WO2006120971A1 - Process for producing polarizing plate, polarizing plate produced by said process, and optical film and image display device using said polarizing plate - Google Patents

Process for producing polarizing plate, polarizing plate produced by said process, and optical film and image display device using said polarizing plate Download PDF

Info

Publication number
WO2006120971A1
WO2006120971A1 PCT/JP2006/309145 JP2006309145W WO2006120971A1 WO 2006120971 A1 WO2006120971 A1 WO 2006120971A1 JP 2006309145 W JP2006309145 W JP 2006309145W WO 2006120971 A1 WO2006120971 A1 WO 2006120971A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polarizing plate
polarizing
heat treatment
stretching
Prior art date
Application number
PCT/JP2006/309145
Other languages
French (fr)
Japanese (ja)
Inventor
Naoyuki Nitta
Yuuji Saiki
Hiroaki Mizushima
Takemichi Yoshida
Original Assignee
Nitto Denko Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corporation filed Critical Nitto Denko Corporation
Publication of WO2006120971A1 publication Critical patent/WO2006120971A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements

Definitions

  • the present invention relates to a method for producing a polarizing plate, a polarizing plate obtained thereby, an optical film using the same, and an image display device.
  • a liquid crystal display device is provided with a polarizing plate.
  • the polarizing plate is a laminate of a polarizer (hereinafter also referred to as “polarizing film”) and a protective film.
  • the manufacturing method is, for example, as follows (see, for example, Patent Documents 1 and 2). That is, first, a polybulal alcohol (PVA) film is dyed with dichroic iodine or a dichroic dye, cross-linked with borosilicate or borax, and stretched to produce a polarizer. Then, using the adhesive, a transparent film such as triacetyl cellulose is attached to the polarizer as a protective film to produce a polarizing plate.
  • PVA polybulal alcohol
  • Patent Document 1 Japanese Patent Laid-Open No. 10-68821
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-169024
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-174634
  • an object of the present invention is to provide a method for producing a polarizing plate that can produce a polarizing plate in which the depolarization phenomenon in the peripheral portion is more effectively prevented.
  • the production method of the present invention is a method for producing a polarizing plate, comprising a calorific heat treatment step of performing heat treatment on a laminated film including at least a polarizing film and a protective film, Heat treatment process is 60 ⁇ on the laminated film! It is characterized in that the heat treatment is performed at a heating temperature of 60 ° C to 120 ° C with a tension of ⁇ 450 NZm.
  • a polarizing film and a protective film are laminated, and in order to evaporate and remove the solvent of the adhesive used for the lamination, the laminated body is subjected to a drying treatment while being scraped off with a roll or the like.
  • the tension at that time is large, the present inventors have found that the stress remaining in the polarizing film cannot be resolved. And in view of this point, when the tension during the heat treatment was examined, it was found that the residual stress of the polarizing film was sufficiently eliminated within the range of the tension, and the present invention was achieved.
  • the range of the tension of the present invention is extremely small as compared with the tension during drying of the conventional polarizing plate.
  • FIG. 1 is a photograph showing an image of unevenness in the periphery of a polarizing plate obtained in an example of the present invention. 2) FIG. 2 shows the unevenness in the periphery of a polarizing plate obtained in a comparative example. It is a photograph showing an image of FIG. 3 shows the brightness indicated by each color in a photograph showing an image of the peripheral unevenness.
  • the laminated film used in the present invention is obtained, for example, by laminating a protective film on at least one surface of a polarizing film.
  • the polarizing film a film obtained by dying a polymer film such as a polybulal alcohol (PVA) film with a dichroic substance such as iodine or a dichroic dye and uniaxially stretching is usually used.
  • PVA polybulal alcohol
  • the thickness of the polarizing film is not particularly limited, for example, 5 ⁇ ! Is about 120 ⁇ m, preferably about 7 ⁇ m to 80 ⁇ m. Among them, a polarizing film having a thickness of about 15 ⁇ m to 40 ⁇ m is particularly preferably used.
  • the thickness of the polarizing film is too thick (for example, 120 / zm or more), for example, the stress generated during stretching increases, and the dimensional change rate of the resulting polarizing plate may become extremely large. For example, less than ⁇ ⁇ ⁇ ), for example, there is a possibility that stretch breakage is likely to occur.
  • the single transmittance power is 3% or more when measured with the polarizing film alone, and the range of 43.3% to 45.0% is more preferable. Good.
  • the orthogonal transmittance is smaller. In practice, it is preferably 0.00% or more and 0.05% or less, more preferably 0.030% or less.
  • the orthogonal transmittance can be measured, for example, by preparing two polarizing films and superimposing them so that their absorption axes are orthogonal (90 °).
  • the polarization degree of the polarizing film is practically preferably 99.90% or more and 100% or less, and particularly preferably 99.9% or more and 100% or less. Even when measured as a polarizing plate, it is preferable to obtain optical properties substantially equivalent to this.
  • the polymer film is not particularly limited, and for example, a film having translucency can be used.
  • a film having translucency can be used.
  • Specific examples include polybulal alcohol (PVA) film, polyethylene terephthalate (PET) film, ethylene-acetate copolymer film, partially saponified film, and cellulose film.
  • PVA polybulal alcohol
  • PET polyethylene terephthalate
  • ethylene-acetate copolymer film ethylene-acetate copolymer film
  • partially saponified film and cellulose film.
  • cellulose film examples include molecular oriented films, PVA dehydrated products and polychlorinated vinyl dehydrochlorinated products such as polyene oriented films.
  • a PVA film is preferable because it is more excellent in dyeability with a dichroic substance such as iodine.
  • the degree of polymerization of the polymer as the material of the polymer film is, for example, 500 to 10,000, preferably 100 to 6,000 force, more preferably 1,400 to 4,000 force! /.
  • the Ken degree polymer may be used as the polymer.
  • it is preferably 75 mol% or more and 100 mol% or less, more preferably 98 mol% or more. and 100 mol% or less, particularly preferably 98.3 mol% to 99. 8 mol 0/0.
  • the PVA film is not particularly limited.
  • the PVA film may be any casting method, casting method, extrusion method, etc., in which a stock solution in which a film material is dissolved in water or an organic solvent is cast.
  • a film formed by the method can be used as appropriate.
  • the phase difference value is 5 ⁇ !
  • a PVA film of ⁇ lOOnm is preferably used.
  • the phase difference variation within the PVA film is as small as possible.For example, 10 nm or less is preferable at the measurement wavelength lOOOnm. It is preferable.
  • the method for producing a polarizing film is generally not limited to these forces that can be roughly divided into a dry stretching method and a wet stretching method.
  • the dry stretching method is a method of stretching in a high-temperature gas atmosphere
  • the wet stretching method is a method of stretching a film that has been immersed and swollen in a liquid in the liquid.
  • the manufacturing process of the polarizing film by the wet stretching method is not particularly limited, and a process according to necessary conditions can be appropriately used.
  • the manufacturing method is a method of manufacturing a PVA film by a series of processing steps including swelling, dyeing, crosslinking, stretching, washing with water, and drying power. It is preferable to carry out while immersing in a bath containing the treatment solution.
  • the order of the processes, the number of times, the presence / absence of execution, and the like are not particularly limited.
  • the stretching process may be performed after the dyeing process, or may be performed simultaneously with the swelling process and the dyeing process, or may be performed after the stretching process. It is also preferable to perform the bridge treatment before and after the stretching treatment.
  • the method for the stretching treatment is not particularly limited, and a conventionally known method can be used.
  • the film in the case of roll stretching, the film can be stretched by a difference in peripheral speed between rolls provided in the film stretching direction.
  • the treatment solution may optionally contain additives such as boric acid, borax, or potassium iodide. others Therefore, the obtained polarizing film may contain boric acid, zinc sulfate, zinc chloride, potassium iodide and the like, if necessary.
  • a water washing treatment may be performed for each treatment that may be stretched in the flow direction (MD direction or film longitudinal direction) or the width direction (TD direction or film width direction) as appropriate.
  • the swelling treatment step is not particularly limited !, but for example, is a step of immersing the polymer film in a treatment bath (swelling bath) filled with water.
  • a treatment bath shallowing bath
  • the polymer film is washed with water, so that the dirt on the surface of the polymer film and the anti-blocking agent can be washed, and by swelling the polymer film, for example, uneven film conditions such as unevenness can be further alleviated.
  • glycerin, potassium iodide, and the like may be appropriately added and the concentration is not particularly limited, but glycerin is preferably 5% by mass or less, and potassium iodide is preferably 10% by mass or less.
  • the temperature of the swelling bath is, for example, about 20 ° C to 45 ° C, and the immersion time in the swelling bath is, for example, about 2 seconds to 180 seconds. Further, the draw ratio at which the polymer film may be drawn in the swelling bath is, for example, about 1.1 to 3.5 times.
  • the dyeing treatment step is not particularly limited.
  • the dyeing treatment step is a step of dyeing the polymer film by immersing it in a treatment bath (dye bath) containing a dichroic substance such as iodine.
  • a dichroic substance such as iodine.
  • conventionally known substances can be used, and examples thereof include iodine and dichroic dyes.
  • dichroic dye examples include Red BR, Red LR, Let R, Pink LB, Rubin BL, Bordeaux GS, Sky Blue LG, Lemon Yellow, Blue BR, Blue 2R, Navy RY, Green LG, Violet LB, Violet Black H, Black B, Black GSP, Yellow 3G, Yellow R, Orange LR, Orange 3R, Scarlet GL, Scarlet KGL, Congo Red, Brilliant Violet BK, Spura Blue G, Spura Blue GL, Spura Orange GL, Direct Sky Blue, Direct First Orange S, First Black, etc. can be used.
  • These dichroic substances may be used alone or in combination of two or more. Among these, iodine is preferable because optical properties such as the degree of polarization are further excellent and a durability improving effect is easily obtained.
  • the dye bath solution for example, a solution in which the dichroic substance is dissolved in a solvent can be used.
  • the solvent is generally compatible with force water in which water (for example, pure water) is used. It may be an aqueous solution containing an organic solvent.
  • the concentration of the dichroic substance is, for example,
  • the immersion time of the polymer film in the dye bath is not particularly limited, but is, for example, about 0.5 to 20 minutes, and the temperature of the dye bath is, for example, about 5 ° C to 42 ° C.
  • the polymer film may be stretched in this dyeing bath.
  • the stretch ratio is, for example, about 1.1 to 3.5 times as the cumulative stretch ratio integrated with the stretch ratio in the previous treatment step.
  • the dyeing bath further contains an iodide because dyeing efficiency can be further improved.
  • the iodide include potassium iodide, lithium iodide, sodium iodide, zinc iodide, yowi aluminum, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, Examples thereof include titanium iodide, and among these, potassium iodide is preferable.
  • the ratio of the iodide may be, for example, about 0.001% by mass to 10% by mass in the dyeing bath.
  • the ratio (a: b, weight ratio) that it is preferable to use iodine (a) and potassium iodide (b) in combination is preferably in the range of 1: 5 to 1: 100.
  • the dyeing bath may appropriately contain a crosslinking agent such as a boron compound.
  • the dyeing treatment may be performed by, for example, a method of applying or spraying an aqueous solution containing a dichroic substance to the polymer film, in addition to the immersion in the dyeing bath as described above, It may be a method in which dichroic materials are sometimes mixed together.
  • the crosslinking treatment step is not particularly limited.
  • the crosslinking treatment step is a step of immersing the polymer film in a treatment bath (crosslinking bath) containing a crosslinking agent.
  • a crosslinking agent conventionally known substances can be used, and examples thereof include boron compounds such as boric acid and borax, darioxal, and glutaraldehyde. One kind of these may be used, or two or more kinds may be used in combination. When two or more types are used in combination, the preferred ratio (c: d, molar ratio) of boric acid (c) and borax (d) is about 4: 6 to 9: 1, for example. It is.
  • the solvent of the crosslinking bath water (for example, pure water) is generally used, but an aqueous solution containing an organic solvent compatible with water may be used.
  • concentration of the crosslinking agent in the crosslinking bath is, for example, about 1% by mass to 10% by mass.
  • the crosslinking bath for example, can obtain a polarizing film having further excellent in-plane uniformity, It may further contain iodide.
  • the iodide is, for example, as described above, and the content thereof is, for example, 0.05% by mass to 15% by mass, and preferably 0.5% by mass to 8% by mass.
  • the ratio (a: b, weight ratio) of the preferred combination of boric acid (a) and potassium iodide (b) is preferably in the range of 1: 0.1-1: 3.5.
  • the range of 0.5 to 1: 2.5 is more preferable.
  • the temperature of the crosslinking bath is, for example, 20 ° C to 70 ° C, and the immersion time is, for example, about 1 second to 15 minutes.
  • the cross-linking treatment may be performed by a method of applying or spraying a cross-linking agent-containing solution in the same manner as the dyeing treatment.
  • the draw ratio at which the film may be stretched in the crosslinking bath is, for example, about 1.1 to 3.5 times as the cumulative draw ratio.
  • the stretching treatment step is, for example, a step of stretching while immersed in a treatment bath (stretching bath), and the stretching ratio is, for example, 3 times as the cumulative stretching ratio. It is preferably about 7 times.
  • a solution for the stretching bath for example, a solution containing a solvent such as water, ethanol or various organic solvents and a compound such as various metal salts, iodine, boron and zinc is preferable.
  • the preferred content of a solution containing boric acid and Z or potassium iodide is preferably about 2% by mass to 18% by mass, respectively.
  • the content ratio (weight ratio) is preferably about 1: 0.1-1: 4.
  • the temperature of the stretching bath in the stretching process is preferably about 40 ° C to 67 ° C.
  • the water washing treatment step is not particularly limited, and is, for example, a step of immersing the polymer film in a treatment bath (water washing bath). By this step, for example, unnecessary residues such as boric acid adhered in the previous treatment can be washed away.
  • the aqueous solution may contain iodide. As the iodide, those described above can be used, and among them, sodium iodide and potassium iodide are preferable.
  • the temperature of the washing bath is, for example, about 10 ° C to 60 ° C.
  • the number of water washing treatments is not particularly limited, and may be, for example, once or multiple times.
  • the type and concentration of the additive in each washing bath are not particularly limited and can be adjusted as appropriate.
  • the drying treatment step is not particularly limited, and can be performed by a conventionally known drying method such as natural drying, air drying, and heat drying.
  • the heating temperature is about 10 ° C to 90 ° C, preferably about 20 ° C to 80 ° C, more preferably about 30 ° C to 80 ° C.
  • the time is about 1 to 10 minutes. Also, this drying process In the physical process, it may be extended as appropriate! /.
  • the drying treatment is preferably performed in a state where a tension of 500 NZm or more is applied.
  • a tension for example, in the case of a film stretched by a wet stretch method so that the final stretch ratio (total stretch ratio) in the polarization absorption axis direction is 5.0 times to 7.0 times, a state in which such high tension is applied
  • the power of obtaining a polarizing film in which the unevenness in the film is further suppressed can be obtained by performing the drying process.
  • the tension is preferably 550 N Zm or more.
  • the upper limit value is not particularly limited, and can be appropriately set to such an extent that the film is not excessively stretched according to the elastic modulus of the film, for example, and preferably about 1200 NZm.
  • the tension can be measured in the same manner as in the case of a laminated film described later.
  • the total draw ratio of the polarizing film produced through the above treatment steps is preferably 3.0 times to 7.0 times, more preferably 5.0 times to 7.0 times, . 5 times to 6. 5 times is particularly preferable. If the total draw ratio is 3.0 times or more, for example, it is easier to obtain a polarizing film having a high degree of polarization, and if it is 7.0 times or less, for example, film breakage can be sufficiently prevented. .
  • the polarizing film may be a polarizing film obtained by another manufacturing method without being limited to the above manufacturing method.
  • the polarizing film may be, for example, a film obtained by kneading a dichroic substance into a polymer film such as polyethylene terephthalate (PET), forming a film, and stretching, or using a liquid crystal aligned in a uniaxial direction as a host.
  • E-type film using dichroic dye as guest US Patent No. 5,523,863, Japanese Patent Publication No. 3-503322
  • dichroic lyo-mouth pick liquid crystal etc.
  • Type film US Pat. No. 6,049,428) and the like.
  • the moisture content of the polarizing film can be appropriately determined depending on, for example, the thickness and material of the film, but is preferably less than 20% by mass, more preferably 13% by mass to 17% by mass.
  • the protective film is not particularly limited, and a conventionally known transparent film can be used. Among them, a film having excellent transparency, mechanical strength, thermal stability, isotropy, and the like is preferable.
  • Specific examples of the material for the protective film include triacetyl cellulose (TAC), etc., one-cell type resin, polyester type resin, polycarbonate type resin, polyamide type resin, polyimide type resin, Examples thereof include transparent resins such as polyethersulfone resin, polysulfone resin, polystyrene resin, polynorbornene resin, polyolefin resin, acrylic resin, and acetate resin.
  • TAC triacetyl cellulose
  • the protective film for example, the thermosetting resin such as the talyl-based resin, urethane-based resin, acrylic urethane-based resin, epoxy-based resin, silicone-based resin, or ultraviolet-curable resin.
  • the protective film may be a saponified film.
