WO2006119714A1 - Metodo para realizar simulaciones de acoplamiento molecular con receptor flexible utilizando una nueva funcion de puntuacion. - Google Patents

Metodo para realizar simulaciones de acoplamiento molecular con receptor flexible utilizando una nueva funcion de puntuacion. Download PDF

Info

Publication number
WO2006119714A1
WO2006119714A1 PCT/CU2006/000003 CU2006000003W WO2006119714A1 WO 2006119714 A1 WO2006119714 A1 WO 2006119714A1 CU 2006000003 W CU2006000003 W CU 2006000003W WO 2006119714 A1 WO2006119714 A1 WO 2006119714A1
Authority
WO
WIPO (PCT)
Prior art keywords
conformations
protein
binding site
scoring function
receptor
Prior art date
Application number
PCT/CU2006/000003
Other languages
English (en)
French (fr)
Inventor
Ernesto Moreno Frias
Luis Ariel Diago Marquez
Original Assignee
Centro De Inmunologia Molecular
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centro De Inmunologia Molecular filed Critical Centro De Inmunologia Molecular
Publication of WO2006119714A1 publication Critical patent/WO2006119714A1/es

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B15/00ICT specially adapted for analysing two-dimensional or three-dimensional molecular structures, e.g. structural or functional relations or structure alignment
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B15/00ICT specially adapted for analysing two-dimensional or three-dimensional molecular structures, e.g. structural or functional relations or structure alignment
    • G16B15/30Drug targeting using structural data; Docking or binding prediction

