WO2006120992A1 - Nucleic acid derivatives having phenyldiaziridine moieties and process for production thereof, nucleotide derivatives having phenyldiaziridine moieties and process for production thereof, method for analysis of protein, and process for preparation of protein - Google Patents

Nucleic acid derivatives having phenyldiaziridine moieties and process for production thereof, nucleotide derivatives having phenyldiaziridine moieties and process for production thereof, method for analysis of protein, and process for preparation of protein Download PDF

Info

Publication number
WO2006120992A1
WO2006120992A1 PCT/JP2006/309229 JP2006309229W WO2006120992A1 WO 2006120992 A1 WO2006120992 A1 WO 2006120992A1 JP 2006309229 W JP2006309229 W JP 2006309229W WO 2006120992 A1 WO2006120992 A1 WO 2006120992A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
nucleic acid
phenyldiaziridine
general formula
acid derivative
Prior art date
Application number
PCT/JP2006/309229
Other languages
French (fr)
Japanese (ja)
Inventor
Yasumaru Hatanaka
Yutaka Sadakane
Masaki Kaneda
Original Assignee
National University Corporation University Of Toyama
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation University Of Toyama filed Critical National University Corporation University Of Toyama
Priority to JP2007528262A priority Critical patent/JP4122446B2/en
Publication of WO2006120992A1 publication Critical patent/WO2006120992A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/04Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical

Definitions

  • Phenyldiaziridine-added nucleic acid derivatives and their production methods Phenyldiaziridine-added nucleotide derivatives and their production methods, and protein analysis methods and preparation methods
  • the present invention relates to a phenyldiaziridine-added nucleic acid derivative and a method for producing the same, and a phenyldiaziridine-added nucleotide derivative and a method for producing the same. Furthermore, the present invention relates to a method for analyzing and preparing a protein using a ferrodiaziridine-added nucleic acid derivative and a ferrodiaziridine-added nucleotide derivative.
  • Nucleic acids are basic substances of life and control many functions of life phenomena. A single nucleic acid and its derivative are responsible for various information transmission and energy transmission in the living body. Nucleic acid complexes, that is, DNA and RNA are basic compounds that support life and have blueprints and protein production functions. The reason why nucleic acids and their derivatives and complexes can perform various functions in this way is because there are proteins that bind to them.
  • Protein motif analysis is often used as a method for analyzing proteins that bind to nucleic acids and their derivatives.
  • the sites of the protein that bind to the nucleic acid and its derivatives are somewhat similar to each other, and this property is used to predict whether or not the protein will bind to the nucleic acid and its derivatives.
  • EMSA Electrical mobility shift assay
  • DNA DNA
  • RNA DNA
  • EMSA detects a protein that binds to a DNA or RNA fragment having a specific sequence by the following method.
  • a nuclear extract containing a large amount of DNA or RNA-binding protein and a DNA or RNA fragment having a specific sequence labeled for detection are mixed, and the complex is formed with mutual affinity during a certain period of time. Let it form.
  • the present inventors have so far developed a unique high-speed optical affinity method using a diazirine derivative as a photoreactive group.
  • the photoaffinity method is a technology that uses a photoreaction to irreversibly connect specific ligands and partner proteins.
  • Diazirine has the advantage of favoring this irreversible binding compared to other photoreactive groups.
  • Sadakane (2002) Photoaffinity labeling in drug discovery and developments: Chemical gateway for entering proteom ic frontier. Curr. Top. Med. Chem. 2, 271- 288 4), Yasumaru Hatanaka Structural biological organic chemistry: Probing protein functional structure by photo-affair label, Journal of Organic Synthesis, 56 (7), 581-590, 1998 (non-patent document 5), M Kaneda, Y. Sadakane, Y. ⁇ atanaka, (2003) A Novel Approach for Aftinity- Based Screening of Target Specific Li gands: Application of Photoreactive D—Glyceraldehyde— 3— phosphate Dehydrogenase. Bioconjugate Chem. 14, 849-852.
  • Non-Patent Document 6 M. Hashimoto, J. Yang, Y. Hat anaka, Y. Sadakane, K. Nakagomi, GD Holman (2002) Improvement in the propert ies of 3—phenyl— «3— trifluoromethyldiazirine based photoreactive bis— glucose probes for GLUT4 following substitution on the phenyl ring.
  • Chem. Pharm. Bull. 50, 1004—10 06 Patent Document 7
  • Non-Patent Document 8 Hatanaka, Y., Hashimoto, H., Kanaoka , Y. A rapid and efficient method for identifying photoaffinity biotinylated sites within proteins.J. Am. Chem. Soc. 120, 453-454, 1998 (Non-patent document 9), JP 2000-319262 (Patent document 1) )
  • EMSA which is frequently used for analysis of DNA or RNA binding proteins, is an analysis method that only confirms the presence or absence of binding proteins with very poor resolution due to the limitations of non-denaturing electrophoresis. For example, even when there are multiple binding proteins in the analysis system, EMSA cannot know the number of proteins for which only information on the presence or absence of binding proteins can be obtained. It is well known that multiple proteins form higher-order complexes and bind to DNA or RNA, and the limitations of EMSA have been pointed out as analysis methods.
  • the present invention provides a method for producing a photoreactive nucleic acid derivative or nucleotide derivative for the purpose of solving the above-mentioned problems, and further covers the protein using the produced derivative. It is an object of the present invention to provide a general analysis method and a binding protein isolation method (protein production method).
  • nucleic acid derivative (wherein at least one of the nucleic acid phosphate groups is a thiophosphate group) with a thiol group of the thiophosphate group and a phenyldiaziridine hydrate compound having a reactive group
  • a method for producing a nucleic acid derivative added with ferrule-aziridine is a nucleic acid derivative (wherein at least one of the nucleic acid phosphate groups is a thiophosphate group) with a thiol group of the thiophosphate group and a phenyldiaziridine hydrate compound having a reactive group
  • nucleic acid derivative is a compound represented by the general formula (A).
  • R is an OH group or an adjacent nucleotide, and R is hydrogen or OH
  • R is OH group or adjacent nucleotide
  • B is adenine, guanine
  • R is a halogen atom or a sulfonate residue
  • R is an alkylsulfo group having 1 to 6 carbon atoms or an alkylthio group having 1 to 6 carbon atoms.
  • R is H or an alkyl group having 1 to 6 carbon atoms
  • n is an integer of 1-6.
  • n is an integer of 1-6.
  • R is hydrogen), an unsubstituted or substituted alkyl group having 1 to 6 carbon atoms
  • R is Hydrogen
  • R ′ is H, an unsubstituted or substituted alkyl carboalkyl, alkyl carboloxy or aryl carborooxy group having 2 to 6 carbon atoms.
  • X is an alkanesulfol group or a benzenesulfol group.
  • N is an integer of 1 to 6
  • X and y are independently 0 to: an integer of L00
  • N is a group represented by the following general formula (B).
  • R is an OH group or an adjacent nucleotide, and R is hydrogen or OH
  • R is OH group or adjacent nucleotide
  • B is adenine, guanine
  • Reaction of a nucleotide derivative represented by the following general formula (E) or (F) with a ferrodiaziridine compound having a reactive group with a thiol group in the compound represented by the general formula (E) or (F) A process for producing a phenyldiaziridine-added nucleotide derivative.
  • R is adenine, guanine, cytosine, uracil, thymine, and their derived physical strength group power, any base selected, n is 0, 1 or 2, and general formula (F) R and R are independently nicotinamide adenine nucleotide and its phosphate,
  • flavin mononucleotide sugar phosphate, sugar nucleotide, coenzyme A, and phospholipid.
  • R is a halogen atom or a sulfonate residue
  • R is an alkylsulfo group having 1 to 6 carbon atoms or an alkylthio group having 1 to 6 carbon atoms.
  • R is H or an alkyl group having 1 to 6 carbon atoms
  • n is an integer of 1-6.
  • R is hydrogen (H), an unsubstituted or substituted alkyl group having 1 to 6 carbon atoms, and in formula (10) , R is hydrogen), an unsubstituted or substituted alkyl group having 1 to 6 carbon atoms, and R 'is H, an unsubstituted or substituted alkyl carbo yl, alkyl carbo-loxy having 2 to 6 carbon atoms, or Is an arylcarboxyl group, and in formula (8), X is an alkanesulfol group or a benzenesulfol group.
  • a ferradiaziridine-added nucleic acid derivative produced by the method according to any one of [1] to [7], a ferradiaziridine-added nucleic acid derivative according to any one of [8] to [10], or [11] to [ 13] or the nucleotide derivative produced by the method according to item 1 and the analyte protein are mixed under conditions that allow interaction,
  • the resulting mixture is irradiated with light to produce a ferradiaziridine-added nucleic acid derivative or nuclease.
  • the diaziridine group contained in the oxide derivative is reacted with the protein to form a conjugate of the above-mentioned ferradiaziridine-added nucleic acid derivative or nucleotide derivative and the protein,
  • a ferradiaziridine-added nucleic acid derivative produced by the method according to any one of [1] to [7], a ferradiaziridine-added nucleic acid derivative according to any one of [8] to [10], or [11] to [ 13], the nucleotide derivative produced by the method described in any one of the above and the analyte, the protein, are mixed under conditions that allow interaction.
  • the resulting mixture is irradiated with light to react the diaziridine group contained in the phenyldiaziridine-added nucleic acid derivative or nucleotide derivative with the protein, thereby binding the fertilaziridine-added nucleic acid derivative or nucleotide derivative to the protein.
  • the separated conjugate is treated with an alkaline solution to dissociate the conjugate,
  • photoreactive nucleic acid derivatives and nucleotide derivatives can be provided.
  • these derivatives it is possible to capture proteins that bind to them by covalent bonds. This photoreaction occurs very quickly with light near 360 nm. Also, this light is almost against normal biomolecules such as nucleic acids such as DNA and proteins. Not absorbed. Therefore, a complex of a photoreactive compound (nucleic acid derivative) and a binding protein can be applied to most existing protein analysis methods. This makes it possible to comprehensively analyze multiple binding proteins.
  • the photoreactive group in the photoreactive compound and the nucleic acid can be cleaved, and this cleaving reaction is used to bind from the complex of the photoreactive compound (nucleic acid derivative) and the binding protein. Only the protein can be extracted.
  • the method (1) for producing a phenyldiaziridine-added nucleic acid derivative of the present invention comprises a nucleic acid derivative in which the phosphate group of at least one nucleic acid is a thiophosphate group, and a phenyl group having a reactive group with the thiol group of the thiophosphate group. Reacting with a diaziridine compound.
  • the nucleic acid derivative in which the phosphate group of at least one nucleic acid is a thiophosphate group can be, for example, a compound represented by the general formula (A).
  • X and y are each independently an integer of 0 to 100.
  • the sum of X and y is 0 or more and 200 or less.
  • the production method of the present invention is also applicable to a nuclear acid derivative in which the sum of X and y exceeds 200.
  • N is a group represented by the following general formula (B).
  • R is an OH group or an adjacent nucleotide.
  • Applicable N is nucleic acid
  • R is an OH group when at the end of the derivative, otherwise R is adjacent
  • R is hydrogen or an OH group. When R is hydrogen, the nucleus
  • the acid derivative is DNA, and when R is an OH group, the nucleic acid derivative is RNA. 1 bottle
  • Nucleic acid derivatives Nucleotide in which R is hydrogen (N) and R is OH
  • Chid (N) can be mixed.
  • R is an OH group or adjacent nucleotide.
  • R is an OH group when the corresponding N is the end of the nucleic acid derivative, otherwise
  • R is the adjacent nucleotide (N).
  • B is adenine, guanine, cytosine, ura
  • the derivative of a base is, for example, a force that can be 5-methylcytosine, N6-methyladenine, 5-hydroxymethylcytosine, inosine and the like, but is not limited thereto.
  • B is arbitrarily selected from the above bases independently for each nucleotide (N), and can constitute nucleic acid derivatives having various base sequences.
  • X is S (sulfur) or O (oxygen).
  • X in normal nucleotide (N) is O (oxygen) and constitutes a phosphate group.
  • a phosphate group in which X is s (sulfur) is a thiophosphate group.
  • the nucleotide (N) represented by N—SH represents SH of the thiophosphate group in the general formula (A).
  • N—Nucleotides other than SH (N) may include nucleotides (N) in which X is S (sulfur).
  • a nucleotide (N) in which X is S (sulfur) can be introduced with a phenyldiaziridine group according to the method of the present invention. It is possible to introduce a ferrodiaziridine group into.
  • the nucleic acid derivative may have a label.
  • the label can be a known label used for nucleic acid derivatives. Such labels can include, for example, piotin, radioisotopes, and Z or fluorescent materials. However, it is not limited to these substances.
  • the introduction of the label into the nucleic acid derivative can be performed by a known method described in the following document.
  • the ferrulediaziridine compound can be, for example, a compound represented by the general formula (C).
  • R represents a halogen atom (for example, Cl, Br, 1) or a sulfonate ester residue.
  • the sulfonic acid ester residue can be a methanesulfol group or a toluenesulfol group.
  • R is an alkylthiosulfol having 1 to 6 carbon atoms Group or an alkylthio group having 1 to 6 carbon atoms.
  • the alkylthiosulfol group is RSO
  • R can be, for example, methyl, ethyl, propyl or butyl.
  • the alkylthio group is represented by RS— and R can be, for example, methyl, ethyl, propyl or butyl.
  • R can be H or an alkyl group having 1 to 6 carbon atoms;
  • the alkyl group can be, for example, methyl, ethyl, propyl or butyl.
  • n is an integer of 1 to 6, preferably an integer of 1 to 4, and more preferably 1.
  • the phenyldiaziridine compound represented by the general formula (C) can be, for example, a compound represented by the following formula (1).
  • the compound represented by the formula (1) has a maleimide group and diazirine as reactive functional groups.
  • the maleimide group reacts with the thiol group of the thiophosphate group of the nucleic acid derivative having a thiophosphate group.
  • the compound represented by the formula (1) can be produced by a reaction with a phenyldiaziridine compound of the formula (2) or the formula (7).
  • the phenyldiaziridine compound represented by the general formula (C) can be, for example, a compound represented by the following formula (2).
  • the compound represented by the formula (2) has halogen (Hal) and diazirine as reactive functional groups.
  • Halogen (Hal) is a thiol group of a thiophosphate group of a nucleic acid derivative having a thiophosphate group. react. Examples of halogen (Hal) include Cl, Br, and I.
  • the compound represented by the formula (2) can be produced by a method described in the literature [M. Nassal, J. Am. Chem. Soc, 106, 7540-7545 (1984); LB Shih, and H. Bayley, Anal. Bioche m., 1985, 144, 132-141].
  • the ferrulediaziridine compound represented by the general formula (C) can be, for example, a compound represented by the following formula (3).
  • Non-Patent Document 6 M. Kaneda, Y. Sadakane, Y. Hatanaka,
  • the phenyldiaziridine compound represented by the general formula (C) can be, for example, compounds represented by the following formulas (4) to (10).
  • R is hydrogen), an unsubstituted or substituted alkyl group having 1 to 6 carbon atoms, and in formula (10), R is hydrogen ), Unsubstituted or substituted alkyl having 1 to 6 carbon atoms R ′ is H; an unsubstituted or substituted alkyl carbo group having 2 to 6 carbon atoms such as acetyl group; tert-butoxycarbol (Boc) group, 9-fluorenylmethoxycarbo- An unsubstituted or substituted alkylcarboxoxy group having 2 to 6 carbon atoms such as an Fmoc group; or an arylcarboxoxy group such as a benzoyl group, in which X is methanesulfol, etc.
  • a benzenesulfur group such as p-toluenesulfol.
  • the unsubstituted alkyl group having 1 to 6 carbon atoms represented by R is, for example, methyl, ethyl, n-propyl, or t-butyl, and the substituted alkyl group is, for example, benzyl.
  • the phenyldiazirine derivatives represented by the formulas (4) to (10) start from unsubstituted phenyldiazirine (11), which can be synthesized most simply and in large quantities.
  • an intermediate (12) in which (11) is directly modified with an aldehyde group is synthesized, and the aldehyde group of this intermediate (12) is further modified to produce a phenotype represented by formulas (4) to (10).
  • Enildiazirine derivatives can be synthesized.
  • Ferradiazirine is known as an excellent photoreactive group because it is stable to various synthetic conditions, but can be rapidly decomposed by photoreaction to form a stable crosslink.
  • an appropriate functional group is required. Synthetic complexity at that stage was a problem.
  • (12) has been reported as a low-yield synthesis method through 7 steps [JM Delfino, SL Schreiber, and FM Richards, J. Am. Chem.
  • CI CHOCH was found to be in trifluoromethanesulfonic acid (TfOH).
  • Lewis acids are A1C1, ZnCl, SbCl, SbCl,
  • a functional group useful for synthesis can be easily introduced onto the aromatic ring of phenyl diazirine, which has heretofore been difficult to modify directly. It is considered to be particularly important in terms of being easily convertible to various functional groups.
  • This halogen compound is used for the synthesis of a phenol (Tmd (Phe)) (15) having a diazirine group at the P-position, which is useful for the synthesis of photoreactive peptides and proteins [for example, M. Nassal, J. Am. Chem. So, 106, 7540-7545 (1984); LB Shih, and H. Bayley, Anal.
  • a ferrodiaziridine compound having a thiol-reactive group and a nucleic acid derivative are mixed at a molar ratio of, for example, about 50: 1 to 100: 1. Further, this mixture is mixed with diisopropylethylamine in a molar ratio of 50 to 100 times with respect to the nucleic acid derivative, and the reaction can be carried out in dimethyl sulfoxide at 37 ° C.
  • N-methylmorpholine, triethylamine and the like can be used in place of diisopropylethylamine.
  • methanol, dimethylformamide or the like can be used instead of dimethyl sulfoxide.
  • the reaction temperature can include 37 ° C, for example, in the range of 4 to 70 ° C.
  • the concentration of the ferrodiaziridine compound is suitably in the range of 0.1 to 0.5 mM, for example.
  • the reaction time can be a force depending on the type of ferrodiaziridine compound, for example, several tens of minutes, several hours. It is preferable to store in liquid nitrogen after the reaction so that no excessive reaction occurs!
  • the product, a ferrodiaziridine-added nucleic acid derivative can be purified by, for example, high performance liquid chromatography. In addition to high performance liquid chromatography, it can be purified by capillary electrophoresis, for example.
  • Scheme 5 is an example in which the compound (2a) is used as a ferrodiaziridine compound.
  • the nucleic acid derivative (A1) is an example having a thiophosphate group at a nucleotide other than the terminal nucleotide of the nucleic acid derivative.
  • the thiol hydrogen of the thiophosphate group and Br of the compound (2a) form HBr, and by de-HBr, the compound (2a) and the nucleic acid derivative (Al) are combined to form a phenyldiaziridine-added nucleic acid derivative (D1). Generate.
  • Scheme 6 is an example in which the compound (3) is used as a ferrodiaziridine compound.
  • the nucleic acid derivative (A2) is an example having a thiophosphate group at the terminal nucleotide of the nucleic acid derivative.
  • the thiol atom of the thiophosphate group nucleophilically reacts with the thiosulfonate group (MeS O S—) of the compound (3).
  • a disulfide bond is formed to produce a phenyldiaziridine-added nucleic acid derivative (D2).
  • Scheme 7 is an example in which compound (2a) is used as a ferrodiaziridine compound.
  • the nucleic acid derivative (A2) is an example having a thiophosphate group at the terminal nucleotide of the nucleic acid derivative.
  • the hydrogen of the thiol of the thiophosphate group and Br of the compound (2a) form HBr, and by de-HBr, the compound (2a) and the nucleic acid derivative (A2) are combined to form a ferrodiaziridine-added nuclear acid derivative ( D3) is generated.
  • Scheme 8 is an example in which the compound (1) is used as a ferrodiaziridine compound.
  • the nucleic acid derivative (A2) is an example having a thiophosphate group at the terminal nucleotide of the nucleic acid derivative.
  • the hydrogen of the thiol of the thiophosphate group is transferred to the compound (1), and the compound (1) and the nucleic acid derivative (A2) are combined to produce a phenyldiaziridine-added nucleic acid derivative (D4).
  • the ferrodiaziridine-added nucleic acid derivative can be a compound represented by the general formula (D).
  • the present invention includes a fermenteraziridine-added nucleic acid derivative itself as well as a method for producing a ferraziaziridine-added nucleic acid derivative.
  • the fermentiaziridine-added nucleic acid derivative can have a label.
  • the label can be a known label used for nucleic acid derivatives.
  • Such labels can include, for example, piotin, radioisotopes, and Z or fluorescent materials. However, it is not limited to these substances.
  • the method (2) for producing a phenyldiaziridine-added nucleotide derivative of the present invention comprises a nucleotide derivative represented by the following general formula (E) or (F) and a compound represented by the general formula (E) or (F): And reacting a ferrodiaziridine compound having a reactive group with a reactive thiol group.
  • a nucleotide derivative represented by the following general formula (E) or (F) and a compound represented by the general formula (E) or (F): And reacting a ferrodiaziridine compound having a reactive group with a reactive thiol group.
  • R is any base selected from the group consisting of adenine, guanine, cytosine, uracil, thymine, and derivatives thereof, and a derivative of the base includes, for example, 5-methylcytosine N6-methyladenine, 5-hydroxymethylcytosine, inosine, and the like.
  • n is 0, 1 or 2.
  • R and R are independently nicotinamide adenine nucleotide and its
  • Phosphorus oxide and flavin mononucleotide, sugar phosphate, sugar nucleotide, coenzyme A, and phospholipid strength are selected.
  • Examples of the phosphoric acid oxide of nicotinamide adenine nucleotide include nicotinamide adenine dinucleotide phosphate.
  • Examples of flavin nucleotides include flavin adene dinucleotide.
  • Examples of the sugar phosphate include glucose 1-phosphate, glucose 6-phosphate, fructose 1,6-bisphosphate, 5-phosphoribosyl 1-diphosphate, and the like.
  • sugar nucleotides include ADP-sugar, CDP-sugar, GDP-sugar, UDP-sugar, and TDP-sugar.
  • sugar moieties include various pentoses, hexoses, uronic acids, deoxy sugars, amino sugars, Some of them are branched sugars, aminouronic acids, ketoses, sulfate sugars and oligosaccharides.
  • coenzyme A examples include acetyl acetylenzyme A.
  • the phospholipid include glyceguchi phospholipid, phosphatidylcholine (lecithin), phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidylglycerol, diphosphatidylglycerol (cardiolipin), and sphingophospholipid.
  • the ferrodiaziridine compound is a compound represented by the general formula (C), and this compound is the same as the substance described in the production method (1) of the present invention.
  • the present invention includes a method for analyzing a protein by electrical mobility shift assay.
  • the phenyldiaziridine-added nucleic acid derivative produced by the method (1) of the present invention and the phenyldiaziridine-added nucleic acid derivative of the present invention, or the nucleotide derivative produced by the method (2) are used.
  • the analysis method includes the following steps.
  • the nucleic acid derivative or nucleotide derivative and the protein as the analyte are mixed under conditions that allow interaction.
  • the nucleic acid derivative is prepared so as to have an arbitrary sequence considering the sequence of the protein as the analyte.
  • the prepared nucleic acid derivative eg, DNA
  • a nucleic acid derivative having a tag such as biotin introduced at the 5 ′ end can be used.
  • the protein as the analyte can be, for example, various transcription factor proteins typified by p53, or various enzyme groups involved in various transcriptions typified by DNA polymerase. .
  • a protein that binds to the nucleic acid derivative is present in the protein mixture, the two are bound by their affinity.
  • the conditions that can interact can be, for example, standing for about 1 hour in ice.
  • the nucleic acid derivative or nucleotide derivative can be a single component, but a mixture containing a plurality of types of nucleic acid derivatives or nucleotide derivatives can also be used.
  • the resulting mixture is irradiated with light to react the diaziridine group contained in the phenyldiaziridine-added nucleic acid derivative or nucleotide derivative with the protein.
  • the light to be irradiated can be, for example, light around 360 nm. Conditions such as the irradiation time vary depending on the intensity of the light source, but can be, for example, several seconds to 30 minutes on ice. By the above light irradiation, a covalent bond is formed between the ferrodiaziridine-added nucleic acid derivative and the protein, thereby linking the two.
  • the diaziridine group of the phenyldiaziridine-added nucleic acid derivative or nucleotide derivative reacts with an arbitrary part of the protein to form a conjugate.
  • Electrophoresis can be normal gel electrophoresis. Specifically, by placing a sample on top of the slab gel and flowing an appropriate current flow rate, the sample flows through the slab gel depending on the charged state of the sample. When passing through the gel network, the mobility varies depending on the molecular weight of the sample, allowing separation analysis.
  • electrophoresis can be performed under denaturing conditions, and it is also preferable to perform under denaturing conditions from the viewpoint of higher separation and higher reproducibility.
  • the denaturing condition means, for example, that the higher-order structure of the protein is broken by a reducing agent or heat treatment, and a surfactant is also allowed to coexist to make the charge of the sample uniform.
  • the conjugate separated by electrophoresis can be detected using a tag introduced into a nucleic acid derivative. Detection of the conjugate can be appropriately performed depending on the type of tag.
  • the present invention encompasses a method for preparing a protein.
  • the method of the present invention ( The ferrodiaziridine-added nucleic acid derivative produced in 1), the ferrodiaziridine-added nucleic acid derivative of the present invention, or the nucleotide derivative produced by the method (2) of the present invention is used.
  • the method for preparing a protein includes the following steps.
  • Steps (d) and (e) can be carried out in the same manner as steps (a) and (b).
  • conjugate to be separated for example, a conjugate of a nucleic acid derivative having a 5'-end introduced with a tag such as piotin and a protein and a protein can be separated by an affinity separation method for the tag.
  • the conjugate is separated with beads fixed with avidin as a complex with the protein. Capture and implement.
  • the separated conjugate is treated with an alkaline solution to dissociate the conjugate.
  • the treatment of the conjugate with an alkaline solution can be performed, for example, as follows.
  • the cleavage between the phosphorus and thio atoms is due to the nucleophile.
  • This cleavage reaction can be referred to Gish, G., Eckstein, F. Science (1988) 240, 1520-1522.
  • the excised binding protein is present in the solution.
  • Scheme 9 shows the chemical state of the dissociation of the conjugate.
  • (14) is a compound in which Hal is Br in the compound (2), and (15) is a compound in which R and R ′ are hydrogen atoms (H) in the above (10).
  • a 4-mer DNA guanine and cytosine phosphate having a S-row of adenine, guanine, cytosine, and thymine represented by compound (A3) in the following scheme 10 is a thioester.
  • the thing (AGsCT) was used.
  • This compound was synthesized by a known method described in the following literature. Zon, G .; Geiser, TG (1991) Phosphorothioate oligon ucleotides: chemistry, purification, analysis, scale-up and iuturedirections .Antiance r Drug Des. 6: 539-568. JV; Wiesler, W. (1992) Chemical synthesis of deoxyoligonucleotides and deoxyoligonucleotide analogs.Methods Enzymol. 211: 3-20.
  • the chart shown in FIG. 1 is obtained by high performance liquid chromatography when the reaction is performed at 37 ° C. This is an analysis example. Chart 1 is before the reaction, and charts 2, 3, 4, and 5 are after 1, 2, 4, and 24 hours after the reaction, respectively. The numbers at the top of the peak indicate the retention time. The peak around 6.5 minutes is the compound (A3) in Scheme 10 of the raw material, and the peak around 7.5 minutes is the compound (D5) in the product scheme 10. .
  • Graphs (1), (2), and (3) shown in Fig. 2 show the reaction time and product compound (D5) when the reaction was carried out at 20 ° C, 37 ° C, and 56 ° C, respectively. ) Yield. Yield is good at the reaction temperature of 37 ° C in graph (2). The maximum yield is obtained by the reaction for about 2 hours.
  • the reaction temperature was fixed at 37 ° C, and the reaction yield when the concentration of the compound (1) in Scheme 3 as a raw material was 0.023, 0.045, 0.182, 0.455 mM was shown in graphs (1), ( Shown in 2), (3) and (4).
  • the reaction is faster at high concentrations of raw material, but there is no change at around 0.2 mM.
  • the preferred raw material concentration is 0.2 mM, it is considered that a similar yield can be obtained by extending the reaction time even if it is about O.lmM.
  • Chart (1) shown in Fig. 4 shows the analysis result of the raw material (A2) by high performance liquid chromatography.
  • the peak force corresponding to (a) in the chart is a 2 lmer RNA (A2) in which the 5 'end of the raw material is thiophosphated.
  • Chart (2) above is a similar analysis of product (D4).
  • the peak (b) in the chart is a newly appearing peak and was confirmed to be (D4) as a result of mass spectrometry.
  • Biotin-TGTATGsCAAATAAGG (SEQ ID NO: 1) (A1), in which the photoreactive group of the compound represented by the formula (2a) and the 5 'end are piotinated and one of the nucleic acids in the DNA sequence is thiophosphate, Dissolved in dimethyl sulfoxide to final concentrations of 0.2 mM and 10 mM. Diisopropylethylamine was mixed to a final concentration of 10 mM to synthesize a product represented by the formula (D1).
  • the target product was purified by high-speed liquid chromatography, and the product was confirmed by mass spectrometry.
  • Compound A1 was synthesized by a known method described in the following literature. Zon, G .; Geiser, TG (1991) Phos phorotnioate oligonucleotides: chemistry, purincation, analysis, scale-up and iuturedi rections .Anticancer Drug Des. 6: 539-568. And Caruthers, MH; Beaton, G .; Wu, JV; Wiesler, W. (1992) Chemical synthesis of deoxyoligonucleotides and deoxyoligo nucleotide analogs.Methods Enzymol.211: 3— 20.
  • Piotin is originally bound to photoreactive DNA.
  • photoreactive DNA alone is analyzed by electrophoresis using a 10% polyacrylamide gel, the molecular weight is as low as about 5000, so it flows out of the gel.
  • Piotin detected by chemiluminescence in this electrophoresis gel is considered to be photoreactive DNA that forms a complex with a high-molecular substance such as protein.
  • Lane “ ⁇ ” shows molecular weight markers, corresponding to molecular weights of 67000, 45000, 31000, 20000 from the top of the gel.
  • Lane “1” is a control experiment in which only the photoreactive DNA was used without the nuclear extract.
  • Lane “2” is an experiment in which the nuclear extract and photoreactive DNA were added and irradiated as described above.
  • Lanes “3” and “4” are experiments using competitive inhibition DNA, and Lane “3” is a 25-fold molar amount of DNA having a sequence equivalent to photoreactive DNA.
  • “4” is a 25-fold molar amount of DNA obtained by mutating part of the DNA sequence.
  • Chart (1) above is a high-performance liquid chromatographic analysis using photoreactive AGsCT before reaction as a sample, and the peak (a) in the chart corresponds to it.
  • Chart (2) is an analysis of the sample after reacting for 2 hours by the above method. The peak corresponding to (a) disappears, and the new peak (b) appears.
  • Chart (3) is an analysis of AGsCT without diazirine as a sample, and the peak in (c) corresponds to it. Since the retention times of the peak in (b) and the peak in (c) are almost the same, the peak in (b) is expected to be AGsCT with diazirine cleaved. As a result of fractionating this (b) peak and analyzing it by mass spectrometry, it was shown that it was A GsCT without diazirine.
  • FIG. 8 shows a schematic diagram of the example below.
  • the photoreactive DNA is placed in a polypropylene tube (Fig. 8 (1)) and fixed to the tube surface by light irradiation (Fig. 8 (2)). After fixation, the DNA is removed by washing (Fig. 8 (3)), and the presence or absence of piotin is confirmed by fluorescent light emission with streptavidin-HRP enzyme (Fig. 8 (4)). The cleavage process is performed after the operation shown in Fig. 8 (3). I confirmed that it was removed from the surface of the groove.
  • Detection Example 2 does not perform photoreaction and does not perform the fixed ⁇ process.
  • Detection Example 3 is an example of cleavage treatment, in which a 50 mM phosphate buffer solution was placed in a solution adjusted to pH 10.5 with sodium hydroxide. The tube surface force by the cutting process also indicates that the Piotin DNA was removed.
  • a tube containing the above sample was floated on ice water, and irradiated with 360 nm light of 30 W / m 2 on ice for 5 minutes.
  • a surfactant was added to a final concentration of 1% immediately after irradiation.
  • Avidin-bound beads were added and stirred for 1 hour.
  • the cleavage reaction was performed in a solution prepared by adjusting 50 mM phosphate buffer to 10.5 with sodium hydroxide. The supernatant was collected, separated by electrophoresis, and the protein was stained with silver stain. The result is shown in FIG.
  • Lanes in the electropherogram of FIG. 10 will be described.
  • Lane “M” shows molecular weight markers, corresponding to molecular weights of 97000, 67000, 45000, 31000, 20000 from the top of the gel.
  • Lane “1” uses the supernatant that had been cleaved as described above as a sample
  • lane “2” used the sample that had been cleaved without POU protein
  • lane “3” POU protein was used as a sample.
  • From lane “3”, “A” and “B” in the electropherogram are considered to be POU protein bands. These two bands can also be seen in lane “1”.
  • Diazirine was introduced into the phosphorothioates of GTP- ⁇ -S and ADP- ⁇ -S shown below.
  • NEM was removed from the sample after the reaction using a Sephadex G25 column, and the PS in the photoreactive GTP was cleaved by hydrolysis by incubating with a 0.03% aqueous ammonia solution at 37 ° C for 2 hours. After the reaction, the ammonia was removed by bubbling nitrogen, and 40 mL of an aqueous solution containing 1 mM piotinmaleimide 0.5 M phosphate buffer (pH 7.0) and 10% ethanol was added, and 20 under argon. Incubated at C for 20 hours. The sample after the reaction was treated with piotin male on a Sephadex G25 column. The mid was removed and lyophilized.
  • the sample was subjected to SDS-PAGE (13% polyacrylamide gel), electroblotted onto a PVDF membrane, and then detected by chemiluminescence using streptavidin-HRP peroxidase.
  • SDS-PAGE (13% polyacrylamide gel
  • streptavidin-HRP peroxidase The results are shown in FIG.
  • the reaction scheme is shown below.
  • $ Fe 3+ -IMAC shows a phosphate group and a chelate. In this case, only the photolabeled GTP bound to the protein will chelate with the column.
  • the present invention is useful in a wide range of fields involving nucleic acids and proteins.
  • FIG. 1 An example of analysis by high performance liquid chromatography is shown.
  • FIG. 2 shows the relationship between reaction time and yield.
  • FIG. 3 shows the relationship between reaction concentration and yield.
  • FIG. 4 Shows an example of analysis by high performance liquid chromatography.
  • FIG. 5 Schematic diagram of formation of binding protein with covalently linked DNA.
  • FIG. 7 An example of analysis by high performance liquid chromatography is shown.
  • FIG. 8 is a schematic diagram of Example 6.
  • FIG. 9 shows an example of chemiluminescence detection.
  • FIG. 10 is an electrophoresis image of the collected supernatant.
  • FIG. 11-1 Analysis of introduction reaction of diazirine into GTP- ⁇ -S by HPLC.
  • FIG. 11-2 Analysis of introduction reaction of diazirine into ADP- ⁇ -S by HPLC.
  • FIG. 12 shows the results of chemiluminescence detection of the optical label Ras using the optical probe-specific piotine-attached cage in Example 8. 1: Optical label is present 2: Optical label is not present (The light irradiation of the operation * is performed)
  • FIG. 14 Reaction scheme in Example 9.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Saccharide Compounds (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