  • TAC film that has a strong point of improving adhesion that TAC film is preferred in terms of polarization characteristics and durability is more preferred.
  • a polymer film described in JP-A-2001-343529 may be used as the protective phenol.
  • the polymer material include a thermoplastic resin having a substituted or unsubstituted imide group in the side chain, and a thermoplastic resin having a substituted or unsubstituted phenyl group and a -tolyl group in the side chain.
  • the contained rosin composition can be used.
  • a specific example is a resin composition having an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer.
  • the polymer film may be an extruded product of the resin composition, for example.
  • the thickness of the protective film is not particularly limited, and is, for example, 500 ⁇ m or less, preferably 5 / z ⁇ to 300 / ⁇ m.
  • residual stress of the polarizing film and liquid crystal panel mounting Since warpage of the panel at the time can be further suppressed it is more preferably 15 ⁇ m to 300 ⁇ m, and further preferably 20 ⁇ m to 90 ⁇ m.
  • the moisture content of the protective film can be appropriately determined depending on, for example, the thickness and material of the film, and is not particularly limited.
  • the moisture content is, for example, about 0.1% by mass to 10% by mass.
  • the moisture content of the protective film can be calculated in the same manner as the polarizing film.
  • the protective film may be, for example, a film having a viewing angle compensation function.
  • the viewing angle compensation function is, for example, a function that can widen the viewing angle so that the image looks relatively clear even when the screen of the liquid crystal display device is viewed from an oblique direction that is perpendicular to the screen. It is.
  • the film having such a function examples include a film obtained by applying a discotic liquid crystal nematic liquid crystal to the TAC film, a polymer film having birefringence that is biaxially stretched in the plane direction, and a uniaxial stretch in the plane direction.
  • a bi-directionally stretched film such as a gradient oriented polymer film with a controlled refractive index in the thickness direction, which is also stretched in the thickness direction, can be used.
  • the obliquely oriented polymer film examples include a film obtained by bonding a heat-shrinkable film to the polymer film and subjecting the polymer film to a stretching treatment or a shrinking treatment, or a liquid crystal polymer under the action of the shrinkage force by heating. Examples include films.
  • the film having the viewing angle compensation function for example, a film of a polymer such as polycarbonate, polybutyl alcohol, polystyrene, polymethyl methacrylate, polypropylene and other polyolefins, polyarylate, polyamide, polynorbornene and the like.
  • a birefringent film subjected to a stretching treatment a liquid crystal polymer alignment film, and a laminated film in which a liquid crystal polymer alignment layer is supported by a film.
  • the protective film may be laminated on at least one surface of the polarizing film, but preferably on both sides. When laminating on both sides, the protective film may be of the same type or different types.
  • the method for laminating the polarizing film and the protective film is not particularly limited. For example, an adhesive or the like is applied or dropped between the polarizing film and the protective film, and the both are continuously provided between adjacent rolls. The method of crimping can be increased by passing it through.
  • the adhesive can be appropriately determined depending on the material of the protective film and the polarizing film, for example, an adhesive made of a polymer such as acrylic, butyl alcohol, silicone, polyester, polyurethane, or polyether. Agents and rubber adhesives can be used.
  • a PVA polymer adhesive or a urethane polymer adhesive for which a material excellent in hygroscopicity and heat resistance is preferred.
  • a general pressure-sensitive adhesive can also be used as the adhesive.
  • the polymer used in the PVA-based polymer adhesive is not particularly limited.
  • PVA having an average degree of polymerization of about 100 to 3000 and an average degree of saponification of about 85 mol% to 100 mol% is preferable from the viewpoint of adhesiveness.
  • the adhesive for example, an adhesive containing a PVA-based polymer having a acetoacetyl group is more preferable because the adhesiveness and durability can be further improved.
  • the concentration of the aqueous adhesive solution is not particularly limited, but 0.1% by mass to 15% by mass is preferable, and 0.5% by mass to 10% by mass is more preferable.
  • the thickness of the adhesive layer is preferably about 30 nm to 1000 nm, more preferably 50 nm to 300 nm force after drying.
  • 60 ⁇ ! Apply heat treatment under conditions of heating temperature of 60 ° C to 120 ° C with a tension of ⁇ 450NZm.
  • This heat treatment is preferably carried out while collecting and collecting the heated laminated film. If the tension exceeds 450 NZm, the dimensional change rate described later increases, and unevenness in the periphery cannot be suppressed. If the tension is less than 60 NZm, it is difficult to collect and collect the laminated film. If the temperature is too low (for example, less than 60 ° C), the laminated film cannot be sufficiently shrunk, resulting in a large dimensional change after the heat treatment and too high (for example, 120 ° C or more).
  • the optical properties such as the hue of the polarizing plate are inferior.
  • a film obtained by stretching at a high magnification for example, a total stretching magnification of 5.0 to 7.0 times
  • drying at a high tension is used. Very effective.
  • the tension of the heat treatment is preferably 70 ⁇ ! ⁇ 350NZm, more preferably 9 ⁇ ! ⁇ 320NZm, more preferably 90 ⁇ ! ⁇ 300NZm.
  • the magnitude of the tension can be adjusted by, for example, the torque of the roll, and the application method is not particularly limited.
  • the tension can be measured by, for example, a load cell type tension pick-up roll that can be measured by a load applied to the conveyance tool.
  • the temperature of the heat treatment is preferably 60 ° C to 90 ° C, more preferably 60 ° C to 85 ° C, still more preferably 60 ° C to 80 ° C, and particularly preferably. Is between 63 ° C and 80 ° C.
  • the humidity of the heat treatment is not particularly limited, but is preferably 20% to 80%, for example. 30% to 70%.
  • the time for the heat treatment is not particularly limited, but is, for example, 60 seconds to 600 seconds, preferably 120 seconds to 480 seconds.
  • the dimensional change rate is, for example, 0.28% to 0%. Peripheral unevenness can be sufficiently suppressed in the device. Further, the dimensional change rate is preferably -0.25% to 0%, more preferably 0.23% to 0%. In addition, the said dimensional change rate can be calculated
  • the sample is allowed to stand for 24 hours at a temperature of 60 ° C (reliability test), and the dimension in the absorption axis direction is measured again. Then, using the dimension (A) before leaving and the dimension (B) after leaving, determine the dimensional change rate (C (%)) from the following formula.
  • the humidity during the leaving treatment is not particularly limited, but is, for example, in the range of 0% to 20%.
  • the single hue b value is, for example, preferably 4.8 NBS or less, more preferably 4. ONBS or less, and further preferably 3.5 NBS or less. Within such a range, for example, very excellent optical properties with less coloring are exhibited.
  • the single hue b value described above is the Hunter Lab color system (Hunter, RS: J. Opt. Soc. Amer., 38, 661 (A), 1094 (A) (1948); J. Opt. Soc. Amer. 48, 985 (1958)).
  • tristimulus values ( ⁇ , ⁇ , ⁇ ) of a sample are measured using a spectrophotometer or a photoelectric colorimeter, and these values are calculated.
  • the simple hue b value can be calculated.
  • a C light source can be used.
  • the single hue b value can be measured together with the transmittance.
  • the optical film of the present invention is characterized by including the polarizing plate of the present invention, and other configurations and structures are not limited at all.
  • the optical film may further include another optical layer.
  • the optical layer include a retardation film, a liquid crystal film, a light diffusion film, and a diffraction film.
  • the retardation film is preferably laminated on the polarizing film via the protective film, for example! /.
  • the retardation film is used, for example, when converting linearly polarized light into elliptically polarized light or circularly polarized light, converting elliptically polarized light or circularly polarized light into linearly polarized light, or polarizing the polarization direction of linearly polarized light. can do.
  • a retardation film that converts linearly polarized light into elliptically polarized light or circularly polarized light, and elliptically polarized light or circularly polarized light into linearly polarized light, respectively is, for example, a ⁇ ⁇ 4 plate.
  • Examples of the phase difference film include a ⁇ 2 plate.
  • the retardation film is, for example, a film for compensation of viewing angle such as compensation of coloration due to birefringence of the liquid crystal layer and expansion of viewing angle, etc.
  • a film for compensation of viewing angle such as compensation of coloration due to birefringence of the liquid crystal layer and expansion of viewing angle, etc.
  • examples thereof include a film having a phase difference according to the purpose of use and a tilted orientation film having a controlled refractive index in the thickness direction.
  • a laminated film in which two or more kinds of retardation films are laminated and optical characteristics such as retardation are controlled may be used.
  • the retardation film examples include a birefringent film obtained by stretching a polymer film such as polycarbonate, polybutyl alcohol, polystyrene, polymethyl methacrylate, polypropylene and other polyolefins, polyacrylate, polyamide, polynorbornene, and liquid crystal.
  • a polymer alignment film examples include a polymer alignment film and a laminated film in which an alignment layer of a liquid crystal polymer is supported by a film.
  • each constituent member is, for example, a salicylic acid ester compound, a benzophenone compound, a benzotriazole compound, a cyanoacrylate compound, a nickel complex compound, or the like. It may have a UV absorption flaw by treatment with a UV absorber.
  • the optical film of the present invention may be, for example, an elliptically polarizing plate or a circularly polarizing plate.
  • the elliptically polarizing plate compensates for coloring (for example, blue or yellow) caused by birefringence of a liquid crystal layer of a super twist nematic (STN) type liquid crystal display device, for example, to obtain a monochrome display without the coloring. It is used effectively.
  • an elliptically polarizing plate with a controlled three-dimensional refractive index is, for example, an attachment that occurs when the screen of a liquid crystal display device is viewed from an oblique direction. This is preferable because the color can also be compensated.
  • the circularly polarizing plate is effective, for example, when adjusting the color tone of an image of a reflective liquid crystal display device in which the image is a color display, and also has an antireflection function.
  • the polarizing plate and the optical film of the present invention may include an adhesive layer for adhering to other members such as a liquid crystal cell.
  • the adhesive layer is not particularly limited, but an adhesive layer made of a pressure-sensitive adhesive is preferably used according to the demand for rework or the like.
  • the pressure-sensitive adhesive include known translucent pressure-sensitive adhesives such as acrylic, silicone, polyester, polyurethane, polyether, and rubber. Of these, acrylic adhesives are preferably used for polarizing plates and optical films.
  • the thickness of the adhesive layer containing the pressure-sensitive adhesive is not particularly limited, but is generally about 1 ⁇ m to 500 ⁇ m, preferably 5 ⁇ m to 200 ⁇ m force, and more preferably 10 ⁇ m to 100 ⁇ m force. By setting the thickness of the adhesive layer within this range, for example, stress associated with the dimensional behavior of the polarizing film and the polarizing plate can be further relaxed.
  • the polarizing plate and the optical film of the present invention can be preferably used for forming an image display device such as a liquid crystal display device (LCD) and an electoluminescence display device (ELD).
  • LCD liquid crystal display device
  • ELD electoluminescence display device
  • the polarizing plate and the optical film of the present invention can be used particularly preferably for the formation of a liquid crystal display device, for example, for example, a reflective type or a transflective type in which a polarizing plate is arranged on one side or both sides of a liquid crystal cell. It can be used for a liquid crystal display device such as a transmission / reflection type.
  • the liquid crystal cell substrate may be, for example, a plastic substrate or a glass substrate.
  • the liquid crystal cell forming the liquid crystal display device is arbitrary, for example, an active matrix driving type represented by a thin film transistor type, a simple matrix driving type represented by a twist nematic type or a super twist nematic type, and the like. A liquid crystal cell of a type may be used.
  • polarizing plates and optical films are provided on both sides of the liquid crystal cell, they may be the same or different. Further, in the liquid crystal display device, for example, appropriate components such as a prism array sheet, a lens array sheet, a light diffusion plate, and a backlight may be included in one layer or two or more layers at an appropriate position.
  • the polarizing plate of the present invention is applied to an organic electroluminescence display device (organic EL display device).
  • organic EL display device including an organic EL light emitting device including a transparent electrode on the front surface side of the organic light emitting layer that emits light when voltage is applied and a metal electrode on the back surface side of the organic light emitting layer
  • the transparent electrode It is preferable to provide a polarizing plate on the surface side. This has the effect of polarizing the light incident from the outside and reflected by the metal electrode, so that there is an effect that the light caused by the specular reflection of the metal electrode is not visually recognized by the polarization operation.
  • a polarizing film (thickness 25 m) was produced as follows.
  • the PVA film was stretched in the longitudinal direction up to a draw ratio of 3.0 while being immersed in pure water at 30 ° C. to swell.
  • the PVA film was dyed in a dyeing bath (aqueous solution containing 0.5% iodine and potassium iodide) while maintaining the above stretching ratio, and subjected to crosslinking treatment in an aqueous solution containing potassium borate iodide.
  • the film was further stretched to a total stretching ratio of 6.0, and then washed with an aqueous potassium iodide solution at 30 ° C.
  • the washed PVA film was dried under a temperature of 30 ° C. with a tension of 550 NZm to produce a polarizing film.
  • a TAC film (manufactured by Fuji Photo Film Co., Ltd.) with a surface thickness of 80 ⁇ m was prepared, and this TAC film and the polarizing film were laminated with a PVA adhesive using a pinch roll. (Thickness about 185 m). Then, this laminated film was heated for 8 minutes under a temperature of 65 ° C. with a tension of 1 OONZm in the absorption axis direction of the polarizing film, and a polarizing film in which protective films were laminated on both sides of the polarizing film. A plate was made. The tension was measured with a load cell type tension pick-up roll that can be measured with a load applied to the transport roll.
  • a polarizing plate was produced in the same manner as in Example 1 except that the tension during drying of the laminated film was 300 NZm.
  • Example 3 A polarizing plate was produced in the same manner as in Example 1 except that the temperature during heating of the laminated film was set to 70 ° C.
  • a polarizing plate was produced in the same manner as in Example 1 except that the temperature when the laminated film was heated was 73 ° C.
  • a polarizing plate was produced in the same manner as in Example 1 except that the temperature during heating of the laminated film was 78 ° C.
  • a polarizing plate was produced in the same manner as in Example 1 except that the tension during heating of the laminated film was 500 NZm.
  • a polarizing plate was produced in the same manner as in Example 1 except that the tension during heating of the laminated film was 50 NZm.
  • a square test piece (10 cm ⁇ 10 cm) was cut out from the polarizing plate obtained as described above so that one side was parallel to the absorption axis direction. Cuts were made with a cutter at the center of the edges of the test pieces so that they were parallel to the absorption axis direction of the polarizing film, and the interval (A) between the cuts was measured using calipers. These test pieces were allowed to stand for 24 hours in a dryer (temperature: 60 ° C.) (reliability test), and the incision interval (B) was further measured. Using the interval before the reliability test (A) and the interval after the reliability test (B), the dimensional change rate (C (%)) was obtained from the following equation. The results are shown in Table 1 below.
  • Example 1 1 0 0 6 5 1 0. 2 4 3. 1 0
  • Example 2 3 0 0 6 5 1 0. 2 6 3. 2 6
  • Example 3 1 0 0 7 0 1 0. 2 2 3. 4 6
  • Example 4 1 0 0 7 3-0. 2 0 4. 0 1
  • Example 5 1 0 0 7 8-0. 1 3 4-7 2 Comparative Example 1 5 0 0 6 5-0. 2 9 3. 4 5 Comparative Example 2 5 0 6 5 ⁇ -
  • a polarizing plate obtained by the method of Example 2 was cut into a size of 30 cm ⁇ 25 cm so that the angle between the absorption axis and the long side was 45 ° when the adhesive surface was down. I got a sheet. These polarizing plates were attached to both surfaces of the glass plate so that the absorption axes were perpendicular to each other to prepare measurement samples. A horizontal backlight is turned on, the sample for measurement is placed on it, and a liquid crystal color distribution measuring device (trade name: liquid crystal color distribution measuring device CA-1000: manufactured by MINOLTA Co., Ltd.) at a distance of lm from the measurement sample. ) And the brightness of the sample were measured. In addition, the measurement performed both the central force and the vertical position force of the sample.
  • FIG. 1 is an image showing the luminance of the polarizing plate of Example 2
  • FIG. 2 is an image showing the luminance of the polarizing plate of Comparative Example 1.
  • Table 2 shows the details of Figure 3.
  • the polarizing plate obtained by the method of Example 2 was able to suppress peripheral unevenness.
  • the polarizing plate obtained by the method of Comparative Example 1 was particularly bright near the midpoint of each side that was bright as a whole, and peripheral unevenness occurred. From the above, it was confirmed that the polarizing plate obtained by the method of the present invention can suppress peripheral unevenness.
  • Residual stress of the polarizing film can be eliminated by applying heat treatment under the conditions of heating temperature of 60 ° C to 120 ° C with a tension of ⁇ 450 NZm, so that shrinkage is suppressed and hue is excellent
  • a polarizing plate can be manufactured.
  • the polarizing plate obtained by the production method of the present invention is suppressed in peripheral unevenness, has excellent optical characteristics, and can be said to be useful for various image display devices such as liquid crystal display devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