Definitions

  • the present invention is framed in the field of bioinformatics and more specifically in the use of this branch of science for the development of new molecules with therapeutic use in human health.
  • High flow molecular screening methods are widely used today by the pharmaceutical industry in the process of designing and developing new medicines.
  • the principle or active substance of these medications is, generally, a small-sized molecule that exerts its action in the body by blocking the active site of a protein, chosen as the target of the therapy because it is involved in the development of a certain disease. That is why the creation of a new drug begins by identifying the target protein and then follows the search for molecules with the ability to bind to the active site of this protein and inhibit its biological function.
  • DOCK has been described by Ferrin TE. A geometric approach to macromolecule-ligand interactions. J Mol Biol 161: 269-288, 1982 and Ewing TJA, Kuntz ID. Critical evaluation of search algorithms for automated molecular docking and datábase screening. J Comput Chem 18: 1175-1189, 1997. Developed by the Irvin Kuntz group at the University of California in San Francisco, USA, the DOCK program includes algorithms for the treatment of ligand flexibility, while considering the recipient as a Rigid body.
  • a new knowledge-based scoring function is introduced, obtained from the study of several thousand protein-ligand complexes extracted from the Protein Data Bank base.
  • the new function which was implemented in the context of the DOCK program, has as its main novelty its 3D spatial design, unlike previous functions that depend only on the interatomic distances between the protein and the ligand. This function is very fast and efficient, allowing the exploration of a large number of conformations of the protein in reasonable calculation times.
  • the present invention consists of a method for performing molecular coupling simulations characterized in that it uses a scoring function based on statistical interaction potentials, because a high number of conformations of the protein receptor is included in the simulation and comprises the following steps:
  • step B Automated representation of the binding site, through geometric-chemical descriptors, for each conformation of the receptor obtained in step B).
  • step B Calculation of a lattice of statistical potentials at the protein binding site for each conformation of the binding site obtained in step B).
  • step G Processing of the results of the simulation of step F), grouping them to select a group of representative solutions from the whole set of solutions obtained in the simulation.
  • the present invention consists of a method for forming groups of conformations of a protein, or of a limited area thereof, using rmsd calculations at the amino acid level.
  • the object of the present invention is also a scoring function for molecular coupling simulations characterized by a set of statistical interaction potentials, whose numerical values are obtained from experimental patterns of atomic contacts between amino acid residues and atoms of other interacting molecules. With such waste. More specifically, said scoring function is characterized by the values of statistical potentials described in Table 1. The following definitions are used in the description of the present invention:
  • Receiver and Ligand Pair of molecules that have the ability to bind to each other, and produce as a result of that union some biological effect.
  • the receptor is a protein and the ligand is a small molecule (of up to a few hundred atoms) of any chemical nature.
  • the term ligand is used here to designate each of the molecules whose ability to bind to a particular receptor wants to be tested.
  • Binding site Zone of the surface of the receiver where the binding with the ligand is performed.
  • Coupling simulation Computational procedure to predict the ability of a molecule to bind to another, as well as the geometry of the complex formed by both molecules.
  • the flexibility of the receiver is considered in the calculations by performing coupling simulations in serial form for a large number of different conformations of the area of the binding site. To perform these calculations in a reasonable time and obtain reliable results it is necessary to perform each individual simulation very quickly and efficiently.
  • the key element to achieve this objective is the use of a new scoring function based on statistical interaction potentials, developed from a Extensive study of protein-ligand contacts in thousands of complex contents contained in the 3D structure structure of "Protein Data Bank" macromolecules (PDB).
  • the new scoring function contains several types of terms (statistical potentials) and is constructed from defined templates for each of the 20 amino acids that form natural proteins.
  • the molds were constructed from the spatial distributions (3D) of atomic contacts around each type of amino acid, as illustrated in Figure 1 for the case of the amino acids Arginine and Tyrosine. These contacts were collected in a set of more than 4000 protein-ligand complexes extracted from the PDB.
  • the atoms belonging to the ligands were classified not only according to their chemical element (carbon, oxygen, nitrogen, etc.), but also according to the chemical context in which they are found, in one of the following categories: “hydrophobic”, “aromatic”, “donor” or “accept” hydrogen bridges, and “hydroxyl” (atom with simultaneous ability to donate and accept hydrogen bridges).
  • Figure 2 This method takes into account the intrinsic flexibility of the side chains and the skeleton of the protein. As a result, a spatial distribution of contacts with different types of ligand atoms was obtained for each of the 20 amino acids, according to the classification described above. Because the definition of atomic contact used only accepts a very limited range of distances (the sum of the van der Waals radii of the atoms, with a tolerance of +/- 0.5 ⁇ ), the contacts collected for each type of amino acid They are located in a narrow strip that follows the contour of the molecular surface of the reference amino acid.
  • the scoring function constructed consists of different types of terms, each associated with a type of amino acid and a type of atom. Each type of term reflects the contact density of one type of atom on the reference amino acid surface.
  • the values of the scoring function are discretely defined for each point of a surface constructed around the amino acid by the Conolly method, as illustrated in Figure 3 for the amino acid Arginine. The density of this surface is one point per ⁇ 2 .
  • the position of each point of the amino acid surface is defined with respect to its structure using the same internal coordinate reference systems used to collect contacts, as described by Moreno E, León K. Geometr ⁇ c and chemical patterns of interaction in protein-ligand complexes and their application in docking. Proteins 47, 1-13, 2002. The use of these reference systems allows to treat the flexibility of amino acids in a computationally simple way.
  • C / (r) is the contribution of an atomic contact of type k at a point / on the surface of the amino acid, r is the distance in Angstrom from the atomic contact to the point
  • D ⁇ is the density of contacts of type k on the point / of the surface
  • N k is the total number of contacts of type k with the amino acid
  • the templates of the scoring function also include defined penalty terms for those areas of the amino acid surface where there are no contacts with any of the ligand atom types.
  • the new scoring function was coupled to the DOCK program, although it can also be easily incorporated into other molecular coupling programs.
  • DOCK uses a precalculated force field (prior to coupling simulation) for a lattice of points that encompasses the receptor binding site. The use of this force field lattice accelerates the evaluation of the energy during the coupling simulation.
  • One of the possible ways to evaluate the orientations of the ligand using the statistical potentials described in the present invention is to implement the method of lattice points used by the DOCK program. For this purpose we program an algorithm that performs these calculations for statistical potentials and we attach it to the DOCK program.