[PROBLEMS] To provide photoreactive nucleic acid or nucleotide derivatives, a method for comprehensive analysis of protein with the derivatives, and so on. [MEANS FOR SOLVING PROBLEMS] Nucleic acid derivatives having phenyldiaziridine moieties, as represented by the general formula (D): [Chemical formula 1] (D) a process for the production of the derivatives which comprises reacting a nucleic acid derivative wherein at least one of the phosphate groups is a thiophosphate group with a phenyldiaziridine compound; nucleotide derivatives having phenyldiaziridine moieties; a process for the production thereof which comprises reacting a nucleotide derivative represented by the general formula (E) or (F) with a phenyldiaziridine compound having a group reactive with the thiol group of the derivative represented by the general formula (E) or (F): [Chemical formula 11] (E) (F) and a method for analysis of protein by electrophoresis mobility sift assay with the above nucleic acid or nucleotide derivatives having phenyldiaziridine moieties.

Description

明 細 書  Specification
フエニルジアジリジン付加核酸誘導体とその製造方法、フエニルジアジリ ジン付加ヌクレオチド誘導体とその製造方法、並びにタンパク質の分析方法およ び調製方法  Phenyldiaziridine-added nucleic acid derivatives and their production methods, phenyldiaziridine-added nucleotide derivatives and their production methods, and protein analysis methods and preparation methods
技術分野  Technical field
[0001] 本発明は、フエニルジアジリジン付加核酸誘導体とその製造方法、およびフエ-ル ジアジリジン付加ヌクレオチド誘導体とその製造方法に関する。さらに本発明は、フエ -ルジアジリジン付加核酸誘導体およびフエ-ルジアジリジン付加ヌクレオチド誘導 体を用いたタンパク質の分析方法および調製方法に関する。  [0001] The present invention relates to a phenyldiaziridine-added nucleic acid derivative and a method for producing the same, and a phenyldiaziridine-added nucleotide derivative and a method for producing the same. Furthermore, the present invention relates to a method for analyzing and preparing a protein using a ferrodiaziridine-added nucleic acid derivative and a ferrodiaziridine-added nucleotide derivative.
背景技術  Background art
[0002] 核酸は生命の基本物質であり、生命現象の多くの機能をつかさどる。単体の核酸 およびその派生物は、生体内の様々な情報伝達、エネルギー伝達などを担う。また 核酸の複合体、つまり DNAや RNAは生命の設計図とタンパク質生産の機能をもち 、生命を支える基本的な化合物である。このように核酸とその派生物および複合体が 様々な機能を発揮できるのは、それらに結合して働くタンパク質が存在するからであ る。(「細胞の分子生物学 第 4版」 Bruce Alberts著、中村桂子、松原謙一翻訳、 -ュ 一トンプレス発行 (非特許文献 1) )  [0002] Nucleic acids are basic substances of life and control many functions of life phenomena. A single nucleic acid and its derivative are responsible for various information transmission and energy transmission in the living body. Nucleic acid complexes, that is, DNA and RNA are basic compounds that support life and have blueprints and protein production functions. The reason why nucleic acids and their derivatives and complexes can perform various functions in this way is because there are proteins that bind to them. ("Molecular Biology of Cells 4th Edition" by Bruce Alberts, translated by Keiko Nakamura and Kenichi Matsubara, published by Newton Press (Non-Patent Document 1))
[0003] 核酸およびその派生物に結合するタンパク質を解析する方法として良く用いられて いるのが、タンパク質のモチーフ解析である。核酸およびその派生物に結合するタン ノ ク質の部位はある程度互いに似ており、この性質を利用しタンパク質が核酸および その派生物に結合する力否かを予想するものである。  [0003] Protein motif analysis is often used as a method for analyzing proteins that bind to nucleic acids and their derivatives. The sites of the protein that bind to the nucleic acid and its derivatives are somewhat similar to each other, and this property is used to predict whether or not the protein will bind to the nucleic acid and its derivatives.
[0004] 核酸複合体、 DNAまたは RNAに結合するタンパク質の解析法として、電気的移動 度シフトアツセィ(以下、 EMSA)が良く用いられる。 EMSAは、特定配列をもつ DN Aまたは RNA断片に結合するタンパク質を以下の方法で検出する。 DNAまたは RN A結合タンパク質を多量に含む核抽出液などと、検出用にラベルされた特定配列を 有する DNAまたは RNA断片とを混和し、一定時間清置させる間に相互の親和性で 複合体を形成させる。その後、 DNAまたは RNA—タンパク質複合体と結合しなかつ た DNAまたは RNAとを非変性条件電気泳動で分離し、適切な検出法でラベルされ た DNAまたは RNAを視覚化する。このとき、一般的に複合体は DNAまたは RNA のみに比べ、電気泳動中での移動度が遅くなる。(「Molecular Cloning A Laboratory Manual 第 3版」 Sambrook J、 Russell DW著 17- 13〜 17- 22頁 Cold Spring Harbo r Laboratory Press発行(非特許文献 2) ) [0004] Electrical mobility shift assay (hereinafter referred to as EMSA) is often used as a method for analyzing a protein that binds to a nucleic acid complex, DNA, or RNA. EMSA detects a protein that binds to a DNA or RNA fragment having a specific sequence by the following method. A nuclear extract containing a large amount of DNA or RNA-binding protein and a DNA or RNA fragment having a specific sequence labeled for detection are mixed, and the complex is formed with mutual affinity during a certain period of time. Let it form. Then it does not bind to the DNA or RNA-protein complex and DNA or RNA is separated by non-denaturing electrophoresis, and the labeled DNA or RNA is visualized with an appropriate detection method. At this time, the complex generally has a slower mobility during electrophoresis than DNA or RNA alone. ("Molecular Cloning A Laboratory Manual 3rd Edition", Sambrook J, Russell DW, pages 17-13-17-22, Cold Spring Harbor Laboratory Press (Non-patent Document 2))
[0005] 本発明者らは、これまでジアジリン誘導体を光反応基として、独自の高速光ァフィ二 ティー法の開発を行ってきた。光ァフィ二ティー法は光反応を利用して特異的なリガ ンドと相手のタンパク質を非可逆的につなぎとめる技術である。ジアジリンは、他の光 反応基に比べ、この非可逆的結合を有利に起こす特徴を持つ。(Y. Sadakane, Y. H atanaka (2004) Multifunctional photoprobes for rapid protein identification. In F. Da rvas, A. Guttman and G. Oorman eds., Chemical Genomics, Marcel Dekker Inc., Ne w York. Ppl99- 214 (非特許文献 3)、 Y. Hatanaka, Y. Sadakane (2002) Photoaffinity labeling in drug discovery and developments: Chemical gateway for entering proteom ic frontier. Curr. Top. Med. Chem. 2, 271- 288 (非特許文献 4)、畑中保丸 構造生 物学的有機化学:光ァフィ-ティラベルによる蛋白質機能構造のプロ一ビング、有機 合成化学会誌, 56(7),581- 590, 1998 (非特許文献 5)、 M. Kaneda, Y. Sadakane, Y. Η atanaka, (2003) A Novel Approach for Aftinity- Based Screening of Target Specific Li gands: Application of Photoreactive D—Glyceraldehyde— 3— phosphate Dehydrogenase . Bioconjugate Chem. 14, 849-852. (非特許文献 6)、 M. Hashimoto, J. Yang, Y. Hat anaka, Y. Sadakane, K. Nakagomi, G. D. Holman (2002) Improvement in the propert ies of 3— phenyl— «3— trifluoromethyldiazirine based photoreactive bis— glucose probes fo r GLUT4 following substitution on the phenyl ring. Chem. Pharm. Bull. 50, 1004—10 06 ( 特許文献 7)、 Hatanaka, Y., Kempin, U., Park, JJ. One-step synthesis of bioti nyl photoprobes from unprotected carbohydrates. J. Org. Chem. 65, 5639—5643, 20 00 (非特許文献 8)、 Hatanaka, Y., Hashimoto, H., Kanaoka, Y. A rapid and efficient method for identifying photoaffinity biotinylated sites within proteins. J. Am. Chem. Soc. 120, 453-454, 1998 (非特許文献 9)、特開 2000- 319262号公報(特許文献 1) ) [0005] The present inventors have so far developed a unique high-speed optical affinity method using a diazirine derivative as a photoreactive group. The photoaffinity method is a technology that uses a photoreaction to irreversibly connect specific ligands and partner proteins. Diazirine has the advantage of favoring this irreversible binding compared to other photoreactive groups. (Y. Sadakane, Y. Hatanaka (2004) Multifunctional photoprobes for rapid protein identification. In F. Darvas, A. Guttman and G. Oorman eds., Chemical Genomics, Marcel Dekker Inc., New York. Ppl99-214 (Non-Patent Document 3), Y. Hatanaka, Y. Sadakane (2002) Photoaffinity labeling in drug discovery and developments: Chemical gateway for entering proteom ic frontier. Curr. Top. Med. Chem. 2, 271- 288 4), Yasumaru Hatanaka Structural biological organic chemistry: Probing protein functional structure by photo-affair label, Journal of Organic Synthesis, 56 (7), 581-590, 1998 (non-patent document 5), M Kaneda, Y. Sadakane, Y. Η atanaka, (2003) A Novel Approach for Aftinity- Based Screening of Target Specific Li gands: Application of Photoreactive D—Glyceraldehyde— 3— phosphate Dehydrogenase. Bioconjugate Chem. 14, 849-852. (Non-Patent Document 6), M. Hashimoto, J. Yang, Y. Hat anaka, Y. Sadakane, K. Nakagomi, GD Holman (2002) Improvement in the propert ies of 3—phenyl— «3— trifluoromethyldiazirine based photoreactive bis— glucose probes for GLUT4 following substitution on the phenyl ring. Chem. Pharm. Bull. 50, 1004—10 06 (Patent Document 7), Hatanaka, Y., Kempin, U ., Park, JJ. One-step synthesis of biotinyl photoprobes from unprotected carbohydrates. J. Org. Chem. 65, 5639—5643, 20 00 (Non-Patent Document 8), Hatanaka, Y., Hashimoto, H., Kanaoka , Y. A rapid and efficient method for identifying photoaffinity biotinylated sites within proteins.J. Am. Chem. Soc. 120, 453-454, 1998 (Non-patent document 9), JP 2000-319262 (Patent document 1) )
[0006] 核酸とその派生物およびその複合体を解析、分離精製する上で以下の課題が未 解決である。 [0006] The following problems have not been solved in analyzing, separating and purifying nucleic acids, their derivatives and their complexes. It is a solution.
(1)核酸およびその派生物が結合するタンパク質を相同性のあるモチーフから解析 する方法は、直接的な確認法ではなぐアミノ酸配列が未知である新規結合タンパク 質を探す方法として用いることはできな 、。  (1) The method of analyzing proteins to which nucleic acids and their derivatives bind from homologous motifs cannot be used as a method of searching for new binding proteins whose amino acid sequences are unknown by direct confirmation methods. ,.
(2) DNAまたは RNAの結合タンパク質の解析に多用される EMSAは、非変性条件 電気泳動という制約から、分離能が非常に悪ぐ結合タンパク質の有無を確認するの みの解析方法となる。例えば、解析系に複数の結合タンパク質が存在している場合 でも、 EMSAでは結合タンパク質の有無のみの情報しか得られなぐタンパク質の数 を知ることができない。複数のタンパク質が高次の複合体を形成し、 DNAまたは RN Aに結合していることは良く知られており、その解析法としては EMSAの限界が指摘 されていた。  (2) EMSA, which is frequently used for analysis of DNA or RNA binding proteins, is an analysis method that only confirms the presence or absence of binding proteins with very poor resolution due to the limitations of non-denaturing electrophoresis. For example, even when there are multiple binding proteins in the analysis system, EMSA cannot know the number of proteins for which only information on the presence or absence of binding proteins can be obtained. It is well known that multiple proteins form higher-order complexes and bind to DNA or RNA, and the limitations of EMSA have been pointed out as analysis methods.
(3)核酸とその派生物およびその複合体に結合するタンパク質を、タンパク質混合液 から分離精製する一般的な方法は未だ確立されて 、な 、。  (3) A general method for separating and purifying a protein that binds to a nucleic acid, its derivative, and its complex from a protein mixture has not yet been established.
[0007] そこで、本発明は、上記課題を解決することを目的として、光反応性の核酸誘導体 またはヌクレオチド誘導体の製造法を提供し、さらに、製造した誘導体を利用して、タ ンパク質の網羅的な解析方法と結合タンパク質の単離方法 (タンパク質の製造方法) を提供することを目的とする。  [0007] Therefore, the present invention provides a method for producing a photoreactive nucleic acid derivative or nucleotide derivative for the purpose of solving the above-mentioned problems, and further covers the protein using the produced derivative. It is an object of the present invention to provide a general analysis method and a binding protein isolation method (protein production method).
発明の開示  Disclosure of the invention
[0008] 上記課題を解決するための本発明は以下のとおりである。  [0008] The present invention for solving the above problems is as follows.
[1]  [1]
核酸誘導体 (但し、少なくとも 1つの核酸のリン酸基がチォリン酸基である)とチォリン酸 基のチオール基と反応性の基を有するフ ニルジアジリジンィヒ合物とを反応させるこ とを含む、フエ-ルジアジリジン付加核酸誘導体の製造方法。  Including reacting a nucleic acid derivative (wherein at least one of the nucleic acid phosphate groups is a thiophosphate group) with a thiol group of the thiophosphate group and a phenyldiaziridine hydrate compound having a reactive group , A method for producing a nucleic acid derivative added with ferrule-aziridine.
[2]  [2]
前記核酸誘導体が一般式 (A)で示される化合物である [1]に記載の製造方法。  The production method according to [1], wherein the nucleic acid derivative is a compound represented by the general formula (A).
[化 1]
Figure imgf000005_0001
一般式 (A)中、 xおよび yは、独立に 0〜100の整数であり、 Nは以下の一般式(B)で 示される基である。
[Chemical 1]
Figure imgf000005_0001
In general formula (A), x and y are each independently an integer of 0 to 100, and N is a group represented by the following general formula (B).
[化 2] [Chemical 2]
B B
Figure imgf000006_0001
Figure imgf000006_0001
一般式 (B)中、 Rは OH基または隣接するヌクレオチドであり、 Rは水素または OH In the general formula (B), R is an OH group or an adjacent nucleotide, and R is hydrogen or OH
1 2 基であり、 Rは OH基または隣接するヌクレオチドであり、 Bはアデニン、グァニン、シ  1 2 group, R is OH group or adjacent nucleotide, B is adenine, guanine,
3  Three
トシン、ゥラシル、チミンおよびこれらの誘導体から成る群から選ばれる任意の塩基で あり、 Xは S (硫黄)または o (酸素)である。 Any base selected from the group consisting of tosine, uracil, thymine and derivatives thereof, X is S (sulfur) or o (oxygen).
[3]  [3]
前記フエニルジアジリジンィ匕合物が一般式 (C)で示される化合物である [1]または [2] に記載の製造方法。 The production method according to [1] or [2], wherein the phenyldiaziridine complex is a compound represented by the general formula (C).
[化 3] [Chemical 3]
Figure imgf000006_0002
Figure imgf000006_0002
一般式 (C)中、 Rは In general formula (C), R is
5 Five
Figure imgf000007_0001
Figure imgf000007_0001
Rは、ハロゲン原子またはスルホン酸エステル残基であり、  R is a halogen atom or a sulfonate residue,
6  6
Rは、炭素数 1〜6のアルキルスルホ -ル基または炭素数 1〜6のアルキルチオ基で R is an alkylsulfo group having 1 to 6 carbon atoms or an alkylthio group having 1 to 6 carbon atoms.
7 7
あり、 Yes,
Rは、 Hまたは炭素数 1〜6のアルキル基であり、  R is H or an alkyl group having 1 to 6 carbon atoms,
8  8
nは 1〜6の整数である。 n is an integer of 1-6.
[4] [Four]
前記フエニルジアジリジン付加核酸誘導体が一般式 (D)で示される化合物である [1] 〜[3]の 、ずれかに記載の製造方法。 The production method according to any one of [1] to [3], wherein the phenyldiaziridine-added nucleic acid derivative is a compound represented by the general formula (D).
[化 5] [Chemical 5]
(D)
Figure imgf000007_0002
一般式 (D)中、 xおよび y、並びに Nは、一般式 (A)における定義と同じであり、 Rは、
(D)
Figure imgf000007_0002
In general formula (D), x and y, and N are the same as defined in general formula (A), and R is
4 Four
[化 6][Chemical 6]
Figure imgf000008_0001
であり、 nは 1〜6の整数である。
Figure imgf000008_0001
And n is an integer of 1-6.
[5] [Five]
前記フ ニルジアジリジンィ匕合物が、下記式(1)〜( 10)で表される化合物である [3] に記載の方法。 The method according to [3], wherein the phenyldiaziridine complex is a compound represented by the following formulas (1) to (10).
Figure imgf000009_0001
式 (4)、(5)、(6)、および(9)中、 Rは、水素 )、炭素数 1〜6の無置換または置換ァ ルキル基であり、式(10)中、 Rは、水素 )、炭素数 1〜6の無置換または置換アルキ ル基であり、 R'は、 H、炭素数 2〜6の無置換もしくは置換のアルキルカルボ-ル、ァ ルキルカルボ-ルォキシまたはァリールカルボ-ルォキシ基であり、式(8)中、 Xは、 アルカンスルホ -ル基またはベンゼンスルホ-ル基である。
Figure imgf000009_0001
In formulas (4), (5), (6), and (9), R is hydrogen), an unsubstituted or substituted alkyl group having 1 to 6 carbon atoms, and in formula (10), R is Hydrogen), an unsubstituted or substituted alkyl group having 1 to 6 carbon atoms, and R ′ is H, an unsubstituted or substituted alkyl carboalkyl, alkyl carboloxy or aryl carborooxy group having 2 to 6 carbon atoms. In the formula (8), X is an alkanesulfol group or a benzenesulfol group.
[6] [6]
核酸誘導体および zまたはフエニルジアジリジン付加核酸誘導体が標識を有するも のである [1]〜[5]の 、ずれかに記載の製造方法。 The production method according to any one of [1] to [5], wherein the nucleic acid derivative and the z- or phenyldiaziridine-added nucleic acid derivative have a label.
[7] [7]
標識が、ピオチン、放射性同位体、および Zまたは蛍光物質ある [5]に記載の製造方 法。 一般式 (D)で示されるフエニルジアジリジン付加核酸誘導体。 The production method according to [5], wherein the label is piotin, a radioisotope, and Z or a fluorescent substance. A phenyldiaziridine-added nucleic acid derivative represented by the general formula (D).
[化 8] [Chemical 8]
Figure imgf000010_0001
Figure imgf000010_0001
一般式 (D)中、 Rは、 In general formula (D), R is
4  Four
[化 9]  [Chemical 9]
十 — S十 CH2- n、 V ' n ま
Figure imgf000010_0002
Tens — S tens CH 2 -n, V 'n or
Figure imgf000010_0002
であり、 nは 1〜6の整数であり、 Xおよび yは、独立に 0〜: L00の整数であり、 Nは以下 の一般式 (B)で示される基である。 N is an integer of 1 to 6, X and y are independently 0 to: an integer of L00, and N is a group represented by the following general formula (B).
Figure imgf000010_0003
一般式 (B)中、 Rは OH基または隣接するヌクレオチドであり、 Rは水素または OH
Figure imgf000010_0003
In the general formula (B), R is an OH group or an adjacent nucleotide, and R is hydrogen or OH
1 2 基であり、 Rは OH基または隣接するヌクレオチドであり、 Bはアデニン、グァニン、シ 1 2 group, R is OH group or adjacent nucleotide, B is adenine, guanine,
3  Three
トシン、ゥラシル、チミンおよびこれらの誘導体から成る群から選ばれる任意の塩基で あり、 Xは S (硫黄)または o (酸素)である。 Any base selected from the group consisting of tosine, uracil, thymine and derivatives thereof, X is S (sulfur) or o (oxygen).
[9]  [9]
フエニルジアジリジン付加核酸誘導体が標識を有する [8]に記載の誘導体。 The derivative according to [8], wherein the phenyldiaziridine-added nucleic acid derivative has a label.
[10] [Ten]
標識が、ピオチン、放射性同位体、および Zまたは蛍光物質ある [9]に記載の誘導体 [11] The derivative according to [9], wherein the label is piotin, a radioisotope, and Z or a fluorescent substance [11]
下記一般式 (E)または (F)で示されるヌクレオチド誘導体と、一般式 (E)または (F) で示される化合物中のチオール基と反応性の基を有するフエ-ルジアジリジンィ匕合 物とを反応させることを含む、フエニルジアジリジン付加ヌクレオチド誘導体の製造方 法。 Reaction of a nucleotide derivative represented by the following general formula (E) or (F) with a ferrodiaziridine compound having a reactive group with a thiol group in the compound represented by the general formula (E) or (F) A process for producing a phenyldiaziridine-added nucleotide derivative.
[化 11] [Chemical 11]
( )()
Figure imgf000011_0001
一般式 (E)中、 Rはアデニン、グァニン、シトシン、ゥラシル、チミンおよびこれらの誘導 体力 成る群力 選ばれる任意の塩基であり、 nは、 0、 1または 2であり、一般式 (F)中 、 Rおよび Rは、独立にニコチンアミドアデニンヌクレオチドおよびそのリン酸化物、
Figure imgf000011_0001
