible to read predetermined data on the optical disc 10 (step S203).
[0148] この判定の結果、光ディスク 10上の所定のデータを読み取ることができたと判定さ れた場合 (ステップ S203 ;Yes)、光ディスク 10上に記録されているディスク ID等が取 得される (ステップ S205)。これにより、光ディスク 10の種類を判別することができると 共に、判別された光ディスク 10の種類に基づいて、光ディスク 10の基板厚を判別す ることができる。その後は、上述した情報記録再生装置 300と同様に、ローデイングし ている光ディスク 10に対応する波長を有するレーザ光 LBが照射され (ステップ S106 )、フォーカスサーボ及びトラッキングサーボが ONに切り替えられ (ステップ S107)、 球面収差のゼロ補正 (即ち、第 2球面収差補正素子 107による球面収差の補正)が 行われた後(ステップ S108)、光ディスク 10へのデータの記録或いは光ディスク 10 に記録されたデータの再生が行なわれる(ステップ S 109)。  [0148] As a result of this determination, if it is determined that predetermined data on the optical disc 10 can be read (step S203; Yes), the disc ID or the like recorded on the optical disc 10 is obtained ( Step S205). As a result, the type of the optical disc 10 can be determined, and the substrate thickness of the optical disc 10 can be determined based on the determined type of the optical disc 10. Thereafter, similarly to the information recording / reproducing apparatus 300 described above, the laser beam LB having a wavelength corresponding to the optical disc 10 being loaded is irradiated (step S106), and the focus servo and tracking servo are switched on (step S107). ), Zero correction of spherical aberration (that is, correction of spherical aberration by the second spherical aberration correction element 107) is performed (step S108), and then data is recorded on the optical disk 10 or data recorded on the optical disk 10 is reproduced. Is performed (step S109).
[0149] 他方、光ディスク 10上の所定のデータを読み取ることができないと判定された場合  [0149] On the other hand, when it is determined that the predetermined data on the optical disc 10 cannot be read
(ステップ S202 : No)、異なる波長を有するレーザ光 LBを照射するように、ホログラム レーザ 101上のレーザチップの動作モードが、レーザドライバ等により切り替えられる (ステップ S204)。その後、ステップ S202、 S105及び S203の動作力繰り返される。  (Step S202: No), the operation mode of the laser chip on the hologram laser 101 is switched by a laser driver or the like so as to irradiate the laser beam LB having a different wavelength (Step S204). Thereafter, the operation force of steps S202, S105 and S203 is repeated.
[0150] 以上説明したように、第 1変形例に係る情報記録再生装置 300aによれば、複数種 類のレーザ光 LBを順に切り替えながら光ディスク 10に照射し、光ディスク 10上の所 定のデータを実際に読み取ることができたと判定された場合に、ディスク IDが取得さ れる。これにより、光ディスク 10の種類 (或いは、基板厚)を判別することができる。即 ち、第 1変形例に係る情報記録再生装置 300aは、いわば総当り的に複数種類のレ 一ザ光 LBの夫々を光ディスク 10に照射することで光ディスク 10の種類 (或いは、基 板厚)を判別する。このため、情報記録再生装置 300のように対物レンズ Z位置セン サ 110を設ける必要がないため、情報記録再生装置 300aの構成を相対的に簡易な ものとすることができるという利点を有する。  [0150] As described above, according to the information recording / reproducing apparatus 300a according to the first modification, the optical disk 10 is irradiated while sequentially switching a plurality of types of laser beams LB, and predetermined data on the optical disk 10 is transferred. If it is determined that the data could actually be read, the disk ID is obtained. As a result, the type (or substrate thickness) of the optical disk 10 can be determined. That is, the information recording / reproducing apparatus 300a according to the first modified example irradiates the optical disc 10 with each of a plurality of types of laser beams LB in a brute force manner. Is determined. For this reason, there is no need to provide the objective lens Z position sensor 110 unlike the information recording / reproducing apparatus 300, so that the configuration of the information recording / reproducing apparatus 300a can be made relatively simple.
[0151] (情報記録再生装置の第 2変形例) 続いて、図 15を参照して、第 2変形例に係る情報記録再生装置 300bについて説 明する。ここに、図 15は、第 2変形例に係る情報記録再生措置 300bの基本的構成 を概略的に示すブロック図である。尚、上述した情報記録再生装置 300及び 300aと 同様の構成及び動作にっ 、ては、同一の参照符号な 、しはステップ番号を付与す ることで、その詳細な説明を省略する。以下では、上述の情報記録再生装置 300及 び 300aと異なる構成及び動作について詳細に説明する。 [0151] (Second modification of information recording / reproducing apparatus) Next, an information recording / reproducing apparatus 300b according to the second modification will be described with reference to FIG. FIG. 15 is a block diagram schematically showing the basic configuration of the information recording / reproducing measure 300b according to the second modification. It should be noted that the same configuration and operation as the information recording / reproducing apparatuses 300 and 300a described above will be given the same reference numerals or step numbers, and detailed description thereof will be omitted. Hereinafter, a configuration and operation different from those of the information recording / reproducing apparatuses 300 and 300a will be described in detail.