  • the inserted routine is executed that evaluates the orientations of the ligand using the new scoring function, instead of using the functions implemented in the native DOCK program.
  • a lattice of points is created with a recommended pitch of 0.3-0.6 ⁇ .
  • the corresponding value of each type of term term of the scoring function is calculated and stored.
  • Each point receives contributions from neighboring amino acids, given by the molds of statistical potentials corresponding to those amino acids, as illustrated in Figure 4.
  • a point of the surface of the amino acid mold contributes to a given point of the lattice depends on the distance between both points, according to Formula (1). Additionally, a "shock function" is evaluated on the lattice of points, equal to that used with the DOCK program, and the points of the lattice that are in shock zones are not evaluated with the scoring function.
  • the score that receives a ligand orientation is equal to the sum of the individual scores that each of its atoms receives.
  • the method presented here implements the new scoring function based on statistical potentials in the context of the DOCK program, and therefore, part of the methodology to follow to perform the coupling simulations, is directly related to the use of this program.
  • the method consists of several steps, which are explained below (see Figure 5):
  • a large number (hundreds or thousands) of different geometries of the binding site can be generated using molecular dynamics simulations, or by applying other methods described in the literature to generate different orientations of the side chains of amino acids and / or different conformations of the skeleton of the protein, mainly in areas of bonds.
  • the structure of the protein resolved by X-ray crystallography, if available, or a computational model constructed by homology can be taken.
  • the objective of this step is to eliminate very similar (and therefore redundant) geometries from the binding site, which can be obtained as a result of a simulation of molecular dynamics or the application of other conformational exploration methods.
  • the grouping of the conformations can be thicker or thinner, according to the criteria used to determine whether two geometries of the binding site are similar enough to discard one of them. In the method presented here, attention is paid to the way of grouping, to make it more effective. The thicker the grouping, that is, the more tolerant the similarity criterion between two geometries, the smaller the resulting number of conformations of the binding site and therefore the less time necessary to perform the coupling simulations.
  • the procedure for grouping conformations is based on calculations of the mean quadratic deviation (rmsd, of the English "root mean square deviation") of the atomic coordinates, performed for pairs of different conformations.
  • rmsd mean quadratic deviation
  • rmsd calculations which are usually performed globally for the entire set of amino acids of interest, are performed here individually for each amino acid that forms the binding site. The list of these amino acids is part of the input data of the clustering program.
  • the binding site is represented by a point system following the method reported by Moreno E, León K. Geometr ⁇ c and chemical patterns of interaction in protein-ligand complexes and their application in docking.
  • Proteins 47, 1-13, 2002 This method uses "linked dots" molds for each type of amino acid to generate a system of points on the surface of the protein in the area of the binding site, and works very quickly and efficiently.
  • any other method that automatically generates geometric descriptors of the binding site could be used.
  • the series of representations of the binding site, calculated for each conformation of the receiver, are stored in a file. - Calculation of a lattice of statistical potentials at the protein binding site for each conformation of the binding site.
  • a lattice of statistical potentials is calculated, as described above. These potentials are stored in files that are read by a routine that we attach to the DOCK program, together with the routine of evaluation of the new scoring function - Preparation of the ligands.
  • the atoms of the ligands must be classified according to the categories used to define the new scoring function
  • the preparation of the input data and the run of the DOCK program is performed in the same manner described in the program manual, with some minor modifications in the description of the input data, to indicate the use of the new scoring function, and the files containing the representations of the binding site and the lattices of statistical potentials calculated for each conformation of the protein receptor. Each of the conformations of the receptor is tested for each ligand.
  • each orientation of a ligand is associated with a certain conformation of the receptor binding site.
  • this list should be simplified, grouping solutions that are similar to each other.
  • DOCK program as a platform to introduce the new scoring function influences the design of the steps to be followed in the method presented in this invention.
  • steps 3 and 6 are directly linked to the use of this program.
  • the methodology can be easily adapted to the use of other coupling simulation programs.
  • the authors of the present invention describe a new system and method for performing molecular coupling simulations between a protein and another molecule of any chemical nature, with the undeniable advantage that allows a wide exploration of the flexibility of the receptor in the area of the site of ligand binding, as well as the flexibility of the ligand itself.
  • the rapidity and efficiency of the method makes its use possible in the virtual screening of large databases of 3D structures of molecules, in search of candidates to join a protein of interest.
  • the following example includes the comparative experimental details that allow the effectiveness of the computational procedure object of the invention to be compared with other methods previously described.
  • the main input file was prepared following the native DOCK program manual, except for a very small number of additional options introduced to indicate the use of statistical potentials and corresponding input files.
  • the number of orientations of the ligand to be generated for each conformation of the receptor was 200, keeping the 10 orientations with the best score. In a separate file they were consequently, as a result of the coupling simulation, 3420 ligand orientations were saved, associated with the different conformations of the receptor.
  • Figure 1 3D distribution of protein-ligand contacts collected around the amino acids Arginine and Tyrosine. Nitrogen atoms are represented in black, oxygen in dark gray and carbon in light gray. A ring of oxygen atoms is observed around the guanidino group of arginine. For tyrosine, a group of carbon atoms is observed on each side of the plane of the aromatic ring, and an oxygen ring on the hydroxyl group.
  • FIG. 1 Example of transposition of atomic interactions between amino acids and ligand atoms: An atom of a ligand that interacts with the N ⁇ nitrogen of the arginine is transposed into a model structure of this amino acid using a reference system centered on the N ⁇ nitrogen and which includes its two adjacent atoms. The geometry of this trio remains fixed when rotations occur around any link in the amino acid side chain.
  • Figure 3 Lattice illustration of statistical potentials for the amino acid template of Arginine. Each point stores values of the scoring function for each type of atom. In the figure, each point has been unfolded in three, representing the score for the carbon, oxygen and nitrogen atoms.
  • Figure 4 Contribution of the amino acids of the protein to the lattice of statistical potentials at the binding site. Each point of the lattice receives contributions from its neighboring amino acids. The values of the scoring function provided by each amino acid are taken from its mold or reference lattice, transposing the original point using internal coordinate systems.
  • Figure 5 Diagram of the method implemented in this invention to perform coupling simulations using statistical potentials.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Theoretical Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