In general formula (E), R is adenine, guanine, cytosine, uracil, thymine, and their derived physical strength group power, any base selected, n is 0, 1 or 2, and general formula (F) R and R are independently nicotinamide adenine nucleotide and its phosphate,
1 2 1 2
並びにフラビンモノヌクレオチド、糖リン酸、糖ヌクレオチド、補酵素 A、およびリン脂 質から成る群から選ばれる。 And flavin mononucleotide, sugar phosphate, sugar nucleotide, coenzyme A, and phospholipid.
[12]  [12]
前記フ ニルジアジリジンィ匕合物が一般式 (C)で示される化合物である [11]に記載の 製造方法。 The production method according to [11], wherein the phenyldiaziridine complex is a compound represented by the general formula (C).
[化 12] [Chemical 12]
Figure imgf000012_0001
Figure imgf000012_0001
一般式 (C)中、 Rは In general formula (C), R is
5  Five
[化 13]  [Chemical 13]
R6十 CII2 R7— S十 CII2R 6 ten CII 2 R 7 - S tens of CII 2 door
n、 、 ノ n
Figure imgf000012_0002
であり、
N ,, n
Figure imgf000012_0002
And
Rは、ハロゲン原子またはスルホン酸エステル残基であり、 R is a halogen atom or a sulfonate residue,
6  6
Rは、炭素数 1〜6のアルキルスルホ -ル基または炭素数 1〜6のアルキルチオ基で R is an alkylsulfo group having 1 to 6 carbon atoms or an alkylthio group having 1 to 6 carbon atoms.
7 7
あり、 Yes,
Rは、 Hまたは炭素数 1〜6のアルキル基であり、  R is H or an alkyl group having 1 to 6 carbon atoms,
8  8
nは 1〜6の整数である。 n is an integer of 1-6.
[13] [13]
前記フ ニルジアジリジンィ匕合物が、下記式(1)〜( 10)で表される化合物である [12 ]に記載の方法。 The method according to [12], wherein the phenyldiaziridine complex is a compound represented by the following formulas (1) to (10).
[化 14] [Chemical 14]
Figure imgf000013_0001
(Halはハロゲンを示す。)
Figure imgf000013_0001
(Hal represents halogen.)
Figure imgf000013_0002
Figure imgf000013_0002
式 (4)、(5)、(6)、および(9)中、 Rは Rは、水素 (H)、炭素数 1〜6の無置換または置 換アルキル基であり、式(10)中、 Rは、水素 )、炭素数 1〜6の無置換または置換ァ ルキル基であり、 R'は、 H、炭素数 2〜6の無置換もしくは置換のアルキルカルボ-ル 、アルキルカルボ-ルォキシまたはァリールカルボ-ルォキシ基であり、式(8)中、 X は、アルカンスルホ -ル基またはベンゼンスルホ-ル基である。 In formulas (4), (5), (6), and (9), R is hydrogen (H), an unsubstituted or substituted alkyl group having 1 to 6 carbon atoms, and in formula (10) , R is hydrogen), an unsubstituted or substituted alkyl group having 1 to 6 carbon atoms, and R 'is H, an unsubstituted or substituted alkyl carbo yl, alkyl carbo-loxy having 2 to 6 carbon atoms, or Is an arylcarboxyl group, and in formula (8), X is an alkanesulfol group or a benzenesulfol group.
[14] [14]
[1]〜[7]のいずれかに記載の方法で製造したフエ-ルジアジリジン付加核酸誘導体 、 [8]〜[10]のいずれかに記載のフエ-ルジアジリジン付加核酸誘導体、または [11] 〜[13]の ヽずれか 1項に記載の方法で製造したヌクレオチド誘導体と、被検体である タンパク質とを相互作用し得る条件下で混合し、  A ferradiaziridine-added nucleic acid derivative produced by the method according to any one of [1] to [7], a ferradiaziridine-added nucleic acid derivative according to any one of [8] to [10], or [11] to [ 13] or the nucleotide derivative produced by the method according to item 1 and the analyte protein are mixed under conditions that allow interaction,
得られた混合物に光を照射して、フエ-ルジアジリジン付加核酸誘導体またはヌクレ ォチド誘導体に含まれるジアジリジン基とタンパク質とを反応させて、前記フエ-ルジ アジリジン付加核酸誘導体またはヌクレオチド誘導体とタンパク質との結合体を形成 し、次いで The resulting mixture is irradiated with light to produce a ferradiaziridine-added nucleic acid derivative or nuclease. The diaziridine group contained in the oxide derivative is reacted with the protein to form a conjugate of the above-mentioned ferradiaziridine-added nucleic acid derivative or nucleotide derivative and the protein,
得られた結合体を電気泳動に付すことを含む、 Subjecting the resulting conjugate to electrophoresis,
電気的移動度シフトアツセィによるタンパク質の分析方法。 Protein analysis method by electrical mobility shift assembly.
[15]  [15]
電気泳動を変性条件下で行う [14]に記載の方法。 The method according to [14], wherein the electrophoresis is performed under denaturing conditions.
[16] [16]
[1]〜[7]のいずれかに記載の方法で製造したフエ-ルジアジリジン付加核酸誘導体 、 [8]〜[10]のいずれかに記載のフエ-ルジアジリジン付加核酸誘導体、または [11] 〜[13]の ヽずれかに記載の方法で製造したヌクレオチド誘導体と、被検体であるタン ノ ク質とを相互作用し得る条件下で混合し、  A ferradiaziridine-added nucleic acid derivative produced by the method according to any one of [1] to [7], a ferradiaziridine-added nucleic acid derivative according to any one of [8] to [10], or [11] to [ 13], the nucleotide derivative produced by the method described in any one of the above and the analyte, the protein, are mixed under conditions that allow interaction.
得られた混合物に光を照射して、フエ-ルジアジリジン付加核酸誘導体またはヌクレ ォチド誘導体に含まれるジアジリジン基とタンパク質とを反応させて、前記フエ-ルジ アジリジン付加核酸誘導体またはヌクレオチド誘導体とタンパク質との結合体を形成 し、 The resulting mixture is irradiated with light to react the diaziridine group contained in the phenyldiaziridine-added nucleic acid derivative or nucleotide derivative with the protein, thereby binding the fertilaziridine-added nucleic acid derivative or nucleotide derivative to the protein. Form the body,
得られた結合体を電気泳動に付し、 The resulting conjugate is subjected to electrophoresis,
前記結合体を分離し、次いで Separating the conjugate, then
分離した結合体をアルカリ溶液で処理して結合体を解離させ、 The separated conjugate is treated with an alkaline solution to dissociate the conjugate,
解離したタンパク質および Zまたは核酸誘導体またはヌクレオチド誘導体を回収する ことを含む、 Recovering dissociated proteins and Z or nucleic acid derivatives or nucleotide derivatives,
タンパク質の調製方法。 Protein preparation method.
[17] [17]
前記電気泳動を変性条件下で行う [16]に記載の方法。 The method according to [16], wherein the electrophoresis is performed under denaturing conditions.
本発明により、光反応性の核酸誘導体およびヌクレオチド誘導体を提供できる。こ れらの誘導体を用いることで、それらに結合するタンパク質を共有結合で捉えること が可能となる。この光反応は 360nm付近の光で効率良ぐし力も極めて速くおこる。ま た、この光は DNAなどの核酸やタンパク質などの通常の生体分子に対してほとんど 吸収されない。したがって、光反応性化合物 (核酸誘導体)と結合タンパク質との複合 体は、現存するほとんどのタンパク質解析法に適応することが可能である。これにより 複数の結合タンパク質を網羅的に解析することが可能となる。 According to the present invention, photoreactive nucleic acid derivatives and nucleotide derivatives can be provided. By using these derivatives, it is possible to capture proteins that bind to them by covalent bonds. This photoreaction occurs very quickly with light near 360 nm. Also, this light is almost against normal biomolecules such as nucleic acids such as DNA and proteins. Not absorbed. Therefore, a complex of a photoreactive compound (nucleic acid derivative) and a binding protein can be applied to most existing protein analysis methods. This makes it possible to comprehensively analyze multiple binding proteins.
[0010] さらに、光反応性化合物中の光反応基と核酸とを切り離すことができ、この切断反 応を利用して、光反応性化合物 (核酸誘導体)と結合タンパク質との複合体から、結合 タンパク質のみを取り出すことが可能となる。  [0010] Further, the photoreactive group in the photoreactive compound and the nucleic acid can be cleaved, and this cleaving reaction is used to bind from the complex of the photoreactive compound (nucleic acid derivative) and the binding protein. Only the protein can be extracted.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] [フエニルジアジリジン付加核酸誘導体の製造方法(1) ]  [0011] [Method for producing phenyldiaziridine-added nucleic acid derivative (1)]
本発明のフエニルジアジリジン付加核酸誘導体の製造方法(1)は、少なくとも 1つの 核酸のリン酸基がチォリン酸基である核酸誘導体とチォリン酸基のチオール基と反 応性の基を有するフエニルジアジリジンィ匕合物とを反応させることを含む。  The method (1) for producing a phenyldiaziridine-added nucleic acid derivative of the present invention comprises a nucleic acid derivative in which the phosphate group of at least one nucleic acid is a thiophosphate group, and a phenyl group having a reactive group with the thiol group of the thiophosphate group. Reacting with a diaziridine compound.
[0012] 少なくとも 1つの核酸のリン酸基がチォリン酸基である核酸誘導体は、例えば、一般 式 (A)で示される化合物であることができる。  [0012] The nucleic acid derivative in which the phosphate group of at least one nucleic acid is a thiophosphate group can be, for example, a compound represented by the general formula (A).
[化 15]
Figure imgf000015_0001
[Chemical 15]
Figure imgf000015_0001
[0013] 一般式 (A)中、 Xおよび yは、独立に 0〜100の整数である。 Xおよび yの和は、 0以 上、 200以下である。但し、本発明の製造方法は、 Xおよび yの和が 200を超える核 酸誘導体に対しても適用可能である。  In general formula (A), X and y are each independently an integer of 0 to 100. The sum of X and y is 0 or more and 200 or less. However, the production method of the present invention is also applicable to a nuclear acid derivative in which the sum of X and y exceeds 200.
[0014] 一般式 (A)中、 Nは以下の一般式 (B)で示される基である。  In the general formula (A), N is a group represented by the following general formula (B).
[化 16]  [Chemical 16]
(B)(B)
Figure imgf000015_0002
[0015] 一般式 (B)中、 Rは OH基または隣接するヌクレオチドである。該当する Nが核酸
Figure imgf000015_0002
In general formula (B), R is an OH group or an adjacent nucleotide. Applicable N is nucleic acid
1  1
誘導体の末端である場合には、 Rは OH基であり、それ以外の場合には、 Rは隣接  R is an OH group when at the end of the derivative, otherwise R is adjacent
1 1 するヌクレオチド (N)である。 Rは水素または OH基である。 Rが水素である場合、核  1 1 nucleotide (N). R is hydrogen or an OH group. When R is hydrogen, the nucleus
2 2  twenty two
酸誘導体は DNAであり、 Rが OH基である場合、核酸誘導体は RNAである。 1本の  The acid derivative is DNA, and when R is an OH group, the nucleic acid derivative is RNA. 1 bottle
2  2
核酸誘導体において、 Rが水素であるヌクレオチド(N)と Rが OH基であるヌクレオ  Nucleic acid derivatives: Nucleotide in which R is hydrogen (N) and R is OH
2 2  twenty two
チド (N)とが混在することもできる。 Rは OH基または隣接するヌクレオチドである。該  Chid (N) can be mixed. R is an OH group or adjacent nucleotide. The
3  Three
当する Nが核酸誘導体の末端である場合には、 Rは OH基であり、それ以外の場合  R is an OH group when the corresponding N is the end of the nucleic acid derivative, otherwise
3  Three
には、 Rは隣接するヌクレオチド (N)である。 Bはアデニン、グァニン、シトシン、ゥラ R is the adjacent nucleotide (N). B is adenine, guanine, cytosine, ura
3 Three
シル、チミン塩基および塩基の誘導体である。塩基の誘導体とは、例えば、 5—メチ ルシトシン、 N6—メチルアデニン、 5—ヒドロキシメチルシトシン、イノシン等であること ができる力 これらに限定されない。 Bは各ヌクレオチド (N)について独立に任意に 上記塩基から選ばれ、種々の塩基配列を有する核酸誘導体を構成できる。  Sil, thymine bases and base derivatives. The derivative of a base is, for example, a force that can be 5-methylcytosine, N6-methyladenine, 5-hydroxymethylcytosine, inosine and the like, but is not limited thereto. B is arbitrarily selected from the above bases independently for each nucleotide (N), and can constitute nucleic acid derivatives having various base sequences.
[0016] Xは S (硫黄)または O (酸素)である。通常のヌクレオチド (N)における Xは O (酸素) であり、リン酸基を構成する。 Xが s (硫黄)であるリン酸基はチォリン酸基である。一 般式 (A)においては、 N— SHで示されるヌクレオチド(N)は、チォリン酸基の SHを一 般式 (A)中に表示している。 N— SH以外のヌクレオチド (N)にも Xが S (硫黄)である ヌクレオチド (N)が含まれて 、てもよ 、。 Xが S (硫黄)であるヌクレオチド (N)には、本 発明の方法により、フエ-ルジアジリジン基を導入でき、 1つの核酸誘導体に、複数の チォリン酸基がある場合、これら複数のチォリン酸基にフエ-ルジアジリジン基を導入 することが可能である。 [0016] X is S (sulfur) or O (oxygen). X in normal nucleotide (N) is O (oxygen) and constitutes a phosphate group. A phosphate group in which X is s (sulfur) is a thiophosphate group. In the general formula (A), the nucleotide (N) represented by N—SH represents SH of the thiophosphate group in the general formula (A). N—Nucleotides other than SH (N) may include nucleotides (N) in which X is S (sulfur). A nucleotide (N) in which X is S (sulfur) can be introduced with a phenyldiaziridine group according to the method of the present invention. It is possible to introduce a ferrodiaziridine group into.
[0017] 核酸誘導体は標識を有するものであることができる。標識は、核酸誘導体に使用さ れている公知の標識であることができる。そのような標識としては、例えば、ピオチン、 放射性同位体、および Zまたは蛍光物質を挙げることができる。但し、これらの物質 に限定されない。核酸誘導体への標識の導入は、下記文献に記載の公知の方法に より行うことができる。  [0017] The nucleic acid derivative may have a label. The label can be a known label used for nucleic acid derivatives. Such labels can include, for example, piotin, radioisotopes, and Z or fluorescent materials. However, it is not limited to these substances. The introduction of the label into the nucleic acid derivative can be performed by a known method described in the following document.
b. Agrawal; C. し hnstodoulou; MJ Gait (1986) Efficient methods for attaching non— ra dioactive labels to the 5' ends of synthetic oligodeoxyribonucleotides Nucleic Acids Res. 14: 6227 - 6245. 「Nonisotopic DNA probe techniques」(ed. L.J Kricka) Acade mic Press, New York b. Agrawal; C. and hnstodoulou; MJ Gait (1986) Efficient methods for attaching non— ra dioactive labels to the 5 'ends of synthetic oligodeoxyribonucleotides Nucleic Acids Res. 14: 6227-6245. “Nonisotopic DNA probe techniques” (ed. LJ Kricka) Acade mic Press, New York
[0018] DNAおよび RNAにおいて、 Xが S (硫黄)であるチォリン酸基を有するものは、公 知であり、下記文献に記載の公知の方法により適宜合成できる。 Zon, G.; Geiser, T. [0018] Among DNA and RNA, those having a thiophosphate group in which X is S (sulfur) are known and can be appropriately synthesized by known methods described in the following documents. Zon, G .; Geiser, T.
G. (1991) Phosphorothioate oligonucleotides: chemistry, purification, analysis, scale —up and future directions. Anticancer Drug Des. 6:539—568.および Caruthers, M.G. (1991) Phosphorothioate oligonucleotides: chemistry, purification, analysis, scale —up and future directions.Anticancer Drug Des. 6: 539—568. And Caruthers, M.
H. ; Beaton, G.; Wu, J.V.; Wiesler, W. (1992) Chemical synthesis of deoxyoligonucle otides and deoxyoligonucleotide analogs. Methods Enzymol. 211:3—20. H.; Beaton, G .; Wu, J.V .; Wiesler, W. (1992) Chemical synthesis of deoxyoligonucle otides and deoxyoligonucleotide analogs. Methods Enzymol. 211: 3—20.
[0019] フエ-ルジアジリジンィ匕合物は、例えば、一般式 (C)で示される化合物であることが できる。  [0019] The ferrulediaziridine compound can be, for example, a compound represented by the general formula (C).
[化 17]  [Chemical 17]
Figure imgf000017_0001
Figure imgf000017_0001
[0020] 一般式 (C)中、 Rは  [0020] In the general formula (C), R is
5  Five
[化 18]  [Chemical 18]
Figure imgf000017_0002
Figure imgf000017_0002
Ma
[0021] 上記式中、 Rは、ハロゲン原子 (例えば、 Cl、 Br、 1)、またはスルホン酸エステル残  [0021] In the above formula, R represents a halogen atom (for example, Cl, Br, 1) or a sulfonate ester residue.
6  6
基である。スルホン酸エステル残基は、具体的には、メタンスルホ -ル基あるいはトル エンスルホ-ル基であることができる。 Rは、炭素数 1〜6のアルキルチオスルホ-ル 基または炭素数 1〜6のアルキルチオ基である。アルキルチオスルホ -ル基は、 RSO It is a group. Specifically, the sulfonic acid ester residue can be a methanesulfol group or a toluenesulfol group. R is an alkylthiosulfol having 1 to 6 carbon atoms Group or an alkylthio group having 1 to 6 carbon atoms. The alkylthiosulfol group is RSO
2 2
—で示され、 Rは例えば、メチル、ェチル、プロピルまたはブチルであることができる。 アルキルチオ基は、 RS—で示され、 Rは例えば、メチル、ェチル、プロピルまたはブ チルであることができる。 Rは、 Hまたは炭素数 1〜6のアルキル基であることができ、 R can be, for example, methyl, ethyl, propyl or butyl. The alkylthio group is represented by RS— and R can be, for example, methyl, ethyl, propyl or butyl. R can be H or an alkyl group having 1 to 6 carbon atoms;
8  8
アルキル基は、例えば、メチル、ェチル、プロピルまたはブチルであることができる。 n は 1〜6の整数であり、好ましくは 1〜4の整数であり、より好ましくは 1である。  The alkyl group can be, for example, methyl, ethyl, propyl or butyl. n is an integer of 1 to 6, preferably an integer of 1 to 4, and more preferably 1.
[0022] 前記一般式 (C)で示されるフ ニルジアジリジンィ匕合物は、例えば、下記式(1)で表 されるィ匕合物であることができる。 [0022] The phenyldiaziridine compound represented by the general formula (C) can be, for example, a compound represented by the following formula (1).
[化 19]  [Chemical 19]
Figure imgf000018_0001
Figure imgf000018_0001
[0023] 式(1)で表される化合物は、反応性の官能基としてマレイミド基とジアジリンをもつ。  [0023] The compound represented by the formula (1) has a maleimide group and diazirine as reactive functional groups.
マレイミド基は、チォリン酸基を有する核酸誘導体のチォリン酸基のチオール基と反 応する。式(1)で表される化合物は、式(2)または式(7)のフ ニルジアジリジン化合 物との反応により製造することができる。  The maleimide group reacts with the thiol group of the thiophosphate group of the nucleic acid derivative having a thiophosphate group. The compound represented by the formula (1) can be produced by a reaction with a phenyldiaziridine compound of the formula (2) or the formula (7).
[0024] 前記一般式 (C)で示されるフ ニルジアジリジンィ匕合物は、例えば、下記式(2)で表 されるィ匕合物であることができる。  [0024] The phenyldiaziridine compound represented by the general formula (C) can be, for example, a compound represented by the following formula (2).
[化 20]  [Chemical 20]
Figure imgf000018_0002
Figure imgf000018_0002
式(2)で表される化合物は、反応性の官能基としてハロゲン (Hal)とジアジリンをもつ 。ハロゲン (Hal)は、チォリン酸基を有する核酸誘導体のチォリン酸基のチオール基と 反応する。ハロゲン (Hal)としては、例えば、 Cl、 Brおよび Iを挙げることができる。式(2 )で表される化合物は、文献に記載の方法により製造することができる [M.Nassal, J. Am. Chem. Soc, 106, 7540-7545 (1984); L. B. Shih, and H. Bayley, Anal. Bioche m., 1985, 144, 132-141]。 The compound represented by the formula (2) has halogen (Hal) and diazirine as reactive functional groups. Halogen (Hal) is a thiol group of a thiophosphate group of a nucleic acid derivative having a thiophosphate group. react. Examples of halogen (Hal) include Cl, Br, and I. The compound represented by the formula (2) can be produced by a method described in the literature [M. Nassal, J. Am. Chem. Soc, 106, 7540-7545 (1984); LB Shih, and H. Bayley, Anal. Bioche m., 1985, 144, 132-141].
[0026] 既存の合成法は、フエ-ル骨格上にリガンドへの導入時に鍵となる官能基を前もつ て組み込んでおき、光反応基部分であるジアジリン骨格の構築が行われる。例えば、 下記スキーム 1に示したフエ-ルジアジリンのハロゲン化誘導体 (2a)および (2b)は、種 々の光反応性プローブの合成に極めて有用な中間体である。従来報告されている合 成法では、ハロゲンィ匕に必要な官能基を、ジアジリン骨格構築の前にあら力じめ組み 組む方法のため、いずれも多段階で合成されている  [0026] In the existing synthesis method, a functional group which is a key at the time of introduction into a ligand is previously incorporated on the file skeleton, and a diazirine skeleton that is a photoreactive group is constructed. For example, the halogenated derivatives (2a) and (2b) of ferrodiazirine shown in Scheme 1 below are extremely useful intermediates for the synthesis of various photoreactive probes. In the synthesis methods that have been reported so far, all the functional groups required for the halogeni are synthesized in a multi-step manner because they are assembled together prior to the construction of the diazirine skeleton.
[0027] [化 21]  [0027] [Chemical 21]