This invention provides a polarizing plate in which the occurrence of peripheral unevenness has been suppressed by suppressing of the shrinkage of the polarizing plate. At least a polarizing film and a protective film are stacked on top of each other. In such a state that a tension of 60 N/m to 450 N/m is applied to the laminated film, the laminated film is heated at a temperature of 60ºC to 120ºC. This heat treatment can provide a polarizing plate which undergoes a percentage dimensional change between before and after standing of the polarizing plate at 60ºC for 24 hr of, for example, -0.28% to 0%, has no residual stress in the polarizing film, and has suppressed shrinkage. By virtue of the suppressed peripheral unevenness and excellent optical properties, the polarizing plate is useful for various image display devices including liquid crystal display devices.

Description

明 細 書  Specification
偏光板の製造方法、それにより得られる偏光板、それを用いた光学フィル ムおよび画像表示装置  Manufacturing method of polarizing plate, polarizing plate obtained thereby, optical film and image display device using the same
技術分野  Technical field
[0001] 本発明は、偏光板の製造方法、それにより得られる偏光板、それを用いた光学フィ ルムおよび画像表示装置に関する。  The present invention relates to a method for producing a polarizing plate, a polarizing plate obtained thereby, an optical film using the same, and an image display device.
背景技術  Background art
[0002] 液晶表示装置には、一般に、偏光板が配置されている。偏光板は、偏光子 (以下「 偏光フィルム」ともいう)と保護フィルムとを積層したものである。その製造方法は、例 えば、以下のとおりである(例えば、特許文献 1、 2参照)。すなわち、まず、ポリビュル アルコール (PVA)フィルムを、二色性を有するヨウ素または二色性染料で染色し、ホ ゥ酸ゃホウ砂で架橋し、延伸処理して偏光子を製造する。そして、接着剤を用いて、 トリァセチルセルロース等の透明フィルムを保護フィルムとして前記偏光子に貼着し て偏光板を製造する。  In general, a liquid crystal display device is provided with a polarizing plate. The polarizing plate is a laminate of a polarizer (hereinafter also referred to as “polarizing film”) and a protective film. The manufacturing method is, for example, as follows (see, for example, Patent Documents 1 and 2). That is, first, a polybulal alcohol (PVA) film is dyed with dichroic iodine or a dichroic dye, cross-linked with borosilicate or borax, and stretched to produce a polarizer. Then, using the adhesive, a transparent film such as triacetyl cellulose is attached to the polarizer as a protective film to produce a polarizing plate.
[0003] このような偏光板を使用した液晶表示装置を、高温'高湿度下の環境に放置すると 、偏光板の収縮および膨張応力による軸角度のずれ等により、画面の周辺部が額縁 状に明るくなる、つまり、各辺の中点付近が特に明るくなる偏光解消現象 (以下、「周 辺ムラ」若しくは「白ヌケ」とも 、う)が発生し、表示品質が低下すると!、う問題がある。 この問題を解消するために、偏光フィルムの製造において、 PVAフィルムを、二色性 物質により染色し、水洗処理した後、一定の関係を満たす張力と温度との条件下に おいて、前記フィルムに乾燥処理を施す製造方法が検討されている(例えば、特許 文献 3参照)。し力しながら、このような方法によっても偏光解消現象を効果的に解決 できな 、と!/、う問題があった。  When a liquid crystal display device using such a polarizing plate is left in an environment of high temperature and high humidity, the periphery of the screen becomes a frame shape due to a shift in the axial angle due to contraction and expansion stress of the polarizing plate. If there is a depolarization phenomenon (hereinafter referred to as “peripheral unevenness” or “white skip”) that becomes brighter, that is, the vicinity of the middle point of each side becomes particularly bright, and the display quality deteriorates! . In order to solve this problem, in the production of a polarizing film, a PVA film is dyed with a dichroic substance, washed with water, and then subjected to a tension and temperature condition that satisfies a certain relationship. A manufacturing method for performing a drying treatment has been studied (for example, see Patent Document 3). However, there was a problem that the depolarization phenomenon could not be effectively solved even by such a method!
特許文献 1 :特開平 10— 68821号公報  Patent Document 1: Japanese Patent Laid-Open No. 10-68821
特許文献 2 :特開 2002— 169024号公報  Patent Document 2: Japanese Patent Laid-Open No. 2002-169024
特許文献 3:特開 2001— 174634号公報  Patent Document 3: Japanese Patent Laid-Open No. 2001-174634
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0004] そこで、本発明は、周辺部の偏光解消現象がより効果的に防止された偏光板を製 造可能である偏光板の製造方法の提供を、その目的とする。  Therefore, an object of the present invention is to provide a method for producing a polarizing plate that can produce a polarizing plate in which the depolarization phenomenon in the peripheral portion is more effectively prevented.
課題を解決するための手段  Means for solving the problem
[0005] 前記目的を達成するために、本発明の製造方法は、偏光板の製造方法であって、 少なくとも偏光フィルムおよび保護フィルムを含む積層フィルムに加熱処理を施すカロ 熱処理工程を有し、前記加熱処理工程が、前記積層フィルムに 60ΝΖπ!〜 450NZ mの張力をかけた状態で、加熱温度 60°C〜120°Cの条件で加熱処理を実施するェ 程であることを特徴とする。 [0005] In order to achieve the above object, the production method of the present invention is a method for producing a polarizing plate, comprising a calorific heat treatment step of performing heat treatment on a laminated film including at least a polarizing film and a protective film, Heat treatment process is 60ΝΖπ on the laminated film! It is characterized in that the heat treatment is performed at a heating temperature of 60 ° C to 120 ° C with a tension of ~ 450 NZm.
発明の効果  The invention's effect
[0006] 本発明者等は、前記目的を達成するために、一連の研究を重ねた。その過程で、 少なくとも偏光フィルムおよび保護フィルムを積層した状態で加熱処理をすれば、得 られた偏光板の寸法変化が抑制されるという知見を得て、さらに研究を重ねた。その 結果、前記積層フィルムに対し、 60ΝΖπ!〜 450NZmの極めて弱い張力をかけて 前記所定温度範囲で加熱処理を行えば、得られる偏光板において、偏光解消現象 を従来よりも効果的に防止できることを見出し、本発明に到達した。すなわち、従来に おいても偏光フィルムと保護フィルムとを積層し、積層に使用した接着剤の溶剤を蒸 発除去するために、前記積層体をロール等で卷取りながら乾燥処理をすることがあつ たが、その際の張力が大きいため、偏光フィルムに残留する応力が解消されないこと を本発明者等は突き止めた。そして、この点に鑑み、加熱処理時の張力を検討したと ころ、前記張力の範囲であれば、偏光フィルムの残留応力が十分に解消されることを 見出し、本発明に至ったのである。本発明の張力の範囲は、従来の偏光板の乾燥時 の張力に比べて極めて小さ 、ものである。  [0006] In order to achieve the above object, the present inventors have made a series of studies. In the process, we obtained the knowledge that if the heat treatment was performed with at least a polarizing film and a protective film laminated, the dimensional change of the obtained polarizing plate was suppressed, and further research was repeated. As a result, 60ΝΖπ! It has been found that the depolarization phenomenon can be prevented more effectively than before in the obtained polarizing plate by applying a very weak tension of ˜450 NZm and performing the heat treatment in the predetermined temperature range. That is, conventionally, a polarizing film and a protective film are laminated, and in order to evaporate and remove the solvent of the adhesive used for the lamination, the laminated body is subjected to a drying treatment while being scraped off with a roll or the like. However, since the tension at that time is large, the present inventors have found that the stress remaining in the polarizing film cannot be resolved. And in view of this point, when the tension during the heat treatment was examined, it was found that the residual stress of the polarizing film was sufficiently eliminated within the range of the tension, and the present invention was achieved. The range of the tension of the present invention is extremely small as compared with the tension during drying of the conventional polarizing plate.
図面の簡単な説明  Brief Description of Drawings
[0007] [図 1]図 1は、本発明の実施例で得られた偏光板の周辺ムラの画像を示す写真である 圆 2]図 2は、比較例で得られた偏光板の周辺ムラの画像を示す写真である, [図 3]図 3は、前記周辺ムラの画像を示す写真における各色が示す輝度を示す。 発明を実施するための最良の形態 [0007] FIG. 1 is a photograph showing an image of unevenness in the periphery of a polarizing plate obtained in an example of the present invention. 2) FIG. 2 shows the unevenness in the periphery of a polarizing plate obtained in a comparative example. It is a photograph showing an image of FIG. 3 shows the brightness indicated by each color in a photograph showing an image of the peripheral unevenness. BEST MODE FOR CARRYING OUT THE INVENTION
[0008] つぎに、本発明の製造方法について、例をあげて説明する。  [0008] Next, the production method of the present invention will be described with examples.
[0009] 本発明において使用する積層フィルムは、例えば、偏光フィルムの少なくとも片面 に保護フィルムを積層して得られる。  [0009] The laminated film used in the present invention is obtained, for example, by laminating a protective film on at least one surface of a polarizing film.
[0010] 前記偏光フィルムとしては、通常、ポリビュルアルコール(PVA)系フィルム等のポリ マーフィルムを、ヨウ素や二色性染料等の二色性物質で染色し、一軸延伸したもの が使用される。前記偏光フィルムの厚みは特に限定されないが、例えば、 5 π!〜 12 0 μ m程度であり、好ましくは 7 μ m〜80 μ m程度である。中でも、厚み 15 μ m〜40 μ m程度の偏光フィルムが特に好ましく用いられる。偏光フィルムの厚みが厚すぎる と(例えば、 120 /z m以上)、例えば、延伸時に発生する応力が増加し、得られる偏光 板の寸法変化率が極めて大きくなるおそれがあり、一方、薄すぎると (例えば、 δ μ ηι 未満)、例えば、延伸切れが生じやすくなるおそれがある。  [0010] As the polarizing film, a film obtained by dying a polymer film such as a polybulal alcohol (PVA) film with a dichroic substance such as iodine or a dichroic dye and uniaxially stretching is usually used. . Although the thickness of the polarizing film is not particularly limited, for example, 5π! Is about 120 μm, preferably about 7 μm to 80 μm. Among them, a polarizing film having a thickness of about 15 μm to 40 μm is particularly preferably used. If the thickness of the polarizing film is too thick (for example, 120 / zm or more), for example, the stress generated during stretching increases, and the dimensional change rate of the resulting polarizing plate may become extremely large. For example, less than δ μ ηι), for example, there is a possibility that stretch breakage is likely to occur.
[0011] 前記偏光フィルムの光学特性としては、例えば、偏光フィルム単体で測定したとき の単体透過率力 3%以上であることが好ましぐ 43. 3%〜45. 0%の範囲がより好 ましい。また、直交透過率が、より小さいことが好ましぐ実用上、 0. 00%以上 0. 05 0%以下が好ましぐ 0. 030%以下がより好ましい。なお、前記直交透過率は、例え ば、偏光フィルムを 2枚用意し、それぞれの吸収軸が直交(90° )するように重ね合 わせることにより測定できる。前記偏光フィルムの偏光度は、実用上、 99. 90%以上 100%以下が好ましぐ 99. 93%以上 100%以下が特に好ましい。偏光板として測 定した際にも、これとほぼ同等の光学特性が得られるものが好ましい。  [0011] As the optical characteristics of the polarizing film, for example, it is preferable that the single transmittance power is 3% or more when measured with the polarizing film alone, and the range of 43.3% to 45.0% is more preferable. Good. In practice, it is preferable that the orthogonal transmittance is smaller. In practice, it is preferably 0.00% or more and 0.05% or less, more preferably 0.030% or less. The orthogonal transmittance can be measured, for example, by preparing two polarizing films and superimposing them so that their absorption axes are orthogonal (90 °). The polarization degree of the polarizing film is practically preferably 99.90% or more and 100% or less, and particularly preferably 99.9% or more and 100% or less. Even when measured as a polarizing plate, it is preferable to obtain optical properties substantially equivalent to this.
[0012] 前記ポリマーフィルムは、特に制限されず、例えば、透光性を有するものが使用で きる。具体例として、ポリビュルアルコール(PVA)系フィルム、ポリエチレンテレフタレ ート(PET)系フィルム、エチレン.酢酸ビュル共重合体系フィルムや、これらの部分ケ ン化フィルム、セルロース系フィルム等の親水性高分子フィルム、 PVAの脱水処理物 やポリ塩ィ匕ビ二ルの脱塩酸処理物等ポリェン系配向フィルム等があげられる。これら の中でも、例えば、ヨウ素等の二色性物質による染色性がさらに優れることから、 PV A系フィルムが好ましい。 [0013] 前記ポリマーフィルムの材料であるポリマーの重合度は、例えば、 500〜10, 000 であり、 100〜6, 000力好ましく、 1, 400〜4, 000力より好まし!/、。前記ポリマーとし てケンィ匕ポリマーを使用してもよぐそのケンィ匕度は、例えば、水への溶解性の点から 、 75モル%以上 100モル%以下が好ましぐより好ましくは 98モル%以上 100モル %以下であり、特に好ましくは 98. 3モル%〜99. 8モル0 /0である。 [0012] The polymer film is not particularly limited, and for example, a film having translucency can be used. Specific examples include polybulal alcohol (PVA) film, polyethylene terephthalate (PET) film, ethylene-acetate copolymer film, partially saponified film, and cellulose film. Examples include molecular oriented films, PVA dehydrated products and polychlorinated vinyl dehydrochlorinated products such as polyene oriented films. Among these, for example, a PVA film is preferable because it is more excellent in dyeability with a dichroic substance such as iodine. [0013] The degree of polymerization of the polymer as the material of the polymer film is, for example, 500 to 10,000, preferably 100 to 6,000 force, more preferably 1,400 to 4,000 force! /. The Ken degree polymer may be used as the polymer. For example, from the viewpoint of solubility in water, it is preferably 75 mol% or more and 100 mol% or less, more preferably 98 mol% or more. and 100 mol% or less, particularly preferably 98.3 mol% to 99. 8 mol 0/0.
[0014] 前記 PVA系フィルムは、特に制限されな!ヽが、例えば、フィルム材料を水または有 機溶媒に溶解した原液を流延成膜する流延法、キャスト法、押出法等の任意の方法 で成膜されたフィルムを適宜使用できる。中でも、位相差値が 5ηπ!〜 lOOnmの PVA 系フィルムが好ましく用いられる。また、例えば、さらに面内均一な偏光フィルムを得 られることから、 PVA系フィルム面内の位相差バラツキはできるだけ小さい方が好ま しぐ例えば、測定波長 lOOOnmにおいて 10nm以下が好ましぐ 5nm以下がより好 ましい。  [0014] The PVA film is not particularly limited. For example, the PVA film may be any casting method, casting method, extrusion method, etc., in which a stock solution in which a film material is dissolved in water or an organic solvent is cast. A film formed by the method can be used as appropriate. Above all, the phase difference value is 5ηπ! A PVA film of ~ lOOnm is preferably used. In addition, for example, since a polarizing film having a more uniform in-plane can be obtained, it is preferable that the phase difference variation within the PVA film is as small as possible.For example, 10 nm or less is preferable at the measurement wavelength lOOOnm. It is preferable.
[0015] 偏光フィルムの製造方法は、一般に、乾式延伸法と湿式延伸法に大別できる力 こ れらに限定されない。なお、前記乾式延伸法は高温の気体雰囲気下で延伸する方 法であり、前記湿式延伸法は液体中に浸漬して膨潤したフィルムを液体中で延伸す る方法である。  [0015] The method for producing a polarizing film is generally not limited to these forces that can be roughly divided into a dry stretching method and a wet stretching method. The dry stretching method is a method of stretching in a high-temperature gas atmosphere, and the wet stretching method is a method of stretching a film that has been immersed and swollen in a liquid in the liquid.