[0152] 図 15に示すように、第 2変形例に係る情報記録再生装置 300bの光ピックアップ 10 Obは、複数のホログラムレーザ 101a及び 101bと、コリメータレンズ 104と、ハーフミラ 一 105と、開口制限素子 106と、第 2球面収差補正素子 107と、対物レンズ 108と、 ァクチユエータ 109と、対物レンズ Z位置センサ 110と、液晶ドライブ回路 111と、集 光レンズ 112と、ホログラム素子 113と、フォトディテクタ 114から 116とを備える。また 、 CPU314は、レーザ切替指示部 314dを更に備える。  As shown in FIG. 15, the optical pickup 10 Ob of the information recording / reproducing apparatus 300b according to the second modification includes a plurality of hologram lasers 101a and 101b, a collimator lens 104, a half mirror 105, and an aperture limiting element. 106, second spherical aberration correction element 107, objective lens 108, actuator 109, objective lens Z position sensor 110, liquid crystal drive circuit 111, condensing lens 112, hologram element 113, and photodetectors 114 to 116 With. The CPU 314 further includes a laser switching instruction unit 314d.
[0153] 複数のホログラムレーザ 101a及び 101bは、コリメータレンズ 104までの距離(言い 換えれば、光ディスク 10までの距離)が夫々異なるように配置されている。そして、レ 一ザ切替指示部 314dは、光ディスク 10の種類 (或いは、基板厚)に応じて、複数の ホログラムレーザ 101a及び 101bの何れからレーザ光 LBを照射するかを選択し、複 数のホログラムレーザ 101a及び 101bのうち選択されたホログラムレーザからレーザ 光 LBを照射させる。  The plurality of hologram lasers 101a and 101b are arranged such that the distance to the collimator lens 104 (in other words, the distance to the optical disc 10) is different. Then, the laser switching instruction unit 314d selects which of the plurality of hologram lasers 101a and 101b irradiates the laser beam LB according to the type (or substrate thickness) of the optical disc 10, and a plurality of holograms. Laser light LB is irradiated from a hologram laser selected from among the lasers 101a and 101b.
[0154] 例えば Blu— ray Discに対するデータの記録或いは再生を行う場合には、コリメ ータレンズ 104から遠い側に配置されているホログラムレーザ 101aからレーザ光 LB を照射するように、レーザ切替指示部 314dは指示を出力する。他方、例えば HD D VDに対するデータの記録或いは再生を行う場合には、コリメータレンズ 104から近 い側に配置されているホログラムレーザ 101bからレーザ光 LBを照射するように、レ 一ザ切替指示部 314dは指示を出力する。  For example, when recording or reproducing data with respect to a Blu-ray Disc, the laser switching instruction unit 314d is configured to irradiate the laser beam LB from the hologram laser 101a disposed on the side far from the collimator lens 104. Output instructions. On the other hand, when recording or reproducing data with respect to, for example, HD D VD, the laser switching instruction unit 314d is configured so that the laser beam LB is emitted from the hologram laser 101b disposed on the side closer to the collimator lens 104. Outputs instructions.
[0155] これにより、光ディスク 10の基板厚が薄くなる又は厚くなることで生ずる球面収差を 、レーザ光 LBが照射されるホログラムレーザとコリメータレンズ 104との間の距離を変 えることで生ずる逆の球面収差によって打ち消すことができる。これにより、第 1球面 収差補正素子 103と同様に、相対的に大きなレベルでの球面収差の補正を行うこと ができる。 [0155] Thereby, the spherical aberration that occurs when the substrate thickness of the optical disk 10 is reduced or increased, and the reverse occurs when the distance between the hologram laser irradiated with the laser beam LB and the collimator lens 104 is changed. It can be canceled out by spherical aberration. As a result, similar to the first spherical aberration correction element 103, the spherical aberration can be corrected at a relatively large level. Can do.
[0156] 尚、レーザ光 LBが照射されるホログラムレーザ 101a又は 101bを切り替えることに よっても補正し切れなかった球面収差につ!、ては、上述した情報記録再生装置 300 等と同様に、第 2球面収差補正素子 107によって更に微細なレベルでの球面収差の 補正がなされる。  Incidentally, the spherical aberration that could not be corrected by switching the hologram laser 101a or 101b irradiated with the laser beam LB is the same as the information recording / reproducing apparatus 300 described above. The spherical aberration correction element 107 corrects the spherical aberration at a finer level.
