WO2006120724A1 - Geographic information system using neural networks - Google Patents

Geographic information system using neural networks Download PDF

Info

Publication number
WO2006120724A1
WO2006120724A1 PCT/JP2005/008310 JP2005008310W WO2006120724A1 WO 2006120724 A1 WO2006120724 A1 WO 2006120724A1 JP 2005008310 W JP2005008310 W JP 2005008310W WO 2006120724 A1 WO2006120724 A1 WO 2006120724A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
input
geographic information
teacher
information system
Prior art date
Application number
PCT/JP2005/008310
Other languages
French (fr)
Japanese (ja)
Inventor
Kohei Arai
Original Assignee
Saga University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saga University filed Critical Saga University
Priority to PCT/JP2005/008310 priority Critical patent/WO2006120724A1/en
Priority to JP2007526717A priority patent/JP4719893B2/en
Publication of WO2006120724A1 publication Critical patent/WO2006120724A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks

Definitions

  • the present invention relates to a geographic information system that accumulates and utilizes spatial data, and more particularly to a geographic information system to which a neural network is applied.
  • SST estimation has been performed using satellite observational data.
  • Various methods have been proposed as methods for estimating SST.
  • Thermal infrared radiometers have been mainly used in SST. This is because the atmospheric influence is small in the observation wavelength band.
  • the observed luminance Ii in the i wavelength band sensitive to the thermal infrared wavelength range is expressed by the following equation (1).
  • equation (1) there is a method of estimating SST by solving the inverse problem of finding the earth surface temperature Ts that is the factor from the observed luminance Ii.
  • the radiation transfer equation (1) is essentially non-linear. If it is a linear inverse problem, there are methods such as least squares method and orthogonal expansion and solving to prevent the divergence of the solution and solve the inverse problem.
  • the solution of the nonlinear inverse problem is limited either by linearization with a limited range of solution or solving iteratively. Therefore, the calculation for one data is very complicated and the amount of calculation increases. It is too difficult to use the method of solving this equation (1) for the huge amount of data in all sea area every time. [Calculation method for sea surface temperature (SST) estimation: Split-Window method]
  • SW method Split-Window method
  • the earth surface temperature is the same.
  • the influence of the atmosphere can be obtained from the difference in the observed brightness temperature in each wavelength band.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2005-52045
  • the present invention has been made to solve the above-mentioned problems, and has observation data and parameters for SST estimation having geographical information as spatial data, while reducing the amount of calculation and errors.
  • the purpose is to provide a geographic information system that can carry out estimation widely.
  • the present invention is not limited to the implementation of SST estimation, and it is another object of the present invention to be able to extensively implement other estimation using spatial data other than spatial data for SST estimation. Means to solve the problem
  • the regression equation of the SW method is for obtaining an output from the correlation of a plurality of input data.
  • NN -Uural network
  • BP backpropagation
  • the NN learns to obtain an empirically low error solution by giving repetitive data.
  • measured values at sea level and satellite data force also determine parameters.
  • BP can correct the internal parameters automatically by comparing it with the estimated value from the satellite data, using the measured value on the sea surface as the teaching data.
  • the introduction of NN can improve accuracy and automate.
  • GIS enables optimization of parameters.
  • SST is estimated locally and depends on climate, longitude and latitude. Conversely, if geographical information such as climate, latitude, and longitude matches, parameters can be handled collectively. By using appropriate parameters, it is possible to improve the SST estimation of other sea areas. Therefore, it is required to create a database suitable for integrated search and management of geographical information.
  • a geographic information system using a eural network includes a recording unit for recording spatial data, which is data having information on position, and analysis means for analyzing the spatial data of the recording unit.
  • analysis means input data of the teacher set is read into the input layer, forward calculation is performed, and backward calculation is performed by using the output data of the output layer of the calculation result and the teacher data of the teacher set to learn.
  • a teacher set is given and learned, and after constructing a eural network, input data is input and estimated, so in the geographic information system, a large amount of spatial data is generated.
  • the force user can input and learn a teacher set that does not apply the algorithm of the estimation equation, so that subsequent estimation can be performed and analysis results can be easily obtained.
  • the input data is recorded in the recording unit of the geographic information system, and the output data is recorded in the same recording unit, thereby constructing a system in which the neural network and the geographical information system are integrated integrally, It enables quick analysis.
  • the present invention can obtain an estimation result quickly as a simple algorithm.
  • the geographic information system using the eural network is provided with a spatio-temporal search means for performing a spatio-temporal search as necessary, and estimation of a certain time of a certain position is performed at the same time before the last year. It is estimated using weights. As described above, in the present invention, it is searched whether or not there is a weight at the same position and the same position as the position designated by the space-time search means, and if there is a matching weight, the weight used is used. In this way, estimation can be performed without learning. Weights are sometimes called combined load, load .
  • “before last year” means before “last year” and is used in the sense including last year
  • the geographic information system using the eural network is provided with similar area detection means for detecting an area meeting the detection condition specified by the user as the similar area, if necessary,
  • the target data of the condition is recorded as spatial data, and when a part of the similar area has already been learned, it has already been learned and has already been constructed-using the eural network and the other in the similar area It is to estimate for the part.
  • the similar area detection means since the similar area detection means detects a similar area that matches the detection condition, if a part of the similar area has already been learned, learning is performed in other similar areas. It can be estimated.
  • the geographic information system using the eural network can adjust the detection condition for detecting the similar area as needed.
  • the detection condition for detecting the similar area can be adjusted, and the user can freely adjust the similar area and the accuracy. That is, if the accuracy is not required, the detection condition is relaxed and the similarity region is expanded, and if the accuracy is required, the detection condition is strict and the similarity region is reduced.
  • the detection condition is "an area 50 to 70 km from land, the Kuroshio or the Tsushima Current, the latitude 20 to 50, and the longitude 120 to 150". If there is a problem, it is possible to adjust by changing the value of the numerical condition or eliminating the condition itself in cases other than the numerical condition. Make adjustments easy In order to present the user with similar areas of detection results on the display unit, it is preferable to perform layer display to facilitate comparison with similar areas detected earlier. .
  • the geographic information system using the eural network detects at least one sample point for each of the obtained similar areas, receives the input of the teacher set for the sample points, and inputs the input teacher set.
  • Data has already been constructed-reasoning is performed using a eural network, output data is compared with teacher data of a teacher set, and the power can be regarded as a similar area depending on whether the error is within a threshold or not.
  • the sample point is detected for the area detected as the similar area only by detecting the similar area based on the detection condition set by the user, and the teacher set for the carious sample points
  • the user is requested, the user infers the input data of the teacher set inputted in response to the request, inference is made using the existing -Uural network, the output data is compared with the teacher data, and the error is within the threshold. If so, it is regarded as a similar area, so eligibility is confirmed as a similar area, and it is possible to prevent inference for false similar areas
  • a geographic information system using a eural network includes: a storage unit for recording, as spatial data, a far-infrared image corresponding to a position obtained by remote sensing by an artificial satellite;
  • the analysis means is provided with an analysis means for analyzing the spatial data, and the analysis means gives a far infrared image of the position at the input layer, performs forward calculation, and outputs the sea surface temperature of the output layer and the sea surface temperature as teaching data. It is constructed for each position by performing backward calculation by learning-A far-infrared image is input to the input layer of the Euler network, and the sea surface temperature of the input far-infrared image is determined.
  • the far-infrared image is recorded as spatial data in the recording unit, the analysis unit learns using the teacher set, and the far-infrared image is input.
  • An appropriate estimate can be made using the constructed-Eural network to determine the sea surface temperature corresponding to the input far-infrared image.
  • the geographic information system using the eural network includes two far infrared images at the same position in different frequency bands, and the same teacher data as the far infrared image. It is the measured data or the satellite observation data of the sea surface temperature at the location. As described above, in the present invention, since the sea surface temperature is determined using different far-infrared images of frequency bands at the same position, the temperature can be determined more accurately.
  • the geographic information system using the eural network can, if necessary, determine the position already learned when there is a position where the user specified position and the detection condition match.
  • the sea surface temperature is determined using the estimation.
  • the neural network has been trained in the other position where the corresponding position and the detection condition match. In the case where C is constructed, learning is not performed directly for the specified position. Since the sea surface temperature is estimated using the Euler network at other positions where the detection conditions are met, unnecessary learning Can quickly estimate the sea surface temperature
  • a method applied to a geographic information system using a eural network according to the present invention is applied to a geographic information system that analyzes spatial data of a recording unit that records spatial data, which is data having information on position.
  • the process of reading the input data of the teacher set in the input layer and performing forward calculation, and the process of the process of causing the forward calculation, performs backward calculation using the output data of the output layer and the teacher data of the teacher set. And the step of reading the input data into the input layer after the step of learning to obtain an estimation result.
  • the geographic information program using the eural network comprises: a processor for storing spatial data of a recording unit for recording spatial data which is data having information on position; A geographic information program that analyzes data, in which the processor reads the input data of the teacher set in the input layer and makes forward calculation, and the output of the output layer is the calculation result of the procedure in which the processor makes the forward calculation.
  • a procedure for performing backward calculation and learning based on the data and the teacher data of the teacher set, and a procedure for reading the input data to the input layer after the learning procedure and for obtaining an estimation result are executed.
  • FIG. 1 is a block diagram of a geographic information system according to a first embodiment of the present invention.
  • FIG. 2 is a diagram of a euron model according to the first embodiment of the present invention.
  • FIG. 3 is a structural diagram of a hierarchical-eural network according to the first embodiment of the present invention.
  • FIG. 4 is a structural diagram of an interconnection-eural network according to the first embodiment of the present invention.
  • FIG. 5 is a structural view of a perceptron according to the first embodiment of the present invention.
  • FIG. 6 is an explanatory view of forward calculation of back propagation according to the first embodiment of the present invention.
  • FIG. 7 is an explanatory diagram of backward calculation of back propagation according to the first embodiment of the present invention.
  • FIG. 8 is a processing image diagram of SST estimation by the geographic information system according to the first embodiment of the present invention.
  • FIG. 9 is an explanatory diagram of a geographic information system according to the first embodiment of the present invention.
  • FIG. 10 is an operation flowchart of the geographic information system according to the first embodiment of the present invention.
  • FIG. 11 is an operation flowchart of the geographic information system according to the first embodiment of the present invention.
  • FIG. 12 is an explanatory diagram of similar area detection in the geographic information system according to the second embodiment of the present invention.
  • FIG. 13 This is an observation image of channel 4 at 17:11 on May 20, 2002.
  • FIG. 14 This is an observation image of channel 5 at 17:11 on May 20, 2002.
  • FIG. 23 is a program list of modules of the neural network according to the embodiment.
  • FIG. 24 is a program list of modules of the neural network according to the embodiment.
  • FIG. 25 is a program list of modules of the neural network according to the embodiment.
  • FIG. 26 is a program list of modules of the neural network according to the embodiment.
  • FIG. 27 is a program list of modules of the neural network according to the embodiment.
  • FIG. 28 is a program list of modules of the neural network according to the embodiment.
  • FIG. 29 is a program list of modules of the neural network according to the embodiment. Explanation of sign
  • the present invention can also be implemented as a computer usable program and method. Also, the present invention can be implemented in hardware, software, or software and hardware embodiments.
  • the program can be recorded on any computer readable medium such as a hard disk, a CD-ROM, a DVD-ROM, an optical storage device or a magnetic storage device.
  • programs can be recorded on other computers via a network
  • the geographic information system according to the first embodiment of the present invention will be described with reference to the drawings.
  • the geographic information system according to the present embodiment in FIG. 1 is a far infrared image corresponding to a position obtained by remote sensing by artificial satellites.
  • a database 10 for recording spatial data an analysis means 23 for analyzing the spatial data in the database 10, and a search means 22 for searching the spatial data. It is constructed for each position by providing an infrared image, performing forward calculation, and performing backward calculation and learning from the sea surface temperature of the output layer of the calculation result and the sea surface temperature serving as teacher data. Then, the far-infrared image is input, and the sea surface temperature of the input far-infrared image is obtained.
  • the control unit 20 reads spatial data from the database 10 through the user's operation of the input unit 40 in addition to the search means 22 and the analysis means 23 in addition to the search means and the analysis means 23. It has display means 21 for displaying.
  • the search result of the search means 22 may be displayed on the display unit 30 by the search means 22 itself, or may be displayed by passing the search result to the display means 21.
  • the analysis means 23 is also the same.
  • the search means 22 can perform attribute search and space search.
  • Attribute search is a search for attribute data in spatial data, and the search expression specified by the user by operating the input unit 40 differs depending on the attribute.
  • Spatial search means map data other than attribute data in spatial data Search for etc.
  • attribute search and spatial search can both be performed in terms of time, and in particular, the search performed in consideration of time in spatial search is called space-time search. In the geographic information system, these attribute search, space search and space-time search are well known techniques and can be applied to the system as needed by those skilled in the art.
  • the analysis means 23 can perform vector overlay analysis, point-in-polygon analysis, knocking, geographical measurement, point operation, neighborhood operation, topographic analysis, network analysis, Borony division and the like.
  • Vector overlay analysis is an analysis that performs polygon processing on geometric elements of points, lines, and faces.
  • Point-in-polygon analysis is processing to determine whether the points that make up a line or surface are included in the interior of the polygon. Knocking is about creating the required zones around a specific feature. Geographical measurements are distance measurement, area measurement, and volume measurement, which measure Euclidean distance according to the Pythagorean theorem.
  • Point operations perform mathematical operations (addition operation, multiplication operation, maximum value operation) on the attribute values of cells in the same position.
  • the neighbor operation is to perform various operations on the neighboring cells of one cell and the active cell.
  • the Boronoli division is to divide the area in the sphere of power.
  • the database 10 records, as spatial data, input data of the input layer, intermediate data of the intermediate layer, output data of the output layer, and a teacher set. Therefore, these data can also be searched and analyzed in geographic information systems. In addition, it is possible to achieve excellent performance by recording data in the database 10 in the system rather than inputting data from the outside as external data.
  • the SW method requires a plurality of thermal infrared observation wavelength band data.
  • NOAA meteorological observation satellite
  • NOAA United States Ocean Atmosphere Administration
  • NOAA12, NOAA14, NOAA15, NOAA16, NOAA17 There are five, NOAA12, NOAA14, NOAA15, NOAA16, NOAA17, which are used for various earth observation tasks.
  • the optical sensor mounted on NOAA is AVHRR (Improved High Resolution Radiometer). Its performance is: resolution l.lkm, observation width 2800km, number of pixels 2048 pixels / line, density gradation 10 bits.
  • the observation wavelength bands of each channel and the main observation targets are as shown in Table 1 below. With NOAA12 NOAA 14 does not have channel 3A, NOAA 15 NOAA 16 NOAA 17 is a channel
  • channels 4 and 5 are used in the present invention.
  • a neural network is a model that is modeled on neurons in an organism.
  • the junction between a neuron and another neuron is called a synapse.
  • Each-Euron learns by linking each neuron by synapse and updating the synapse connection weight.