スキーム 1 (必要な官能基を持つフエニルジアジリン化合物合成法)  Scheme 1 (Synthesis of phenyldiazirine compounds with necessary functional groups)
Figure imgf000019_0001
Figure imgf000019_0001
前記一般式 (C)で示されるフエ-ルジアジリジンィ匕合物は、例えば、下記式(3)で表 されるィ匕合物であることができる。  The ferrulediaziridine compound represented by the general formula (C) can be, for example, a compound represented by the following formula (3).
[化 22] [Chemical 22]
Figure imgf000020_0001
Figure imgf000020_0001
[0029] 式(3)で表される化合物は、非特許文献 6、 M. Kaneda, Y. Sadakane, Y. Hatanaka, [0029] The compound represented by the formula (3) is described in Non-Patent Document 6, M. Kaneda, Y. Sadakane, Y. Hatanaka,
(2003) A Novel Approach for Affinity-Based screening of Target Specinc Ligands: Application of Photoreactive D—Glyceraldehyde— 3— phosphate Dehydrogenase. Bioco njugate Chem. 14, 849-852の記載の方法により製造することができる。  (2003) A Novel Approach for Affinity-Based screening of Target Specinc Ligands: Application of Photoreactive D-Glyceraldehyde-3 -phosphate Dehydrogenase. Bioconjugate Chem. 14, 849-852.
[0030] 前記一般式 (C)で示されるフ ニルジアジリジンィ匕合物は、例えば、下記式 (4)〜( 10)で表される化合物であることができる。  [0030] The phenyldiaziridine compound represented by the general formula (C) can be, for example, compounds represented by the following formulas (4) to (10).
[0031] [化 23]  [0031] [Chemical 23]
Figure imgf000020_0002
Figure imgf000020_0002
(4) (5) (6) (7)  (4) (5) (6) (7)
Figure imgf000020_0003
Figure imgf000020_0003
式 (4)、 (5)、 (6)、および(9)中、 Rは、水素 )、炭素数 1〜6の無置換または置換 アルキル基であり、式(10)中、 Rは、水素 )、炭素数 1〜6の無置換または置換アル キル基であり、 R'は H ;ァセチル基などの炭素数 2〜6の無置換または置換アルキル カルボ-ル基; tert-ブトキシカルボ-ル (Boc)基、 9-フルォレニルメトキシカルボ-ル (Fmoc)基などの炭素数 2〜6の無置換または置換アルキルカルボ-ルォキシ基;また はベンゾィル基などのァリールカルボ-ルォキシ基であり、式(8)中、 Xは、メタンスル ホ-ルなどのアルカンスルホ -ル基または p-トルエンスルホ-ルなどのベンゼンスル ホ-ル基である。 Rで表される炭素数 1〜6の無置換アルキル基は、例えば、メチル、 ェチル、 n-プロピル、 t-ブチルであり、置換アルキル基は、例えば、ベンジルである。 In formulas (4), (5), (6), and (9), R is hydrogen), an unsubstituted or substituted alkyl group having 1 to 6 carbon atoms, and in formula (10), R is hydrogen ), Unsubstituted or substituted alkyl having 1 to 6 carbon atoms R ′ is H; an unsubstituted or substituted alkyl carbo group having 2 to 6 carbon atoms such as acetyl group; tert-butoxycarbol (Boc) group, 9-fluorenylmethoxycarbo- An unsubstituted or substituted alkylcarboxoxy group having 2 to 6 carbon atoms such as an Fmoc group; or an arylcarboxoxy group such as a benzoyl group, in which X is methanesulfol, etc. A benzenesulfur group such as p-toluenesulfol. The unsubstituted alkyl group having 1 to 6 carbon atoms represented by R is, for example, methyl, ethyl, n-propyl, or t-butyl, and the substituted alkyl group is, for example, benzyl.
[0033] 式 (4)〜(10)で示されるフ ニルジアジリン誘導体は、下記スキーム 2に示すように 、現在最も簡単かつ大量に合成できる、無置換のフエニルジアジリン (11)を出発原料 にして、(11)にアルデヒド基を直接修飾した中間体 (12)を合成し、この中間体 (12)のァ ルデヒド基をさらに修飾することで、式 (4)〜(10)で示されるフエニルジアジリン誘導 体を合成できる。  [0033] As shown in the following scheme 2, the phenyldiazirine derivatives represented by the formulas (4) to (10) start from unsubstituted phenyldiazirine (11), which can be synthesized most simply and in large quantities. Thus, an intermediate (12) in which (11) is directly modified with an aldehyde group is synthesized, and the aldehyde group of this intermediate (12) is further modified to produce a phenotype represented by formulas (4) to (10). Enildiazirine derivatives can be synthesized.
[0034] [化 24]  [0034] [Chemical 24]
Figure imgf000021_0001
Figure imgf000021_0001
[フエニルジアジリンの直接修飾法]  [Direct modification of phenyldiazirine]
フエ-ルジアジリンは、種々の合成条件に安定である一方、光反応で速やかに分 解して安定なクロスリンクを形成できるため、優れた光反応基として知られている。し かし、これをィ匕学物質や生体分子に導入するためには適当な官能基が必要であり、 その段階における合成的煩雑さが問題であった。大量合成が可能な(11)を原料に 、有用中間体のアルデヒド(12)を簡単に合成する方法をまず開発し、これを経て様 々な有用ジアジリンが簡単に誘導できる新しいルートを開拓した。 (12)は、これまで 7 段階を経る収率の悪い合成法が報告されていた [J. M. Delfino, S. L. Schreiber, and F. M. Richards, J. Am. Chem. Soc, 1993, 115, 3458-3474] 0しかし、本発明では、 この合成法に代えて、フエニルジアジリン(11)を直接修飾することにより、一段階でァ ルデヒド(12)を得るまったく新しいアプローチを用いる(スキーム 3)。 Ferradiazirine is known as an excellent photoreactive group because it is stable to various synthetic conditions, but can be rapidly decomposed by photoreaction to form a stable crosslink. However, in order to introduce this into a chemical substance or biomolecule, an appropriate functional group is required. Synthetic complexity at that stage was a problem. First, we developed a method for easily synthesizing a useful intermediate aldehyde (12) using (11), which can be synthesized in large quantities, and pioneered a new route through which various useful diazirines can be easily derived. So far, (12) has been reported as a low-yield synthesis method through 7 steps [JM Delfino, SL Schreiber, and FM Richards, J. Am. Chem. Soc, 1993, 115, 3458-3474] 0 However, in the present invention, instead of this synthesis method, a completely new approach to obtain aldehyde (12) in one step by directly modifying phenyldiazirine (11) is used (Scheme 3).
[0036] [化 25] [0036] [Chemical 25]
スキーム 3 フエニルジアジリンの直接修飾 Scheme 3 Direct modification of phenyldiazirine
Figure imgf000022_0001
Figure imgf000022_0001
[0037] これまで、フエ-ルジアジリンに CI CHOCHを GaCl存在下 TFA-CH C1中で反応さ  [0037] Until now, CI CHOCH was reacted with ferrodiazirine in the presence of GaCl in TFA-CH C1.
2 3 3 2 2 せることで、わずか収率 5%ではあつたがアルデヒド体(12)を得ることに成功していた [ U. Kempin, Y. Kanaoka, and Y. Hatanaka, Heterocycles, 1988, 49, 465-468.]。この 実験の際、原料の CI CHOCHが反応を始めて直ぐに分解してしまうことがわ力つた。  2 3 3 2 2 was able to obtain the aldehyde form (12) at a yield of only 5% [U. Kempin, Y. Kanaoka, and Y. Hatanaka, Heterocycles, 1988, 49 , 465-468.]. During this experiment, it was surprising that the raw material, CI CHOCH, decomposed immediately after the reaction started.
2 3  twenty three
原因を検討した結果 TFA中に CI CHOCHを加えると分解が起こることから、 TFAに代  As a result of investigating the cause, when CI CHOCH is added to TFA, decomposition occurs.
2 3  twenty three
わる有機酸を検討した結果、 CI CHOCHはトリフルォロメタンスルホン酸 (TfOH)中  As a result of examining organic acids, CI CHOCH was found to be in trifluoromethanesulfonic acid (TfOH).
2 3  twenty three
で安定であることが分かった。この条件で、 Lewis酸として A1C1, ZnCl, SbCl, SbCl,  And found to be stable. Under these conditions, Lewis acids are A1C1, ZnCl, SbCl, SbCl,
3 2 3 5 3 2 3 5
SnCl, SnCl, Ζη(ΟΤί), AgOTf, Gd(OTi), Pr(OTi), Sm(OTi), Υ(ΟΤί), Yb(OTi),なSnCl, SnCl, Ζη (ΟΤί), AgOTf, Gd (OTi), Pr (OTi), Sm (OTi), Υ (ΟΤί), Yb (OTi),
2 4 2 3 3 3 3 3 どの種々の Lewis酸を検討したところ、 TLC上で目的のアルデヒド体(12)の生成が確 認された。これらのうち、 GaCl, FeCl, SbF, TiCl についての収率を表 1に示す。 2 4 2 3 3 3 3 3 When various Lewis acids were examined, formation of the desired aldehyde (12) was confirmed on TLC. Table 1 shows the yields for GaCl, FeCl, SbF, and TiCl.
3 3 5 4  3 3 5 4
[0038] [表 1] 表 1 Lew i s酸の検討 [0038] [Table 1] Table 1 Examination of Lew is acid
Lew i s酸 Y i e l d (%)  Lew i s acid Y i e l d (%)
GaC I 3 31 GaC I 3 31
FeC I 3 47 FeC I 3 47
SbF5 80 SbF 5 80
T i C I 4 80 T i CI 4 80
[0039] この方法は、これまで直接修飾が困難であったフエニルジアジリンの芳香環上に、 合成上有用な官能基を簡単に導入できるようになったこと、得られたアルデヒド体は さらに様々な官能基に容易に変換できること、の二点において特に重要であると考え られる。 [0039] According to this method, a functional group useful for synthesis can be easily introduced onto the aromatic ring of phenyl diazirine, which has heretofore been difficult to modify directly. It is considered to be particularly important in terms of being easily convertible to various functional groups.
[0040] [ジアジリン基を持つフエ-ルァラニン誘導体の簡易不斉合成への応用]  [0040] [Application to simple asymmetric synthesis of ferrolanine derivatives having a diazirine group]
Friedd-Crafts反応で簡便に得られるようになったアルデヒド体(12)は、さらにアル デヒド基を還元しベンジルアルコール体(13)、ヒドロキシ基をノ、ロゲン化し化合物(14 )などの、様々な有用合成中間体に簡単に変換できる。このハロゲン体は、光反応性 のペプチドやタンパク質の合成に有用な、 P-位にジアジリン基を持つフエ-ルァラ- ン(Tmd(Phe)) (15)の合成に利用されている [例えば、 M.Nassal, J. Am. Chem. So , 106, 7540-7545 (1984); L. B. Shih, and H. Bayley, Anal. Biochem., 1985, 144, 1 32— 141し; W. G. Fishwick, J. M. Sanderson, and J. B. C. Findlay, Tetrahedron Let t., 1994, 35, 4611-4614.]ジアジリン合成を含む非常に多段階の合成法である。ここ では、アルデヒド体(12)力も出発し、還元により (13)を得、次いでハロゲンィ匕により (14 )を得る。(14)カゝら (15)が数工程の反応で簡便に不斉合成できる(スキーム 4)。尚、下 記スキーム 4中、(13)は前記化合物(7)と同一化合物であり、(14)は、前記化合物(2 )において Halが Brである化合物であり、(15)は、前記(10)において、 Rおよび R'が 水素原子 (H)である化合物である。  The aldehyde compound (12), which can be easily obtained by the Friedd-Crafts reaction, is further reduced by reducing the aldehyde group to the benzyl alcohol compound (13), and the hydroxy group is converted to a rogened compound (14). Can be easily converted to useful synthetic intermediates. This halogen compound is used for the synthesis of a phenol (Tmd (Phe)) (15) having a diazirine group at the P-position, which is useful for the synthesis of photoreactive peptides and proteins [for example, M. Nassal, J. Am. Chem. So, 106, 7540-7545 (1984); LB Shih, and H. Bayley, Anal. Biochem., 1985, 144, 1 32—141; WG Fishwick, JM Sanderson, and JBC Findlay, Tetrahedron Let t., 1994, 35, 4611-4614.] This is a very multi-step synthesis method involving diazirine synthesis. Here, the aldehyde (12) force is also started, and (13) is obtained by reduction, and then (14) is obtained by halogenation. (14) Kasaka et al. (15) can be easily asymmetrically synthesized by several steps of reaction (Scheme 4). In Scheme 4 below, (13) is the same compound as the compound (7), (14) is a compound in which Hal is Br in the compound (2), and (15) is the above ( In 10), R and R ′ are hydrogen atoms (H).
[0041] [化 26]
Figure imgf000024_0001
[0041] [Chemical 26]
Figure imgf000024_0001
[0042] 核酸誘導体とチオール反応性某を有するフ ニルジアジリジン化合物との反応  [0042] Reaction of a nucleic acid derivative with a thiol-reactive phenydiaziridine compound
本発明の方法(1)では、チオール反応性基を有するフエ-ルジアジリジンィ匕合物と 核酸誘導体とを、例えば、 50 : 1〜100 : 1程度のモル比で混合する。さらに、この混合 物に、核酸誘導体に対して 50〜100倍のモル比のジイソプロピルェチルァミンをカロえ 、反応はジメチルスルォキシド中、 37°Cで行うことができる。但し、ジイソプロピルェチ ルァミンの代りに、 N-メチルモルホリン、トリェチルアミン等を用いることもできる。反応 溶媒としては、ジメチルスルホキシドの代りに、メタノール、ジメチルホルムアミド等を 用いることもできる。反応温度は、 37°Cを含む、例えば、 4〜70°Cの範囲とすることが できる。  In the method (1) of the present invention, a ferrodiaziridine compound having a thiol-reactive group and a nucleic acid derivative are mixed at a molar ratio of, for example, about 50: 1 to 100: 1. Further, this mixture is mixed with diisopropylethylamine in a molar ratio of 50 to 100 times with respect to the nucleic acid derivative, and the reaction can be carried out in dimethyl sulfoxide at 37 ° C. However, N-methylmorpholine, triethylamine and the like can be used in place of diisopropylethylamine. As a reaction solvent, methanol, dimethylformamide or the like can be used instead of dimethyl sulfoxide. The reaction temperature can include 37 ° C, for example, in the range of 4 to 70 ° C.
[0043] フエ-ルジアジリジン化合物の濃度は、例えば、 0.1〜0.5mMの範囲とすることが適 当である。反応時間はフエ-ルジアジリジンィ匕合物の種類による力 例えば、数 10分 力 数時間程度であることができる。反応後は液体窒素中で保存し、過剰な反応を 起こさな!/、ようにすることが好ま 、。産物であるフエ-ルジアジリジン付加核酸誘導 体は、例えば、高速液体クロマトグラフィーで精製することができる。高速液体クロマト グラフィー以外も、例えば、キヤピラリー電気泳動等で精製することもできる。  [0043] The concentration of the ferrodiaziridine compound is suitably in the range of 0.1 to 0.5 mM, for example. The reaction time can be a force depending on the type of ferrodiaziridine compound, for example, several tens of minutes, several hours. It is preferable to store in liquid nitrogen after the reaction so that no excessive reaction occurs! The product, a ferrodiaziridine-added nucleic acid derivative, can be purified by, for example, high performance liquid chromatography. In addition to high performance liquid chromatography, it can be purified by capillary electrophoresis, for example.
[0044] 上記反応の例を以下にスキームで示す。  [0044] Examples of the above reaction are shown in the following schemes.
スキーム 5は、フエ-ルジアジリジン化合物として化合物(2a)を用いる例である。核 酸誘導体 (A1)は、核酸誘導体の末端のヌクレオチド以外のヌクレオチドにチォリン 酸基を有する例である。チォリン酸基のチオールの水素と化合物(2a)の Brとが HBr を形成し、脱 HBrによって、化合物(2a)と核酸誘導体 (Al)とが結合して、フエニル ジアジリジン付加核酸誘導体 (D1)を生成する。  Scheme 5 is an example in which the compound (2a) is used as a ferrodiaziridine compound. The nucleic acid derivative (A1) is an example having a thiophosphate group at a nucleotide other than the terminal nucleotide of the nucleic acid derivative. The thiol hydrogen of the thiophosphate group and Br of the compound (2a) form HBr, and by de-HBr, the compound (2a) and the nucleic acid derivative (Al) are combined to form a phenyldiaziridine-added nucleic acid derivative (D1). Generate.
[0045] [化 27] [0045] [Chemical 27]
Figure imgf000025_0001
Figure imgf000025_0001
[0046] スキーム 6は、フエ-ルジアジリジン化合物として化合物(3)を用いる例である。核 酸誘導体 (A2)は、核酸誘導体の末端のヌクレオチドにチォリン酸基を有する例であ る。チォリン酸基のチオールのィォゥ原子が化合物(3)のチォスルホネート基(MeS O S—)に求核反応をし、脱 MeSO Hによって、化合物(3)と核酸誘導体 (A2)とが[0046] Scheme 6 is an example in which the compound (3) is used as a ferrodiaziridine compound. The nucleic acid derivative (A2) is an example having a thiophosphate group at the terminal nucleotide of the nucleic acid derivative. The thiol atom of the thiophosphate group nucleophilically reacts with the thiosulfonate group (MeS O S—) of the compound (3).
2 2 twenty two
ジスルフイド結合を形成して、フエニルジアジリジン付加核酸誘導体 (D2)を生成する [0047] [化 28]  A disulfide bond is formed to produce a phenyldiaziridine-added nucleic acid derivative (D2). [0047] [Chemical 28]
スキーム 6 Scheme 6
Figure imgf000025_0002
Figure imgf000025_0002
(A 2 ) (D  (A 2) (D
[0048] スキーム 7は、フエ-ルジアジリジン化合物として化合物(2a)を用いる例である。核 酸誘導体 (A2)は、核酸誘導体の末端のヌクレオチドにチォリン酸基を有する例であ る。チォリン酸基のチオールの水素と化合物(2a)の Brとが HBrを形成し、脱 HBrに よって、化合物(2a)と核酸誘導体 (A2)とが結合して、フエ-ルジアジリジン付加核 酸誘導体 (D3)を生成する。  [0048] Scheme 7 is an example in which compound (2a) is used as a ferrodiaziridine compound. The nucleic acid derivative (A2) is an example having a thiophosphate group at the terminal nucleotide of the nucleic acid derivative. The hydrogen of the thiol of the thiophosphate group and Br of the compound (2a) form HBr, and by de-HBr, the compound (2a) and the nucleic acid derivative (A2) are combined to form a ferrodiaziridine-added nuclear acid derivative ( D3) is generated.
[0049] [化 29] スキーム 7 [0049] [Chemical 29] Scheme 7
Figure imgf000026_0001
Figure imgf000026_0001
(2a) (Λ 2 ) (D 3 )  (2a) (Λ 2) (D 3)
[0050] スキーム 8は、フエ-ルジアジリジン化合物として化合物(1)を用いる例である。核 酸誘導体 (A2)は、核酸誘導体の末端のヌクレオチドにチォリン酸基を有する例であ る。チォリン酸基のチオールの水素が化合物(1)に転移して化合物(1)と核酸誘導 体 (A2)とが結合して、フエニルジアジリジン付加核酸誘導体 (D4)を生成する。 [0050] Scheme 8 is an example in which the compound (1) is used as a ferrodiaziridine compound. The nucleic acid derivative (A2) is an example having a thiophosphate group at the terminal nucleotide of the nucleic acid derivative. The hydrogen of the thiol of the thiophosphate group is transferred to the compound (1), and the compound (1) and the nucleic acid derivative (A2) are combined to produce a phenyldiaziridine-added nucleic acid derivative (D4).
[0051] [化 30]  [0051] [Chemical 30]
スキーム 8  Scheme 8
Figure imgf000026_0002
Figure imgf000026_0002
[0052] 前記フエ-ルジアジリジン付加核酸誘導体は、一般式 (D)で示される化合物である ことができる。本発明は、フエ-ルジアジリジン付加核酸誘導体の製造方法とともに、 フエ-ルジアジリジン付加核酸誘導体自体も包含する。  [0052] The ferrodiaziridine-added nucleic acid derivative can be a compound represented by the general formula (D). The present invention includes a fermenteraziridine-added nucleic acid derivative itself as well as a method for producing a ferraziaziridine-added nucleic acid derivative.
[化 31] [Chemical 31]
Figure imgf000027_0001
Figure imgf000027_0001
NxNNy N x NN y
[0053] 一般式 (D)中、 xおよび y、並びに Nは、一般式 (A)における定義と同じである。また 、 Rは、下記一般式で示されるいずれかであることができる。下記一般式において nIn general formula (D), x, y, and N are the same as defined in general formula (A). R can be any one of the following general formulae. N in the following general formula
4 Four
は、例えば、 1〜6の整数であることができる。  Can be, for example, an integer from 1 to 6.
[0054] [化 32] [0054] [Chemical 32]
Figure imgf000027_0002
Figure imgf000027_0002
[0055] フエ-ルジアジリジン付加核酸誘導体は標識を有するものであることができる。標識 は、核酸誘導体に使用されている公知の標識であることができる。そのような標識とし ては、例えば、ピオチン、放射性同位体、および Zまたは蛍光物質を挙げることがで きる。但し、これらの物質に限定されない。  [0055] The fermentiaziridine-added nucleic acid derivative can have a label. The label can be a known label used for nucleic acid derivatives. Such labels can include, for example, piotin, radioisotopes, and Z or fluorescent materials. However, it is not limited to these substances.
[0056] [フエニルジアジリジン付加ヌクレオチド誘導体の製造方法(2) ]  [0056] [Method for producing phenyl diaziridine-added nucleotide derivative (2)]
本発明のフエニルジアジリジン付加ヌクレオチド誘導体の製造方法(2)は、下記一 般式 (E)または (F)で示されるヌクレオチド誘導体と、一般式 (E)または (F)で示され る化合物中のチオール基と反応性の基を有するフエ-ルジアジリジンィ匕合物とを反 応させることを含む。 [化 33] The method (2) for producing a phenyldiaziridine-added nucleotide derivative of the present invention comprises a nucleotide derivative represented by the following general formula (E) or (F) and a compound represented by the general formula (E) or (F): And reacting a ferrodiaziridine compound having a reactive group with a reactive thiol group. [Chemical 33]
Figure imgf000028_0001
Figure imgf000028_0001
[0057] 一般式 (E)中、 Rはアデニン、グァニン、シトシン、ゥラシル、チミンおよびこれらの誘 導体から成る群から選ばれる任意の塩基であり、塩基の誘導体とは、例えば、 5—メ チルシトシン、 N6—メチルアデニン、 5—ヒドロキシメチルシトシン、イノシン等であるこ とができる力 これらに限定されない。 nは、 0、 1または 2である。  [0057] In general formula (E), R is any base selected from the group consisting of adenine, guanine, cytosine, uracil, thymine, and derivatives thereof, and a derivative of the base includes, for example, 5-methylcytosine N6-methyladenine, 5-hydroxymethylcytosine, inosine, and the like. n is 0, 1 or 2.