[0157] (情報記録再生装置の第 3変形例)  [0157] (Third Modification of Information Recording / Reproducing Device)
続いて、図 16を参照して、第 3変形例に係る情報記録再生装置 300cについて説 明する。ここに、図 16は、第 3変形例に係る情報記録再生措置 300cの基本的構成 を概略的に示すブロック図である。尚、上述した情報記録再生装置 300、 300a及び 300bと同様の構成及び動作については、同一の参照符号ないしはステップ番号を 付与することで、その詳細な説明を省略する。以下では、上述の情報記録再生装置 300、 300a及び 300bと異なる構成及び動作について詳細に説明する。  Next, with reference to FIG. 16, an information recording / reproducing apparatus 300c according to a third modification will be described. FIG. 16 is a block diagram schematically showing the basic configuration of the information recording / reproducing measure 300c according to the third modification. Note that the same reference numerals or step numbers are assigned to the same configurations and operations as those of the information recording / reproducing apparatuses 300, 300a, and 300b described above, and detailed description thereof is omitted. Hereinafter, configurations and operations different from those of the information recording / reproducing apparatuses 300, 300a, and 300b will be described in detail.
[0158] 図 16に示すように、第 3変形例に係る情報記録再生装置 300cは、上述した第 2変 形例に係る情報記録再生装置 300bと同様の構成を有している。第 3変形例に係る 情報記録再生装置 300cでは特に、ホログラムレーザ 101bがコリメータレンズ 104の 光軸上に配置されており、ホログラムレーザ 101aがコリメータレンズ 104の光軸外に 配置されている。  As shown in FIG. 16, the information recording / reproducing apparatus 300c according to the third modification has the same configuration as the information recording / reproducing apparatus 300b according to the second modification described above. In the information recording / reproducing apparatus 300c according to the third modification, in particular, the hologram laser 101b is disposed on the optical axis of the collimator lens 104, and the hologram laser 101a is disposed outside the optical axis of the collimator lens 104.
[0159] このように複数のホログラムレーザ 101a及び 101bを配置することで、ホログラムレ 一ザ 101aとホログラムレーザ 101bとが(より具体的には、ホログラムレーザ 101aから 照射されるレーザ光 LBとホログラムレーザ 101b力も照射されるレーザ光 LBとカ 干 渉してしまうという不都合を抑止することができる。これにより、ホログラムレーザ 101a とホログラムレーザ 101bとの干渉による悪影響を排除することができ、より好適な記 録動作な 、しは再生動作を実現することができる。  [0159] By arranging the plurality of hologram lasers 101a and 101b in this way, the hologram laser 101a and the hologram laser 101b (more specifically, the laser beam LB and the hologram laser irradiated from the hologram laser 101a) The inconvenience of interference with the laser beam LB irradiated with the 101b force can also be suppressed, thereby eliminating the adverse effects caused by the interference between the hologram laser 101a and the hologram laser 101b. Recording operation or playback operation can be realized.
[0160] また、ホログラムレーザ 101aをコリメータレンズ 104の光軸外に配置することで、ホ ログラムレーザ 101aから照射されるレーザ光 LBに対してはコマ収差が発生する。第 2変形例に係る情報記録再生装置 300cでは、このコマ収差を補正するべぐホログ ラムレーザ 101aに対して、ホログラムレーザ 101aから照射されるレーザ光 LBの光路 上であって且つホログラムレーザ 101aとコリメータレンズ 104との間に、例えば液晶 パネル等を含むコマ収差補正素子 117が配置されている。これにより、コマ収差を好 適に補正することができ、より好適な記録動作ないしは再生動作を実現することがで きる。 [0160] Further, by arranging the hologram laser 101a outside the optical axis of the collimator lens 104, coma aberration occurs with respect to the laser light LB emitted from the hologram laser 101a. In the information recording / reproducing apparatus 300c according to the second modified example, the holographic laser 101a that corrects this coma aberration is on the optical path of the laser beam LB emitted from the hologram laser 101a and is connected to the hologram laser 101a and the collimator. For example, liquid crystal between the lens 104 A coma aberration correcting element 117 including a panel and the like is arranged. Thereby, the coma aberration can be appropriately corrected, and a more suitable recording operation or reproducing operation can be realized.