La presente invención se enmarca en el campo de la bioinformática y mas específicamente en el uso de esta rama de la ciencia para el desarrollo de nuevas moléculas con uso terapéutico en la salud humana. En la presente invención se describe un nuevo sistema y procedimiento para realizar simulaciones de acoplamiento molecular entre una proteína y otra molécula de cualquier naturaleza química, con la ventaja que permite realizar una exploración amplia de la flexibilidad del receptor en la zona del sitio de unión del ligando, así como de la flexibilidad del propio ligando. La rapidez y eficiencia del método hace posible su empleo en el tamizaje virtual de grandes bases de datos de estructuras 3D de moléculas, en busca de candidatos a unirse a una proteína de interés. El procedimiento de la presente invención utiliza una función de puntuación basada en potenciales estadísticos de interacción.

Description

Método para realizar simulaciones de acoplamiento molecular con receptor flexible utilizando una nueva función de puntuación.
Campo Técnico La presente invención se enmarca en el campo de Ia bioinformática y mas específicamente en el uso de esta rama de Ia ciencia para el desarrollo de nuevas moléculas con uso terapéutico en Ia salud humana.
Estado del arte Los métodos de tamizaje molecular de alto flujo son muy utilizados hoy en día por Ia industria farmacéutica en el proceso de diseño y desarrollo de nuevos medicamentos. El principio o sustancia activa de estos medicamentos es, generalmente, una molécula de pequeña talla que ejerce su acción en el organismo bloqueando el sitio activo de una proteína, escogida como diana de Ia terapia por estar involucrada en el desarrollo de una determinada enfermedad. Es por ello que Ia creación de un nuevo medicamento comienza por identificar Ia proteína diana y luego sigue Ia búsqueda de moléculas con Ia capacidad de unirse al sitio activo de esta proteína e inhibir su función biológica.
La búsqueda de posibles inhibidores de una proteína se realiza tanto de manera experimental, involucrando grandes librerías de moléculas y procedimientos robotizados, como por métodos "in silico", conocidos como "tamizaje virtual" o "virtual screening" como se conoce en el arte previo. Para ello se emplean grandes bases de datos de moléculas pequeñas, que contienen sus estructuras tridimensionales y diferentes propiedades físico- químicas y farmacológicas, si son conocidas, y se utilizan diferentes programas de filtraje y simulaciones computacionales. Un paso esencial en el tamizaje virtual es Ia predicción de cuáles moléculas (ligandos) de una base de datos tendrían Ia capacidad de unirse al sitio activo de Ia proteína diana, y es por ello que los métodos de predicción computacional del modo de unión de dos moléculas (métodos de "docking") son objeto de una intensa investigación, especialmente en Ia última década. Aunque existen muchos algoritmos diferentes para realizar simulaciones de docking, todos ellos constan de dos pasos fundamentales: 1) Generación de diversas orientaciones y conformaciones del ligando en el sitio de unión, y 2) Evaluación de cada una de estas orientaciones y conformaciones. Los programas existentes se diferencian entre sí precisamente por los algoritmos utilizados para realizar el primer paso y por las funciones de puntuación o energéticas empleadas para evaluar las orientaciones y geometrías del ligando.
Los programas de docking utilizados hoy en día permiten explorar Ia flexibilidad de los posibles ligandos, pero solo unos pocos de estos algoritmos incluyen cierto grado, limitado, de flexibilidad del sitio de unión de Ia proteína, debido al gran costo computacional y Io complejo que resulta explorar el alto número de grados de libertad de Ia proteína, incluso el de una zona muy limitada de esta. Uno de los programas de docking más conocidos, y de los primeros en ser reportados en Ia literatura, es DOCK, el cual ha sido descrito por Ferrin TE. A geometric approach to macromolecule-ligand interactions. J Mol Biol 161 :269-288, 1982 y Ewing TJA, Kuntz ID. Critical evaluation of search algorithms for automated molecular docking and datábase screening. J Comput Chem 18:1175-1189, 1997. Desarrollado por el grupo de Irvin Kuntz en Ia Universidad de California en San Francisco, EEUU, el programa DOCK incluye algoritmos para el tratamiento de Ia flexibilidad de los ligandos, mientras considera al receptor como un cuerpo rígido.
Para poder tratar de una manera Io más abarcadora posible Ia variabilidad conformacional del sitio de unión del receptor proteico, incluso si se cuenta con un gran poder de cómputo, se necesitan algoritmos de orientación muy eficientes para explorar todas las posibles combinaciones de geometrías para una pareja receptor-ligando dada, así como funciones de puntuación que sean a Ia vez rápidas y Io suficientemente precisas como para producir una lista de posibles soluciones donde las respuestas correctas estén entre las primeras posiciones.
El desarrollo de funciones de puntuación para simulaciones de docking ha sido, y continúa siendo, un área muy activa de investigación en los últimos años. Entre estas funciones se destacan los potenciales basados en conocimiento, o sea, en Ia extracción de regularidades halladas en las interacciones proteína-ligando a partir del estudio de un conjunto determinado de estos complejos moleculares.
En Ia literatura se reportan varios potenciales basados en el conocimiento, los cuales difieren en los tipos de átomos que se definen, Ia naturaleza y el alcance del conjunto de complejos experimentales usados y el rango de distancias interatómicas escaneadas (Fradera X, Mestres J. Guided docking approaches to structure-based design and screening. Curr Top Med Chem 4:687-700, 2004). Dichos potenciales permiten hacer correcciones e identificar problemas derivados de las hipótesis asumidas en el método de "docking". Los mismos distan muchos de ser universalmente aplicables y su selección depende fuertemente del tipo de complejo proteína- ligando que se analiza.
En Ia presente invención se introduce una nueva función de puntuación basada en conocimiento, obtenida a partir del estudio de varios miles de complejos proteína-ligando extraídos de Ia base Protein Data Bank. La nueva función, que fue implementada en el contexto del programa DOCK, tiene como principal novedad su diseño espacial en 3D, a diferencia de funciones previas que dependen solo de las distancias ¡nteratómicas entre Ia proteína y el ligando. Esta función resulta muy rápida y eficiente, permitiendo Ia exploración de un gran número de conformaciones de Ia proteína en tiempos de cálculo razonables.
Descripción detallada de Ia invención
La presente invención consiste en un procedimiento para realizar simulaciones de acoplamiento molecular caracterizado porque utiliza una función de puntuación basada en potenciales estadísticos de interacción, porque se incluye en Ia simulación un número elevado de conformaciones del receptor proteico y comprende los siguientes pasos:
A) Generación de múltiples conformaciones del sitio de unión del receptor proteico mediante dinámica molecular u otro método de exploración conformacional. B) Agrupamiento de las conformaciones para eliminar las que son muy parecidas entre sí y obtener un grupo de conformaciones representativas del sitio de unión del receptor.
C) Representación automatizada del sitio de unión, a través de descriptores geométrico- químicos, para cada conformación del receptor obtenida en el paso B). D) Cálculo de un enrejado de potenciales estadísticos en el sitio de unión de Ia proteína para cada conformación del sitio de unión obtenida en el paso B).
E) Clasificación de los átomos de los ligandos que se van a incluir en Ia simulación, según los tipos atómicos que caracterizan los potenciales estadísticos.
F) Corrida del programa DOCK, modificado para incluir Ia función de puntuación descrita en Ia presente invención, para cada una de las conformaciones del receptor obtenida en el paso B), utilizando las representaciones del sitio de unión obtenidas en el paso C) y los enrejados de potenciales estadísticos obtenidos en el paso D).
G) Procesamiento de los resultados de Ia simulación del paso F), agrupándolas para seleccionar un grupo de soluciones representativas de todo el conjunto de soluciones obtenido en Ia simulación.
Más específicamente Ia presente invención consiste en un método para hacer agrupamientos de conformaciones de una proteína, o de una zona limitada de esta, utilizando cálculos de rmsd a nivel de aminoácido.