[0016] 前記湿式延伸法による偏光フィルムの製造工程は、特に制限されず、必要な条件 に応じた工程を適宜用いることができる。前記製造方法は、一般的には、 PVA系フィ ルムを、膨潤、染色、架橋、延伸、水洗および乾燥力 なる一連の処理工程によって 製造する方法であり、乾燥処理工程を除くこれらの処理工程は、処理溶液を含む浴 中に浸漬しながら行うことが好ましい。前記処理の順番、回数および実施の有無等は 特に限定されず、複数の処理を一つの工程で行ってもよいし、いずれかの処理を行 わなくてもよい。例えば、延伸処理は、染色処理後に行ってもよいし、膨潤処理およ び染色処理等と同時に行ってもよぐまた、延伸処理してから染色処理してもよい。架 橋処理を延伸処理の前後に行うことも好ましい。前記延伸処理の方法は、特に限定 されず、従来公知の方法を用いることができる。例えば、ロール延伸の場合、フィルム の延伸方向に設けられたロール間の周速差によって延伸することができる。処理溶 液は、適宜ホウ酸やホウ砂あるいはヨウ化カリウム等の添加剤を含んでもよい。このた め、得られる偏光フィルム中には、必要に応じてホウ酸、硫酸亜鉛、塩化亜鉛および ヨウ化カリウム等を含んでもよい。さらに、いくつかの処理中で、適宜流れ方向(MD 方向若しくはフィルム長手方向)もしくは幅方向(TD方向若しくはフィルム幅方向)に 延伸してもよぐ各処理ごとに水洗処理を行ってもよい。 [0016] The manufacturing process of the polarizing film by the wet stretching method is not particularly limited, and a process according to necessary conditions can be appropriately used. In general, the manufacturing method is a method of manufacturing a PVA film by a series of processing steps including swelling, dyeing, crosslinking, stretching, washing with water, and drying power. It is preferable to carry out while immersing in a bath containing the treatment solution. The order of the processes, the number of times, the presence / absence of execution, and the like are not particularly limited. For example, the stretching process may be performed after the dyeing process, or may be performed simultaneously with the swelling process and the dyeing process, or may be performed after the stretching process. It is also preferable to perform the bridge treatment before and after the stretching treatment. The method for the stretching treatment is not particularly limited, and a conventionally known method can be used. For example, in the case of roll stretching, the film can be stretched by a difference in peripheral speed between rolls provided in the film stretching direction. The treatment solution may optionally contain additives such as boric acid, borax, or potassium iodide. others Therefore, the obtained polarizing film may contain boric acid, zinc sulfate, zinc chloride, potassium iodide and the like, if necessary. Further, in some treatments, a water washing treatment may be performed for each treatment that may be stretched in the flow direction (MD direction or film longitudinal direction) or the width direction (TD direction or film width direction) as appropriate.
[0017] 前記膨潤処理工程は、特に制限されな!、が、例えば、前記ポリマーフィルムを水で 満たした処理浴 (膨潤浴)中に浸漬する工程である。この工程によりポリマーフィルム が水洗され、ポリマーフィルム表面の汚れやブロッキング防止剤を洗浄できるとともに 、ポリマーフィルムを膨潤させることで、例えば、ムラ等の不均一なフィルム状態をさら に緩和できる。前記膨潤浴中に、例えば、グリセリンおよびヨウ化カリウム等を適宜カロ えてもよく、濃度は、特に制限されないが、グリセリンは 5質量%以下が好ましぐヨウ 化カリウムは 10質量%以下が好ましい。膨潤浴の温度は、例えば、 20°C〜45°C程 度であり、膨潤浴への浸漬時間は、例えば、 2秒〜 180秒間程度である。また、この 膨潤浴中でポリマーフィルムを延伸してもよぐその延伸倍率は、例えば、 1. 1倍〜 3 . 5倍程度である。 [0017] The swelling treatment step is not particularly limited !, but for example, is a step of immersing the polymer film in a treatment bath (swelling bath) filled with water. By this step, the polymer film is washed with water, so that the dirt on the surface of the polymer film and the anti-blocking agent can be washed, and by swelling the polymer film, for example, uneven film conditions such as unevenness can be further alleviated. In the swelling bath, for example, glycerin, potassium iodide, and the like may be appropriately added and the concentration is not particularly limited, but glycerin is preferably 5% by mass or less, and potassium iodide is preferably 10% by mass or less. The temperature of the swelling bath is, for example, about 20 ° C to 45 ° C, and the immersion time in the swelling bath is, for example, about 2 seconds to 180 seconds. Further, the draw ratio at which the polymer film may be drawn in the swelling bath is, for example, about 1.1 to 3.5 times.
[0018] 前記染色処理工程は、特に制限されないが、例えば、前記ポリマーフィルムを、ヨウ 素等の二色性物質を含む処理浴 (染色浴)に浸漬することによって染色する工程で ある。前記二色性物質としては、従来公知の物質が使用でき、例えば、ヨウ素や二色 性染料等があげられる。前記二色性染料としては、例えば、レッド BR、レッド LR、レツ R、ピンク LB、ルビン BL、ボルドー GS、スカイブルー LG、レモンイエロー、ブルー BR、ブルー 2R、ネィビー RY、グリーン LG、バイオレット LB、バイオレットおブラック H、ブラック B、ブラック GSP、イェロー 3G、イェロー R、オレンジ LR、オレンジ 3R、ス カーレット GL、スカーレット KGL、コンゴ一レッド、ブリリアントバイオレット BK、スプラ ブルー G、スプラブルー GL、スプラオレンジ GL、ダイレクトスカイブルー、ダイレクトフ アーストオレンジ S、ファーストブラック等が使用できる。これらの二色性物質は、一種 類でもよいし、二種類以上を併用してよい。これらの中でも、偏光度等の光学特性が さらに優れ、耐久性向上効果が得られやすいことから、ヨウ素が好ましい。  [0018] The dyeing treatment step is not particularly limited. For example, the dyeing treatment step is a step of dyeing the polymer film by immersing it in a treatment bath (dye bath) containing a dichroic substance such as iodine. As the dichroic substance, conventionally known substances can be used, and examples thereof include iodine and dichroic dyes. Examples of the dichroic dye include Red BR, Red LR, Let R, Pink LB, Rubin BL, Bordeaux GS, Sky Blue LG, Lemon Yellow, Blue BR, Blue 2R, Navy RY, Green LG, Violet LB, Violet Black H, Black B, Black GSP, Yellow 3G, Yellow R, Orange LR, Orange 3R, Scarlet GL, Scarlet KGL, Congo Red, Brilliant Violet BK, Spura Blue G, Spura Blue GL, Spura Orange GL, Direct Sky Blue, Direct First Orange S, First Black, etc. can be used. These dichroic substances may be used alone or in combination of two or more. Among these, iodine is preferable because optical properties such as the degree of polarization are further excellent and a durability improving effect is easily obtained.
[0019] 前記染色浴の溶液としては、例えば、前記二色性物質を溶媒に溶解した溶液が使 用できる。前記溶媒は、一般的に、水(例えば、純水等)が使用される力 水と相溶性 のある有機溶媒を含む水溶液であってもよい。前記二色性物質の濃度は、例えば、[0019] As the dye bath solution, for example, a solution in which the dichroic substance is dissolved in a solvent can be used. The solvent is generally compatible with force water in which water (for example, pure water) is used. It may be an aqueous solution containing an organic solvent. The concentration of the dichroic substance is, for example,
0. 010質量%〜10質量%程度である。前記染色浴へのポリマーフィルムの浸漬時 間は、特に限定されないが、例えば、 0. 5分〜 20分程度であり、染色浴の温度は、 例えば、 5°C〜42°C程度である。この染色浴内でポリマーフィルムを延伸してもよぐ その延伸倍率は、前の処理工程における延伸倍率と積算した累積延伸倍率として、 例えば、 1. 1倍〜 3. 5倍程度である。 It is about 010% by mass to 10% by mass. The immersion time of the polymer film in the dye bath is not particularly limited, but is, for example, about 0.5 to 20 minutes, and the temperature of the dye bath is, for example, about 5 ° C to 42 ° C. The polymer film may be stretched in this dyeing bath. The stretch ratio is, for example, about 1.1 to 3.5 times as the cumulative stretch ratio integrated with the stretch ratio in the previous treatment step.
[0020] また、前記二色性物質としてヨウ素を使用する場合、例えば、染色効率をさらに向 上できるため、前記染色浴は、ヨウ化物をさらに含むことが好ましい。前記ヨウ化物と しては、例えば、ヨウ化カリウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化亜鉛、ヨウィ匕 アルミニウム、ヨウ化鉛、ヨウ化銅、ヨウ化バリウム、ヨウ化カルシウム、ヨウ化錫、ヨウ化 チタン等が挙げられ、中でも、ヨウ化カリウムが好ましい。前記ヨウ化物の割合は、前 記染色浴において、例えば、 0. 010質量%〜10質量%程度であればよい。中でも ヨウ素 (a)とヨウ化カリウム (b)とを併用することが好ましぐその割合 (a : b、重量比)は 、 1 : 5〜1 : 100の範囲が好ましい。さらには、例えば、フィルム面内の均一性をさらに 向上させるために、前記染色浴は、ホウ素化合物等の架橋剤を適宜含んでもよい。  [0020] When iodine is used as the dichroic substance, for example, it is preferable that the dyeing bath further contains an iodide because dyeing efficiency can be further improved. Examples of the iodide include potassium iodide, lithium iodide, sodium iodide, zinc iodide, yowi aluminum, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, Examples thereof include titanium iodide, and among these, potassium iodide is preferable. The ratio of the iodide may be, for example, about 0.001% by mass to 10% by mass in the dyeing bath. Among them, the ratio (a: b, weight ratio) that it is preferable to use iodine (a) and potassium iodide (b) in combination is preferably in the range of 1: 5 to 1: 100. Furthermore, for example, in order to further improve the in-plane uniformity of the film, the dyeing bath may appropriately contain a crosslinking agent such as a boron compound.
[0021] また、前記染色処理は、前述のような染色浴への浸漬以外に、例えば、二色性物 質を含む水溶液を前記ポリマーフィルムに塗布または噴霧する方法や、前記ポリマ 一フィルム製膜時に二色性物質をあら力じめ混ぜておく方法であってもよい。  [0021] The dyeing treatment may be performed by, for example, a method of applying or spraying an aqueous solution containing a dichroic substance to the polymer film, in addition to the immersion in the dyeing bath as described above, It may be a method in which dichroic materials are sometimes mixed together.
[0022] 前記架橋処理工程は、特に制限されないが、例えば、架橋剤を含む処理浴 (架橋 浴)中にポリマーフィルムを浸漬する工程である。前記架橋剤としては、従来公知の 物質が使用でき、例えば、ホウ酸、ホウ砂等のホウ素化合物や、ダリオキザール、グ ルタルアルデヒド等が挙げられる。これらは一種類でもよいし、二種類以上を併用し てもよい。二種類以上を併用する場合には、ホウ酸 (c)とホウ砂 (d)との併用が好まし ぐその割合 (c : d、モル比)は、例えば、 4 : 6〜9: 1程度である。前記架橋浴の溶媒 は、一般に水(例えば、純水等)が用いられるが、水と相溶性のある有機溶媒を含む 水溶液であってもよい。架橋浴中の架橋剤濃度は、例えば、 1質量%〜10質量%程 度である。  [0022] The crosslinking treatment step is not particularly limited. For example, the crosslinking treatment step is a step of immersing the polymer film in a treatment bath (crosslinking bath) containing a crosslinking agent. As the crosslinking agent, conventionally known substances can be used, and examples thereof include boron compounds such as boric acid and borax, darioxal, and glutaraldehyde. One kind of these may be used, or two or more kinds may be used in combination. When two or more types are used in combination, the preferred ratio (c: d, molar ratio) of boric acid (c) and borax (d) is about 4: 6 to 9: 1, for example. It is. As the solvent of the crosslinking bath, water (for example, pure water) is generally used, but an aqueous solution containing an organic solvent compatible with water may be used. The concentration of the crosslinking agent in the crosslinking bath is, for example, about 1% by mass to 10% by mass.
[0023] 前記架橋浴は、例えば、さらに面内均一性に優れる偏光フィルムが得られるため、 ヨウ化物をさらに含んでもよい。前記ヨウ化物は、例えば、前述の通りであり、含有量 は、例えば、 0. 05質量%〜15質量%であり、好ましくは 0. 5質量%〜8質量%であ る。中でも、ホウ酸 (a)とヨウ化カリウム (b)との併用が好ましぐその割合 (a:b、重量 比)は、 1 :0. 1〜1 : 3. 5の範囲が好ましく、 1 :0. 5〜1 : 2. 5の範囲がより好ましい。 架橋浴の温度は、例えば、 20°C〜70°Cであり、浸漬時間は、例えば、 1秒〜 15分程 度である。架橋処理は、前記染色処理と同様に、架橋剤含有溶液を塗布または噴霧 する方法により行ってもよい。また、架橋浴内でフィルムを延伸してもよぐその延伸 倍率は、累積延伸倍率として、例えば、 1. 1倍〜 3. 5倍程度である。 [0023] The crosslinking bath, for example, can obtain a polarizing film having further excellent in-plane uniformity, It may further contain iodide. The iodide is, for example, as described above, and the content thereof is, for example, 0.05% by mass to 15% by mass, and preferably 0.5% by mass to 8% by mass. Among them, the ratio (a: b, weight ratio) of the preferred combination of boric acid (a) and potassium iodide (b) is preferably in the range of 1: 0.1-1: 3.5. The range of 0.5 to 1: 2.5 is more preferable. The temperature of the crosslinking bath is, for example, 20 ° C to 70 ° C, and the immersion time is, for example, about 1 second to 15 minutes. The cross-linking treatment may be performed by a method of applying or spraying a cross-linking agent-containing solution in the same manner as the dyeing treatment. Further, the draw ratio at which the film may be stretched in the crosslinking bath is, for example, about 1.1 to 3.5 times as the cumulative draw ratio.
[0024] 前記延伸処理工程は、湿式延伸法の場合、例えば、処理浴 (延伸浴)中に浸漬し た状態で延伸する工程であって、延伸倍率が、例えば、累積延伸倍率として、 3倍〜 7倍程度であることが好ましい。前記延伸浴の溶液としては、例えば、水、エタノール あるいは各種有機溶媒等の溶媒と、各種金属塩、ヨウ素、ホウ素および亜鉛等の化 合物とを含む溶液が好ましい。中でも、ホウ酸および Zまたはヨウ化カリウムを含む溶 液が好ましぐ含有量はそれぞれ 2質量%〜 18質量%程度が好ましい。ホウ酸とヨウ 化カリウムとを併用する場合には、その含有割合 (重量比)は 1 :0. 1〜1 :4程度が好 ましい。また、前記延伸処理工程における延伸浴の温度は 40°C〜67°C程度が好ま しい。 [0024] In the case of the wet stretching method, the stretching treatment step is, for example, a step of stretching while immersed in a treatment bath (stretching bath), and the stretching ratio is, for example, 3 times as the cumulative stretching ratio. It is preferably about 7 times. As the solution for the stretching bath, for example, a solution containing a solvent such as water, ethanol or various organic solvents and a compound such as various metal salts, iodine, boron and zinc is preferable. Among them, the preferred content of a solution containing boric acid and Z or potassium iodide is preferably about 2% by mass to 18% by mass, respectively. When boric acid and potassium iodide are used in combination, the content ratio (weight ratio) is preferably about 1: 0.1-1: 4. In addition, the temperature of the stretching bath in the stretching process is preferably about 40 ° C to 67 ° C.
[0025] 前記水洗処理工程は、特に制限されないが、例えば、処理浴 (水洗浴)にポリマー フィルムを浸漬する工程である。この工程により、例えば、前の処理で付着したホウ酸 等の不要残存物を洗い流すことができる。前記水溶液は、ヨウ化物を含んでもよい。 前記ヨウ化物としては、前述と同様のものが使用でき、中でも、ヨウ化ナトリウムやヨウ 化カリウムが好ましい。前記水洗浴の温度は、例えば、 10°C〜60°C程度である。水 洗処理の回数は特に限定されず、例えば、 1回でもよいし複数回でもよい。各水洗浴 中の添加物の種類や濃度は、特に制限されず、適宜調整できる。  [0025] The water washing treatment step is not particularly limited, and is, for example, a step of immersing the polymer film in a treatment bath (water washing bath). By this step, for example, unnecessary residues such as boric acid adhered in the previous treatment can be washed away. The aqueous solution may contain iodide. As the iodide, those described above can be used, and among them, sodium iodide and potassium iodide are preferable. The temperature of the washing bath is, for example, about 10 ° C to 60 ° C. The number of water washing treatments is not particularly limited, and may be, for example, once or multiple times. The type and concentration of the additive in each washing bath are not particularly limited and can be adjusted as appropriate.