[0161] (情報記録再生装置の第 4変形例)  [0161] (Fourth modification of information recording / reproducing apparatus)
続いて、図 17を参照して、第 4変形例に係る情報記録再生装置 300dについて説 明する。ここに、図 17は、第 4変形例に係る情報記録再生措置 300dの基本的構成 を概略的に示すブロック図である。尚、上述した情報記録再生装置 300、 300a, 30 Ob及び 300cと同様の構成及び動作については、同一の参照符号ないしはステップ 番号を付与することで、その詳細な説明を省略する。以下では、上述の情報記録再 生装置 300、 300a, 300b及び 300cと異なる構成及び動作について詳細に説明す る。  Subsequently, an information recording / reproducing apparatus 300d according to a fourth modification will be described with reference to FIG. FIG. 17 is a block diagram schematically showing the basic configuration of the information recording / reproducing measure 300d according to the fourth modification. In addition, about the structure and operation | movement similar to the information recording / reproducing apparatus 300, 300a, 30Ob, and 300c mentioned above, the detailed description is abbreviate | omitted by giving the same referential mark or step number. Hereinafter, a configuration and operation different from those of the information recording / reproducing apparatus 300, 300a, 300b, and 300c will be described in detail.
[0162] 図 17に示すように、第 4変形例に係る情報記録再生装置 300dは、上述した第 2変 形例に係る情報記録再生装置 300bや第 3変形例に係る情報記録再生装置 300cと 同様の構成を有している。第 4変形例に係る情報記録再生装置 300dでは特に、ホロ グラムレーザ 101a及び 101bの夫々力 コリメータレンズ 104に対して、逆方向で且 つ同一量のコマ収差が発生するように配置されている。このように構成すれば、ホロ グラムレーザ 101a及び 101bの夫々力も照射されるレーザ光 LBに対して発生するコ マ収差の量を、例えば第 3変形例に係る情報記録再生装置 300cのホログラムレー ザ 101aから照射されるレーザ光 LBに対して発生するコマ収差の量よりも少なくする( 具体的には、半分にする)ことができる。従って、コマ収差補正素子 117が補正すベ きコマ収差の補正量もそれに伴って少なくなる。これにより、コマ収差補正素子 117を 比較的容易に設定することができる。  As shown in FIG. 17, the information recording / reproducing apparatus 300d according to the fourth modification includes the information recording / reproducing apparatus 300b according to the second modification and the information recording / reproducing apparatus 300c according to the third modification. It has the same configuration. In particular, the information recording / reproducing apparatus 300d according to the fourth modification is disposed so that the same amount of coma aberration is generated in the opposite direction with respect to the force collimator lens 104 of the hologram lasers 101a and 101b. With this configuration, the amount of coma aberration generated with respect to the laser beam LB irradiated with the power of the hologram lasers 101a and 101b is set, for example, by the hologram laser of the information recording / reproducing apparatus 300c according to the third modification. The amount of coma aberration generated with respect to the laser beam LB irradiated from 101a can be reduced (specifically, halved). Accordingly, the coma aberration correction amount to be corrected by the coma aberration correcting element 117 is also reduced accordingly. Thereby, the coma aberration correcting element 117 can be set relatively easily.
[0163] 尚、第 4実施例では、ホログラムレーザ 101a及び 101bの夫々力も照射されるレー ザ光 LBについてコマ収差が発生するため、コマ収差補正素子 117は、ホログラムレ 一ザ 101a及び 101bの夫々力 照射されるレーザ光 LBの光路上であって且つホロ グラムレーザ 101a及び 101bの夫々とコリメータレンズ 104との間に配置されることが 好ましい。  [0163] In the fourth embodiment, coma aberration occurs in the laser beam LB irradiated with the respective forces of the hologram lasers 101a and 101b. Therefore, the coma aberration correcting element 117 is used in each of the hologram lasers 101a and 101b. It is preferable that the laser beam LB is disposed on the optical path of the laser beam LB irradiated with force and between each of the hologram lasers 101 a and 101 b and the collimator lens 104.
[0164] 尚、以上説明した情報記録再生装置 300及び 300aから 300dの夫々の構成を、適 宜選択抽出して組み合わせた情報記録再生装置も、上述した各種利益を享受する ことができることは言うまでもなく、当然に本発明の範囲に含まれるものである。 Note that the information recording / reproducing apparatuses 300 and 300a to 300d described above are appropriately configured. It goes without saying that an information recording / reproducing apparatus appropriately selected and combined can also receive the various benefits described above, and is naturally within the scope of the present invention.
[0165] 本考案では球面収差補正のみについて言及した力 球面収差補正とフォーカスェ ラー信号のオフセット調整は関連が深いため、球面収差補正とフォーカスエラー信号 オフセット調整を交互に行い、両者が最適化されるようにすることも、また本発明の技 術的範囲に含まれるものである。  [0165] In the present invention, the force referred to only spherical aberration correction. Since spherical aberration correction and focus error signal offset adjustment are closely related, spherical aberration correction and focus error signal offset adjustment are performed alternately to optimize both. It is also included in the technical scope of the present invention.