[0058] 一般式 (F)中、 Rおよび Rは、独立にニコチンアミドアデニンヌクレオチドおよびその  In general formula (F), R and R are independently nicotinamide adenine nucleotide and its
1 2  1 2
リン酸化物、並びにフラビンモノヌクレオチド、糖リン酸、糖ヌクレオチド、補酵素 A、 およびリン脂質力 成る群力 選ばれる。  Phosphorus oxide and flavin mononucleotide, sugar phosphate, sugar nucleotide, coenzyme A, and phospholipid strength are selected.
[0059] ニコチンアミドアデニンヌクレオチドのリン酸化物には、例えば、ニコチンアミドアデ ニンジヌクレオチドリン酸等がある。また、フラビンヌクレオチドには、例えば、フラビン アデ-ンジヌクレオチド等がある。糖リン酸としては、例えば、グルコース 1—リン酸、 グルコース 6—リン酸、フルクトース 1, 6—ビスリン酸、 5—ホスホリボシル 1—二リン酸 等がある。糖ヌクレオチドとしては、例えば、 ADP-糖、 CDP-糖、 GDP-糖、 UDP-糖、 T DP-糖などがあり、それら糖部分は各種ペントース、へキソース、ゥロン酸、デォキシ 糖、アミノ糖、分岐糖、アミノウロン酸、ケトース、硫酸糖、オリゴ糖など力 成るものが ある。補酵素 Aとしては、例えば、ァセチル補酵素 A等がある。リン脂質としては、例え ば、グリセ口リン脂質、ホスファチジルコリン(レシチン)、ホスファチジルエタノールアミ ン、ホスファチジルセリン、ホスファチジルイノシトール、ホスファチジルグリセロール、 ジホスファチジルグリセロール (カルジォリピン)、スフインゴリン脂質等がある。  [0059] Examples of the phosphoric acid oxide of nicotinamide adenine nucleotide include nicotinamide adenine dinucleotide phosphate. Examples of flavin nucleotides include flavin adene dinucleotide. Examples of the sugar phosphate include glucose 1-phosphate, glucose 6-phosphate, fructose 1,6-bisphosphate, 5-phosphoribosyl 1-diphosphate, and the like. Examples of sugar nucleotides include ADP-sugar, CDP-sugar, GDP-sugar, UDP-sugar, and TDP-sugar. These sugar moieties include various pentoses, hexoses, uronic acids, deoxy sugars, amino sugars, Some of them are branched sugars, aminouronic acids, ketoses, sulfate sugars and oligosaccharides. Examples of coenzyme A include acetyl acetylenzyme A. Examples of the phospholipid include glyceguchi phospholipid, phosphatidylcholine (lecithin), phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidylglycerol, diphosphatidylglycerol (cardiolipin), and sphingophospholipid.
[0060] 前記フエ-ルジアジリジンィ匕合物は、一般式 (C)で示される化合物であり、この化合 物は、上記本発明の製造方法(1)で説明した物質と同様である。  [0060] The ferrodiaziridine compound is a compound represented by the general formula (C), and this compound is the same as the substance described in the production method (1) of the present invention.
[化 34] [Chemical 34]
Figure imgf000029_0001
Figure imgf000029_0001
[0061] [電気的移動度シフトアツセィによるタンパク質の分析方法]  [0061] [Protein Analysis Method Using Electrical Mobility Shift Access]
本発明は、電気的移動度シフトアツセィによるタンパク質の分析方法を包含する。こ の分析方法では、上記本発明の方法(1)で製造したフエニルジアジリジン付加核酸 誘導体および本発明のフエニルジアジリジン付加核酸誘導体、または方法 (2)で製 造したヌクレオチド誘導体を用いる。  The present invention includes a method for analyzing a protein by electrical mobility shift assay. In this analysis method, the phenyldiaziridine-added nucleic acid derivative produced by the method (1) of the present invention and the phenyldiaziridine-added nucleic acid derivative of the present invention, or the nucleotide derivative produced by the method (2) are used.
[0062] 分析方法は、以下のステップを含む。 [0062] The analysis method includes the following steps.
(a)フエ-ルジアジリジン付加核酸誘導体またはヌクレオチド誘導体と被検体であるタ ンパク質とを相互作用し得る条件下で混合する。  (a) A mixture of a fermentiaziridine-added nucleic acid derivative or nucleotide derivative and a protein as an analyte under conditions that allow interaction.
(b)得られた混合物に光を照射して、フエニルジアジリジン付加核酸誘導体またはヌ クレオチド誘導体に含まれるジアジリジン基とタンパク質とを反応させて、前記フエ- ルジアジリジン付加核酸誘導体またはヌクレオチド誘導体とタンパク質との結合体を 形成する。  (b) The obtained mixture is irradiated with light to react the diaziridine group contained in the phenyldiaziridine-added nucleic acid derivative or nucleotide derivative with the protein, and the phenyldiaziridine-added nucleic acid derivative or nucleotide derivative and protein To form a conjugate.
(c)得られた結合体を電気泳動に付す。  (c) The obtained conjugate is subjected to electrophoresis.
[0063] ステップ(a) [0063] Step (a)
核酸誘導体またはヌクレオチド誘導体と被検体であるタンパク質とを相互作用し得 る条件下で混合する。核酸誘導体は、被検体であるタンパク質の配列を考慮した任 意の配列を有するように作成する。作成した核酸誘導体 (例えば、 DNA)は、必要に より精製した後にタンパク質との相互作用に使用する。核酸誘導体の 5 '末端にはビ ォチンなどのタグが導入されたものを用いることができる。  The nucleic acid derivative or nucleotide derivative and the protein as the analyte are mixed under conditions that allow interaction. The nucleic acid derivative is prepared so as to have an arbitrary sequence considering the sequence of the protein as the analyte. The prepared nucleic acid derivative (eg, DNA) is used for interaction with proteins after being purified as necessary. A nucleic acid derivative having a tag such as biotin introduced at the 5 ′ end can be used.
[0064] 被検体であるタンパク質は、例えば、 p53に代表される各種の転写因子タンパク質 や DNAポリメラーゼに代表される各種の転写に関わる酵素群などであることができる 。このとき、核酸誘導体に結合するタンパク質がタンパク質混合液中に存在するなら ば、その親和性により両者は結合する。相互作用し得る条件とは、例えば、氷中で 1 時間程度の静置であることができる。核酸誘導体またはヌクレオチド誘導体は、単一 成分であることもできるが、複数種類の核酸誘導体またはヌクレオチド誘導体を含む 混合物を用いることもできる。 [0064] The protein as the analyte can be, for example, various transcription factor proteins typified by p53, or various enzyme groups involved in various transcriptions typified by DNA polymerase. . At this time, if a protein that binds to the nucleic acid derivative is present in the protein mixture, the two are bound by their affinity. The conditions that can interact can be, for example, standing for about 1 hour in ice. The nucleic acid derivative or nucleotide derivative can be a single component, but a mixture containing a plurality of types of nucleic acid derivatives or nucleotide derivatives can also be used.
[0065] ステップ(b)  [0065] Step (b)
得られた混合物に光を照射して、フエ-ルジアジリジン付加核酸誘導体またはヌク レオチド誘導体に含まれるジアジリジン基とタンパク質とを反応させる。照射する光は 、例えば、 360nm付近の光であることができる。照射時間等の条件は、光源の強さに より異なるが、例えば、氷上で数秒〜 30分程度であることができる。上記光照射によ り、フエ-ルジアジリジン付加核酸誘導体とタンパク質との間に共有結合が生じ、両 者を結ぶ。  The resulting mixture is irradiated with light to react the diaziridine group contained in the phenyldiaziridine-added nucleic acid derivative or nucleotide derivative with the protein. The light to be irradiated can be, for example, light around 360 nm. Conditions such as the irradiation time vary depending on the intensity of the light source, but can be, for example, several seconds to 30 minutes on ice. By the above light irradiation, a covalent bond is formed between the ferrodiaziridine-added nucleic acid derivative and the protein, thereby linking the two.
[0066] 上記光照射により、フエ-ルジアジリジン付加核酸誘導体またはヌクレオチド誘導 体が有するジアジリジン基とタンパク質の任意部分とが反応し、結合体を形成する。  [0066] Upon irradiation with light, the diaziridine group of the phenyldiaziridine-added nucleic acid derivative or nucleotide derivative reacts with an arbitrary part of the protein to form a conjugate.
[0067] ステップ(c)  [0067] Step (c)
ステップ (c)では、得られた結合体を電気泳動に付す。電気泳動は、通常のゲル電 気泳動であることができる。具体的には、スラブゲルの上部に試料を置き、適切な電 流量を流すことにより、試料の荷電状態によりスラブゲル中を流れるものである。ゲル の網目を通過する際、試料の分子量により移動度に差を生じ、分離分析が可能とな る。  In step (c), the resulting conjugate is subjected to electrophoresis. Electrophoresis can be normal gel electrophoresis. Specifically, by placing a sample on top of the slab gel and flowing an appropriate current flow rate, the sample flows through the slab gel depending on the charged state of the sample. When passing through the gel network, the mobility varies depending on the molecular weight of the sample, allowing separation analysis.
[0068] さらに、電気泳動は、変性条件下で行うことができ、変性条件下で行うことが、より高 い分離と高い再現性という観点力も好ましい。変性条件下とは、例えば、還元剤や熱 処理により、タンパク質の高次構造を壊し、さらに界面活性剤などを共存させ、試料 の電荷を均一化することである。  [0068] Furthermore, electrophoresis can be performed under denaturing conditions, and it is also preferable to perform under denaturing conditions from the viewpoint of higher separation and higher reproducibility. The denaturing condition means, for example, that the higher-order structure of the protein is broken by a reducing agent or heat treatment, and a surfactant is also allowed to coexist to make the charge of the sample uniform.
[0069] 電気泳動で分離した、結合体を核酸誘導体に導入されたタグを利用して検出する ことができる。結合体の検出は、タグの種類に応じて適宜行うことができる。  [0069] The conjugate separated by electrophoresis can be detected using a tag introduced into a nucleic acid derivative. Detection of the conjugate can be appropriately performed depending on the type of tag.
[0070] [タンパク質の調製方法]  [0070] [Protein Preparation Method]
本発明は、タンパク質の調製方法を包含する。この調製方法では、本発明の方法( 1)で製造したフエ-ルジアジリジン付加核酸誘導体、本発明のフエ-ルジアジリジン 付加核酸誘導体、または本発明の方法 (2)で製造したヌクレオチド誘導体を用いる。 The present invention encompasses a method for preparing a protein. In this preparation method, the method of the present invention ( The ferrodiaziridine-added nucleic acid derivative produced in 1), the ferrodiaziridine-added nucleic acid derivative of the present invention, or the nucleotide derivative produced by the method (2) of the present invention is used.
[0071] タンパク質の調製方法は以下の工程を含む。 [0071] The method for preparing a protein includes the following steps.
(d)フエニルジアジリジン付加核酸誘導体またはヌクレオチド誘導体と被検体である タンパク質と相互作用し得る条件下で混合する。  (d) Mixing with phenyldiaziridine-added nucleic acid derivative or nucleotide derivative under conditions that allow interaction with the protein of interest.
(e)得られた混合物に光を照射して、フエ-ルジアジリジン付加核酸誘導体またはヌ クレオチド誘導体に含まれるジアジリジン基とタンパク質とを反応させて、前記フエ- ルジアジリジン付加核酸誘導体またはヌクレオチド誘導体とタンパク質との結合体を 形成する。  (e) irradiating the resulting mixture with light to react the diaziridine group contained in the phenyldiaziridine-added nucleic acid derivative or nucleotide derivative with the protein, and to add the above-mentioned diazaziridine-added nucleic acid derivative or nucleotide derivative to the protein. To form a conjugate of
(f)前記結合体を分離する。  (f) separating the conjugate.
(g)分離した結合体をアルカリ溶液で処理して結合体を解離させることで、タンパク質 を回収する。  (g) The separated conjugate is treated with an alkaline solution to dissociate the conjugate, thereby recovering the protein.
[0072] 工程 (d)および (e)は、前記ステップ (a)および (b)と同様に実施できる。  [0072] Steps (d) and (e) can be carried out in the same manner as steps (a) and (b).
[0073] 工程 (f) [0073] Step (f)
分離する結合体の選択は、例えば、 5 '末端をピオチンなどのタグを導入した核酸 誘導体とタンパク質との結合体をタグに対するァフィ二ティー分離法で分離すること ができる。また、結合体の分離は、具体的には、例えば、 5 '末端をピオチンなどのタ グを導入した核酸誘導体を使用する場合、タンパク質との複合体としてアビジンを固 定ィ匕したビーズなどで捕獲し、実施できる。  For selection of the conjugate to be separated, for example, a conjugate of a nucleic acid derivative having a 5'-end introduced with a tag such as piotin and a protein and a protein can be separated by an affinity separation method for the tag. In addition, for example, when using a nucleic acid derivative in which a tag such as piotin is introduced at the 5 ′ end, the conjugate is separated with beads fixed with avidin as a complex with the protein. Capture and implement.
[0074] 工程 (g) [0074] Step (g)
分離した結合体をアルカリ溶液で処理して結合体を解離させる。結合体のアルカリ 溶液による処理は、例えば、以下のように実施できる。リン原子とィォゥ原子間の切断 は求核試薬〖こよるものである。 50mMリン酸と水酸ィ匕ナトリウムで pHを 10.5にした溶 液中に分離した複合体を移し、 37°Cでー晚静置する。この切断反応は Gish, G., Eck stein, F. Science (1988) 240, 1520- 1522を参考にすることができる。切り出された結 合タンパク質は溶液中に存在する。以下のスキーム 9に結合体の解離の様子を化学 式で示す。  The separated conjugate is treated with an alkaline solution to dissociate the conjugate. The treatment of the conjugate with an alkaline solution can be performed, for example, as follows. The cleavage between the phosphorus and thio atoms is due to the nucleophile. Transfer the separated complex into a solution adjusted to pH 10.5 with 50 mM phosphoric acid and sodium hydroxide, and leave it at 37 ° C. This cleavage reaction can be referred to Gish, G., Eckstein, F. Science (1988) 240, 1520-1522. The excised binding protein is present in the solution. Scheme 9 below shows the chemical state of the dissociation of the conjugate.
[0075] [化 35] スキーム 9[0075] [Chemical 35] Scheme 9
Figure imgf000032_0001
Figure imgf000032_0001
(A l ) ( 2 )  (A l) (2)
実施例  Example
[0076] 以下、本発明を実施例によりさらに詳細に説明する。  Hereinafter, the present invention will be described in more detail with reference to examples.
[0077] 参考例 1 [0077] Reference Example 1
式(1)の化合物の合成方法  Method for synthesizing compound of formula (1)
[化 36]  [Chemical 36]
Figure imgf000032_0002
Figure imgf000032_0002
[0078」 N-[4-[3- trifluoromethyl)-3H-diazirin-3-ylJbenzyl] maleimide (1)  [0078] N- [4- [3-trifluoromethyl) -3H-diazirin-3-ylJbenzyl] maleimide (1)
4- [3- (Tnfluoromethyl)- ύΗ- diazirm- 3- yl]benzyl alcohol (13) (750 mg, όΛ5 mmol) を THF 28 mLに溶力し、 Triphenylphosphine (1.05 g, 3.9 mmol)、 maleimide (389 mg, 3.97 mmol)を加え 0°Cに冷却した。窒素気流下、撹拌しながら Diisoproylazodicarboxyl ate(789 mg, 4.35 mmol)をゆっくりと加えた。加え終わると黄色の液体となった。 0°Cで 1時間置いた後、反応混合物を減圧溜去し、 Hezane: Ether = 1 : 1を 30 mL加える。 沈殿してきた反応物の Triphenylphosphine oxideを濾過で取り除いた。溶媒を減圧溜 去し、残渣をシリカゲルクロマトグラフィー (Hexane: AcOEt = 4: 1)により精製して、 無色の固体物質を得た。  4- [3- (Tnfluoromethyl)-ύΗ- diazirm- 3-yl] benzyl alcohol (13) (750 mg, όΛ5 mmol) is dissolved in 28 mL of THF, and triphenylphosphine (1.05 g, 3.9 mmol), maleimide (389 mg, 3.97 mmol) was added, and the mixture was cooled to 0 ° C. Diisoproylazodicarboxylate (789 mg, 4.35 mmol) was slowly added with stirring under a nitrogen stream. When the addition was completed, it became a yellow liquid. After 1 hour at 0 ° C, the reaction mixture is distilled off under reduced pressure and 30 mL of Hezane: Ether = 1: 1 is added. The precipitated reaction product, Triphenylphosphine oxide, was removed by filtration. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel chromatography (Hexane: AcOEt = 4: 1) to obtain a colorless solid substance.
収率 539 mg (68%) Ή-NMR (CDC1 ) Yield 539 mg (68%) NMR-NMR (CDC1)
3  Three
: 7.37 (d, 2H, J = 7.3 Hz) 7.19 (d, 2H, J = 7.3 Hz) 6.72 (s, 2H) 4.67 (s, 2H).  : 7.37 (d, 2H, J = 7.3 Hz) 7.19 (d, 2H, J = 7.3 Hz) 6.72 (s, 2H) 4.67 (s, 2H).
[0079] 参考例 2— 1 [0079] Reference Example 2-1
[化 37]  [Chemical 37]
Figure imgf000033_0001
Figure imgf000033_0001
[0080] 4-[3-(Trifluoromethyl)-3H-diazirin-3-y (12)  [0080] 4- [3- (Trifluoromethyl) -3H-diazirin-3-y (12)
3— (Phenyl)— 3— (trifluoromethyl)— 3H— diazirine (11) (1.86 g, 0.01 mol)を 0。Cで CI CH  3— (Phenyl) — 3— (trifluoromethyl) — 3H— diazirine (11) (1.86 g, 0.01 mol) is zero. C in CI CH
2 2
OCH (3.45 g, 0.03 mol)に溶かした。アルゴン気流下、 0°Cで、撹拌しながら TfOH (1. Dissolved in OCH (3.45 g, 0.03 mol). TfOH (1.
3  Three
77 mL, 0.02 mol)と TiCl (2.85 g, 0.015 mol)から得られた黄色の個体をゆっくり加え  77 mL, 0.02 mol) and TiCl (2.85 g, 0.015 mol)
4  Four
た。塩ィ匕水素が発生するのが収まるとオレンジ色の液体となった。室温で 1時間置い た後、反応混合物にへキサン 500 mLをカ卩え、撹拌しながら砕いた氷を氷零下ゆっくり 加えて過剰の試薬を分解した後、固体の炭酸ナトリウムをゆっくり加えて中和した。得 られたへキサン層を分離後、飽和食塩水で洗い、硫酸マグネシウムで乾燥させた。 濾過で乾燥剤を除 ヽた後に溶媒を減圧溜去し、残渣をシリカゲルカラムクロマトダラ フィー(Hexane:CH C1 = 2:1)により精製して、黄色の油状物質(12)を得た。  It was. When the salty hydrogen generation stopped, it became an orange liquid. After 1 hour at room temperature, 500 mL of hexane was added to the reaction mixture, and crushed ice was slowly added under zero ice to decompose excess reagent, followed by neutralization by slowly adding solid sodium carbonate. did. The obtained hexane layer was separated, washed with saturated brine, and dried over magnesium sulfate. After removing the desiccant by filtration, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (Hexane: CH C1 = 2: 1) to obtain a yellow oily substance (12).
2 2  twenty two
[0081] 収量 1.71 g (80%)  [0081] Yield 1.71 g (80%)
1H-NMR (CDC1 )  1H-NMR (CDC1)
3  Three
σ: 10.04 (s, 1H), 7.91 (d, 2H, J = 8.3 Hz) 7.35 (d, 2H, J = 8.3 Hz).  σ: 10.04 (s, 1H), 7.91 (d, 2H, J = 8.3 Hz) 7.35 (d, 2H, J = 8.3 Hz).
[0082] 参考例 2— 2 [0082] Reference Example 2-2
[化 38]
Figure imgf000034_0001
[Chemical 38]
Figure imgf000034_0001
[0083] 尚、上述したように、上記スキーム中、(13)は前記化合物(7)と同一化合物であり、  [0083] As described above, in the above scheme, (13) is the same compound as the compound (7),
(14)は、前記化合物(2)において Halが Brである化合物であり、(15)は、前記(10)に ぉ 、て、 Rおよび R'が水素原子 (H)である化合物である。  (14) is a compound in which Hal is Br in the compound (2), and (15) is a compound in which R and R ′ are hydrogen atoms (H) in the above (10).
[0084] 4-[3-(Trifluoromethyl)-3H-diazirin-3-yl]benzyl alcohol (13)  [0084] 4- [3- (Trifluoromethyl) -3H-diazirin-3-yl] benzyl alcohol (13)
化合物 (12) (3.3 g, 15.4 mmol)を EtOH 7 mLに溶かし 0°Cで撹拌しながら NaBH (0.  Compound (12) (3.3 g, 15.4 mmol) was dissolved in 7 mL of EtOH and stirred at 0 ° C with NaBH (0.
4 Four
626 g, 16.5 mmol)を EtOH 7 mL中に懸濁したものをカ卩えた。加え終わったのち室温 に戻し 4時間撹拌した。これに氷上で 1M HC1をゆっくり加えて過剰の試薬を分解した 後、 Etherで抽出し、 Ether層を硫酸マグネシウムで乾燥させた。濾過で乾燥剤を除い た後に溶媒を減圧溜去し、残渣をシリカゲルカラムクロマトグラフィー(Hexane:Ether = 1:1)により精製して、淡黄色の油状物質(13)を得た。 626 g, 16.5 mmol) suspended in EtOH 7 mL was collected. After the addition was completed, the mixture was returned to room temperature and stirred for 4 hours. To this, 1M HC1 was slowly added on ice to decompose excess reagent, followed by extraction with Ether, and the Ether layer was dried over magnesium sulfate. After removing the desiccant by filtration, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (Hexane: Ether = 1: 1) to obtain a pale yellow oily substance (13).
[0085] 収量 3.21g (96%) [0085] Yield 3.21 g (96%)
JH-NMR (CDC1 )  JH-NMR (CDC1)
3  Three
σ : 7.39 (d, 2Η, J = 8.5 Hz), 7.19 (d, 2H, J = 8.5 Hz), 4.71 (s, 2H), 1.87(bs, 1H) [0086] 参考例 2— 3  σ: 7.39 (d, 2Η, J = 8.5 Hz), 7.19 (d, 2H, J = 8.5 Hz), 4.71 (s, 2H), 1.87 (bs, 1H) [0086] Reference Example 2-3
3- [4- (Bromomethyl)phenyl]- 3- (trifluoromethyl)- 3H- diazirme (14)  3- [4- (Bromomethyl) phenyl]-3- (trifluoromethyl)-3H- diazirme (14)
化合物 (13) (344.0 mg, 1.59 mmol)を CH CI 2 mLに溶力し、 CBr (658.2 mg, 1.985  Compound (13) (344.0 mg, 1.59 mmol) was dissolved in 2 mL of CH CI and CBr (658.2 mg, 1.985