Es también objeto de Ia presente invención una función de puntuación para simulaciones de acoplamiento molecular caracterizada por un conjunto de potenciales estadísticos de interacción, cuyos valores numéricos se obtienen a partir de patrones experimentales de contactos atómicos entre residuos de aminoácidos y átomos de otras moléculas que interactúan con dichos residuos. Más específicamente dicha función de puntuación esta caracterizada por los valores de potenciales estadísticos descritos en Ia tabla 1. En Ia descripción de Ia presente invención se utilizan las siguientes definiciones:
Receptor y Ligando: Pareja de moléculas que tienen Ia capacidad de unirse una a Ia otra, y producir como resultado de esa unión algún efecto biológico. En Ia presente descripción, el receptor es una proteína y el ligando es una molécula pequeña (de hasta pocos cientos de átomos) de cualquier naturaleza química. Como extensión, el término ligando se utiliza aquí para designar a cada una de las moléculas cuya capacidad de unirse a un receptor determinado quiere probarse.
Sitio de unión: Zona de Ia superficie del receptor donde se efectúa Ia unión con el ligando.
Simulación de acoplamiento: Procedimiento computacional para predecir Ia capacidad de una molécula de unirse a otra, así como Ia geometría del complejo formado por ambas moléculas.
La flexibilidad del receptor es considerada en los cálculos realizando simulaciones de acoplamiento en forma seriada para un gran número de conformaciones diferentes de Ia zona del sitio de unión. Para efectuar estos cálculos en un tiempo razonable y obtener resultados confiables es necesario realizar cada simulación individual de manera muy rápida y eficiente. El elemento clave para lograr este objetivo es el uso de una nueva función de puntuación basada en potenciales de interacción estadísticos, desarrollados a partir de un estudio extensivo de los contactos proteína-ligando en miles de complejos contenidos en Ia base de estructuras 3D de macromoléculas "Protein Data Bank" (PDB).
Descripción de Ia nueva función de puntuación para simulaciones de acoplamiento molecular La nueva función de puntuación contiene varios tipos de términos (potenciales estadísticos) y se construye a partir de moldes definidos para cada uno de los 20 aminoácidos que forman las proteínas naturales. Los moldes fueron construidos a partir de las distribuciones espaciales (3D) de contactos atómicos alrededor de cada tipo de aminoácido, como se ilustra en Ia Figura 1 para el caso de los aminoácidos Arginina y Tirosina. Estos- contactos fueron recolectados en un conjunto de más de 4000 complejos proteína-ligando extraídos del PDB. Previamente, los átomos pertenecientes a los ligandos fueron clasificados no solo según su elemento químico (carbono, oxígeno, nitrógeno, etc.), sino también de acuerdo al contexto químico en que se encuentran, en una de las siguientes categorías: "hidrofóbico", "aromático", "donor" o "aceptar" de puentes de hidrógeno, e "hidroxilo" (átomo con capacidad simultánea de donar y aceptar puentes de hidrógeno).
Para determinar si hay contacto entre un átomo de un ligando y un aminoácido perteneciente al receptor, se calculó Ia superficie accesible al solvente de ambas moléculas utilizando el método de Connolly ML The molecular suríace package. J. Mol. Graphics 11: 139-141, 1993., con una densidad de 4 puntos de superficie por Á2. Se definió que dos átomos (uno en Ia superficie del ligando y otro en Ia del receptor) están en contacto si al menos una parte de sus correspondientes puntos de superficie están separados por menos de 0.5 Á. De esta manera se garantiza que hay contacto real, no apantallado por otro átomo vecino.
El método empleado para recolectar los contactos entre átomos de ligandos y aminoácidos del receptor, utilizando una estructura de referencia para cada tipo de aminoácido, está descrito por Moreno E, León K. Geometríc and chemical patterns of interaction in protein- ligand complexes and their application in docking. Proteins 47, 1-13, 2002. y se ilustra en Ia
Figura 2. Este método tiene en cuenta Ia flexibilidad intrínseca de las cadenas laterales y el esqueleto de Ia proteína. Como resultado, para cada uno de los 20 aminoácidos se obtuvo una distribución espacial de contactos con distintos tipos de átomos de ligandos, según Ia clasificación descrita más arriba. Debido a que Ia definición de contacto atómico utilizada solo acepta un rango de distancias muy limitado (Ia suma de los radios de van der Waals de los átomos, con una tolerancia de +/- 0.5 Á), los contactos recolectados para cada tipo de aminoácido están localizados en una estrecha franja que sigue el contorno de Ia superficie molecular del aminoácido de referencia.
La función de puntuación construida consta de diferentes tipos de términos, cada uno asociado a un tipo de aminoácido y un tipo de átomo. Cada tipo de término refleja Ia densidad de contacto de un tipo de átomo sobre Ia superficie del aminoácido de referencia. Los valores de Ia función de puntuación están definidos de manera discreta para cada punto de una superficie construida alrededor del aminoácido por el método de Conolly, como se ¡lustra en Ia Figura 3 para el aminoácido Arginina. La densidad de esta superficie es de un punto por Á2. La posición de cada punto de Ia superficie del aminoácido es definida con respecto a su estructura utilizando los mismos sistemas referencia de coordenadas internas empleados para recolectar los contactos, como se describe por Moreno E, León K. Geometríc and chemical patterns of interaction in protein-ligand complexes and their application in docking. Proteins 47, 1-13, 2002. El uso de estos sistemas de referencia permite tratar Ia flexibilidad de los aminoácidos de una manera computacionalmente sencilla.
Para cada punto de Ia superficie del aminoácido, su densidad superficial de contacto con un tipo definido de átomo fue calculada contando los contactos de ese tipo situados dentro de un radio de 2 A desde el punto. Para suavizar las variaciones de Ia densidad de contacto a través de Ia superficie se empleó una función de conteo definida de Ia siguiente manera:
O/,* (r) = 2 (Fórmula 1)
Figure imgf000007_0001
donde C/ (r) es Ia contribución de un contacto atómico de tipo k en un punto / de Ia superficie del aminoácido, r es Ia distancia en Ángstrom desde el contacto atómico hasta el punto
Luego los valores de densidad de contacto superficial para cada aminoácido y cada tipo de átomo fueron normalizados: de manera que Ia suma total por todos los puntos de Ia superficie sobre Ia superficie fuera igual a Ia cantidad de contactos recolectados:
∑DKk = Nk
donde D^ es Ia densidad de contactos de tipo k sobre el punto / de Ia superficie, Nk es el número total de contactos de tipo k con el aminoácido
Los moldes de Ia función de puntuación incluyen además términos de penalización definidos para aquellas zonas de Ia superficie de los aminoácidos donde no existen contactos con alguno de los tipos de átomo de ligando.
En Ia presente implementación de Ia invención, Ia nueva función de puntuación se acopló al programa DOCK, aunque puede también incorporarse fácilmente a otros programas de acoplamiento molecular. Para evaluar las diferentes orientaciones de un posible ligando, DOCK utiliza un campo de fuerza precalculado (previo a Ia simulación de acoplamiento) para un enrejado de puntos que engloba el sitio de unión del receptor. El uso de este enrejado de campo de fuerza acelera Ia evaluación de Ia energía durante Ia simulación de acoplamiento. Una de las formas posibles de evaluar las orientaciones del ligando utilizando los potenciales estadísticos descritos en Ia presente invención, aunque no es Ia única, es implementar el método de enrejado de puntos que emplea el programa DOCK. Con este propósito programamos un algoritmo que realiza estos cálculos para los potenciales estadísticos y Io acoplamos al programa DOCK. Cuando se especifica Ia opción "statisticaljDotential", que añadimos a este programa, se ejecuta Ia rutina insertada que evalúa las orientaciones del ligando utilizando Ia nueva función de puntuación, en lugar de utilizar las funciones implementadas en el programa DOCK nativo. Para una conformación dada del sitio de unión de una proteína, se crea un enrejado de puntos con un paso recomendado de 0.3 - 0.6 Á. Para cada punto del enrejado se calcula y se almacena el valor correspondiente de cada tipo de término de término de Ia función de puntuación. Cada punto recibe contribuciones de los aminoácidos vecinos, dadas por los moldes de potenciales estadísticos correspondientes a esos aminoácidos, como se ilustra en Ia Figura 4. El valor que aporta un punto de Ia superficie del aminoácido molde a un punto dado del enrejado depende de Ia distancia entre ambos puntos, según Ia Fórmula (1). Adicionalmente, sobre el enrejado de puntos se evalúa una "función de choque", igual a Ia utilizada con el programa DOCK, y los puntos del enrejado que están en zonas de choque no son evaluados con Ia función de puntuación.
