WO2006120632A2 - Electrode for a high intensity discharge lamp - Google Patents
Electrode for a high intensity discharge lamp Download PDFInfo
- Publication number
- WO2006120632A2 WO2006120632A2 PCT/IB2006/051434 IB2006051434W WO2006120632A2 WO 2006120632 A2 WO2006120632 A2 WO 2006120632A2 IB 2006051434 W IB2006051434 W IB 2006051434W WO 2006120632 A2 WO2006120632 A2 WO 2006120632A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- head
- tip
- longitudinal axis
- direction perpendicular
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/04—Electrodes; Screens; Shields
- H01J61/06—Main electrodes
- H01J61/073—Main electrodes for high-pressure discharge lamps
- H01J61/0732—Main electrodes for high-pressure discharge lamps characterised by the construction of the electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/84—Lamps with discharge constricted by high pressure
- H01J61/86—Lamps with discharge constricted by high pressure with discharge additionally constricted by close spacing of electrodes, e.g. for optical projection
Definitions
- the invention relates to an electrode for a high intensity discharge lamp, at least consisting of an electrode head, which has a spherical shape, and an electrode base, wherein, in the direction perpendicular to the longitudinal axis of the electrode, the electrode head has a greater dimension than the electrode base at the transition between electrode head and electrode base, and a spherical electrode tip is arranged on the electrode head, which electrode tip, in the direction perpendicular to the longitudinal axis of the electrode, has a smaller maximum dimension than the electrode head.
- High intensity discharge lamps and in particular UHP (ultra high performance) lamps are preferably used inter alia for projection purposes on account of their optical properties.
- UHP lamp Philips
- UHP-type lamps made by other manufacturers.
- High intensity discharge lamps usually have two electrodes, of which one forms the anode and/or one the cathode. These electrodes are often arranged opposite one another, on the longitudinal axis of the lamp, in a discharge chamber which is located in the lamp tube.
- the electrodes each have an electrode head at their free end and the electrode base at their other end, said electrode base being permanently connected to the lamp.
- a considerable amount of heat passes from the electrode to the lamp via this connection (heat bridge).
- heat bridge By virtue of heat conduction, heat thus enters the region of the seal of the lamp tube, which serves to fix the electrode to the lamp. Undesirable recrystallization of the quartz material of this region cannot be ruled out, particularly in the seal or the so-called pinch.
- the discharge chamber is hermetically sealed and is filled in particular with an inert gas, mercury and halogen in a known manner. Between the opposite parts of the electrodes, an arc discharge is created in the discharge chamber, wherein the arc serves as the light source of the high intensity discharge lamp.
- Electrodes for HID or UHP lamps with a spherical electrode head which have a spherical electrode tip, are known for example from US 6,552,499 B2.
- the spherical electrode head serves in particular as a heat buffer, in order to have an influence on the transfer of heat from the electrode tip into the electrode base.
- the electrode tip automatically forms at the free end of the electrode head during the first hours of operation of the lamp.
- atoms of the electrode material evaporate and are ionized in the plasma. These tungsten ions deposit on the surface of the electrode under the effect of the electric field and form agglomerations of material.
- agglomerations of material have a size of for example between 100 and 500 ⁇ m and are unstable in terms of their position and size, as a result of which the position of the arc is affected. This may lead to undesirable positional shifts, i.e. positions of the arc which change over time. This is true particularly in the case where such migration of the agglomerations of material on the surface of the electrode leads to significant positional shifts relative to the plane which is approximately perpendicular to the axis of the lamp.
- WO 03/001563 Al discloses electrodes for HID and UIP lamps with a spherical electrode head, which have a conical electrode tip at the free end of the electrode head. These conical electrode tips are said to limit the ability of the agglomerations of material which form to migrate on the surface of the conical tip.
- the conical shape is intended to prevent agglomerations of material from forming on the surface of the spherical electrode head and migrating thereon.
- the first part of the subsequent electrode is produced with the electrode base and the spherical electrode head by locally melting and then cooling a one-piece cylindrical blank. This first part is then joined to a cylindrical second part, with the conical part of the electrode tip being formed in the process or thereafter. In a further method step, the remaining part of the cylindrical second part is separated from the electrode.
- this solution limits the design possibilities of the lamp, since the diameter of the spherical electrode head is usually limited by the diameter of the inner lamp tube; this diameter is typically approx. 2 mm.