2 2 4  2 2 4
mmol)をカ卩えた。 0°Cに冷やし Ph P (474 mg, 1.807 mmol)をゆっくりと加えた。室温ま  mmol). It was cooled to 0 ° C and Ph P (474 mg, 1.807 mmol) was slowly added. Until room temperature
3  Three
で戻し 1時間撹拌した後で、シリカゲルカラムクロマトグラフィー(Hexane)で精製して 、無色の油状物質(14)を得た。  After stirring for 1 hour, the mixture was purified by silica gel column chromatography (Hexane) to obtain a colorless oily substance (14).
[0087] 収量 401.8mg (90%) [0087] Yield 401.8mg (90%)
JH-NMR (CDC1 )  JH-NMR (CDC1)
3  Three
σ : 7.42 (d, 2Η, J = 8.5 Hz), 7.17 (d, 2H, J = 8.5 Hz), 4.46 (s, 2H).  σ: 7.42 (d, 2Η, J = 8.5 Hz), 7.17 (d, 2H, J = 8.5 Hz), 4.46 (s, 2H).
[0088] 参考例 2— 4 L- 4し [3- (Trifluor omethyl)- 3 H- diazirin- 3- yl] phenylalanine (15) [0088] Reference Example 2-4 L- 4 [3- (Trifluor omethyl)-3 H- diazirin- 3-yl] phenylalanine (15)
tert-Butylglycinate benzophenone imine (1.136 g, 3.839 mmol)と、不斉触媒の 0(9)  tert-Butylglycinate benzophenone imine (1.136 g, 3.839 mmol) and asymmetric catalyst 0 (9)
[9]  [9]
— Allyト N— 9— anthracenylmethylcinchonidium bromide (0.2127 g, 0.351 mmol, 0.1 eq )を CH CI 9 mUこ溶かした。化合物 (14) (1.419 g, 5.085 mmol, 1.5 eq.)を加えァルゴ — Ally N—9— Anthracenylmethylcinchonidium bromide (0.2127 g, 0.351 mmol, 0.1 eq) was dissolved in 9 mU of CH CI. Add compound (14) (1.419 g, 5.085 mmol, 1.5 eq.)
2 2 twenty two
ンガス雰囲気下、室温で撹拌した。反応混合液を- 78 °Cに冷却しながら 2-tert-Butyl imino— 2— methylamino— 1,3— dimethylperhirao— 1,3,2— diazaphosphorine (1.4丄 g, 5.139 mmol, Aldrich)を数秒間で滴下し、 -78 °Cで 7時間反応させた。室温に戻し減圧蒸留 した後、残查を Etherで希釈し蒸留水で 2回、飽和食塩水で 1回洗った。油層を硫酸 マグネシウムで乾燥した。濾過で乾燥剤を除いた後に溶媒を減圧溜去し、シリカゲル カラムクロマトグラフィー(Hexane:EtOAc = 7:1)で精製し、黄色の油状物質を得た。  The mixture was stirred at room temperature under a nitrogen gas atmosphere. While cooling the reaction mixture to -78 ° C, add 2-tert-Butyl imino— 2-methylamino— 1,3— dimethylperhirao— 1,3,2— diazaphosphorine (1.4 g, 5.139 mmol, Aldrich) in a few seconds. The solution was added dropwise and reacted at -78 ° C for 7 hours. After returning to room temperature and distillation under reduced pressure, the residue was diluted with Ether and washed twice with distilled water and once with saturated saline. The oil layer was dried with magnesium sulfate. After removing the desiccant by filtration, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (Hexane: EtOAc = 7: 1) to obtain a yellow oily substance.
[0089] 収量 1.89g (95%) [0089] Yield 1.89 g (95%)
JH-NMR (CDC1 )  JH-NMR (CDC1)
3  Three
σ : 7.57 (d, 2Η, J = 6.9 Hz ), 7.39-7.27 (m, 6H), 7.06 (q, 4H, J = 8.4 Hz )  σ: 7.57 (d, 2Η, J = 6.9 Hz), 7.39-7.27 (m, 6H), 7.06 (q, 4H, J = 8.4 Hz)
6.59 (d, 2H, J = 6.9 Hz), 4.09 (q, 1H, J = 8.6, 4.6 Hz), 3.26-3.11 (m, 2H)  6.59 (d, 2H, J = 6.9 Hz), 4.09 (q, 1H, J = 8.6, 4.6 Hz), 3.26-3.11 (m, 2H)
1.44 (s, 9H).  1.44 (s, 9H).
[0090] 得られた黄色の油状物質(75 mg, 0.152 mmol)を 0 °Cで TFA lmLに溶力し、室温 で 2時間撹拌した。 (TLC, Hexane:AcOEt = 7:1)で反応終了を確認後、 TFAを減圧 溜去し、残渣を CH C1で希釈し水で 3回抽出した。水層を凍結乾燥して白色の固体(  [0090] The obtained yellow oily substance (75 mg, 0.152 mmol) was dissolved in 1 mL of TFA at 0 ° C and stirred at room temperature for 2 hours. After confirming the completion of the reaction with (TLC, Hexane: AcOEt = 7: 1), TFA was distilled off under reduced pressure, and the residue was diluted with CH C1 and extracted three times with water. The aqueous layer was lyophilized to a white solid (
2 2  twenty two
15)を得た。  15) was obtained.
[0091] 収量(TFA塩として) 53.4 mg (91%) [0091] Yield (as TFA salt) 53.4 mg (91%)
1H-NMR (CD OD)  1H-NMR (CD OD)
3  Three
σ : 7.46 (d, 2Η, J = 7.9 Hz ), 7.27 (d, 2H, J = 7.9 Hz), 3.84 (dd, 1H, J = 8.2, 4.5 Hz ), 3.38 (m,lH), 3.10 (d, 1H, J = 4.5, 8.2 Hz).  σ: 7.46 (d, 2Η, J = 7.9 Hz), 7.27 (d, 2H, J = 7.9 Hz), 3.84 (dd, 1H, J = 8.2, 4.5 Hz), 3.38 (m, lH), 3.10 (d , 1H, J = 4.5, 8.2 Hz).
光学純度(e.e.)  Optical purity (e.e.)
(5)を Fmoc体に誘導し、 HPLCによりその光学純度を確認した。適量を MeOHに溶か した後、キラルカラム(Sumichiral OA- 3300 2.5 μ m 4.6 mm X 25 cm)を用いて 0.01 M Ammonium Acetate/MeOH、流速 1 mL/minで溶出させ、 360 nmのジアジリン由来 の UV吸収により検出した。 e.e. = 98% (5) was derived into Fmoc form, and its optical purity was confirmed by HPLC. Dissolve the appropriate amount in MeOH, then elute with a chiral column (Sumichiral OA-3300 2.5 μm 4.6 mm x 25 cm) at 0.01 M Ammonium Acetate / MeOH at a flow rate of 1 mL / min. Detected by absorption. ee = 98%
[ a ] +22.4° (c = 0.52, EtOH)  [a] + 22.4 ° (c = 0.52, EtOH)
D  D
[0092] 実施例 1  [0092] Example 1
核酸誘導体として、以下のスキーム 10中の化合物 (A3)で示されるアデニン、グァ ニン、シトシン、チミンの酉 S列をもつ 4merの DNAのグァニンとシトシンの間のリン酸を チォエステルとしたィ匕合物 (AGsCT)を用いた。この化合物は、以下の文献に記載 の公知の方法により合成した。 Zon, G.; Geiser, T.G.(1991) Phosphorothioate oligon ucleotides : chemistry, purification, analysis, scale-up and iuturedirections .Anticance r Drug Des. 6:539—568.および Caruthers, M.H.; Beaton'G.; Wu, J.V.; Wiesler, W.( 1992) Chemical synthesis ofdeoxyoligonucleotides and deoxyoligonucleotide analogs . Methods Enzymol.211:3-20.  As a nucleic acid derivative, a 4-mer DNA guanine and cytosine phosphate having a S-row of adenine, guanine, cytosine, and thymine represented by compound (A3) in the following scheme 10 is a thioester. The thing (AGsCT) was used. This compound was synthesized by a known method described in the following literature. Zon, G .; Geiser, TG (1991) Phosphorothioate oligon ucleotides: chemistry, purification, analysis, scale-up and iuturedirections .Antiance r Drug Des. 6: 539-568. JV; Wiesler, W. (1992) Chemical synthesis of deoxyoligonucleotides and deoxyoligonucleotide analogs.Methods Enzymol. 211: 3-20.
[0093] [化 39] [0093] [Chemical 39]
Figure imgf000036_0001
Figure imgf000036_0001
(A 3 ) ( 2 a ) (D 5 )  (A 3) (2 a) (D 5)
[0094] 0.05mM AGsCT (A3)のィォゥ原子を含む DNAに対し、モル比 100倍量のスキ ーム 3中の化合物(2a)、およびモル比 200倍量のジイソプロピルェチルァミンを混合 した。室温、 37°C、 56°Cの各条件下で反応を行った。反応時間は 15分〜 24時間ま でとし、高速液体クロマトグラフィーで産物(D5)の精製率を追った。結果を図 1に示 す。  [0094] The DNA containing 0.05 mM AGsCT (A3) thio atom was mixed with compound (2a) in scheme 3 in a molar ratio of 100 times and diisopropylethylamine in a molar ratio of 200 times. . The reaction was carried out at room temperature, 37 ° C, and 56 ° C. The reaction time was 15 minutes to 24 hours, and the purification rate of the product (D5) was followed by high performance liquid chromatography. The results are shown in Figure 1.
[0095] 図 1に示すチャートは 37°Cで反応を行ったときの高速液体クロマトグラフィーによる 解析例である。チャート 1は反応前、チャート 2, 3, 4, 5はそれぞれ反応後 1、 2、 4、 24時間後のものである。ピーク頂上に示される数字は保持時間を示し、 6.5分付近の ピークが原料のスキーム 10中の化合物(A3)であり、 7.5分付近のピークが産物のス キーム 10中の化合物(D5)である。 [0095] The chart shown in FIG. 1 is obtained by high performance liquid chromatography when the reaction is performed at 37 ° C. This is an analysis example. Chart 1 is before the reaction, and charts 2, 3, 4, and 5 are after 1, 2, 4, and 24 hours after the reaction, respectively. The numbers at the top of the peak indicate the retention time. The peak around 6.5 minutes is the compound (A3) in Scheme 10 of the raw material, and the peak around 7.5 minutes is the compound (D5) in the product scheme 10. .
[0096] この化合物 (A3)および化合物(D5)に対応するピーク部分を分取し、質量分析を 行った結果、化合物(A3)では 1191 (M+H+)、化合物(D5)では 1388 (M+H+)の 測定結果を得た。これらは化合物 (A3)と化合物(D5)理論質量値である 1191.22 (M +H+)と 1388.26 (M+H+)と良く一致し、化合物 (A3)から化合物(D5)が製造できる ことを示す。 [0096] As a result of fractionating the peak portions corresponding to this compound (A3) and compound (D5) and performing mass spectrometry analysis, 1191 (M + H +) was obtained for compound (A3), and 1388 (M) was obtained for compound (D5). + H +) measurement result was obtained. These are in good agreement with the theoretical mass values 1191.22 (M + H +) and 1388.26 (M + H +) of compound (A3) and compound (D5), indicating that compound (D5) can be produced from compound (A3).
[0097] 図 2に示すグラフ(1)、 (2)、 (3)はそれぞれ 20°C、 37°C、 56°Cの温度で反応を行つ たときの反応時間と産物の化合物(D5)の収率を示している。グラフ(2)の 37°Cの反 応温度のとき収率が良い。また 2時間程度の反応により最大の収率が得られている。  [0097] Graphs (1), (2), and (3) shown in Fig. 2 show the reaction time and product compound (D5) when the reaction was carried out at 20 ° C, 37 ° C, and 56 ° C, respectively. ) Yield. Yield is good at the reaction temperature of 37 ° C in graph (2). The maximum yield is obtained by the reaction for about 2 hours.
[0098] 原料であるスキーム 10中の化合物 (A3)の濃度を変えて反応収率を測定した。結 果を図 3に示す。  [0098] The reaction yield was measured by changing the concentration of the compound (A3) in Scheme 10 as a raw material. The results are shown in Figure 3.
[0099] 反応温度を 37°Cに固定し、原料であるスキーム 3中の化合物(1)の濃度を 0.023、 0 .045、 0.182、 0.455mMとした反応収率をそれぞれグラフ(1)、 (2)、 (3)、 (4)に示す 。反応は原料が高濃度であると速くなるが、 0.2mM付近で変化がなくなる。好ましい 原料濃度は 0.2mMであるが、 O.lmM程度であっても反応時間を延長することで同程 度の収率が得られると考えられる。  [0099] The reaction temperature was fixed at 37 ° C, and the reaction yield when the concentration of the compound (1) in Scheme 3 as a raw material was 0.023, 0.045, 0.182, 0.455 mM was shown in graphs (1), ( Shown in 2), (3) and (4). The reaction is faster at high concentrations of raw material, but there is no change at around 0.2 mM. Although the preferred raw material concentration is 0.2 mM, it is considered that a similar yield can be obtained by extending the reaction time even if it is about O.lmM.
[0100] 実施例 2  [0100] Example 2
[化 40]  [Chemical 40]
スキーム 1 1  Scheme 1 1
Figure imgf000037_0001
Figure imgf000037_0001
( 1 ) (Λ 2 ) (D 4 ) [0101] 5'末端をチォリン酸化した 21merの RNA(A2)と式(1)で表されるフエ-ルジアジリ ジン化合物を、それぞれ最終濃度が 0.025mMと 20mMになるように、ジチルスルォ キシド中に調製した。さらに最終濃度が 20mMになるようにジイソプロピルェチルアミ ンを混合し、 37°Cで 2時間静置した。反応後の試料を高速液体クロマトグラフィーで 解析した。結果を図 4に示す。 (1) (Λ 2) (D 4) [0101] 21mer RNA (A2) thiophosphorylated at the 5 'end and a ferrodiaziridine compound represented by formula (1) were prepared in dityl sulfoxide to final concentrations of 0.025 mM and 20 mM, respectively. did. Further, diisopropylethylamine was mixed so that the final concentration was 20 mM and allowed to stand at 37 ° C. for 2 hours. The sample after the reaction was analyzed by high performance liquid chromatography. The results are shown in Fig. 4.
[0102] 図 4に示すチャート(1)は、原料である(A2)の高速液体クロマトグラフィーによる解 析結果である。チャート内の (a)にあたるピーク力 原料の 5'末端をチォリン酸ィ匕した 2 lmerの RNA(A2)を示す。上記チャート (2)は産物である(D4)を同様に解析したも のである。チャート内の (b)のピークが新たに出現したピークで、質量分析の結果、 (D 4)であることを確認した。  [0102] Chart (1) shown in Fig. 4 shows the analysis result of the raw material (A2) by high performance liquid chromatography. The peak force corresponding to (a) in the chart is a 2 lmer RNA (A2) in which the 5 'end of the raw material is thiophosphated. Chart (2) above is a similar analysis of product (D4). The peak (b) in the chart is a newly appearing peak and was confirmed to be (D4) as a result of mass spectrometry.
[0103] 実施例 2  [0103] Example 2
[0104] [化 41]  [0104] [Chemical 41]
スキーム 1 2 Scheme 1 2
Figure imgf000038_0001
Figure imgf000038_0001
(A 1 ) (D  (A 1) (D
[0105] 本発明の方法で製造した光反応性 DNAを利用して、その DNA配列に結合するタ ンパク質を多数 *同時に解析した例を示す。式 (2a)で表される化合物の光反応基と 5 '末端をピオチン化し、 DNA配列中の核酸の 1つをチォリン酸エステルにした Bioti n- TGTATGsCAAATAAGG (配列番号 1) (A1)を、それぞれ最終濃度 0.2mMと 10m Mになるようにジメチルスルォキシドに溶解した。最終濃度 10mMになるようにジイソ プロピルェチルァミンを混和し、式 (D1)で表される産物を合成した。高速液体クロマ トグラフィ一で目的の産物を精製し、質量分析で産物を確認した。尚、化合物 A1は、 以下の文献に記載の公知の方法により合成した。 Zon, G.; Geiser, T.G.(1991) Phos phorotnioate oligonucleotides : chemistry, purincation, analysis, scale-up and iuturedi rections .Anticancer Drug Des. 6:539—568.および Caruthers, M.H.; Beaton, G.; Wu, J.V.; Wiesler, W.(1992) Chemical synthesis ofdeoxyoligonucleotides and deoxyoligo nucleotide analogs. Methods Enzymol.211 :3— 20. [0105] An example will be shown in which a photoreactive DNA produced by the method of the present invention is used to simultaneously analyze a large number of proteins * that bind to the DNA sequence. Biotin-TGTATGsCAAATAAGG (SEQ ID NO: 1) (A1), in which the photoreactive group of the compound represented by the formula (2a) and the 5 'end are piotinated and one of the nucleic acids in the DNA sequence is thiophosphate, Dissolved in dimethyl sulfoxide to final concentrations of 0.2 mM and 10 mM. Diisopropylethylamine was mixed to a final concentration of 10 mM to synthesize a product represented by the formula (D1). The target product was purified by high-speed liquid chromatography, and the product was confirmed by mass spectrometry. Compound A1 was synthesized by a known method described in the following literature. Zon, G .; Geiser, TG (1991) Phos phorotnioate oligonucleotides: chemistry, purincation, analysis, scale-up and iuturedi rections .Anticancer Drug Des. 6: 539-568. And Caruthers, MH; Beaton, G .; Wu, JV; Wiesler, W. (1992) Chemical synthesis of deoxyoligonucleotides and deoxyoligo nucleotide analogs.Methods Enzymol.211: 3— 20.
[0106] 化学式(Dl)で表される産物を 0.1 μ g、 HeLa細胞核抽出液 gを、 25mM HEPE S- Naゝ 50mM NaCl、 5mM DTTゝ ImM EDTA、 0.05% Triton X- 100、 10%グリセロール、 2 μ § poly(dI ' dC)、 lOO ^ g/mL BSAの混合溶液 20 L中に溶解し、氷中で 1時間静 置した。結合阻害を行う場合は、阻害する競合 DNAを 10〜100倍モル量共存させた [0106] 0.1 μg of the product represented by the chemical formula (Dl), HeLa cell nuclear extract g, 25 mM HEPE S-Na ゝ 50 mM NaCl, 5 mM DTT ゝ ImM EDTA, 0.05% Triton X-100, 10% glycerol, 2 μ § poly (dI 'dC ), was dissolved in a mixed solution of 20 L of lOO ^ g / mL BSA, for 1 hour to stand in ice. When binding was inhibited, 10 to 100-fold molar amount of the competing DNA to be inhibited was allowed to coexist.
[0107] 上記試料の入ったチューブを氷水の上に浮かせて、 30W/m2の光量の 360nmの光 を氷上で 1〜5分間照射した。照射後すぐに 5 Lの電気泳動用変性溶液を加えて室 温で 30分以上静置した。この操作の模式図を図 5に示す。 [0107] The tube containing the above sample was floated on ice water, and irradiated with 360 nm light of 30 W / m 2 on ice for 1 to 5 minutes. Immediately after irradiation, 5 L of a denaturing solution for electrophoresis was added, and the mixture was allowed to stand at room temperature for 30 minutes or more. Figure 5 shows a schematic diagram of this operation.
[0108] 共有結合で結ばれた DNAと結合タンパク質を含む試料を、変性電気泳動で分離 した。このときの分離ゲルは 10%ポリアクリルアミドで製作した。電気泳動後、ゲルの セパレートゲルを取り除き、分離ゲルを固定溶液中に浸し、セミドライ式ブロッテイング 装置で、ゲルからメンブレンへ転写した。メンブレンは室温で 1時間、 1.0% (w/v)力 ゼイン/ PBSによるブロッキングを行い、その後、 0.1 % (v/v) Strept-avidin HRP/ PBS -Tを加えて室温、 30分間振盪した。メンブレンを数回洗浄した後、化学発光試薬で ピオチンを検出した。  [0108] Samples containing covalently bound DNA and binding protein were separated by denaturing electrophoresis. The separation gel at this time was made of 10% polyacrylamide. After electrophoresis, the gel was removed, and the separation gel was immersed in a fixing solution and transferred from the gel to the membrane using a semi-dry blotting apparatus. The membrane was blocked with 1.0% (w / v) force zein / PBS for 1 hour at room temperature, and then added with 0.1% (v / v) Strept-avidin HRP / PBS-T and shaken at room temperature for 30 minutes. After washing the membrane several times, peotine was detected with a chemiluminescent reagent.
[0109] ピオチンはもともと光反応性 DNAに結合している。 10%ポリアクリルアミドゲルを使 用した電気泳動で光反応性 DNA単体を解析した場合、その分子量が約 5000程度と 小さいためにゲル中カゝら流れ出る。この電気泳動のゲル中に化学発光で検出される ピオチンは、タンパク質などの高分子の物質と複合体を形成した光反応性 DNAであ ると考免られる。  [0109] Piotin is originally bound to photoreactive DNA. When photoreactive DNA alone is analyzed by electrophoresis using a 10% polyacrylamide gel, the molecular weight is as low as about 5000, so it flows out of the gel. Piotin detected by chemiluminescence in this electrophoresis gel is considered to be photoreactive DNA that forms a complex with a high-molecular substance such as protein.
[0110] 図 6に示す解析例中のレーンについて説明する。レーン「Μ」は分子量マーカーを 示し、ゲルの上から 67000、 45000、 31000、 20000の分子量に相当する。レーン「1」は 核抽出液をカ卩えず、光反応性 DNAのみで実験を行ったコントロール実験である。レ ーン「2」は、上記のように核抽出液と光反応性 DNAを加え、光照射を行った実験で ある。レーン「3」およびレーン「4」は、競合阻害 DNAを用いた実験であり、レーン「3 」は光反応性 DNAと同等の配列をもつ DNAを 25倍モル量カ卩えたものであり、レーン 「4」はその DNA配列の一部を変異させた DNAを 25倍モル量カ卩えたものである。 [0110] The lanes in the analysis example shown in Fig. 6 will be described. Lane “Μ” shows molecular weight markers, corresponding to molecular weights of 67000, 45000, 31000, 20000 from the top of the gel. Lane “1” is a control experiment in which only the photoreactive DNA was used without the nuclear extract. Lane “2” is an experiment in which the nuclear extract and photoreactive DNA were added and irradiated as described above. Lanes “3” and “4” are experiments using competitive inhibition DNA, and Lane “3” is a 25-fold molar amount of DNA having a sequence equivalent to photoreactive DNA. “4” is a 25-fold molar amount of DNA obtained by mutating part of the DNA sequence.
[0111] レーン「1」とレーン「2」を比較すると、多数の結合タンパク質を同時に解析できたこ と力示される。レーン「3」と「4」の阻害実験により、これらの複合体形成が DNA配列 に特異的であることが示される。 [0111] Comparing lanes “1” and “2” demonstrates the ability to analyze many binding proteins simultaneously. Inhibition experiments in lanes “3” and “4” indicate that these complex formations are specific to the DNA sequence.
[0112] 実施例 4 [0112] Example 4
[切断法の実施例]  [Example of cutting method]
実施例 3で示したスキームと同様の反応にて、 AGsCTの 4merの DNA断片にジァ ジリンを導入したものを試料として切断した実施例を示す。上記光反応性 DNAを 10 μ Μになるように、 50mMリン酸緩衝液を水酸ィ匕ナトリウムで ρΗを 10.5に調製した溶 液に溶カゝした。 37°Cで 2時間静置した試料を、高速液体クロマトグラフィーで解析した 。結果を図 7に示す。  An example is shown in which the same reaction as in the scheme shown in Example 3 was performed using a sample prepared by introducing diazirin into a 4-mer DNA fragment of AGsCT. The photoreactive DNA was dissolved in a solution prepared by adding 50 mM phosphate buffer with sodium hydroxide to 10.5 with a pH of 10.5 so that the photoreactive DNA was 10 μ μ. Samples that were allowed to stand at 37 ° C for 2 hours were analyzed by high-performance liquid chromatography. The results are shown in FIG.