[0166] また、上述の実施例では、光ディスクの具体例として DVD等を、更には記録再生 装置の一例として光ディスクに係るレコーダ或いはプレーヤについて説明した力 本 発明は、 DVD等の光ディスク及びそのレコーダに限られるものではなぐ他の高密度 記録或いは高転送レート対応の各種記録媒体並びにそのレコーダ或いはプレーヤ にも適用可能である。  Further, in the above-described embodiment, a DVD or the like is described as a specific example of the optical disc, and further, a force that describes a recorder or a player related to the optical disc as an example of a recording / reproducing device. The present invention is not limited to this, and can be applied to other high-density recording or various recording media compatible with a high transfer rate and its recorder or player.
[0167] 本発明は、上述した実施例に限られるものではなぐ請求の範囲及び明細書全体 力 読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、その ような変更を伴なう光ピックアップ及び情報機器もまた本発明の技術的範囲に含まれ るものである。  [0167] The present invention is not limited to the above-described embodiments, but can be appropriately modified within the scope of the claims and the entire specification without departing from the gist or philosophy of the invention which can be read. Optical pickups and information devices are also included in the technical scope of the present invention.
産業上の利用可能性  Industrial applicability
[0168] 本発明に係る光ピックアップ及び情報機器は、例えば DVD等の情報記録媒体に 対してデータの記録又はデータの再生を行う際に光を照射する光ピックアップ及び 該光ピックアップを備える情報機器に利用可能である。 [0168] An optical pickup and an information device according to the present invention include an optical pickup that emits light when recording data on or reproducing data from an information recording medium such as a DVD, and an information device including the optical pickup. Is available.

Claims

請求の範囲 The scope of the claims
[1] 複数種類の情報記録媒体の夫々に対するデータの記録及び再生の少なくとも一 方を行うための光ピックアップであって、  [1] An optical pickup for performing at least one of data recording and reproduction with respect to each of a plurality of types of information recording media,
前記データの記録及び再生の少なくとも一方を行うために照射される光ビームが前 記情報記録媒体に集光される際の球面収差を、判別手段により判別された前記情 報記録媒体の基板厚に応じて補正する第 1球面収差補正手段と、  The spherical aberration when the light beam irradiated to perform at least one of recording and reproduction of the data is focused on the information recording medium is the substrate thickness of the information recording medium determined by the determining means. A first spherical aberration correction means for correcting in response,
前記第 1球面収差補正手段による補正後に残存する前記球面収差を、前記第 1球 面収差補正手段による前記球面収差の補正の精度と同程度もしくはより高精度に補 正する第 2球面収差補正手段と  Second spherical aberration correction means for correcting the spherical aberration remaining after correction by the first spherical aberration correction means to the same or higher accuracy as the correction of the spherical aberration by the first spherical aberration correction means. When
を備えることを特徴とする光ピックアップ。  An optical pickup comprising:
[2] 前記第 1球面収差補正手段は、 [2] The first spherical aberration correcting means is
前記光ビームを複数の光線束に分割する光ビーム分割手段と、  A light beam splitting means for splitting the light beam into a plurality of beam bundles;
前記判別手段により判別された前記情報記録媒体の基板厚に応じて、前記複数の 光線束の夫々の前記球面収差を略零に近づけるように前記複数の光線束の夫々を 調整する調整手段と  Adjusting means for adjusting each of the plurality of light bundles so that the spherical aberration of each of the plurality of light bundles is brought close to substantially zero according to the substrate thickness of the information recording medium determined by the determination means;
を備えることを特徴とする請求の範囲第 1項に記載の光ピックアップ。  The optical pickup according to claim 1, further comprising:
[3] 前記第 1球面収差補正手段は、 [3] The first spherical aberration correcting means is
前記判別手段により判別された前記情報記録媒体の基板厚に応じて、前記光ビー ムを所定の性質を有する光ビームに変換する変換手段と、  Conversion means for converting the optical beam into a light beam having a predetermined property according to the substrate thickness of the information recording medium determined by the determination means;
一の性質を有する前記光ビームを透過し且つ前記一の性質とは異なる他の性質を 有する前記光ビームを反射する光路調整手段と  Optical path adjusting means that transmits the light beam having one property and reflects the light beam having another property different from the one property;
を備えることを特徴とする請求の範囲第 1項に記載の光ピックアップ。  The optical pickup according to claim 1, further comprising:
[4] 前記第 1球面収差補正手段は、前記判別手段により判別された前記情報記録媒体 の基板厚に応じて、前記光ビームの光路長を変化させることで前記球面収差を補正 することを特徴とする請求の範囲第 1項に記載の光ピックアップ。 [4] The first spherical aberration correcting unit corrects the spherical aberration by changing an optical path length of the light beam according to a substrate thickness of the information recording medium determined by the determining unit. The optical pickup according to claim 1.