- Electrode heads which, in the direction perpendicular to the longitudinal axis of the electrode, have a greater dimension than the adjoining electrode base of the electrode, particularly the dimension thereof at the transition between the electrode head and the electrode base, are used in particular as heat buffers and heat radiators to reduce the transfer of heat from the electrode head into the lamp via the electrode base.
- Electrode heads are usually ball- shaped or spherical, but are not limited to these shapes within the context of the invention.
- Electrodes heads are that, particularly above a certain size or dimension in the direction perpendicular to the longitudinal axis of the electrode, one or more electrode tips form automatically on the electrode head during operation of the lamp, and these electrode tips are not stable.
- the dimension in the direction perpendicular to the longitudinal axis is of particular importance.
- the mechanically unstable electrode tips are also unstable with regard to their respective position, that is to say they can be found at different locations perpendicular to the lamp axis at different points in time.
- the service life of the lamp is adversely affected by this "migration" of these unstable electrode tips.
- the design of the electrode should allow simple and cost- effective production of the electrode. Moreover, methods are to be provided which allow industrial mass production of such electrodes in an efficient and cost-effective manner.
- a cylindrical protrusion is arranged on the electrode tip, which cylindrical protrusion, in the direction perpendicular to the longitudinal axis of the electrode, has a smaller maximum dimension than the adjoining electrode tip, and the electrode can be produced from a one-piece blank.
- the electrode head, the electrode tip and the protrusion and - where present - the buffer element are made of the conventional electrode materials and are in particular designed to be solid.
- the electrode head, the electrode tip and - where present - the buffer element are shaped in a spherical manner, wherein this shape is formed automatically in an extremely simple manner as a result of the action of surface stresses during cooling of the molten electrode material.
- spherical relates to differences in the outer contour, that is to say differing from a ball shape, but also to the fact that often only segments of a complete ball shape are actually used.
- the parts of the electrode such as the electrode head and the electrode base, electrode head and electrode tip or electrode tip and protrusion, can be produced by methods known per se.
- At least one buffer element which has a spherical shape and, in the direction perpendicular to the longitudinal axis of the electrode, has a smaller maximum dimension than the electrode head and a greater maximum dimension than the electrode base. Further design possibilities in respect of the electrode and lamp geometry are thus opened up.
- the diameter of the electrode tip has a value of between 1700 ⁇ m and 300 ⁇ m.
- the protrusion has a maximum axial dimension of 200 to 1500 ⁇ m and a diameter of 200 ⁇ m to 1000 ⁇ m, particularly preferably between 300 ⁇ m and 600 ⁇ m.
- the object of the invention is furthermore achieved by a method of producing an electrode as claimed in claim 1.
- the electrode head is produced by locally melting and then cooling a one-piece cylindrical blank.
- the object of the invention is furthermore achieved by an HIP lamp comprising at least one electrode as claimed in claim 1.
- Fig. 1 shows a schematic sectional diagram of an electrode according to the invention.
- Fig. 2 shows a schematic sectional diagram of a further embodiment of an electrode according to the invention with a buffer element.
- Fig. 1 shows a schematic sectional diagram of an electrode according to the invention, wherein the longitudinal axis of the electrode is the axis of symmetry, shown as a dashed line.
- the electrode for a high intensity discharge lamp namely a UHP lamp with a power consumption of 130 W, comprises an electrode head 2 and an electrode base 1.
- the electrode head 2 has, in the direction perpendicular to the longitudinal axis of the electrode, a greater maximum dimension than the electrode base 1 at the transition to the electrode head 2.
- the diameter, that is to say the maximum dimension, of the spherical, rotationally symmetrical electrode head 2 is 1.4 mm; the diameter of the cylindrical electrode base 1 at the transition to the electrode head is 0.4 mm.
- Adjoining the electrode head 2 is a spherical, symmetrical electrode tip 3, the maximum dimension of which, in the direction perpendicular to the longitudinal axis of the electrode, is 0.7 mm, and is thus smaller than the diameter of the electrode head 2.
- This protrusion 4 has a diameter of 0.4 mm and is thus smaller than the maximum dimension of the electrode tip 3, in the direction perpendicular to the longitudinal axis of the electrode.
- the protrusion 4 has an axial dimension of 300 ⁇ m.