[0026] 前記乾燥処理工程は、特に制限されないが、例えば、自然乾燥、送風乾燥、加熱 乾燥等の従来公知の乾燥方法により行うことができる。加熱乾燥の場合、例えば、加 熱温度は 10°C〜90°C程度であり、好ましくは 20°C〜80°C程度であり、より好ましく は 30°C〜80°C程度であり、乾燥時間は 1分〜 10分間程度である。また、この乾燥処 理工程にぉ 、ても適宜延伸してもよ!/、。 [0026] The drying treatment step is not particularly limited, and can be performed by a conventionally known drying method such as natural drying, air drying, and heat drying. In the case of heat drying, for example, the heating temperature is about 10 ° C to 90 ° C, preferably about 20 ° C to 80 ° C, more preferably about 30 ° C to 80 ° C. The time is about 1 to 10 minutes. Also, this drying process In the physical process, it may be extended as appropriate! /.
[0027] 前記乾燥処理工程において、例えば、 500NZm以上の張力をかけた状態で乾燥 処理を施すことが好ましい。例えば、偏光吸収軸方向における最終的な延伸倍率( 総延伸倍率)が 5. 0倍〜 7. 0倍となるように湿式延伸法で延伸したフィルムの場合、 このように高い張力をかけた状態で乾燥処理することにより、例えば、フィルム内のム ラがさらに抑制された偏光フィルムが得られる力もである。また、前記張力は、 550N Zm以上とすることが好ましい。その上限値は特に制限されず、例えば、フィルムの 弾性率等に応じてフィルムを延伸し過ぎな 、程度に適宜設定することができ、例えば 、 1200NZm程度が好ましい。なお、前記張力は、後述する積層フィルムの場合と 同様にして測定できる。  [0027] In the drying treatment step, for example, the drying treatment is preferably performed in a state where a tension of 500 NZm or more is applied. For example, in the case of a film stretched by a wet stretch method so that the final stretch ratio (total stretch ratio) in the polarization absorption axis direction is 5.0 times to 7.0 times, a state in which such high tension is applied For example, the power of obtaining a polarizing film in which the unevenness in the film is further suppressed can be obtained by performing the drying process. The tension is preferably 550 N Zm or more. The upper limit value is not particularly limited, and can be appropriately set to such an extent that the film is not excessively stretched according to the elastic modulus of the film, for example, and preferably about 1200 NZm. The tension can be measured in the same manner as in the case of a laminated film described later.
[0028] 以上のような各処理工程を経て作製された偏光フィルムの総延伸倍率は、 3. 0倍 〜7. 0倍が好ましぐより好ましくは 5. 0倍〜 7.0倍であり、 5. 5倍〜 6. 5倍が特に好 ましい。総延伸倍率が 3. 0倍以上であれば、例えば、高偏光度の偏光フィルムを得 ることがより容易であり、 7. 0倍以下であれば、例えば、フィルム破断を十分に防止で きる。  [0028] The total draw ratio of the polarizing film produced through the above treatment steps is preferably 3.0 times to 7.0 times, more preferably 5.0 times to 7.0 times, . 5 times to 6. 5 times is particularly preferable. If the total draw ratio is 3.0 times or more, for example, it is easier to obtain a polarizing film having a high degree of polarization, and if it is 7.0 times or less, for example, film breakage can be sufficiently prevented. .
[0029] また、偏光フィルムは、前記製造方法に限定されることなぐ他の製造方法により得 られる偏光フィルムであってもよい。前記偏光フィルムとしては、例えば、ポリエチレン テレフタレート(PET)等のポリマーフィルムに二色性物質を練りこみ、製膜、延伸した ようなフィルムでもよいし、一軸方向に配向した液晶をホストとして、そこに二色性染 料をゲストにしたような Oタイプのフィルム(米国特許 5, 523, 863号明細書、特表平 3— 503322号公報)、二色性のライオト口ピック液晶等を用いた Eタイプのフィルム( 米国特許 6, 049, 428号明細書)等が挙げられる。  [0029] The polarizing film may be a polarizing film obtained by another manufacturing method without being limited to the above manufacturing method. The polarizing film may be, for example, a film obtained by kneading a dichroic substance into a polymer film such as polyethylene terephthalate (PET), forming a film, and stretching, or using a liquid crystal aligned in a uniaxial direction as a host. E-type film using dichroic dye as guest (US Patent No. 5,523,863, Japanese Patent Publication No. 3-503322), dichroic lyo-mouth pick liquid crystal, etc. Type film (US Pat. No. 6,049,428) and the like.
[0030] 前記偏光フィルムの水分率は、例えば、フィルムの厚み、材質等によって適宜決定 できるが、好ましくは 20質量%未満であり、より好ましくは 13質量%〜17質量%であ る。前記水分率は、例えば、以下のようにして算出できる。まず、偏光フィルムから、 1 Ocm X 10cmのサンプルを切り出し、その重量 (W1)を測定する。そして、そのサン プルを、温度 120°Cで 10時間乾燥させた後、再度その重量 (W2)を測定する。乾燥 前の重量 (W1)と乾燥後の重量 (W2)とを用いて、下記式より水分率(%)を求める。 水分率(%) = { (Wl -W2) /Wl } X 100 [0030] The moisture content of the polarizing film can be appropriately determined depending on, for example, the thickness and material of the film, but is preferably less than 20% by mass, more preferably 13% by mass to 17% by mass. The moisture content can be calculated as follows, for example. First, a 1 Ocm × 10 cm sample is cut out from the polarizing film, and its weight (W1) is measured. Then, the sample is dried at 120 ° C for 10 hours, and its weight (W2) is measured again. Using the weight before drying (W1) and the weight after drying (W2), determine the moisture content (%) from the following formula. Moisture content (%) = {(Wl -W2) / Wl} X 100
[0031] 前記保護フィルムは、特に限定されず、従来公知の透明フィルムが使用でき、中で も、例えば、透明性、機械的強度、熱安定性、等方性等に優れるものが好ましい。前 記保護フィルムの材質の具体例としては、トリァセチルセルロール (TAC)等のセル口 一ス系榭脂、ポリエステル系榭脂、ポリカーボネート系榭脂、ポリアミド系榭脂、ポリイ ミド系榭脂、ポリエーテルスルホン系榭脂、ポリスルホン系榭脂、ポリスチレン系榭脂、 ポリノルボルネン系榭脂、ポリオレフイン系榭脂、アクリル系榭脂、アセテート系榭脂 等の透明榭脂等があげられる。さらに、前記保護フィルムとして、例えば、前記アタリ ル系榭脂、ウレタン系榭脂、アクリルウレタン系榭脂、エポキシ系榭脂、シリコーン系 榭脂等の熱硬化型榭脂または紫外線硬化型榭脂等があげられる。前記保護フィル ムは、ケン化したフィルムであってもよい。これらの中でも、偏光特性や耐久性の点か ら TACフィルムが好ましぐ密着性向上の点力 ケンィ匕した TACフィルムがより好まし い。 [0031] The protective film is not particularly limited, and a conventionally known transparent film can be used. Among them, a film having excellent transparency, mechanical strength, thermal stability, isotropy, and the like is preferable. Specific examples of the material for the protective film include triacetyl cellulose (TAC), etc., one-cell type resin, polyester type resin, polycarbonate type resin, polyamide type resin, polyimide type resin, Examples thereof include transparent resins such as polyethersulfone resin, polysulfone resin, polystyrene resin, polynorbornene resin, polyolefin resin, acrylic resin, and acetate resin. Further, as the protective film, for example, the thermosetting resin such as the talyl-based resin, urethane-based resin, acrylic urethane-based resin, epoxy-based resin, silicone-based resin, or ultraviolet-curable resin. Can be given. The protective film may be a saponified film. Among these, TAC film that has a strong point of improving adhesion that TAC film is preferred in terms of polarization characteristics and durability is more preferred.
[0032] また、前記保護フイノレムとして、特開 2001— 343529号公報(WO01/37007)に 記載のポリマーフィルムを使用してもよい。このポリマー材料としては、例えば、側鎖 に置換または非置換のイミド基を有する熱可塑性榭脂と、側鎖に置換または非置換 のフエ-ル基ならびに-トリル基を有する熱可塑性榭脂とを含有する榭脂組成物が 使用できる。具体例としては、イソブテンと N—メチルマレイミドとからなる交互共重合 体と、アクリロニトリル 'スチレン共重合体とを有する榭脂組成物があげられる。なお、 前記ポリマーフィルムは、例えば、前記榭脂組成物の押出成形物であってもよい。  [0032] In addition, a polymer film described in JP-A-2001-343529 (WO01 / 37007) may be used as the protective phenol. Examples of the polymer material include a thermoplastic resin having a substituted or unsubstituted imide group in the side chain, and a thermoplastic resin having a substituted or unsubstituted phenyl group and a -tolyl group in the side chain. The contained rosin composition can be used. A specific example is a resin composition having an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer. The polymer film may be an extruded product of the resin composition, for example.
[0033] 前記保護フィルムの厚みは、特に限定されず、例えば、 500 μ m以下であり、好ま しくは 5 /z πι〜300 /ζ mであり、例えば、偏光フィルムの残留応力および液晶パネル 実装時のパネルの反り等をさらに抑制できることから、より好ましくは 15 μ m〜300 μ mであり、さらに好ましくは 20 μ m〜90 μ mである。  [0033] The thickness of the protective film is not particularly limited, and is, for example, 500 μm or less, preferably 5 / z πι to 300 / ζ m. For example, residual stress of the polarizing film and liquid crystal panel mounting Since warpage of the panel at the time can be further suppressed, it is more preferably 15 μm to 300 μm, and further preferably 20 μm to 90 μm.
[0034] 前記保護フィルムの水分率は、例えば、フィルムの厚み、材質等によって適宜決定 でき、特に限定されるものではない。例えば、前記保護フィルムが TACフィルムであ る場合、水分率は、例えば、 0. 1質量%〜10質量%程度である。なお保護フィルム の水分率は、前記偏光フィルムと同様にして算出できる。 [0035] また、前記保護フィルムは、例えば、視野角補償機能を有するフィルムであってもよ い。前記視野角補償機能は、例えば、液晶表示装置の画面を、前記画面に垂直で はなぐやや斜め方向から見た場合でも、画像が比較的鮮明に見えるように視角を広 げることができる機能である。このような機能を有するフィルムとしては、例えば、前記 TACフィルム等にディスコティック液晶ゃネマティック液晶を塗工したフィルム、面方 向に二軸延伸された複屈折を有するポリマーフィルム、面方向に一軸延伸され、 つ、厚み方向にも延伸された、厚み方向の屈折率を制御した傾斜配向ポリマーフィ ルム等の 2方向延伸フィルム等が使用できる。前記傾斜配向ポリマーフィルムとして は、例えば、ポリマーフィルムに熱収縮性フィルムを接着し、加熱によるその収縮力の 作用の下、前記ポリマーフィルムを延伸処理や収縮処理したフィルム、液晶ポリマー を斜め配向させたフィルム等があげられる。さらに、前記視野角補償機能を有するフ イルムとしては、例えば、ポリカーボネート、ポリビュルアルコール、ポリスチレン、ポリ メチルメタタリレート、ポリプロピレンやその他のポリオレフイン、ポリアリレート、ポリアミ ド、ポリノルボルネン等のポリマーのフィルムに延伸処理を施した複屈折性フィルム、 液晶ポリマーの配向フィルム、液晶ポリマーの配向層をフィルムで支持した積層フィ ルム等があげられる。 [0034] The moisture content of the protective film can be appropriately determined depending on, for example, the thickness and material of the film, and is not particularly limited. For example, when the protective film is a TAC film, the moisture content is, for example, about 0.1% by mass to 10% by mass. The moisture content of the protective film can be calculated in the same manner as the polarizing film. [0035] The protective film may be, for example, a film having a viewing angle compensation function. The viewing angle compensation function is, for example, a function that can widen the viewing angle so that the image looks relatively clear even when the screen of the liquid crystal display device is viewed from an oblique direction that is perpendicular to the screen. It is. Examples of the film having such a function include a film obtained by applying a discotic liquid crystal nematic liquid crystal to the TAC film, a polymer film having birefringence that is biaxially stretched in the plane direction, and a uniaxial stretch in the plane direction. In addition, a bi-directionally stretched film such as a gradient oriented polymer film with a controlled refractive index in the thickness direction, which is also stretched in the thickness direction, can be used. Examples of the obliquely oriented polymer film include a film obtained by bonding a heat-shrinkable film to the polymer film and subjecting the polymer film to a stretching treatment or a shrinking treatment, or a liquid crystal polymer under the action of the shrinkage force by heating. Examples include films. Further, as the film having the viewing angle compensation function, for example, a film of a polymer such as polycarbonate, polybutyl alcohol, polystyrene, polymethyl methacrylate, polypropylene and other polyolefins, polyarylate, polyamide, polynorbornene and the like. Examples thereof include a birefringent film subjected to a stretching treatment, a liquid crystal polymer alignment film, and a laminated film in which a liquid crystal polymer alignment layer is supported by a film.
[0036] 前記保護フィルムは、偏光フィルムの少なくとも一方の表面に積層すればよいが、 好ましくは両面である。両面に積層する場合、保護フィルムは、同じ種類であってもよ いし、異なる種類であってもよい。偏光フィルムと保護フィルムとの積層方法は特に限 定されないが、例えば、偏光フィルムと保護フィルムとの間に、接着剤等を塗工また は滴下し、前記両者を隣接したロール間に連続的に通すことにより、圧着させる方法 力 Sあげられる。前記接着剤は、前記保護フィルムや前記偏光フィルムの材質等によつ て適宜決定でき、例えば、アクリル系、ビュルアルコール系、シリコーン系、ポリエステ ル系、ポリウレタン系、ポリエーテル系等のポリマー製接着剤や、ゴム系接着剤等が 使用できる。これらの中でも、例えば、吸湿性や耐熱性に優れる材料が好ましぐ PV A系ポリマー製接着剤やウレタン系ポリマー製接着剤を使用することがより好ましい。 また、前記接着剤として、例えば、一般的な粘着剤も使用できる。  [0036] The protective film may be laminated on at least one surface of the polarizing film, but preferably on both sides. When laminating on both sides, the protective film may be of the same type or different types. The method for laminating the polarizing film and the protective film is not particularly limited. For example, an adhesive or the like is applied or dropped between the polarizing film and the protective film, and the both are continuously provided between adjacent rolls. The method of crimping can be increased by passing it through. The adhesive can be appropriately determined depending on the material of the protective film and the polarizing film, for example, an adhesive made of a polymer such as acrylic, butyl alcohol, silicone, polyester, polyurethane, or polyether. Agents and rubber adhesives can be used. Among these, it is more preferable to use, for example, a PVA polymer adhesive or a urethane polymer adhesive, for which a material excellent in hygroscopicity and heat resistance is preferred. Further, as the adhesive, for example, a general pressure-sensitive adhesive can also be used.
[0037] 前記 PVA系ポリマー製接着剤に用いられるポリマーは、特に限定されないが、例 えば、接着性の点から平均重合度 100〜3000程度、平均ケン化度 85モル%〜10 0モル%程度の PVAが好ましい。前記接着剤は、例えば、接着性および耐久性をさ らに向上できることから、ァセトァセチル基を有する PVA系ポリマーを含む接着剤が より好ましい。また、接着剤水溶液の濃度は特に限定されないが、 0. 1質量%〜15 質量%が好ましぐ 0. 5質量%〜10質量%がより好ましい。前記接着層の厚みは、 乾燥後の厚みにおいて 30nm〜1000nm程度が好ましぐ 50nm〜300nm力より好 ましい。 [0037] The polymer used in the PVA-based polymer adhesive is not particularly limited. For example, PVA having an average degree of polymerization of about 100 to 3000 and an average degree of saponification of about 85 mol% to 100 mol% is preferable from the viewpoint of adhesiveness. As the adhesive, for example, an adhesive containing a PVA-based polymer having a acetoacetyl group is more preferable because the adhesiveness and durability can be further improved. Further, the concentration of the aqueous adhesive solution is not particularly limited, but 0.1% by mass to 15% by mass is preferable, and 0.5% by mass to 10% by mass is more preferable. The thickness of the adhesive layer is preferably about 30 nm to 1000 nm, more preferably 50 nm to 300 nm force after drying.