De esta manera, se rellena de valores de Ia función de puntuación sólo una capa de puntos del enrejado sobre Ia superficie del sitio de unión que tiene un ancho aproximado de 3 Á. El resto de los puntos del enrejado almacena valores nulos. Esto implica que Ia función de puntuación sólo tiene en cuenta interacciones intermoleculares de muy corto rango, que involucran contactos atómicos directos.
La puntuación que recibe una orientación del ligando es igual a Ia suma de las puntuaciones individuales que recibe cada uno de sus átomos.
Método para realizar simulaciones de acoplamiento utilizando Ia nueva función de puntuación.
El método presentado aquí implementa Ia nueva función de puntuación basada en potenciales estadísticos en el contexto del programa DOCK, y por tanto, parte de Ia metodología a seguir para realizar las simulaciones de acoplamiento, está relacionada directamente con el uso de este programa. El método consta de varios pasos, que se explican a continuación (ver Figura 5):
1- Generación de múltiples conformaciones del sitio de unión del receptor. Se puede generar un gran número (cientos o miles) de geometrías diferentes del sitio de unión utilizando simulaciones de dinámica molecular, o aplicando otros métodos descritos en Ia literatura para generar diferentes orientaciones de las cadenas laterales de los aminoácidos y/o diferentes conformaciones del esqueleto de Ia proteína, principalmente en zonas de lazos. Como estructura de partida para estas simulaciones se puede tomar Ia estructura de Ia proteína resuelta por cristalografía de rayos X, si esta disponible, o un modelo computacional construido por homología.
2- Agrupamiento (clustering) de las conformaciones de Ia proteína. El objetivo de este paso es eliminar geometrías muy parecidas (y por tanto redundantes) del sitio de unión, las cuales pueden obtenerse como resultado de una simulación de dinámica molecular o de Ia aplicación de otros métodos de exploración conformacional. El agrupamiento de las conformaciones puede ser más grueso o más fino, según el criterio utilizado para determinar si dos geometrías del sitio de unión son suficientemente parecidas como para descartar una de ellas. En el método presentado aquí se Ie presta atención a Ia forma de realizar el agrupamiento, para hacerlo más efectivo. Mientras más grueso sea el agrupamiento, o sea, mientras más tolerante sea el criterio de semejanza entre dos geometrías, menor será el número resultante de conformaciones del sitio de unión y por tanto menor será el tiempo necesario para realizar las simulaciones de acoplamiento. Por otro lado, un agrupamiento demasiado grueso puede afectar considerablemente el resultado de Ia simulación, pues las funciones de puntuación son generalmente muy sensibles a pequeñas desviaciones de Ia geometría del receptor. El uso de los potenciales estadísticos en las simulaciones de acoplamiento permite realizar un agrupamiento relativamente grueso sin perder exactitud en los cálculos, Io cual resulta muy ventajoso, ya que permite explorar un amplio espacio conformacional del receptor en tiempos de cálculo razonables.
El procedimiento para agrupar conformaciones se basa en cálculos de Ia desviación media cuadrática (rmsd, del inglés "root mean square deviation") de las coordenadas atómicas, realizados para pares de conformaciones diferentes. Como detalle innovativo del método que presentamos, los cálculos de rmsd, que normalmente se realizan de manera global para todo el conjunto de aminoácidos de interés, son realizados aquí de manera individual para cada aminoácido que forma el sitio de unión. La lista de estos aminoácidos forma parte de los datos de entrada del programa de agrupamiento.
En nuestra definición, dos conformaciones del sitio de unión del receptor son consideradas equivalentes si para cada aminoácido que forma este sitio se cumple que: rmsdaa ≤ rmsdcutOff , donde rmsdaa es el valor de Ia desviación media cuadrática para los átomos de un aminoácido, rmsdoutoff es Ia máxima diferencia tolerada, que debe escogerse en el rango de 1-2 Á. En el algoritmo implementado en esa invención, inicialmente se escoge una conformación
(Ia de menor energía, o Ia primera en Ia lista, o al azar, o siguiendo cualquier otro criterio), Ia cual sirve como núcleo para agrupar las que son semejantes a ella. Todas las conformaciones semejantes a Ia escogida son eliminadas de Ia lista, dejando solamente Ia conformación núcleo que las representa. Después se escoge otra conformación y se repite el mismo procedimiento, y así sucesivamente hasta agotar Ia lista.
Como resultado se obtiene un conjunto de geometrías, cada pareja de las cuales difiere en al menos una parte de Ia estructura, y que es representativo del espacio conformacional explorado en el sitio de unión. - Representación automatizada del sitio de unión para cada conformación del receptor. El sitio de unión del receptor es caracterizado a través de descriptores geométrico-químicos.
Debido al gran número de conformaciones del receptor a representar, Io cual descarta cualquier participación interactiva del usuario en este proceso, el método empleado debe ser rápido y totalmente automatizado.
En nuestra implementación, el sitio de unión es representado mediante un sistema de puntos siguiendo el método reportado por Moreno E, León K. Geometríc and chemical patterns of interaction in protein-ligand complexes and their application in docking.
Proteins 47, 1-13, 2002. Este método utiliza moldes de "puntos enlazados" a cada tipo de aminoácido para generar un sistema de puntos sobre Ia superficie de Ia proteína en Ia zona del sitio de unión, y funciona de manera muy rápida y eficiente.
Alternativamente, podría utilizarse cualquier otro método que genere de manera automatizada descriptores geométricos del sitio de unión. La serie de representaciones del sitio de unión, calculadas para cada conformación del receptor, son almacenadas en un fichero. - Cálculo de un enrejado de potenciales estadísticos en el sitio de unión de Ia proteína para cada conformación del sitio de unión.
A cada conformación del sitio de unión se Ie calcula un enrejado de potenciales estadísticos, como se describe más arriba. Estos potenciales son almacenados en ficheros que son leídos por una rutina que acoplamos al programa DOCK, junto con Ia rutina de evaluación de Ia nueva función de puntuación - Preparación de los ligandos.
Para utilizar Ia nueva función de puntuación, los átomos de los ligandos deben estar clasificados según las categorías utilizadas para definir Ia nueva función de puntuación
("hidrofóbico", "aromático", "donor" o "aceptar" de puentes de hidrógeno, e "hidroxilo").
Para realizar esta clasificación utilizamos el conocido programa Babel, al cual Ie introdujimos algunas modificaciones para incorporar los nuevos tipos de átomos definidos en este trabajo. Inicialmente, las estructuras de los ligandos pueden estar guardadas en formato "pdb", "mol2", o cualquiera de los múltiples formatos de entrada que acepta el programa Babel. Como salida del programa se obtienen las estructuras de los ligandos con los nuevos tipos de átomos incluidos. - Corrida del programa DOCK modificado.
La preparación de los datos de entrada y Ia corrida del programa DOCK se realiza de Ia misma manera descrita en el manual del programa, con algunas pequeñas modificaciones en Ia descripción de los datos de entrada, para indicar el uso de Ia nueva función de puntuación, y los ficheros que contienen las representaciones del sitio de unión y los enrejados de potenciales estadísticos calculados para cada conformación del receptor proteico. Cada una de las conformaciones del receptor es probada para cada ligando.
- Procesamiento de los resultados de Ia simulación de acoplamiento.
De manera similar a cuando se utiliza el programa DOCK nativo, como resultado de las simulaciones con el programa DOCK modificado se obtiene un gran número de soluciones (cientos o miles, en dependencia de los límites impuestos al programa) que presentan diferentes orientaciones y conformaciones de los diferentes ligandos. En este caso, además, cada orientación de un ligando va asociada a una determinada conformación del sitio de unión del receptor.