- the electrode which is made of tungsten, is produced from a cylindrical rod which is simultaneously heated and melted at the appropriate point of the rod by means of known methods of welding or laser technology, for example by means of a number of lasers, wherein said rod rotates about its axis of symmetry. After cooling, a spherical structure is obtained, this being the subsequent electrode head. Thereafter, part of the spherical structure is heated and cooled in a comparable manner, so that then the electrode head 2 and the electrode tip 3 are shaped in the illustrated spherical manner.
- the shape of the protrusion 4 corresponds to the shape of the original rod, that is to say is cylindrical.
- the shape of the protrusion 4 has changed; the surface has been at least partially removed and exhibits an agglomeration of material.
- Fig. 2 shows a schematic sectional diagram of an electrode according to the invention with a buffer element 5.
- the electrode additionally has a buffer element 5 which is arranged between the electrode head 2 and the electrode base 1.
- the buffer element 5, which has a spherical shape, has a smaller maximum diameter (0.8 mm) than the electrode head 2 (1.4 mm) and a greater maximum diameter than the electrode base 1 (0.4 mm).
- d(3) is the maximum diameter of the electrode tip 3 and d(4) is the maximum diameter of the protrusion 4.
- This dimensioning rule ensures that there is such a small radial dimension of the electrode tip 3 that it is possible only for an agglomeration of material to form which allows only insignificant positional shifts in the radial direction.
- the desired buffer action of the electrode tip 3, particularly during the so-called run-up phase, is not adversely affected.
- d(2) is the maximum diameter of the electrode head 2
- d(3) is the maximum diameter of the electrode tip 3
- d(4) is the maximum diameter of the protrusion 4
- d(2-3) is the maximum radial dimension at the transition from the electrode tip 3 to the electrode head 2.
Landscapes
- Discharge Lamp (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008510703A JP2008541371A (en) | 2005-05-11 | 2006-05-08 | Electrodes for high intensity discharge lamps |
EP06744879A EP1883948A2 (en) | 2005-05-11 | 2006-05-08 | Electrode for a high intensity discharge lamp |
US11/913,704 US20080231191A1 (en) | 2005-05-11 | 2006-05-08 | Electrode For a High Intensity Discharge Lamp |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05103936 | 2005-05-11 | ||
EP05103936.0 | 2005-05-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2006120632A2 true WO2006120632A2 (en) | 2006-11-16 |
WO2006120632A3 WO2006120632A3 (en) | 2007-10-11 |
Family
ID=37396952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2006/051434 WO2006120632A2 (en) | 2005-05-11 | 2006-05-08 | Electrode for a high intensity discharge lamp |
Country Status (5)
Country | Link |
---|---|
US (1) | US20080231191A1 (en) |
EP (1) | EP1883948A2 (en) |
JP (1) | JP2008541371A (en) |
CN (1) | CN101171661A (en) |
WO (1) | WO2006120632A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009080412A1 (en) | 2007-12-20 | 2009-07-02 | Osram Gesellschaft mit beschränkter Haftung | Electrode for a high-pressure discharge lamp, and method for the production thereof |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4830638B2 (en) * | 2006-05-29 | 2011-12-07 | ウシオ電機株式会社 | High pressure discharge lamp |
US9298815B2 (en) | 2008-02-22 | 2016-03-29 | Accenture Global Services Limited | System for providing an interface for collaborative innovation |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1028453A2 (en) * | 1999-02-10 | 2000-08-16 | Matsushita Electronics Corporation | Electrode for a high pressure discharge lamp, method of producing the electrode, and use of the lamp in an image projection display apparatus |
WO2003001563A1 (en) * | 2001-06-25 | 2003-01-03 | Koninklijke Philips Electronics N.V. | High-pressure gas discharge lamp and method of manufacturing the same |
US6552499B2 (en) * | 2000-12-16 | 2003-04-22 | Koninklijke Philips Electronics N.V. | High-pressure gas discharge lamp, and method of manufacturing same |
EP1447836A2 (en) * | 2003-02-12 | 2004-08-18 | Ushiodenki Kabushiki Kaisha | Short arc ultra-high pressure discharge lamp |
EP1484784A2 (en) * | 2003-06-03 | 2004-12-08 | Ushiodenki Kabushiki Kaisha | Short arc ultra-high pressure mercury lamp and process for producing such a lamp |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004335196A (en) * | 2003-05-02 | 2004-11-25 | Phoenix Denki Kk | High-pressure discharge lamp |