[0113] 上のチャート(1)は、反応前の光反応性 AGsCTを試料にして高速液体クロマトダラ フィ一で解析したもので、チャート内の (a)のピークがそれにあたる。チャート(2)は、 上記方法で 2時間反応した後の試料を解析したもので、(a)にあたるピークは消滅し、 新たに (b)のピークが出現する。チャート(3)は、ジアジリンのついていない AGsCTを 試料として解析したもので、(c)のピークがそれにあたる。(b)のピークと (c)のピークの保 持時間がほぼ一致することから、(b)のピークはジアジリンが切断された AGsCTであ ると予想される。この (b)ピークを分取し質量分析で解析した結果、ジアジリンのない A GsCTであることが示された。  [0113] Chart (1) above is a high-performance liquid chromatographic analysis using photoreactive AGsCT before reaction as a sample, and the peak (a) in the chart corresponds to it. Chart (2) is an analysis of the sample after reacting for 2 hours by the above method. The peak corresponding to (a) disappears, and the new peak (b) appears. Chart (3) is an analysis of AGsCT without diazirine as a sample, and the peak in (c) corresponds to it. Since the retention times of the peak in (b) and the peak in (c) are almost the same, the peak in (b) is expected to be AGsCT with diazirine cleaved. As a result of fractionating this (b) peak and analyzing it by mass spectrometry, it was shown that it was A GsCT without diazirine.
[0114] 実施例 5  [0114] Example 5
[切断の実施例]  [Example of cutting]
実施例 3で示したスキームと同様の反応にて、 5 '末端にピオチンをもつ Biotin-TGT ATGsCAAATAAGG (配列番号 1)力ゝら光反応性 DNAを製造した。以下に実施例の模 式図を図 8に示す。  In the same manner as in the scheme shown in Example 3, Biotin-TGT ATGsCAAATAAGG (SEQ ID NO: 1) having a 5'-end of piotin was used to produce photoreactive DNA. Fig. 8 shows a schematic diagram of the example below.
[0115] 光反応性 DNAをポリプロピレン製のチューブ内に静置し(図 8 (1) )、光照射により チューブ表面に固定する(図 8 (2) )。固定ィ匕して 、な 、DNAを洗浄で除去し(図 8 (3 ) )、ストレプトアビジン—HRP酵素でピオチンの有無をィ匕学発光により確認する(図 8 (4) )。切断処理を図 8 (3)の操作のあとに行い、切断によりピオチンィ匕 DNAがチュー ブ表面から取り除かれて ヽるカゝ確認した。 [0115] The photoreactive DNA is placed in a polypropylene tube (Fig. 8 (1)) and fixed to the tube surface by light irradiation (Fig. 8 (2)). After fixation, the DNA is removed by washing (Fig. 8 (3)), and the presence or absence of piotin is confirmed by fluorescent light emission with streptavidin-HRP enzyme (Fig. 8 (4)). The cleavage process is performed after the operation shown in Fig. 8 (3). I confirmed that it was removed from the surface of the groove.
[0116] 詳細な実験操作は以下のとおりである。  [0116] The detailed experimental procedure is as follows.
1.100 μ Μ光反応性 DNA (in water) 50 μ Lを PCRチューブに入れて乾燥。  1. Add 50 μL of fluorescently reactive DNA (in water) to a PCR tube and dry.
2.光反応 (360 nm, 5min)によりチューブに DNAを固定。  2. Fix the DNA to the tube by photoreaction (360 nm, 5 min).
3.1% Tween, 50 mM Tris— HCl (pH 7.4), 300 mM NaCl 100 μ Lで洗浄。 (3回) 4.50 mM Tris— HCl (pH 7.4), 300 mM NaCl 100 μ Lで洗浄。(Tween除去)  Wash with 100% of 3.1% Tween, 50 mM Tris—HCl (pH 7.4), 300 mM NaCl. (3 times) Wash with 100 μL of 4.50 mM Tris—HCl (pH 7.4), 300 mM NaCl. (Tween removal)
5.切断条件で P-Sを切断  5. Cutting P-S under cutting conditions
く条件 1 >50 mM phosphate buffer +NaOHで pH 10.5に調製した溶液 100 μ Lをカロ え、 37°Cで 2時間おいておく。  Condition 1 Add 100 μL of the solution adjusted to pH 10.5 with> 50 mM phosphate buffer + NaOH and leave at 37 ° C for 2 hours.
<条件 2 >50 mM Acetate— Na buffer (pH 3.0) 100 mM NaCl 100 μ Lを加え、 37°C で一晩 (約 15時間)置 、ておく。  <Condition 2> Add 50 μM 50 mM Acetate—Na buffer (pH 3.0) 100 mM NaCl, and leave at 37 ° C overnight (about 15 hours).
6.1% casein PBS 100 /z Lをカ卩ぇ 37°Cで 1時間置いておく。(ブロッキング)  Leave 6.1% casein PBS 100 / z L for 1 hour at 37 ° C. (Blocking)
7.0.1% Tween, 50 mM Tris— HCl (pH 7.4), 300 mM NaCl 100 μ Lで洗浄。(3回) 8.streptavidine— HRP in 50 mM Tris— HCl (pH 7.4), 300 mM NaCl 100 μ Lを加え、 37 °Cで 1時 間置いておく。  7. Wash with 100 μL of 0.1% Tween, 50 mM Tris—HCl (pH 7.4), 300 mM NaCl. (3 times) 8. Add streptavidine-HRP in 50 mM Tris-HCl (pH 7.4), 100 μL of 300 mM NaCl, and leave at 37 ° C for 1 hour.
9.0.1% Tween, 50 mM Tris— HCl (pH 7.4), 300 mM NaCl 100 μ Lで洗浄。  9. Wash with 100 μL of 0.1% Tween, 50 mM Tris—HCl (pH 7.4), 300 mM NaCl.
10.ECL測定。結果を図 9に示す。  10. ECL measurement. The results are shown in FIG.
[0117] 図 9の化学発光検出例の 1は、切断処理を行わないものであり、チューブ表面にビ ォチンィ匕 DNAが固定ィ匕していることを示す。検出例 2は光反応を行わず固定ィ匕処 理をしていないものである。検出例 3は切断処理をした例で、 50mMリン酸緩衝液を 水酸ィ匕ナトリウムで pHを 10.5に調製した溶液中にー晚静置したものである。切断処 理によりチューブ表面力もピオチンィ匕 DNAが取り除かれたことを示す。  [0117] One of the chemiluminescence detection examples in Fig. 9 is one in which cleavage treatment is not performed, and biotin DNA is immobilized on the tube surface. Detection Example 2 does not perform photoreaction and does not perform the fixed 匕 process. Detection Example 3 is an example of cleavage treatment, in which a 50 mM phosphate buffer solution was placed in a solution adjusted to pH 10.5 with sodium hydroxide. The tube surface force by the cutting process also indicates that the Piotin DNA was removed.
[0118] 実施例 6  [0118] Example 6
[結合タンパク質の分離実施例]  [Example of separation of binding protein]
光反応性 DNAを利用して、その DNA配列に結合するタンパク質を分離した例を 示す。実施例 3と同様のスキームにて、 5'末端をピオチン化した Biotin-TGTATGsC AAATAAGG (配列番号 1)力ゝら光反応性 DNAを合成し、高速液体クロマトグラフィー で目的の産物を精製した。光反応性 DNAを 10 /z Mと、この DNA配列に結合するタ ンパク質 7.8 μ gとを、 25mM HEPES— Na、 50mM NaCl、 5mM DTTゝ ImM EDTA、 0.05% Triton X- 100、 10%グリセロール、 2 g poly(dI'dC)、 100 μ g/mL BSAの混合溶液 20 μ L中に溶解し、氷中で 1時間静置した。 An example is shown in which a protein that binds to the DNA sequence is separated using photoreactive DNA. In the same scheme as in Example 3, Biotin-TGTATGsC AAATAAGG (SEQ ID NO: 1) having a 5'-end that was piotinated was synthesized with a photoreactive DNA, and the target product was purified by high performance liquid chromatography. Photoreactive DNA is 10 / z M and binds to this DNA sequence. Protein 7.8 μg and 25 mM HEPES—Na, 50 mM NaCl, 5 mM DTT ゝ ImM EDTA, 0.05% Triton X-100, 10% glycerol, 2 g poly (dI'dC), 100 μg / mL BSA It was dissolved in 20 μL of the solution and allowed to stand in ice for 1 hour.
[0119] 上記試料の入ったチューブを氷水の上に浮かせて、 30W/m2の光量の 360nmの光 を氷上で 5分間照射した。照射後すぐに最終濃度 1%になるように界面活性剤を加え た。アビジンが結合したビーズを加え、 1時間攪拌した。洗浄後、 50mMリン酸緩衝液 を水酸ィ匕ナトリウムで pHを 10.5に調製した溶液中で切断反応を行った。上清を回収 し、電気泳動で分離し、銀染色でタンパク質を染色した。結果を図 10に示す。 [0119] A tube containing the above sample was floated on ice water, and irradiated with 360 nm light of 30 W / m 2 on ice for 5 minutes. A surfactant was added to a final concentration of 1% immediately after irradiation. Avidin-bound beads were added and stirred for 1 hour. After washing, the cleavage reaction was performed in a solution prepared by adjusting 50 mM phosphate buffer to 10.5 with sodium hydroxide. The supernatant was collected, separated by electrophoresis, and the protein was stained with silver stain. The result is shown in FIG.
[0120] 図 10の電気泳動図中のレーンについて説明する。レーン「M」は分子量マーカーを 示し、ゲルの上から 97000、 67000、 45000、 31000、 20000の分子量に相当する。レー ン「1」は上記のように切断反応を行った上清を試料とし、レーン「2」は POUタンパク 質をカ卩えず切断反応を行った上静を試料とし、レーン「3」は POUタンパク質を試料と した。レーン「3」より、電気泳動図中の「A」と「B」が POUタンパク質のバンドと考えら れる。この 2つバンドは、レーン「1」でも見られる。 POUタンパク質と DNAとの間で切 断がおこり、光反応で捉えられたタンパク質が回収できたことを示す。  [0120] Lanes in the electropherogram of FIG. 10 will be described. Lane “M” shows molecular weight markers, corresponding to molecular weights of 97000, 67000, 45000, 31000, 20000 from the top of the gel. Lane “1” uses the supernatant that had been cleaved as described above as a sample, lane “2” used the sample that had been cleaved without POU protein, and lane “3” POU protein was used as a sample. From lane “3”, “A” and “B” in the electropherogram are considered to be POU protein bands. These two bands can also be seen in lane “1”. A cleavage occurred between the POU protein and DNA, indicating that the protein captured by the photoreaction was recovered.
[0121] 実施例 7  [0121] Example 7
[GTP- y -S, ADP- β -Sへのジアジリンの導入]  [Introduction of diazirine into GTP-y-S, ADP-β-S]
[0122] 以下に示した GTP- γ -Sおよび ADP- β -Sのホスホロチォエートにジアジリンを導入し た。 [0122] Diazirine was introduced into the phosphorothioates of GTP-γ-S and ADP-β-S shown below.
スキーム 1 3 Scheme 1 3
Figure imgf000043_0001
Figure imgf000043_0001
[0123] <操作 >  [0123] <Operation>
•光反応性 GTP- y -Sの作成  • Creation of photoreactive GTP-y-S
サンプルを終濃度が 1 mM GTP- y -S, 100 mMリン酸バッファー (pH 7.0), 50 mM 4 -[3H-[3-trifluoromethyl]diazine-3-yl]benzyl maleimideとなるように調製し、 37°Cで 20 時間置いておく。反応後、 HPLCにより分析、単離を行い MASSにより分子量を測定し た。  Prepare a sample to a final concentration of 1 mM GTP-y-S, 100 mM phosphate buffer (pH 7.0), 50 mM 4- [3H- [3-trifluoromethyl] diazine-3-yl] benzyl maleimide, Leave at 37 ° C for 20 hours. After the reaction, it was analyzed and isolated by HPLC, and the molecular weight was measured by MASS.
[0124] ·光反応性 ADP- β -Sの作成  [0124] · Creation of photoreactive ADP-β-S
サンプルを終濃度が 1 mM ADP- jS -S, 100 mMリン酸バッファー(pH 7.0), 50 mM 4-[3H-[3-trifluoromethyl]diazine-3-yl]benzyl maleimideとなるように調製し、 37°Cで 1 8時間置いた。反応後、 HPLCにより分析、単離を行い MASSにより分子量を測定した 。結果を図 11に示す。  Prepare a sample to a final concentration of 1 mM ADP-jS-S, 100 mM phosphate buffer (pH 7.0), 50 mM 4- [3H- [3-trifluoromethyl] diazine-3-yl] benzyl maleimide, Placed at 37 ° C for 18 hours. After the reaction, the product was analyzed and isolated by HPLC, and the molecular weight was measured by MASS. The results are shown in FIG.
[0125] HPLCの結果より、ジアジリジン導入反応で、 GTP y -Sでは 14.2 min、 ADP- β - Sで は 14.0 minに新たな生成物ピークが確認された。このピークを分取し、 MASSにより分 子量の測定を行った。  [0125] From the HPLC results, a new product peak was confirmed at 14.2 min for GTP y -S and 14.0 min for ADP-β -S in the diaziridine introduction reaction. This peak was collected and the molecular weight was measured by MASS.
[0126] [表 2] GTP- r-Sおよび -Sへのジアジリン導入反応後のピークの MASS結果
Figure imgf000044_0002
[0126] [Table 2] MASS results of peaks after diazirine introduction reaction to GTP-rS and -S
Figure imgf000044_0002
[0127] 分子量測定の結果より、 GTP- γ -Sおよび ADP- β -Sへのジアジリンの導入が確認 できた。各収率は GTP- γ -Sが 94.1 %、 ADP- β - Sが 87 %であった。上記 GTP- γ - Sお よび ADP- β -Sへのジアジリンの導入と同様に、各種ホスホロチォエートへの光反応 基の導入が可能である。  [0127] From the results of molecular weight measurement, it was confirmed that diazirine was introduced into GTP-γ-S and ADP-β-S. The yields were 94.1% for GTP-γ-S and 87% for ADP-β-S. Similar to the introduction of diazirine into GTP-γ-S and ADP-β-S, photoreactive groups can be introduced into various phosphorothioates.
[0128] 実施例 8  [0128] Example 8
光反応性 GTPと Η- Rasの光ァフィ二ティーラベル  Photoreactive label of photoreactive GTP and Ra-Ras
[化 43]  [Chemical 43]
Figure imgf000044_0001
Figure imgf000044_0001
[0129] 40 ng H— Rasゝ 10 mMジアジリン— GTPゝ 10 mM MgCl、 50 mM Tris— HCl (pH 7.4)を  [0129] 40 ng H—Ras ゝ 10 mM diazirine—GTP ゝ 10 mM MgCl, 50 mM Tris—HCl (pH 7.4)
2  2
含むサンプル 1 mLを調製し氷上で 30分インキュベートした。その後、氷上で 360 nm の UV(15w X 2)を 10分間照射した *。サンプルに 1 mM N-ェチルマレイミド (NEM)、 1 mM tri- n-ブチルホスフィン、 0.5 Mリン酸バッファー(pH 7.0)、 10 %エタノール組成 の水溶液を 40 mLカ卩え、アルゴン下 20°Cで 20時間インキュベートした。反応後のサン プルを Sephadex G25カラムで NEMを除去し、 0.03 %アンモニア水溶液で 37°C2時間 インキュベートすることで、光反応性 GTP中の P-S間を加水分解により切断した。 反 応後、窒素通気によりアンモニアを取り除き、 1 mMピオチンマレイミド 0.5 Mリン酸バ ッファー(pH 7.0)、 10 %エタノール組成の水溶液を 40 mL加え、アルゴン下 20。Cで 2 0時間インキュベートした。反応後のサンプルを Sephadex G25カラムでピオチンマレイ ミドを除去し、凍結乾燥させた。サンプルを SDS-PAGE (13 %ポリアクリルアミドゲル) を行い、 PVDF膜にエレクトロブロッテイング後ストレプトアビジン- HRPパーォキシダ ーゼによる化学発光により検出を行った。結果を図 12に示す。また反応のスキームを 以下に示す。 A 1 mL sample was prepared and incubated on ice for 30 minutes. Subsequently, 360 nm UV (15 w X 2) was irradiated on ice for 10 minutes *. Add 40 mL of an aqueous solution containing 1 mM N-ethylmaleimide (NEM), 1 mM tri-n-butylphosphine, 0.5 M phosphate buffer (pH 7.0), and 10% ethanol to the sample, and 20 ° C under argon. Incubated for 20 hours. NEM was removed from the sample after the reaction using a Sephadex G25 column, and the PS in the photoreactive GTP was cleaved by hydrolysis by incubating with a 0.03% aqueous ammonia solution at 37 ° C for 2 hours. After the reaction, the ammonia was removed by bubbling nitrogen, and 40 mL of an aqueous solution containing 1 mM piotinmaleimide 0.5 M phosphate buffer (pH 7.0) and 10% ethanol was added, and 20 under argon. Incubated at C for 20 hours. The sample after the reaction was treated with piotin male on a Sephadex G25 column. The mid was removed and lyophilized. The sample was subjected to SDS-PAGE (13% polyacrylamide gel), electroblotted onto a PVDF membrane, and then detected by chemiluminescence using streptavidin-HRP peroxidase. The results are shown in FIG. The reaction scheme is shown below.
[化 44] [Chemical 44]
ジアジリン -GTP  Diazirine-GTP
Figure imgf000045_0001
ジアジリン -ATP
Figure imgf000045_0001
Diazirine-ATP
Figure imgf000045_0002
実施例 9
Figure imgf000045_0002
Example 9
GTPタグを利用した光ラベル Rasの単離検出  Isolation and detection of optical label Ras using GTP tag
40 ng H- Rasゝ 10 mMジアジリン- GTPゝ 10 mM MgCl、 50 mM Tris- HCl (pH 7.4)を  40 ng H-Ras ゝ 10 mM Diazirine-GTP ゝ 10 mM MgCl, 50 mM Tris-HCl (pH 7.4)
2  2
含むサンプル 1 mLを調製し氷上で 30分インキュベートした†。その後、氷上で 360 nm の UV(15w X 2)を 10分間照射した *。光反応後、 1 mMピオチン- 0スクシンイミド、 50 mM Tris- HCl (pH 7.4)、 10 %ァセトニトリル組成の水溶液を 40 mL加え、 37°Cで 2時 間反応させた。その後、 10 % SDSを 4 mL加え 95° Cで 5分間熱することでタンパク質 を変性させた。その後、等量 (45mL)の 0.2 M酢酸水溶液を加え、 Fe3+-IMACカラム (50mL分)〖こ乗せた $。 0.1 M酢酸水溶液 1 mL、 0.1 %酢酸 ·60 %ァセトニトリル水溶液 で洗浄した後、 0.1 Μアンモニア水溶液 500 mLで溶出し溶出液を凍結乾燥した。そ のサンプルを 10 mL水に溶解し、全量を SDS-PAGE(13 %ポリアクリルアミドゲル)を行 い、 PVDF膜にエレクトロブロッテイング後ストレプトアビジン- HRPパーォキシダーゼ による化学発光により検出を行った。結果を図 13に示す。また反応のスキームを図 14 に示す。 Prepare 1 mL of sample and incubate on ice for 30 minutes †. Subsequently, 360 nm UV (15 w X 2) was irradiated on ice for 10 minutes *. After the photoreaction, 40 mL of an aqueous solution of 1 mM piotin-0 succinimide, 50 mM Tris-HCl (pH 7.4), and 10% acetonitrile was added and reacted at 37 ° C for 2 hours. Thereafter, 4 mL of 10% SDS was added, and the protein was denatured by heating at 95 ° C. for 5 minutes. Then added 0.2 M aqueous acetic acid equal volume (45mL), Fe 3+ -IMAC column (50mL min) carrying 〖this $. After washing with 0.1 mL of 0.1 M acetic acid aqueous solution and 0.1% acetic acid / 60% acetonitrile aqueous solution, the eluate was lyophilized by elution with 500 mL of 0.1% aqueous ammonia solution. So The sample was dissolved in 10 mL water, and the entire amount was subjected to SDS-PAGE (13% polyacrylamide gel). After electroblotting on a PVDF membrane, detection was performed by chemiluminescence using streptavidin-HRP peroxidase. The results are shown in FIG. Figure 14 shows the reaction scheme.
[0132] †結果 3〜5はこの時点で阻害のために GTPを加えた。  [0132] † Results 3-5 added GTP for inhibition at this point.
*結果 2はこの光照射を行って 、な 、。  * Result 2 shows this light irradiation.
$ Fe3+-IMACは、リン酸基とキレートを示す。今回の場合、光ラベルされてタンパク質 に GTPが結合したものだけがカラムとキレート結合する。 $ Fe 3+ -IMAC shows a phosphate group and a chelate. In this case, only the photolabeled GTP bound to the protein will chelate with the column.
産業上の利用可能性  Industrial applicability
[0133] 本発明は、核酸およびタンパク質が関連する広範な分野において有用である。 [0133] The present invention is useful in a wide range of fields involving nucleic acids and proteins.
図面の簡単な説明  Brief Description of Drawings
[0134] [図 1]高速液体クロマトグラフィーでの解析例を示す。 [0134] [Fig. 1] An example of analysis by high performance liquid chromatography is shown.
[図 2]反応時間と収率の関係を示す。  FIG. 2 shows the relationship between reaction time and yield.
[図 3]反応濃度と収率の関係を示す。  FIG. 3 shows the relationship between reaction concentration and yield.
[図 4]高速液体クロマトグラフィーでの解析例を示す。  [Fig. 4] Shows an example of analysis by high performance liquid chromatography.
[図 5]共有結合で結ばれた DNAと結合タンパク質が形成される模式図。  [Fig. 5] Schematic diagram of formation of binding protein with covalently linked DNA.
[図 6]化学発光で検出した複合体解析の例を示す。  [Figure 6] Shows an example of complex analysis detected by chemiluminescence.
[図 7]高速液体クロマトグラフィーによる解析例を示す。  [Fig. 7] An example of analysis by high performance liquid chromatography is shown.
[図 8]実施例 6の模式図。  FIG. 8 is a schematic diagram of Example 6.
[図 9]化学発光検出例を示す。  FIG. 9 shows an example of chemiluminescence detection.
[図 10]回収した上清の電気泳動像。  FIG. 10 is an electrophoresis image of the collected supernatant.
[図 11- 1]HPLCによる GTP- γ -Sへのジアジリンの導入反応の分析。  [Fig. 11-1] Analysis of introduction reaction of diazirine into GTP-γ-S by HPLC.
[図 11- 2]HPLCによる ADP- β -Sへのジアジリンの導入反応の分析。  [Fig. 11-2] Analysis of introduction reaction of diazirine into ADP-β-S by HPLC.
[図 12]実施例 8における光プローブ特異的なピオチン付カ卩による光ラベル Rasの化学 発光検出結果。 1:光ラベル有 2:光ラベル無 (操作の *の光照射を行って 、な 、) FIG. 12 shows the results of chemiluminescence detection of the optical label Ras using the optical probe-specific piotine-attached cage in Example 8. 1: Optical label is present 2: Optical label is not present (The light irradiation of the operation * is performed)
[図 13]実施例 9における GTP-tagを利用した光ラベルした Rasの単離 ·検出結果。 1: 光ラベル有 2 :光ラベル無 3 :等量 GTPによる阻害 4 : 10等量 GTPによる阻害 5 : 1[FIG. 13] Isolation and detection results of optically labeled Ras using GTP-tag in Example 9. 1: With optical label 2: Without optical label 3: Equivalent Inhibition with GTP 4: 10 Equivalent Inhibition with GTP 5: 1
00等量 GTPによる阻害 [図 14]実施例 9における反応のスキーム。 00 equivalent GTP inhibition FIG. 14: Reaction scheme in Example 9.