[0038] そして、前記偏光フィルムおよび保護フィルムを少なくとも含む積層フィルムに、 60 ΝΖπ!〜 450NZmの張力をかけた状態で、加熱温度 60°C〜120°Cの条件で加熱 処理を施す。この加熱処理は、加熱後の積層フィルムを、卷取り回収しながら実施す ることが好ましい。なお、前記張力が 450NZmを超えると、後述する寸法変化率が 大きくなり、周辺ムラを抑制することができず、 60NZm未満であると、前記積層フィ ルムの卷取り回収が困難になる。また、前記温度が低すぎる(例えば、 60°C未満)と、 積層フィルムを十分に収縮させることができないため、加熱処理後の寸法変化が大き くなり、高すぎる (例えば、 120°C以上)と、偏光板の色相等の光学特性が劣る。前記 本発明における加熱処理は、高倍率 (例えば、総延伸倍率 5. 0倍〜 7. 0倍)に延伸 し、高張力で乾燥処理をして得られたフィルムを偏光フィルムとして使用した場合、極 めて優れた効果を発揮する。  [0038] Then, on the laminated film including at least the polarizing film and the protective film, 60 ΝΖπ! Apply heat treatment under conditions of heating temperature of 60 ° C to 120 ° C with a tension of ~ 450NZm. This heat treatment is preferably carried out while collecting and collecting the heated laminated film. If the tension exceeds 450 NZm, the dimensional change rate described later increases, and unevenness in the periphery cannot be suppressed. If the tension is less than 60 NZm, it is difficult to collect and collect the laminated film. If the temperature is too low (for example, less than 60 ° C), the laminated film cannot be sufficiently shrunk, resulting in a large dimensional change after the heat treatment and too high (for example, 120 ° C or more). In addition, the optical properties such as the hue of the polarizing plate are inferior. When the heat treatment in the present invention is used as a polarizing film, a film obtained by stretching at a high magnification (for example, a total stretching magnification of 5.0 to 7.0 times) and drying at a high tension is used. Very effective.
[0039] 前記加熱処理の張力は、好ましくは 70ΝΖπ!〜 350NZmであり、より好ましくは 9 ΟΝΖπ!〜 320NZmであり、さらに好ましくは 90ΝΖπ!〜 300NZmである。前記張 力の大きさは、例えば、ロールのトルク等により調整でき、その付与方法は、特に制限 されないが、例えば、積層フィルムをロールで送り出し、連続的に加熱処理を施す場 合、その送り出し方向に付与することができる。また、前記張力は、例えば、搬送用口 ールに係る荷重で測定可能なロードセル式のテンションピックアップロールで測定で きる。 [0039] The tension of the heat treatment is preferably 70ΝΖπ! ~ 350NZm, more preferably 9ΟΝΖπ! ~ 320NZm, more preferably 90ΝΖπ! ~ 300NZm. The magnitude of the tension can be adjusted by, for example, the torque of the roll, and the application method is not particularly limited. For example, when the laminated film is fed by a roll and subjected to continuous heat treatment, the feeding direction Can be granted. The tension can be measured by, for example, a load cell type tension pick-up roll that can be measured by a load applied to the conveyance tool.
[0040] 前記加熱処理の温度は、好ましくは 60°C〜90°Cであり、より好ましくは 60°C〜85 °Cであり、さらに好ましくは 60°C〜80°Cであり、特に好ましくは 63°C〜80°Cである。 前記加熱処理の湿度は、特に制限されないが、例えば、 20%〜80%であり、好まし くは 30%〜70%である。また、前記加熱処理の時間は、特に制限されないが、例え ば、 60秒〜 600秒であり、好ましくは 120秒〜 480秒である。 [0040] The temperature of the heat treatment is preferably 60 ° C to 90 ° C, more preferably 60 ° C to 85 ° C, still more preferably 60 ° C to 80 ° C, and particularly preferably. Is between 63 ° C and 80 ° C. The humidity of the heat treatment is not particularly limited, but is preferably 20% to 80%, for example. 30% to 70%. The time for the heat treatment is not particularly limited, but is, for example, 60 seconds to 600 seconds, preferably 120 seconds to 480 seconds.
[0041] このようにして得られる本発明の偏光板において、その寸法変化率は、例えば、 0. 28%〜0%であり、この範囲であれば、収縮を十分抑制し、得られる画像表示装 置において周辺ムラを十分抑制できる。また、前記寸法変化率は、好ましくは— 0. 2 5%〜0%であり、より好ましくは 0. 23%〜0%である。なお、前記寸法変化率は、 例えば、以下の方法で求めることができる。まず、前記偏光板から、一方の辺が、偏 光フィルムの吸収軸方向と平行となるように lOcm X 10cmの四角形のサンプルを切 り出し、その吸収軸方向の寸法を測定する。そして、そのサンプルを温度 60°Cの条 件下で 24時間放置した後 (信頼性試験)、再度、吸収軸方向の寸法を測定する。そ して、放置前の寸法 (A)と放置後の寸法 (B)とを用いて、下記式より寸法変化率 (C ( %) )を求める。なお、この寸法変化率において、前記放置処理の際の湿度は、特に 制限されないが、例えば、 0%〜20%の範囲である。  [0041] In the polarizing plate of the present invention obtained as described above, the dimensional change rate is, for example, 0.28% to 0%. Peripheral unevenness can be sufficiently suppressed in the device. Further, the dimensional change rate is preferably -0.25% to 0%, more preferably 0.23% to 0%. In addition, the said dimensional change rate can be calculated | required with the following method, for example. First, a square sample of lOcm × 10 cm is cut out from the polarizing plate so that one side is parallel to the absorption axis direction of the polarizing film, and the dimension in the absorption axis direction is measured. The sample is allowed to stand for 24 hours at a temperature of 60 ° C (reliability test), and the dimension in the absorption axis direction is measured again. Then, using the dimension (A) before leaving and the dimension (B) after leaving, determine the dimensional change rate (C (%)) from the following formula. In this dimensional change rate, the humidity during the leaving treatment is not particularly limited, but is, for example, in the range of 0% to 20%.
C= { - (A-B) /A} X 100  C = {-(A-B) / A} X 100
[0042] また、本発明の偏光板において、単体色相 b値は、例えば、 4. 8NBS以下が好まし ぐより好ましくは 4. ONBS以下であり、さらに好ましくは 3. 5NBS以下である。このよ うな範囲であれば、例えば、着色がさらに少なぐ非常に優れた光学特性を示す。前 記単体色相 b値は、ハンター Lab表色系(Hunter, R. S. : J. Opt. Soc. Amer. , 38, 661 (A) , 1094 (A) (1948) ; J. Opt. Soc. Amer. , 48, 985 (1958) )により規定できる。具体的には、例えば、 JIS K 7105 5. 3に準じて 、分光測定器または光電色彩計を用いて、試料の三刺激値 (Χ、 Υ、 Ζ)を測定し、こ れらの値を Lab空間における色差公式として以下に示す Hunterの式に代入すること によって、単体色相 b値が算出できる。この測定には、例えば、 C光源が使用できる。 なお、例えば、積分球式分光透過率測定器 (商品名 DOT— 3C ;村上色彩技術研究 所製)によれば、透過率と共に単体色相 b値が測定できる。  In the polarizing plate of the present invention, the single hue b value is, for example, preferably 4.8 NBS or less, more preferably 4. ONBS or less, and further preferably 3.5 NBS or less. Within such a range, for example, very excellent optical properties with less coloring are exhibited. The single hue b value described above is the Hunter Lab color system (Hunter, RS: J. Opt. Soc. Amer., 38, 661 (A), 1094 (A) (1948); J. Opt. Soc. Amer. 48, 985 (1958)). Specifically, for example, according to JIS K 7105 5.3, tristimulus values (Χ, Υ, Ζ) of a sample are measured using a spectrophotometer or a photoelectric colorimeter, and these values are calculated. By substituting into the Hunter equation shown below as the color difference formula in Lab space, the simple hue b value can be calculated. For this measurement, for example, a C light source can be used. For example, according to an integrating sphere type spectral transmittance measuring device (trade name DOT-3C; manufactured by Murakami Color Research Laboratory), the single hue b value can be measured together with the transmittance.
単体色相 b = 7. O X (Y-0. 847Ζ) /Υ1 2 Single hue b = 7. OX (Y-0.847Ζ) / Υ 1 2
[0043] つぎに、本発明の光学フィルムは、本発明の偏光板を含むことが特徴であり、その 他の構成や構造は何ら制限されない。光学フィルムは、他の光学層をさらに含んでも よぐ前記光学層としては、例えば、位相差フィルム、液晶フィルム、光拡散フィルム、 回折フィルム等があげられる。前記他の光学層として位相差フィルムを含む場合、前 記位相差フィルムは、例えば、前記保護フィルムを介して前記偏光フィルムに積層さ れることがより好まし!/、。 [0043] Next, the optical film of the present invention is characterized by including the polarizing plate of the present invention, and other configurations and structures are not limited at all. The optical film may further include another optical layer. Examples of the optical layer include a retardation film, a liquid crystal film, a light diffusion film, and a diffraction film. In the case where a retardation film is included as the other optical layer, the retardation film is preferably laminated on the polarizing film via the protective film, for example! /.
[0044] 前記位相差フィルムは、例えば、直線偏光を楕円偏光または円偏光に変換したり、 楕円偏光または円偏光を直線偏光に変換したり、あるいは直線偏光の偏光方向を偏 光する場合に使用することができる。特に、直線偏光を楕円偏光もしくは円偏光に、 楕円偏光もしくは円偏光を直線偏光に、それぞれ変換する位相差フィルムとしては、 例えば、 λ Ζ4板等があげられ、直線偏光の偏光方向を変換する位相差フィルムとし ては、例えば、 λ Ζ2板等があげられる。前記位相差フィルムは、前記 λ Ζ4板、 λ Ζ2板等の各種波長板に加えて、例えば、液晶層の複屈折による着色の補償ゃ視 野角拡大等の視角の補償を目的としたフィルム等、使用目的に応じた位相差を有す るもの、厚み方向の屈折率を制御した傾斜配向フィルム等があげられ。また、 2種以 上の位相差フィルムを積層し、位相差等の光学特性を制御した積層フィルム等でもよ い。前記位相差フィルムとしては、例えば、ポリカーボネート、ポリビュルアルコール、 ポリスチレン、ポリメチルメタタリレート、ポリプロピレンやその他のポリオレフイン、ポリ ァリレート、ポリアミド、ポリノルボルネン等のポリマーフィルムを延伸処理した複屈折 性フィルム、液晶ポリマーの配向フィルム、液晶ポリマーの配向層をフィルムで支持し た積層フィルム等があげられる。  [0044] The retardation film is used, for example, when converting linearly polarized light into elliptically polarized light or circularly polarized light, converting elliptically polarized light or circularly polarized light into linearly polarized light, or polarizing the polarization direction of linearly polarized light. can do. In particular, a retardation film that converts linearly polarized light into elliptically polarized light or circularly polarized light, and elliptically polarized light or circularly polarized light into linearly polarized light, respectively, is, for example, a λ Ζ4 plate. Examples of the phase difference film include a λ 2 plate. In addition to the various wavelength plates such as the λΖ4 plate and the λΖ2 plate, the retardation film is, for example, a film for compensation of viewing angle such as compensation of coloration due to birefringence of the liquid crystal layer and expansion of viewing angle, etc. Examples thereof include a film having a phase difference according to the purpose of use and a tilted orientation film having a controlled refractive index in the thickness direction. Also, a laminated film in which two or more kinds of retardation films are laminated and optical characteristics such as retardation are controlled may be used. Examples of the retardation film include a birefringent film obtained by stretching a polymer film such as polycarbonate, polybutyl alcohol, polystyrene, polymethyl methacrylate, polypropylene and other polyolefins, polyacrylate, polyamide, polynorbornene, and liquid crystal. Examples thereof include a polymer alignment film and a laminated film in which an alignment layer of a liquid crystal polymer is supported by a film.
[0045] 本発明の光学フィルムにお 、て、各構成部材は、例えば、サリチル酸エステル系化 合物、ベンゾフエノン系化合物、ベンゾトリアゾール系化合物、シァノアクリレート系化 合物、ニッケル錯塩系化合物等の紫外線吸収剤による処理等によって紫外線吸収 會を有するものでもよい。  [0045] In the optical film of the present invention, each constituent member is, for example, a salicylic acid ester compound, a benzophenone compound, a benzotriazole compound, a cyanoacrylate compound, a nickel complex compound, or the like. It may have a UV absorption flaw by treatment with a UV absorber.
[0046] また、本発明の光学フィルムは、例えば、楕円偏光板または円偏光板であってもよ い。前記楕円偏光板は、例えば、スーパーツイストネマチック(STN)型液晶表示装 置の液晶層の複屈折によって生じた着色 (例えば、青又は黄)を補償して、前記着色 のない白黒表示にする場合等に有効に用いられる。さらに、 3次元の屈折率を制御し た楕円偏光板は、例えば、液晶表示装置の画面を斜め方向から見た際に生じる着 色も補償できるため好ましい。一方、前記円偏光板は、例えば、画像がカラー表示で ある反射型液晶表示装置の画像の色調を整える場合等に有効であり、反射防止の 機能も有する。 [0046] The optical film of the present invention may be, for example, an elliptically polarizing plate or a circularly polarizing plate. The elliptically polarizing plate compensates for coloring (for example, blue or yellow) caused by birefringence of a liquid crystal layer of a super twist nematic (STN) type liquid crystal display device, for example, to obtain a monochrome display without the coloring. It is used effectively. In addition, an elliptically polarizing plate with a controlled three-dimensional refractive index is, for example, an attachment that occurs when the screen of a liquid crystal display device is viewed from an oblique direction. This is preferable because the color can also be compensated. On the other hand, the circularly polarizing plate is effective, for example, when adjusting the color tone of an image of a reflective liquid crystal display device in which the image is a color display, and also has an antireflection function.
[0047] 本発明の偏光板および光学フィルムは、液晶セル等の他部材と貼着するための接 着層を含んでもよい。この接着層は特に限定されないが、リワーク等の要求に応じて 粘着剤からなる接着層が好ましく用いられる。前記粘着剤としては、例えば、アクリル 系、シリコーン系、ポリエステル系、ポリウレタン系、ポリエーテル系、ゴム系等の公知 の透光性粘着剤があげられる。中でも、偏光板や光学フィルムにはアクリル系粘着剤 が好ましく用いられる。粘着剤を含む接着層の厚みは、特に限定されないが、一般に 1 μ m〜500 μ m程度であり、 5 μ m〜200 μ m力好ましく、 10 μ m〜100 μ m力より 好ましい。粘着層の厚みをこの範囲にすることによって、例えば、偏光フィルムおよび 偏光板の寸法挙動に伴う応力をさらに緩和できる。  [0047] The polarizing plate and the optical film of the present invention may include an adhesive layer for adhering to other members such as a liquid crystal cell. The adhesive layer is not particularly limited, but an adhesive layer made of a pressure-sensitive adhesive is preferably used according to the demand for rework or the like. Examples of the pressure-sensitive adhesive include known translucent pressure-sensitive adhesives such as acrylic, silicone, polyester, polyurethane, polyether, and rubber. Of these, acrylic adhesives are preferably used for polarizing plates and optical films. The thickness of the adhesive layer containing the pressure-sensitive adhesive is not particularly limited, but is generally about 1 μm to 500 μm, preferably 5 μm to 200 μm force, and more preferably 10 μm to 100 μm force. By setting the thickness of the adhesive layer within this range, for example, stress associated with the dimensional behavior of the polarizing film and the polarizing plate can be further relaxed.
[0048] 本発明の偏光板および光学フィルムは、例えば、液晶表示装置 (LCD)、エレクト口 ルミネッセンス表示装置 (ELD)等の画像表示装置の形成に好ましく用いることがで きる。 [0048] The polarizing plate and the optical film of the present invention can be preferably used for forming an image display device such as a liquid crystal display device (LCD) and an electoluminescence display device (ELD).