[5] 前記情報記録媒体に対する距離が夫々異なると共に、前記複数種類の情報記録 媒体の夫々に対応する複数の光ビームを照射する複数の照射手段を更に備え、 前記第 1球面収差補正手段は、前記判別手段により判別された前記情報記録媒体 の基板厚に応じて、前記複数の照射手段のうち前記情報記録媒体に前記光ビーム を照射する一の照射手段を選択することで、前記球面収差を補正することを特徴と する請求の範囲第 1項に記載の光ピックアップ。 [5] The distance from the information recording medium is different, and further includes a plurality of irradiation means for irradiating a plurality of light beams corresponding to each of the plurality of types of information recording media, the first spherical aberration correction means, The information recording medium discriminated by the discriminating means The spherical aberration is corrected by selecting one irradiating means for irradiating the information recording medium with the light beam according to the substrate thickness of the plurality of irradiating means. The optical pickup according to item 1.
[6] 前記複数の照射手段の夫々から照射される前記光ビームの光軸の夫々が異なるこ とを特徴とする請求の範囲第 5項に記載の光ピックアップ。 6. The optical pickup according to claim 5, wherein each of the optical axes of the light beams irradiated from each of the plurality of irradiation means is different.
[7] 前記複数の照射手段のうち少なくとも一つの照射手段を除く他の照射手段力 照 射される前記光ビームが前記情報記録媒体に集光される際のコマ収差を補正するコ マ収差補正手段を更に備えることを特徴とする請求の範囲第 5項に記載の光ピックァ ップ。 [7] Other irradiating means force except at least one irradiating means among the plurality of irradiating means. Coma aberration correction for correcting coma aberration when the irradiated light beam is condensed on the information recording medium. 6. The optical pickup according to claim 5, further comprising means.
[8] 前記複数の照射手段のうちの少なくとも二つの照射手段は、コリメータレンズに対し て互いに逆方向で同一量のコマ収差を生ずるように配置されることを特徴とする請求 の範囲第 7項に記載の光ピックアップ。  8. The at least two irradiating means among the plurality of irradiating means are arranged so as to generate the same amount of coma aberration in opposite directions with respect to the collimator lens. The optical pickup described in 1.
[9] 前記第 1球面収差補正手段は、前記光ビームの光軸に沿って移動可能なコリメ一 タレンズを備えることを特徴とする請求の範囲第 1項に記載の光ピックアップ。  [9] The optical pickup according to [1], wherein the first spherical aberration correcting means includes a collimator lens movable along the optical axis of the light beam.
[10] 前記第 2球面収差補正手段は、前記情報記録媒体からの前記光ビームの反射光 に基づいて、前記球面収差の量を算出する算出手段により算出される前記球面収 差の量に基づいて、前記球面収差を補正することを特徴とする請求の範囲第 1項に 記載の光ピックアップ。  [10] The second spherical aberration correcting means is based on the amount of spherical aberration calculated by the calculating means for calculating the amount of spherical aberration based on the reflected light of the light beam from the information recording medium. The optical pickup according to claim 1, wherein the spherical aberration is corrected.
[11] 前記反射光を分割する分割手段と、  [11] a dividing means for dividing the reflected light;
該分割された反射光を受光する複数の受光手段と  A plurality of light receiving means for receiving the divided reflected light;
を更に備えることを特徴とする請求の範囲第 10項に記載の光ピックアップ。  The optical pickup according to claim 10, further comprising:
[12] 前記第 2球面収差補正手段は、液晶素子を含むことを特徴とする請求の範囲第 1 項に記載の光ピックアップ。 12. The optical pickup according to claim 1, wherein the second spherical aberration correcting means includes a liquid crystal element.
[13] 前記第 2球面収差補正手段は、前記光ビームの反射光を検出することで得られる 信号であって、前記光ビームの前記情報記録媒体上のスポット位置によって変化す る信号の信号レベルが略最大となるように前記球面収差を補正することを特徴とする 請求の範囲第 1項に記載の光ピックアップ。 [13] The second spherical aberration correction means is a signal obtained by detecting reflected light of the light beam, and a signal level of the signal that varies depending on a spot position of the light beam on the information recording medium. 2. The optical pickup according to claim 1, wherein the spherical aberration is corrected so that becomes substantially maximum.
[14] 前記光ビームを前記記録媒体に集光する集光手段と、 前記集光手段を、前記光ビームの光軸に沿って移動させる移動手段と [14] Light condensing means for condensing the light beam on the recording medium; Moving means for moving the condensing means along the optical axis of the light beam;
を更に備え、  Further comprising
前記判別手段は、前記集光手段を移動させながら検出される前記光ビームの反射 光の波形に基づいて、前記基板厚を判別することを特徴とする請求の範囲第 1項に 記載の光ピックアップ。  2. The optical pickup according to claim 1, wherein the determination unit determines the thickness of the substrate based on a waveform of reflected light of the light beam detected while moving the condensing unit. .