Para poder analizar adecuadamente los resultados, se debe simplificar esa lista, agrupando las soluciones que son similares entre sí. Para ello ¡mplementamos un algoritmo que primeramente, para cada ligando y cada conformación del receptor contenida en Ia lista de salida del DOCK, agrupa las orientaciones similares del ligando y selecciona una conformación representatica de cada agrupamiento. El algoritmo funciona de manera similar a como se describe en el paso 2 para agrupar las conformaciones del receptor. EL valor de corte de rmsd se escoge alrededor de los 2 Á. Luego, para cada una de las orientaciones seleccionadas de un ligando, se agrupan las conformaciones del receptor siguiendo el algoritmo descrito en el paso 2, con Ia particularidad de que los cálculos de rmsd se realizan solo para los aminoácidos que están en contacto con el ligando.
Como señalamos anteriormente, Ia utilización del programa DOCK como plataforma para introducir Ia nueva función de puntuación influye en el diseño de los pasos a seguir en el método presentado en esta invención. En particular, los pasos 3 y 6 están vinculados directamente al uso de este programa. Debemos destacar, sin embargo, que Ia metodología puede adaptarse fácilmente al uso de otros programas de simulación de acoplamiento.
Los autores de Ia presente invención describen un nuevo sistema y procedimiento para realizar simulaciones de acoplamiento molecular entre una proteína y otra molécula de cualquier naturaleza química, con Ia ventaja innegable deque permite realizar una exploración amplia de Ia flexibilidad del receptor en Ia zona del sitio de unión del ligando, así como de Ia flexibilidad del propio ligando. La rapidez y eficiencia del método hace posible su empleo en el tamizaje virtual de grandes bases de datos de estructuras 3D de moléculas, en busca de candidatos a unirse a una proteína de interés.
En el siguiente ejemplo se incluyen los detalles experimentales comparativos que permiten contrastar Ia eficacia del procedimiento computacional objeto de Ia invención respecto de otros métodos descritos previamente.
Ejemplo 1
La estructura cristalizada del fragmento Fab del anticuerpo br96 en complejo con un tetrasacárido, depositada en Ia base Protein Data Bank (código 1cly) , fue utilizada como caso de prueba para verificar Ia efectividad del método propuesto en determinar correctamente Ia orientación del ligando y Ia conformación del sitio de unión del receptor. 1- La estructura del anticuerpo, sin el ligando, fue primeramente optimizada energéticamente utilizando el programa CHARMM descrito por Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M. J Comp. Chem 4, 187-217, 1983. y luego sometida a una simulación de dinámica molecular a una temperatura de 400 K utilizando el mismo programa. Todos los aminoácidos pertenecientes a Ia región hipervariable, así como Ia capa de aminoácidos de Ia región marco adyacentes al CDR H3, fueron incluidos como móviles en Ia simulación. No solo las cadenas laterales de estos residuos fueron puestas en movimiento, sino también los átomos del esqueleto proteico. El resto de Ia estructura se mantuvo fija. Realizamos una simulación de 4000 ps, durante Ia cual almacenamos las coordenadas cada 1 ps. Debemos señalar que Ia alta temperatura a Ia cual se realizó Ia simulación se escogió con el propósito de perturbar de manera drástica Ia estructura del sitio de unión, de manera tal que el espacio conformacional explorado fuera amplio. En particular, Ia conformación del CDR H3 sufrió grandes variaciones durante Ia simulación. Al final obtuvimos 4000 conformaciones del sitio de unión, entre las cuales había solo 26 similares a Ia conformación original del anticuerpo (rmsd < 2 Á para los aminoácidos que contactan al ligando).
2- El fichero de coordenadas recolectado en Ia simulación de dinámica molecular fue procesado como se describe en el paso 2, para agrupar las conformaciones del sitio de unión del receptor similares entre sí. En el cálculo de rmsd para el agrupamiento, realizado con un valor de corte de 1.5 Á, incluimos todos los aminoácidos situados dentro de un radio de 12 Á desde el centro del sitio de unión del anticuerpo. Como resultado obtuvimos 342 geometrías representativas del espacio conformacional explorado. 3- Para crear una imagen negativa del sitio de unión mediante descriptores geométricos, utilizamos el método automatizado de "puntos enlazados" descrito por Moreno E, León K. Geometría and chemical patterns of interaction in protein-ligand complexes and their application in docking. Proteins 47, 1-13, 2002. La representación de puntos fue extendida sobre Ia misma región de aminoácidos tenida en cuenta en el paso anterior para el agrupamiento de las conformaciones del receptor.
4- Para cada una de las 342 conformaciones representativas del receptor, y de manera automatizada, se calculó un enrejado de potenciales estadísticos como se describe más arriba. El enrejado, con un paso de 0.4 Á, cubrió Ia misma zona de aminoácidos señalada en los pasos 2 y 3, o sea, los residuos situados dentro de un radio de 12 Á desde un punto central en el sitio de unión del anticuerpo.
5- La estructura del ligando, un tetrasacárido, fue tomada del propio fichero del PDB que contiene el complejo anticuerpo-ligando. Utilizando el programa Babel modificado, asignamos los tipos de átomos necesarios para utilizar Ia nueva función de puntuación.
6- La simulación de acoplamiento entre el ligando y las conformaciones representativas del receptor, utilizando el programa DOCK modificado, se realizó en un tiempo promedio de seis segundos por conformación, con un procesador AMD a 1.4 GHz. El fichero principal de entrada fue preparado siguiendo el manual del programa DOCK nativo, excepto por un número muy reducido de opciones adicionales introducidas para indicar el uso de los potenciales estadísticos y los ficheros de entrada correspondientes. El número de orientaciones del ligando a generar para cada conformación del receptor fue de 200, guardando las 10 orientaciones de mejor puntuación. En un fichero independiente fueron En consecuencia, como resultado de Ia simulación de acoplamiento fueron guardadas 3420 orientaciones del ligando, asociadas a las diferentes conformaciones del receptor.
7- Las 3420 soluciones obtenidas como resultado de Ia corrida del programa DOCK modificado fueron ordenadas de acuerdo a Ia puntuación dada por Ia función de puntuación, y las primeras 200 soluciones fueron sometidas a un proceso de agrupamiento como se describe en el paso 7 del método, utilizando un valor de corte de 2 Á. Como resultado se obtuvieron 28 soluciones, entre las cuales había tres similares a Ia estructura cristalográfica del complejo anticuerpo-ligando, ocupando en Ia lista las posiciones 2, 7 y 18, respectivamente. Este resultado es muy satisfactorio, comparado con Io reportado en Ia literatura sobre el tema. Breve descripción de las Figuras
Figura 1. Distribución 3D de contactos proteína-ligando recolectados alrededor de los aminoácidos Arginina y Tirosina. Los átomos de nitrógeno están representados en negro, los de oxígeno en gris oscuro y los de carbono en gris claro. Se observa un aro de átomos de oxígeno alrededor del grupo guanidino de Ia arginina. Para Ia tirosina, se observa un agrupamiento de átomos de carbono a cada lado del plano del anillo aromático, y un anillo de oxígenos sobre el grupo hidroxilo.
Figura 2. Ejemplo de transposición de interacciones atómicas entre aminoácidos y átomos de ligandos: Un átomo de un ligando que interactúa con el nitrógeno Nε de Ia arginina es transpuesto a una estructura modelo de este aminoácido utilizando un sistema de referencia centrado en el nitrógeno Nε y que incluye a sus dos átomos adyacentes. La geometría de este trío permanece fija cuando ocurren rotaciones alrededor de cualquier enlace de Ia cadena lateral del aminoácido. Figura 3. Ilustración del enrejado de potenciales estadísticos para el aminoácido molde de Ia Arginina. Cada punto almacena valores de Ia función de puntuación para cada tipo de átomo. En Ia figura, cada punto ha sido desdoblado en tres, representando Ia puntuación para los átomos de carbono, oxígeno y nitrógeno.
Figura 4. Contribución de los aminoácidos de Ia proteína al enrejado de potenciales estadísticos en el sitio de unión. Cada punto del enrejado recibe contribuciones de sus aminoácidos vecinos. Los valores de Ia función de puntuación que aporta cada aminoácido son tomados de su enrejado molde o de referencia, transponiendo el punto original usando sistemas de coordenadas internas.
Figura 5. Diagrama del método implementado en esta invención para realizar simulaciones de acoplamiento utilizando los potenciales estadísticos.