  • the feature is that NN learns to automatically output appropriate output.
  • the solution method is learned empirically.
  • non-linear function net which also has a net value and a threshold repulsion, there are various forces in the function net). Most of the forces have saturation characteristics so that the value of the output y falls within a certain range.
  • BP Back-propagation
  • BP Back-propagation
  • a continuous monotonically increasing sigmoid function is used.
  • a logarithmic function (equation 4) is used as the sigmoid function.
  • the synapse learning is performed based on Heb's learning rule "When cell A is excited, if cell B is always excited, the synaptic weight from cell A to B is large.”
  • E is a function of wi.
  • Learning neural networks is equivalent to finding wi so that the error E is minimized. Therefore, let the small positive constant 7? Be a learning coefficient, and let the correction value Awi of the connection weight be the following equation 6.
  • Equations 6 and 8 are called Generalized Delta Rules.
  • NN neural networks
  • FIGS. 3 and 4 classification of neural networks (NN) and various features will be described (see FIGS. 3 and 4).
  • NNs There are several types of NNs that have been repeatedly improved. Depending on the type of NN, there is a problem suited to the solution method.
  • a back propagation neural network is suitable for the SW method and the present invention which handles a large amount of data.
  • Each NN is divided into two according to the following four features.
  • teacher data Correct data to be compared with output data at the time of learning is called teacher data. Depending on whether teacher data is prepared, it is classified as having a teacher signal and without a teacher signal.
  • NNs each of which includes N.Euron in each layer and processes each layer, is called a hierarchical-eural network. Without being divided into each layer-von Eun is linked so that the NN is called an interconnected-Eural network.
  • An NN that flows data forward only is called a feed-forward-user network. Furthermore, NN that flows data backward is called a feedback-type eural network.
  • the analog type is not used so much at present, and the mainstream is digital type.
  • perceptron will be described.
  • Has a teacher signal performs hierarchical, feedforward processing. As shown in Fig. 5, it consists of an input layer, multiple intermediate layers (hidden layers), and an output layer. The input data propagates -Eron of each layer and the output is finally determined. If there is a teacher signal, the output layer-Eron updates the synapse coupling weight, comparing with the output. The synapse learning is only the output layer-Euron, which is in direct contact with the teacher signal, and learning is not performed in the middle layer. Therefore, even if learning is repeated, nonlinear problems can not be solved.
  • knock propagation BP
  • the error back propagation algorithm is incorporated into the perceptron and the feedback type is improved.
  • the operation for input is the same as perceptron, and it is called by BP as forward operation (see Fig. 6).
  • the learning of the newly made middle layer and input layer-euros is performed from the output layer toward the input layer, and is called backward calculation (see Fig. 7). It requires a lot of input and output data for learning. It is suitable for pattern recognition and can solve nonlinear higher-order problems.
  • BP knock propagation
  • a teacher signal corresponding to the input vector is provided to the output layer. And learning of the weight by error reverse propagation is performed.
  • K be the number of euros in the output layer, and some be ⁇ ⁇ ⁇ k and the output ok and the teacher signal tk.
  • the output of the output layer, the teacher signal and the error sum are defined as the following equation.
  • Equation 11 [Equation 11] ⁇ ,: ⁇ : ⁇ :: 'u' 3 ⁇ 4 (output! G of a neuron's force fn) ' ⁇ ⁇ ⁇ (1)) change in synaptic weight between the middle layer and the output layer According to the general delta delta rule (Equation 8), the quantity is as shown in Equation 12.
  • GIS Geographic Information System
  • GIS uses maps based on specific themes called thematic maps, organizes data from each area, and extracts quantitative information on phenomena from multiple thematic maps (see Figures 8 and 9).
  • GIS Geographic Information System
  • thematic maps deal only with the water temperature distribution for each region, and remote sensing data from satellites deal with far infrared images.
  • the database systematically organizes and stores the stored data centrally and makes it available from programs. Link to other databases to enable complex analysis and processing.
  • a digital representation of information about features is called spatial data. All spatial data carry some form of spatial location information.
  • Attribute data can also include photos and videos, etc. that are not powerful in text or numeric format.
  • ID In order to associate attribute data with graphic data, a symbol generally called an ID is used.
  • drawing table ID, left corner origin coordinates
  • layer table layer ID, layer name
  • sea surface temperature ID, layer, sea surface temperature, coordinates
  • ocean current It is a schema of ID, layer ID, ocean current name, coordinates
  • coast ID, layer ID, chain coordinates.
  • the schemas listed here are merely examples, and persons skilled in the field of geographic information systems can appropriately modify, add, and delete as appropriate.
  • attribute data is referenced, aggregated, and various analyzes are performed via ID. This time, when dealing with thematic maps in GIS, the overlapping latitude and longitude in the spatial method will be dealt with in an overlapping manner.
  • parameters for each sea area are stored.
  • normal display is performed, for example, as follows.
  • the user inputs the keyboard, mouse, etc. 40
  • a required point When displaying a designated point (hereinafter referred to as a required point) by using, first, the coordinates of the required point on the display means 21 are obtained, and the drawing segment ID (required drawing segment) to which the force coordinate belongs is specified.
  • the map data and attribute data relating to the required drawing section, and further, the map data and attribute data relating to the adjacent drawing section of the required drawing section are also read out from the database 10 and stored in the buffer.
  • the operation of the Euler network function which is a feature of the present invention, is initially performed by the user using the input unit 40 to designate an estimated position (see FIG. 10, step 101).
  • the analysis means 23 determines whether or not learning has been performed for the designated estimated position (step 102). If it is determined that learning has not been completed, a request for a learning set is issued to the user (step 103). The user specifies the learning set as required (step 104). When the designation of the learning set from the user is received, the analysis means 23 performs defined processing learning using the powerful learning set as input data (step 200).
  • step 112 If it is determined in step 102 that learning has been completed, or after step 200, a request for observation data is made to the user (step 111). In response to this request, the user specifies observation data (step 112). After receiving the designation of observation data, the analysis means 23 carries out estimation, which is a defined process, using the learned two-eural network (step 300). After estimation, the estimation result is displayed on the display unit 30 (step 121).
  • learning step 200
  • observation data of the learning set is read (see FIG. 11, step 201 below), and learning data is read (step 202). The product of the read observation data and the weight of the input layer and the middle layer is calculated (step 203).
  • Operation of the sigmoid function is performed with the result of the product operation as an argument (step 204).
  • the product of this operation result and the weight of the intermediate layer and the output layer is calculated (step 205).
  • the operation of the sigmoid function is performed using the result of the product operation as an argument (step 206).
  • the calculation result output value of the output layer
  • the output value of the intermediate layer, and the teacher data as arguments
  • the amount of change in load between the intermediate layer and the output layer is calculated (step 207).
  • the amount of change in load between the input layer and the intermediate layer is calculated (step 208).
  • step 207 and step 208 the weights of the new intermediate layer and output layer, and the weights of the input layer and intermediate layer can be obtained and reflected. It is determined whether or not the teacher set is the last (step 209), and if it is the last, the defined processing learning is ended. If it is determined in step 209 that it is not the last one, the process moves to step 201.
  • the predefined process estimation (step 300) is performed through steps 201 to 206.
  • learning is performed and learning is performed by giving a set of teachers that is not limited to the functions of the usual geographic information system using display, analysis, and search using spatial data.
  • excellent SST estimation can be performed on the geographic information system, and more rapid estimation can be performed.
  • image data related to SST can be displayed on the geographical information system, and comparison with the estimation results can be easily performed.
  • input data in the input layer, intermediate data in the intermediate layer, output data in the output layer, and a teacher set are recorded in the database 10, which enables rapid learning and estimation.
  • the observation data used for estimation and the teacher set used for learning may be a set of numerical data or image data.
  • image data it is converted into numerical data by a predetermined conversion formula and used in estimation and learning.
  • the estimation of SST in remote sensing-force applying the Euler network geographic information system The present invention is not limited to this estimation, and can be applied to other remote sensing, and used for analysis other than remote sensing. You can also For example, it can be applied to vegetation, chemical content in the atmosphere, and the like. However, there must be a relationship between the input data for estimation and the estimation results. For example, the present invention can not be applied because it has nothing to do with SST and population density. Whether there is a relationship or not can be found by heuristics, or analysis may find some relationship. In general, if the relationship is strong, even one intermediate layer may require multiple intermediate layers if the relationship is weak.
  • the number of nodes changes according to a force estimation method in which the nodes of the input layer are 2 nodes, the nodes of the intermediate layer are 2 and the nodes of the output layer are 1.
  • the node of the input layer may be 1
  • the node of the middle layer may be 1
  • the node of the output layer may be 1.
  • the intermediate layer is not limited to one layer, and may have a multilayer structure.
  • the layer of the geographic information system and the layer of the neural network can be regarded as the same one, and the database as the graphic data or attribute data of the geographic information system without discarding the output value of the middle layer. It can also be recorded in 10. Also, a set of weights can be treated as a layer. The change of weight itself can be analyzed.
  • the estimation result refers only to numerical data after numerical calculation, but the numerical data is visualized and displayed on the display unit 30 so that the user can compare and evaluate more visually. It can also be displayed.
  • a geographic information system according to a second embodiment of the present invention will be described.
  • This embodiment The geographic information system according to is configured in the same manner as the first embodiment, and is configured to include a similar area detection unit that detects a similar area that is an area that can be estimated using the weight of the same-eural network.
  • the operation of the similar area detection means is started by the user designating the learned area and instructing the detection of the similar area through the input unit 40.
  • An attribute search or a spatial search is performed for a part having the same area as the designated area and the same area from the land (the search means 22 may be used for the search here).
  • the similar area detection means outputs the area as the search result as the similar area and displays it on the display unit 30.
  • the strongly similar area already learned-since the Euranole network can be used, learning that inputs the learning set is unnecessary, and estimation is performed by inputting observation data used for estimation into the geographic information system. can do. Therefore, the learning time can be significantly reduced.
  • the learned region is first included.
  • the similar region b is detected for the region to be detected, and further, the coast of Kashiwazaki, which is only off Fukuoka, will be detected as the similar region c if the detection conditions are met.
  • the sea surface temperature in the similar area can be determined. Determine the sea surface temperature, and complete the sea surface temperature distribution map for the image and similar area part. It is desirable that all of these series of operations be performed by automation after receiving a detection condition from the user. According to this configuration, After specifying the detection conditions, the user can acquire the sea surface temperature for the area that can be obtained without doing anything.
  • the sea surface temperature can be obtained for the required part.
  • the sea surface temperature may be obtained for each of the overlapping portions of one weight-the Euler network and the other weights-the Euler network.
  • the distribution map of surface temperature can be made into a smooth image. And from the distribution map of the sea surface temperature, it is also possible to obtain the value of the surface temperature in reverse.
  • the detection condition of the similar area detection means is relaxed, the error will be large and the accuracy will be low. If the detection condition is strict, the error will be small and the accuracy will be high. That is, there is a trade-off between the detection condition and the accuracy.
  • the detection conditions described above in the similar area detection means are similar to the search conditions specified in the attribute search or the spatial search, and are known techniques in the geographic information system, Although a detailed description is omitted, various designations can be made for the user to make as will be apparent to those skilled in the art. Also, image processing with a filter matrix and a weighted average filter matrix is a well-known technique, and although detailed description is omitted, various filtering processes can be applied as will be apparent to those skilled in the art.
  • the detection condition is the same area or not, the detection condition is limited to the use only in Japan, and the distance from the land is the same, and the detection condition is that the currents are similar. If so, similar region detection can be extended to the whole world.
  • the similar area detection is performed on the already learned area
  • the similar area detection can also be performed on the non-learned area.
  • the estimation system can be efficiently constructed by performing learning V in order.
  • the similar area is detected by the similar area detection means, but when learning is performed, when a certain position or area is designated, the position or area to be touched and the position already learned are already detected. Or, it is possible to judge whether the area and the force match the detection condition, and it is possible to apply the weight of the already learned position or area only to the position or area needed by the user. An estimate of the desired location or area without learning can be performed.
  • similar area detection can also be performed in the background when the CPU usage rate is low.
  • the target area for similar area detection is wide, the amount of processing for detection becomes excessive, so that the similar area can be detected smoothly by appropriately performing the process in the background.
  • the SST case is specifically described as the detection condition, but regions having the same change in time series can often be regarded as similar regions. Even in the case of SST, if the observation data or teacher data to be input data has the same change over time, it can be detected as a similar area.
  • a text box or a pull-down menu can be configured as a window in which a text box or a pull-down menu appears by designating an attribute of data, placing a check box next to each attribute name, and activating the check box.
  • Dialog Parts may be used.) 0 ) If so, what kind of data is recorded in the database 10 at the user or the position or area to be analyzed of the beginner who has started to use this system. Even a user who does not know the presence can easily set the detection conditions and can perform similar area detection smoothly.
  • the user sets the detection conditions, the user's excellent insight is often required. Therefore, it is necessary to make sure that the detection conditions set by the user are appropriate and whether they are correct as similar areas.
  • this confirmation method when the similar area is a plurality of closed areas, the user is asked for a teacher set at a certain position on each similar area, and inference is made using the input data of the teacher set, If the difference between the output data and the teacher data of the teacher set is within a predetermined threshold, it can be regarded as a similar area. Conversely, if it is outside the threshold, it is not regarded as a similar area, and the user is informed that the current detection condition is not appropriate.
  • the similar area is one large closed area, for example, the similar area is applied to the grid to obtain the grid point or the grid center as a sample point, and a teacher set of such sample points is obtained from the user and input. It can be confirmed in the same manner as above based on the teacher set. An appropriate similar area can be detected by confirming with such small sample points and judging whether it is a similar area or not.
  • the geographic information system is capable of displaying superimposed maps with topographic maps, thematic maps, etc. associated with a plurality of position information, and has the feature that spatial search, quantitative analysis and simulation are possible. .
  • this can be regarded as a hierarchical-eural network. This is called neural network geographic information system (NN-GIS). Due to this, input necessary for estimating the sea surface temperature of AVHRR band 4, 5 etc.
  • NN 1 Set AVHRR data in the input layer of GIS and display it.
  • Set V ⁇ truth data obtained in the relevant sea area to the output layer.
  • the data and output results for May 20, 2002 are as shown in Figures 13-15.
  • the data for May 20 takes the image of channel 4 (Fig. 13) and channel 5 (Fig. 14), and 16 * 16 pixels from (289, 126) off Ogura of MCSST (Fig. 15) as the correct value. ,Less than Calculated based on the teacher set (Table 2).
  • the squared error of its output is shown in ( Figure 16) [Table 2]
  • the error slightly decreases for a while and then rises rapidly to 0.1 and then gradually rises up to 0.015 at the maximum. Do. After that, it decreases smoothly to 400,000 times and converges sufficiently.
  • Teacher data in learning can be measured on site by installing a satellite data receiver on a fishing boat. Based on the acquired teacher data and satellite observation data, it is possible to easily obtain the estimation formula that is optimal for the relevant area and the relevant period.
  • Geographic information such as climatic conditions and geographical conditions for each sea area can be added to the input data, and learning data of the eural network can be efficiently used for each similar sea area. Even in areas where observation data are lacking, it is possible to simulate estimated values using observation data from other areas.