[15] 前記複数種類の情報記録媒体の夫々に対する前記データの記録及び再生の少な くとも一方を行うための複数種類の光ビームを照射する照射手段を更に備え、 前記照射手段は、前記判別手段による判別の際に、前記複数種類の光ビームのう ち所定の一の種類の光ビームを選択的に照射し、  [15] Irradiation means for irradiating a plurality of types of light beams for performing at least one of recording and reproduction of the data with respect to each of the plurality of types of information recording media; and In the discrimination by the above, a predetermined one type of light beam is selectively irradiated out of the plurality of types of light beams,
前記判別手段は、前記一の種類の光ビームの前記反射光の波形に基づいて、前 記基板厚を判別することを特徴とする請求の範囲第 14項に記載の光ピックアップ。  15. The optical pickup according to claim 14, wherein the discriminating unit discriminates the substrate thickness based on a waveform of the reflected light of the one kind of light beam.
[16] 前記一の種類の光ビームは、前記複数種類の情報記録媒体のうち前記データの 記録容量が最大な情報記録媒体に対応する光ビームであることを特徴とする請求の 範囲第 15項に記載の光ピックアップ。  16. The one type of light beam is a light beam corresponding to an information recording medium having a maximum data recording capacity among the plurality of types of information recording media. The optical pickup described in 1.
[17] 前記集光手段の前記移動手段による移動量を測定する測定手段を更に備え、 前記判別手段は、前記光ビームが前記情報記録媒体の表面に集光されたときの前 記反射光の波形が検出されてから、前記光ビームが前記情報記録媒体の記録面に 集光されたときの前記反射光の波形が検出されるまでの間の前記集光手段の移動 量に基づいて、前記基板厚を判別することを特徴とする請求の範囲第 14項に記載 の光ピックアップ。  [17] The apparatus further includes a measuring unit that measures the amount of movement of the condensing unit by the moving unit, and the determining unit includes the reflected light when the light beam is collected on the surface of the information recording medium. Based on the amount of movement of the condensing means from when the waveform is detected until the waveform of the reflected light is detected when the light beam is condensed on the recording surface of the information recording medium, 15. The optical pickup according to claim 14, wherein the thickness of the substrate is discriminated.
[18] 前記複数種類の情報記録媒体の夫々に対する前記データの記録及び再生の少な くとも一方を行うための複数種類の光ビームを照射する照射手段を更に備え、 前記判別手段は、前記複数種類の光ビームの夫々を順に前記情報記録媒体に照 射するように前記照射手段を制御することで、前記基板厚を判別することを特徴とす る請求の範囲第 1項に記載の光ピックアップ。  [18] The apparatus further comprises irradiation means for irradiating a plurality of types of light beams for performing at least one of recording and reproduction of the data with respect to each of the plurality of types of information recording media, 2. The optical pickup according to claim 1, wherein the thickness of the substrate is determined by controlling the irradiation unit so that each of the light beams is sequentially irradiated onto the information recording medium.
[19] 前記第 2球面収差補正手段は、前記複数種類の情報記録媒体の夫々に対する前 記データの記録及び再生の少なくとも一方を行うために照射される複数種類の光ビ ームのうち、前記判別手段により判別された基板厚に応じた光ビームが照射された後 に、前記球面収差を補正することを特徴とする請求の範囲第 1項に記載の光ピックァ ップ。 [19] The second spherical aberration correction means includes: the plurality of types of optical beams irradiated to perform at least one of recording and reproduction of the data with respect to each of the plurality of types of information recording media; After the light beam corresponding to the substrate thickness determined by the determining means is irradiated 2. The optical pickup according to claim 1, wherein the spherical aberration is corrected.