[0049] 本発明の偏光板および光学フィルムは、中でも、液晶表示装置の形成などに特に 好ましく用いることができ、例えば、液晶セルの片側あるいは両側に偏光板を配置し た反射型や半透過型、ある 、は透過 ·反射両用型等の液晶表示装置に用いることが できる。前記液晶セル基板は、例えば、プラスチック基板、ガラス基板のいずれでもよ い。液晶表示装置を形成する液晶セルは任意であり、例えば薄膜トランジスタ型に代 表されるアクティブマトリクス駆動型のもの、ツイストネマチック型やスーパーツイストネ マチック型に代表される単純マトリクス駆動型のものなど適宜なタイプの液晶セルを 用いたものであってよい。  [0049] The polarizing plate and the optical film of the present invention can be used particularly preferably for the formation of a liquid crystal display device, for example, for example, a reflective type or a transflective type in which a polarizing plate is arranged on one side or both sides of a liquid crystal cell. It can be used for a liquid crystal display device such as a transmission / reflection type. The liquid crystal cell substrate may be, for example, a plastic substrate or a glass substrate. The liquid crystal cell forming the liquid crystal display device is arbitrary, for example, an active matrix driving type represented by a thin film transistor type, a simple matrix driving type represented by a twist nematic type or a super twist nematic type, and the like. A liquid crystal cell of a type may be used.
[0050] また、液晶セルの両側に偏光板や光学フィルムを設ける場合、それらは同一でもよ いし、異なってもよい。さらに、液晶表示装置において、例えばプリズムアレイシート やレンズアレイシート、光拡散板やバックライト等の適宜な部品が適宜な位置に 1層ま たは 2層以上含んでもよい。  [0050] When polarizing plates and optical films are provided on both sides of the liquid crystal cell, they may be the same or different. Further, in the liquid crystal display device, for example, appropriate components such as a prism array sheet, a lens array sheet, a light diffusion plate, and a backlight may be included in one layer or two or more layers at an appropriate position.
[0051] 本発明の偏光板を有機エレクトロルミネセンス表示装置 (有機 EL表示装置)に適用 する場合、電圧の印加によって発光する有機発光層の表面側に透明電極を備えると ともに、有機発光層の裏面側に金属電極を備える有機 EL発光体を含む有機 EL表 示装置では、透明電極の表面側に偏光板を設けることが好ましい。これにより、外部 から入射して金属電極で反射してきた光を偏光する作用を有するため、その偏光作 用によって金属電極の鏡面反射による光を外部力も視認させな 、と 、う効果がある。 [0051] The polarizing plate of the present invention is applied to an organic electroluminescence display device (organic EL display device). In the case of an organic EL display device including an organic EL light emitting device including a transparent electrode on the front surface side of the organic light emitting layer that emits light when voltage is applied and a metal electrode on the back surface side of the organic light emitting layer, the transparent electrode It is preferable to provide a polarizing plate on the surface side. This has the effect of polarizing the light incident from the outside and reflected by the metal electrode, so that there is an effect that the light caused by the specular reflection of the metal electrode is not visually recognized by the polarization operation.
[0052] つぎに、本発明の実施例について、比較例とあわせて説明する。ただし、本発明は 下記の実施例および比較例により制限されない。  [0052] Next, examples of the present invention will be described together with comparative examples. However, the present invention is not limited by the following examples and comparative examples.
実施例 1  Example 1
[0053] (偏光フィルムの作製)  [0053] (Preparation of polarizing film)
PVAフィルム (重合度 2400) (クラレネ土製)を使用し、以下のようにして偏光フィルム (厚み 25 m)を作製した。前記 PVAフィルムを、 30°Cの純水に浸漬して膨潤させな がら、その中で、延伸倍率 3. 0倍まで長手方向に延伸した。この PVAフィルムを、前 記延伸倍率を保持した状態で、染色浴 (ヨウ素およびヨウ化カリウム 0. 5%含有水溶 液)で染色し、ホウ酸ヨウ化カリウム含有水溶液中で架橋処理を行いながら、総延伸 倍率 6. 0倍になるようにさらに延伸した後、 30°Cのヨウ化カリウム水溶液で洗浄した。 洗浄後の PVAフィルムを、 550NZmの張力をかけた状態で、温度 30°Cの条件下で 乾燥させ、偏光フィルムを作製した。  Using a PVA film (degree of polymerization 2400) (manufactured by KURARENE), a polarizing film (thickness 25 m) was produced as follows. The PVA film was stretched in the longitudinal direction up to a draw ratio of 3.0 while being immersed in pure water at 30 ° C. to swell. The PVA film was dyed in a dyeing bath (aqueous solution containing 0.5% iodine and potassium iodide) while maintaining the above stretching ratio, and subjected to crosslinking treatment in an aqueous solution containing potassium borate iodide. The film was further stretched to a total stretching ratio of 6.0, and then washed with an aqueous potassium iodide solution at 30 ° C. The washed PVA film was dried under a temperature of 30 ° C. with a tension of 550 NZm to produce a polarizing film.
[0054] 厚み 80 μ mの表面をケンィ匕した TACフィルム(富士写真フィルム社製)を準備し、 この TACフィルムと前記偏光フィルムとを、ピンチロールを用いて、 PVA系接着剤を 介して積層した (厚み約 185 m)。そして、この積層フィルムを、温度 65°Cの条件下 で、前記偏光フィルムの吸収軸方向に 1 OONZmの張力をかけた状態で 8分間加熱 し、偏光フィルムの両面に保護フィルムが積層された偏光板を作製した。なお、前記 張力は、搬送用ロールに係る荷重で測定可能なロードセル式のテンションピックアツ プロールで測定した。 実施例 2  [0054] A TAC film (manufactured by Fuji Photo Film Co., Ltd.) with a surface thickness of 80 μm was prepared, and this TAC film and the polarizing film were laminated with a PVA adhesive using a pinch roll. (Thickness about 185 m). Then, this laminated film was heated for 8 minutes under a temperature of 65 ° C. with a tension of 1 OONZm in the absorption axis direction of the polarizing film, and a polarizing film in which protective films were laminated on both sides of the polarizing film. A plate was made. The tension was measured with a load cell type tension pick-up roll that can be measured with a load applied to the transport roll. Example 2
[0055] 積層フィルムの乾燥時の張力を 300NZmとした以外は、実施例 1と同様にして偏 光板を作製した。  [0055] A polarizing plate was produced in the same manner as in Example 1 except that the tension during drying of the laminated film was 300 NZm.
実施例 3 [0056] 積層フィルムの加熱時の温度を 70°Cとした以外は、実施例 1と同様にして偏光板を 作製した。 Example 3 [0056] A polarizing plate was produced in the same manner as in Example 1 except that the temperature during heating of the laminated film was set to 70 ° C.
実施例 4  Example 4
[0057] 積層フィルムの加熱時の温度を 73°Cとした以外は、実施例 1と同様にして偏光板を 作製した。  [0057] A polarizing plate was produced in the same manner as in Example 1 except that the temperature when the laminated film was heated was 73 ° C.
実施例 5  Example 5
[0058] 積層フィルムの加熱時の温度を 78°Cとした以外は、実施例 1と同様にして偏光板を 作製した。  [0058] A polarizing plate was produced in the same manner as in Example 1 except that the temperature during heating of the laminated film was 78 ° C.
[0059] (比較例 1) [0059] (Comparative Example 1)
積層フィルムの加熱時の張力を 500NZmとした以外は、実施例 1と同様にして偏 光板を作製した。  A polarizing plate was produced in the same manner as in Example 1 except that the tension during heating of the laminated film was 500 NZm.
[0060] (比較例 2) [0060] (Comparative Example 2)
積層フィルムの加熱時の張力を 50NZmとした以外は、実施例 1と同様にして偏光 板を作製した。  A polarizing plate was produced in the same manner as in Example 1 except that the tension during heating of the laminated film was 50 NZm.
[0061] (寸法変化率) [0061] (Dimensional change rate)
前述のようにして得られた偏光板から、一方の辺が、吸収軸方向と平行になるように 正方形試験片(10cm X 10cm)を切り出した。偏光フィルムの吸収軸方向に平行と なるように、試験片の端辺中央部にそれぞれカッターで切込みを入れ、その切込み の間隔 (A)を、ノギスを用いて測定した。そして、これらの試験片を乾燥機 (温度 60 °C)で 24時間放置した (信頼性試験)後、さらに、前記切込みの間隔 (B)を測定した 。信頼性試験前の間隔 (A)と信頼性試験後の間隔 (B)とを用いて、下記式より寸法 変化率 (C (%) )を求めた。その結果を下記表 1に示す。  A square test piece (10 cm × 10 cm) was cut out from the polarizing plate obtained as described above so that one side was parallel to the absorption axis direction. Cuts were made with a cutter at the center of the edges of the test pieces so that they were parallel to the absorption axis direction of the polarizing film, and the interval (A) between the cuts was measured using calipers. These test pieces were allowed to stand for 24 hours in a dryer (temperature: 60 ° C.) (reliability test), and the incision interval (B) was further measured. Using the interval before the reliability test (A) and the interval after the reliability test (B), the dimensional change rate (C (%)) was obtained from the following equation. The results are shown in Table 1 below.
C= { - (A-B) /A} X 100  C = {-(A-B) / A} X 100
[0062] (光学特性評価試験) [0062] (Optical property evaluation test)
前述のようにして得られた偏光板から正方形の試験片(5cm X 5cm)を切り出し、こ れらの試験片を乾燥機 (温度 60°C)で 24時間放置した (信頼性試験)。そして、積分 球式分光透過率測定器 (商品名 DOT— 3C;村上色彩技術研究所製)を用いて、信 頼性試験後の偏光板の単体色相 b値を測定した。 [0063] [表 1] 加熱条件 寸法変化 単体色相 Square test pieces (5 cm × 5 cm) were cut out from the polarizing plate obtained as described above, and these test pieces were left for 24 hours in a dryer (temperature 60 ° C.) (reliability test). Then, a single hue b value of the polarizing plate after the reliability test was measured using an integrating sphere type spectral transmittance measuring device (trade name: DOT-3C; manufactured by Murakami Color Research Laboratory). [0063] [Table 1] Heating conditions Dimensional change Single hue
張力 (N/m) 温度 CO C (%) b値 (N B S )  Tension (N / m) Temperature CO C (%) b value (N B S)
実施例 1 1 0 0 6 5 一 0 . 2 4 3 . 1 0 実施例 2 3 0 0 6 5 一 0 . 2 6 3 . 2 6 実施例 3 1 0 0 7 0 一 0 . 2 2 3 . 4 6 実施例 4 1 0 0 7 3 - 0 . 2 0 4 . 0 1 実施例 5 1 0 0 7 8 - 0 . 1 3 4 - 7 2 比較例 1 5 0 0 6 5 - 0 . 2 9 3 . 4 5 比較例 2 5 0 6 5 ― -  Example 1 1 0 0 6 5 1 0. 2 4 3. 1 0 Example 2 3 0 0 6 5 1 0. 2 6 3. 2 6 Example 3 1 0 0 7 0 1 0. 2 2 3. 4 6 Example 4 1 0 0 7 3-0. 2 0 4. 0 1 Example 5 1 0 0 7 8-0. 1 3 4-7 2 Comparative Example 1 5 0 0 6 5-0. 2 9 3. 4 5 Comparative Example 2 5 0 6 5 ―-
[0064] なお、比較例 2については、加熱時の張力を下げたことにより、卷取りができなくな つたため、寸法変化率および単体色相 b値の測定は行わなかった。 [0064] In Comparative Example 2, the dimensional change rate and the single hue b value were not measured because wrinkle could not be removed due to the reduced tension during heating.
[0065] 前記表 1に示すように、実施例 1〜5では、寸法変化率がすべて 0. 28%〜0% の範囲であることから、このような偏光板であれば周辺ムラを低減できるといえる。また 、偏光板の単体色相 b値が 4. 8以内であることから、光学特性に優れるといえる。一 方、比較例 1では、寸法変化率が— 0. 28%よりも小さいことから、このような偏光板 であれば、周辺ムラが発生するといえる。また、比較例 2では、偏光板を巻き取ること ができな!/、と 、う問題が生じた。  [0065] As shown in Table 1, in Examples 1 to 5, since the dimensional change rates are all in the range of 0.28% to 0%, such a polarizing plate can reduce peripheral unevenness. It can be said. Moreover, since the single hue b value of the polarizing plate is within 4.8, it can be said that the optical characteristics are excellent. On the other hand, in Comparative Example 1, since the dimensional change rate is smaller than −0.28%, it can be said that peripheral unevenness occurs in such a polarizing plate. Further, in Comparative Example 2, there was a problem that the polarizing plate could not be wound! /.
[0066] (周辺ムラ画像測定)  [0066] (Surrounding unevenness image measurement)
前記実施例 2の方法により得られた偏光板を、粘着面を下にしたとき、吸収軸と長 辺との角度が 45° になるように、 30cm X 25cmの大きさにカットしたものを 2枚得た。 それらの偏光板を、吸収軸が直交するように、ガラス板の両表面に張り合わせ、測定 用サンプルを準備した。水平を保ったバックライトを点灯し、その上に前記測定用サ ンプルを置き、前記測定用サンプルから lmの距離に液晶色分布測定装置 (商品名 液晶色分布測定装置 CA— 1000: MINOLTA社製)のカメラをセットし、サンプル の輝度を測定した。なお、前記測定はサンプルの中央力も垂直の位置力も行った。 前記比較例 1の方法により得られた偏光板についても、同様の測定を行った。これら の結果を、図 1および図 2に示す。図 1が、実施例 2の偏光板の輝度を示す画像であ り、図 2が、比較例 1の偏光板の輝度を示す画像である。また、これらの図における各 色と輝度との関係の概略を以下の表 2に示し、その詳細を図 3に示す。 [0067] [表 2] 色 輝度 (c d/m2) A polarizing plate obtained by the method of Example 2 was cut into a size of 30 cm × 25 cm so that the angle between the absorption axis and the long side was 45 ° when the adhesive surface was down. I got a sheet. These polarizing plates were attached to both surfaces of the glass plate so that the absorption axes were perpendicular to each other to prepare measurement samples. A horizontal backlight is turned on, the sample for measurement is placed on it, and a liquid crystal color distribution measuring device (trade name: liquid crystal color distribution measuring device CA-1000: manufactured by MINOLTA Co., Ltd.) at a distance of lm from the measurement sample. ) And the brightness of the sample were measured. In addition, the measurement performed both the central force and the vertical position force of the sample. The same measurement was performed on the polarizing plate obtained by the method of Comparative Example 1. These results are shown in Figs. FIG. 1 is an image showing the luminance of the polarizing plate of Example 2, and FIG. 2 is an image showing the luminance of the polarizing plate of Comparative Example 1. The outline of the relationship between each color and brightness in these figures is shown in Table 2 below, and the details are shown in Figure 3. [0067] [Table 2] Color Luminance (cd / m 2 )
青色 0- -0. 3  Blue 0- -0. 3
水色 0 - 3- -0. 5  Light blue 0-3- -0. 5
黄緑 0 - 5- -0. 7  Yellowish green 0-5- -0.7
黄色 0 . 7- -0. 8  Yellow 0.7--0.8
オレンジ 0 - 8- - 1. 0  Orange 0-8--1. 0
赤色 1 . 0- - 1. 2  Red 1.0--1.2
ピンク 1 . 2- - 1. 4  Pink 1. 2--1. 4
[0068] 図 1に示すように、実施例 2の方法により得られた偏光板は、周辺ムラが抑制できた 。これに対し、図 2に示すように、比較例 1の方法により得られた偏光板は、全体的に 明るぐ各辺の中点付近が特に明るくなり、周辺ムラが発生した。以上のことから、本 発明の方法により得られる偏光板は、周辺ムラが抑制できることを確認できた。 産業上の利用可能性 As shown in FIG. 1, the polarizing plate obtained by the method of Example 2 was able to suppress peripheral unevenness. On the other hand, as shown in FIG. 2, the polarizing plate obtained by the method of Comparative Example 1 was particularly bright near the midpoint of each side that was bright as a whole, and peripheral unevenness occurred. From the above, it was confirmed that the polarizing plate obtained by the method of the present invention can suppress peripheral unevenness. Industrial applicability
[0069] このように、本発明の製造方法によれば、 60ΝΖπ!〜 450NZmの張力をかけた状 態で、加熱温度 60°C〜120°Cの条件で加熱処理を施すことにより、偏光フィルムの 残留応力を解消できるため、収縮が抑制され、かつ色相にも優れる偏光板が製造で きる。本発明の製造方法により得られた偏光板は、周辺ムラが抑制され、光学特性に 優れ、液晶表示装置をはじめとする各種画像表示装置に有用といえる。 [0069] Thus, according to the production method of the present invention, 60ΝΖπ! Residual stress of the polarizing film can be eliminated by applying heat treatment under the conditions of heating temperature of 60 ° C to 120 ° C with a tension of ~ 450 NZm, so that shrinkage is suppressed and hue is excellent A polarizing plate can be manufactured. The polarizing plate obtained by the production method of the present invention is suppressed in peripheral unevenness, has excellent optical characteristics, and can be said to be useful for various image display devices such as liquid crystal display devices.