Claims

Reivindicaciones
1. Una función de puntuación para simulaciones de acoplamiento molecular caracterizada por un conjunto de potenciales estadísticos de interacción, cuyos valores numéricos se obtienen a partir de patrones tridimensionales de contactos atómicos entre aminoácidos de receptores proteicos y átomos de otras moléculas.
2. Una función de puntuación para simulaciones de acoplamiento molecular, según reivindicación 1 , caracterizada por valores numéricos de los potenciales estadísticos de interacción que son derivados de las densidades de contactos atómicos sobre las superficies de los aminoácidos.
3. Un método para realizar simulaciones de acoplamiento molecular caracterizado porque utiliza una función de puntuación basada en potenciales estadísticos de interacción, según reivindicaciones 1-2.
4. Un método para hacer agrupamientos de conformaciones de una proteína, o de una zona limitada de esta, caracterizado porque utiliza una comparación de las estructuras a nivel de aminoácidos individuales para determinar si las conformaciones son o no diferentes.
5. El método de Ia reivindicación 4, caracterizado porque se incluye en Ia simulación un conjunto de conformaciones del receptor proteico y que comprende los siguientes pasos:
A) Generación de múltiples conformaciones del sitio de unión del receptor proteico mediante dinámica molecular u otro método de exploración conformacional.
B) Agrupamiento de las conformaciones para eliminar las que son muy parecidas entre sí y obtener un grupo de conformaciones representativas del sitio de unión del receptor.
C) Representación automatizada del sitio de unión, a través de descriptores geométrico- químicos, para cada conformación del receptor obtenida en el paso B).
D) Cálculo de un enrejado de potenciales estadísticos en el sitio de unión de Ia proteína para cada conformación obtenida en el paso B). E) Clasificación de los átomos de los ligandos que se van a incluir en Ia simulación (ver paso F), según los tipos atómicos que caracterizan los potenciales estadísticos que constituyen Ia función de puntuación de las reivindicaciones 1-2.
F) Simulaciones de acoplamiento molecular con el programa DOCK, modificado para incluir Ia función de puntuación de las reivindicaciones 1-2, para cada una de las conformaciones del receptor obtenidas en el paso B), utilizando las representaciones del sitio de unión obtenidas en el paso C) y los enrejados de potenciales estadísticos obtenidos en el paso D).
G) Procesamiento de los resultados de Ia simulación del paso F), agrupando las soluciones dadas por el programa DOCK modificado con el objetivo de obtener un grupo de soluciones representativas.
PCT/CU2006/000003 2005-05-12 2006-05-09 Metodo para realizar simulaciones de acoplamiento molecular con receptor flexible utilizando una nueva funcion de puntuacion. WO2006119714A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CU2005-0090 2005-05-12
CU20050090 2005-05-12

Publications (1)

Publication Number Publication Date
WO2006119714A1 true WO2006119714A1 (es) 2006-11-16

Family

ID=37396189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CU2006/000003 WO2006119714A1 (es) 2005-05-12 2006-05-09 Metodo para realizar simulaciones de acoplamiento molecular con receptor flexible utilizando una nueva funcion de puntuacion.

Country Status (2)

Country Link
TW (1) TW200802017A (es)
WO (1) WO2006119714A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103500293A (zh) * 2013-09-05 2014-01-08 北京工业大学 一种非核糖体蛋白质-rna复合物近天然结构的筛选方法
CN113593647A (zh) * 2021-07-23 2021-11-02 清华大学 固相识别雌激素受体的雌二醇衍生物筛选方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020133297A1 (en) * 2001-01-17 2002-09-19 Jinn-Moon Yang Ligand docking method using evolutionary algorithm
US20030215877A1 (en) * 2002-04-04 2003-11-20 California Institute Of Technology Directed protein docking algorithm

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020133297A1 (en) * 2001-01-17 2002-09-19 Jinn-Moon Yang Ligand docking method using evolutionary algorithm
US20030215877A1 (en) * 2002-04-04 2003-11-20 California Institute Of Technology Directed protein docking algorithm

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CLAUSSEN H. ET AL.: "FlexE: Efficient molecular docking considering protein structure variations", J. MOL. BIOL., vol. 308, 2001, pages 377 - 395, XP003003165 *
FALCAO P.K. ET AL.: "Utilizacao de software GRASP para gerar arquivo de coordenaas com valores de potencial eletrostatico", COMUNICADO TECNICO 24, CAMPINAS SP. EMBRAPA INFOMATICA AGROPECUARIA. AREA DE COMUNICACAO E NEGOCIOS (ACN), November 2002 (2002-11-01) *
VISPO N.S.: "Uso de bibliotecas quimicas virtuales para el diseno de medicamentos", COMBINATORIA MOLECULAR. ELFOS SCIENTIAE, 2004, pages 405 - 417, XP008072427 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103500293A (zh) * 2013-09-05 2014-01-08 北京工业大学 一种非核糖体蛋白质-rna复合物近天然结构的筛选方法
CN103500293B (zh) * 2013-09-05 2017-07-14 北京工业大学 一种非核糖体蛋白质‑rna复合物近天然结构的筛选方法
CN113593647A (zh) * 2021-07-23 2021-11-02 清华大学 固相识别雌激素受体的雌二醇衍生物筛选方法
CN113593647B (zh) * 2021-07-23 2024-04-19 清华大学 固相识别雌激素受体的雌二醇衍生物筛选方法

Also Published As

Publication number Publication date
TW200802017A (en) 2008-01-01

Similar Documents

Publication Publication Date Title
ES2772687T3 (es) Sistema para aplicar una red convolucional a datos espaciales
Ragoza et al. Protein–ligand scoring with convolutional neural networks
CN109964278B (zh) 通过并行评估分类器输出校正第一分类器中的误差
Panda et al. Structure-based drug designing and immunoinformatics approach for SARS-CoV-2
Sheridan et al. Drug-like density: a method of quantifying the “bindability” of a protein target based on a very large set of pockets and drug-like ligands from the Protein Data Bank
Lemmen et al. FLEXS: a method for fast flexible ligand superposition
Dhanik et al. DINC: a new AutoDock-based protocol for docking large ligands
Feig et al. MMTSB Tool Set: enhanced sampling and multiscale modeling methods for applications in structural biology
Braitbard et al. Integrative structure modeling: overview and assessment
Chang et al. A guide to in silico drug design
Naderi et al. Binding site matching in rational drug design: algorithms and applications
Wall et al. Biomolecular solvation structure revealed by molecular dynamics simulations
ES2701440T3 (es) Sistemas y métodos de muestreo y análisis de dinámica conformacional de polímeros
Khalak et al. Chemical space exploration with active learning and alchemical free energies
Griffiths et al. Optimal alignment of structures for finite and periodic systems
Preißner et al. Dictionary of interfaces in proteins (DIP). Data bank of complementary molecular surface patches
Najibi et al. Protein structure classification and loop modeling using multiple Ramachandran distributions
Yurina et al. Predicting epitopes for vaccine development using bioinformatics tools
JP2009058499A (ja) 巨大分子における結合部位ボリュームをマッピングするためのシステム及び方法
CN103077226A (zh) 一种多模态蛋白质构象空间搜索方法
Billeter et al. A new approach to the problem of docking two molecules: the ellipsoid algorithm
Marialke et al. Graph-based molecular alignment (GMA)
Swift et al. Modeling the pharmacodynamics of passive membrane permeability
Osaki et al. 3D-RISM-AI: a machine learning approach to predict protein–ligand binding affinity using 3D-RISM
Graef et al. Searching geometric patterns in protein binding sites and their application to data mining in protein kinase structures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06742208

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)