Claims

請求の範囲 The scope of the claims
[1] 核酸誘導体 (但し、少なくとも 1つの核酸のリン酸基がチォリン酸基である)とチォリン酸 基のチオール基と反応性の基を有するフ ニルジアジリジンィヒ合物とを反応させるこ とを含む、フエ-ルジアジリジン付加核酸誘導体の製造方法。  [1] A nucleic acid derivative (provided that at least one of the nucleic acid phosphate groups is a thiophosphate group) is reacted with a thiol group of a thiophosphate group and a phenyldiaziridine hydrate compound having a reactive group. And a method for producing a ferrule-added nucleic acid derivative.
[2] 前記核酸誘導体が一般式 (A)で示される化合物である請求項 1に記載の製造方法。  [2] The production method according to claim 1, wherein the nucleic acid derivative is a compound represented by the general formula (A).
[化 1]  [Chemical 1]
INV刚、 IN V刚,
(A)  (A)
SH  SH
一般式 (A)中、 Xおよび yは、独立に 0〜100の整数であり、 Nは以下の一般式(B)で 示される基である。  In general formula (A), X and y are each independently an integer of 0 to 100, and N is a group represented by the following general formula (B).
[化 2]  [Chemical 2]
Figure imgf000048_0001
Figure imgf000048_0001
一般式 (B)中、 Rは OH基または隣接するヌクレオチドであり、 Rは水素または OH  In the general formula (B), R is an OH group or an adjacent nucleotide, and R is hydrogen or OH
1 2  1 2
基であり、 Rは OH基または隣接するヌクレオチドであり、 Bはアデニン、グァニン、シ  R is an OH group or adjacent nucleotide, B is adenine, guanine,
3  Three
トシン、ゥラシル、チミンおよびこれらの誘導体から成る群から選ばれる任意の塩基で あり、 Xは S (硫黄)または o (酸素)である。  Any base selected from the group consisting of tosine, uracil, thymine and derivatives thereof, X is S (sulfur) or o (oxygen).
[3] 前記フエニルジアジリジンィ匕合物が一般式 (C)で示される化合物である請求項 1また は 2に記載の製造方法。  [3] The production method according to claim 1 or 2, wherein the phenyldiaziridine complex is a compound represented by the general formula (C).
[化 3] [Chemical 3]
Figure imgf000049_0001
Figure imgf000049_0001
Figure imgf000049_0002
Figure imgf000049_0002
Rは、ハロゲン原子またはスルホン酸エステル残基であり、  R is a halogen atom or a sulfonate residue,
6  6
Rは、炭素数 1〜6のアルキルスルホ -ル基または炭素数 1〜6のアルキルチオ基で R is an alkylsulfo group having 1 to 6 carbon atoms or an alkylthio group having 1 to 6 carbon atoms.
7 7
あり、 Yes,
Rは、 Hまたは炭素数 1〜6のアルキル基であり、  R is H or an alkyl group having 1 to 6 carbon atoms,
8  8
nは 1〜6の整数である。 n is an integer of 1-6.
前記フ ニルジアジリジン付加核酸誘導体が一般式 (D)で示される化合物である請 求項 1〜3のいずれか 1項に記載の製造方法。 4. The production method according to any one of claims 1 to 3, wherein the phenyldiaziridine-added nucleic acid derivative is a compound represented by the general formula (D).
[化 5] [Chemical 5]
Figure imgf000050_0001
Figure imgf000050_0001
NxN y N x N y
一般式 (D)中、 xおよび y、並びに Nは、一般式 (A)における定義と同じであり、 R [化 6] In general formula (D), x, y, and N are the same as defined in general formula (A), and R [Chemical 6]
Figure imgf000050_0002
であり、 nは 1〜6の整数である。
Figure imgf000050_0002
And n is an integer of 1-6.
前記フエニルジアジリジンィ匕合物が、下記式(1)〜( 10)で表される化合物である 求項 3に記載の方法。 The method according to claim 3, wherein the phenyldiaziridine compound is a compound represented by the following formulas (1) to (10).
[化 7]
Figure imgf000051_0001
式 (4)、(5)、(6)、および(9)中、 Rは、水素 )、炭素数 1〜6の無置換または置換ァ ルキル基であり、式(10)中、 Rは、水素 )、炭素数 1〜6の無置換または置換アルキ ル基であり、 R'は、 H、炭素数 2〜6の無置換もしくは置換のアルキルカルボ-ル、ァ ルキルカルボ-ルォキシまたはァリールカルボ-ルォキシ基であり、式(8)中、 Xは、 アルカンスルホ -ル基またはベンゼンスルホ-ル基である。
[Chemical 7]
Figure imgf000051_0001
In formulas (4), (5), (6), and (9), R is hydrogen), an unsubstituted or substituted alkyl group having 1 to 6 carbon atoms, and in formula (10), R is Hydrogen), an unsubstituted or substituted alkyl group having 1 to 6 carbon atoms, and R ′ is H, an unsubstituted or substituted alkyl carboalkyl, alkyl carboloxy or aryl carborooxy group having 2 to 6 carbon atoms. In the formula (8), X is an alkanesulfol group or a benzenesulfol group.
[6] 核酸誘導体および Zまたはフエニルジアジリジン付加核酸誘導体が標識を有するも のである請求項 1〜5のいずれか 1項に記載の製造方法。  6. The production method according to any one of claims 1 to 5, wherein the nucleic acid derivative and the Z- or phenyldiaziridine-added nucleic acid derivative have a label.
[7] 標識が、ピオチン、放射性同位体、および Zまたは蛍光物質ある請求項 5に記載の 製造方法。  [7] The production method according to claim 5, wherein the label is piotin, a radioisotope, and Z or a fluorescent substance.
[8] 一般式 (D)で示されるフエニルジアジリジン付加核酸誘導体。  [8] A phenyldiaziridine-added nucleic acid derivative represented by the general formula (D).
[化 8] [Chemical 8]
Figure imgf000052_0001
Figure imgf000052_0001
s  s
NVNN, y N V NN, y
一般式 (D)中、 Rは、 In general formula (D), R is
4  Four
[化 9]  [Chemical 9]
十 CH +- — S十 Tens CH +-— S tens
11
Figure imgf000052_0002
, 11 ,
Figure imgf000052_0002
であり、 nは 1〜6の整数であり、 xおよび yは、独立に 0〜100の整数であり、 Nは以下 の一般式 (B)で示される基である。 N is an integer of 1 to 6, x and y are independently an integer of 0 to 100, and N is a group represented by the following general formula (B).
[化 10] [Chemical 10]
Figure imgf000052_0003
Figure imgf000052_0003
一般式 (B)中、 Rは OH基または隣接するヌクレオチドであり、 Rは水素または OH In the general formula (B), R is an OH group or an adjacent nucleotide, and R is hydrogen or OH
1 2 基であり、 Rは OH基または隣接するヌクレオチドであり、 Bはアデニン、グァニン、シ トシン、ゥラシル、チミンおよびこれらの誘導体から成る群から選ばれる任意の塩基で あり、 Xは S (硫黄)または o (酸素)である。 1 2 group, R is OH group or adjacent nucleotide, B is adenine, guanine, Any base selected from the group consisting of tosine, uracil, thymine and derivatives thereof, X is S (sulfur) or o (oxygen).
[9] フエニルジアジリジン付加核酸誘導体が標識を有する請求項 8に記載の誘導体。 9. The derivative according to claim 8, wherein the phenyldiaziridine-added nucleic acid derivative has a label.
[10] 標識が、ピオチン、放射性同位体、および Zまたは蛍光物質ある請求項 9に記載の 誘導体。 10. The derivative according to claim 9, wherein the label is piotin, a radioisotope, and Z or a fluorescent substance.
[11] 下記一般式 (E)または (F)で示されるヌクレオチド誘導体と、一般式 (E)または (F) で示される化合物中のチオール基と反応性の基を有するフエ-ルジアジリジンィ匕合 物とを反応させることを含む、フエニルジアジリジン付加ヌクレオチド誘導体の製造方 法。  [11] A phenyldiaziridine compound having a nucleotide derivative represented by the following general formula (E) or (F) and a reactive group with a thiol group in the compound represented by the general formula (E) or (F) And a method for producing a phenyldiaziridine-added nucleotide derivative.
[化 11]  [Chemical 11]
Figure imgf000053_0001
Figure imgf000053_0001
一般式 (E)中、 Rはアデニン、グァニン、シトシン、ゥラシル、チミンおよびこれらの誘導 体力 成る群力 選ばれる任意の塩基であり、 nは、 0、 1または 2であり、一般式 (F)中 、 Rおよび Rは、独立にニコチンアミドアデニンヌクレオチドおよびそのリン酸化物、 In general formula (E), R is adenine, guanine, cytosine, uracil, thymine, and their derived physical strength group power, any base selected, n is 0, 1 or 2, and general formula (F) R and R are independently nicotinamide adenine nucleotide and its phosphate,
1 2 1 2
並びにフラビンモノヌクレオチド、糖リン酸、糖ヌクレオチド、補酵素 A、およびリン脂 質から成る群から選ばれる。  And flavin mononucleotide, sugar phosphate, sugar nucleotide, coenzyme A, and phospholipid.
前記フエニルジアジリジンィ匕合物が一般式 (C)で示される化合物である請求項 11に 記載の製造方法。  12. The production method according to claim 11, wherein the phenyldiaziridine compound is a compound represented by the general formula (C).
[化 12]  [Chemical 12]
Figure imgf000053_0002
一般式 (C)中、 Rは
Figure imgf000053_0002
In general formula (C), R is
5  Five
[化 13]  [Chemical 13]
Figure imgf000054_0001
であり、
Figure imgf000054_0001
And
Rは、ハロゲン原子またはスルホン酸エステル残基であり、 R is a halogen atom or a sulfonate residue,
6  6
Rは、炭素数 1〜6のアルキルスルホ -ル基または炭素数 1〜6のアルキルチオ基で R is an alkylsulfo group having 1 to 6 carbon atoms or an alkylthio group having 1 to 6 carbon atoms.
7 7
あり、 Yes,
Rは、 Hまたは炭素数 1〜6のアルキル基であり、  R is H or an alkyl group having 1 to 6 carbon atoms,
8  8
nは 1〜6の整数である。 n is an integer of 1-6.
前記フ ニルジアジリジンィ匕合物が、下記式(1)〜( 10)で表される化合物である請 求項 12に記載の方法。 13. The method according to claim 12, wherein the phenyldiaziridine compound is a compound represented by the following formulas (1) to (10).
[化 14] [Chemical 14]
Figure imgf000055_0001
Figure imgf000055_0001
式 (4)、(5)、(6)、および(9)中、 Rは Rは、水素 (H)、炭素数 1〜6の無置換または置 換アルキル基であり、式(10)中、 Rは、水素 )、炭素数 1〜6の無置換または置換ァ ルキル基であり、 R'は、 H、炭素数 2〜6の無置換もしくは置換のアルキルカルボ-ルIn formulas (4), (5), (6), and (9), R is hydrogen (H), an unsubstituted or substituted alkyl group having 1 to 6 carbon atoms, and in formula (10) , R is hydrogen), an unsubstituted or substituted alkyl group having 1 to 6 carbon atoms, and R ′ is H, an unsubstituted or substituted alkyl carbonyl group having 2 to 6 carbon atoms.
、アルキルカルボ-ルォキシまたはァリールカルボ-ルォキシ基であり、式(8)中、 X は、アルカンスルホ -ル基またはベンゼンスルホ-ル基である。 , An alkylcarboxoxy group or an arylcarboxoxy group, and in the formula (8), X represents an alkanesulfol group or a benzenesulfol group.
請求項 1〜7のいずれか 1項に記載の方法で製造したフエニルジアジリジン付加核酸 誘導体、請求項 8〜: L0の ヽずれか 1項に記載のフエニルジアジリジン付加核酸誘導 体、または請求項 11〜13のいずれか 1項に記載の方法で製造したヌクレオチド誘導 体と、被検体であるタンパク質とを相互作用し得る条件下で混合し、 A phenyldiaziridine-added nucleic acid derivative produced by the method according to any one of claims 1 to 7, claim 8 to: any one of L0, a phenyldiaziridine-added nucleic acid derivative according to claim 1, or A nucleotide derivative produced by the method according to any one of claims 11 to 13 and a protein that is an analyte are mixed under conditions that allow interaction,
得られた混合物に光を照射して、フエ-ルジアジリジン付加核酸誘導体またはヌクレ ォチド誘導体に含まれるジアジリジン基とタンパク質とを反応させて、前記フエ-ルジ アジリジン付加核酸誘導体またはヌクレオチド誘導体とタンパク質との結合体を形成 し、次いで The resulting mixture is irradiated with light to react the diaziridine group contained in the fermentiaziridine-added nucleic acid derivative or nucleotide derivative with the protein, and to react the fermenter. Form a conjugate of an aziridine-added nucleic acid derivative or nucleotide derivative and a protein;
得られた結合体を電気泳動に付すことを含む、  Subjecting the resulting conjugate to electrophoresis,
電気的移動度シフトアツセィによるタンパク質の分析方法。  Protein analysis method by electrical mobility shift assembly.
[15] 電気泳動を変性条件下で行う請求項 14に記載の方法。  15. The method according to claim 14, wherein the electrophoresis is performed under denaturing conditions.
[16] 請求項 1〜7の 、ずれか 1項に記載の方法で製造したフ ニルジアジリジン付加核酸 誘導体、請求項 8〜: LOの ヽずれか 1項に記載のフエニルジアジリジン付加核酸誘導 体、または請求項 11〜13のいずれか 1項に記載の方法で製造したヌクレオチド誘導 体と、被検体であるタンパク質とを相互作用し得る条件下で混合し、  [16] Phenyldiaziridine-added nucleic acid derivative according to any one of claims 1 to 7, wherein the phenyldiaziridine-added nucleic acid derivative is produced by the method according to any one of claims 1 to 7. Claim 8 to: A derivative, or a nucleotide derivative produced by the method according to any one of claims 11 to 13, and a protein that is an analyte are mixed under conditions that allow interaction,
得られた混合物に光を照射して、フエ-ルジアジリジン付加核酸誘導体またはヌクレ ォチド誘導体に含まれるジアジリジン基とタンパク質とを反応させて、前記フエ-ルジ アジリジン付加核酸誘導体またはヌクレオチド誘導体とタンパク質との結合体を形成 し、  The resulting mixture is irradiated with light to react the diaziridine group contained in the phenyldiaziridine-added nucleic acid derivative or nucleotide derivative with the protein, thereby binding the fertilaziridine-added nucleic acid derivative or nucleotide derivative to the protein. Form the body,
得られた結合体を電気泳動に付し、  The resulting conjugate is subjected to electrophoresis,
前記結合体を分離し、次いで  Separating the conjugate, then
分離した結合体をアルカリ溶液で処理して結合体を解離させ、  The separated conjugate is treated with an alkaline solution to dissociate the conjugate,
解離したタンパク質および Zまたは核酸誘導体またはヌクレオチド誘導体を回収する ことを含む、  Recovering dissociated proteins and Z or nucleic acid derivatives or nucleotide derivatives,
タンパク質の調製方法。  Protein preparation method.
[17] 前記電気泳動を変性条件下で行う請求項 16に記載の方法。 17. The method according to claim 16, wherein the electrophoresis is performed under denaturing conditions.
PCT/JP2006/309229 2005-05-09 2006-05-08 Nucleic acid derivatives having phenyldiaziridine moieties and process for production thereof, nucleotide derivatives having phenyldiaziridine moieties and process for production thereof, method for analysis of protein, and process for preparation of protein WO2006120992A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007528262A JP4122446B2 (en) 2005-05-09 2006-05-08 Phenyldiazirine-added nucleic acid derivative and production method thereof, phenyldiazirine-added nucleotide derivative and production method thereof, and protein analysis method and preparation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005135819 2005-05-09
JP2005-135819 2005-05-09

Publications (1)

Publication Number Publication Date
WO2006120992A1 true WO2006120992A1 (en) 2006-11-16

Family

ID=37396500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309229 WO2006120992A1 (en) 2005-05-09 2006-05-08 Nucleic acid derivatives having phenyldiaziridine moieties and process for production thereof, nucleotide derivatives having phenyldiaziridine moieties and process for production thereof, method for analysis of protein, and process for preparation of protein

Country Status (2)

Country Link
JP (1) JP4122446B2 (en)
WO (1) WO2006120992A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008245591A (en) * 2007-03-30 2008-10-16 Institute Of Physical & Chemical Research Method for synthesizing protein having non-natural type amino acid with photoreactive functional group integrated therein
JP2017530973A (en) * 2014-09-23 2017-10-19 プロメラス, エルエルシー Diazirine compound as photocrosslinking agent and photodevelopable composition containing the same

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CARUTHERS M.H. ET AL.: "Chemical Synthesis of Deoxyoligonucleotides and Deoxyoligonucleotide Analogs", METHODS IN ENZYMOLOGY, vol. 211, 1992, pages 3 - 20, XP001008614 *
KANEDA M. ET AL.: "A Novel Approach for Affinity-Based Screening of Target Specific Ligands: Application of Photoreactive D-Glyceraldehyde-3-phosphate Dehydrogenase", BIOCONJUGATE CHEMISTRY, vol. 14, no. 5, 2003, pages 849 - 852, XP003003639 *
RESEK J.F. ET AL.: "A New Photo-Cross-Linking Reagent for the Study of Protein-Protein Interactions", JOURNAL OF ORGANIC CHEMISTRY, vol. 58, 1993, pages 7598 - 7601, XP002029659 *
SENGLE G. ET AL.: "Synthesis, Incorporation Efficiency, and Stability of Disulfide Bridged Functional Groups at RNA 5'-Ends", BIOORGANIC & MEDICINAL CHEMISTRY, vol. 8, no. 6, June 2000 (2000-06-01), pages 1317 - 1329, XP002193539 *
YAMAGUCHI T. ET AL.: "Synthesis and utilization of a photolabile oligodeoxyribonucleotide probe bearing an aryl(trifluoromethyl) diazirine moiety", NUCLEIC ACIDS SYMPOSIUM SERIES, no. 35, 1996, pages 237 - 238, XP008072404 *
ZHAO L. ET AL.: "Direct and GTP-dependent interaction of ADP ribosylation factor 1 with coatomer subunit beta", PROC. NATL. ACAD. SCI. USA, vol. 94, no. 9, April 1997 (1997-04-01), pages 4418 - 4423, XP003003640 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008245591A (en) * 2007-03-30 2008-10-16 Institute Of Physical & Chemical Research Method for synthesizing protein having non-natural type amino acid with photoreactive functional group integrated therein
JP2017530973A (en) * 2014-09-23 2017-10-19 プロメラス, エルエルシー Diazirine compound as photocrosslinking agent and photodevelopable composition containing the same

Also Published As

Publication number Publication date
JP4122446B2 (en) 2008-07-23
JPWO2006120992A1 (en) 2008-12-18

Similar Documents

Publication Publication Date Title
JP5214967B2 (en) Phosphonic acid fluorescent dyes and complexes
EP1095053B1 (en) Arylsulfone linkers for mass spectrometric analysis
Pearson et al. Fluorous affinity purification of oligonucleotides
JP2009543067A (en) Analyte determination using mass-tagged reagents containing uncoded detectable labels
WO2005014609A2 (en) Method of producing a highly stereoregular phosphorus atom-modified nucleotide analogue
CN112367988A (en) Compositions and methods relating to ethoxydihydroxybutanone derivatives
JP4122446B2 (en) Phenyldiazirine-added nucleic acid derivative and production method thereof, phenyldiazirine-added nucleotide derivative and production method thereof, and protein analysis method and preparation method
JP2024010243A (en) Direct nucleic acid sequencing method
Ishizuka et al. 19 F NMR Spectroscopy for the Analysis of DNA G-Quadruplex Structures Using 19 F-Labeled Nucleobase
CN115916365A (en) Apparatus and method for sequencing
EP1308452B1 (en) Oligonucleotide labeling reactants based on acyclonucleosides and conjugates derived thereof
AU2012254580B2 (en) Process for preparing phosphate compound bearing isotope
CN111909993A (en) Molecular probe of isoprene modified biomolecule and application thereof
Burgin Synthesis and use of DNA containing a 5′-bridging phosphorothioate as a suicide substrate for type I DNA topoisomerases
JP5114705B2 (en) Bipyridine-modified nucleoside or nucleotide and method for detecting methylcytosine using the same
JP4067114B1 (en) Phenyldiazirine derivative and process for producing the same
CN111004288A (en) Novel ruthenium complex, preparation method thereof and application thereof in detection of 5-formyl cytosine
JP4163821B2 (en) Oligonucleotide modification method
US20230416815A1 (en) Method for labeling nucleic acid
WO2022209428A1 (en) Method for analyzing higher-order structure of rna
Kreuz et al. The Chromatin Interaction System
WO2023047141A1 (en) S- and se- adenosyl-l-methionine analogues with activated groups for transfer by methyltransferases on target biomolecules
KR20210116216A (en) Selective modifying method of nucleotide
WO2024015800A2 (en) Methods and compositions for modification and detection of 5-methylcytosine
WO2007083793A1 (en) Panning method utilizing photoreactive group and kit for the method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007528262

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06746061

Country of ref document: EP

Kind code of ref document: A1