Abstract

[PROBLEMS] To provide a geographic information system which has observation data having geographic information for an SST estimation and a parameter as space data and which can execute the SST estimation over a wide range while reducing the amount of calculation and the error. [MEANS FOR SOLVING THE PROBLEMS] The geographic information system is given a teacher set and made to learn it thereby to constitute a neural network, and then is made to do an estimation with input data. Thus, the geographic information system is enabled to make a subsequent estimation, by inputting the teacher set and causing it to be learned, but not by the user's application of an estimation type algorithm from much space data, so that the system can acquire an analytic result easily.

Description

明 細 書  Specification
ニューラルネットワークを用いた地理情報システム  Geographic information system using neural network
技術分野  Technical field
[0001] 本発明は、空間データを蓄積し、活用する地理情報システムに関し、特に、ニュー ラルネットワークを適用した地理情報システムに関する。  The present invention relates to a geographic information system that accumulates and utilizes spatial data, and more particularly to a geographic information system to which a neural network is applied.
背景技術  Background art
[0002] [海表面温度 (SST)推定のための計算法:熱赤外放射計]  [Calculation method for sea surface temperature (SST) estimation: thermal infrared radiometer]
人工衛星の観測データを用いた海表面温度 (SST:Sea Surface Tempature)推定が 行われている。 SSTを推定する手法として、さまざまな方法が提案されている。 SSTに おいて、主に熱赤外放射計が扱われてきた。これは観測波長帯において、大気の影 響が小さいためである。  Sea surface temperature (SST) estimation has been performed using satellite observational data. Various methods have been proposed as methods for estimating SST. Thermal infrared radiometers have been mainly used in SST. This is because the atmospheric influence is small in the observation wavelength band.
[0003] 熱赤外光の場合、波長が長いので散乱の影響はさほど重要ではなぐ方位方向の 影響は考えなくともよい。  In the case of thermal infrared light, since the wavelength is long, the influence of scattering is not so important, and the influence of azimuthal direction may not be considered.
熱赤外放射で扱われる放射伝達方程式より、熱赤外波長域に感度を持つ i波長帯 での観測輝度 Iiは以下の式(1)で表される。  From the radiative transfer equation treated by thermal infrared radiation, the observed luminance Ii in the i wavelength band sensitive to the thermal infrared wavelength range is expressed by the following equation (1).
[0004] [数 1] [0004] [Number 1]
Λ Moth
ここで、 Bi(t):分光プランク関数、 Ts:地球表面温度 [Κ]、 τ i:透過率、 Z:大気上端高 度、 μ:観測角、 ζ:高度、 Τ(ζ):気温を表す。  Where Bi (t): spectral Planck function, Ts: earth surface temperature [Κ], τ i: transmittance, Z: atmospheric upper end height, μ: observation angle, ζ: altitude, Τ (ζ): temperature Represent.
[0005] 式(1)は観測輝度 Iiからその因子である地球表面温度 Tsを求める逆問題を解くこと で SSTを推定する方法がある。この場合、放射伝達式(1)は本質的に非線型である。 線形逆問題であれば、解の発散を防ぎ逆問題を解くために、最小二乗法、直交展開 して解くなどの方法がある。しかし、非線形逆問題の解法は解の範囲を限定して線形 化して解くか、反復的に解くし力ない。よって、 1つのデータに関する計算が非常に 複雑で計算量も多くなる。この式 (1)を解く手法を毎回全海域の膨大なデータ量に対 して用いるのは、あまりに困難である。 [0006] [海表面温度 (SST)推定のための計算法: Split-Window法] In equation (1), there is a method of estimating SST by solving the inverse problem of finding the earth surface temperature Ts that is the factor from the observed luminance Ii. In this case, the radiation transfer equation (1) is essentially non-linear. If it is a linear inverse problem, there are methods such as least squares method and orthogonal expansion and solving to prevent the divergence of the solution and solve the inverse problem. However, the solution of the nonlinear inverse problem is limited either by linearization with a limited range of solution or solving iteratively. Therefore, the calculation for one data is very complicated and the amount of calculation increases. It is too difficult to use the method of solving this equation (1) for the huge amount of data in all sea area every time. [Calculation method for sea surface temperature (SST) estimation: Split-Window method]
熱赤外放射計による SST推定以外に、 Split-Window法 (以下、単に SW法とする)と呼 ばれる手法がある。これは大気の影響が異なる観測波長帯ごとの観測データと、観 測波長帯ごとのパラメータ力もなる回帰式を利用する重回帰解析である。これは、あ る海域についてパラメータを逆問題的に求めてしまえば、後は容易に SST推定が行 える。  Besides SST estimation with a thermal infrared radiometer, there is another method called Split-Window method (hereinafter, simply referred to as SW method). This is a multiple regression analysis that uses observation data for each observation wavelength band where the atmospheric effects are different and a regression equation that also provides parameter power for each observation wavelength band. This can be easily done SST estimation if the parameters of the sea area are obtained in inverse problems.
[0007] 各波長帯で大気の影響が異なるが地球表面温度は同じである。それにより、各波 長帯での観測された輝度温度の差から、大気の影響が求められる。  Although the influence of the atmosphere is different in each wavelength band, the earth surface temperature is the same. As a result, the influence of the atmosphere can be obtained from the difference in the observed brightness temperature in each wavelength band.
観測した周波数帯の数を nとして、 i波長帯 ( n)の輝度温度を Bi(T)、それに対応す るパラメータを とずれば、求める地球表面温度 Toは次の回帰式(2)の通りになる。  Assuming that the number of observed frequency bands is n, the brightness temperature of i wavelength band (n) is Bi (T), and the corresponding parameters are obtained, the required earth surface temperature To is as shown in the following regression equation (2) become.
[0008] [数 2]
Figure imgf000004_0001
[0008] [Number 2]
Figure imgf000004_0001
[0009] 回帰式(2)にお 、て、 Toに実際に観測された地球表面温度の値を、対応する観測 データを Bi(T)に代入して、最小自乗的にパラメータ Ciを求める逆問題を解く。それに より、既知のパラメータ Ciと、新たに観測された Bi(T)力も未知の Toを容易に求めること ができる。 [0009] In the regression equation (2), the value of the earth surface temperature actually observed in To is substituted for the corresponding observation data into Bi (T) to obtain the inverse square to obtain the parameter Ci in the least square Solve the problem. Thus, the known parameter Ci and the newly-observed Bi (T) force can also easily determine the unknown To.
[0010] 海域の位置や季節によってパラメータ Ciは変化するため、各海域と各時期によって 適切なパラメータを求める必要がある。しかし、全地球において各海域のパラメータ を求めるには計算量が非常に多くなる。よって、今までは特定海域で求めたパラメ一 タを他の海域にも用いており、各海域で誤差が生じて 、た。  [0010] Since the parameter Ci changes depending on the location of the sea area and the season, it is necessary to determine an appropriate parameter for each sea area and each time. However, to calculate the parameters of each sea area on the whole earth, the amount of calculation is very large. Therefore, until now, the parameters obtained in a specific sea area were used for other sea areas, and errors occurred in each sea area.
特許文献 1:特開 2005— 52045号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2005-52045
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problem that invention tries to solve
[0011] 各海域 (緯度、経度)ごとに気象条件の違い (気候、海流等)から、そのパラメータに は違いが生じる。そのため、各海域によってパラメータを求める必要がある。 [0011] Due to the difference in weather conditions (eg, climate, ocean current, etc.) in each sea area (latitude, longitude), the parameters differ. Therefore, it is necessary to determine the parameters for each sea area.
し力しながら、地球表面の 7割を占める海面について、最適なパラメータを求めるに は、データ量と計算量があまりにも膨大になるという課題を有する。また、計算を回避 して、安易な手段として特定海域で求めたパラメータを他の海域に用いることもできるHowever, in order to determine the optimum parameters for the sea surface, which accounts for 70% of the earth's surface, the problem is that the amount of data and the amount of calculation become too large. Also avoid calculation It is also possible to use the parameters obtained in a specific sea area as a simple measure for other sea areas
1S 無視できな 、程の誤差が生じると ヽぅ課題を有する。 1S Negligible, have a problem if there is an error of a certain degree.
[0012] 本発明は前記課題を解決するためになされたものであり、地理的な情報を有する SST推定のための観測データ及びパラメータを空間データとして有し、計算量と誤差 を低減しつつ SST推定を広範囲に実施できる地理情報システムを提供することを目 的とする。 The present invention has been made to solve the above-mentioned problems, and has observation data and parameters for SST estimation having geographical information as spatial data, while reducing the amount of calculation and errors. The purpose is to provide a geographic information system that can carry out estimation widely.
また、本発明は SST推定の実施に限らず、 SST推定のための空間データ以外の空 間データを用いた他の推定を広範囲に実施することができることも目的としている。 課題を解決するための手段  Furthermore, the present invention is not limited to the implementation of SST estimation, and it is another object of the present invention to be able to extensively implement other estimation using spatial data other than spatial data for SST estimation. Means to solve the problem
[0013] SW法の回帰式は、複数の入力データの相関から出力を求めるものである。そのた めに SW法の処理に対して、 GISに-ユーラルネットワーク (NN)を組み込む。  The regression equation of the SW method is for obtaining an output from the correlation of a plurality of input data. To do this, we incorporate the -Uural network (NN) into the GIS for the processing of the SW method.
ニューラルネットワーク (NN)の中でもバックプロパゲーション (BP)が回帰式の対応に 適している。 NNは、くり返しデータを与えることで、経験的に誤差の少ない解を得るよ うに学習する。 SW法では海面での実測値と衛星データ力もパラメータを求める。 BP では、海面での実測値を教師データとして、衛星データからの推定値と比較し内部 のパラメータを自動的に修正することができる。 NNの導入により精度向上と、自動化 が計られる。  Among neural networks (NN), backpropagation (BP) is suitable for regression correspondence. The NN learns to obtain an empirically low error solution by giving repetitive data. In the SW method, measured values at sea level and satellite data force also determine parameters. BP can correct the internal parameters automatically by comparing it with the estimated value from the satellite data, using the measured value on the sea surface as the teaching data. The introduction of NN can improve accuracy and automate.
さらに GISにより、パラメータの最適化が可能になる。 SSTは極局所的に推定され、 気候、経度、緯度に依存する。逆に言えば、気候、緯度、経度といった地理情報が一 致するならば、一括にパラメータを取り扱うことができる。適切なパラメータを利用する ことで、他の海域の SST推定の向上を計ることができる。そのために、それら、地理情 報の統合的な検索、管理に適したデータベースの作成が求められる。  Furthermore, GIS enables optimization of parameters. SST is estimated locally and depends on climate, longitude and latitude. Conversely, if geographical information such as climate, latitude, and longitude matches, parameters can be handled collectively. By using appropriate parameters, it is possible to improve the SST estimation of other sea areas. Therefore, it is required to create a database suitable for integrated search and management of geographical information.
[0014] また、それらのシステムを利用して、実測値や衛星データが未知の海域において、 SST推定をシミュレーションを行うことを可能になる。実測値がなくとも、既にパラメータ の判明した海域と地理的条件が一致するならば、そのパラメータを利用できるからで ある。 [0014] Also, using these systems, it becomes possible to simulate SST estimation in a sea area where measured values and satellite data are unknown. Even if there is no actual measurement value, if the geographical conditions agree with the sea area where the parameters are already known, that parameter can be used.
本発明を用いることで、 GISによるパラメータ検索による SST情報を利用して、 SST推 定シミュレーション行うシステムを提供できる。また、本発明を用いることで、地理情報 システムを用いて-ユーラルネットワークを構築し、地理的情報を有する画像情報を 入力とした場合の解析方法及びパラメータの推定を-ユーラルネットワークによって 行い、地理的条件による解析パラメータの最適化を容易に行うことができる。 By using the present invention, it is possible to provide a system for performing SST estimation simulation using SST information by parameter search by GIS. Also, by using the present invention, geographic information Using a system-Constructing a eural network and analyzing method and parameter estimation when using image information with geographical information as input-easing by eural network and optimizing analysis parameters according to geographical conditions Can be done.
[0015] (1)  [0015] (1)
本発明に係る-ユーラルネットワークを用いた地理情報システムは、位置に関する 情報を持ったデータである空間データを記録する記録部と、当該記録部の空間デー タを分析する分析手段とを備え、分析手段において、入力層に教師セットの入力デ ータを読み込み、前向き演算させ、演算結果の出力層の出力データと教師セットの 教師データとにより後ろ向き演算して学習させることで位置毎に構築される-ユーラ ルネットワークの入力層に、入力データを読み込み、読み込んだ入力データの推定 結果を求めるものである。このように本発明においては、地理情報システムにおいて 、教師セットを与え学習させて-ユーラルネットワークを構築した後に、入力データを 入力して推定しているので、地理情報システムにおいては大量の空間データ力 使 用者が推定式のアルゴリズムを適用することなぐ教師セットを入力し学習させること で以後の推定を行うことができ、容易に分析結果を得ることができる。特に、入力デ ータが地理情報システムの記録部に記録され、出力データを同記録部に記録するこ とで、ニューラルネットワークと地理情報システムとを有機的に一体ィ匕したシステムを 構築し、迅速な分析を可能としてる。  According to the present invention, a geographic information system using a eural network includes a recording unit for recording spatial data, which is data having information on position, and analysis means for analyzing the spatial data of the recording unit. In the analysis means, input data of the teacher set is read into the input layer, forward calculation is performed, and backward calculation is performed by using the output data of the output layer of the calculation result and the teacher data of the teacher set to learn. -Reads the input data to the input layer of the Euler network, and finds the estimation result of the read input data. As described above, according to the present invention, in the geographic information system, a teacher set is given and learned, and after constructing a eural network, input data is input and estimated, so in the geographic information system, a large amount of spatial data is generated. The force user can input and learn a teacher set that does not apply the algorithm of the estimation equation, so that subsequent estimation can be performed and analysis results can be easily obtained. In particular, the input data is recorded in the recording unit of the geographic information system, and the output data is recorded in the same recording unit, thereby constructing a system in which the neural network and the geographical information system are integrated integrally, It enables quick analysis.
従来のように、非線形の式を用いたり、回帰式を用いて SSTを求めると、ァルゴリズ ムが複雑になり、計算量も多くなる。従来と比べ、本発明は平易なアルゴリズムとなつ て推定結果を迅速に得ることができる。  As in the conventional case, if SST is calculated using a non-linear equation or a regression equation, the algorithm becomes complicated and the amount of calculation increases. Compared to the prior art, the present invention can obtain an estimation result quickly as a simple algorithm.
[0016] (2) [0016] (2)
本発明に係る-ユーラルネットワークを用いた地理情報システムは必要に応じて、 時空間検索を行う時空間検索手段を備え、ある位置のある時期の推定を、昨年以前 の同一位置の同一時期の重みを用いて推定するものである。このように本発明にお いては、時空間検索手段で指定された位置と同一位置の同一時期の重みが存在し ないか否かを検索し、合致する重みがある場合に力かる重みを用いることで、学習す ることなく推定を実行することができる。重みは、結合荷重、荷重と呼ばれることもある 。ここでは、昨年以前とは、昨年より前ということであり、昨年を含む意味で用いている According to the present invention, the geographic information system using the eural network is provided with a spatio-temporal search means for performing a spatio-temporal search as necessary, and estimation of a certain time of a certain position is performed at the same time before the last year. It is estimated using weights. As described above, in the present invention, it is searched whether or not there is a weight at the same position and the same position as the position designated by the space-time search means, and if there is a matching weight, the weight used is used. In this way, estimation can be performed without learning. Weights are sometimes called combined load, load . Here, “before last year” means before “last year” and is used in the sense including last year
[0017] (3) [0017] (3)
本発明に係る-ユーラルネットワークを用いた地理情報システムは必要に応じて、 使用者が指定する検出条件に合致した領域を類似領域として検出する類似領域検 出手段を備え、前記記録部に検出条件の対象とするデータを空間データとして記録 し、類似領域の一部が既に学習済みとなっている場合に、学習済みで既に構築され ている-ユーラルネットワークを用いて類似領域内の他の部分に対して推定するもの である。このように本発明においては、類似領域検出手段が検出条件に合致する類 似領域を検出するので、既に類似領域の一部が学習済みである場合には、ほかの 類似領域では学習をすることなぐ推定することができる。また、類似領域において学 習済みでない場合であっても、類似領域の一部分に関して学習するだけで、類似領 域の推定を効率的に行うことができる。また、重みの初期値としては、所定の初期値 を与えるのが-ユーラルネットワークおいては一般的な方法である力 類似領域にお いてそのまま既存の-ユーラルネットワークの重みを使用するのではなぐ重みの初 期値として既存の-ユーラルネットワークの重みを使用することもでき、教師セットによ る重みの収束を迅速に行うことができると共に、そのまま既存の-ユーラルネットヮー クの重みを使用した推論と比べ、精度の高い推論を行うことができる。  According to the present invention, the geographic information system using the eural network is provided with similar area detection means for detecting an area meeting the detection condition specified by the user as the similar area, if necessary, The target data of the condition is recorded as spatial data, and when a part of the similar area has already been learned, it has already been learned and has already been constructed-using the eural network and the other in the similar area It is to estimate for the part. As described above, according to the present invention, since the similar area detection means detects a similar area that matches the detection condition, if a part of the similar area has already been learned, learning is performed in other similar areas. It can be estimated. In addition, even if learning has not been conducted in the similar area, it is possible to efficiently estimate the similar area by learning only a part of the similar area. In addition, it is common practice to give a predetermined initial value as the initial value of the weight-it is a general method in the case of the eural network. It is also possible to use the existing-eural network weight as the initial value of the naive weight, and the convergence of the weight can be performed quickly by the teacher set, and the existing-eural net leak weight is used as it is. Inference can be performed with higher accuracy than the inference used.
[0018] (4) [0018] (4)
本発明に係る-ユーラルネットワークを用いた地理情報システムは必要に応じて、 前記類似領域を検出するための検出条件を調整することができるものである。このよ うに本発明においては、類似領域検出のための検出条件を調整することができるの で、使用者が自由に類似領域と精度を調整することができる。すなわち、精度を要し なければ検出条件を緩くし類似領域を拡大し、精度を要する場合には検出条件を厳 しくし類似領域が縮小する。例えば、「陸から 50 [km]ないし 70 [km]離れた領域で あって、黒潮又は対馬海流であって、緯度が 20ないし 50であって、経度が 120ない し 150である」という検出条件があった場合に、数値条件の値を変更したり、数値条 件以外の場合には条件自体を無くしたりして調整することができる。調整を容易にす るために、使用者に対して表示部に検出結果の類似領域を提示すると共に、前に検 出した類似領域との比較を容易にするためにレイヤ表示を行うようにすることが好まし い。 According to the present invention, the geographic information system using the eural network can adjust the detection condition for detecting the similar area as needed. As described above, in the present invention, the detection condition for detecting the similar area can be adjusted, and the user can freely adjust the similar area and the accuracy. That is, if the accuracy is not required, the detection condition is relaxed and the similarity region is expanded, and if the accuracy is required, the detection condition is strict and the similarity region is reduced. For example, the detection condition is "an area 50 to 70 km from land, the Kuroshio or the Tsushima Current, the latitude 20 to 50, and the longitude 120 to 150". If there is a problem, it is possible to adjust by changing the value of the numerical condition or eliminating the condition itself in cases other than the numerical condition. Make adjustments easy In order to present the user with similar areas of detection results on the display unit, it is preferable to perform layer display to facilitate comparison with similar areas detected earlier. .
[0019] (5)  [0019] (5)
本発明に係る-ユーラルネットワークを用いた地理情報システムは、求めた各類似 領域カゝら少なくとも 1つのサンプルポイントを検出し、サンプルポイントに対する教師 セットの入力を受け、入力された教師セットの入力データに対して既に構築されてい る-ユーラルネットワークを用いて推論を行い、出力データと教師セットの教師データ を比較し、その誤差が閾値内である力否かにより類似領域とみなす力否かを決定す るものである。このように本発明においては、使用者が設定した検出条件に基づいて 類似領域を検出するだけでなぐ類似領域として検出された領域に対してサンプル ポイントを検出し、カゝかるサンプルポイントに対する教師セットを使用者に要求し、使 用者が要求に応えて入力された教師セットの入力データに対して既存の-ユーラル ネットワークを用いて推論し、出力データと教師データを比較し、誤差が閾値内であ れば類似領域としてみなすので、類似領域として適格性を確認しており、誤った類似 領域に対する推論を未然に防ぐことができる。  According to the present invention-The geographic information system using the eural network detects at least one sample point for each of the obtained similar areas, receives the input of the teacher set for the sample points, and inputs the input teacher set. Data has already been constructed-reasoning is performed using a eural network, output data is compared with teacher data of a teacher set, and the power can be regarded as a similar area depending on whether the error is within a threshold or not To determine the As described above, according to the present invention, the sample point is detected for the area detected as the similar area only by detecting the similar area based on the detection condition set by the user, and the teacher set for the carious sample points The user is requested, the user infers the input data of the teacher set inputted in response to the request, inference is made using the existing -Uural network, the output data is compared with the teacher data, and the error is within the threshold. If so, it is regarded as a similar area, so eligibility is confirmed as a similar area, and it is possible to prevent inference for false similar areas in advance.
[0020] (6) [0020] (6)
本発明に係る-ユーラルネットワークを用いた地理情報システムは、人工衛星によ るリモートセンシングにより得られる位置と対応付いた遠赤外線画像を空間データと して記録する記憶部と、当該記憶部の空間データを分析する分析手段とを備え、分 析手段において、入力層にある位置の遠赤外線画像を与え、前向き演算させ、演算 結果の出力層の海表面温度と教師データとなる海表面温度とにより後ろ向き演算し て学習させることで位置毎に構築される-ユーラルネットワークの入力層に、遠赤外 線画像を入力し、入力した遠赤外線画像の海表面温度を求めるものである。このよう に本発明においては、地理情報システムにおいて、遠赤外線画像を空間データとし て記録部に記録し、分析手段において教師セットを用いて学習し、遠赤外線画像を 入力することで、学習済みで構築された-ユーラルネットワークを用いて適切な推定 を実施して入力された遠赤外線画像に対応する海表面温度を求めることができる。 [0021] (7) According to the present invention, a geographic information system using a eural network includes: a storage unit for recording, as spatial data, a far-infrared image corresponding to a position obtained by remote sensing by an artificial satellite; The analysis means is provided with an analysis means for analyzing the spatial data, and the analysis means gives a far infrared image of the position at the input layer, performs forward calculation, and outputs the sea surface temperature of the output layer and the sea surface temperature as teaching data. It is constructed for each position by performing backward calculation by learning-A far-infrared image is input to the input layer of the Euler network, and the sea surface temperature of the input far-infrared image is determined. As described above, according to the present invention, in the geographic information system, the far-infrared image is recorded as spatial data in the recording unit, the analysis unit learns using the teacher set, and the far-infrared image is input. An appropriate estimate can be made using the constructed-Eural network to determine the sea surface temperature corresponding to the input far-infrared image. [0021] (7)
本発明に係る-ユーラルネットワークを用いた地理情報システムは必要に応じて、 入力される遠赤外線画像が周波数帯域の異なる同一位置の 2つの遠赤外線画像で あり、教師データが遠赤外線画像と同一位置の海表面温度の実測データ又は衛星 観測データであるものである。このように本発明においては、同一位置の周波数帯域 の異なる遠赤外線画像を用いて海表面温度を求めているので、より精度高く求めるこ とがでさる。  According to the present invention, the geographic information system using the eural network includes two far infrared images at the same position in different frequency bands, and the same teacher data as the far infrared image. It is the measured data or the satellite observation data of the sea surface temperature at the location. As described above, in the present invention, since the sea surface temperature is determined using different far-infrared images of frequency bands at the same position, the temperature can be determined more accurately.
[0022] (8) [0022] (8)
本発明に係る-ユーラルネットワークを用いた地理情報システムは必要に応じて、 使用者が指定した位置と検出条件が合致する位置があった場合に、既に学習済み の位置の-ユーラルネットワークの推定を利用して海表面温度を求めるものである。こ のように本発明にお 、ては、使用者が海表面温度を求める場合に位置を指定したと き、該当する位置と検出条件が合致する他の位置で学習済みでニューラルネットヮ ークが構築されている場合に、指定した位置に対して直接学習を行うことなぐ検出 条件が合致する他の位置の-ユーラルネットワークを用いて海表面温度を推定して いるので、必要のない学習を行うことなぐ迅速に海表面温度を推定することができる  According to the present invention, the geographic information system using the eural network can, if necessary, determine the position already learned when there is a position where the user specified position and the detection condition match. The sea surface temperature is determined using the estimation. As described above, according to the present invention, when the user designates the position when obtaining the sea surface temperature, the neural network has been trained in the other position where the corresponding position and the detection condition match. In the case where C is constructed, learning is not performed directly for the specified position. Since the sea surface temperature is estimated using the Euler network at other positions where the detection conditions are met, unnecessary learning Can quickly estimate the sea surface temperature
[0023] (9) [0023] (9)
本発明に係る-ユーラルネットワークを用いた地理情報システムに適用する方法は 、位置に関する情報を持ったデータである空間データを記録する記録部の空間デー タを分析する地理情報システムに適用する方法であって、入力層に教師セットの入 力データを読み込み、前向き演算させる工程と、当該前向き演算させる工程の演算 結果である出力層の出力データと教師セットの教師データとにより後ろ向き演算して 学習する工程と、当該学習する工程後入力層に入力データを読み込み、推定結果 を求める工程とを含むものである。  A method applied to a geographic information system using a eural network according to the present invention is applied to a geographic information system that analyzes spatial data of a recording unit that records spatial data, which is data having information on position. The process of reading the input data of the teacher set in the input layer and performing forward calculation, and the process of the process of causing the forward calculation, performs backward calculation using the output data of the output layer and the teacher data of the teacher set. And the step of reading the input data into the input layer after the step of learning to obtain an estimation result.
[0024] (10) [0024] (10)
本発明に係る-ユーラルネットワークを用いた地理情報プログラムは、プロセッサが 、位置に関する情報を持ったデータである空間データを記録する記録部の空間デー タを分析する地理情報プログラムであって、プロセッサが、入力層に教師セットの入 力データを読み込み、前向き演算させる手順と、プロセッサが、当該前向き演算させ る手順の演算結果である出力層の出力データと教師セットの教師データとにより後ろ 向き演算して学習する手順と、プロセッサが、当該学習する手順後入力層に入力デ ータを読み込み、推定結果を求める手順とを実行するものである。 According to the present invention, the geographic information program using the eural network comprises: a processor for storing spatial data of a recording unit for recording spatial data which is data having information on position; A geographic information program that analyzes data, in which the processor reads the input data of the teacher set in the input layer and makes forward calculation, and the output of the output layer is the calculation result of the procedure in which the processor makes the forward calculation. A procedure for performing backward calculation and learning based on the data and the teacher data of the teacher set, and a procedure for reading the input data to the input layer after the learning procedure and for obtaining an estimation result are executed.
図面の簡単な説明 Brief description of the drawings
[図 1]本発明の第 1の実施形態に係る地理情報システムの構成ブロック図である。 FIG. 1 is a block diagram of a geographic information system according to a first embodiment of the present invention.
[図 2]本発明の第 1の実施形態に係る-ユーロンモデルである。 FIG. 2 is a diagram of a euron model according to the first embodiment of the present invention.
[図 3]本発明の第 1の実施形態に係る階層型-ユーラルネットワークの構造図である。 FIG. 3 is a structural diagram of a hierarchical-eural network according to the first embodiment of the present invention.
[図 4]本発明の第 1の実施形態に係る相互結合型-ユーラルネットワークの構造図で ある。 FIG. 4 is a structural diagram of an interconnection-eural network according to the first embodiment of the present invention.
[図 5]本発明の第 1の実施形態に係るパーセプトロンの構造図である。  FIG. 5 is a structural view of a perceptron according to the first embodiment of the present invention.
[図 6]本発明の第 1の実施形態に係るバックプロパゲーションの前向き演算説明図で ある。  FIG. 6 is an explanatory view of forward calculation of back propagation according to the first embodiment of the present invention.
[図 7]本発明の第 1の実施形態に係るバックプロパゲーションの後向き演算説明図で ある。  FIG. 7 is an explanatory diagram of backward calculation of back propagation according to the first embodiment of the present invention.
[図 8]本発明の第 1の実施形態に係る地理情報システムによる SST推定の処理ィメー ジ図である。  FIG. 8 is a processing image diagram of SST estimation by the geographic information system according to the first embodiment of the present invention.
[図 9]本発明の第 1の実施形態に係る地理情報システムの説明図である。  FIG. 9 is an explanatory diagram of a geographic information system according to the first embodiment of the present invention.
[図 10]本発明の第 1の実施形態に係る地理情報システムの動作フローチャートである  FIG. 10 is an operation flowchart of the geographic information system according to the first embodiment of the present invention.
[図 11]本発明の第 1の実施形態に係る地理情報システムの動作フローチャートである FIG. 11 is an operation flowchart of the geographic information system according to the first embodiment of the present invention.
[図 12]本発明の第 2の実施形態に係る地理情報システムの類似領域検出の説明図 である。 FIG. 12 is an explanatory diagram of similar area detection in the geographic information system according to the second embodiment of the present invention.
[図 13]2002年 5月 20日 17時 11分におけるチャネル 4の観測画像である。  [Fig. 13] This is an observation image of channel 4 at 17:11 on May 20, 2002.
[図 14]2002年 5月 20日 17時 11分におけるチャネル 5の観測画像である。 [Fig. 14] This is an observation image of channel 5 at 17:11 on May 20, 2002.
[図 15]2002年 5月 20日 17時 11分における MCSSTである。 [図 16]2002年 5月 20日 17時 11分における小倉沖でのデータによる学習回数と出 力の二重誤差である。 [Figure 15] It is MCSST at 17:11 on May 20, 2002. [Fig. 16] This is the double error of the number of times of learning and output from the data off Ogura at 17:11 on May 20, 2002.
[図 17]2002年 5月 20日 17時 11分における宫崎沖でのデータによる学習回数と出 力の二重誤差である。  [Figure 17] This is the double error of the number of times of learning and output from the data at Amagasaki offshore at 17:11 on May 20, 2002.
[図 18]2002年 11月 30日 16時 45分におけるチャネル 4の観測画像である。  [Fig. 18] This is an observation image of channel 4 at 16:45 on Nov. 30, 2002.
[図 19]2002年 11月 30日 16時 45分におけるチャネル 5の観測画像である。  [Fig. 19] This is an observation image of channel 5 at 16:45 on Nov. 30, 2002.
[図 20]2OO2年 11月 30日 16時 45分における MCSSTである。  [Figure 20] It is MCSST at 16:45 on November 30, 2000.
[図 21]2002年 11月 30日 16時 45分における小倉沖でのデータによる学習回数と出 力の二重誤差である。  [Fig. 21] This is the double error of the number of times of learning and output from the data off Ogura at 16:45 on November 30, 2002.
[図 22]2002年 11月 30日 16時 45分における宫崎沖でのデータによる学習回数と出 力の二重誤差である。  [Fig. 22] This is the double error of the number of times of learning and output by the data off Kashiwazaki at 16:45 on Nov. 30, 2002.
[図 23]実施例に係るニューラルネットワークのモジュールのプログラムリストである。  FIG. 23 is a program list of modules of the neural network according to the embodiment.
[図 24]実施例に係るニューラルネットワークのモジュールのプログラムリストである。  FIG. 24 is a program list of modules of the neural network according to the embodiment.
[図 25]実施例に係るニューラルネットワークのモジュールのプログラムリストである。  FIG. 25 is a program list of modules of the neural network according to the embodiment.
[図 26]実施例に係るニューラルネットワークのモジュールのプログラムリストである。  FIG. 26 is a program list of modules of the neural network according to the embodiment.
[図 27]実施例に係るニューラルネットワークのモジュールのプログラムリストである。  FIG. 27 is a program list of modules of the neural network according to the embodiment.
[図 28]実施例に係るニューラルネットワークのモジュールのプログラムリストである。  FIG. 28 is a program list of modules of the neural network according to the embodiment.
[図 29]実施例に係るニューラルネットワークのモジュールのプログラムリストである。 符号の説明  FIG. 29 is a program list of modules of the neural network according to the embodiment. Explanation of sign
[0026] 10 データベース [0026] 10 databases
20 制御部  20 control unit
21 表示手段  21 Display means
22 検索手段  22 Search method
23 解析手段  23 Analysis means
30 表示部  30 Display
40 入力部  40 input unit
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0027] 本発明は多くの異なる形態で実施可能である。したがって、下記の各実施形態の 記載内容のみで解釈すべきではない。また、各実施形態の全体を通して同じ要素に は同じ符号を付けている。 The invention can be implemented in many different forms. Therefore, in each of the following embodiments, The description should not be interpreted alone. In addition, the same symbols are attached to the same elements throughout the respective embodiments.
各実施形態では、主にシステムについて説明するが、所謂当業者であれば明らか な通り、本発明はコンピュータで使用可能なプログラム及び方法としても実施できる。 また、本発明は、ハードウェア、ソフトウェア、または、ソフトウェア及びハードウェアの 実施形態で実施可能である。プログラムは、ハードディスク、 CD-ROM, DVD-R OM、光記憶装置または磁気記憶装置等の任意のコンピュータ可読媒体に記録でき る。さらに、プログラムはネットワークを介した他のコンピュータに記録することができる  In each embodiment, the system will be mainly described, but as is apparent to those skilled in the art, the present invention can also be implemented as a computer usable program and method. Also, the present invention can be implemented in hardware, software, or software and hardware embodiments. The program can be recorded on any computer readable medium such as a hard disk, a CD-ROM, a DVD-ROM, an optical storage device or a magnetic storage device. In addition, programs can be recorded on other computers via a network
[0028] (本発明の第 1の実施形態) First Embodiment of the Present Invention
本発明の第 1の実施形態に係る地理情報システムについて、図に基づき説明する 前記図 1において本実施形態に係る地理情報システムは、人工衛星によるリモート センシングにより得られる位置と対応付いた遠赤外線画像を空間データとして記録す るデータベース 10と、このデータベース 10中の空間データを分析する分析手段 23と 、空間データを検索する検索手段 22とを備え、分析手段 23において、入力層にある 位置の遠赤外線画像を与え、前向き演算させ、演算結果の出力層の海表面温度と 教師データとなる海表面温度とにより後ろ向き演算して学習させることで位置毎に構 築される-ユーラルネットワークの入力層に、遠赤外線画像を入力し、入力した遠赤 外線画像の海表面温度を求める構成である。  The geographic information system according to the first embodiment of the present invention will be described with reference to the drawings. The geographic information system according to the present embodiment in FIG. 1 is a far infrared image corresponding to a position obtained by remote sensing by artificial satellites. A database 10 for recording spatial data, an analysis means 23 for analyzing the spatial data in the database 10, and a search means 22 for searching the spatial data. It is constructed for each position by providing an infrared image, performing forward calculation, and performing backward calculation and learning from the sea surface temperature of the output layer of the calculation result and the sea surface temperature serving as teacher data. Then, the far-infrared image is input, and the sea surface temperature of the input far-infrared image is obtained.
[0029] 制御部 20には、検索手段 22及び分析手段 23の他、検索及び解析以外の場合に 、利用者の入力部 40の操作を介してデータベース 10から空間データを読み出し、 表示部 30に表示する表示手段 21を有する。検索手段 22の検索結果は、検索手段 22自体が表示部 30に表示してもよ 、し、表示手段 21に検索結果を渡して表示して もよい。分析手段 23も同様である。  The control unit 20 reads spatial data from the database 10 through the user's operation of the input unit 40 in addition to the search means 22 and the analysis means 23 in addition to the search means and the analysis means 23. It has display means 21 for displaying. The search result of the search means 22 may be displayed on the display unit 30 by the search means 22 itself, or may be displayed by passing the search result to the display means 21. The analysis means 23 is also the same.
[0030] 検索手段 22は、属性検索、空間検索を行うことができる。属性検索とは、空間デー タ中属性データに対する検索のことで、利用者が入力部 40を操作して指定する検索 式は属性により異なる。空間検索とは、空間データ中属性データ以外の地図データ 等に対する検索のことである。また、属性検索、空間検索は、共に時間に関しても検 索でき、特に、空間検索において時間も考慮して行う検索のことを時空間検索と呼ん でいる。地理情報システムにおいて、これら属性検索、空間検索及び時空間検索は 周知技術であって、所謂当業者であれば適宜システムに適用することができる。 The search means 22 can perform attribute search and space search. Attribute search is a search for attribute data in spatial data, and the search expression specified by the user by operating the input unit 40 differs depending on the attribute. Spatial search means map data other than attribute data in spatial data Search for etc. In addition, attribute search and spatial search can both be performed in terms of time, and in particular, the search performed in consideration of time in spatial search is called space-time search. In the geographic information system, these attribute search, space search and space-time search are well known techniques and can be applied to the system as needed by those skilled in the art.
[0031] 解析手段 23は、ベクタオーバレイ解析、ポイントインポリゴン分析、ノッファリング、 地理的測定、ポイント操作、近隣操作、地形解析、ネットワーク解析、ボロノィ分割等 を行うことができる。ベクタオーバレイ解析は、点、線、面の幾何要素に対してポリゴン 処理を行う解析である。ポイントインポリゴン分析は、線、面を構成する点が、ポリゴン の内部に含まれるか否かの処理である。ノ ッファリングは、特定の地物のまわりに必 要なゾーンを生成することである。地理的測定は、ピタゴラスの定理によりユークリッド 距離を測定する距離測定、面積測定、体積測定である。ポイント操作は、同じ位置に あるセルの属性値に対して数学的な演算 (加算操作、乗算操作、最大値操作)を行う ものである。近隣操作は、一のセルと力かるセルの近隣のセルに対して各種操作を 行うものである。ボロノィ分割とは、勢力圏で領域を分割するものである。これら解析も 周知技術であって、所謂当業者であれば適宜システムに適用することができる。  The analysis means 23 can perform vector overlay analysis, point-in-polygon analysis, knocking, geographical measurement, point operation, neighborhood operation, topographic analysis, network analysis, Borony division and the like. Vector overlay analysis is an analysis that performs polygon processing on geometric elements of points, lines, and faces. Point-in-polygon analysis is processing to determine whether the points that make up a line or surface are included in the interior of the polygon. Knocking is about creating the required zones around a specific feature. Geographical measurements are distance measurement, area measurement, and volume measurement, which measure Euclidean distance according to the Pythagorean theorem. Point operations perform mathematical operations (addition operation, multiplication operation, maximum value operation) on the attribute values of cells in the same position. The neighbor operation is to perform various operations on the neighboring cells of one cell and the active cell. The Boronoli division is to divide the area in the sphere of power. These analyzes are also well known techniques and can be applied to the system as appropriate by those skilled in the art.
[0032] データベース 10は、空間データとして入力層の入力データ、中間層の中間データ 、出力層の出力データ、教師セットを記録する。したがって、これらのデータに対して も地理情報システムの検索、分析を行うことができる。また、外部から外部データとし てデータを入力するのではなぐシステム内のデータベース 10に記録しておくことに より、優れたパフォーマンスを発揮する。  The database 10 records, as spatial data, input data of the input layer, intermediate data of the intermediate layer, output data of the output layer, and a teacher set. Therefore, these data can also be searched and analyzed in geographic information systems. In addition, it is possible to achieve excellent performance by recording data in the database 10 in the system rather than inputting data from the outside as external data.
[0033] 次に、海表面温度 (SST)推定に用いるデータについて説明する。前記 SW法には複 数の熱赤外観測波長帯データが必要である。アメリカ海洋大気庁 (NOAA)が運用す る気象観測衛星 NO AAシリーズがある。 NO AAシリ一ズには  Next, data used for sea surface temperature (SST) estimation will be described. The SW method requires a plurality of thermal infrared observation wavelength band data. There is a meteorological observation satellite NO AA series operated by the United States Ocean Atmosphere Administration (NOAA). For the NO AA series
NOAA12,NOAA14,NOAA15,NOAA16,NOAA17の 5つがあり、様々な地球観測業務 に利用されている。  There are five, NOAA12, NOAA14, NOAA15, NOAA16, NOAA17, which are used for various earth observation tasks.
NOAAに搭載された光学センサは AVHRR (改良型高解像度放射計)である。その性 能は、分解能 l.lkm、観測幅 2800km、画素数 2048pixel/line、濃度階調 10bit、である 。各チャンネルの観測波長帯と主な観測対象は次の表 1のとおり。 NOAA12と NOAA14ではチャンネル 3Aを持たず、 NOAA15 NOAA16 NOAA17はチャンネルThe optical sensor mounted on NOAA is AVHRR (Improved High Resolution Radiometer). Its performance is: resolution l.lkm, observation width 2800km, number of pixels 2048 pixels / line, density gradation 10 bits. The observation wavelength bands of each channel and the main observation targets are as shown in Table 1 below. With NOAA12 NOAA 14 does not have channel 3A, NOAA 15 NOAA 16 NOAA 17 is a channel
3Aと 3Bを昼夜で切替えて使用して 、る。 Switch between 3A and 3B day and night.
[¾1]  [3⁄41]
Figure imgf000014_0001
Figure imgf000014_0001
[0035] 以上 6チャンネルのうち、本発明ではチャンネル 4および 5を用いる。 Among the above six channels, channels 4 and 5 are used in the present invention.
以下、まず、ニューラルネットワークについて、続けて GISについてそれぞれ項目毎 に順次説明する。  In the following, first, the neural network and the GIS will be described one by one.
[0036] [ニューラルネットワーク (NN:Neural Network)] Neural Network (NN: Neural Network)
ニューラルネットワーク (NN)とは生物が持つ神経細胞をモデルに作られたものであ る。ニューロンと他のニューロンの結合部をシナプスと呼ぶ。それぞれのニューロンが シナプスで連結し、シナプスの結合荷重を更新することで各-ユーロンが学習して L A neural network (NN) is a model that is modeled on neurons in an organism. The junction between a neuron and another neuron is called a synapse. Each-Euron learns by linking each neuron by synapse and updating the synapse connection weight.
<o <o
評価関数をあたえれば、 NNが自動的に適当な出力を行うように学習するのが特徴 である。  Given the evaluation function, the feature is that NN learns to automatically output appropriate output.
一般に知られる解法をプログラミングされたシステムとは違 、、経験的に解法を習 得する。  Unlike the commonly known solution method and the programmed system, the solution method is learned empirically.
[0037] 次に、シナプスの学習について説明する。 NNを構成する-ユーロンモデルは、図 2 のようになつている。  Next, synapse learning will be described. Make up the NN-The euron model looks like Figure 2.
入力 xiと各シナプスの結合荷重 wiの積の総和をネット値(式 3)と呼ぶ。  The sum of the products of the input xi and the connection weight wi of each synapse is called a net value (equation 3).
[0038] [数 3] i ' , w; 各-ユーロンは閾値とよばれる値 Θを持つ。 [0038] [Number 3] i ', w; Each-euron has a value Θ called a threshold.
ネット値と閾値 Θ力もなる非線型な関数 net)により 関数 net)には様々なものがある力 ほとんどが飽和特性を持ち、出力 yの値が一定 の範囲に収まるようになって 、る。  By the non-linear function net) which also has a net value and a threshold repulsion, there are various forces in the function net). Most of the forces have saturation characteristics so that the value of the output y falls within a certain range.
後述のバックプロパゲーション (BP)では連続的に変化する微分可能な応答関数が 必要である。よって、連続単調増加形をしたシグモイド関数が用いられる。シグモイド 関数として、具体的にはロジェスティック関数 (式 4)が使われる。  Back-propagation (BP), described below, requires a continuously changing differentiable response function. Thus, a continuous monotonically increasing sigmoid function is used. Specifically, a logarithmic function (equation 4) is used as the sigmoid function.
[0040] [数 4]  [0040] [Number 4]
>j = f{nrl I . · · > j = f {nrl I.
1 "了 f:J'p(」、r -'t― Θ) ) 1 "end f : J'p (", r-'t-Θ)))
[0041] シナプスの学習は Hebの学習則「細胞 Aが興奮したとき、細胞 Bが常に興奮するなら ば、細胞 Aから Bへのシナプス荷重は大きくなる。」に基づいて行われる。学習の評価 式として 2乗誤差を用いる。教師信号が tとして、誤差 Eは [0041] The synapse learning is performed based on Heb's learning rule "When cell A is excited, if cell B is always excited, the synaptic weight from cell A to B is large." We use the squared error as an evaluation formula for learning. Assuming that the teacher signal is t, the error E is
[0042] [数 5]  [0042] [Number 5]
1 t · · · · (5) 1 t · · · · (5)
/? = yf  /? = yf
[0043] となる。式 3、 4、 5より、 Eは wiの関数である。ニューラルネットワークの学習とは誤差 E が最小になるように wiを求めることと等価である。よって、小さな正の定数 7?を学習係 数として、結合荷重の修正値 Awiを次式 6とする。 [0043] From equations 3, 4 and 5, E is a function of wi. Learning neural networks is equivalent to finding wi so that the error E is minimized. Therefore, let the small positive constant 7? Be a learning coefficient, and let the correction value Awi of the connection weight be the following equation 6.
[0044] [数 6]  [0044] [Number 6]
Δ, —— . . . . (6) Δ, — —... (6)
<)h 8 rh t
Figure imgf000015_0001
<) h 8 rh t
Figure imgf000015_0001
::::リ y}f{n t)T3 :::: ry y} f {nt) T 3
このとき、式 6において、 (net)は式 4より  At this time, in equation 6, (net) is derived from equation 4
[0045] [数 7] f'inet) --- y{ \ ― ) · · · , (7/ よって、式 6は、 [0045] [Number 7] f'inet) --- y {\-) · · · · (7 / Thus, equation 6
[0046] [数 8] [Number 8]
△ « ', —二 >i( t - y iyi i - y ) ., , . . .(8 ) «« ',-> 2> i (t-y iyi i-y)., ... (8)
となる。  It becomes.
式 6、 8を一般ィヒデルタ則と呼ぶ。  Equations 6 and 8 are called Generalized Delta Rules.
[0047] 次に、ニューラルネットワーク(NN)の分類と各種の特徴について説明する(図 3、図 4参照)。 NNは改良がくり返され、いくつかの種類がある。 NNの種類によって解法に 適した問題がある。 SW法と大量のデータを扱うこの発明にはバックプロパゲーション ニューラルネットワークが適している。各 NNは次の 4つの特徴によりそれぞれ 2つに分 類される。 Next, classification of neural networks (NN) and various features will be described (see FIGS. 3 and 4). There are several types of NNs that have been repeatedly improved. Depending on the type of NN, there is a problem suited to the solution method. A back propagation neural network is suitable for the SW method and the present invention which handles a large amount of data. Each NN is divided into two according to the following four features.
[0048] <学習アルゴリズムによる分類 >学習の際に、出力データと比較する正解データを 教師データと呼ぶ。教師データが用意されているかにより、教師信号あり、教師信号 無しに分類される。  <Classification by Learning Algorithm> Correct data to be compared with output data at the time of learning is called teacher data. Depending on whether teacher data is prepared, it is classified as having a teacher signal and without a teacher signal.
く構造による分類 >ニユーロンが各層ごとに含まれ、各層ごとに処理を行っていく NN を階層型-ユーラルネットワークと呼ぶ。各層にわかれることなく-ユーロンが絡み合 うように結合して 、る NNを相互結合型-ユーラルネットワークと呼ぶ。  Classification by structure> NNs, each of which includes N.Euron in each layer and processes each layer, is called a hierarchical-eural network. Without being divided into each layer-von Eun is linked so that the NN is called an interconnected-Eural network.
<入力信号の流れ >データを前向きにのみ流れる NNをフィードフォワード型-ユー ラルネットワークと呼ぶ。さらに後向きにデータが流れる NNをフィードバック型-ユーラ ルネットワークと呼ぶ。  <Flow of input signal> An NN that flows data forward only is called a feed-forward-user network. Furthermore, NN that flows data backward is called a feedback-type eural network.
[0049] <アナログとデジタル >ハードウェア的にアナログ式とデジタル式の NNが存在する。  <Analog and Digital> There are hardware-like analog and digital NNs.
しかし、現在はアナログ式はあまり利用されず、主流はデジタル式である。  However, the analog type is not used so much at present, and the mainstream is digital type.
次に、パーセプトロンについて説明する。最初に開発された-ユーラルネットワーク 。教師信号あり、階層型、フィードフォワード処理を行う。図 5のように、入力層、複数 の中間層 (隠れ層)、出力層によって、構成される。入力データは各層の-ユーロンを 伝播して最終的に出力が決定される。教師信号があれば、出力とを比較して、出力 層の-ユーロンがシナプスの結合荷重を更新する。シナプスの学習は教師信号に直 接触れる出力層の-ユーロンのみであり、中間層では学習が行われない。そのため、 学習を繰り返しても非線型問題を解くことはできない。 [0050] 次に、ノ ックプロパゲーション (BP)について説明する。現在最も代表的な-ユーラル ネットワークである。パーセプトロンに誤差逆伝播アルゴリズムを組み込みフィードバ ック型に改良したものである。入力に対する動作はパーセプトロンと同じで BPではとく に、前向き演算と呼ぶ(図 6参照)。新たに可能になった中間層や入力層の-ユーロ ンの学習は、出力層から入力層に向力つて行われ、後ろ向き演算とよぶ(図 7参照)。 学習には多くの入出力データが必要だ力 パターン認識に適して、非線型の高次問 題ち解くことができる。 Next, perceptron will be described. Originally developed-the eural network. Has a teacher signal, performs hierarchical, feedforward processing. As shown in Fig. 5, it consists of an input layer, multiple intermediate layers (hidden layers), and an output layer. The input data propagates -Eron of each layer and the output is finally determined. If there is a teacher signal, the output layer-Eron updates the synapse coupling weight, comparing with the output. The synapse learning is only the output layer-Euron, which is in direct contact with the teacher signal, and learning is not performed in the middle layer. Therefore, even if learning is repeated, nonlinear problems can not be solved. Next, knock propagation (BP) will be described. It is currently the most representative-eural network. The error back propagation algorithm is incorporated into the perceptron and the feedback type is improved. The operation for input is the same as perceptron, and it is called by BP as forward operation (see Fig. 6). The learning of the newly made middle layer and input layer-euros is performed from the output layer toward the input layer, and is called backward calculation (see Fig. 7). It requires a lot of input and output data for learning. It is suitable for pattern recognition and can solve nonlinear higher-order problems.
[0051] ノ ックプロパゲーション (BP)の動作と学習としては、まず、入力があると、前向き演算 が行われる。各層のシナプスが入力の総和に対してシグモイド関数によって-ユーロ ンの出力を決定し、次の層に伝える。  As for the operation and learning of knock propagation (BP), first, when there is an input, a forward operation is performed. The synapses of each layer determine the output of Eron by the sigmoid function with respect to the sum of the inputs and transmit it to the next layer.
次に、入力ベクトルに対応した教師信号が出力層に与えられる。そして、誤差逆伝 播による重みの学習が行われる。  Next, a teacher signal corresponding to the input vector is provided to the output layer. And learning of the weight by error reverse propagation is performed.
出力層の-ユーロン数を Kとし、ある-ユーロン kにお 、て出力 okと教師信号 tkとす る。出力層の出力と教師信号と誤差和を下記式と定義する。  Let K be the number of euros in the output layer, and some be ユ ー ロ k and the output ok and the teacher signal tk. The output of the output layer, the teacher signal and the error sum are defined as the following equation.
[0052] [数 9] :' —[0052] [Number 9]: '—
Figure imgf000017_0001
Figure imgf000017_0001
[0053] ここで、  [0053] Here,
[数 10]  [Number 10]
<¾ = / " .) (出力! 3のニュー πンんの出力) · · · ' (1 0) <3⁄4 = / ".) (Output! New output of 3) · · · · '(1 0)
[0054] [数 11] ίΜ、 :■:■:: ' u' ¾ (出力 !gのニューロン の人力 fn) ' · · · (1 丄 ) 中間層と出力層の間のシナプス結合荷重の変化量は一般ィ匕デルタ則(式 8)より、 式 12となる。 [Equation 11] ίΜ,: ■: ■ :: 'u' 3⁄4 (output! G of a neuron's force fn) '· · · (1)) change in synaptic weight between the middle layer and the output layer According to the general delta delta rule (Equation 8), the quantity is as shown in Equation 12.
[0055] [数 12] [0055] [Number 12]
Δι _? = i](tk 一 ok)ff(ri€ik)yt · · · - (1 2) ? Δι _ = i] (t k one o k) f f (ri € i k) y t · · · - (1 2)
: :― - k)y, 同様にして ::-- K ) y, In the same way
[0056] [数 13]  [0056] [Number 13]
(中問 βの二ュ—ロン jの出力 ) ( 1 3 ) (Intermediate question β output of neutron j) (1 3)
[0057] [数 14] [0057] [Number 14]
:屮問 のニューロン ( 1 4 ) とすると中間層の間の重みの変化量は次のようにして求められる。 : Assuming the torture neuron (14), the amount of weight change between the middle layers can be obtained as follows.
[0058] [数 15] [0058] [Number 15]
( 1 5 ) (15)
'  '
Figure imgf000018_0001
Figure imgf000018_0001
[0059] [地理情報システム (GIS:Geographic InformationSystem)] [0059] Geographic Information System (GIS)
GISは、主題図と呼ばれる特定のテーマに基づく地図を使い、各地のデータを整理 し、複数の主題図からある現象について定量的な情報を取り出すものである(図 8及 び図 9参照)。  GIS uses maps based on specific themes called thematic maps, organizes data from each area, and extracts quantitative information on phenomena from multiple thematic maps (see Figures 8 and 9).
国土交通省国土地理院では、「地理情報システム (GIS:Geographic Information System)は地理的値位置を手がかりに、位置に関する情報を持ったデータ(空間デー タ)を総合的に管理し、加工し、視覚的に表示し、高度な分析や迅速な判断を可能 にする技術である。」と定義されている。それぞれの主題図を統合的に管理し解析す るため、地理に関するさまざまな情報を格納するデータベースを構築する必要がある [0060] 次に、主題図 (thmatic maps)につ 、て説明する。植生、人工、鉄道網、宗教等と言 つたある特定の主題について作られた、特殊な用途の地図のことを主題図とよぶ。複 数の情報 (土地利用、集落、主要建造物、交通網、行政区界、地名など)が盛りこまれAt the Geographical Survey Institute of the Ministry of Land, Infrastructure, Transport and Tourism, “Geographic Information System (GIS) comprehensively manages and processes data (spatial data) with information on location based on geographical value location, It is a technology that visually displays and enables advanced analysis and quick judgment. ” In order to manage and analyze each theme in an integrated manner, it is necessary to construct a database that stores various information about geography [0060] Next, thematic maps (thmatic maps) will be described. A map of special purpose made on a specific subject, such as vegetation, artificial, railway network, religion etc., is called thematic map. Multiple pieces of information (land use, settlements, major buildings, transportation networks, administrative district boundaries, place names, etc.) are included.
、様々な目的にかなう一般図 (general map)とは区別される。 , It is distinguished from the general map (general map) which serves various purposes.
海面温度推定図の場合、各地域ごとの水温分布のみを扱う主題図、人工衛星から のリモートセンシングデータは遠赤外線画像を扱う主題図となる。  In the case of sea surface temperature estimation maps, thematic maps deal only with the water temperature distribution for each region, and remote sensing data from satellites deal with far infrared images.
次に、データベースについて説明する。系統的に整理、蓄積されたデータを一元 管理し、プログラムから呼出して利用できるようにしたものである。他のデータベースと リンクさせ複合的な解析および処理を可能にする。  Next, the database will be described. It systematically organizes and stores the stored data centrally and makes it available from programs. Link to other databases to enable complex analysis and processing.
[0061] 地図上の道路や建造物、また、市町村境界等の空間的な位置を持つものを、地物 と総称する。 [0061] Roads and structures on a map and those with spatial locations such as municipal boundaries are collectively referred to as features.
地物に関する情報をデジタルィ匕したものを、空間データと呼ぶ。全ての空間データ は、空間的な位置に関する情報をなんらかの形で持つ。  A digital representation of information about features is called spatial data. All spatial data carry some form of spatial location information.
空間データにおいて、空間的な位置と形状を表す情報を、図形データと呼ぶ。 また、図形データの他に、その地物に関連した様々な情報を、属性データと呼ぶ。 属性データは文字や数値形式のデータば力りでなぐ写真や動画なども含めること ができる。  In spatial data, information representing spatial position and shape is called graphic data. Besides graphic data, various information related to the feature is called attribute data. Attribute data can also include photos and videos, etc. that are not powerful in text or numeric format.
[0062] 属性データを図形データと関連づけるためには、一般に IDと呼ばれる記号が用い られる。リレーショナルモデルのデータベースを用いた場合には、例えば図面表 (ID 、左隅原点座標)、レイヤ表(レイヤ ID、レイヤ名)、海表面温度 (ID、レイヤ 、海表 面温度、座標)、海流 (ID、レイヤ ID、海流名、座標)、海岸 (ID、レイヤ ID、チェーン 座標)というスキーマとなる。ここで挙げたスキーマは一例であって、地理情報システ ムの分野における当業者であれば適宜修正、追加、削除を適宜行うことができる。  In order to associate attribute data with graphic data, a symbol generally called an ID is used. In the case of using a relational model database, for example, drawing table (ID, left corner origin coordinates), layer table (layer ID, layer name), sea surface temperature (ID, layer, sea surface temperature, coordinates), ocean current ( It is a schema of ID, layer ID, ocean current name, coordinates) and coast (ID, layer ID, chain coordinates). The schemas listed here are merely examples, and persons skilled in the field of geographic information systems can appropriately modify, add, and delete as appropriate.
GISでは IDを介して、属性データを参照し、集計し、様々な解析を行う。今回、主題 図を GISで扱う際には、空間上法において一致する緯度経度を重ねて扱う。  In GIS, attribute data is referenced, aggregated, and various analyzes are performed via ID. This time, when dealing with thematic maps in GIS, the overlapping latitude and longitude in the spatial method will be dealt with in an overlapping manner.
本実施形態では、各海域ごとのパラメータを格納する。  In the present embodiment, parameters for each sea area are stored.