-
2006
- 2006-05-08 EP EP06744879A patent/EP1883948A2/en not_active Withdrawn
- 2006-05-08 JP JP2008510703A patent/JP2008541371A/en active Pending
- 2006-05-08 CN CNA2006800158911A patent/CN101171661A/en active Pending
- 2006-05-08 US US11/913,704 patent/US20080231191A1/en not_active Abandoned
- 2006-05-08 WO PCT/IB2006/051434 patent/WO2006120632A2/en not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1028453A2 (en) * | 1999-02-10 | 2000-08-16 | Matsushita Electronics Corporation | Electrode for a high pressure discharge lamp, method of producing the electrode, and use of the lamp in an image projection display apparatus |
US6552499B2 (en) * | 2000-12-16 | 2003-04-22 | Koninklijke Philips Electronics N.V. | High-pressure gas discharge lamp, and method of manufacturing same |
WO2003001563A1 (en) * | 2001-06-25 | 2003-01-03 | Koninklijke Philips Electronics N.V. | High-pressure gas discharge lamp and method of manufacturing the same |
EP1447836A2 (en) * | 2003-02-12 | 2004-08-18 | Ushiodenki Kabushiki Kaisha | Short arc ultra-high pressure discharge lamp |
EP1484784A2 (en) * | 2003-06-03 | 2004-12-08 | Ushiodenki Kabushiki Kaisha | Short arc ultra-high pressure mercury lamp and process for producing such a lamp |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009080412A1 (en) | 2007-12-20 | 2009-07-02 | Osram Gesellschaft mit beschränkter Haftung | Electrode for a high-pressure discharge lamp, and method for the production thereof |
US20100308723A1 (en) * | 2007-12-20 | 2010-12-09 | Osram Gesellschaft Mit Beschraenkter Haftung | Electrode for a high-pressure discharge lamp, and method for the production thereof |
Also Published As
Publication number | Publication date |
---|---|
EP1883948A2 (en) | 2008-02-06 |
CN101171661A (en) | 2008-04-30 |
JP2008541371A (en) | 2008-11-20 |
WO2006120632A3 (en) | 2007-10-11 |
US20080231191A1 (en) | 2008-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100944818B1 (en) | Short arc high-pressure discharge lamp | |
EP0866488B1 (en) | Manufacturing method of a high-pressure discharge lamp | |
JPH06223781A (en) | Lamp | |
EP1154463B1 (en) | High pressure discharge lamp with long life | |
JP2007095665A (en) | Short-arc type high-pressure discharge electrode, short-arc type high-pressure discharge tube, short-arc type high-pressure discharge light source device and their manufacturing methods | |
JP3228073B2 (en) | Discharge lamp | |
US20080231191A1 (en) | Electrode For a High Intensity Discharge Lamp | |
JP2020009624A (en) | Discharge lamp and manufacturing method of electrode for discharge lamp | |
EP1805784B1 (en) | High-pressure gas discharge lamp | |
JP7032859B2 (en) | Discharge lamp and manufacturing method of discharge lamp | |
JP4736143B2 (en) | Ultra high pressure mercury lamp electrode and ultra high pressure mercury lamp | |
JP4998826B2 (en) | Flash lamp and method of manufacturing flash lamp | |
JP2003051282A (en) | High-pressure electric discharge lamp and manufacturing method therefor | |
JP3183145B2 (en) | Short arc lamp | |
KR20020001595A (en) | Method for fabricating discharge lamp and discharge lamp | |
JP3927136B2 (en) | Manufacturing method of discharge lamp | |
JP2013544015A (en) | Method of manufacturing an electrode for a gas discharge lamp | |
JP2004273325A (en) | Manufacturing method of discharge lamp | |
JP3136588U (en) | Electrode assembly for high pressure discharge lamps | |
US20070159100A1 (en) | Electrode for a high-pressure discharge lamp | |
JP2008262938A (en) | Electrode for discharge lamp, its manufacturing method, and discharge lamp | |
JP2004296246A (en) | Manufacturing method of discharge lamp | |
US20080093970A1 (en) | Electrode for a high-intensity discharge lamp | |
JP5369360B2 (en) | Light source electrode | |
JP2005259386A (en) | Manufacturing method of high-pressure discharge lamp |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2006744879 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11913704 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008510703 Country of ref document: JP Ref document number: 200680015891.1 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: RU |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 06744879 Country of ref document: EP Kind code of ref document: A2 |
|
WWP | Wipo information: published in national office |
Ref document number: 2006744879 Country of ref document: EP |