Claims

請求の範囲 The scope of the claims
[1] 偏光板の製造方法であって、少なくとも偏光フィルムおよび保護フィルムを含む積 層フィルムに加熱処理を施す加熱処理工程を有し、前記加熱処理工程が、前記積 層フィルムに 60ΝΖπ!〜 450NZmの張力をかけた状態で、加熱温度 60°C〜120 [1] A method for producing a polarizing plate, comprising: a heat treatment step of heat-treating a laminated film including at least a polarizing film and a protective film, wherein the heat treatment step is performed on the laminated film by 60ΝΖπ! ~ Heating temperature 60 ° C ~ 120 with 450 NZm tension applied
°Cの条件で加熱処理を実施する工程であることを特徴とする製造方法。 A manufacturing method characterized by being a step of performing heat treatment under the condition of ° C.
[2] 前記偏光フィルムが、二色性物質により染色したポリビュルアルコールフィルムであ る請求項 1記載の製造方法。 [2] The production method according to claim 1, wherein the polarizing film is a polybulal alcohol film dyed with a dichroic substance.
[3] 前記偏光フィルムが、湿式延伸法で、総延伸倍率 5倍〜 7倍に延伸されたフィルム である請求項 1記載の製造方法。 [3] The method according to claim 1, wherein the polarizing film is a film stretched by a wet stretching method at a total stretching ratio of 5 to 7 times.
[4] 前記偏光フィルムが、前記延伸後、 500NZm以上の張力をかけた状態で、温度 1[4] The polarizing film is heated at a temperature of 1 with a tension of 500 NZm or more after the stretching.
0°C〜90°Cの条件で乾燥処理を実施されたフィルムである請求項 3記載の製造方法 4. The production method according to claim 3, wherein the film has been subjected to a drying treatment under conditions of 0 ° C. to 90 ° C.
[5] 前記加熱処理工程が、前記積層フィルムを卷取りながら実施する工程である請求 項 1記載の製造方法。 [5] The method according to claim 1, wherein the heat treatment step is a step performed while scraping the laminated film.
[6] 前記保護フィルム力 トリァセチルセルロースフィルムおよびケン化トリアセチルセル ロースフィルムの少なくとも一方である請求項 1記載の製造方法。  6. The production method according to claim 1, wherein the protective film strength is at least one of a triacetyl cellulose film and a saponified triacetyl cellulose film.
[7] 前記保護フィルムが、視野角補償機能を有するフィルムである請求項 1記載の製造 方法。  7. The manufacturing method according to claim 1, wherein the protective film is a film having a viewing angle compensation function.
[8] 少なくとも偏光フィルムおよび保護フィルムを含む偏光板であって、請求項 1記載の 製造方法により得られる偏光板。  [8] A polarizing plate comprising at least a polarizing film and a protective film, wherein the polarizing plate is obtained by the production method according to claim 1.
[9] 偏光板を温度 60°Cの条件下で 24時間放置した場合の前記偏光板の吸収軸方向 における、下記式で示される寸法変化率が、 0. 28%以上 0%以下であり、かつ、 前記放置後における偏光板の単体色相 b値が、 4. 8NBS以下である請求項 8記載 の偏光板。 [9] When the polarizing plate is allowed to stand for 24 hours at a temperature of 60 ° C., the dimensional change rate represented by the following formula in the absorption axis direction of the polarizing plate is 0.28% or more and 0% or less, The polarizing plate according to claim 8, wherein a single hue b value of the polarizing plate after being left standing is 4.8 NBS or less.
寸法変化率 = (A-B) /A} X 100  Dimensional change rate = (A-B) / A} X 100
前記式において、 Aは、放置前の偏光板の寸法を示し、 Bは、放置後の偏光板の 寸法を示す。  In the above formula, A represents the size of the polarizing plate before being left, and B represents the size of the polarizing plate after being left.
[10] 偏光板を含む光学フィルムであって、前記偏光板が、請求項 8記載の偏光板である 光学フィルム。 [10] An optical film including a polarizing plate, wherein the polarizing plate is the polarizing plate according to claim 8. Optical film.
偏光板を含む画像表示装置であって、前記偏光板が、請求項 8記載の偏光板であ る画像表示装置。  9. An image display device comprising a polarizing plate, wherein the polarizing plate is a polarizing plate according to claim 8.
PCT/JP2006/309145 2005-05-06 2006-05-02 Process for producing polarizing plate, polarizing plate produced by said process, and optical film and image display device using said polarizing plate WO2006120971A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-135296 2005-05-06
JP2005135296A JP2006313205A (en) 2005-05-06 2005-05-06 Manufacturing method of polarizing plate, the polarizing plate obtained thereby, optical film and image display apparatus using the same

Publications (1)

Publication Number Publication Date
WO2006120971A1 true WO2006120971A1 (en) 2006-11-16

Family

ID=37396480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309145 WO2006120971A1 (en) 2005-05-06 2006-05-02 Process for producing polarizing plate, polarizing plate produced by said process, and optical film and image display device using said polarizing plate

Country Status (3)

Country Link
JP (1) JP2006313205A (en)
TW (1) TW200700782A (en)
WO (1) WO2006120971A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009022921A (en) * 2007-07-23 2009-02-05 Godo Shigen Sangyo Kk Method and system for circulated use of chemical for manufacture of polarizing film
JP2015011151A (en) * 2013-06-28 2015-01-19 住友化学株式会社 Method for manufacturing polarizing plate
CN105403943A (en) * 2014-09-04 2016-03-16 科迪斯有限公司 Structured Polarizer And Method For Manufacturing The Same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009069375A (en) * 2007-09-12 2009-04-02 Sumitomo Chemical Co Ltd Method of manufacturing polarizing plate
JP5083815B2 (en) * 2007-09-14 2012-11-28 住友化学株式会社 Manufacturing method of polarizing plate
JP5267922B2 (en) * 2008-08-22 2013-08-21 住友化学株式会社 Manufacturing method of polarizing plate
JP5267921B2 (en) * 2008-08-22 2013-08-21 住友化学株式会社 Manufacturing method of polarizing plate
JP2011203641A (en) * 2010-03-26 2011-10-13 Sumitomo Chemical Co Ltd Polarizing plate
KR101264834B1 (en) * 2010-09-30 2013-05-15 가부시키가이샤 지로 코포레토 프란 Protection sheet and polarizing plate
JP5932749B2 (en) * 2013-10-03 2016-06-08 住友化学株式会社 Polarizer set and front panel integrated liquid crystal display panel
JP5932750B2 (en) * 2013-10-03 2016-06-08 住友化学株式会社 Polarizer set and front panel integrated liquid crystal display panel
KR102135497B1 (en) * 2017-12-15 2020-07-17 주식회사 엘지화학 Polarizing plate and liquid crystal display comprising the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001174634A (en) * 1999-12-15 2001-06-29 Sumitomo Chem Co Ltd Method of producing polarizing film
JP2003185845A (en) * 2001-09-19 2003-07-03 Nitto Denko Corp Polarizing plate and method for manufacturing the same, and liquid crystal display using the same
JP2004078171A (en) * 2002-06-18 2004-03-11 Nitto Denko Corp Polarizing plate with optical compensating layer and image display device using same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174722A (en) * 2000-12-07 2002-06-21 Nitto Denko Corp Polarizing plate and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001174634A (en) * 1999-12-15 2001-06-29 Sumitomo Chem Co Ltd Method of producing polarizing film
JP2003185845A (en) * 2001-09-19 2003-07-03 Nitto Denko Corp Polarizing plate and method for manufacturing the same, and liquid crystal display using the same
JP2004078171A (en) * 2002-06-18 2004-03-11 Nitto Denko Corp Polarizing plate with optical compensating layer and image display device using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009022921A (en) * 2007-07-23 2009-02-05 Godo Shigen Sangyo Kk Method and system for circulated use of chemical for manufacture of polarizing film
JP2015011151A (en) * 2013-06-28 2015-01-19 住友化学株式会社 Method for manufacturing polarizing plate
CN105403943A (en) * 2014-09-04 2016-03-16 科迪斯有限公司 Structured Polarizer And Method For Manufacturing The Same

Also Published As

Publication number Publication date
JP2006313205A (en) 2006-11-16
TW200700782A (en) 2007-01-01

Similar Documents

Publication Publication Date Title
WO2006120971A1 (en) Process for producing polarizing plate, polarizing plate produced by said process, and optical film and image display device using said polarizing plate
US7968143B2 (en) Method for manufacturing polarizing film, polarizing film obtained by the method, and image display apparatus using the polarizing film
US6934081B2 (en) Polarizing plate and method of manufacturing the same, and liquid crystal display using the polarizing plate
USRE44315E1 (en) Polarizing film and image display
KR100755763B1 (en) Method of producing polarizing film, polarizing film and image display device using the same
KR100968399B1 (en) Method for manufacturing polarizing film and polarizing film and optical film manufactured by using the method
JP2010152374A (en) Polarizer, optical film using the same, and image display device using them
JP4339350B2 (en) Manufacturing method of polarizer
US20080193701A1 (en) Optical film products and method for producing optical film products
TWI565975B (en) Polarizer and manufacturing method thereof
TW201128264A (en) Liquid crystal display device
WO2006077920A1 (en) Method for producing polarizing plate, polarizing plate, optical film and image display employing them
TW201601895A (en) Polarizing film, polarizing plate and liquid crystal panel
TW201510588A (en) Polarizing plate, method for manufacturing polarizing plate, image display device, method for manufacturing image display device, and method for improving transmittance of polarizing plate
CN100445780C (en) Polarizer and method of producing the same, polarizing plate, optical film, and image display
WO2016035636A1 (en) Circularly polarizing film, optical film and image display device
JP4198559B2 (en) Method for producing polarizing film, and polarizing film and optical film using the same
TW200521502A (en) Method for producing polarizing film, polarizing film and usage of image display
TWI806968B (en) Laminated film
JP2006023573A (en) Manufacturing method of polarizing plate, polarizing plate, and image display apparatus using polarizing plate
JP4975236B2 (en) Polarizer, optical film using the same, and image display device using the same
JP2004093993A (en) Polarizer, optical film using the same, and liquid crystal display using the same as well as electroluminescence display
JP2005266325A (en) Method for manufacturing polarizing film, polarizing film, optical film using same, and image display device
JP2005266326A (en) Method for manufacturing polarizing film, polarizing film, optical film using the same and image display device
JP2002174728A (en) Polarizing plate and liquid crystal display device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06745995

Country of ref document: EP

Kind code of ref document: A1