[0063] 次に、本実施形態に係る地理情報システムの動作について説明する。まず、通常 の表示は例えば以下のように行われる。使用者がキーボード、マウス等の入力部 40 を用いて指定した点(以下、要求点とする)を表示する場合には、まず、表示手段 21 力 かかる要求点の座標を求め、力かる座標の属する図面区分 ID (要求図面区分) を特定し、かかる要求図面区分に係る地図データ及び属性データ、さらには、この要 求図面区分の隣接する図面区分に係る地図データ及び属性データをもデータべ一 ス 10から読み出してバッファに格納する。現在表示する必要があるのは要求点から 求めることができる一定の距離の領域 (表示領域)であるので、バッファから表示領域 に対応する地理情報のみを表示画面に表示する(この表示するまでの一連の処理を 表示処理とする)。以降、使用者が要求点を移動させる等した場合には同様な表示 処理が行われる。ここで、要求点が移動してもノッファ中の地理情報でまかなえる場 合にはデータベース 10にアクセスすることなく表示を行い、ノ ッファ中の地理情報で まかなえない場合には再びデータベース 10にアクセスし必要となる図面区分に係る 地図データ及び属性データを参照してバッファに格納する。使用者が表示の拡大又 は縮小を要求した場合には、単に表示領域が拡大又は縮小したと捉えて処理するこ とができる。一般的には使用者が表示の拡大を要求した場合には現在のノ ッファ中 の地理情報でまかなえ、使用者が表示の縮小を要求した場合には現在のバッファ中 の地理情報でまかなえな 、ことが多 、。 Next, the operation of the geographic information system according to the present embodiment will be described. First, normal display is performed, for example, as follows. The user inputs the keyboard, mouse, etc. 40 When displaying a designated point (hereinafter referred to as a required point) by using, first, the coordinates of the required point on the display means 21 are obtained, and the drawing segment ID (required drawing segment) to which the force coordinate belongs is specified. Also, the map data and attribute data relating to the required drawing section, and further, the map data and attribute data relating to the adjacent drawing section of the required drawing section are also read out from the database 10 and stored in the buffer. Since what is currently required to be displayed is an area (display area) of a certain distance that can be obtained from the request point, only the geographic information corresponding to the display area from the buffer is displayed on the display screen (this A series of processing is called display processing). Thereafter, when the user moves the required point, the same display processing is performed. Here, even if the required point is moved, display is performed without accessing database 10 if it can be covered by the geographical information in the knotter, and if it can not be covered by geographical information in the knotter, the database 10 is accessed again. Refer to map data and attribute data for the required drawing sections and store in the buffer. When the user requests the enlargement or reduction of the display, it can be treated simply as the enlargement or reduction of the display area. In general, if the user requests the display to be expanded, it can be covered by the geographical information in the current browser, and if the user requests the reduction of the display, it can be covered by the geographical information in the current buffer, Many things.
[0064] 本発明の特徴となる-ユーラルネットワーク機能の動作は、使用者が始めに推定位 置の指定を入力部 40を用いて行う(以下、図 10参照。ステップ 101)。指定された推 定位置に対して解析手段 23は学習済みか否かを判断する (ステップ 102)。学習済 みでないと判断した場合には、使用者に対して学習セットの要求を行う(ステップ 103 )。使用者は要求に応じて学習セットを指定する (ステップ 104)。使用者からの学習 セットの指定を受けると、解析手段 23は、力かる学習セットを入力データとして定義済 み処理学習を行う(ステップ 200)。  The operation of the Euler network function, which is a feature of the present invention, is initially performed by the user using the input unit 40 to designate an estimated position (see FIG. 10, step 101). The analysis means 23 determines whether or not learning has been performed for the designated estimated position (step 102). If it is determined that learning has not been completed, a request for a learning set is issued to the user (step 103). The user specifies the learning set as required (step 104). When the designation of the learning set from the user is received, the analysis means 23 performs defined processing learning using the powerful learning set as input data (step 200).
[0065] ステップ 102で、学習済みであると判断した場合、又は、ステップ 200の後に、観測 データの要求を使用者に対して行う(ステップ 111)。この要求に対して使用者は観 測データを指定する (ステップ 112)。観測データの指定を受けた後、学習済みの二 ユーラルネットワークを用いて、解析手段 23が定義済み処理である推定を実施する( ステップ 300)。推定後に、推定結果を表示部 30に表示する (ステップ 121)。 定義済み処理学習(ステップ 200)は、まず、学習セットの観測データを読み込み( 以降、図 11参照。ステップ 201)、学習データを読み込む (ステップ 202)。読み込ま れた観測データと入力層と中間層の重みとを積演算する (ステップ 203)。積演算の 結果を引数として、シグモイド関数の演算を実施する (ステップ 204)。かかる演算結 果と中間層と出力層の重みとを積演算する (ステップ 205)。積演算の結果を引数とし て、シグモイド関数の演算を実施する (ステップ 206)。演算結果(出力層の出力値)、 中間層の出力値、教師データを引数にして、中間層と出力層との荷重の変化量を演 算する (ステップ 207)。続けて、出力層の出力値、中間層と出力層の重み、中間層 の出力値、教師データを引数にして、入力層と中間層との荷重の変化量を演算する (ステップ 208)。このステップ 207及びステップ 208より、新たな中間層と出力層との 重み、入力層と中間層との重みを求め反映することができる。教師セットが最後か否 かを判断し (ステップ 209)、最後と判断した場合には定義済み処理学習を終了する 。ステップ 209で最後でな ヽと判断した場合にはステップ 201に移行する。 [0065] If it is determined in step 102 that learning has been completed, or after step 200, a request for observation data is made to the user (step 111). In response to this request, the user specifies observation data (step 112). After receiving the designation of observation data, the analysis means 23 carries out estimation, which is a defined process, using the learned two-eural network (step 300). After estimation, the estimation result is displayed on the display unit 30 (step 121). In the defined process learning (step 200), first, observation data of the learning set is read (see FIG. 11, step 201 below), and learning data is read (step 202). The product of the read observation data and the weight of the input layer and the middle layer is calculated (step 203). Operation of the sigmoid function is performed with the result of the product operation as an argument (step 204). The product of this operation result and the weight of the intermediate layer and the output layer is calculated (step 205). The operation of the sigmoid function is performed using the result of the product operation as an argument (step 206). Using the calculation result (output value of the output layer), the output value of the intermediate layer, and the teacher data as arguments, the amount of change in load between the intermediate layer and the output layer is calculated (step 207). Subsequently, using the output value of the output layer, the weight of the intermediate layer and the output layer, the output value of the intermediate layer, and the teacher data as arguments, the amount of change in load between the input layer and the intermediate layer is calculated (step 208). From this step 207 and step 208, the weights of the new intermediate layer and output layer, and the weights of the input layer and intermediate layer can be obtained and reflected. It is determined whether or not the teacher set is the last (step 209), and if it is the last, the defined processing learning is ended. If it is determined in step 209 that it is not the last one, the process moves to step 201.
定義済み処理推定 (ステップ 300)は、ステップ 201ないしステップ 206を経ることで 実施される。  The predefined process estimation (step 300) is performed through steps 201 to 206.
[0066] このように本実施形態に係る地理情報システムによれば、空間データを用いた表示 、解析、検索の通常の地理情報システムの機能だけでなぐ教師セットを与えることで 学習を行い、学習後に観測データを入力することで優れた SSTの推定を、地理情報 システム上で実施することができ、より迅速な推定を実施することができる。また、地 理情報システム上には、 SSTに関する画像データを表示することもでき、推定結果と の比較も容易に行うことができる。さらに、データベース 10内に入力層の入力データ 、中間層の中間データ、出力層の出力データ、教師セットを記録しており、迅速な学 習及び推定が可能となって 、る。  As described above, according to the geographic information system according to the present embodiment, learning is performed and learning is performed by giving a set of teachers that is not limited to the functions of the usual geographic information system using display, analysis, and search using spatial data. By inputting observation data later, excellent SST estimation can be performed on the geographic information system, and more rapid estimation can be performed. In addition, image data related to SST can be displayed on the geographical information system, and comparison with the estimation results can be easily performed. Furthermore, input data in the input layer, intermediate data in the intermediate layer, output data in the output layer, and a teacher set are recorded in the database 10, which enables rapid learning and estimation.
[0067] [観測データ、教師セットのデータ形式]  [0067] [Data format of observation data, teacher set]
本実施形態にぉ 、ては、推定で用いられる観測データ及び学習で用いられる教師 セットは、数値データの集合であってもよいし、画像データであってもよい。画像デー タである場合には、所定の変換式で数値データに変換し、推定及び学習で用いられ る。 [0068] [適用対象] In the present embodiment, the observation data used for estimation and the teacher set used for learning may be a set of numerical data or image data. In the case of image data, it is converted into numerical data by a predetermined conversion formula and used in estimation and learning. [Application target]
本実施形態においては、リモートセンシングにおける SSTの推定に関して-ユーラ ルネットワーク地理情報システムを適用した力 本発明はこの推定に限らず、他のリモ ートセンシングにも適用できるし、リモートセンシング以外の解析に用いることもできる 。たとえば、植生、大気中の化学物質含有率等に適用することができる。ただし、推 定するための入力データと、推定結果との間に何ら力しらの関係がないといけない。 たとえば、 SSTと人口密度にはまったく関係がないため本発明を適用することができ ない。関係がある力否かは、経験則に発見できる場合もあるし、分析により何らかの 関係を見い出す場合もある。一般的に関係が強い場合には中間層は 1層でもよぐ 関係が希薄である場合には中間層を複数要する。  In the present embodiment, the estimation of SST in remote sensing-force applying the Euler network geographic information system The present invention is not limited to this estimation, and can be applied to other remote sensing, and used for analysis other than remote sensing. You can also For example, it can be applied to vegetation, chemical content in the atmosphere, and the like. However, there must be a relationship between the input data for estimation and the estimation results. For example, the present invention can not be applied because it has nothing to do with SST and population density. Whether there is a relationship or not can be found by heuristics, or analysis may find some relationship. In general, if the relationship is strong, even one intermediate layer may require multiple intermediate layers if the relationship is weak.
[0069] [ニューラルネットワーク] [Neural Network]
本実施形態においては、動作説明部分では、入力層のノードが 2、中間層のノード が 2、出力層のノードが 1であった力 推定の方式によりノード数の変化する。例えば 、入力層のノードが 1、中間層のノードが 1、出力層のノードが 1の場合もある。  In the present embodiment, in the operation explanation part, the number of nodes changes according to a force estimation method in which the nodes of the input layer are 2 nodes, the nodes of the intermediate layer are 2 and the nodes of the output layer are 1. For example, the node of the input layer may be 1, the node of the middle layer may be 1, and the node of the output layer may be 1.
また、中間層は 1層に限らず、多層構造であってもよい。精度の要する推定になれ ばなるほど、中間層の数が一般的に増える傾向にある。  Further, the intermediate layer is not limited to one layer, and may have a multilayer structure. The more accurate the estimation, the more the number of middle classes tends to increase.
[0070] [中間層の出力値] [Intermediate layer output value]
本実施形態においては、地理情報システムのレイヤと、ニューラルネットワークの層 とを同一なものとして捉えることもでき、中間層の出力値を破棄することなぐ地理情 報システムの図形データ又は属性データとしてデータベース 10に記録することもでき る。また、重みの集合をレイヤとして取り扱うこともできる。重みの変化自体を解析対 象とすることができる。  In this embodiment, the layer of the geographic information system and the layer of the neural network can be regarded as the same one, and the database as the graphic data or attribute data of the geographic information system without discarding the output value of the middle layer. It can also be recorded in 10. Also, a set of weights can be treated as a layer. The change of weight itself can be analyzed.
[0071] [推定結果] [Estimated result]
本実施形態においては、推定結果は数値演算後の数値データのみに言及してい るが、使用者がより視覚的に比較'評価することができるように、数値データを可視化 して表示部 30に表示することもできる。  In the present embodiment, the estimation result refers only to numerical data after numerical calculation, but the numerical data is visualized and displayed on the display unit 30 so that the user can compare and evaluate more visually. It can also be displayed.
[0072] (本発明の第 2の実施形態) Second Embodiment of the Present Invention
本発明の第 2の実施形態に係る地理情報システムについて説明する。本実施形態 に係る地理情報システムは、前記第 1の実施形態と同様に構成され、同じ-ユーラル ネットワークの重みを用いて推定が可能な領域である類似領域を検出する類似領域 検出手段を備える構成である。 A geographic information system according to a second embodiment of the present invention will be described. This embodiment The geographic information system according to is configured in the same manner as the first embodiment, and is configured to include a similar area detection unit that detects a similar area that is an area that can be estimated using the weight of the same-eural network.
SSTに関しては、陸から所定の距離にある領域、同じ海区では同様の推定方法で SSTを求めることが可能であることを経験的に発見している。したがって、陸からの距 離、同じ海区であるか否かを検索することができれば、類似領域を検出することは可 能であり、類似領域検出手段は力かる検索を行って類似領域の検出を実施している 。ここで、陸からの距離、同じ海区であるか否かを判断するに必要なデータは、予め データベース 10に記録しておく必要がある。地理情報システム上のデータベースに このデータを格納しておくことで、類似領域検出を迅速に行うことができる。  As for SST, we have empirically found that it is possible to obtain SST by the same estimation method in a region at a predetermined distance from land and in the same area. Therefore, if it is possible to search for the distance from land and whether it is the same area or not, it is possible to detect the similar area, and the similar area detection means performs an intensive search to detect the similar area. It is carried out. Here, it is necessary to record in advance the data necessary to determine the distance from the land and whether the area is the same area, in the database 10 in advance. By storing this data in a database on the geographic information system, similar area detection can be performed quickly.
[0073] 類似領域検出手段の動作は、使用者が学習済みの領域を指定し、類似領域を検 出することを入力部 40を介して指示することで始動する。指定された領域と、陸から の距離が同じで、同じ海区である部分を属性検索又は空間検索する (ここでの検索 に関し検索手段 22を用いてもよい)。検索結果となる領域を類似領域として類似領 域検出手段は出力し、表示部 30に表示する。力かる類似領域に関しては、既に学習 した-ユーラノレネットワークを用いることができるため、学習セットを入力した学習が不 要であり、推定に用いる観測データを地理情報システムに入力することで推定を実施 することができる。したがって、学習時間を大幅に低減することができる。  The operation of the similar area detection means is started by the user designating the learned area and instructing the detection of the similar area through the input unit 40. An attribute search or a spatial search is performed for a part having the same area as the designated area and the same area from the land (the search means 22 may be used for the search here). The similar area detection means outputs the area as the search result as the similar area and displays it on the display unit 30. With regard to the strongly similar area, already learned-since the Euranole network can be used, learning that inputs the learning set is unnecessary, and estimation is performed by inputting observation data used for estimation into the geographic information system. can do. Therefore, the learning time can be significantly reduced.
[0074] 例えば、図 12に示す教師セットを利用した学習済みの領域 aがある場合に使用者 力かかる位置を指定して類似領域検出を行った場合には、まず、学習済み領域を包 含する領域に対して類似領域 bを検出し、さらに、福岡沖だけでなぐ宫崎沖も検出 条件に合致すれば類似領域 cとして検出されることになる。  For example, when similar region detection is performed by specifying the position where the user needs to work when there is a learned region a using the teacher set shown in FIG. 12, the learned region is first included. The similar region b is detected for the region to be detected, and further, the coast of Kashiwazaki, which is only off Fukuoka, will be detected as the similar region c if the detection conditions are met.
[0075] そして、類似領域として検出された領域に対して、観測データがない場合には人工 衛星を用いて観測データを収集し、観測データがある場合にはデータベース 10から 読み出して、前記定義済み処理推定 (ステップ 300)を実施することで、類似領域の 海表面温度を求めることができる。海表面温度を求めて画像ィ匕し類似領域部分に対 しても海表面温度の分布図を完成させる。これらの一連の動作は、使用者から検出 条件の指定を受けた後は、全て自動化で行うことが望ましい。この構成によれば、使 用者は検出条件を指定した後は、何もしなくとも、求め得る領域に関しては海表面温 度を取得することができる。逆に、海表面温度を取得することができない部分があれ ば、力かる部分に対して学習を行わせるべく教師セットを用意し、学習させ使用者が 検出条件を指定し、前記と同様に、求め得る部分に関して海表面温度を取得するこ とができる。ここで、このような一連の動作を繰り返すことで、ある重みの-ユーラルネ ットワークと他の重みの-ユーラルネットワークとが重複部分に関してそれぞれ海表面 温度を求めてしまうことがある。この場合には、既に求めている部分に関しては海表 面温度を求めな 、ようにすることができる他、画像処理分野で用いられるフィルタ行 列又は加重平均フィルタ行列を適用し、取得される海表面温度の分布図を滑らかな 画像とすることができる。そして、求めた海表面温度の分布図から逆に買い表面温度 の値を求めることもできる。 Then, for the area detected as a similar area, observation data is collected using an artificial satellite when there is no observation data, and when there is observation data, it is read from the database 10, By performing processing estimation (step 300), the sea surface temperature in the similar area can be determined. Determine the sea surface temperature, and complete the sea surface temperature distribution map for the image and similar area part. It is desirable that all of these series of operations be performed by automation after receiving a detection condition from the user. According to this configuration, After specifying the detection conditions, the user can acquire the sea surface temperature for the area that can be obtained without doing anything. Conversely, if there is a part where sea surface temperature can not be acquired, a teacher set is prepared to perform learning on the powerful part, the user learns, and the user specifies the detection condition, and the same as above, The sea surface temperature can be obtained for the required part. Here, by repeating such a series of operations, the sea surface temperature may be obtained for each of the overlapping portions of one weight-the Euler network and the other weights-the Euler network. In this case, it is possible not to determine the sea surface temperature for the part already obtained, but also to apply the filter matrix or the weighted average filter matrix used in the image processing field to obtain the sea. The distribution map of surface temperature can be made into a smooth image. And from the distribution map of the sea surface temperature, it is also possible to obtain the value of the surface temperature in reverse.
類似領域検出手段の検出条件を緩くすれば誤差が大きくなり精度が低くなり、検出 条件を厳しくすれば誤差が小さくなり精度が高くなる。すなわち、検出条件と精度との 間にはトレードオフの関係が成立している。  If the detection condition of the similar area detection means is relaxed, the error will be large and the accuracy will be low. If the detection condition is strict, the error will be small and the accuracy will be high. That is, there is a trade-off between the detection condition and the accuracy.
[0076] 以上類似領域検出手段で説明した検出条件は、属性検索又は空間検索の検索条 件指定で同様なことが行われており、地理情報システムにお 、ては周知な技術であ り、詳細な説明は略しているが、当業者で明らかであるように様々な指定を使用者が 行うように構成することができる。また、フィルタ行列及び加重平均フィルタ行列による 画像処理も、周知な技術であり、詳細な説明は略しているが、当業者で明らかである ように様々なフィルタ処理を適用することができる。  The detection conditions described above in the similar area detection means are similar to the search conditions specified in the attribute search or the spatial search, and are known techniques in the geographic information system, Although a detailed description is omitted, various designations can be made for the user to make as will be apparent to those skilled in the art. Also, image processing with a filter matrix and a weighted average filter matrix is a well-known technique, and although detailed description is omitted, various filtering processes can be applied as will be apparent to those skilled in the art.
[0077] [検出対象]  [Detection target]
なお、本実施形態では、同じ海区であるか否かを検出条件としているため、日本国 内でのみの使用に制限される力 陸からの距離が同じで、類似する海流であることを 検出条件とすれば全世界に類似領域検出を拡大することができる。  In the present embodiment, since the detection condition is the same area or not, the detection condition is limited to the use only in Japan, and the distance from the land is the same, and the detection condition is that the currents are similar. If so, similar region detection can be extended to the whole world.
[SST以外への適用]  [Application to other than SST]
また、本実施形態では、 SSTについて限定して説明している力 類似領域は SSTに 限ったことではなぐ検出するための空間データがデータベース 10に記録されており 、検出条件が確立されていれば、類似領域を検出することは容易に行うことができる [0078] [学習済みでな!、位置又は領域の指定] Further, in the present embodiment, if the force-like area limitedly described with respect to SST is limited to SST, spatial data to be detected is recorded in the database 10 if detection conditions are established. Detecting similar regions can be done easily [Not Learned !, Specifying a Position or an Area]
また、本実施形態では、既に学習済みの領域に関して類似領域検出を実施すると の説明を行ったが、学習済みでない領域に関しても類似領域検出を実施することも できる。力かる場合には、類似領域の総面積が大きいところ力も順に、学習を行って V、くことで効率良く推定システムを構築することができる。  Further, in the present embodiment, although the explanation has been made that the similar area detection is performed on the already learned area, the similar area detection can also be performed on the non-learned area. In the case where the total area of the similar area is large, if the force is large, the estimation system can be efficiently constructed by performing learning V in order.
また、本実施形態では、類似領域を類似領域検出手段にて検出しているが、学習 して 、な 、ある位置又は領域を指定した場合に、力かる位置又は領域と既に学習済 みの位置又は領域とが検出条件が合致する力否かを判断することもでき、使用者が 必要としている位置又は領域のみに対して既に学習済みの位置又は領域の重みを 適用することができ、余分な学習をすることなぐ所望の位置又は領域の推定を実施 することができる。  Further, in the present embodiment, the similar area is detected by the similar area detection means, but when learning is performed, when a certain position or area is designated, the position or area to be touched and the position already learned are already detected. Or, it is possible to judge whether the area and the force match the detection condition, and it is possible to apply the weight of the already learned position or area only to the position or area needed by the user. An estimate of the desired location or area without learning can be performed.
[0079] [CPU使用率の低い場合に検出] [Detected when CPU usage is low]
また、本実施形態では、類似領域検出を CPU使用率の低い場合にバックグランドで 実施することもできる。類似領域検出の対象領域が広い場合には検出のための処理 量が過大となるため、バックグラウンドで適宜行うことで円滑に類似領域を検出可能と している。一般的に、地理情報システムの動作は高負荷であるため、 CPU使用率の 低い場合に、類似領域検出を行うことが好ましい。  In the present embodiment, similar area detection can also be performed in the background when the CPU usage rate is low. When the target area for similar area detection is wide, the amount of processing for detection becomes excessive, so that the similar area can be detected smoothly by appropriately performing the process in the background. Generally, it is preferable to perform similar area detection when the CPU utilization is low because the operation of the geographic information system is high load.
[時系列の変化が等価である場合の検出]  [Detection when changes in time series are equivalent]
また、本実施形態では、検出条件として具体的に SST場合について述べたが、時系 列で同じ変化をしている領域同士は類似領域としてみなすこともできる場合が多い。 SSTの場合であっても、入力データとなる観測データ又は教師データが時間経過に 伴う変化が同じである場合には、類似領域として検出することが可能となる。  Further, in the present embodiment, the SST case is specifically described as the detection condition, but regions having the same change in time series can often be regarded as similar regions. Even in the case of SST, if the observation data or teacher data to be input data has the same change over time, it can be detected as a similar area.
[0080] [検出条件の指定支援] [Support for Specification of Detection Condition]
使用者が空間データ中の設定可能な条件力 検出条件を設定するとしたが、どの ような属性データ又は地図データに対してどのような設定を行うことができるかは、デ ータベース 10にどのようなデータが記録されているかを知る必要があり、熟練者でな ければ設定が困難である。そこで、使用者が指定した位置又は領域に関してデータ ベース 10中にどのようなデータが記録されているかを選択可能に提示し、選択され たものに対しては条件を入力又は選択できる構成にする。例えば、データの属性を 示し、それぞれの属性名の横位置にチェックボックスを配置し、チェックボックスを有 効にすることで、テキストボックス又はプルダウンメニューが現れるウィンドウの構成と することができる(他の対話部品(Dialog Parts)を使用しても良い。 )0そうすると、本シ ステムを利用し始めた初心者の使用者や分析対象とする位置又は領域にどのような データがデータベース 10内に記録されているかを知らない使用者であっても、検出 条件を容易に設定することができ、類似領域検出を円滑に行うことができる。 Although it has been stated that the user sets a settable condition detection condition in the spatial data, what setting can be made for what attribute data or map data can be set in the database 10. It is necessary to know if the data is recorded, and it is difficult to set it up unless you are an expert. Therefore, data on the position or area specified by the user It is possible to selectably present what kind of data is recorded in the base 10, and to be able to input or select conditions for the selected one. For example, a text box or a pull-down menu can be configured as a window in which a text box or a pull-down menu appears by designating an attribute of data, placing a check box next to each attribute name, and activating the check box. Dialog Parts may be used.) 0 ) If so, what kind of data is recorded in the database 10 at the user or the position or area to be analyzed of the beginner who has started to use this system. Even a user who does not know the presence can easily set the detection conditions and can perform similar area detection smoothly.
[0081] [類似領域の確認処理]  [Confirmation process of similar area]
使用者が検出条件を設定する場合には使用者の優れた見識が必要となる場合が 多い。したがって、使用者が設定した検出条件が適切で、類似領域として正しいのか 否かを確認する術が必要となる。この確認方法としては、類似領域が複数の閉じた領 域である場合には、各類似領域上のある位置の教師セットを使用者に求め、入力さ れた教師セットの入力データで推論し、出力データと教師セットの教師データの差が 所定の閾値内であれば類似領域としてみなすようにすることができる。逆に、閾値外 であれば類似領域としてみなさず、使用者に現在の検出条件が適切でないことを報 知する。類似領域が大きな一つの閉じた領域である場合には、例えば、類似領域を 碁盤目をあて格子点又は格子中央をサンプルポイントとして求め、かかるサンプルポ イントの教師セットを使用者に求め、入力された教師セットに基づき前記と同様に確 認することができる。このような少ないサンプルポイントで確認し、類似領域であるか 否かを判断することで、適切な類似領域を検出することができる。  When the user sets the detection conditions, the user's excellent insight is often required. Therefore, it is necessary to make sure that the detection conditions set by the user are appropriate and whether they are correct as similar areas. As this confirmation method, when the similar area is a plurality of closed areas, the user is asked for a teacher set at a certain position on each similar area, and inference is made using the input data of the teacher set, If the difference between the output data and the teacher data of the teacher set is within a predetermined threshold, it can be regarded as a similar area. Conversely, if it is outside the threshold, it is not regarded as a similar area, and the user is informed that the current detection condition is not appropriate. When the similar area is one large closed area, for example, the similar area is applied to the grid to obtain the grid point or the grid center as a sample point, and a teacher set of such sample points is obtained from the user and input. It can be confirmed in the same manner as above based on the teacher set. An appropriate similar area can be detected by confirming with such small sample points and judging whether it is a similar area or not.
[0082] 以上の前記各実施形態により本発明を説明したが、本発明の技術的範囲は実施 形態に記載の範囲には限定されず、これら各実施形態に多様な変更又は改良を加 えることが可能である。そして、力 うな変更又は改良を加えた実施の形態も本発明 の技術的範囲に含まれる。このことは、特許請求の範囲及び課題を解決するための 手段からも明らかなことである。  Although the present invention has been described by the above respective embodiments, the technical scope of the present invention is not limited to the scope described in the embodiments, and various changes or improvements may be added to the respective embodiments. Is possible. Also, embodiments to which various changes or improvements are added are also included in the technical scope of the present invention. This is also apparent from the scope of claims and the means for solving the problems.
実施例  Example
[0083] [ニューラルネットワーク機能を備えた地理情報システム (NN— GIS)による時空間適 応型海面温度推定パラメータの自動推定] [Temporal-Spatial Adaptation by Geographic Information System (NN—GIS) with Neural Network Function Automatic Estimation of Response Sea Surface Temperature Estimation Parameters]
海面温度推定に最適な海面温度推定式の係数は海域、季節により異なり、すべて の海域、季節に適合する海面温度推定式による高精度な推定は不可能である。一 方、地理情報システムは、複数の位置情報に関連付けられた地形図、主題図等との 重ね合わせ表示が可能であり、かつ、空間検索、定量解析、シミュレーションが可能 であると云う特徴を有する。特に、地理情報システムの、各層間を重み係数にて結合 することにより、これを階層型-ユーラルネットワークとして捉えることができる。これを ニューラルネットワーク地理情報システム (NN— GIS)と呼ぶ。このこと力ら、地理情報 システムの入力層に AVHRRのバンド 4、 5等の海面温度推定に必要な入力を設定し、 また、出力層に正解値としてのトルースデータ (各海域にて得られたブイデータ等)を 設定することにより、各海域に最適な重み係数が求められ、これを用いてその周辺海 域のすべてのデータに対する海面温度推定を行うことができるようになる。また、海面 温度の時間変化が急峻な沿岸海域では時間帯毎の、また、外洋の海面温度のよう に時間変化が緩やかな場合は、季節毎の推定式を求めておけば、時空間適応型の 海面温度推定式を自動生成することができる。具体的な使用方法は、次の通りであ る。  The coefficients of the sea surface temperature estimation equation optimal for sea surface temperature estimation differ depending on the sea area and the season, and accurate estimation using the sea surface temperature estimation equation compatible with all sea areas and seasons is impossible. On the other hand, the geographic information system is capable of displaying superimposed maps with topographic maps, thematic maps, etc. associated with a plurality of position information, and has the feature that spatial search, quantitative analysis and simulation are possible. . In particular, by connecting each layer of the geographic information system with a weighting factor, this can be regarded as a hierarchical-eural network. This is called neural network geographic information system (NN-GIS). Due to this, input necessary for estimating the sea surface temperature of AVHRR band 4, 5 etc. is set in the input layer of the geographic information system, and the truth data as the correct value in the output layer (Truss data obtained in each sea area By setting buoy data, etc.), it is possible to determine the optimal weight coefficient for each sea area, and use it to estimate sea surface temperature for all data in the surrounding sea area. In the coastal area where the time change of sea surface temperature is steep, if the time change is slow for each time zone, or if the time change is slow like the sea surface temperature of the open ocean, then a season-by-season estimation formula can be obtained. The sea surface temperature estimation formula can be generated automatically. The specific usage is as follows.
NN一 GISの入力層に AVHRRデータを設定し、表示する。当該海域にて得られて V、るトルースデータを出力層に設定する。上述のデータにより NN— GISの重み係数を 学習させる。トルースデータのある位置を含む周辺海域の海面温度推定を推定する 。海域を変え、また、取得 AVHRRの時間帯、季節を変え、上述の手順を繰り返す。こ れにより、すべての時間、海域に最適な海面温度推定ができるようになる。  NN 1 Set AVHRR data in the input layer of GIS and display it. Set V, ト truth data obtained in the relevant sea area to the output layer. Train the NN-GIS weighting factor from the above data. Estimate the sea surface temperature of the surrounding sea area including the location of the truth data. Change the sea area and change the time zone and season of the acquisition AVHRR and repeat the above procedure. This will enable us to estimate the sea surface temperature that is optimal for all time and area.
[実験]  [Experiment]
NN- GISの機能を確認するため、 2002年 5月 20日 17時 11分のデータと、 2004年 11月 30日 16時 45分のデータを使用した。なお、実際には、メイン部分以外のモジュールを 地理情報システムのメイン又はモジュールが呼び出す構成となる。  In order to confirm the function of NN-GIS, the data on May 20, 2005 at 17:11 and the data on November 30, 2004 at 16:45 were used. Actually, the main or module of the geographic information system calls modules other than the main part.
2002年 5月 20日のデータと出力結果は図 13ないし図 15のようになる。 5月 20日 のデータはチャンネル 4 (図 13)とチャンネ 5 (図 14)の画像、そして、正解値とする MCSST (図 15)のそれぞれ小倉沖の (289,126)から 16*16の画素を取り出して、以下 の教師セット(表 2)に基づいて計算する。その出力の二乗誤差は(図 16)で示される [0085] [表 2] The data and output results for May 20, 2002 are as shown in Figures 13-15. The data for May 20 takes the image of channel 4 (Fig. 13) and channel 5 (Fig. 14), and 16 * 16 pixels from (289, 126) off Ogura of MCSST (Fig. 15) as the correct value. ,Less than Calculated based on the teacher set (Table 2). The squared error of its output is shown in (Figure 16) [Table 2]
(2002年 5月 20日小倉沖のデータによる教師セット) (Teacher set based on data from Ogura off May 20, 2002)
Figure imgf000028_0002
Figure imgf000028_0002
[0086] レイヤー数 INPUT=2 HIDDEN=2 OUTPUT=l PATTERN=25 eta=2.4  Number of Layers INPUT = 2 HIDDEN = 2 OUTPUT = l PATTERN = 25 eta = 2.4
alpha=0.8beta=0.8ここで、 eta,alphaは、それぞれ、最急降下法の重み係数を更新す る際の係数であり、  alpha = 0.8 beta = 0.8 where eta and alpha are coefficients for updating the steepest descent weighting coefficient, respectively
[数 16]  [Equation 16]
dw ί ( i * d
Figure imgf000028_0001
1 ! · · · · ( 1 6 ) のように次に進む解の空間における距離 (変分)を現在の重み係数の変分と前回の 重み係数の変分に etaおよび alpha倍して求めている。また、 betaは、出力層におけ る非線形関数 (シグモイド)であり、 1.0=(1.0+eXp(-beta*u》で定義している。
d w ί (i * d
Figure imgf000028_0001
Find the distance (variation) in the solution space to advance to the next solution by multiplying the variation of the current weighting factor and the variation of the previous weighting factor by eta and alpha There is. Further, beta is a non-linear function (sigmoid) in the output layer, and is defined by 1.0 = (1.0 + eX p (-bet a * u).
[0087] 図 16では、 100000回までに最大 2.8への急激な上昇と減少がある。 200000回ま で 0.01程度の一定の状態が続き、以降、緩やかに減少する。 700000回までには十 分収束する。 [0087] In FIG. 16, there are sharp increases and decreases up to 2.8 by 100,000 times. The constant state of about 0.01 continues up to 200,000 times, and then gradually decreases. It converges sufficiently by 700,000 times.
また、それぞれ宫崎沖の (375,325)から 16*16の画素を取り出して、次の教師セット (表 5)に基づいて計算する。その出力の二乗誤差は図 17で示される。 [0088] [表 3] Also, take 16 * 16 pixels from (375, 325) off Amagasaki, and calculate based on the following teacher set (Table 5). The squared error of the output is shown in FIG. [Table 3]
(2002 5 月 20 日の宮崎沖のデータによる教師セット) (Teacher set based on the data off Miyazaki, May 20, 2002)
Figure imgf000029_0001
Figure imgf000029_0001
[0089] 図 17では、他のデータに比べて収束が非常に早ぐ 30000回程度で十分収束する 。その後も誤差の上昇は見られず、非常に安定している。  [0089] In FIG. 17, the convergence is sufficiently fast in about 30,000 times as compared with other data. There is no further rise in the error after that and it is very stable.
一方、まず、 2004年 11月 30日のデータと出力結果は図 18ないし図 20のようにな る。チャンネル 4 (図 18)とチャンネ 5 (図 19)の画像、そして、 MCSST (図 20)のそれ ぞれ小倉沖の (235, 173)から 16*16の画素を取り出して、(表 4)の教師セットを基に計 算し、出力の二乗誤差は (図 21)で示される。 On the other hand, first, the data and output results on November 30, 2004 are as shown in Figure 18 to Figure 20. Ru. The image of channel 4 (Fig. 18) and channel 5 (Fig. 19), and the teacher of (Table 4) taking 16 * 16 pixels from (235, 173) off Ogura in MCSST (Fig. 20) respectively. Calculated based on the set, the squared error of the output is shown in (Figure 21).
[0090] [表 4] [Table 4]
Figure imgf000030_0001
Figure imgf000030_0001
[0091] INPUT=2 HIDDEN=2 OUTPUT=l PATTERN=22 eta=2.4 alpha=0.8 beta=0.8 図 21では、しばらく誤差は小さぐ急激に 0.1まで上昇した後、最大で 0.015まで緩 やかに上昇する。以降は 400000回までに滑らかに減少し、十分収束する。 [0091] INPUT = 2 HIDDEN = 2 OUTPUT = 1 PATTERN = 22 eta = 2.4 alpha = 0.8 beta = 0.8 In Fig. 21, the error slightly decreases for a while and then rises rapidly to 0.1 and then gradually rises up to 0.015 at the maximum. Do. After that, it decreases smoothly to 400,000 times and converges sufficiently.
また、それぞれ宫崎沖の (335,380)から 16*16の画素を取り出して、表 5の教師セッ トを計算し、出力の二乗誤差は図 22で示される。  In addition, taking 16 * 16 pixels from (335, 380) off Kashiwazaki, respectively, the teacher set in Table 5 is calculated, and the squared error of the output is shown in FIG.
[0092] [表 5] [Table 5]
Figure imgf000031_0001
Figure imgf000031_0001
Figure imgf000031_0003
Figure imgf000031_0003
(4
Figure imgf000031_0002
OC n由 too
(Four
Figure imgf000031_0002
OC n too too
0TC800/S00idf/X3d 63 1^_0Ζΐ/900Ζ O 図 22では、最大誤差 0.47以降急速に収束する。しかし、このデータの場合、十分な 収束には、もっとも時間がかかる。 0TC800 / S00idf / X3d 63 1 ^ _0Ζΐ / 900Ζ O In Fig. 22, the error converges rapidly after the maximum error of 0.47. However, with this data, sufficient convergence takes the most time.
[0093] [考察] [Consideration]
前章の実験結果から、各海域及び各時期によって取り出される教師セットや誤差の 収束の変移が異なることが示される。また、いずれの実験結果も、学習の繰り返しに より、二乗誤差は十分に減少する。よって、 NN-GISにより、各海域及び各時期にお V、て最適な SST推定式が自動的かつ容易に求められることがわかる。  The results of the experiment in the previous chapter show that the transition of convergence of the set of teachers and the error that are extracted differ depending on each sea area and each period. Also, in any of the experimental results, the square error is sufficiently reduced by the repetition of learning. Therefore, it can be understood that the optimal SST estimation formula can be automatically and easily determined by NN-GIS in each sea area and each period.
学習における教師データは、漁船に衛星データ受信装置を設置することにより、現 場で測定することが可能である。取得した教師データと衛星観測データによって、当 該海域及び当該時期に最適な推定式を容易に得られる。  Teacher data in learning can be measured on site by installing a satellite data receiver on a fishing boat. Based on the acquired teacher data and satellite observation data, it is possible to easily obtain the estimation formula that is optimal for the relevant area and the relevant period.
各海域ごとの気候条件、地理条件といった地理情報を入力データに加え、類似す る海域ごとに-ユーラルネットワークの学習データを効率的に利用することができる。 観測データの不足する海域にぉ 、ても、他の海域の観測データを利用して推定値の シミュレーションが可能になる。  Geographic information such as climatic conditions and geographical conditions for each sea area can be added to the input data, and learning data of the eural network can be efficiently used for each similar sea area. Even in areas where observation data are lacking, it is possible to simulate estimated values using observation data from other areas.
[0094] 今回は、物理量として海面温度を例として NN-GISの効果を示した力 他の植生や 大気中の化学物質含有率等の物理量でも同様に最適の物理量推定式を導出でき、 様々な気象観測や環境問題等の地球観測に応用が可能である。 This time, the power that showed the effect of NN-GIS, taking the sea surface temperature as an example of physical quantity, can derive the optimum physical quantity estimation formula similarly with other vegetation and physical quantities such as chemical substance content in the atmosphere. Application to earth observation such as meteorological observation and environmental problems is possible.
図 23ないし図 29に本実施例で用いたプログラムリストを示す。  23 to 29 show program lists used in this embodiment.

Claims

請求の範囲 The scope of the claims
[1] 位置に関する情報を持ったデータである空間データを記録する記録部と、当該記録 部の空間データを分析する分析手段とを備え、  [1] A recording unit for recording spatial data, which is data having information on position, and analysis means for analyzing the spatial data of the recording unit,
分析手段において、入力層に教師セットの入力データを読み込み、前向き演算さ せ、演算結果の出力層の出力データと教師セットの教師データとにより後ろ向き演算 して学習させることで位置毎に構築される-ユーラルネットワークの入力層に、入力デ ータを読み込み、読み込んだ入力データの推定結果を求める-ユーラルネットワーク を用いた地理情報システム。  In the analysis means, the input data of the teacher set is read into the input layer, and forward calculation is performed, and it is constructed for each position by learning backward with the output data of the output layer of the calculation result and the teacher data of the teacher set. -Read input data into the input layer of the eural network and obtain estimation results of the read input data.-Geographical information system using the eural network.
[2] 時空間検索を行う時空間検索手段を備え、  [2] A space-time search means for performing space-time search is provided,
ある位置のある時期の推定を、昨年以前の同一位置の同一時期の重みを用いて 推定する  Estimate the time of a certain position using the same time weight of the same position before last year
前記請求項 1に記載の-ユーラルネットワークを用いた地理情報システム。  A geographic information system using a eural network according to claim 1.
[3] 使用者が指定する検出条件に合致した領域を類似領域として検出する類似領域検 出手段を備え、前記記録部に検出条件の対象とするデータを空間データとして記録 し、 [3] A similar area detection means for detecting an area meeting the detection condition specified by the user as a similar area is provided, and the recording section records data targeted for the detection condition as spatial data.
類似領域の一部が既に学習済みとなっている場合に、学習済みで既に構築されて いる-ユーラルネットワークを用いて類似領域内の他の部分に対して推定する 前記請求項 1に記載の-ユーラルネットワークを用いた地理情報システム。  If a part of the similar area has already been learned, it is already learned and has already been constructed-estimation is performed on other parts in the similar area using the Euler network. -Geographic information system using eural network.
[4] 前記類似領域を検出するための検出条件を調整することができる [4] The detection condition for detecting the similar area can be adjusted
前記請求項 3に記載の-ユーラルネットワークを用いた地理情報システム。  A geographic information system using a eural network according to claim 3.
[5] 求めた各類似領域カゝら少なくとも 1つのサンプルポイントを検出し、サンプルポイント に対する教師セットの入力を受け、入力された教師セットの入力データに対して既に 構築されて 、る-ユーラルネットワークを用いて推論を行 、、出力データと教師セット の教師データを比較し、その誤差が閾値内である力否かにより類似領域とみなすか 否かを決定する [5] Detect each at least one sample point of each similar region found, receive teacher set input for sample point, and have already been constructed for input teacher set input data-Ural Make an inference using a network, compare the output data with the teacher data of the teacher set, and decide whether or not to consider as a similar area depending on whether the error is within the threshold or not.
前記請求項 3に記載の-ユーラルネットワークを用いた地理情報システム。  A geographic information system using a eural network according to claim 3.
[6] 人工衛星によるリモートセンシングにより得られる位置と対応付いた遠赤外線画像を 空間データとして記録する記憶部と、当該記憶部の空間データを分析する分析手段 とを備え、 [6] A storage unit for recording, as spatial data, a far-infrared image corresponding to a position obtained by remote sensing by a satellite, and an analysis means for analyzing the spatial data of the storage unit Equipped with
分析手段において、入力層にある位置の遠赤外線画像を与え、前向き演算させ、 演算結果の出力層の海表面温度と教師データとなる海表面温度とにより後ろ向き演 算して学習させることで位置毎に構築される-ユーラルネットワークの入力層に、遠赤 外線画像を入力し、入力した遠赤外線画像の海表面温度を求める-ユーラルネット ワークを用いた地理情報システム。  In the analysis means, a far infrared image of the position at the input layer is given, and forward calculation is performed, and learning is performed backward by learning from the sea surface temperature of the output layer of the calculation result and the sea surface temperature serving as teacher data. To be built in-to input the far-infrared image to the input layer of the eural network, and find the sea surface temperature of the input far-infrared image-the geographic information system using the eural network.
[7] 入力される遠赤外線画像が周波数帯域の異なる同一位置の 2つの遠赤外線画像で あり、教師データが遠赤外線画像と同一位置の海表面温度の実測データ又は衛星 観測データである [7] The input far-infrared image is two far-infrared images at the same position in different frequency bands, and the teacher data is the measured data of the sea surface temperature at the same position as the far-infrared image or satellite observation data
前記請求項 6に記載の-ユーラルネットワークを用いた地理情報システム。  A geographic information system using a eural network according to claim 6.
[8] 使用者が指定した位置と検出条件が合致する位置があった場合に、既に学習済み の位置の-ユーラルネットワークの推定を利用して海表面温度を求める [8] When there is a position where the user specified position and the detection condition match, the sea surface temperature is obtained using the already-learned position-Eural network estimation.
前記請求項 6に記載の-ユーラルネットワークを用いた地理情報システム。  A geographic information system using a eural network according to claim 6.
[9] 位置に関する情報を持ったデータである空間データを記録する記録部の空間データ を分析する地理情報システムに適用する方法であって、 [9] A method applied to a geographic information system for analyzing spatial data of a recording unit for recording spatial data, which is data having information on position,
入力層に教師セットの入力データを読み込み、前向き演算させる工程と、当該前向 き演算させる工程の演算結果である出力層の出力データと教師セットの教師データ とにより後ろ向き演算して学習する工程と、当該学習する工程後入力層に入力デー タを読み込み、推定結果を求める工程とを含む方法。  Reading the input data of the teacher set to the input layer, performing a forward operation, and performing the backward operation and learning with the output data of the output layer, which is the calculation result of the forward operation, and the teacher data of the teacher set Reading the input data into the post-process input layer to be learned, and determining an estimation result.
[10] プロセッサが、位置に関する情報を持ったデータである空間データを記録する記録 部の空間データを分析する地理情報プログラムであって、 [10] A geographic information program in which a processor analyzes spatial data of a recording unit that records spatial data, which is data having information on position,
プロセッサが、入力層に教師セットの入力データを読み込み、前向き演算させる手 順と、プロセッサが、当該前向き演算させる手順の演算結果である出力層の出力デ ータと教師セットの教師データとにより後ろ向き演算して学習する手順と、プロセッサ 力 当該学習する手順後入力層に入力データを読み込み、推定結果を求める手順 とを実行する地理情報プログラム。  The processor reads the input data of the teacher set in the input layer and performs forward operation, and the processor returns the output data of the output layer which is the operation result of the forward operation and the teacher data of the teacher set. A geographic information program that executes a procedure for computing and learning, and a procedure for reading the input data to the input layer after the procedure.
PCT/JP2005/008310 2005-05-02 2005-05-02 Geographic information system using neural networks WO2006120724A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2005/008310 WO2006120724A1 (en) 2005-05-02 2005-05-02 Geographic information system using neural networks
JP2007526717A JP4719893B2 (en) 2005-05-02 2005-05-02 Control device, control method, and program thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/008310 WO2006120724A1 (en) 2005-05-02 2005-05-02 Geographic information system using neural networks

Publications (1)

Publication Number Publication Date
WO2006120724A1 true WO2006120724A1 (en) 2006-11-16

Family

ID=37396248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008310 WO2006120724A1 (en) 2005-05-02 2005-05-02 Geographic information system using neural networks

Country Status (2)

Country Link
JP (1) JP4719893B2 (en)
WO (1) WO2006120724A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102955878A (en) * 2012-09-05 2013-03-06 环境保护部卫星环境应用中心 Inland water body optical classification method based on medium-resolution imaging spectrometer (MERIS) full-resolution image data
CN107179145A (en) * 2017-07-01 2017-09-19 淮阴师范学院 Marine surface temperature drifting buoy point observation space representativeness evaluation algorithms
US11074479B2 (en) 2019-03-28 2021-07-27 International Business Machines Corporation Learning of detection model using loss function
JPWO2021181585A1 (en) * 2020-03-11 2021-09-16
CN113642764A (en) * 2021-06-30 2021-11-12 重庆大学 Village and town settlement space evolution simulation prediction method and computer equipment
US11238282B2 (en) 2019-06-07 2022-02-01 Pictometry International Corp. Systems and methods for automated detection of changes in extent of structures using imagery
US11392625B2 (en) * 2016-06-27 2022-07-19 Omniearth, Inc. Systems and methods for utilizing property features from images
US11527024B2 (en) 2019-09-25 2022-12-13 Pictometry International Corp. Systems and methods for creating automated faux-manual markings on digital images imitating manual inspection results
US11734560B2 (en) 2017-08-31 2023-08-22 Omniearth, Inc. Systems and methods for automatic estimation of object characteristics from digital images
US11776104B2 (en) 2019-09-20 2023-10-03 Pictometry International Corp. Roof condition assessment using machine learning

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102661811B (en) * 2012-04-13 2013-11-20 北京农业信息技术研究中心 Remote sensing earth surface temperature up-scaling method and system
US11694354B2 (en) 2019-10-18 2023-07-04 Pictometry International Corp. Geospatial object geometry extraction from imagery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048878A (en) * 2000-08-02 2002-02-15 Nagoya Electric Works Co Ltd Method and device for predicting road-surface temperature or road-surface state
JP2002312760A (en) * 2001-04-09 2002-10-25 Earth Weather:Kk Water temperature drawing preparation method and system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048878A (en) * 2000-08-02 2002-02-15 Nagoya Electric Works Co Ltd Method and device for predicting road-surface temperature or road-surface state
JP2002312760A (en) * 2001-04-09 2002-10-25 Earth Weather:Kk Water temperature drawing preparation method and system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HONJO T. ET AL.: "Neural Network no Remoto Sensing eno Oyo", THE REMOTE SENSING SOCIETY OF JAPAN DAI 8 KAI GAKUJUTSU KOENKAI RONBUNSHU, THE REMOTE SENSING SOCIETY OF JAPAN, December 1988 (1988-12-01), pages 19 - 22, XP003005261 *
KUSHARDONO D. ET AL.: "Back-Propagation o Mochiita Multiband Eisei Gazo Bunrui", THE REMOTE SENSING SOCIETY OF JAPAN DAI 17 KAI GAKUJUTSU KOENKAI RONBUNSHU, THE REMOTE SENSING SOCIETY OF JAPAN, 30 November 1994 (1994-11-30), pages 95 - 96, XP003005259 *
TSURUTA N. ET AL.: "Neural Network o Mochiita Landsat Gazo Kaiseki no Kokoromi", INFORMATION PROCESSING SOCIETY OF JAPAN, DAI 38 KAI (SHOWA 64 NEN ZENKI) ZENKOKU TAIKAI KOEN RONBUNSHU, INFORMATION PROCESSING SOCIETY OF JAPAN, vol. 38TH, no. 1, 15 March 1999 (1999-03-15), pages 204 - 205, XP003005260 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102955878B (en) * 2012-09-05 2015-07-29 环境保护部卫星环境应用中心 Based on the Inland Water optics sorting technique of MERIS full resolution image data
CN102955878A (en) * 2012-09-05 2013-03-06 环境保护部卫星环境应用中心 Inland water body optical classification method based on medium-resolution imaging spectrometer (MERIS) full-resolution image data
US11392625B2 (en) * 2016-06-27 2022-07-19 Omniearth, Inc. Systems and methods for utilizing property features from images
CN107179145A (en) * 2017-07-01 2017-09-19 淮阴师范学院 Marine surface temperature drifting buoy point observation space representativeness evaluation algorithms
US11734560B2 (en) 2017-08-31 2023-08-22 Omniearth, Inc. Systems and methods for automatic estimation of object characteristics from digital images
US11120305B2 (en) 2019-03-28 2021-09-14 International Business Machines Corporation Learning of detection model using loss function
US11074479B2 (en) 2019-03-28 2021-07-27 International Business Machines Corporation Learning of detection model using loss function
US11238282B2 (en) 2019-06-07 2022-02-01 Pictometry International Corp. Systems and methods for automated detection of changes in extent of structures using imagery
US11699241B2 (en) 2019-06-07 2023-07-11 Pictometry International Corp. Systems and methods for automated detection of changes in extent of structures using imagery
US11776104B2 (en) 2019-09-20 2023-10-03 Pictometry International Corp. Roof condition assessment using machine learning
US11527024B2 (en) 2019-09-25 2022-12-13 Pictometry International Corp. Systems and methods for creating automated faux-manual markings on digital images imitating manual inspection results
WO2021181585A1 (en) * 2020-03-11 2021-09-16 株式会社Synspective Analysis device, analysis method, and analysis program
JPWO2021181585A1 (en) * 2020-03-11 2021-09-16
JP7430008B2 (en) 2020-03-11 2024-02-09 株式会社Synspective Analysis equipment, analysis method and analysis program
CN113642764A (en) * 2021-06-30 2021-11-12 重庆大学 Village and town settlement space evolution simulation prediction method and computer equipment
CN113642764B (en) * 2021-06-30 2023-08-29 重庆大学 Village and town aggregation space evolution simulation prediction method and computer equipment

Also Published As

Publication number Publication date
JPWO2006120724A1 (en) 2008-12-18
JP4719893B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
WO2006120724A1 (en) Geographic information system using neural networks
Callens et al. Using Random forest and Gradient boosting trees to improve wave forecast at a specific location
Han et al. Convolutional neural network for convective storm nowcasting using 3-D Doppler weather radar data
Bihlo A generative adversarial network approach to (ensemble) weather prediction
Atkinson Issues of uncertainty in super-resolution mapping and their implications for the design of an inter-comparison study
Raje et al. A comparison of three methods for downscaling daily precipitation in the Punjab region
Tang et al. Spatio‐temporal urban landscape change analysis using the Markov chain model and a modified genetic algorithm
CN111639787A (en) Spatio-temporal data prediction method based on graph convolution network
Carreau et al. Stochastic downscaling of precipitation with neural network conditional mixture models
Wang et al. A hybrid framework for reservoir characterization using fuzzy ranking and an artificial neural network
Ouali et al. Fully nonlinear statistical and machine‐learning approaches for hydrological frequency estimation at ungauged sites
Castro-Camilo et al. A spliced gamma-generalized Pareto model for short-term extreme wind speed probabilistic forecasting
Gebreslasie et al. Extracting structural attributes from IKONOS imagery for Eucalyptus plantation forests in KwaZulu-Natal, South Africa, using image texture analysis and artificial neural networks
Monteleoni et al. Climate informatics
Seifi et al. GLUE uncertainty analysis of hybrid models for predicting hourly soil temperature and application wavelet coherence analysis for correlation with meteorological variables
Pope et al. Gaussian process modeling of heterogeneity and discontinuities using Voronoi tessellations
Engelbrecht et al. Reconsidering environmental diversity (ED) as a biodiversity surrogacy strategy
Wen et al. Applying an artificial neural network to simulate and predict Chinese fir (Cunninghamia lanceolata) plantation carbon flux in subtropical China
Prasomphan et al. Generating prediction map for geostatistical data based on an adaptive neural network using only nearest neighbors
Xie et al. Developing a deep learning-based storm surge forecasting model
Budamala et al. Enhance the prediction of complex hydrological models by pseudo-simulators
Wang et al. Forest above ground biomass estimation from remotely sensed imagery in the mount tai area using the RBF ANN algorithm
Li et al. Assimilating process context information of cellular automata into change detection for monitoring land use changes
González‐Abad et al. Using explainability to inform statistical downscaling based on deep learning beyond standard validation approaches
Kajbaf et al. Temporal downscaling of precipitation from climate model projections using machine learning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007526717

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05737311

Country of ref document: EP

Kind code of ref document: A1