複数種類の情報記録媒体の夫々に対するデータの記録及び再生の少なくとも一 方を行う情報機器であって、  An information device that performs at least one of data recording and reproduction on each of a plurality of types of information recording media,
前記情報記録媒体の基板厚を判別する判別手段と、  Discriminating means for discriminating a substrate thickness of the information recording medium;
前記データの記録及び再生の少なくとも一方を行うために照射される光ビームが前 記情報記録媒体に集光される際の球面収差を、前記判別手段により判別された前 記情報記録媒体の基板厚に応じて補正する第 1球面収差補正手段と、  The substrate thickness of the information recording medium determined by the determining means is the spherical aberration when the light beam irradiated to perform at least one of the data recording and reproduction is focused on the information recording medium. First spherical aberration correction means for correcting according to
前記第 1球面収差補正手段による補正後に残存する前記球面収差を、前記第 1球 面収差補正手段による前記球面収差の補正の精度と同程度又はより高精度に補正 する第 2球面収差補正手段と、  Second spherical aberration correction means for correcting the spherical aberration remaining after correction by the first spherical aberration correction means to the same or higher accuracy than the accuracy of correction of the spherical aberration by the first spherical aberration correction means; ,
前記光ビームを前記情報記録媒体に照射することで、前記データの記録及び再生 のうち少なくとも一方を実行する記録再生手段と  Recording / reproducing means for performing at least one of recording and reproduction of the data by irradiating the information recording medium with the light beam;
を備えることを特徴とする情報機器。  An information device comprising:
PCT/JP2006/309553 2005-05-12 2006-05-12 Optical pickup and information device WO2006121153A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005139669 2005-05-12
JP2005-139669 2005-05-12

Publications (1)

Publication Number Publication Date
WO2006121153A1 true WO2006121153A1 (en) 2006-11-16

Family

ID=37396659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309553 WO2006121153A1 (en) 2005-05-12 2006-05-12 Optical pickup and information device

Country Status (1)

Country Link
WO (1) WO2006121153A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110476102A (en) * 2017-03-20 2019-11-19 卡尔蔡司显微镜有限责任公司 The microscope and method of micro-imaging for object

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08249708A (en) * 1995-03-15 1996-09-27 Pioneer Electron Corp Optical pickup device
JPH0917023A (en) * 1995-04-28 1997-01-17 Konica Corp Information pickup device and optical disk device
JPH09128785A (en) * 1995-08-31 1997-05-16 Pioneer Electron Corp Optical pickup
JPH10261241A (en) * 1997-03-19 1998-09-29 Sony Corp Recording/reproducing device and method thereof
JP2000020997A (en) * 1998-07-06 2000-01-21 Nec Corp Optical pickup device
JP2002157771A (en) * 2000-11-15 2002-05-31 Sharp Corp Aberration detector and method for detecting aberration and optical pickup
JP2002170257A (en) * 2000-12-05 2002-06-14 Sharp Corp Optical pickup device
JP2002237076A (en) * 2001-02-06 2002-08-23 Pioneer Electronic Corp Aberration correcting device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08249708A (en) * 1995-03-15 1996-09-27 Pioneer Electron Corp Optical pickup device
JPH0917023A (en) * 1995-04-28 1997-01-17 Konica Corp Information pickup device and optical disk device
JPH09128785A (en) * 1995-08-31 1997-05-16 Pioneer Electron Corp Optical pickup
JPH10261241A (en) * 1997-03-19 1998-09-29 Sony Corp Recording/reproducing device and method thereof
JP2000020997A (en) * 1998-07-06 2000-01-21 Nec Corp Optical pickup device
JP2002157771A (en) * 2000-11-15 2002-05-31 Sharp Corp Aberration detector and method for detecting aberration and optical pickup
JP2002170257A (en) * 2000-12-05 2002-06-14 Sharp Corp Optical pickup device
JP2002237076A (en) * 2001-02-06 2002-08-23 Pioneer Electronic Corp Aberration correcting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110476102A (en) * 2017-03-20 2019-11-19 卡尔蔡司显微镜有限责任公司 The microscope and method of micro-imaging for object

Similar Documents

Publication Publication Date Title
JP2006024351A (en) Optical pickup and optical recording and/or reproduction equipment which adopts the same
US20070008858A1 (en) Optical pickup and optical disc apparatus
KR101058859B1 (en) Optical pickup and recording and / or reproducing apparatus using the same
WO2002073610A1 (en) Optical head, optical device, and aberration correcting element
US7738340B2 (en) Optical disk apparatus with aberration correcting part, and optical disk
JP3972959B2 (en) Optical pickup device
US7929402B2 (en) Optical pickup, optical information recording device, optical information recording method, optical information reproduction device, optical information reproduction method and optical information recording medium
US20060002276A1 (en) Optical disc apparatus
JPWO2008149522A1 (en) Optical head device and recording and / or reproducing device
WO2006115161A1 (en) Optical head device and optical information device
KR100803592B1 (en) Compatible optical pickup and optical recording and/or reproducing apparatus employing the same
JP4573117B2 (en) Optical pickup device
JP2007293963A (en) Optical information recording and reproducing device
KR100661898B1 (en) Optical disc apparatus
JP2005158171A (en) Optical pickup
JP2009501405A (en) Active correction element, compatible optical pickup and optical recording and / or reproducing apparatus using the same
JP3919276B2 (en) Optical head and optical disk apparatus
JP2005353259A (en) Optical pickup, optical disk apparatus, and optical magnification adjusting method
US20070237053A1 (en) Aberration correcting unit, optical pickup device, information reproducing apparatus, and aberration correcting program
WO2006121153A1 (en) Optical pickup and information device
WO2006121038A1 (en) Information apparatus
JP4387115B2 (en) Wave plate, optical pickup device and optical disk device
JP4329566B2 (en) Aberration compensation apparatus and aberration compensation method
JP4347727B2 (en) Optical disk device
JP2005327396A (en) Optical pickup and recording and/or reproducing device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06732534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP