WO2006114929A1 - Fuel supply device for fuel cell - Google Patents

Fuel supply device for fuel cell Download PDF

Info

Publication number
WO2006114929A1
WO2006114929A1 PCT/JP2006/302546 JP2006302546W WO2006114929A1 WO 2006114929 A1 WO2006114929 A1 WO 2006114929A1 JP 2006302546 W JP2006302546 W JP 2006302546W WO 2006114929 A1 WO2006114929 A1 WO 2006114929A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
fuel cell
supply device
cell
liquid
Prior art date
Application number
PCT/JP2006/302546
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsuru Nozue
Original Assignee
Kurita Water Industries Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd. filed Critical Kurita Water Industries Ltd.
Publication of WO2006114929A1 publication Critical patent/WO2006114929A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an apparatus for supplying fuel to a fuel cell.
  • a solid polymer electrolyte fuel cell is formed by using a solid electrolyte membrane such as a perfluorosulfonic acid membrane as an electrolyte, and a fuel electrode and an oxidant electrode are joined to both surfaces of the membrane, and hydrogen or It is a device that generates oxygen by electrochemical reaction by supplying oxygen to methanol and power sword.
  • the electrochemical reaction that occurs at each electrode is as follows:
  • both electrodes are composed of a mixture of fine carbon particles carrying a catalyst material and a solid polymer electrolyte.
  • the fuel of the direct methanol fuel cell uses methanol as a liquid.
  • methanol as a liquid.
  • Patent Document 1 a method in which the fuel is a molecular compound
  • Patent Document 2 a method in which the fuel is absorbed into a polymer
  • Patent Document 3 a method in which the fuel is absorbed into a polymer
  • Patent Document 3 a method in which the fuel is absorbed into a polymer
  • Patent Document 3 a method of blending
  • water is passed through the fuel composition to release it.
  • Patent Document 1 International Publication 2004Z000857 pamphlet
  • Patent Document 2 JP 2004-127659 A
  • Patent Document 3 Japanese Patent Application Laid-Open No. 8-231970
  • An object of the present invention is to provide a fuel supply device for a fuel cell that can safely carry the fuel for the fuel cell and can easily supply the fuel to the fuel cell.
  • a fuel supply device for a fuel cell includes a fuel storage unit in which a liquid fuel component is fixed, and a flow unit for flowing the fuel in the fuel storage unit, and the liquid fuel component is flowed by the flow unit.
  • the liquid fuel component can be supplied to the fuel cell (Invention 1).
  • the liquid fuel component can be carried and stored in a solid state.
  • the liquid fuel component can be flowed by the flow means to supply the liquid fuel component to the fuel cell. it can.
  • the fuel storage section stores a fuel cell fuel composition that is released from the fuel cell fuel by contact with water
  • the flow means is a water supply device, and the water supply device
  • an aqueous solution of the fuel cell fuel can be prepared, and the aqueous fuel can be supplied to the fuel cell! ⁇
  • the volume of the fuel storage section can be increased or decreased, and the fuel storage section is filled with microcapsules that store fuel for fuel cells, and the flow means has a capacity of the fuel storage section. If the volume of the fuel storage portion is reduced by the pressing body, the microcapsule may be broken to release the fuel cell fuel so that the fuel cell fuel can be supplied to the fuel cell. ! ⁇ (Invention 3).
  • the volume of the fuel storage section can be increased or decreased.
  • the fuel storage section stores water and the fuel composition for the fuel cell that is released from the fuel cell fuel by contacting the fuel storage section with water.
  • the flow means is a pressing body that changes the volume of the fuel storage section. When the volume of the fuel storage section is reduced by the pressing body, the micro force process is damaged. Water leaks and an aqueous solution of fuel for the fuel cell is created.
  • the fuel storage section may include a liquid fuel absorber (Invention 5).
  • the fuel for the fuel cell is selected from a group power consisting of alcohols, ethers, hydrocarbons, and acetals. 1 type or 2 types or more can be used (Invention 6).
  • the liquid fuel component is fixed in the fuel storage portion, and means for fluidizing the fixed liquid fuel component is separately provided.
  • the liquid does not leak from the fuel storage part.
  • the fuel for the fuel cell which is difficult to handle, is stored safely and stably as a fuel composition containing the fuel for the fuel cell, and then the fuel for the fuel cell is easily and inexpensively taken out from the fuel composition. be able to.
  • the methanol stock solution corresponds to a deleterious substance under the Poisonous and Deleterious Substances Control Law, and corresponds to a dangerous substance class 4 and must be handled with great care. Because methanol has problems such as corrosion in high concentration methanol, methanol is used as a fuel. In general, it is used as an aqueous solution of about 10 to 30% by mass. Therefore, it has been proposed to carry a cartridge of methanol aqueous solution as a general method, but preventing leakage of the aqueous solution has been a major problem.
  • the fuel when the fuel composition is used, the fuel can be supplied to the fuel cell as an aqueous solution having an appropriate concentration by contacting the water with water and releasing the fuel in the fuel composition into the water. It is.
  • FIG. 1 is a perspective view schematically showing a fuel cell fuel supply device according to a first embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view of the fuel supply device for a fuel cell according to the first embodiment of the present invention.
  • FIG. 3 is a perspective view schematically showing a fuel cell fuel supply device according to a second embodiment of the present invention.
  • FIG. 4 is a longitudinal sectional view of a fuel supply device for a fuel cell according to a second embodiment of the present invention.
  • FIG. 5 is a perspective view schematically showing a fuel cell fuel supply device according to a third embodiment of the present invention.
  • FIG. 6 is a longitudinal sectional view of a fuel cell fuel supply device according to a third embodiment of the present invention.
  • FIG. 1 is a perspective view showing a fuel cell fuel supply apparatus according to a first embodiment of the present invention
  • FIG. 2 is a longitudinal sectional view.
  • the fuel cell fuel supply device 1 includes a fuel storage portion 2 and a flow means 3 provided in connection with the storage portion 2.
  • the upper and lower surfaces of the fuel storage unit 2 are covered with the liquid permeable sheets 4 and 4A, and the methanol inclusion compound 5 is filled inside.
  • methanol which is a liquid fuel component
  • the flow means 3 is configured by attaching a push button 7 to an upper part of a sponge 6 containing water and the sponge 6 so that it can be pressed and deformed.
  • the fuel container 2 communicates with the fuel electrode (not shown) of the direct methanol fuel cell via a liquid-permeable sheet 4A covering the lower side.
  • the fuel supply device 11 for the fuel cell includes a fuel storage portion 12 and a push button 13 as the flow means 3 provided to be connected to the upper surface of the storage portion 12.
  • the fuel container 12 has an upper surface covered with a flexible sheet 14, while a lower surface is a liquid permeable sheet 15.
  • the liquid fuel component is fixed by enclosing the methanol aqueous solution in the fuel capsule 16 so that it can be safely carried.
  • the fuel container 12 communicates with a fuel electrode (not shown) of a direct methanol fuel cell via a liquid-permeable sheet 15 covering the lower side! /
  • FIG. 5 Furthermore, a third embodiment of the present invention will be described based on FIG. 5 and FIG.
  • the fuel supply device 21 for the fuel cell includes a fuel storage portion 22 and a push button 23 as the flow means 3 provided in connection with the upper surface of the storage portion 22.
  • the fuel container 22 has an upper surface covered with a flexible sheet 24, while a lower surface is a liquid permeable sheet 25.
  • a water capsule 26 containing water inside and a methanol inclusion compound 27 And are filled.
  • methanol which is a liquid fuel component, is used as an inclusion compound, and water is sealed in the capsule to fix the liquid fuel component. It has become portable.
  • the fuel container 22 communicates with a fuel electrode (not shown) of a direct methanol fuel cell through a liquid-permeable sheet 25 covering the lower side.
  • a liquid fuel absorber such as a sponge lump is mixed in the fuel storage portions 12 and 22 so as to be pushed when the power supply by the fuel cell is stopped.
  • the liquid fuel absorber such as a sponge lump expands, and the excess liquid in the fuel storage portions 12 and 22 can be absorbed.
  • the liquid fuel absorber does not absorb the liquid when pressed, but it is preferable to reduce the pressure so that the liquid can be absorbed.
  • the liquid can be absorbed by controlling the pressure. Responding to pressure using a changing polymer absorber or using a thermosensitive gel You can control the temperature.
  • the fuel for fuel cell is a force that can include alcohols, ethers, hydrocarbons, or acetals. It is not limited to these as long as it can be used as a fuel for a polymer electrolyte fuel cell.
  • alcohols such as hydrogen, methanol, ethanol, n-propanol, isopropanol, and ethylene glycol
  • ethers such as dimethyl ether, methyl ether, and jetyl ether
  • hydrocarbons such as propane and butane
  • dimethoxymethane, trime Forces including acetals such as toshikimethane are not limited to these, and these may be used alone or in combination of two or more.
  • the fuel cell is preferably a solid polymer fuel cell.
  • a direct methanol fuel cell is suitable, but is not limited thereto.
  • the fuel cell fuel may be a fuel cell fuel composition that is solid or gelled as a molecular compound or polymer of the fuel cell fuel.
  • the molecular compound means that two or more kinds of compounds that can exist stably alone are relatively weak interactions other than covalent bonds, such as hydrogen bonds and van der Waals forces. These are bonded compounds, and include hydrates, solvates, addition compounds, and inclusion compounds. Such molecular compounds can be formed by the contact reaction between the compound forming the molecular compound and the fuel for the fuel cell, and the fuel for the fuel cell can be changed into a solid compound, which is relatively light and stable. Fuel cell fuel can be stored in
  • Examples of the molecular compound include clathrate compounds in which the fuel for the fuel cell is clathrated by the contact reaction between the host compound and the fuel for the fuel cell.
  • the host compound that forms the clathrate compound that clathrates the fuel for the fuel cell a compound composed of an organic compound, an inorganic compound, and an organic / inorganic composite compound is known.
  • organic compounds monomolecular, polymolecular, and polymeric hosts are known.
  • Monomolecular hosts include cyclodextrins, crown ethers, cryptands, Examples include cyclophanes, azacyclophanes, calixarenes, cyclotriveratrylenes, spherands, and cyclic oligopeptides.
  • Multimolecular hosts include urines, thioureas, deoxycholic acids, cholic acids, perhydrotriphenylenes, trio-thymotides, bianthryls, spirobifluorenes, and cyclophosphazenes.
  • Polymeric hosts include celluloses, starches, chitins, chitosans, polybutyl alcohols, polyethylene glycol arm polymers with 1, 1, 2, 2, —tetrakis-pheulethane as the core.
  • polyethylene glycol arm type polymers having tetra-tetraxylene xylene as a core.
  • organic phosphorus compounds, organic silicon compounds, and the like are also included.
  • Examples of the inorganic host compound include titanium oxide, graphite, alumina, transition metal dicargogenite, lanthanum fluoride, clay mineral (montmorillonite, etc.), silver salt, silicate, phosphate, zeolite, silica And porous glass.
  • organometallic compounds exhibit properties as host compounds, such as organoaluminum compounds, organotitanium compounds, organoboron compounds, organozinc compounds, organoindium compounds, organogallium compounds, organic Examples include tellurium compounds, organotin compounds, organozirconium compounds, and organomagnesium compounds.
  • organoaluminum compounds such as organoaluminum compounds, organotitanium compounds, organoboron compounds, organozinc compounds, organoindium compounds, organogallium compounds, organic Examples include tellurium compounds, organotin compounds, organozirconium compounds, and organomagnesium compounds.
  • a metal salt of an organic carboxylic acid, an organometallic complex, or the like but it is not particularly limited as long as it is an organometallic compound.
  • multimolecular host compound examples include urea, 1, 1, 6, 6-tetraphenylhexa-2, 4, —diyne-1, 6-diol, 1, 1-bis. (2,4-Dimethylphenol) — 2 —Propin 1 1-Honole, 1, 1, 4, 4, —Tetraphenol 2 1—Butyne 1,4-Diol 1, 1, 6, 6, —Tetrakis (2, 4, —Dimethylphenol) 1, 2, 4—Hexadiyne 1, 6 Diol, 9, 10 Diphenol 9,10 Dihydroanthracene 9,10 Diol, 9, 10 Bis (4-methylphenol) 9,10 Dihydroanthracene 9,10 Diol 1, 1, 2, 2 —Tetraphenol-lethane 1,2 diol, 4-methoxyphenol, 2,4-dihydroxybenzophenone, 4,4′-dihydroxybenzophenone, 2,2 ′, 4,4′-tetrahydroxybenzophenone, 1, 1-bis (4,4-Dimethylphenol
  • These host compounds may be used alone or in combination of two or more. These host compounds form solid inclusion compounds with fuels for fuel cells. As long as the compound has any shape,
  • the above-mentioned organic host compound can also be used as an organic / inorganic composite material supported on an inorganic porous material.
  • the porous material supporting the organic host compound include intercalation compounds such as clay minerals and montmorillonites in addition to silicas, zeolites and activated carbons, but are not limited thereto. Absent.
  • Such an organic / inorganic composite material is, for example, dissolved in a solvent capable of dissolving the above-mentioned organic host compound, impregnated with the solution in an inorganic porous material, dried and dried under reduced pressure. It can be manufactured from Tsujiko.
  • the amount of the organic host compound supported on the inorganic porous material is not particularly limited, but is usually about 10 to 80% by mass with respect to the inorganic porous material.
  • Examples of a method for synthesizing a fuel cell fuel inclusion compound using a host compound such as 1,1 bis (4-hydroxyphenol) cyclohexane described above include a fuel cell fuel and a host compound.
  • a method in which the host compound is directly contacted and mixed and a method in which the host compound is dissolved and recrystallized by heating the fuel for the fuel cell.
  • the inclusion compound of the fuel for the fuel cell can be obtained by contacting the fuel with the host compound in a pressurized state.
  • the temperature at which the fuel for the fuel cell and the host compound are brought into contact with each other is not particularly limited, but is preferably from room temperature to about 100 ° C. Further, the time for contacting the fuel for the fuel cell and the host compound is not particularly limited, but is preferably about 0.01 to 24 hours from the viewpoint of work efficiency.
  • the fuel for the fuel cell to be brought into contact with the host compound is preferably a high-purity fuel.
  • a liquid mixture of fuel for fuel cells and other components may be used.
  • the clathrate compound thus obtained varies depending on the type of the host compound used, the contact conditions with the fuel for the fuel cell, etc., but usually one mole of the host compound is used. On the other hand, it is an inclusion complex containing 0.1 to 10 mol of fuel molecules for fuel cells.
  • the clathrate compound thus obtained can stably store fuel for fuel cells for a long period of time in a normal temperature / normal pressure environment.
  • this inclusion is lightweight and handled. Since it has excellent properties and strength, it can be easily stored in a glass, metal, plastic, or other container, eliminating the problem of liquid leakage.
  • the liquid fuel usually becomes solid due to the inclusion, so that the property as a deleterious substance or dangerous substance can be avoided.
  • the chemical reactivity of fuel for fuel cells can be reduced, and for example, the corrosiveness to metals can be alleviated.
  • the fuel composition contains 20 to LOO% by mass of a structural unit having a carboxyl group and Z or sulfonic acid group in the molecule based on the polymer (1), and the carboxyl group and / or the A fuel composition for a fuel cell comprising a cross-linked product (A) of the polymer (1) in which 30 to 100 mol% of protons of a sulfonic acid group are substituted with an onium cation and a fuel for a fuel cell can also be used. .
  • a fuel for a fuel cell (hereinafter simply referred to as fuel), it contains a predetermined amount of a structural unit having a carboxyl group and Z or sulfonic acid group in the molecule, and the carboxyl group and Z or sulfonic acid Proton power of group A cross-linked product (A) of the polymer (1) substituted with a predetermined amount of cation is used.
  • a monomer having a carboxyl group for example, (meth) acrylic acid, etaatalic acid, crotonic acid, sorbic acid, maleic acid, itaconic acid, fumaric acid, cinnamic acid, and anhydrides thereof Etc.]; Monomers having a sulfonic acid group [for example, aliphatic vinyl sulfonic acids [Bulsulfonic acid, allylic sulfonic acid, butyltoluenesulfonic acid, styrenesulfonic acid, etc.], (meth) acrylate sulfonic acid [sulfoethyl (meth) attaly Rate, sulfopropyl (meth) acrylate, etc.) and (meth) acrylamide type sulfonic acids [for example, acrylamide 2-methylpropane sulfonic acid, etc.], etc., and one or more of these are polymerized (1
  • a method of obtaining a polymer (1) containing a predetermined amount of a structural unit having a carboxyl group and Z or a sulfonic acid group in the molecule in addition to a method of polymerizing the monomer (a) in a predetermined amount.
  • a monomer that can be easily changed to a carboxyl group or a sulfonic group, such as an esterified product or an amidated product of the carboxyl group or sulfonic acid group-containing monomer is polymerized, and a method such as hydrolysis is used.
  • the polymer (1) includes a high molecular weight carboxyl group represented by carboxymethyl cellulose, a high molecular weight polysaccharide-containing polysaccharide, and the high molecular weight of the polysaccharide.
  • the content of the polymer (1) of the constituent unit having a carboxyl group and Z or sulfonic acid group usually. 20 to: LOO mass 0/0, preferably 40 to: LOO mass 0/0, more preferably Is 60: LO 0% by mass. If the content is less than 20%, even if the proton of the carboxyl group or sulfonic acid group is replaced with a cation cation described later, the absorption amount to the target liquid fuel decreases, or if the amount is small, the liquid fuel is gelled. There are cases where it is not possible.
  • Examples of the copolymerizable monomer (b) that forms a structural unit other than the structural unit having a carboxyl group and Z or a sulfonic acid group include, for example, an alkyl (meth) acrylate (having 1 to 30 carbon atoms) ester.
  • (meth) acrylic acid alkyl esters, oxyalkyl (meth) acrylates, aryl ethers, A- olefins and aromatic vinyl compounds are preferred.
  • Monomer (b) whose difference between SP value of solvent and monomer (b) is 5 or less is selected according to the SP value (solubility parameter) of the solvent to be absorbed or gelled of liquid fuel It is more preferable to select a solvent having an SP value of 3 or less as the SP value of the target solvent and the SP value of the monomer (b) because the absorbed amount tends to increase the gel repulsion.
  • the quaternary ammonium cation (1), the tertiary sulfo cation (11), the quaternary phospho cation (111), and the tertiary oxo cation (IV) group of cations One or more selected from
  • Examples of the quaternary ammonia cation (I) include the following (1-1) to (1-11).
  • (1-1) Aliphatic quaternary ammonium having 4 to 30 or more carbon atoms having an alkyl and Z or alkenyl group; tetramethyl ammonium, ethyl trimethyl ammonium, Jetyldimethyl ammonium, triethyl methyl ammonium, tetraethyl ammonium, trimethylpropyl ammonium, tetrapropyl ammonium, butyl trimethyl ammonium, tetraptyl ammonium, etc. .
  • Aromatic quaternary ammonia having 6 to 30 or more carbon atoms; trimethylphenol, dimethylethylamine, dimethylethylamine, triethylylamine Mu etc.
  • (I-3) Cycloaliphatic quaternary ammonium having 3 to 30 or more carbon atoms; N, N-dimethylpyrrolidinium, N ethyl N-methylpyrrolidinium, N, N Dimethyl morpholine, N, N Jetyl morpholium, N, N dimethyl piperidium, N, N dimethyl biverium, etc.
  • (I-10) Gua-dium having a tetrahydropyrimidi-um skeleton having 4 to 30 or more carbon atoms; 2 Dimethylamino-1, 3, 4 Trimethyltetrahydropyrimidium, 2 Jettyamino 1 , 3, 4 Trimethyltetrahydropyrimidium, 2 Dimethylamino-1,3-dimethyltetrahydropyrimidium, 2 Jetylamino-1,3 Dimethyltetrahydropyrimidium, 1, 3, 4, 6, 7, 8 Hexahydro 1,2 dimethyl— 2H—imide [1, 2 a] pyrimidium, 1, 3, 4, 6, 7, 8 Hexahydro 1,2 dimethyl 1 2H pyrimido [1,2a] pyrimidium 2 dimethylamino 1-cyanomethyl 1-methyltetrahydropyrimidium, 2 dimethylamino-4 acetyl-1,3 dimethyltetrahydropyrimidium 2 dimethylamino-4 methylcarboxymethyl-1,3 dimethylte
  • Examples of the tertiary sulfoyuium cation (II) include the following (II 1) to (II 3).
  • (II-1) Aliphatic tertiary sulfonium having an alkyl having 1 to 30 or more carbon atoms and a Z or alkenyl group; trimethylsulfum, triethylsulfum, ethyldimethylsulfum, jetyl Methyl sulfo-um and the like.
  • Examples of the quaternary phosphonium cation (III) include the following (III 1) to (III 3).
  • (III 1) Aliphatic quaternary phosphonium having 1 to 30 or more carbon atoms and Z or alkenyl groups; tetramethylphosphonium, tetraethylphosphonium, tetrapropy Norrephosphonium, Tetrabutinorephosphonium, Methyltritinorephosphonium, Methyltripropylphosphonium, Methyltributylphosphonium, Dimethyljetylphosphonium, Dimethyldibutylphosphonium, Trimethyl Ethylphosphonium, trimethylpropylphosphonium, trimethylbutylphosphonium, etc.
  • (III 2) Aromatic quaternary phosphonium having 6 to 30 or more carbon atoms; triphenyl methole norephospho um, diphenol noresi methino rephospho um, triphenol nore veneno lesphospho -Um etc.
  • Examples of the tertiary oxoyuium cation (IV) include the following (IV-1) to (IV-3).
  • (IV) Aliphatic tertiary oxoum having an alkyl having 1 to 30 or more carbon atoms and a Z or alkenyl group; trimethyloxoum, triethyloxoyuum, ethyldimethyloxo-sodium, jetylmethyloxo -Um etc.
  • Examples of the method for introducing the form cation into the polymer include a method in which protons of the carboxyl group and Z or sulfonic acid group of the polymer are substituted with the form cation. Any method can be used to replace protons with the above-mentioned cation, as long as it is a method that can replace the cation with a predetermined amount.
  • a hydroxide salt of the above-mentioned cation for example, tetraethyl cation).
  • Ammonium hydroxide, etc. monomethyl carbonate salts (eg 1, 2, 3, 4 trimethylimidazolium monomethyl carbonate, etc.) with high carboxyl group and Z or sulfonic acid group content. It can be easily replaced by adding it to the molecule and performing dehydration, decarboxylation, demethanol, etc. if necessary. Moreover, you may substitute similarly in the stage of a monomer.
  • the proton of the carboxyl group and Z or sulfonic acid group O - degree of substitution by Umukachion is,. 30 to: LOO mol 0/0, preferably 50 to: LOO mol 0/0, more preferably the 70 ⁇ : L00 is the mole 0/0.
  • O - With the degree of substitution Umukachion is less than 30 mole 0/0, the carboxyl group of the polymer (1), sulfonic Sanmoto ⁇ Bio - sometimes swelling mosquito dissociation Umukachion is too low Ya Gerui ⁇ low.
  • the structural unit having a carboxyl group and Z or a sulfonic acid group is quantitatively contained, and the carboxyl group and Z or the sulfonic acid group are substituted with a predetermined amount of formcation.
  • the polymer (1) is finally crosslinked at any stage to form a crosslinked product.
  • a method for crosslinking for example, the following methods [1] to [5] can be given which are well known in the art.
  • Two or more double bonds can be copolymerized with the carboxyl group- and Z- or sulfonic acid group-containing monomer, an cation-substituted cation of the monomer, and, if necessary, another monomer (b) to be copolymerized.
  • Copolymerizable cross-linking agent for example, polyvalent bur type cross-linking agent such as dibulebenzene, (meth) acrylamide type cross-linking agent such as N, N, -methylenebisacrylamide, and polyvalent allyl ether type such as pentaerythritol triallyl ether
  • polyvalent bur type cross-linking agent such as dibulebenzene
  • (meth) acrylamide type cross-linking agent such as N, N, -methylenebisacrylamide
  • polyvalent allyl ether type such as pentaerythritol triallyl ether
  • a method of cross-linking by crosslinking a polyvalent (meth) acrylic acid ester type cross-linking agent such as a cross-linking agent or trimethylolpropane tritalylate.
  • a reactive cross-linking agent having two or more functional groups in the molecule that can react with a carboxyl group and a Z or sulfonic acid group or an organic cation substitution product thereof, or a functional group of a monomer to be copolymerized if necessary for example, 4 , 4'-dimethanemethane diisocyanate and other polyisocyanate type crosslinking agents, polyglycerol polyglycidyl ether and other polyvalent epoxy type crosslinking agents, glycerin and other polyhydric alcohol type crosslinking agents, hexamethylenetetramine Or a polyvalent amine such as polyethylene imine, an imine type crosslinking agent, a haloepoxy type crosslinking agent such as epichlorohydrin, a polyvalent metal salt type crosslinking agent such as aluminum sulfate, etc.].
  • 4 , 4'-dimethanemethane diisocyanate and other polyisocyanate type crosslinking agents poly
  • [0081] [3] Crosslinking with polymerization reactive crosslinking agent The carboxyl group and z- or sulfonic acid group-containing monomer, an cation-substituted cation of the monomer, and, if necessary, copolymerizable with another monomer (b) or having a double bond in the molecule, And a polymerizable reactive crosslinking agent having a functional group capable of reacting with a functional group of a carboxyl group and Z or a sulfonic acid group or a cation cation substitution product thereof, and, if necessary, a monomer to be copolymerized, if necessary [for example, glycidyl metatalylate And the like using a glycidyl (meth) acrylate-type cross-linking agent such as allylic epoxy type cross-linking agents such as allyl glycidyl ether.
  • the polymer (1) is irradiated with radiation such as ultraviolet rays, electron beams and ⁇ rays to crosslink the polymer (1), and the monomer is irradiated with ultraviolet rays, electron beams and ⁇ rays to simultaneously polymerize and crosslink. How to do it.
  • radiation such as ultraviolet rays, electron beams and ⁇ rays to crosslink the polymer (1)
  • the monomer is irradiated with ultraviolet rays, electron beams and ⁇ rays to simultaneously polymerize and crosslink. How to do it.
  • cross-linking methods the preferred one varies depending on the use and form of the final product, but when considered comprehensively, [1] cross-linking with a copolymerizable cross-linking agent, [2] cross-linking with a reactive cross-linking agent and [4] Cross-linking by irradiation.
  • copolymerizable crosslinking agents preferred are polyvalent (meth) acrylamide type crosslinking agents, aryl ether type crosslinking agents, and polyvalent (meth) acrylic acid ester type crosslinking agents, and more preferred.
  • polyvalent isocyanate type crosslinking agents preferred are polyvalent isocyanate type crosslinking agents and polyvalent epoxy type crosslinking agents, and more preferred are polyvalent isocyanate types having three or more functional groups in the molecule. It is a crosslinking agent or a polyvalent epoxy type crosslinking agent.
  • the degree of crosslinking can be appropriately selected depending on the purpose of use, but when a copolymerizable crosslinking agent is used, 0.001 to 10% by mass is preferable with respect to the total monomer mass.
  • More preferred is ⁇ 5% by mass.
  • the amount of addition in the case of using a reactive crosslinking agent is such that the preferred amount of addition varies depending on the shape of the crosslinked body (A).
  • fuel In the case of producing an integrated gel containing a liquid fuel for batteries, 0.01 to 50% by mass is preferable.
  • a polymerization method for the carboxyl group and Z or sulfonic acid group-containing monomer, an cation substitution product of the monomer and, if necessary, another monomer (b) to be copolymerized is also a known method.
  • a solution polymerization method in a solvent in which each of the above monomers and the polymer to be formed dissolves a bulk polymerization method in which polymerization is performed without using a solvent, and an emulsion polymerization method can be exemplified.
  • the solution polymerization method is preferable.
  • the organic solvent by solution polymerization can be selected as appropriate depending on the solubility of the monomers and polymers used.
  • alcohols such as methanol and ethanol
  • carbonates such as ethylene carbonate, propylene carbonate and dimethyl carbonate
  • ⁇ -butyrolacton Latatones such as ⁇ - strength prolatatum
  • ketones such as acetone and methyl ethyl ketone
  • carboxylic acid esters such as ethyl acetate
  • ethers such as tetrahydrofuran and dimethoxyethane
  • aroma such as toluene and xylene Group hydrocarbons and water.
  • solvents may be used alone or in combination of two or more.
  • the polymerization concentration in the solution polymerization is not particularly limited and may vary depending on the intended use, but 1 to 80% by mass is preferable, and 5 to 60% by mass is more preferable.
  • the polymerization initiator may be a conventional one. Azobis ⁇ 2-methyl ⁇ — (2-hydroxyethyl) propionamide ⁇ , etc.], peracid-based initiators [peracid benzoyl, di-t-butyl peroxide, tamen hydroperoxide, succinic acid Peroxide, di (2-ethoxyethyl) peroxydicarbonate, hydrogen peroxide, etc.], redox initiator [combination of the above peroxide initiators and reducing agents (ascorbic acid or persulfate), etc.] Can be illustrated.
  • Examples of other polymerization methods include a method of adding a photosensitizer [benzophenone or the like] and irradiating ultraviolet rays or the like, a method of polymerizing by irradiating radiation such as y rays or electron beams, and the like. it can.
  • the amount of initiator added when a polymerization initiator is used is not particularly limited, but 0.0001 to 5% by mass is preferable with respect to the total mass of the monomers used. 2% by mass Is preferred.
  • the polymerization temperature varies depending on the target molecular weight, the decomposition temperature of the initiator, the boiling point of the solvent used, and the like, but is preferably 20 to 200 ° C, more preferably 0 to 100 ° C.
  • the volume average particle size is preferably 0.1 to 5000 ⁇ m, more preferably 50 to 2000 ⁇ m. Further, less than 0.1 m is preferably 10% by mass or less, and more than 5000 m is preferably 10% by mass or less, more preferably 5% by mass or less.
  • the particle size was measured using a low-tap test sieve shaker and a JIS Z8801-2000 standard sieve. Perry's Chemical Engineers Handbook 6th edition (McGlow Hill Hill Book Company 1) 1984, p. 21) (hereinafter, this method is used to measure the particle size).
  • the method for obtaining the particulate form is not particularly limited as long as it finally becomes particulate, and examples thereof include the following methods (i) to (iv).
  • a method of preparing the crosslinked product (A) of (1) distilling the solvent by a method such as drying, if necessary, and pulverizing it into a particulate form using a known pulverization method.
  • fuel stock For example, aeration drying (air circulation dryer etc.), air permeation drying (band type dryer etc.), vacuum drying (vacuum dryer etc.), contact drying (drum dryer etc.) etc. can be mentioned.
  • the drying temperature for drying is not particularly limited as long as the polymer or the like is not deteriorated or excessively cross-linked, but is preferably 0 to 200 ° C, more preferably 50 to 150 ° C. .
  • impact pulverization pin mill, cutter mill, ball mill type pulverizer, high-speed rotating type pulverizer such as ACM pulverizer, etc.
  • air pulverization etc.
  • Jet pulverizer, etc. freeze pulverization and the like.
  • the particulate crosslinked body (A) is obtained.
  • the cross-linked product (A) in the fuel storage of the present invention that has been particulated in this way has the ability to absorb fuel.
  • the fuel composition accommodated in the fuel supply device for a fuel cell of the present invention can be processed into various forms, and the form of the fuel composition is not particularly limited, but a preferable form is a particulate form, a sheet form, or an integral form. Mention may be made of the form of gerui.
  • the particulate fuel reservoir may be one in which the particulate crosslinked body (A) has absorbed the fuel! /, And may be particulate after the fuel has been absorbed.
  • the method for forming particles may be the same as the method for producing the crosslinked body (A).
  • the volume average particle diameter and the like are preferably the same as those of the crosslinked product (A).
  • the particulate fuel composition has the ability to absorb fuel.
  • the amount of the crosslinked product (A) absorbed in the fuel storage of the present invention varies depending on the type of the target fuel, the composition of the polymer, the gel strength, etc., and the crosslinked product (A) is converted into the fuel storage product.
  • the method for forming a sheet include the following methods (v) to (vii).
  • (V) A method in which the particulate crosslinked product (A) is sandwiched between nonwoven fabrics, paper, or the like to form a sandwich sheet to absorb fuel.
  • the thickness of the sheet (B) is 1 to 50000 m force S, preferably 5 to 30000 m force S, more preferably 10 to 10000 m. If the sheet thickness is 1 m or more, the weight per unit area of the crosslinked product (A) will not be too small, and if it is 50000 ⁇ m or less, the sheet thickness will not be too thick.
  • the sheet length and width can be appropriately selected depending on the size to be used, and are not particularly limited.
  • the preferred length is 0.01 to LOm, and the preferred width is 0.1 to 300 cm.
  • the weight per unit area of the crosslinked polymer of the present invention in the sheet (B) is not particularly limited, but taking into account the absorption ability of the liquid fuel of interest and the ability to retain the liquid, and the thickness not becoming too thick. , Weight per unit area ⁇ , 10 ⁇ 3000g / m 2 force is preferred ⁇ , 20 ⁇ : L000g / m 2 force is more preferred! /, 0
  • a base material such as a nonwoven fabric, a woven fabric, paper, or a film that is used as necessary to form the sheet may be a known material.
  • synthetic fibers having a basis weight of about 10 to 500 g and Z or ceiling
  • examples include non-woven fabrics or woven fabrics made of fibers, paper (quality paper, thin paper, Japanese paper, etc.), films made of synthetic resins, and two or more substrates thereof and composites thereof.
  • nonwoven fabrics and composites of nonwoven fabrics and plastic films or metal films preferred are nonwoven fabrics and composites of nonwoven fabrics and plastic films. is there.
  • the thickness of these base materials is not particularly limited, but is usually 1 to 50000 111, preferably 10 to 20000 / ⁇ ⁇ . If the thickness is less than 1 m, it is difficult to impregnate or apply the predetermined amount of the polymer (1). On the other hand, if the thickness exceeds 50000 m, the sheet is too thick to be used as a fuel storage. It becomes ⁇ to use when it becomes large.
  • the coating method or impregnation method of the polymer (1) to the base material may be a well-known method. For example, after applying a coating or padding treatment, which may be performed by applying a method such as ordinary coating or padding, etc.
  • the solvent used for polymerization, dilution, viscosity adjustment, etc. may be distilled off by a method such as drying, if necessary.
  • the sheet containing the cross-linked product (A) thus prepared absorbs fuel efficiently, and is therefore used as a sheet-type fuel storage.
  • the amount of fuel absorbed in the seat-type fuel storage is not particularly limited as long as the fuel supply time is sufficiently long, but 0.1 to 50 Og—fuel Zcm 2 —preferably l to 400 gZcm 2 More preferred. If the absorbed amount is 0.1 lgZcm 2 , the liquid fuel can be absorbed sufficiently, and if it is 500 gZcm 2 or less, the sheet that has absorbed the liquid fuel is not too thick.
  • the ratio of the crosslinked body (A) Z fuel in the integral gelled fuel storage comprising the crosslinked body (A) and fuel is preferably 0.1 to 99Zl to 99.9% by mass, and preferably 0. 5 ⁇ 50Z50 ⁇ 99. 5 mass 0/0, particularly preferably a 1 ⁇ 30 ⁇ 70 ⁇ 99 mass 0/0, most preferably from 1 ⁇ 20 ⁇ 80 ⁇ 99 mass%. If the ratio of the cross-linked product ( ⁇ ) is 0.1% by mass or more, the resulting fuel-containing gel may not be able to gel the entire gel strength, while the content is 99% by mass or less. In this case, since the content of the crosslinked body ( ⁇ ) is too large, the amount of fuel required is too low, and the discharge time of the battery is not shortened.
  • the same fuel as that described above can be used as the fuel used for the integral gel fuel storage.
  • Examples of a method for preparing an integral gelled fuel storage include: (viii) a method of adding a predetermined amount of fuel to the above-mentioned particulate crosslinked body (A) of the present invention; (ix) the crosslinked body (A
  • these fuel-containing gels can be used to form a gel that is integrated with the following methods (X) and (xi).
  • the polymer (1) is dissolved in a fuel, and the polymer (1) is cross-linked by any cross-linking means of cross-linking by the cross-linking agent, cross-linking by radiation irradiation, or cross-linking by heating.
  • the form of the gel that also has a crosslinked body and fuel power can be selected as appropriate, and examples of the shape include a sheet shape, a block shape, a spherical shape, and a cylindrical shape. Among these, when used as a fuel storage, a preferable shape is a sheet shape, a block shape or a column shape.
  • the thickness of the gel in the case of a sheet-like gel is preferably 1 to 50000 111, more preferably 10 to 20000 ⁇ m.
  • the width and length of the sheet-like gel may be appropriately selected according to the intended purpose, location, and usage.
  • the fuel composition may contain other gelling agents (fatty acid sarcophagus, dibenzal sorbite, hydroxypropyl cellulose, benzylidene sorbitol, carboxyvinyl polymer, polyethylene glycol, polyoxyanolylene, as necessary.
  • gelling agents fatty acid sarcophagus, dibenzal sorbite, hydroxypropyl cellulose, benzylidene sorbitol, carboxyvinyl polymer, polyethylene glycol, polyoxyanolylene, as necessary.
  • Sonorebithonole nitrocellulose, methinoresenorelose, ethinoresenorelose, acetinolebutinoresenellose, polyethylene, polypropylene, polystyrene, ABS resin, AB resin, acrylic resin, acetal resin, polycarbonate , Nylon, phenolic resin, phenoxy resin, urea resin, alkyd resin Fat, polyester, epoxy resin, diaryl phthalate resin, polyallomer, etc.), adsorbent (dextrin, dextran, silica gel, silica, alumina, molecular sieve, force orin, diatomaceous earth, carbon black, activated carbon, etc.), thickener
  • one or two or more selected from the group consisting of a material force that can be converted into a non-fluidized state by chemically converting the binder and the fuel may be blended. These are not particularly limited as long as they can perform their respective functions, and they may be solid or liquid.
  • BHC 1,2—Bis (4 hydroxyphenol) cyclohexane
  • THPE 1, 1, 2, 2—Tetrakis (4 hydroxyphenol) ethane
  • the resulting hydrogel was subdivided using a meat chopper, and this gel was then subjected to 60% methanol of 1, 2, 3, 4-tetramethylimidazolium cation methyl carbonate (molecular weight: 203).
  • methanol 1, 2, 3, 4-tetramethylimidazolium cation methyl carbonate
  • 1353 g (4 mol) of a solution (Sanyo Kasei Co., Ltd.) was added, it was observed that decarboxylation and demethanol occurred.
  • a band-type dryer air-permeable dryer, manufactured by Inoue Kinzoku Co., Ltd.
  • hot air at 100 ° C. is passed through, and water used as a solvent and By-product methanol was distilled off and dried.
  • the obtained dried product is pulverized using a cutter mill to prepare a particulate crosslinked product having an average particle diameter of 400 m, and 100 g of this 20 g of methanol is absorbed to obtain a fuel composition (A1).
  • the methanol clathrate compound or fuel composition (A1) obtained in Production Examples 1 to 3 is filled in the fuel storage section 2 of the fuel cell fuel supply device 1 shown in FIG.
  • a sponge containing water was pressed into part 2 and water was inhaled, a methanol aqueous solution was generated even in the case of deviation, and this methanol aqueous solution was injected into the fuel cell test device.
  • the fuel cell was able to generate electricity.

Abstract

A fuel supply device for a fuel cell, enabling fuel for a fuel cell to be safely carried and capable of simply supplying the fuel to the fuel cell. The fuel supply device (1) for a fuel cell has a fuel reception section (2) and a flow means (3) provided connected to the fuel reception section (2). The upper and the lower face of the fuel reception section (2) are covered with liquid pervious sheets (4, 4A), and the inside of the fuel reception section (2) is filled with a methanol clathrate (5). The flow means (3) is constructed by providing a push button (7) on the upper part of a water containing sponge (6) such that the button (7) can press the sponge (6). When the push button (7) is pressed to shrink (volume reduction) the sponge (6), the water is supplied to the fuel reception section (2) through the liquid permeable sheet (4) to produce fuel water solution.

Description

明 細 書  Specification
燃料電池用燃料供給装置  Fuel supply device for fuel cell
技術分野  Technical field
[0001] 本発明は、燃料電池に燃料を供給するための装置に関する。  [0001] The present invention relates to an apparatus for supplying fuel to a fuel cell.
背景技術  Background art
[0002] 固体高分子電解質型燃料電池は、パーフルォロスルホン酸膜等の固体電解質膜 を電解質とし、この膜の両面に燃料極及び酸化剤極を接合して構成され、アノードに 水素やメタノール、力ソードに酸素を供給して電気化学反応により発電する装置であ る。各電極で生じる電気化学反応は、アノードでは、メタノールを用いた場合、  [0002] A solid polymer electrolyte fuel cell is formed by using a solid electrolyte membrane such as a perfluorosulfonic acid membrane as an electrolyte, and a fuel electrode and an oxidant electrode are joined to both surfaces of the membrane, and hydrogen or It is a device that generates oxygen by electrochemical reaction by supplying oxygen to methanol and power sword. The electrochemical reaction that occurs at each electrode is as follows:
CH OH + H 0→6H+ + CO + 6e" ' · · [1]  CH OH + H 0 → 6H + + CO + 6e "'· · [1]
3 2 2  3 2 2
であり、また、力ソードでは、  And in the power sword,
3/20 + 6H+ + 6e"→3H O - - - [2] 3/20 + 6H + + 6e "→ 3H O---[2]
2 2  twenty two
である。この反応を起こすために、両電極は触媒物質が担持された炭素微粒子と固 体高分子電解質との混合体より構成されて 、る。  It is. In order to cause this reaction, both electrodes are composed of a mixture of fine carbon particles carrying a catalyst material and a solid polymer electrolyte.
[0003] このような固体高分子電解質型燃料電池において、燃料としてメタノールを用いた 場合、アノードに供給されたメタノールは、電極中の細孔を通過して触媒に達し、触 媒によりメタノールが分解されて、上記反応式 [1]の反応で電子と水素イオンを生成 する。水素イオンはアノード中の電解質及び両電極間の固体電解質膜を通ってカソ ードに達し、力ソードに供給された酸素及び外部回路より流れ込む電子と反応して、 上記反応式 [2]のように水を生じる。一方、メタノールより放出された電子はアノード 中の触媒担体を通って外部回路へ導き出され、外部回路より力ソードに流れ込む。こ の結果、外部回路ではアノードから力ソードへ向力つて電子が流れ電力が取り出され る。  In such a solid polymer electrolyte fuel cell, when methanol is used as the fuel, the methanol supplied to the anode reaches the catalyst through the pores in the electrode, and the methanol is decomposed by the catalyst. Then, electrons and hydrogen ions are generated by the reaction of the above reaction formula [1]. The hydrogen ions reach the cathode through the electrolyte in the anode and the solid electrolyte membrane between the electrodes, react with oxygen supplied to the force sword and electrons flowing from the external circuit, as shown in the above reaction formula [2]. Produces water. On the other hand, electrons released from methanol are led to the external circuit through the catalyst carrier in the anode, and flow into the force sword from the external circuit. As a result, in the external circuit, electrons flow from the anode to the force sword and power is extracted.
[0004] このメタノールを燃料とするダイレクトメタノール型燃料電池は、携帯用小型燃料電 池として適用できる可能性が高ぐ近年、携帯用コンピューターや携帯電話等の次世 代二次電池として開発が活発化してきて 、る。  [0004] In recent years, direct methanol fuel cells using methanol as a fuel are likely to be applicable as portable small fuel cells. In recent years, development is actively underway as next-generation secondary batteries for portable computers and mobile phones. It's becoming.
[0005] し力しながら、ダイレクトメタノール型燃料電池の燃料は、メタノールを液体のまま利 用していたので、危険性が高ぐ取扱上の問題が多い。このような燃料を安全に貯蔵 する方法として、燃料を分子化合物とする方法 (特許文献 1参照)、ポリマーに吸収さ せてゲル化させる方法 (特許文献 2参照)、多価アルコールの脂肪酸エステルと配合 させる方法 (特許文献 3参照)等が報告されている。また、これらの燃料電池用燃料を 安定な組成物としたものから、燃料電池用燃料を放出させる方法としては、燃料組成 物に水を通水して放出させることが報告されている。 [0005] However, the fuel of the direct methanol fuel cell uses methanol as a liquid. As a result, there are many handling problems that are very dangerous. As a method for safely storing such a fuel, a method in which the fuel is a molecular compound (see Patent Document 1), a method in which the fuel is absorbed into a polymer (see Patent Document 2), a fatty acid ester of a polyhydric alcohol, A method of blending (see Patent Document 3) has been reported. In addition, as a method for releasing fuel cell fuel from those fuel cell fuels having stable compositions, it has been reported that water is passed through the fuel composition to release it.
特許文献 1:国際公開 2004Z000857号パンフレット  Patent Document 1: International Publication 2004Z000857 pamphlet
特許文献 2 :特開 2004— 127659号公報  Patent Document 2: JP 2004-127659 A
特許文献 3:特開平 8 - 231970号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 8-231970
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] し力しながら、従来報告されて!、る燃料放出装置では、燃料電池用燃料組成物が 入っている容器内に通水する水が液体として存在しており、その水が漏れたりするお それがある。 [0006] However, in the conventional fuel discharge device, the water passing through the container containing the fuel composition for the fuel cell exists as a liquid, and the water leaks. There is a risk of doing it.
[0007] 本発明は、燃料電池用燃料を安全に持ち運べ、かつ簡単に燃料電池へ燃料を供 給することが可能な燃料電池用燃料供給装置を提供することを目的とする。  An object of the present invention is to provide a fuel supply device for a fuel cell that can safely carry the fuel for the fuel cell and can easily supply the fuel to the fuel cell.
課題を解決するための手段  Means for solving the problem
[0008] 本発明の燃料電池用燃料供給装置は、液体燃料成分を固定化した燃料収納部と 、この燃料収納部の燃料を流動させる流動手段とを備え、前記流動手段により液体 燃料成分を流動させて、液体燃料成分を燃料電池に供給可能としたことを特徴とす るものである (発明 1)。これにより、液体燃料成分を固体状にして持ち運びや保管す ることができ、さらに、燃料電池の稼動時には流動手段により液体燃料成分を流動さ せて、液体燃料成分を燃料電池に供給することができる。  [0008] A fuel supply device for a fuel cell according to the present invention includes a fuel storage unit in which a liquid fuel component is fixed, and a flow unit for flowing the fuel in the fuel storage unit, and the liquid fuel component is flowed by the flow unit. Thus, the liquid fuel component can be supplied to the fuel cell (Invention 1). As a result, the liquid fuel component can be carried and stored in a solid state. Further, when the fuel cell is in operation, the liquid fuel component can be flowed by the flow means to supply the liquid fuel component to the fuel cell. it can.
[0009] この燃料収納部は、水と接触することによって燃料電池用燃料が放出する燃料電 池用燃料組成物を収納したものであり、前記流動手段が水分供給装置であり、前記 水分供給装置カゝら前記燃料収納部に水を供給することにより、前記燃料電池用燃料 の水溶液が作成され、その水溶液状の燃料を燃料電池に供給可能とすればよ!ヽ (発 [0010] また、燃料収納部は、その容積が増減可能となっていて、該燃料収納部に燃料電 池用燃料を収容したマイクロカプセルを充填し、前記流動手段は該燃料収納部の容 積を変更する押圧体であり、該押圧体により燃料収納部の容積を減少させると、マイ クロカプセルが破損して燃料電池用燃料を放出して燃料電池用燃料を燃料電池に 供給可能としてもよ!ヽ (発明 3)。 [0009] The fuel storage section stores a fuel cell fuel composition that is released from the fuel cell fuel by contact with water, the flow means is a water supply device, and the water supply device By supplying water to the fuel storage section, an aqueous solution of the fuel cell fuel can be prepared, and the aqueous fuel can be supplied to the fuel cell!ヽ (Departure [0010] Further, the volume of the fuel storage section can be increased or decreased, and the fuel storage section is filled with microcapsules that store fuel for fuel cells, and the flow means has a capacity of the fuel storage section. If the volume of the fuel storage portion is reduced by the pressing body, the microcapsule may be broken to release the fuel cell fuel so that the fuel cell fuel can be supplied to the fuel cell. ! ヽ (Invention 3).
[0011] さらに、前記燃料収納部は、その容積が増減可能となっていて、該燃料収納部に 水と接触することによって燃料電池用燃料が放出する燃料電池用燃料組成物と、水 を収容したマイクロカプセルとが充填されており、前記流動手段が該燃料収納部の 容積を変更する押圧体であり、該押圧体により、燃料収納部の容積を減少させると、 マイクロ力プセスが破損して水が漏洩し、前記燃料電池用燃料の水溶液が作成され[0011] Further, the volume of the fuel storage section can be increased or decreased. The fuel storage section stores water and the fuel composition for the fuel cell that is released from the fuel cell fuel by contacting the fuel storage section with water. And the flow means is a pressing body that changes the volume of the fuel storage section. When the volume of the fuel storage section is reduced by the pressing body, the micro force process is damaged. Water leaks and an aqueous solution of fuel for the fuel cell is created.
、その水溶液状の燃料に圧力を燃料電池に供給可能とすることもできる (発明 4)。 It is also possible to supply pressure to the fuel cell in the aqueous fuel (Invention 4).
[0012] このような燃料電池用燃料供給装置 (発明 1〜4)において、前記燃料収納部に液 体燃料吸収体を有して 、てもよ ヽ (発明 5)。 [0012] In such a fuel cell fuel supply device (Inventions 1 to 4), the fuel storage section may include a liquid fuel absorber (Invention 5).
[0013] また、このような燃料電池用燃料供給装置 (発明 1〜5)において、前記該燃料電池 用燃料としては、アルコール類、エーテル類、炭化水素類、及びァセタール類よりな る群力 選ばれる 1種又は 2種以上を用いることができる(発明 6)。 [0013] Further, in such a fuel cell fuel supply device (Inventions 1 to 5), the fuel for the fuel cell is selected from a group power consisting of alcohols, ethers, hydrocarbons, and acetals. 1 type or 2 types or more can be used (Invention 6).
発明の効果  The invention's effect
[0014] 本発明の燃料電池用燃料供給装置では、燃料収納部に液体燃料成分を固定化し ておくとともに、この固定ィ匕した液体燃料成分を流動化させる手段を別途設けている ので、持ち運びの際に燃料収納部から液漏れしない。そして、この燃料収納部に吸 水することにより、加熱装置や加熱エネルギーを必要とすることなぐ燃料電池用燃 料を含む燃料組成物カゝら燃料電池用燃料を容易に放出させることができる。  In the fuel supply device for a fuel cell according to the present invention, the liquid fuel component is fixed in the fuel storage portion, and means for fluidizing the fixed liquid fuel component is separately provided. The liquid does not leak from the fuel storage part. By absorbing water into the fuel storage section, the fuel for the fuel cell can be easily released from the fuel composition containing the fuel for the fuel cell without requiring a heating device or heating energy.
[0015] このため、取扱いが困難な燃料電池用燃料を、燃料電池用燃料を含む燃料組成 物として安全かつ安定に貯蔵した上で、この燃料組成物から燃料電池用燃料を容易 かつ安価に取り出すことができる。  [0015] For this reason, the fuel for the fuel cell, which is difficult to handle, is stored safely and stably as a fuel composition containing the fuel for the fuel cell, and then the fuel for the fuel cell is easily and inexpensively taken out from the fuel composition. be able to.
[0016] なお、燃料電池用燃料のうち、メタノールの原液は毒劇物取締法の劇物に相当し、 また危険物第 4類に相当する等取扱いには十分に注意する必要がある上に、高濃度 メタノールでは腐食等の問題があること等の理由から、メタノールを燃料として使用す る際は、通常、 10〜30質量%程度の水溶液として使用する。したがって、メタノール 水溶液のカートリッジを持ち運ぶことが一般的な方法として提案されているが、水溶 液の漏れを防止することは大きな問題となっていた。本発明では、燃料組成物を使 用する際に水と接触させて、燃料組成物中の燃料を水中に放出させることにより、燃 料を適当な濃度の水溶液として燃料電池に供給することが可能である。 [0016] Of the fuel for fuel cells, the methanol stock solution corresponds to a deleterious substance under the Poisonous and Deleterious Substances Control Law, and corresponds to a dangerous substance class 4 and must be handled with great care. Because methanol has problems such as corrosion in high concentration methanol, methanol is used as a fuel. In general, it is used as an aqueous solution of about 10 to 30% by mass. Therefore, it has been proposed to carry a cartridge of methanol aqueous solution as a general method, but preventing leakage of the aqueous solution has been a major problem. In the present invention, when the fuel composition is used, the fuel can be supplied to the fuel cell as an aqueous solution having an appropriate concentration by contacting the water with water and releasing the fuel in the fuel composition into the water. It is.
図面の簡単な説明  Brief Description of Drawings
[0017] [図 1]図 1は、本発明の第 1の実施形態に係る燃料電池用燃料供給装置を概略的に 示す斜視図である。  FIG. 1 is a perspective view schematically showing a fuel cell fuel supply device according to a first embodiment of the present invention.
[図 2]図 2は、本発明の第 1の実施形態に係る燃料電池用燃料供給装置の縦断面図 である。  FIG. 2 is a longitudinal sectional view of the fuel supply device for a fuel cell according to the first embodiment of the present invention.
[図 3]図 3は、本発明の第 2の実施形態に係る燃料電池用燃料供給装置を概略的に 示す斜視図である。  FIG. 3 is a perspective view schematically showing a fuel cell fuel supply device according to a second embodiment of the present invention.
[図 4]図 4は、本発明の第 2の実施形態に係る燃料電池用燃料供給装置の縦断面図 である。  FIG. 4 is a longitudinal sectional view of a fuel supply device for a fuel cell according to a second embodiment of the present invention.
[図 5]図 5は、本発明の第 3の実施形態に係る燃料電池用燃料供給装置を概略的に 示す斜視図である。  FIG. 5 is a perspective view schematically showing a fuel cell fuel supply device according to a third embodiment of the present invention.
[図 6]図 6は、本発明の第 3の実施形態に係る燃料電池用燃料供給装置の縦断面図 である。  FIG. 6 is a longitudinal sectional view of a fuel cell fuel supply device according to a third embodiment of the present invention.
符号の説明  Explanation of symbols
[0018] 1, 11, 12· ··燃料電池用燃料供給装置 [0018] 1, 11, 12... Fuel supply device for fuel cell
2. 12, 22· ··燃料収容部  2. 12, 22 ... Fuel storage
3…流動手段  3 ... Flowing means
5, 27· ··メタノール包接ィ匕合物 (燃料組成物,固定化燃料)  5, 27 ··· Methanol inclusion compound (fuel composition, immobilized fuel)
6· ··スポンジ (流動手段)  6 ··· Sponge (fluid means)
7. 13, 23…押ボタン (流動手段)  7. 13, 23… Push button (fluid means)
16· · '燃料カプセル (固定化燃料)  16 ·· 'Fuel capsule (fixed fuel)
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 以下、図面を参照して実施の形態について説明する。 図 1は本発明の第 1の実施形態に係る燃料電池用燃料供給装置を示す斜視図で あり、図 2は縦断面図である。 Hereinafter, embodiments will be described with reference to the drawings. FIG. 1 is a perspective view showing a fuel cell fuel supply apparatus according to a first embodiment of the present invention, and FIG. 2 is a longitudinal sectional view.
[0020] 図 1及び図 2において、燃料電池用燃料供給装置 1は、燃料収容部 2と、この収容 部 2に連接して設けられた流動手段 3とを備える。この燃料収容部 2は、上面及び下 面が液透過性シート 4, 4Aにより覆われており、内部にメタノール包接ィ匕合物 5が充 填されて 、る。このように本実施形態にぉ 、ては液体燃料成分であるメタノールを包 接ィ匕合物とすることにより固定ィ匕し、安全に持ち運べるようになつている。また、流動 手段 3は水を含ませたスポンジ 6の上部に押ボタン 7を、該スポンジ 6を押圧変形可能 に取り付けることにより構成されている。なお、この燃料収容部 2は下側を覆う液透過 性のシート 4Aを介してダイレクトメタノール型燃料電池の燃料極(図示せず)に連通 している。 In FIG. 1 and FIG. 2, the fuel cell fuel supply device 1 includes a fuel storage portion 2 and a flow means 3 provided in connection with the storage portion 2. The upper and lower surfaces of the fuel storage unit 2 are covered with the liquid permeable sheets 4 and 4A, and the methanol inclusion compound 5 is filled inside. As described above, in this embodiment, methanol, which is a liquid fuel component, is used as an inclusion compound so that it can be fixed and can be safely carried. Further, the flow means 3 is configured by attaching a push button 7 to an upper part of a sponge 6 containing water and the sponge 6 so that it can be pressed and deformed. The fuel container 2 communicates with the fuel electrode (not shown) of the direct methanol fuel cell via a liquid-permeable sheet 4A covering the lower side.
[0021] このような本実施形態の燃料電池用燃料供給装置 1にあっては、押ボタン 7を押圧 してスポンジ 6を縮小 (減容)させると、水が液透過性シート 4を介して燃料収容部 2に 供給される。この水がメタノール包接ィ匕合物 5と接触することにより、メタノール水溶液 よりなる燃料電池用燃料が生成する。この燃料電池用燃料溶液であるメタノール水 溶液は、スポンジ 6からの水の供給圧力により下側の液透過性シート 4Aから流出し、 燃料電池の燃料極に供給される。  In such a fuel cell fuel supply device 1 of the present embodiment, when the push button 7 is pressed to reduce (decrease) the sponge 6, water passes through the liquid permeable sheet 4. Supplied to the fuel storage part 2. When this water comes into contact with the methanol clathrate compound 5, fuel for the fuel cell made of an aqueous methanol solution is produced. The aqueous methanol solution that is the fuel solution for the fuel cell flows out from the lower liquid-permeable sheet 4A by the supply pressure of water from the sponge 6 and is supplied to the fuel electrode of the fuel cell.
[0022] 次に本発明の第 2の実施形態について図 3及び図 4に基づいて説明する。  Next, a second embodiment of the present invention will be described based on FIG. 3 and FIG.
図 3及び図 4において、燃料電池用燃料供給装置 11は、燃料収容部 12と、この収 容部 12の上面に連接して設けられた流動手段 3としての押ボタン 13とを備える。この 燃料収容部 12は、上面が可撓性シート 14により覆われている一方、下面は液透過 性シート 15となっており、内部に液体燃料成分であるメタノール水溶液を封入した燃 料カプセル 16が充填されている。このように本実施形態においては、メタノール水溶 液を燃料カプセル 16に封入することにより液体燃料成分を固定ィ匕し、安全に持ち運 ベるようになつている。なお、この燃料収容部 12は下側を覆う液透過性のシート 15を 介してダイレクトメタノール型燃料電池の燃料極(図示せず)に連通して!/、る。  3 and 4, the fuel supply device 11 for the fuel cell includes a fuel storage portion 12 and a push button 13 as the flow means 3 provided to be connected to the upper surface of the storage portion 12. The fuel container 12 has an upper surface covered with a flexible sheet 14, while a lower surface is a liquid permeable sheet 15. A fuel capsule 16 in which an aqueous methanol solution, which is a liquid fuel component, is enclosed. Filled. Thus, in this embodiment, the liquid fuel component is fixed by enclosing the methanol aqueous solution in the fuel capsule 16 so that it can be safely carried. The fuel container 12 communicates with a fuel electrode (not shown) of a direct methanol fuel cell via a liquid-permeable sheet 15 covering the lower side! /
[0023] このような本実施形態の燃料電池用燃料供給装置 11にあっては、押ボタン 13を押 圧すると可撓性シート 14は破断することなく橈んで押ボタン 13が燃料収容部 12に押 し入ることにより、燃料収容部 12の容積が減少し、燃料カプセル 16が圧損してメタノ ール水溶液が漏洩し、この燃料電池用燃料溶液であるメタノール水溶液は押ボタン 13の侵入による圧力で下側の液透過性シート 15から流出し、燃料電池の燃料極に 供給される。 In such a fuel cell fuel supply device 11 of this embodiment, when the push button 13 is pressed, the flexible sheet 14 is held without breaking, and the push button 13 is brought into the fuel storage portion 12. Push As a result, the volume of the fuel container 12 is reduced, the fuel capsule 16 is pressure damaged, and the methanol aqueous solution leaks, and the methanol aqueous solution, which is the fuel solution for the fuel cell, is reduced by the pressure due to the penetration of the push button 13. Out of the liquid-permeable sheet 15 on the side and supplied to the fuel electrode of the fuel cell.
[0024] さらに本発明の第 3の実施形態について図 5及び図 6に基づいて説明する。  Furthermore, a third embodiment of the present invention will be described based on FIG. 5 and FIG.
図 5及び図 6において、燃料電池用燃料供給装置 21は、燃料収容部 22と、この収 容部 22の上面に連接して設けられた流動手段 3としての押ボタン 23とを備える。この 燃料収容部 22は、上面が可撓性シート 24により覆われている一方、下面は液透過 性シート 25となっており、内部に水を封入した水カプセル 26と、メタノール包接化合 物 27とが充填されて 、る。このように本実施形態にぉ 、ては液体燃料成分であるメタ ノールを包接ィ匕合物とするとともに、水をカプセルに封入することにより、液体燃料成 分を固定ィ匕し、安全に持ち運べるようになつている。なお、この燃料収容部 22は下側 を覆う液透過性のシート 25を介してダイレクトメタノール型燃料電池の燃料極(図示 せず)に連通している。  5 and 6, the fuel supply device 21 for the fuel cell includes a fuel storage portion 22 and a push button 23 as the flow means 3 provided in connection with the upper surface of the storage portion 22. The fuel container 22 has an upper surface covered with a flexible sheet 24, while a lower surface is a liquid permeable sheet 25. A water capsule 26 containing water inside and a methanol inclusion compound 27 And are filled. As described above, according to the present embodiment, methanol, which is a liquid fuel component, is used as an inclusion compound, and water is sealed in the capsule to fix the liquid fuel component. It has become portable. The fuel container 22 communicates with a fuel electrode (not shown) of a direct methanol fuel cell through a liquid-permeable sheet 25 covering the lower side.
[0025] このような本実施形態の燃料電池用燃料供給装置 21にあっては、押ボタン 23を押 圧すると可撓性シート 24が破断することなく橈んで押ボタン 23が燃料収容部 22に押 し入ることにより、燃料収容部 22の容積が減少し、水カプセル 26が圧損して水が漏 洩し、この水力 タノール包接ィ匕合物 27と接触することにより、メタノール水溶液よりな る燃料電池用燃料溶液が生成する。この燃料電池用燃料溶液であるメタノール水溶 液は押ボタン 23の侵入による圧力で下側の液透過性シート 25から流出し、燃料電 池の燃料極に供給される。  In such a fuel cell fuel supply device 21 of the present embodiment, when the push button 23 is pressed, the flexible sheet 24 is crushed without breaking, and the push button 23 is moved to the fuel accommodating portion 22. When pushed in, the volume of the fuel container 22 is reduced, the water capsule 26 is pressure-dissipated and water leaks, and comes into contact with the hydraulic power tank inclusion compound 27 to form a methanol aqueous solution. A fuel solution for the fuel cell is produced. The aqueous methanol solution which is the fuel solution for the fuel cell flows out from the lower liquid-permeable sheet 25 due to the pressure due to the penetration of the push button 23 and is supplied to the fuel electrode of the fuel cell.
[0026] 上述した第 2及び第 3の実施形態においては、燃料収容部 12, 22にスポンジ小塊 などの液体燃料吸収体を混入しておくことにより、燃料電池による電力の供給停止時 に押ボタン 13, 23による押圧を解除するとスポンジ小塊などの液体燃料吸収体が膨 張して、燃料収容部 12, 22内の余分な液体を吸収するようにすることができる。なお 、液体燃料吸収体とは、押圧時には液体を吸収しないが、圧力を低減させるとこれに 伴い液体を吸収することのできるものが好ましぐ例えば、圧力を制御することで液体 の吸収性が変化する高分子吸収体を用いたり、感温性ゲルを用いて圧力に対応して 温度を制御したりしてもょ 、。 [0026] In the second and third embodiments described above, a liquid fuel absorber such as a sponge lump is mixed in the fuel storage portions 12 and 22 so as to be pushed when the power supply by the fuel cell is stopped. When the pressing by the buttons 13 and 23 is released, the liquid fuel absorber such as a sponge lump expands, and the excess liquid in the fuel storage portions 12 and 22 can be absorbed. Note that the liquid fuel absorber does not absorb the liquid when pressed, but it is preferable to reduce the pressure so that the liquid can be absorbed.For example, the liquid can be absorbed by controlling the pressure. Responding to pressure using a changing polymer absorber or using a thermosensitive gel You can control the temperature.
[0027] 上述したような第 1〜第 3の実施形態において、燃料電池用燃料 (又は液体燃料成 分)としては、アルコール類、エーテル類、炭化水素類、またはァセタール類等があ げられる力 固体高分子型燃料電池の燃料に使用できるものであればよぐこれらに 限定されるものではない。具体的には水素、メタノール、エタノール、 n—プロパノー ル、イソプロパノール、エチレングリコール等のアルコール類;ジメチルエーテル、メチ ルェチルエーテル,ジェチルエーテル等のエーテル類;プロパン、ブタン等の炭化 水素類;ジメトキシメタン、トリメトシキメタン等のァセタール類等が挙げられる力 これ らに限定されるものではなぐまたこれらは 1種を単独で用いても良ぐ 2種以上を混 合して用いてもよい。  [0027] In the first to third embodiments as described above, the fuel for fuel cell (or liquid fuel component) is a force that can include alcohols, ethers, hydrocarbons, or acetals. It is not limited to these as long as it can be used as a fuel for a polymer electrolyte fuel cell. Specifically, alcohols such as hydrogen, methanol, ethanol, n-propanol, isopropanol, and ethylene glycol; ethers such as dimethyl ether, methyl ether, and jetyl ether; hydrocarbons such as propane and butane; dimethoxymethane, trime Forces including acetals such as toshikimethane are not limited to these, and these may be used alone or in combination of two or more.
[0028] 燃料電池は、好ましくは、固体高分子型燃料電池であり、その中でもダイレクトメタノ ール型燃料電池が好適であるがこれに限定されるものではない。  [0028] The fuel cell is preferably a solid polymer fuel cell. Among them, a direct methanol fuel cell is suitable, but is not limited thereto.
[0029] この燃料電池用燃料は、燃料電池用燃料の分子化合物やポリマーとして固体ィ匕ぁ るいはゲルイ匕された燃料電池用燃料組成物を用いることができる。  [0029] The fuel cell fuel may be a fuel cell fuel composition that is solid or gelled as a molecular compound or polymer of the fuel cell fuel.
[0030] 前記分子化合物とは、単独で安定に存在することのできる化合物の 2種類以上の 化合物が、水素結合やファンデルワールス力等に代表される、共有結合以外の比較 的弱い相互作用によって結合した化合物であり、水化物、溶媒化物、付加化合物、 包接化合物等が含まれる。このような分子化合物は、分子化合物を形成する化合物 と燃料電池用燃料との接触反応により形成することができ、燃料電池用燃料を固体 状の化合物に変化させることができ、比較的軽量で安定に燃料電池用燃料を貯蔵 することができる。  [0030] The molecular compound means that two or more kinds of compounds that can exist stably alone are relatively weak interactions other than covalent bonds, such as hydrogen bonds and van der Waals forces. These are bonded compounds, and include hydrates, solvates, addition compounds, and inclusion compounds. Such molecular compounds can be formed by the contact reaction between the compound forming the molecular compound and the fuel for the fuel cell, and the fuel for the fuel cell can be changed into a solid compound, which is relatively light and stable. Fuel cell fuel can be stored in
[0031] 分子化合物としては、ホスト化合物と燃料電池用燃料との接触反応により燃料電池 用燃料を包接した包接ィ匕合物が挙げられる。  [0031] Examples of the molecular compound include clathrate compounds in which the fuel for the fuel cell is clathrated by the contact reaction between the host compound and the fuel for the fuel cell.
[0032] 分子化合物のうち、燃料電池用燃料を包接した包接化合物を形成するホスト化合 物としては、有機化合物、無機化合物、有機 ·無機複合ィ匕合物よりなるものが知られ ており、また、有機化合物において単分子系、多分子系、高分子系ホスト等が知られ ている。 [0032] Among the molecular compounds, as the host compound that forms the clathrate compound that clathrates the fuel for the fuel cell, a compound composed of an organic compound, an inorganic compound, and an organic / inorganic composite compound is known. In addition, as organic compounds, monomolecular, polymolecular, and polymeric hosts are known.
[0033] 単分子系ホストとしては、シクロデキストリン類、クラウンエーテル類、クリプタンド類、 シクロフアン類、ァザシクロフアン類、カリックスアレン類、シクロトリベラトリレン類、スフ エランド類、環状オリゴペプチド類等が挙げられる。また多分子系ホストとしては、尿 素類、チォ尿素類、デォキシコール酸類、コール酸類、ペルヒドロトリフエ-レン類、ト リー o—チモチド類、ビアンスリル類、スピロビフルオレン類、シクロフォスファゼン類、 モノアルコール類、ジオール類、ヒドロキシベンゾフエノン類、アセチレンアルコール 類、フエノール類、ビスフエノール類、トリスフェノール類、テトラキスフエノール類、ポリ フエノール類、ナフトール類、ビスナフトール類、ジフエ-ルメタノール類、カルボン酸 アミド類、チォアミド類、ビキサンテン類、カルボン酸類、イミダゾール類、ヒドロキノン 類等が挙げられる。また、高分子系ホストとしては、セルロース類、デンプン類、キチ ン類、キトサン類、ポリビュルアルコール類、 1, 1, 2, 2, —テトラキスフエ-ルェタン をコアとするポリエチレングリコールアーム型ポリマー類、 α , α , α ' , α,ーテトラキ スフエ-ルキシレンをコアとするポリエチレングリコールアーム型ポリマー類等が挙げ られる。また、その他に有機りん化合物、有機ケィ素化合物等も挙げられる。 [0033] Monomolecular hosts include cyclodextrins, crown ethers, cryptands, Examples include cyclophanes, azacyclophanes, calixarenes, cyclotriveratrylenes, spherands, and cyclic oligopeptides. Multimolecular hosts include urines, thioureas, deoxycholic acids, cholic acids, perhydrotriphenylenes, trio-thymotides, bianthryls, spirobifluorenes, and cyclophosphazenes. Monoalcohols, diols, hydroxybenzophenones, acetylene alcohols, phenols, bisphenols, trisphenols, tetrakisphenols, polyphenols, naphthols, bisnaphthols, diphenol methanol, Examples thereof include carboxylic acid amides, thioamides, bixanthenes, carboxylic acids, imidazoles, and hydroquinones. Polymeric hosts include celluloses, starches, chitins, chitosans, polybutyl alcohols, polyethylene glycol arm polymers with 1, 1, 2, 2, —tetrakis-pheulethane as the core. , Α , α, α ′, α, polyethylene glycol arm type polymers having tetra-tetraxylene xylene as a core. In addition, organic phosphorus compounds, organic silicon compounds, and the like are also included.
[0034] 無機系ホストイ匕合物としては、酸化チタン、グラフアイト、アルミナ、遷移金属ジカル ゴゲナイト、フッ化ランタン、粘土鉱物 (モンモリロナイト等)、銀塩、ケィ酸塩、リン酸塩 、ゼォライト、シリカ、多孔質ガラス等が挙げられる。  [0034] Examples of the inorganic host compound include titanium oxide, graphite, alumina, transition metal dicargogenite, lanthanum fluoride, clay mineral (montmorillonite, etc.), silver salt, silicate, phosphate, zeolite, silica And porous glass.
[0035] さらに、有機金属化合物にもホストイ匕合物としての性質を示すものがあり、例えば、 有機アルミニウム化合物、有機チタン化合物、有機ホウ素化合物、有機亜鉛化合物 、有機インジウム化合物、有機ガリウム化合物、有機テルル化合物、有機スズ化合物 、有機ジルコニウム化合物、有機マグネシウム化合物等が挙げられる。また有機カル ボン酸の金属塩や有機金属錯体等を用いることも可能であるが、有機金属化合物で あれば、特にこれらに限定されるものではない。  [0035] Furthermore, some organometallic compounds exhibit properties as host compounds, such as organoaluminum compounds, organotitanium compounds, organoboron compounds, organozinc compounds, organoindium compounds, organogallium compounds, organic Examples include tellurium compounds, organotin compounds, organozirconium compounds, and organomagnesium compounds. Moreover, it is possible to use a metal salt of an organic carboxylic acid, an organometallic complex, or the like, but it is not particularly limited as long as it is an organometallic compound.
[0036] これらのホストイ匕合物のうち、包接能力がゲストィ匕合物の分子の大きさに左右されに くい多分子系ホストがより有効である。  [0036] Among these host compounds, a multimolecular host whose inclusion ability is not easily influenced by the size of the guest compound molecule is more effective.
[0037] 多分子系ホストイ匕合物としては、具体的には、尿素、 1, 1, 6, 6—テトラフヱニルへ キサ— 2, 4, —ジイン— 1, 6—ジオール、 1, 1—ビス(2, 4—ジメチルフエ-ル)— 2 —プロピン一 1—ォーノレ、 1, 1, 4, 4, —テトラフエ二ノレ一 2—ブチン一 1, 4—ジォー ル、 1, 1, 6, 6, —テトラキス(2, 4, —ジメチルフエ-ル)一 2, 4—へキサジイン一 1, 6 ジオール、 9, 10 ジフエ二ルー 9, 10 ジヒドロアントラセン 9, 10 ジオール 、 9, 10 ビス(4—メチルフエ-ル)一 9, 10 ジヒドロアントラセン一 9, 10 ジォー ル、 1, 1, 2, 2—テトラフエ-ルェタン 1, 2 ジオール、 4—メトキシフエノール、 2, 4 ージヒドロキシベンゾフエノン、 4, 4'ージヒドロキシベンゾフエノン、 2, 2' , 4, 4'ーテ トラヒドロキシベンゾフエノン、 1, 1—ビス(4 ヒドロキシフエニル)シクロへキサン、 4, 4'—スルホ-ルビスフエノール、 2, 2,一メチレンビス(4—メチル 6— t—ブチルフ ェノール)、 4, 4,ーェチリデンビスフエノール、 4, 4,ーチォビス(3—メチルー 6— t— ブチルフエノール)、 1, 1, 3 トリス(2—メチル 4 ヒドロキシ一 5— t—ブチルフエ -ル)ブタン、 1, 1, 2, 2—テトラキス(4 ヒドロキシフエ-ル)ェタン、 1, 1, 2, 2—テ トラキス(4 ヒドロキシフエ-ル)エチレン、 1, 1, 2, 2—テトラキス(3—メチル 4 ヒ ドロキシフエニル)ェタン、 1, 1, 2, 2—テトラキス(3 フルオロー 4 ヒドロキシフエ二 ル)ェタン、 a , a , α ' , α,一テトラキス(4—ヒドロキシフエ-ル)一 ρ キシレン、 3, 6, 3 ' , 6 '—テトラメトキシー 9, 9 ' ビー 9Η—キサンテン、 3, 6, 3 ' 6 '—トトラァセト キシ—9, 9,一ビー 9Η—キサンテン、没食子酸、没食子酸メチル、カテキン、ビス j8—ナフトール、 a , a , α ' , α,一テトラフエ-ル 1, 1,一ビフエ-ル一 2, 2,一ジメ タノール、ジフェン酸ビス(ジシクロへキシルアミド)、フマル酸ビス(ジシクロへキシル アミド)、コール酸、デォキシコール酸、 1, 1, 2, 2—テトラキス(4 カルボキシフエ- ル)ェタン、 1, 1, 2, 2—テトラキス(3—カルボキシフエ-ル)ェタン、アセチレンジカ ルボン酸、 2, 4, 5 トリフエ-ルイミダゾール、 1, 2, 4, 5—テトラフエ-ルイミダゾ一 ル、 2 フエ-ルフエナント口 [9, 10— d]イミダゾール、 2— (o シァノフエ-ル)フエ ナント口 [9, 10— d]イミダゾール、 2— (m—シァノフエ-ル)フエナント口 [9, 10— d] イミダゾール、 2— (p シァノフエ-ル)フエナント口 [9, 10 d]イミダゾール、ヒドロキ ノン、 2— t—ブチルヒドロキノン、 2, 5 ジ一 t—ブチルヒドロキノン、 2, 5 ビス(2, 4 —ジメチルフエ-ル)ヒドロキノン、等が挙げられる力 1, 1—ビス(4 ヒドロキシフエ -ル)シクロへキサンのようなフエノール系ホストイ匕合物が工業的に使用しやすい点 で有利である。 [0037] Specific examples of the multimolecular host compound include urea, 1, 1, 6, 6-tetraphenylhexa-2, 4, —diyne-1, 6-diol, 1, 1-bis. (2,4-Dimethylphenol) — 2 —Propin 1 1-Honole, 1, 1, 4, 4, —Tetraphenol 2 1—Butyne 1,4-Diol 1, 1, 6, 6, —Tetrakis (2, 4, —Dimethylphenol) 1, 2, 4—Hexadiyne 1, 6 Diol, 9, 10 Diphenol 9,10 Dihydroanthracene 9,10 Diol, 9, 10 Bis (4-methylphenol) 9,10 Dihydroanthracene 9,10 Diol 1, 1, 2, 2 —Tetraphenol-lethane 1,2 diol, 4-methoxyphenol, 2,4-dihydroxybenzophenone, 4,4′-dihydroxybenzophenone, 2,2 ′, 4,4′-tetrahydroxybenzophenone, 1, 1-bis (4 hydroxyphenyl) cyclohexane, 4, 4'-sulfol bisphenol, 2, 2, 1-methylene bis (4-methyl 6-tert-butyl phenol), 4, 4, Denbisphenol, 4, 4, -thiobis (3-methyl-6-t-butylphenol), 1, 1, 3 Tris (2-methyl-4-hydroxy-5-tert-butylphenol) butane, 1, 1, 2, 2-tetrakis (4 hydroxyphenol) ethane, 1, 1, 2, 2 Te tetrakis (4-hydroxy Hue - Le) ethylene, 1, 1, 2, 2- tetrakis (3-methyl-4 human Dorokishifueniru) Etan, 1, 1, 2, 2-tetrakis (3 Furuoro 4-hydroxy-phenylene Le) Etan, a , a, α ', α, one tetrakis (4-hydroxyphenol) one ρ xylene, 3, 6, 3', 6 '-tetramethoxy 9, 9' be 9Η-xanthene, 3, 6, 3 '6'—Totracetoxy-9,9, 1B 9Η-Xanthene, gallic acid, methyl gallate, catechin, bis j8-naphthol, a, a, α', α, 1 tetraphenyl 1, 1, 1 biphenol -1, 2, 2, 1-dimethanol, diphenic acid bis (dicyclohexylamide), fumaric acid bis (dicyclohexylamide), cholic acid, deoxycholic acid, 1, 1, 2, 2-tetrakis (4 carboxyphenol- Le) ethane, 1, 1, 2, 2-tetrakis (3-carboxyph -Ru) ethane, acetylenedicarboxylic acid, 2, 4, 5 triphenylimidazole, 1, 2, 4, 5—tetraphenyl imidazole, 2 phenol phenant mouth [9, 10—d] imidazole, 2— (o cyanophane) phenant mouth [9, 10—d] imidazole, 2-— (m-sianophenol) phenant mouth [9, 10— d] imidazole, 2-— (p cyanophenol) phenant mouth [9 , 10 d] imidazole, hydroquinone, 2-t-butylhydroquinone, 2,5-di-tert-butylhydroquinone, 2,5 bis (2,4-dimethylphenol) hydroquinone, etc. 1, 1— A phenolic host compound such as bis (4-hydroxyphenol) cyclohexane is advantageous in terms of easy industrial use.
これらのホストイ匕合物は、 1種を単独で用いてもよぐ 2種以上を併用してもよい。こ れらのホスト化合物は、燃料電池用燃料と固体状の包接化合物を形成するものであ れば、どのような形状の化合物でも力まわな 、。 These host compounds may be used alone or in combination of two or more. These host compounds form solid inclusion compounds with fuels for fuel cells. As long as the compound has any shape,
[0039] また、上述の有機ホストイ匕合物は、無機系多孔質物質に担持させた有機 ·無機複 合素材として使用することもできる。この場合、有機ホスト化合物を担持する多孔質物 質としては、シリカ類、ゼォライト類、活性炭類の他に、粘土鉱物類、モンモリロナイト 類等の層間化合物等が挙げられるが、これらに限定されるものではない。  [0039] The above-mentioned organic host compound can also be used as an organic / inorganic composite material supported on an inorganic porous material. In this case, examples of the porous material supporting the organic host compound include intercalation compounds such as clay minerals and montmorillonites in addition to silicas, zeolites and activated carbons, but are not limited thereto. Absent.
[0040] このような有機 ·無機複合素材は、例えば、前述の有機ホスト化合物を溶解すること のできる溶媒に溶解させ、その溶液を無機多孔質物質中に含浸させ、乾燥、減圧乾 燥すること〖こより製造することができる。無機多孔質物質に対する有機ホスト化合物 の担持量としては特に制限はないが、通常、無機多孔質物質に対して 10〜80質量 %程度である。  [0040] Such an organic / inorganic composite material is, for example, dissolved in a solvent capable of dissolving the above-mentioned organic host compound, impregnated with the solution in an inorganic porous material, dried and dried under reduced pressure. It can be manufactured from Tsujiko. The amount of the organic host compound supported on the inorganic porous material is not particularly limited, but is usually about 10 to 80% by mass with respect to the inorganic porous material.
[0041] 前述の 1, 1 ビス(4ーヒドロキシフエ-ル)シクロへキサン等のホスト化合物を用い て燃料電池用燃料の包接化合物を合成する方法としては、例えば、燃料電池用燃 料とホスト化合物を直接接触、混合する方法、ホスト化合物を燃料電池用燃料に加 熱等行い溶解させ再結晶する方法等が挙げられる。また、燃料電池用燃料が気体 や液体の場合、燃料電池用燃料の包接化合物は、燃料を加圧状態でホスト化合物 と接虫することで得ることがでさる。  [0041] Examples of a method for synthesizing a fuel cell fuel inclusion compound using a host compound such as 1,1 bis (4-hydroxyphenol) cyclohexane described above include a fuel cell fuel and a host compound. For example, a method in which the host compound is directly contacted and mixed, and a method in which the host compound is dissolved and recrystallized by heating the fuel for the fuel cell. In addition, when the fuel for the fuel cell is a gas or a liquid, the inclusion compound of the fuel for the fuel cell can be obtained by contacting the fuel with the host compound in a pressurized state.
[0042] 燃料電池用燃料とホストイ匕合物とを接触させる温度は、特に制限はないが、常温〜 100°C程度が好ましい。また、燃料電池用燃料とホスト化合物とを接触させる時間に ついても特に制限はないが、作業効率等の面から 0. 01〜24時間程度とするのが好 ましい。  [0042] The temperature at which the fuel for the fuel cell and the host compound are brought into contact with each other is not particularly limited, but is preferably from room temperature to about 100 ° C. Further, the time for contacting the fuel for the fuel cell and the host compound is not particularly limited, but is preferably about 0.01 to 24 hours from the viewpoint of work efficiency.
[0043] なお、ホストイ匕合物と接触させる燃料電池用燃料は、高純度の燃料が好まし 、が、 燃料電池用燃料の選択的包接能を有したホストイ匕合物を用いる場合には、燃料電池 用燃料と他の成分との混合液体であっても良 、。  [0043] The fuel for the fuel cell to be brought into contact with the host compound is preferably a high-purity fuel. However, when a host compound having the selective inclusion ability of the fuel cell fuel is used, A liquid mixture of fuel for fuel cells and other components may be used.
[0044] このようにして得られる包接ィ匕合物は、用いたホストイ匕合物の種類、燃料電池用燃 料との接触条件等によっても異なるが、通常、ホストイ匕合物 1モルに対して燃料電池 用燃料分子 0. 1〜10モルを包接した包接ィ匕合物である。 [0044] The clathrate compound thus obtained varies depending on the type of the host compound used, the contact conditions with the fuel for the fuel cell, etc., but usually one mole of the host compound is used. On the other hand, it is an inclusion complex containing 0.1 to 10 mol of fuel molecules for fuel cells.
[0045] このようにして得られた包接ィ匕合物は、常温 ·常圧環境において、長期に亘り燃料 電池用燃料を安定に貯蔵することができる。し力も、この包接ィ匕合物は、軽量で取扱 性にも優れ、し力も固体状であるため、ガラス、金属、プラスチック等の容器に入れて 容易に貯蔵することができ、液漏れの問題も解消される。また、通常液体状の燃料が 包接ィ匕により固体状になることで、劇物や危険物としての性質を回避できるようにもな る。さらには、燃料電池用燃料が有する化学的反応性を低減できるようになり、例え ば、金属に対する腐食性等も緩和できるようになる。 [0045] The clathrate compound thus obtained can stably store fuel for fuel cells for a long period of time in a normal temperature / normal pressure environment. However, this inclusion is lightweight and handled. Since it has excellent properties and strength, it can be easily stored in a glass, metal, plastic, or other container, eliminating the problem of liquid leakage. In addition, the liquid fuel usually becomes solid due to the inclusion, so that the property as a deleterious substance or dangerous substance can be avoided. Furthermore, the chemical reactivity of fuel for fuel cells can be reduced, and for example, the corrosiveness to metals can be alleviated.
[0046] 燃料組成物としては、分子内にカルボキシル基及び Z又はスルホン酸基を有する 構成単位を高分子(1)に基づいて 20〜: LOO質量%含有し、かつ該カルボキシル基 及び/又は該スルホン酸基のプロトンの 30〜100モル%がォ-ゥムカチオンで置換 されてなる高分子(1)の架橋体 (A)と燃料電池用燃料からなる燃料電池用燃料組成 物も使用することができる。燃料電池用燃料 (以下単に燃料という)を吸収、ゲル化さ せるために、分子内にカルボキシル基及び Z又はスルホン酸基を有する構成単位を 所定量含有し、かつ該カルボキシル基及び Z又はスルホン酸基のプロトン力 所定 量ォ-ゥムカチオンで置換されてなる高分子(1)の架橋体 (A)を使用する。  [0046] The fuel composition contains 20 to LOO% by mass of a structural unit having a carboxyl group and Z or sulfonic acid group in the molecule based on the polymer (1), and the carboxyl group and / or the A fuel composition for a fuel cell comprising a cross-linked product (A) of the polymer (1) in which 30 to 100 mol% of protons of a sulfonic acid group are substituted with an onium cation and a fuel for a fuel cell can also be used. . In order to absorb and gel a fuel for a fuel cell (hereinafter simply referred to as fuel), it contains a predetermined amount of a structural unit having a carboxyl group and Z or sulfonic acid group in the molecule, and the carboxyl group and Z or sulfonic acid Proton power of group A cross-linked product (A) of the polymer (1) substituted with a predetermined amount of cation is used.
[0047] 架橋体 (A)を構成するカルボキシル基及び Z又はスルホン酸基を有する構成単位  [0047] Structural unit having carboxyl group and Z or sulfonic acid group constituting crosslinked body (A)
(a)としては、カルボキシル基を有するモノマー [例えば、(メタ)アクリル酸、エタアタリ ル酸、クロトン酸、ソルビン酸、マレイン酸、ィタコン酸、フマル酸、ケィ皮酸、及びそ れらの無水物等];スルホン酸基を有するモノマー [例えば、脂肪族ビニルスルホン酸 〔ビュルスルホン酸、ァリルスルホン酸、ビュルトルエンスルホン酸、スチレンスルホン 酸等〕、(メタ)アタリレート型スルホン酸〔スルホェチル (メタ)アタリレート、スルホプロピ ル (メタ)アタリレート等〕及び (メタ)アクリルアミド型スルホン酸 [例えば、アクリルアミド 2—メチルプロパンスルホン酸等]等が挙げられ、これらの 1種又は 2種以上を高分 子(1)中の構成単位とすることができる。好ましくは炭素数 3〜30のカルボキシル基 及び Z又はスルホン酸基を有する構成単位である。  As (a), a monomer having a carboxyl group [for example, (meth) acrylic acid, etaatalic acid, crotonic acid, sorbic acid, maleic acid, itaconic acid, fumaric acid, cinnamic acid, and anhydrides thereof Etc.]; Monomers having a sulfonic acid group [for example, aliphatic vinyl sulfonic acids [Bulsulfonic acid, allylic sulfonic acid, butyltoluenesulfonic acid, styrenesulfonic acid, etc.], (meth) acrylate sulfonic acid [sulfoethyl (meth) attaly Rate, sulfopropyl (meth) acrylate, etc.) and (meth) acrylamide type sulfonic acids [for example, acrylamide 2-methylpropane sulfonic acid, etc.], etc., and one or more of these are polymerized (1 ). A structural unit having a carboxyl group having 3 to 30 carbon atoms and Z or a sulfonic acid group is preferred.
[0048] また、カルボキシル基及び Z又はスルホン酸基を有する構成単位を分子内に所定 量含有する高分子(1)を得る方法として、上記のモノマー (a)を所定量重合する方法 の他に、例えば、前記カルボキシル基、スルホン酸基含有モノマーのエステル化物 やアミド化物等のような、容易にカルボキシル基ゃスルホン酸基に変更できるモノマ 一を重合し、加水分解等の方法を用いて、所定量のカルボキシル基ゃスルホン酸基 の構成単位を分子内に導入する方法等が挙げられ、また、高分子(1)としては、カル ボキシメチルセルロースに代表されるカルボキシル基、スルホン酸基含有多糖類高 分子、及び該多糖類高分子と他のモノマーとのグラフト共重合体等を例示することが できる力 最終的にカルボキシル基及び Z又はスルホン酸基の構成単位を所定量含 有するポリマーが得られるものであれば特に限定はない。 [0048] As a method of obtaining a polymer (1) containing a predetermined amount of a structural unit having a carboxyl group and Z or a sulfonic acid group in the molecule, in addition to a method of polymerizing the monomer (a) in a predetermined amount. For example, a monomer that can be easily changed to a carboxyl group or a sulfonic group, such as an esterified product or an amidated product of the carboxyl group or sulfonic acid group-containing monomer, is polymerized, and a method such as hydrolysis is used. Quantitative carboxyl group sulfonate group In addition, the polymer (1) includes a high molecular weight carboxyl group represented by carboxymethyl cellulose, a high molecular weight polysaccharide-containing polysaccharide, and the high molecular weight of the polysaccharide. A force that can exemplify a graft copolymer of a molecule and another monomer, etc. There is no particular limitation as long as a polymer containing a predetermined amount of structural units of carboxyl group and Z or sulfonic acid group is finally obtained. .
[0049] カルボキシル基及び Z又はスルホン酸基を有する構成単位の高分子(1)中の含有 量は、通常 20〜: LOO質量0 /0、好ましくは 40〜: LOO質量0 /0、さらに好ましくは 60〜: LO 0質量%である。含有量が 20%未満であると、後述するォ-ゥムカチオンでカルボキ シル基ゃスルホン酸基のプロトンを置換しても対象となる液体燃料に対する吸収量が 低下したり、少量では液体燃料をゲルイ匕できな ヽ場合がある。 [0049] The content of the polymer (1) of the constituent unit having a carboxyl group and Z or sulfonic acid group, usually. 20 to: LOO mass 0/0, preferably 40 to: LOO mass 0/0, more preferably Is 60: LO 0% by mass. If the content is less than 20%, even if the proton of the carboxyl group or sulfonic acid group is replaced with a cation cation described later, the absorption amount to the target liquid fuel decreases, or if the amount is small, the liquid fuel is gelled. There are cases where it is not possible.
[0050] カルボキシル基及び Z又はスルホン酸基を有する構成単位以外の構成単位を形 成する共重合可能なモノマー (b)としては、例えば、(メタ)アクリル酸アルキル (炭素 数 1〜30)エステル類 [ (メタ)アクリル酸メチル、(メタ)アクリル酸ェチル、(メタ)アタリ ル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ェチルへキシル、(メタ)ァク リル酸ォクチル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリル、(メタ)アタリ ル酸フエ-ル、(メタ)アクリル酸ォクチルフヱ-ル、(メタ)アクリル酸シクロへキシル等 ]; (メタ)アクリル酸ォキシアルキル (炭素数 1〜4)類 [ (メタ)アクリル酸ヒドロキシェチ ル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸モノ(ポリエチレングリコール )エステル(PEG数平均分子量: 100〜4000)、(メタ)アクリル酸モノ(ポリプロピレン グリコール)エステル(PPG数平均分子量: 100〜4000)、(メタ)アクリル酸モノメトキ シポリエチレングリコール(PEG数平均分子量: 100〜4000)、(メタ)アクリル酸モノ メトキシプロピレングリコール(PPG数平均分子量: 100〜4000)等]; (メタ)アクリル アミド類 [ (メタ)アクリルアミド、(ジ)メチル (メタ)アクリルアミド、(ジ)ェチル (メタ)アタリ ルアミド、(ジ)プロピル (メタ)アクリルアミド等];ァリルエーテル類 [メチルァリルエーテ ノレ、ェチノレアリノレエーテノレ、プロピノレアリノレエーテノレ、グリセローノレモノアリノレエーテ ル、トリメチロールプロパントリアリルエーテル、ペンタエリスリトールモノアリルエーテ ル等] ;炭素数 4〜20の α—ォレフィン類 [イソブチレン、 1一へキセン、 1—オタテン、 イソオタテン、 1—ノネン、 1—デセン、 1—ドデセン等] ;炭素数 8〜20の芳香族ビ- ル化合物類 [スチレン、 tーブチルスチレン、ォクチルスチレン等];その他のビ-ルイ匕 合物 [N—ビュルァセトアミド、カプロン酸ビュル、ラウリン酸ビュル、ステアリン酸ビ- ル等];ァミノ基含有モノマー [ジアルキル(アルキルの炭素数: 1〜5)アミノエチル (メ タ)アタリレート、メタ (アタリロイル)ォキシェチルトリアルキル (アルキル炭素数: 1〜5) アンモ-ゥムクロリド、ブロマイド又はサルフェート等];前記カルボキシル基、スルホン 酸基を有するモノマーのアルカリ金属塩; 1〜3級ァミン塩;アル力ノールアミン塩等を 挙げることができる。これらのモノマー (b)は、 1種又は 2種以上を、必要により前記 (a )と所定量の範囲内(ポリマー構成単位の 80%未満)で共重合すればよ!、。 [0050] Examples of the copolymerizable monomer (b) that forms a structural unit other than the structural unit having a carboxyl group and Z or a sulfonic acid group include, for example, an alkyl (meth) acrylate (having 1 to 30 carbon atoms) ester. [Methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, ethyl hexyl (meth) acrylate, octyl (meth) acrylate, ( (Meth) acrylic acid dodecyl, (meth) acrylic acid stearyl, (meth) acrylic acid file, (meth) acrylic acid octyl file, (meth) acrylic acid cyclohexyl, etc.]; (meth) acrylic acid oxyalkyl ( Carbon number 1-4) [(Meth) acrylic acid hydroxyethyl, (meth) acrylic acid hydroxypropyl, (meth) acrylic acid mono (polyethylene glycol) ester ( PEG number average molecular weight: 100-4000), (meth) acrylic acid mono (polypropylene glycol) ester (PPG number average molecular weight: 100-4000), (meth) acrylic acid monomethoxypolyethylene glycol (PEG number average molecular weight: 100-4000) ), (Meth) acrylic acid monomethoxypropylene glycol (PPG number average molecular weight: 100 to 4000), etc.]; (meth) acryl amides [(meth) acrylamide, (di) methyl (meth) acrylamide, (di) ethyl ( (Meth) Atarylamide, (di) propyl (meth) acrylamide, etc.]; allylic ethers [methylaryl etherate, ethenorea linoleatenore, propinoare linoleatenore, glycerono monomono enoleate, trimethylol Propane triallyl ether, pentaerythritol monoallyl ether, etc.]; α-o having 4 to 20 carbon atoms Refines [isobutylene, 1-hexene, 1-otaten, isootaten, 1-nonene, 1-decene, 1-dodecene, etc.]; aromatic bi-carbons with 8 to 20 carbon atoms [Styrene, t-butyl styrene, octyl styrene, etc.]; Other vinyl compounds [N-Bulucacetamide, caproic acid butyl, lauric acid butyl, stearic acid vinyl, etc.]; Amino group-containing monomers [ Dialkyl (carbon number of alkyl: 1 to 5) aminoethyl (meth) atalylate, meta (attalyloyl) oxytyltrialkyl (alkyl number of carbon: 1 to 5) ammonium chloride, bromide or sulfate]; Examples thereof include alkali metal salts of monomers having a carboxyl group and a sulfonic acid group; primary to tertiary amine amines; One or more of these monomers (b) may be copolymerized with the above-mentioned (a) within a predetermined range (less than 80% of the polymer structural units) if necessary!
[0051] 前記モノマー (b)の中で、モノマーの重合性や生成したポリマーの安定性等の観点 力 、(メタ)アクリル酸アルキルエステル類、ォキシアルキル (メタ)アタリレート類、ァリ ルエーテル類、 aーォレフイン類、芳香族ビニル化合物類が好ましい。 [0051] Among the monomers (b), from the viewpoint of the polymerizability of the monomers and the stability of the produced polymer, (meth) acrylic acid alkyl esters, oxyalkyl (meth) acrylates, aryl ethers, A- olefins and aromatic vinyl compounds are preferred.
[0052] 液体燃料の吸収やゲル化の対象となる溶媒の SP値 (ソリュビリティーパラメーター) に合わせて、溶媒とモノマー (b)の SP値との差が 5以下のモノマー (b)を選択した方 が吸収量ゃゲルイ匕力が上がりやすいため好ましぐ対象とする溶媒の SP値と前記モ ノマー(b)の SP値が 3以下のものを選択した方が更に好ましい。  [0052] Monomer (b) whose difference between SP value of solvent and monomer (b) is 5 or less is selected according to the SP value (solubility parameter) of the solvent to be absorbed or gelled of liquid fuel It is more preferable to select a solvent having an SP value of 3 or less as the SP value of the target solvent and the SP value of the monomer (b) because the absorbed amount tends to increase the gel repulsion.
[0053] 前記カルボキシル基及び Z又はスルホン酸基のプロトンをォ-ゥムカチオンで 30 〜 100モル0 /0置換することが望ましい。ォ-ゥムカチオンとしては、第 4級アンモ-ゥ ムカチオン(1)、 3級スルホユウムカチオン(11)、第 4級ホスホ-ゥムカチオン(111)、 3級 ォキソユウムカチオン (IV)力 なるカチオンの群より選ばれる 1種又は 2種以上である [0053] The proton of the carboxyl group and Z or sulfonic acid group O - it is desirable to 30-100 mole 0/0 substituted with Umukachion. As the cation cation, the quaternary ammonium cation (1), the tertiary sulfo cation (11), the quaternary phospho cation (111), and the tertiary oxo cation (IV) group of cations One or more selected from
[0054] 第 4級アンモ-ゥムカチオン (I)としては、下記 (1—1)〜 (1—11)が挙げられる。 [0054] Examples of the quaternary ammonia cation (I) include the following (1-1) to (1-11).
(1- 1)アルキル及び Z又はァルケ-ル基を有する炭素数 4〜30又はそれ以上の 脂肪族系第 4級アンモ-ゥム;テトラメチルアンモ-ゥム、ェチルトリメチルアンモ-ゥ ム、ジェチルジメチルアンモ-ゥム、トリェチルメチルアンモ-ゥム、テトラエチルアン モ-ゥム、トリメチルプロピルアンモ-ゥム、テトラプロピルアンモ-ゥム、ブチルトリメチ ルアンモ-ゥム、テトラプチルアンモ -ゥム等。  (1-1) Aliphatic quaternary ammonium having 4 to 30 or more carbon atoms having an alkyl and Z or alkenyl group; tetramethyl ammonium, ethyl trimethyl ammonium, Jetyldimethyl ammonium, triethyl methyl ammonium, tetraethyl ammonium, trimethylpropyl ammonium, tetrapropyl ammonium, butyl trimethyl ammonium, tetraptyl ammonium, etc. .
[0055] (1— 2)炭素数 6〜30又はそれ以上の芳香族第 4級アンモ-ゥム;トリメチルフエ- ルアンモ-ゥム、ジメチルェチルフエ-ルアンモ-ゥム、トリェチルフエ-ルアンモ-ゥ ム等。 [0055] (1-2) Aromatic quaternary ammonia having 6 to 30 or more carbon atoms; trimethylphenol, dimethylethylamine, dimethylethylamine, triethylylamine Mu etc.
[0056] (I— 3)炭素数 3〜30又はそれ以上の脂環式第 4級アンモ-ゥム; N, N—ジメチル ピロジ-ゥム、 N ェチルー N—メチルピロリジ-ゥム、 N, N ジメチルモルホリュウ ム、 N, N ジェチルモルホリュウム、 N, N ジメチルピベリジ-ゥム、 N, N ジェチ ルビベリジ-ゥム等。  [0056] (I-3) Cycloaliphatic quaternary ammonium having 3 to 30 or more carbon atoms; N, N-dimethylpyrrolidinium, N ethyl N-methylpyrrolidinium, N, N Dimethyl morpholine, N, N Jetyl morpholium, N, N dimethyl piperidium, N, N dimethyl biverium, etc.
[0057] (1—4)炭素数 3〜30又はそれ以上のイミダゾリ-ゥム; 1, 2, 3 トリメチルイミダゾリ ユウム、 1, 2, 3, 4—テトラメチルイミダゾリ-ゥム、 1, 3, 4 トリメチル—2 ェチルイ ミダゾリ二ゥム、 1, 2 ジメチルー 3, 4 ジェチルイミダゾリ二ゥム、 1, 2 ジメチルー 3 ェチルイミダゾリ-ゥム、 1—ェチル—3—メチルイミダゾリ-ゥム、 1, 2, 3, 4—テ トラェチルイミダゾリ-ゥム、 1, 2, 3 トリェチルイミダゾリ-ゥム、 4 シァノ—1, 2, 3 —トリメチルイミダゾリ-ゥム、 2 シァノメチル 1, 3 ジメチルイミダゾリ-ゥム、 4— ァセチル— 1, 2, 3 トリメチルイミダゾリ-ゥム、 4—メチルカルボキシメチル— 1, 2, 3 トリメチルイミダゾリ-ゥム、 4 ホルミル— 1, 2, 3 トリメチルイミダゾリ-ゥム、 3 —ヒドロキシェチル一 1, 2, 3 トリメチルイミダゾリ-ゥム、 3 ヒドロキシェチル一 1, 2 ジメチルイミダゾリ-ゥム等。  [0057] (1-4) imidazolium having 3 to 30 or more carbon atoms; 1, 2, 3 trimethylimidazolium, 1, 2, 3, 4-tetramethylimidazolium, 1, 3, 4 Trimethyl-2 ethylimidazolium, 1,2 dimethyl-3, 4 Jetylimidazolium, 1,2 dimethyl-3 ethylimidazolium, 1-ethyl-3-methylimidazolium, 1, 2, 3, 4—Tetratilimidazolium, 1, 2, 3 Triethylimidazolium, 4 Cyan—1, 2, 3 —Trimethylimidazolium, 2 Cyanmethyl 1, 3 Dimethylimidazole, 4--Acetyl-1, 2, 3 Trimethylimidazole, 4-Methylcarboxymethyl-1, 2, 3 Trimethylimidazole, 4 Formyl-1, 2, 3 Trimethylimidazole, 3-hydroxyethyl 1, 2, 3 Trimethylimidazole, 3-hydroxyethyl 1, 2, dimethyl imidazolium, etc.
[0058] (1— 5)炭素数 3〜30又はそれ以上のイミダゾリゥム; 1, 3 ジメチルイミダゾリゥム、 1—ェチノレ一 3—メチノレイミダゾリゥム、 1—メチノレ一 3 ェチノレイミダゾリゥム、 1, 2, 3 , 4ーテトラメチルイミダゾリゥム、 1, 2 ジメチルー 3 ェチルイミダゾリゥム、 1ーェチ ノレ一 3—メチノレイミダゾリゥム、 1—メチノレ一 3 ェチノレイミダゾリゥム、 1, 2, 3 トリエ チルイミダゾリゥム、 1, 2, 3, 4—テトラエチルイミダゾリゥム、 1, 3 ジメチル— 2 フ ェ-ルイミダゾリゥム、 1, 3 ジメチル一 2 ベンジルイミダゾリゥム、 4 シァノ 1, 2 , 3 トリメチルイミダゾリゥム、 3 シァノメチル 1, 2 ジメチルイミダゾリゥム、 4 ァ セチノレ一 1, 2, 3 トリメチルイミダゾリゥム、 4—メトキシ一 1, 2, 3 トリメチルイミダゾ リウム、 3 ホルミルメチル—1, 2 ジメチルイミダゾリゥム、 2 ヒドロキシェチル 1 , 3—ジメチルイミダゾリゥム、 N, N,ージメチルベンゾイミダゾリゥム、 N, N, 一ジェチ ルベンゾイミダゾリゥム、 N—メチルー N, 一ェチルベンゾイミダゾリゥム等。  [0058] (1-5) Imidazolium having 3 to 30 or more carbon atoms; 1, 3 Dimethylimidazolium, 1-Ethinole 1-Metinorei Midorium, 1-Metinore 1 3-Ethinorei Midazolium 1,2,3,4-tetramethylimidazolium, 1,2 dimethyl-3-ethylimidazolium, 1-echi nore 1-methinoreido imidazolium, 1-methinorei 1-ethinorei imidazolium, 1, 2, 3 Trie til imidazolium, 1, 2, 3, 4—tetraethyl imidazolium, 1, 3 dimethyl—2 ferro-imidazolium, 1, 3 dimethyl 1-2 benzyl imidazolium, 4 siano 1, 2,3 Trimethylimidazole, 3 Cyanmethyl 1,2 Dimethylimidazole, 4 Cetinore 1,2,3 Trimethylimidazole, 4-Methoxy-1,2,3 Trimethylimidazolium, 3 Formylmethyl-1 , 2 Louis imidazolium, 2-hydroxyethyl 1,3—dimethylimidazolium, N, N, -dimethylbenzimidazolium, N, N, monoethylbenzimidazolium, N—methyl-N, 1 benzylbenzimidazolium etc.
[0059] (1— 6)炭素数 4〜30又はそれ以上のテトラヒドロピリミジ-ゥム; 1, 3 ジメチルテト ラヒドロピリミジニゥム、 1, 2, 3 トリメチノレテトラヒドロピリミジニゥム、 1, 2, 3, 4ーテト ラメチルテトラヒドロピリミジ-ゥム、 8—メチル 1, 8 ジァザビシクロ [5, 4, 0] - 7 —ゥンデセ-ゥム、 5—メチル 1, 5 ジァザビシクロ [4, 3, 0]— 5 ノネ-ゥム、 3 ーシァノメチルー 1, 2 ジメチルテトラヒドロピリミジ-ゥム、 3 ァセチルメチルー 1, 2 ジメチルテトラヒドロピリミジ-ゥム、 4 メチルカルボキシメチルー 1, 2, 3 トリメ チルーテトラヒドロピリミジ-ゥム、 3—メトキシメチルー 1, 2 ジメチルテトラヒドロピリミ ジニゥム、 4 ヒドロキシメチル一 1, 3 ジメチルテトラヒドロピリミジ -ゥム等。 [0059] (1-6) Tetrahydropyrimidinium having 4 to 30 or more carbon atoms; 1, 3 dimethyltetrahydropyrimidinium, 1, 2, 3 trimethinoletetrahydropyrimidinium, 1 , 2, 3, 4-tet Lamethyltetrahydropyrimidium, 8—methyl 1,8 diazabicyclo [5, 4, 0]-7 —Undesseum, 5-methyl-1,5 diazabicyclo [4, 3, 0] — 5 None , 3-cyanomethyl-1,2 dimethyltetrahydropyrimidime, 3 acetylmethyl-1,2 dimethyltetrahydropyrimidime, 4 methylcarboxymethyl-1,2,3 trimethyltetrahydropyrimidime, 3-methoxy Methyl-1,2 dimethyltetrahydropyrimidinium, 4-hydroxymethyl-1,3 dimethyltetrahydropyrimidinium, etc.
[0060] (1— 7)炭素数 4〜30又はそれ以上のジヒドロピリミジ-ゥム; 1, 3 ジメチルー 2, 4 もしくは 2, 6 ジヒドロピリミジ -ゥム [これらを 1, 3 ジメチルー 2, 4 (6) ジヒド 口ピリミジ-ゥムと表記し、以下同様の表現を用いる。 ]、 1, 2, 3 トリメチル—2, 4 (6 )ージヒドロピリミジ-ゥム、 1, 2, 3, 4ーテトラメチルー 2, 4 (6)—ジヒドロピリミジユウ ム、 1, 2, 3, 5—テトラメチノレー 2, 4 (6)—ジヒドロピミジユウム、 8—メチノレ一 1, 8— ジァザシクロ [5, 4, 0]— 7, 9 (10)—ゥンデカンジェ-ゥム、 2 シァノメチルー 1, 3 ジメチルー 2, 4 (6)—ジヒドロピリミジ-ゥム、 3 ァセチルメチルー 1, 2 ジメチル —2, 4 (6)—ジヒドロピリミジ-ゥム、 4—メチルカルボキシメチル一 1, 2, 3 トリメチ ノレ一 2, 4 (6)—ジヒドロピリミジニゥム、 4 ホノレミノレ一 1, 2, 3 トリメチノレ一 2, 4 (6) —ジヒドロピリミジ-ゥム、 3 ヒドロキシェチル一 1, 2 ジメチルー 2, 4 (6)—ジヒドロ ピリミジ -ゥム等。 [0060] (1-7) Dihydropyrimidium having 4 to 30 or more carbon atoms; 1,3 dimethyl-2,4 or 2,6 dihydropyrimidium [these are 1,3 dimethyl-2,4 (6) Denoted as “jihido pyrimidum”, the same expression is used hereinafter. ], 1, 2, 3 Trimethyl-2,4 (6) -dihydropyrimidium, 1,2,3,4-tetramethyl-2,4 (6) -dihydropyrimididium, 1, 2, 3, 5—Tetramethinole 2, 4 (6) —Dihydropymidyureum, 8—Methinore 1,8—Diazacyclo [5, 4, 0] — 7, 9 (10) —Undecangeum, 2 Cyanmethyl-1,3 Dimethyl 2, 4 (6) —Dihydropyrimidium, 3 acetylmethyl-1, 2 dimethyl —2, 4 (6) —Dihydropyrimidium, 4-methylcarboxymethyl 1, 2, 3 Trimethylol 2, 4 (6 ) —Dihydropyrimidinium, 4 Honoremino 1, 2, 3 Trimethinole 2, 4 (6) —Dihydropyrimidium, 3 Hydroxyethyl 1, 2 Dimethyl 2, 4 (6) —Dihydropyrimidin Mu etc.
[0061] (I 8)炭素数 3〜30又はそれ以上のイミダゾリニゥム骨格を有するグァニジゥム;2 —ジメチルァミノ— 1, 3, 4 トリメチルイミダゾリ-ゥム、 2 ジェチルァミノ— 1, 3, 4 —トリメチルイミダゾリ-ゥム、 2 ジメチルァミノ一 1—メチル 3, 4 ジェチルイミダ ゾリ-ゥム、 2 ジメチルァミノ一 1, 3 ジメチルイミダゾリ-ゥム、 2 ジェチルァミノ 1 , 3 ジメチルイミダゾリ二ゥム、 2 ジェチノレアミノ 1 , 3 ジェチルイミダゾリ二 ゥム、 1, 5, 6, 7—テトラヒドロ 1, 2 ジメチル— 2H—ピリミド [1, 2a]イミダゾリ-ゥム 、 1, 5 ジヒドロー 1, 2 ジメチルー 2H—ピリミド [1, 2a]イミダゾリ-ゥム、 2 ジメチ ルァミノ 3 メチルカルボキシメチルー 1ーメチルイミダゾリ-ゥム、 2 ジメチルアミ ノ 3—メトキシメチル - 1—メチルイミダゾリ-ゥム、 2 -ジメチルァミノ 3 ヒドロキ シェチルー 1—メチルイミダゾリ-ゥム、 2 ジメチルァミノ一 4 ヒドロキシメチル一 1, 3 ジメチルイミダゾリ-ゥム等。 [0062] (I 9)炭素数 3〜30又はそれ以上のイミダゾリゥム骨格を有するグァニジゥム;2— ジメチルァミノ— 1, 3, 4 トリメチルイミダゾリゥム、 2 ジェチルァミノ— 1, 3, 4 トリ メチルイミダゾリゥム、 2 ジェチルアミノー 1, 3 ジメチルー 4ーェチルイミダゾリゥム 、 2 ジェチルァミノ— 1, 3, 4 トリェチルイミダゾリゥム、 2 ジメチルァミノ— 1, 3- ジメチノレイミダゾリゥム、 1, 5, 6, 7—テトラヒドロ一 1, 2 ジメチノレ一 2H—イミド [1, 2 a]イミダゾリゥム、 1, 5 ジヒドロー 1, 2 ジメチルー 2H—ピリミドー [1, 2a]イミダゾリ ゥム、 2 ジメチルアミノー 3 シァノメチルー 1ーメチルイミダゾリゥム、 2 ジメチルァ ミノー 4 メチルカルボキシメチルー 1, 3 ジメチルイミダゾリゥム、 2 ジメチルァミノ - 3 メトキシメチルー 1—メチルイミダゾリゥム、 2 -ジメチルァミノ 3 ホルミルメチ ルー 1—メチルイミダゾリゥム、 2 ジメチルァミノ一 4 ヒドロキシメチル一 1, 3 ジメ チルイミダゾリウム等。 [0061] (I 8) Guanidium having an imidazolinium skeleton having 3 to 30 or more carbon atoms; 2 —dimethylamino-1, 3, 4 trimethylimidazole, 2 jetylamino-1, 3, 4 —trimethylimidazoli 1-methyl 3,4 dimethyl imidazole, 2 dimethylamino 1,3 dimethyl imidazole, 2 dimethylamino 1,3 dimethyl imidazolium, 2 jetinoreamino 1,3 Tyrimidazolium, 1, 5, 6, 7-tetrahydro 1,2 dimethyl-2H-pyrimido [1, 2a] imidazole, 1,5 dihydro-1,2 dimethyl-2H-pyrimido [1, 2a] Imidazole, 2 Dimethylamino 3 Methylcarboxymethyl 1-Methyl imidazolium, 2 Dimethylamino 3-Methoxymethyl-1-methyl imidazolium, 2-Dimethylamino 3 Hydro Shechiru 1-methyl imidazolium - © beam, 2 Jimechiruamino one 4-hydroxymethyl-one 1, 3-dimethyl imidazolinium - © beam or the like. [0062] (I 9) Guanidium having an imidazolium skeleton having 3 to 30 or more carbon atoms; 2-dimethylamino-1, 3, 3, 4 trimethylimidazolium, 2 jettilamino-1, 3, 4 trimethylimidazolium, 2 Jetylamino-1, 3 Dimethyl-4-ethylimidazolium, 2 Jetylamino-1, 3, 4 Triethylimidazole, 2 Dimethylamino-1, 3, 3-Dimethinoleyimidazolium, 1, 5, 6, 7-Tetrahydro 1,2 Dimethylolone 2H—imide [1, 2 a] imidazole, 1,5 dihydro-1,2 dimethyl-2H—pyrimido [1, 2a] imidazole, 2 dimethylamino-3 cyanomethyl-1-methyl imidazolium, 2 Dimethylamino 4 Methylcarboxymethyl-1,3 Dimethylimidazole, 2 Dimethylamino-3 Methoxymethyl-1-Methylimidazolium, 2-Dimethyl Ruamino 3 Horumirumechi Lou 1-methyl imidazo Riu arm, 2 Jimechiruamino one 4-hydroxymethyl-one 1, 3 dimethyl chill imidazolium like.
[0063] (I— 10)炭素数 4〜30又はそれ以上のテトラヒドロピリミジ -ゥム骨格を有するグァ -ジゥム; 2 ジメチルァミノ一 1, 3, 4 トリメチルテトラヒドロピリミジ-ゥム、 2 ジェ チルアミノー 1, 3, 4 トリメチルテトラヒドロピリミジ-ゥム、 2 ジメチルァミノ一 1, 3 ージメチルテトラヒドロピリミジ-ゥム、 2 ジェチルアミノー 1, 3 ジメチルテトラヒドロ ピリミジ -ゥム、 1, 3, 4, 6, 7, 8 へキサヒドロ 1, 2 ジメチル— 2H—イミド [1, 2 a]ピリミジ-ゥム、 1, 3, 4, 6, 7, 8 へキサヒドロ一 1, 2 ジメチル一 2H ピリミド [ 1, 2a]ピリミジ-ゥム、 2 ジメチルァミノ一 3 シァノメチル 1—メチルテトラヒドロピ リミジ-ゥム、 2 ジメチルアミノー 4 ァセチルー 1, 3 ジメチルテトラヒドロピリミジ- ゥム 2 ジメチルアミノー 4 メチルカルボキシメチルー 1, 3 ジメチルテトラヒドロピリ ミジ-ゥム、 2 ジメチルァミノ一 3—メトキシメチルー 1—メチルテトラヒドロピリミジユウ ム、 2 ジメチルァミノ一 3 ヒドロキシェチル一 1—メチルテトラヒドロピリミジ-ゥム、 2 —ジメチルァミノ一 4 ヒドロキシメチル一 1, 3 ジメチルテトラヒドロピリミジニゥム等。  [0063] (I-10) Gua-dium having a tetrahydropyrimidi-um skeleton having 4 to 30 or more carbon atoms; 2 Dimethylamino-1, 3, 4 Trimethyltetrahydropyrimidium, 2 Jettyamino 1 , 3, 4 Trimethyltetrahydropyrimidium, 2 Dimethylamino-1,3-dimethyltetrahydropyrimidium, 2 Jetylamino-1,3 Dimethyltetrahydropyrimidium, 1, 3, 4, 6, 7, 8 Hexahydro 1,2 dimethyl— 2H—imide [1, 2 a] pyrimidium, 1, 3, 4, 6, 7, 8 Hexahydro 1,2 dimethyl 1 2H pyrimido [1,2a] pyrimidium 2 dimethylamino 1-cyanomethyl 1-methyltetrahydropyrimidium, 2 dimethylamino-4 acetyl-1,3 dimethyltetrahydropyrimidium 2 dimethylamino-4 methylcarboxymethyl-1,3 dimethyltetrahydride Ropyrimidium, 2 Dimethylamino-1-3-Methylmethyl-1-methyltetrahydropyrimidium, 2 Dimethylamino-1-hydroxyethyl 1-methyltetrahydropyrimidinium, 2-Dimethylamino-4-hydroxymethyl-1- 1 , 3 Dimethyltetrahydropyrimidinium, etc.
[0064] (I 11)炭素数 4〜30又はそれ以上のジヒドロピリミジ -ゥム骨格を有するグァ-ジ ゥム; 2 ジメチノレアミノー 1, 3, 4ートリメチノレー 2, 4 (6)—ジヒドロピリミジェゥム、 2- ジェチルァミノ一 1, 3, 4 トリメチルー 2, 4 (6)—ジヒドロピリミジ-ゥム、 2 ジェチ ノレアミノー 1, 3, 4ートリエチノレー 2, 4 (6)—ジヒドロピリミジ-ゥム、 2 ジェチノレアミノ - 1, 3 ジメチルー 2, 4 (6)—ジヒドロピリミジ-ゥム、 2 ジメチルァミノ一 1—ェチ ノレ一 3—メチノレ一 2, 4 (6)—ジヒドロピリミジニゥム、 1, 6, 7, 8—テトラヒドロー 1, 2— ジメチル一 2H—イミド [1, 2a]ピリミジ-ゥム、 1, 6 ジヒドロ一 1, 2 ジメチル一 2H —ピリミド [1, 2a]ピリミジ-ゥム、 2 ジメチルァミノ一 4 シァノ 1, 3 ジメチル一 2 , 4 (6)—ジヒドロピリミジ-ゥム、 2 ジメチルァミノ 3 ァセチルメチルー 1—メチル - 2, 4 (6)—ジヒドロピリミジ-ゥム、 2 ジメチルァミノ一 3—メチルカルボキシメチル — 1—メチル 2, 4 (6)—ジヒドロピリミジ-ゥム、 2 ジメチルァミノ一 4 ホルミル一 1, 3 ジメチノレ一 2, 4 (6)—ジヒドロピリミジェゥム、 2 ジメチノレアミノ一 3 ホノレミノレ メチル 1—メチル 2, 4 (6)—ジヒドロピリミジ -ゥム等。 [0064] (I11) Guadium having a dihydropyrimidi-um skeleton having 4 to 30 or more carbon atoms; 2 Dimethinoreamino-1, 3, 4-trimethinole 2, 4 (6) -Dihydropyrimige 1-, 3- and 4- (3) trimethyl 2,4 (6) —dihydropyrimidium, 2,3,4-triethylinole 2,4 (6) —dihydropyrimidium, 2 jetinoreamino-1 , 3 Dimethyl 2, 4 (6) —Dihydropyrimidium, 2 Dimethylamino 1— 1-methylol 2,4 (6) -dihydropyrimidinium 1, 6, 7, 8-tetrahydro 1,2-dimethyl 1H-imide [1, 2a] pyrimidium 1, 6 Dihydro-1,2, dimethyl-1,2H —pyrimido [1, 2a] pyrimidium, 2 dimethylamino-1,4 cyano-1,3 dimethyl-1,2,4 (6) —Dihydropyrimidium, 2 dimethylamino3 acetylmethyl-1—methyl- 2, 4 (6) —Dihydropyrimidium, 2 dimethylamino 1-methylcarboxymethyl — 1-methyl 2, 4 (6) —Dihydropyrimidium, 2 dimethylamino 1 4 Formyl 1, 3 Dimethinole 1, 2 (6) —Dihydropyrimidium, 2 Dimethinoreamino-1, 3 Honoleminoremethyl 1-Methyl 2, 4 (6) —Dihydropyrimidi-um, etc.
[0065] 3級スルホユウムカチオン(II)としては、下記(II 1)〜(II 3)が挙げられる。  [0065] Examples of the tertiary sulfoyuium cation (II) include the following (II 1) to (II 3).
(II- 1)炭素数 1〜 30又はそれ以上のアルキル及び Z又はァルケ-ル基を有する 脂肪族系 3級スルホユウム;トリメチルスルホ-ゥム、トリェチルスルホ-ゥム、ェチルジ メチルスルホ-ゥム、ジェチルメチルスルホ -ゥム等。  (II-1) Aliphatic tertiary sulfonium having an alkyl having 1 to 30 or more carbon atoms and a Z or alkenyl group; trimethylsulfum, triethylsulfum, ethyldimethylsulfum, jetyl Methyl sulfo-um and the like.
[0066] (II 2)炭素数 6〜30又はそれ以上の芳香族系 3級スルホ -ゥム;フエ-ルジメチ ノレスノレホニゥム、フエ-ノレェチノレメチノレスノレホニゥム、フエ-ノレメチノレべンジノレスノレホ [0066] (II 2) Aromatic tertiary sulfone having 6 to 30 or more carbon atoms; Fehr-dimethi nolesnorehonum, Hue-norechinoremethinoresnorehonium, Hue -Noremetino Lebenzinoles Norejo
-ゥム等。 -Um etc.
[0067] (II 3)炭素数 3〜30又はそれ以上の脂環式 3級スルホユウム;メチルチオラ -ゥム [0067] (II 3) Alicyclic tert-sulfoium having 3 to 30 or more carbon atoms; methylthiolaum
、フエ-ルチオラ-ゥム、メチルチア-ゥム等。 , Felt thiolum, methyl thiarum, etc.
[0068] 第 4級ホスホ-ゥムカチオン(III)としては、下記(III 1)〜(III 3)が挙げられる。 [0068] Examples of the quaternary phosphonium cation (III) include the following (III 1) to (III 3).
(III 1)炭素数 1〜30又はそれ以上のアルキル及び Z又はァルケ-ル基を有する 脂肪族系第 4級ホスホ-ゥム;テトラメチルホスホ-ゥム、テトラエチルホスホ-ゥム、テ トラプロピノレホスホニゥム、テトラブチノレホスホニゥム、メチルトリェチノレホスホニゥム、メ チルトリプロピルホスホニゥム、メチルトリブチルホスホニゥム、ジメチルジェチルホスホ -ゥム、ジメチルジブチルホスホ-ゥム、トリメチルェチルホスホ-ゥム、トリメチルプロ ピルホスホ-ゥム、トリメチルブチルホスホ-ゥム等。  (III 1) Aliphatic quaternary phosphonium having 1 to 30 or more carbon atoms and Z or alkenyl groups; tetramethylphosphonium, tetraethylphosphonium, tetrapropy Norrephosphonium, Tetrabutinorephosphonium, Methyltritinorephosphonium, Methyltripropylphosphonium, Methyltributylphosphonium, Dimethyljetylphosphonium, Dimethyldibutylphosphonium, Trimethyl Ethylphosphonium, trimethylpropylphosphonium, trimethylbutylphosphonium, etc.
[0069] (III 2)炭素数 6〜30又はそれ以上の芳香族系 4級ホスホ-ゥム;トリフエ-ルメチ ノレホスホ-ゥム、ジフエ-ノレジメチノレホスホ-ゥム、トリフエ-ノレベンジノレホスホ -ゥム 等。 [0069] (III 2) Aromatic quaternary phosphonium having 6 to 30 or more carbon atoms; triphenyl methole norephospho um, diphenol noresi methino rephospho um, triphenol nore veneno lesphospho -Um etc.
[0070] (III 3)炭素数 3〜30又はそれ以上の脂環式 4級ホスホ-ゥム; 1, 1ージメチルホ スホラ二ゥム、 1ーメチノレー 1ーェチノレホスホラ二ゥム、 1, 1 ジェチノレホスホラニゥム[0070] (III 3) An alicyclic quaternary phosphonium having 3 to 30 or more carbon atoms; 1,1-dimethylphosphine Suhoranimu, 1-Mechinore 1-etinorephosphoranium, 1, 1 Getinorephosphoranium
、 1, 1—ジェチルホスホリナ-ゥム、 1, 1—ペンタエチレンホスホリナ-ゥム等。 1, 1-jetyl phosphorinum, 1,1-pentaethylene phosphorinum, etc.
[0071] 3級ォキソユウムカチオン(IV)としては、下記(IV— 1)〜(IV— 3)が挙げられる。 [0071] Examples of the tertiary oxoyuium cation (IV) include the following (IV-1) to (IV-3).
(IV 1)炭素数 1〜 30又はそれ以上のアルキル及び Z又はアルケニル基を有する 脂肪族系 3級ォキソユウム;トリメチルォキソユウム、トリェチルォキソユウム、ェチルジ メチルォキソ-ゥム、ジェチルメチルォキソ -ゥム等。  (IV 1) Aliphatic tertiary oxoum having an alkyl having 1 to 30 or more carbon atoms and a Z or alkenyl group; trimethyloxoum, triethyloxoyuum, ethyldimethyloxo-sodium, jetylmethyloxo -Um etc.
[0072] (IV— 2)炭素数 6〜30又はそれ以上の芳香族系 3級ォキソユウム;フエ-ルジメチ ルォキソ-ゥム、フエ-ルェチルメチルォキソ-ゥム、フエ-ルメチルベンジルォキソ[IV-2] Aromatic tertiary oxoyuum having 6 to 30 or more carbon atoms; ferrodimethyl oxomethyl, ferroethylmethyl oxodium, ferromethylbenzyloxo
-ゥム等。 -Um etc.
[0073] (IV— 3)炭素数 3〜30又はそれ以上の脂環式 3級ォキソユウム;メチルォキソラユウ ム、フエ-ルォキソラ-ゥム、メチルォキサ -ゥム等。  [IV-3] Cycloaliphatic tertiary oxoyuum having 3 to 30 or more carbon atoms; methyl oxouranium, ferrosolum, methyloxa-um, etc.
[0074] これらの中で、好ましいォ-ゥムカチオンは(I)であり、更に好ましいものは(1—1)、  [0074] Among these, a preferred form cation is (I), and more preferred is (1-1),
(1—4)及び (1— 5)であり、特に好ましいものは(1—4)及び (1— 5)である。これらォニ ゥムカチオンは、 1種又は 2種以上を併用しても良い。  (1-4) and (1-5), and (1-4) and (1-5) are particularly preferred. These onion cations may be used alone or in combination of two or more.
[0075] ォ-ゥムカチオンを高分子に導入する方法は、例えば、高分子のカルボキシル基 及び Z又はスルホン酸基のプロトンを前記ォ-ゥムカチオンに置換する方法が挙げ られる。プロトンを前記ォ-ゥムカチオンに置換する方法としては、所定量のォ-ゥム カチオンに置換できる方法で有ればいずれの方法でもよいが、例えば、上記ォニゥ ムカチオンの水酸化物塩(例えば、テトラエチルアンモ -ゥムハイドロキサイド等)ゃモ ノメチル炭酸ィ匕物塩 (例えば、 1, 2, 3, 4 トリメチルイミダゾリ-ゥムモノメチル炭酸 塩等)を、カルボキシル基及び Z又はスルホン酸基を含有する高分子に添加し、必 要により脱水、脱炭酸、脱メタノール等を行うことにより容易に置換することができる。 また、モノマーの段階で同様に置換してもよい。  [0075] Examples of the method for introducing the form cation into the polymer include a method in which protons of the carboxyl group and Z or sulfonic acid group of the polymer are substituted with the form cation. Any method can be used to replace protons with the above-mentioned cation, as long as it is a method that can replace the cation with a predetermined amount. For example, a hydroxide salt of the above-mentioned cation (for example, tetraethyl cation). Ammonium hydroxide, etc.) monomethyl carbonate salts (eg 1, 2, 3, 4 trimethylimidazolium monomethyl carbonate, etc.) with high carboxyl group and Z or sulfonic acid group content. It can be easily replaced by adding it to the molecule and performing dehydration, decarboxylation, demethanol, etc. if necessary. Moreover, you may substitute similarly in the stage of a monomer.
[0076] ォ-ゥムカチオンによる置換の段階に関しては、例えば、前記カルボキシル基及び Z又はスルホン酸基を含有するモノマーをォ-ゥムカチオンで置換した後に重合す る方法や、カルボキシル基及び Z又はスルホン酸基を有する高分子を作成した後に 酸のプロトンをォニゥムゥムカチオンで置換する方法等が挙げられるが、最終的な高 分子のカルボキシル基及び Z又はスルホン酸基のプロトンが置換されて 、れば 、ず れの段階で行ってもよい。 [0076] With respect to the stage of substitution with the form cation, for example, a method in which the monomer containing the carboxyl group and Z or sulfonic acid group is substituted with the form cation and then polymerized, or the carboxyl group and Z or sulfonic group For example, there is a method of substituting the proton of the acid with an onion cation after the preparation of the polymer having the above, but if the final proton of the carboxyl group and the Z or sulfonic acid group is substituted, Z This may be done at this stage.
[0077] カルボキシル基及び Z又はスルホン酸基のプロトンを前記ォ-ゥムカチオンにより 置換する度合い(置換度)は、 30〜: LOOモル0 /0、好ましくは 50〜: LOOモル0 /0、さらに 好ましくは 70〜: L00モル0 /0である。ォ-ゥムカチオンによる置換度が 30モル0 /0未満 では、高分子(1)のカルボキシル基、スルホン酸基及びォ-ゥムカチオンの解離が低 すぎて膨潤カゃゲルイ匕力が低い場合がある。 [0077] The proton of the carboxyl group and Z or sulfonic acid group O - degree of substitution by Umukachion (degree of substitution) is,. 30 to: LOO mol 0/0, preferably 50 to: LOO mol 0/0, more preferably the 70~: L00 is the mole 0/0. O - With the degree of substitution Umukachion is less than 30 mole 0/0, the carboxyl group of the polymer (1), sulfonic Sanmoto及Bio - sometimes swelling mosquito dissociation Umukachion is too low Ya Gerui匕力low.
[0078] 本発明にお 、て、カルボキシル基及び Z又はスルホン酸基を有する構成単位を所 定量含有し、かつ該カルボキシル基及び Z又はスルホン酸基が所定量ォ-ゥムカチ オンで置換された前記高分子(1)は、最終的にはいずれかの段階で架橋して架橋 体とする。架橋の方法としては、公知の方法で良ぐ例えば、下記 [1]〜[5]の方法を 挙げることができる。  [0078] In the present invention, the structural unit having a carboxyl group and Z or a sulfonic acid group is quantitatively contained, and the carboxyl group and Z or the sulfonic acid group are substituted with a predetermined amount of formcation. The polymer (1) is finally crosslinked at any stage to form a crosslinked product. As a method for crosslinking, for example, the following methods [1] to [5] can be given which are well known in the art.
[0079] [1]共重合性架橋剤による架橋  [0079] [1] Cross-linking with copolymerizable cross-linking agent
前記カルボキシル基及び Z又はスルホン酸基含有モノマー、該モノマーのォ-ゥ ムカチオン置換体、必要により共重合する他のモノマー (b)と共重合可能な又は分 子内に 2重結合を 2つ以上有する共重合性架橋剤 [例えば、ジビュルベンゼン等の 多価ビュル型架橋剤、 N, N,—メチレンビスアクリルアミド等の (メタ)アクリルアミド型 架橋剤、ペンタエリスリトールトリアリルエーテル等の多価ァリルエーテル型架橋剤、ト リメチロールプロパントリアタリレート等の多価 (メタ)アクリル酸エステル型架橋剤等] を共重合して架橋する方法。  Two or more double bonds can be copolymerized with the carboxyl group- and Z- or sulfonic acid group-containing monomer, an cation-substituted cation of the monomer, and, if necessary, another monomer (b) to be copolymerized. Copolymerizable cross-linking agent [for example, polyvalent bur type cross-linking agent such as dibulebenzene, (meth) acrylamide type cross-linking agent such as N, N, -methylenebisacrylamide, and polyvalent allyl ether type such as pentaerythritol triallyl ether A method of cross-linking by crosslinking a polyvalent (meth) acrylic acid ester type cross-linking agent such as a cross-linking agent or trimethylolpropane tritalylate].
[0080] [2]反応性架橋剤による架橋  [0080] [2] Cross-linking with reactive cross-linking agent
カルボキシル基及び Z又はスルホン酸基又はそのォ-ゥムカチオン置換体、必要 により共重合するモノマーの官能基等と反応し得る官能基を分子内に 2つ以上有す る反応性架橋剤 [例えば、 4, 4'ージフエ-ルメタンジイソシァネート等の多価イソシ ァネート型架橋剤、ポリグリセロールポリグリシジルエーテル等の多価エポキシ型架 橋剤、グリセリン等の多価アルコール型架橋剤、へキサメチレンテトラミンやポリェチ レンイミン等の多価ァミン、イミン型架橋剤、ェピクロルヒドリン等のハロエポキシ型架 橋剤、硫酸アルミニウム等の多価金属塩型架橋剤等]を用いて架橋する方法。  A reactive cross-linking agent having two or more functional groups in the molecule that can react with a carboxyl group and a Z or sulfonic acid group or an organic cation substitution product thereof, or a functional group of a monomer to be copolymerized if necessary [for example, 4 , 4'-dimethanemethane diisocyanate and other polyisocyanate type crosslinking agents, polyglycerol polyglycidyl ether and other polyvalent epoxy type crosslinking agents, glycerin and other polyhydric alcohol type crosslinking agents, hexamethylenetetramine Or a polyvalent amine such as polyethylene imine, an imine type crosslinking agent, a haloepoxy type crosslinking agent such as epichlorohydrin, a polyvalent metal salt type crosslinking agent such as aluminum sulfate, etc.].
[0081] [3]重合反応性架橋剤による架橋 前記カルボキシル基及び z又はスルホン酸基含有モノマー、該モノマーのォ-ゥ ムカチオン置換体、必要により共重合する他のモノマー (b)と共重合可能な又は分 子内に 2重結合を有し、かつカルボキシル基及び Z又はスルホン酸基又はそのォ- ゥムカチオン置換体、必要により共重合するモノマーの官能基等と反応し得る官能基 を分子内に有する重合反応性架橋剤 [例えば、グリシジルメタタリレート等のグリシジ ル (メタ)アタリレート型架橋剤、ァリルグリシジルエーテル等のァリルエポキシ型架橋 剤等]を用いて架橋する方法。 [0081] [3] Crosslinking with polymerization reactive crosslinking agent The carboxyl group and z- or sulfonic acid group-containing monomer, an cation-substituted cation of the monomer, and, if necessary, copolymerizable with another monomer (b) or having a double bond in the molecule, And a polymerizable reactive crosslinking agent having a functional group capable of reacting with a functional group of a carboxyl group and Z or a sulfonic acid group or a cation cation substitution product thereof, and, if necessary, a monomer to be copolymerized, if necessary [for example, glycidyl metatalylate And the like using a glycidyl (meth) acrylate-type cross-linking agent such as allylic epoxy type cross-linking agents such as allyl glycidyl ether.
[0082] [4]放射線照射による架橋  [0082] [4] Cross-linking by irradiation
前記高分子(1)に紫外線、電子線、 γ線等の放射線を照射して高分子(1)を架橋 する方法、前記モノマーに紫外線、電子線、 γ線等を照射し重合と架橋を同時に行 う方法等。  The polymer (1) is irradiated with radiation such as ultraviolet rays, electron beams and γ rays to crosslink the polymer (1), and the monomer is irradiated with ultraviolet rays, electron beams and γ rays to simultaneously polymerize and crosslink. How to do it.
[0083] [5]加熱による架橋 [0083] [5] Crosslinking by heating
前記高分子(1)を 100°C以上に加熱して、高分子(1)の分子間で熱架橋 (例えば、 加熱によるラジカルの発生による炭素間の架橋や官能基間での架橋)する方法等。  A method in which the polymer (1) is heated to 100 ° C. or more and thermally crosslinked between the molecules of the polymer (1) (for example, crosslinking between carbons due to generation of radicals by heating or crosslinking between functional groups). etc.
[0084] これらの架橋方法の中で好ましいものは、最終品の用途、形態によって異なるが、 総合的に考えると [ 1 ]共重合性架橋剤による架橋、 [ 2]反応性架橋剤による架橋及 び [4]放射線照射による架橋である。 [0084] Among these cross-linking methods, the preferred one varies depending on the use and form of the final product, but when considered comprehensively, [1] cross-linking with a copolymerizable cross-linking agent, [2] cross-linking with a reactive cross-linking agent and [4] Cross-linking by irradiation.
[0085] 前記共重合性架橋剤の中で好ま 、ものは、多価 (メタ)アクリルアミド型架橋剤、ァ リルエーテル型架橋剤、多価 (メタ)アクリル酸エステル型架橋剤であり、さらに好まし いものは、ァリルエーテル型架橋剤である。 [0085] Among the copolymerizable crosslinking agents, preferred are polyvalent (meth) acrylamide type crosslinking agents, aryl ether type crosslinking agents, and polyvalent (meth) acrylic acid ester type crosslinking agents, and more preferred. One is a aryl ether type cross-linking agent.
[0086] 前記反応性架橋剤の中で好ましいものは、多価イソシァネート型架橋剤及び多価 エポキシ型架橋剤であり、さらに好ましいものは分子内に 3つ以上の官能基を有する 多価イソシァネート型架橋剤又は多価エポキシ型架橋剤である。 [0086] Among the reactive crosslinking agents, preferred are polyvalent isocyanate type crosslinking agents and polyvalent epoxy type crosslinking agents, and more preferred are polyvalent isocyanate types having three or more functional groups in the molecule. It is a crosslinking agent or a polyvalent epoxy type crosslinking agent.
[0087] 架橋度に関しては、使用する目的によって適宜選択できるが、共重合性架橋剤を 使用する場合は、全モノマー質量に対して、 0. 001〜10質量%が好ましぐ 0. 01[0087] The degree of crosslinking can be appropriately selected depending on the purpose of use, but when a copolymerizable crosslinking agent is used, 0.001 to 10% by mass is preferable with respect to the total monomer mass.
〜5質量%がさらに好ましい。 More preferred is ˜5% by mass.
[0088] 反応性架橋剤を使用する場合の添加量は、架橋体 (A)をどのような形状とするか によって好ましい添加量が異なる力 0. 001〜: LO質量%が好ましぐ後述する燃料 電池用液体燃料を含有した一体化したゲルを作成する場合は、 0. 01〜50質量% が好ましい。 [0088] The amount of addition in the case of using a reactive crosslinking agent is such that the preferred amount of addition varies depending on the shape of the crosslinked body (A). fuel In the case of producing an integrated gel containing a liquid fuel for batteries, 0.01 to 50% by mass is preferable.
[0089] 本発明にお 、て、前記カルボキシル基及び Z又はスルホン酸基含有モノマー、該 モノマーのォ-ゥムカチオン置換体及び必要により共重合する他のモノマー(b)の重 合方法も公知の方法で良ぐ例えば、前記の各モノマー及び生成するポリマーが溶 解する溶媒中での溶液重合法、溶媒を使用せずに重合する塊状重合法、乳化重合 法等を例示することができる。この中で好ましいものは、溶液重合法である。  [0089] In the present invention, a polymerization method for the carboxyl group and Z or sulfonic acid group-containing monomer, an cation substitution product of the monomer and, if necessary, another monomer (b) to be copolymerized is also a known method. For example, a solution polymerization method in a solvent in which each of the above monomers and the polymer to be formed dissolves, a bulk polymerization method in which polymerization is performed without using a solvent, and an emulsion polymerization method can be exemplified. Among these, the solution polymerization method is preferable.
[0090] 溶液重合による有機溶媒は、使用するモノマーやポリマーの溶解性により適宜選 択できる力 例えば、メタノール、エタノール等のアルコール類;エチレンカーボネート 、プロピレンカーボネート、ジメチルカーボネート等のカーボネート類; γ ブチロラタ トン等のラタトン類; ε一力プロラタタム等のラタトン類;アセトン、メチルェチルケトン等 のケトン類;酢酸ェチル等のカルボン酸エステル類;テトラヒドロフラン、ジメトキシエタ ン等のエーテル類;トルエン、キシレン等の芳香族炭化水素類及び水等を挙げること ができる。これら、溶媒は 1種又は 2種以上を混合して使用してもよい。 [0090] The organic solvent by solution polymerization can be selected as appropriate depending on the solubility of the monomers and polymers used. For example, alcohols such as methanol and ethanol; carbonates such as ethylene carbonate, propylene carbonate and dimethyl carbonate; γ-butyrolacton Latatones such as ε- strength prolatatum; ketones such as acetone and methyl ethyl ketone; carboxylic acid esters such as ethyl acetate; ethers such as tetrahydrofuran and dimethoxyethane; aroma such as toluene and xylene Group hydrocarbons and water. These solvents may be used alone or in combination of two or more.
[0091] 溶液重合における重合濃度も特に限定はなく目的の用途によって種々異なるが、 1 〜80質量%が好ましぐ 5〜60質量%がさらに好ましい。  [0091] The polymerization concentration in the solution polymerization is not particularly limited and may vary depending on the intended use, but 1 to 80% by mass is preferable, and 5 to 60% by mass is more preferable.
[0092] 重合開始剤も通常のものでよぐァゾ系開始剤 [ァゾビスイソブチ口-トリル、ァゾビ スシァノ吉草酸、ァゾビス(2, 4 ジメチルバレ口-トリル)、ァゾビス(2 アミジノプロ パン)ジハイド口クロライド、ァゾビス {2—メチル Ν— (2—ヒドロキシェチル)プロロピ オンアミド}等]、過酸ィ匕物系開始剤 [過酸ィ匕べンゾィル、ジー t—ブチルパーォキサ イド、タメンヒドロパーオキサイド、コハク酸パーオキサイド、ジ(2—エトキシェチル)パ ーォキシジカーボネート、過酸化水素等]、レドックス開始剤 [上記過酸ィ匕物系開始 剤と還元剤(ァスコルビン酸や過硫酸塩)の組み合わせ等]を例示することができる。  [0092] The polymerization initiator may be a conventional one. Azobis {2-methyl Ν— (2-hydroxyethyl) propionamide}, etc.], peracid-based initiators [peracid benzoyl, di-t-butyl peroxide, tamen hydroperoxide, succinic acid Peroxide, di (2-ethoxyethyl) peroxydicarbonate, hydrogen peroxide, etc.], redox initiator [combination of the above peroxide initiators and reducing agents (ascorbic acid or persulfate), etc.] Can be illustrated.
[0093] 他の重合方法としては、光増感開始剤 [ベンゾフエノン等]を添加し紫外線等を照 射する方法、 y線や電子線等の放射線を照射し重合する方法等を例示することがで きる。 [0093] Examples of other polymerization methods include a method of adding a photosensitizer [benzophenone or the like] and irradiating ultraviolet rays or the like, a method of polymerizing by irradiating radiation such as y rays or electron beams, and the like. it can.
[0094] 重合開始剤を使用する場合の開始剤の添加量は、特に限定はないが、使用するモ ノマーの総質量に対して、 0. 0001〜5質量%が好ましぐ 0. 001〜2質量%がさら に好ましい。 [0094] The amount of initiator added when a polymerization initiator is used is not particularly limited, but 0.0001 to 5% by mass is preferable with respect to the total mass of the monomers used. 2% by mass Is preferred.
[0095] 重合温度も目的とする分子量や開始剤の分解温度、使用する溶媒の沸点等により 種々異なるが、 20〜200°Cが好ましぐ 0〜100°Cがさらに好ましい。  [0095] The polymerization temperature varies depending on the target molecular weight, the decomposition temperature of the initiator, the boiling point of the solvent used, and the like, but is preferably 20 to 200 ° C, more preferably 0 to 100 ° C.
[0096] 架橋体を粒子状とする場合、その粒子径は、体積平均粒径で 0. 1〜5000 μ mが 好ましぐさらに好ましくは 50〜2000 μ mである。また、 0. 1 m未満が全体の 10質 量%以下、 5000 mを超える部分が全体の 10質量%以下が好ましぐそれぞれ 5 質量%以下がさらに好ましい。  [0096] When the crosslinked product is in the form of particles, the volume average particle size is preferably 0.1 to 5000 µm, more preferably 50 to 2000 µm. Further, less than 0.1 m is preferably 10% by mass or less, and more than 5000 m is preferably 10% by mass or less, more preferably 5% by mass or less.
[0097] 粒子径の測定は、ロータップ試験篩振とう機及び JIS Z8801— 2000標準篩いを 用いて、ペリーズ ·ケミカル ·エンジニアーズ ·ハンドブック第 6版(マックグロ一ヒル ·ブ ック 'カンパ-一, 1984, p. 21)に記載の方法で行う(以下、粒子径の測定は本方法 による。)。  [0097] The particle size was measured using a low-tap test sieve shaker and a JIS Z8801-2000 standard sieve. Perry's Chemical Engineers Handbook 6th edition (McGlow Hill Hill Book Company 1) 1984, p. 21) (hereinafter, this method is used to measure the particle size).
[0098] 粒子状の形態を得る方法としては、最終的に粒子状になれば特に限定はな 、が、 例えば、下記 (i)〜 (iv)等の方法が挙げられる。  [0098] The method for obtaining the particulate form is not particularly limited as long as it finally becomes particulate, and examples thereof include the following methods (i) to (iv).
(i)必要により溶媒を用いて、前記共重合性架橋剤を添加して共重合により高分子 (i) If necessary, using a solvent, adding the copolymerizable cross-linking agent and copolymerizing the polymer
(1)の架橋体 (A)を作成し、必要により乾燥等の方法で溶媒を留去し、公知の粉砕 方法を用いて粉砕して粒子状とする方法。 A method of preparing the crosslinked product (A) of (1), distilling the solvent by a method such as drying, if necessary, and pulverizing it into a particulate form using a known pulverization method.
[0099] (ii)必要により溶媒を用いて、重合して高分子(1)を作成した後、前記反応性架橋 剤又は放射線の照射等の手段により、高分子(1)を架橋した後、必要により乾燥等 の方法で溶媒を留去し、公知の粉砕方法を用いて粉砕して粒子状とする方法。 [Ii] (ii) Polymerization using a solvent, if necessary, to prepare a polymer (1), and then crosslinking the polymer (1) by means of the reactive crosslinking agent or radiation irradiation, etc. A method in which the solvent is distilled off by a method such as drying, if necessary, and pulverized using a known pulverization method to form particles.
[oioo] (m)前記カルボキシル基及び Z又はスルホン酸基含有モノマー及び必要により他 のモノマー (b)を前記共重合性架橋剤の存在下、必要により溶媒を用いて共重合し て架橋し高分子化した後、前記ォ-ゥムカチオンィ匕合物を添加し、酸性基のプロトン を所定量ォ-ゥムカチオンに置換した後、必要により乾燥等の方法で溶媒を留去し、 公知の粉砕方法を用いて粉砕して粒子状とする方法。  [oioo] (m) The above carboxyl group- and Z- or sulfonic acid group-containing monomer and, if necessary, another monomer (b) in the presence of the above-mentioned copolymerizable cross-linking agent, are copolymerized using a solvent as necessary to cross-link and After molecularization, the above-mentioned cation cation compound is added, the proton of the acidic group is replaced with a predetermined amount of cation, and then the solvent is distilled off by a method such as drying if necessary, and a known pulverization method is used. And pulverized into particles.
[0101] (iv)前記カルボキシル基及び Z又はスルホン酸基含有モノマー及び必要により他 のモノマー (b)を前記共重合性架橋剤の非存在下、必要により溶媒を用いて共重合 して未架橋の高分子とした後、前記ォニゥムカチオン化合物及び反応性架橋剤の添 加や放射線の照射により、酸性基のプロトンを置換するのと同時に高分子を架橋し、 必要により乾燥等の方法で溶媒を留去し、公知の粉砕方法を用いて粉砕して粒子状 とする方法。 [0101] (iv) Uncrosslinked by copolymerizing the carboxyl group- and Z- or sulfonic acid group-containing monomer and optionally other monomer (b) in the absence of the copolymerizable crosslinking agent, if necessary, using a solvent. Then, the polymer is crosslinked at the same time as the proton of the acidic group is replaced by the addition of the onion cation compound and the reactive crosslinking agent or the irradiation of radiation. A method in which the solvent is distilled off by a method such as drying, if necessary, and pulverized using a known pulverization method to form particles.
[0102] これらの燃料電池用燃料貯蔵物 (以下燃料貯蔵物と!ヽぅ)の架橋体 (A)の形状を粒 子状にする過程で、必要により行う乾燥は、公知の乾燥方法で良ぐ例えば、通気乾 燥 (循風乾燥機等)、透気乾燥 (バンド型乾燥機等)、減圧乾燥 (減圧乾燥機等)、接 触乾燥 (ドラムドライヤー等)等を挙げることができる。  [0102] In the process of making the shape of the crosslinked body (A) of these fuel cell fuel stocks (hereinafter referred to as fuel stock! For example, aeration drying (air circulation dryer etc.), air permeation drying (band type dryer etc.), vacuum drying (vacuum dryer etc.), contact drying (drum dryer etc.) etc. can be mentioned.
[0103] 乾燥する場合の乾燥温度に関しては、ポリマー等の劣化や過度の架橋が起こらな ければ特に限定はないが、好ましくは 0〜200°C、さらに好ましくは 50〜150°Cであ る。形状を粒子状とする場合の粉砕方法も公知の方法でよぐ例えば、衝撃粉砕 (ピ ンミル、カッターミル、ボールミル型粉砕機、 ACMパルべライザ一等の高速回転型粉 砕機等)、空気粉砕 (ジェット粉砕機等)、凍結粉砕等の方法を挙げることができる。  [0103] The drying temperature for drying is not particularly limited as long as the polymer or the like is not deteriorated or excessively cross-linked, but is preferably 0 to 200 ° C, more preferably 50 to 150 ° C. . For example, impact pulverization (pin mill, cutter mill, ball mill type pulverizer, high-speed rotating type pulverizer such as ACM pulverizer, etc.), air pulverization, etc. can be used. (Jet pulverizer, etc.), freeze pulverization and the like.
[0104] このようにして粒子状の架橋体 (A)が得られる。本発明にお 、て、このように粒子状 化した本発明の燃料貯蔵物中の架橋体 (A)は、燃料を吸収する能力がある。  [0104] In this way, the particulate crosslinked body (A) is obtained. In the present invention, the cross-linked product (A) in the fuel storage of the present invention that has been particulated in this way has the ability to absorb fuel.
[0105] 本発明の燃料電池用燃料供給装置に収容する燃料組成物は、種々の形態に加工 でき、燃料組成物の形態は特に限定されないが、好ましい形態としては粒子状、シー ト状、一体ゲルィ匕の形態を挙げることができる。  [0105] The fuel composition accommodated in the fuel supply device for a fuel cell of the present invention can be processed into various forms, and the form of the fuel composition is not particularly limited, but a preferable form is a particulate form, a sheet form, or an integral form. Mention may be made of the form of gerui.
[0106] 以下、好ましい形態の作成方法について説明するが、形態によりその作成方法等 や好ま ヽ方法等が若干異なるので、それぞれにつ!/ヽて説明する。  [0106] A method of creating a preferred form will be described below, but the creation method and the like and the preferred method and the like differ slightly depending on the form.
[0107] 粒子状の燃料貯蔵物は、粒子状の架橋体 (A)が燃料を吸収したものでもよ!/、し、 燃料を吸収した後粒子状としてもょ 、。粒子状にする方法は上記の架橋体 (A)を製 造する方法と同じでよい。体積平均粒子径等は架橋体 (A)と同じものが好ましい。  [0107] The particulate fuel reservoir may be one in which the particulate crosslinked body (A) has absorbed the fuel! /, And may be particulate after the fuel has been absorbed. The method for forming particles may be the same as the method for producing the crosslinked body (A). The volume average particle diameter and the like are preferably the same as those of the crosslinked product (A).
[0108] このように粒子状ィ匕した燃料組成物は、燃料を吸収する能力がある。この本発明の 燃料貯蔵物中の架橋体 (A)の吸収量は、対象とする燃料の種類や前記ポリマー組 成、又ゲル強度等により種々変化し、該架橋体 (A)を燃料貯蔵物として使用する場 合は、メタノールに対する吸収量を 10〜: LOOOgZgに設計するのが好ましぐ 50〜9 OOgZgに設計するのがさらに好ましい。吸収量が lOgZg以上であれば、従来の非 イオン系吸収剤に比べ保液量が大幅に大きぐ lOOOgZg以下であると液体燃料を 保液した燃料貯蔵物のゲル強度が弱すぎると!ヽぅ問題がな!ヽ。 [0109] 次に燃料組成物の形状をシート状とする場合に関して説明する。シート状にする場 合方法としては、例えば、下記 (v)〜(vii)の方法を挙げることができる。 [0108] The particulate fuel composition has the ability to absorb fuel. The amount of the crosslinked product (A) absorbed in the fuel storage of the present invention varies depending on the type of the target fuel, the composition of the polymer, the gel strength, etc., and the crosslinked product (A) is converted into the fuel storage product. When used as, it is preferable to design the absorption amount to 10 to: LOOOgZg, more preferably 50 to 9 OOgZg. If the absorption amount is lOgZg or more, the liquid retention amount is significantly larger than that of conventional nonionic absorbents. If the absorption amount is lOOOgZg or less, the gel strength of the fuel stock holding liquid fuel is too weak! There is a problem!ヽ. [0109] Next, the case where the fuel composition is formed into a sheet shape will be described. Examples of the method for forming a sheet include the following methods (v) to (vii).
[0110] (V)前記粒子状の架橋体 (A)を不織布や紙等の間に挟み込んでサンドイッチシー トとし、燃料を吸収させる方法。  [0110] (V) A method in which the particulate crosslinked product (A) is sandwiched between nonwoven fabrics, paper, or the like to form a sandwich sheet to absorb fuel.
[0111] (vi)前記高分子(1)の未架橋体を不織布、織布、紙、フィルムの 1つ又は 2つ以上 からなる基材に含浸及び Z又は塗工した後、前記架橋剤による架橋、前記放射線照 射による架橋、前記加熱による架橋からなる群より選ばれる 1つ又は 2つ以上の架橋 手段を用いて高分子(1)を架橋するとともに、必要により溶媒を留去しシートィ匕した後 、燃料を吸収させる方法。  [0111] (vi) After impregnating and Z-coating a substrate made of one or more of nonwoven fabric, woven fabric, paper, and film with the uncrosslinked polymer (1), using the crosslinking agent The polymer (1) is cross-linked using one or two or more cross-linking means selected from the group consisting of cross-linking, cross-linking by radiation irradiation and cross-linking by heating, and the solvent is distilled off if necessary. After that, how to absorb the fuel.
[0112] (vii) 30〜 100モル0 /0のプロトンを前記ォ-ゥムカチオンで置換したカルボキシル 基及び Z又はスルホン酸基含有モノマー 20〜: LOO質量%と、他の共重合可能なモ ノマーを 0〜80質量%、前記架橋剤からなる混合溶液を、不織布、織布、紙、フィル ムの中の 1つ又は 2つ以上からなる基材に含浸及び Z又は塗工した後、該基材を重 合開始剤及び Z又は放射線等の照射による架橋、加熱による架橋の群から選ばれ る 1つ又は 2以上の架橋手段を用いて重合し、必要により溶媒を留去することによりシ ート化した後、燃料を吸収させる方法。 [0112] (vii) 30~ 100 mole 0/0 Proton the O of - substituted carboxyl group and Z or a sulfonic acid group-containing monomer 20 at Umukachion: and LOO wt%, the other copolymerizable mode Nomar After impregnating and Z or coating a substrate composed of one or two or more of nonwoven fabric, woven fabric, paper, and film with a mixed solution of 0 to 80% by mass of the crosslinking agent, the substrate Is polymerized using one or more cross-linking means selected from the group consisting of a polymerization initiator, cross-linking by irradiation with Z or radiation, and cross-linking by heating, and if necessary, the sheet is removed by distilling off the solvent. The method of absorbing the fuel after it is converted.
[0113] これらの方法の中で、作成したシート(B)の厚みの調整の容易さや作成したシート の吸収速度等の観点から、(vi)又は (vii)が好ましい。形状をシート状とした場合のシ ート(B)の厚み ίま、 1〜50000 m力 S好ましく、 5〜30000 m力 S更に好ましく、 10 〜 10000 mが特に好ましい。シートの厚みが、 1 m以上であると架橋体 (A)の目 付量が少なくなりすぎず、 50000 μ m以下ではシートの厚みが厚すぎることがない。 シート長さや巾に関しては、使用する大きさにより適宜選択でき、特に限定はないが 、好ましい長さは 0. 01〜: LOm、好ましい幅は 0. l〜300cmである。前記シート(B) における本発明の高分子の架橋体の目付量に関しては、特に限定はないが、対象と する液体燃料の吸収'保液能力、また厚みが厚くなりすぎないこと等を加味すると、 目付量 ίま、 10〜3000g/m2力好まし <、 20〜: L000g/m2力更に好まし!/、0 [0113] Among these methods, (vi) or (vii) is preferable from the viewpoints of easy adjustment of the thickness of the prepared sheet (B), the absorption rate of the prepared sheet, and the like. When the shape is a sheet, the thickness of the sheet (B) is 1 to 50000 m force S, preferably 5 to 30000 m force S, more preferably 10 to 10000 m. If the sheet thickness is 1 m or more, the weight per unit area of the crosslinked product (A) will not be too small, and if it is 50000 μm or less, the sheet thickness will not be too thick. The sheet length and width can be appropriately selected depending on the size to be used, and are not particularly limited. However, the preferred length is 0.01 to LOm, and the preferred width is 0.1 to 300 cm. The weight per unit area of the crosslinked polymer of the present invention in the sheet (B) is not particularly limited, but taking into account the absorption ability of the liquid fuel of interest and the ability to retain the liquid, and the thickness not becoming too thick. , Weight per unit area ί, 10 ~ 3000g / m 2 force is preferred <, 20 ~: L000g / m 2 force is more preferred! /, 0
[0114] 形態をシート状とするために必要により使用する不織布、織布、紙、フィルム等の基 材は公知のものでよぐ例えば、目付量が 10〜500g程度の合成繊維及び Z又は天 然繊維からなる不織布又は織布、紙 (上質紙、薄葉紙、和紙等)、合成樹脂からなる フィルム、並びにこれらの 2つ以上の基材及びこれらの複合体を例示することができ る。 [0114] A base material such as a nonwoven fabric, a woven fabric, paper, or a film that is used as necessary to form the sheet may be a known material. For example, synthetic fibers having a basis weight of about 10 to 500 g and Z or ceiling However, examples include non-woven fabrics or woven fabrics made of fibers, paper (quality paper, thin paper, Japanese paper, etc.), films made of synthetic resins, and two or more substrates thereof and composites thereof.
[0115] これらの基材の中で、好ましいものは、不織布、及び不織布とプラスチックフィルム 又は金属フィルムとの複合体であり、特に好ましいものは、不織布、及び不織布とプ ラスチックフィルムとの複合体である。  [0115] Among these substrates, preferred are nonwoven fabrics and composites of nonwoven fabrics and plastic films or metal films, and particularly preferred are nonwoven fabrics and composites of nonwoven fabrics and plastic films. is there.
[0116] これら基材の厚みに関しては特に限定はないが、通常1〜50000 111、好ましくは 10〜20000 /ζ πιである。厚みが、 1 m未満であると、所定量の前記高分子(1)の 含浸や塗工が難しぐ一方厚みが 50000 mを越えるとシートが厚すぎて燃料貯蔵 物としたときに全体のカサが大きくなつて使用しに《なる。基材への、高分子(1)の 塗工方法や含浸方法は、公知の方法でよぐ例えば、通常のコーティングゃパディン グ等の方法を適用すれば良ぐコーティングやパディング処理を行った後、重合や希 釈、粘度調整等のために使用した溶媒を、必要により乾燥等の方法で留去してもよ い。  [0116] The thickness of these base materials is not particularly limited, but is usually 1 to 50000 111, preferably 10 to 20000 / ζ πι. If the thickness is less than 1 m, it is difficult to impregnate or apply the predetermined amount of the polymer (1). On the other hand, if the thickness exceeds 50000 m, the sheet is too thick to be used as a fuel storage. It becomes << to use when it becomes large. The coating method or impregnation method of the polymer (1) to the base material may be a well-known method. For example, after applying a coating or padding treatment, which may be performed by applying a method such as ordinary coating or padding, etc. The solvent used for polymerization, dilution, viscosity adjustment, etc. may be distilled off by a method such as drying, if necessary.
[0117] このようにして作成した架橋体 (A)を含有するシートは、燃料を効率よく吸収するの で、シート型燃料貯蔵物として用いられる。このシート型燃料貯蔵物における燃料に 対する吸収量も、燃料の供給時間が十分に長ければ特に限定はないが、 0. 1〜50 Og—燃料 Zcm2—シートが好ましぐ l〜400gZcm2のものがさらに好ましい。吸収 量が 0. lgZcm2上であると液体燃料を十分に吸収できて、 500gZcm2以下である と液体燃料を吸収したシートが厚くなりすぎな 、。 [0117] The sheet containing the cross-linked product (A) thus prepared absorbs fuel efficiently, and is therefore used as a sheet-type fuel storage. The amount of fuel absorbed in the seat-type fuel storage is not particularly limited as long as the fuel supply time is sufficiently long, but 0.1 to 50 Og—fuel Zcm 2 —preferably l to 400 gZcm 2 More preferred. If the absorbed amount is 0.1 lgZcm 2 , the liquid fuel can be absorbed sufficiently, and if it is 500 gZcm 2 or less, the sheet that has absorbed the liquid fuel is not too thick.
[0118] 前記架橋体 (A)及び燃料からなる一体ゲル化型燃料貯蔵物における前記架橋体 ( A) Z燃料の比率は、好ましくは 0. l〜99Zl〜99. 9質量%であり、さらに好ましく は 0. 5〜50Z50〜99. 5質量0 /0、特に好ましくは 1〜30Ζ70〜99質量0 /0であり、 最も好ましくは 1〜20Ζ80〜99質量%である。該架橋体 (Α)の比率が、 0. 1質量% 以上であると生成した燃料含有ゲルのゲル強度が弱カゝつた全体をゲルイ匕できない場 合がなぐ一方含有量が、 99質量%以下であると、該架橋体 (Α)の含有量が多すぎ るために必要とする燃料の添加量が低すぎて電池の放電時間が短くなることがな 、。 [0118] The ratio of the crosslinked body (A) Z fuel in the integral gelled fuel storage comprising the crosslinked body (A) and fuel is preferably 0.1 to 99Zl to 99.9% by mass, and preferably 0. 5~50Z50~99. 5 mass 0/0, particularly preferably a 1~30Ζ70~99 mass 0/0, most preferably from 1~20Ζ80~99 mass%. If the ratio of the cross-linked product (で) is 0.1% by mass or more, the resulting fuel-containing gel may not be able to gel the entire gel strength, while the content is 99% by mass or less. In this case, since the content of the crosslinked body (Α) is too large, the amount of fuel required is too low, and the discharge time of the battery is not shortened.
[0119] 一体ゲルィ匕型燃料貯蔵物に使用する燃料も、前記のものと同じ物が使用できる。 一体ゲル化型燃料貯蔵物の作成方法としては、例えば、(viii)前述した本発明の粒 子状の架橋体 (A)に所定量の燃料を添加する方法;(ix)該架橋体 (A)を含有するシ ートに燃料を添加する方法でも良いが、これらの燃料含有ゲルは、下記 (X)や (xi)等 に挙げた方法で一体ィ匕したゲルを作成できるものが好ましい。 [0119] The same fuel as that described above can be used as the fuel used for the integral gel fuel storage. Examples of a method for preparing an integral gelled fuel storage include: (viii) a method of adding a predetermined amount of fuel to the above-mentioned particulate crosslinked body (A) of the present invention; (ix) the crosslinked body (A However, it is preferable that these fuel-containing gels can be used to form a gel that is integrated with the following methods (X) and (xi).
[0120] (X)前記高分子(1)を燃料に溶解し、該高分子(1)を前記架橋剤による架橋、放射 線照射による架橋、加熱による架橋の何れかの架橋手段で架橋することにより一体 化したゲルとする方法。  [0120] (X) The polymer (1) is dissolved in a fuel, and the polymer (1) is cross-linked by any cross-linking means of cross-linking by the cross-linking agent, cross-linking by radiation irradiation, or cross-linking by heating. A method of forming a gel that is integrated by
[0121] (xi)燃料中で、前記ォ-ゥムカチオンで 30〜100モル0 /0のプロトンを置換したカル ボキシル基及び Z又はスルホン酸含有モノマー 20〜: L00質量%、及び必要により他 の共重合可能なモノマーを 0〜80質量%とを、前記共重合性架橋剤の存在下重合 することにより、一体化したゲルとする方法。 [0121] (xi) in the fuel, the O - 30 to 100 mole 0/0 protons substituted Cal Bokishiru group and Z or a sulfonic acid-containing monomer 20 at Umukachion: L00 wt%, and other co necessary A method in which 0 to 80% by mass of a polymerizable monomer is polymerized in the presence of the copolymerizable crosslinking agent to form an integrated gel.
[0122] 架橋体及び燃料力もなるゲルの形態は適宜選択することができ、形状としては、例 えば、シート状、ブロック状、球状、円柱状等の形状を例示することができる。これらの 中で燃料貯蔵物として使用する場合、好ましい形状はシート状、ブロック状又は円柱 状である。  [0122] The form of the gel that also has a crosslinked body and fuel power can be selected as appropriate, and examples of the shape include a sheet shape, a block shape, a spherical shape, and a cylindrical shape. Among these, when used as a fuel storage, a preferable shape is a sheet shape, a block shape or a column shape.
[0123] シート状ゲルとする場合のゲルの厚みは、 1〜50000 111カ 子ましく、 10〜20000 μ mが更に好ましい。シート状ゲルの幅や長さに関しては、その使用目的や場所、用 途等に合わせて適宜選択すればよ 、。  [0123] The thickness of the gel in the case of a sheet-like gel is preferably 1 to 50000 111, more preferably 10 to 20000 μm. The width and length of the sheet-like gel may be appropriately selected according to the intended purpose, location, and usage.
[0124] これらの形状のゲルの作成方法も特に限定はなぐ例えば、作成した!/、形状に合わ せた容器中やセルの中でゲルィ匕させる方法、離型紙、フィルム、不織布等の上に、 前記高分子(1)やモノマー等と液体燃料の混合物を積層又はコーティング等の方法 によりシート状のゲルを作成する方法等が挙げられる。  [0124] There are no particular limitations on the method of creating gels of these shapes, for example, prepared! /, A method of gelling in a container or cell that matches the shape, release paper, film, nonwoven fabric, etc. And a method of preparing a sheet-like gel by a method of laminating or coating a mixture of the polymer (1), the monomer, and the like and a liquid fuel.
[0125] 燃料組成物には、必要に応じて他のゲル化剤 (脂肪酸石鹼、ジベンザルソルビット 、ヒドロキシプロピルセルロース、ベンジリデンソルビトール、カルボキシビ二ルポリマ 一、ポリエチレングリコール、ポリオキシァノレキレン、ソノレビトーノレ、ニトロセルロース、 メチノレセノレロース、ェチノレセノレロース、ァセチノレブチノレセノレロース、ポリエチレン、ポ リプロピレン、ポリスチレン、 ABS榭脂、 AB榭脂、アクリル榭脂、ァセタール榭脂、ポリ カーボネート、ナイロン、フエノール榭脂、フエノキシ榭脂、ユリア榭脂、アルキッド榭 脂、ポリエステル、エポキシ榭脂、フタル酸ジァリル榭脂、ポリアロマー等)、吸着剤( デキストリン、デキストラン、シリカゲル、シリカ、アルミナ、モレキュラーシーブ、力オリ ン、珪藻土、カーボンブラック、活性炭等)、増粘剤、結着剤、及び燃料をィ匕学変換し て非流動化させる物質力 なる群より選ばれる 1種又は 2種以上を配合してもよい。こ れらは、それぞれの機能を発揮できるものであれば特に限定はなぐ固体、液体のも のを問わない。また、燃料貯蔵物を作成する任意の段階で配合して構わない。 実施例 [0125] The fuel composition may contain other gelling agents (fatty acid sarcophagus, dibenzal sorbite, hydroxypropyl cellulose, benzylidene sorbitol, carboxyvinyl polymer, polyethylene glycol, polyoxyanolylene, as necessary. Sonorebithonole, nitrocellulose, methinoresenorelose, ethinoresenorelose, acetinolebutinoresenellose, polyethylene, polypropylene, polystyrene, ABS resin, AB resin, acrylic resin, acetal resin, polycarbonate , Nylon, phenolic resin, phenoxy resin, urea resin, alkyd resin Fat, polyester, epoxy resin, diaryl phthalate resin, polyallomer, etc.), adsorbent (dextrin, dextran, silica gel, silica, alumina, molecular sieve, force orin, diatomaceous earth, carbon black, activated carbon, etc.), thickener In addition, one or two or more selected from the group consisting of a material force that can be converted into a non-fluidized state by chemically converting the binder and the fuel may be blended. These are not particularly limited as long as they can perform their respective functions, and they may be solid or liquid. Moreover, you may mix | blend in the arbitrary steps which produce a fuel store. Example
[0126] 以下に実施例を挙げて本発明をより具体的に説明する力 本発明はその要旨を超 えない限り、何ら以下の実施例に限定されるものではな 、。  [0126] Ability to describe the present invention more specifically with reference to the following examples. The present invention is not limited to the following examples unless it exceeds the gist of the present invention.
[0127] 〔製造例 1〕 [Production Example 1]
1, 1—ビス(4 ヒドロキシフエ-ル)シクロへキサン(BHC) 26. 8g (0. lmol)をメタ ノール 50mlに加熱溶解して再結晶を行うことにより、 BHC :メタノール = 1: 1 (モル比 )でメタノール含有率 11質量%の固体状のメタノール包接化合物を得た。  1,2—Bis (4 hydroxyphenol) cyclohexane (BHC) 26.8 g (0. lmol) was dissolved in 50 ml of methanol by heating and recrystallized to obtain BHC: methanol = 1: 1 ( A solid methanol clathrate compound having a methanol content of 11% by mass in a molar ratio) was obtained.
[0128] 〔製造例 2〕 [Production Example 2]
1, 1, 2, 2—テトラキス(4 ヒドロキシフエ-ル)ェタン (THPE) 39. 8g (0. lmol) をメタノール 100mlに加熱溶解して再結晶を行うことにより、 THPE :メタノール = 1: 2 (モル比)でメタノール含有率 14質量%の固体状のメタノール包接ィ匕合物を得た。  1, 1, 2, 2—Tetrakis (4 hydroxyphenol) ethane (THPE) 39.8 g (0. lmol) was dissolved in 100 ml of methanol by heating and recrystallized to obtain THPE: methanol = 1: 2 A solid methanol inclusion complex having a methanol content of 14% by mass (molar ratio) was obtained.
[0129] 〔製造例 3〕 [Production Example 3]
アクリル酸 360g (5モル)とペンタエリスリトールトリアリルエーテル 1. 08g及び水 11 40gを 2リットルの断熱重合槽に入れた。モノマー溶液の温度を 0°Cまで冷却して、溶 液に窒素を通じて溶存酸素を低下させた後、重合開始剤として 2, 2'—ァゾビス(2 アミジノプロパン)ハイド口クロライド 0. 36g、 35%過酸化水素水 3. lg及び Lーァ スコルビン酸 0. 38gを添加し、重合を開始させた。重合後、生成した含水ゲルを、ミ ートチョッパーを用いて細分ィ匕した後、このゲルに、 1, 2, 3, 4ーテトラメチルイミダゾ リュウムカチオンのメチル炭酸塩 (分子量: 203)の 60%メタノ―ル溶液 (三洋化成ェ 業社製) 1353g (4モル)を添加したところ、脱炭酸と脱メタノールが起こったのが観察 された。前記イミダゾリニゥムカチオンを添加したゲルに、バンド型乾燥機 (透気乾燥 機、井上金属社製)を用いて、 100°Cの熱風を透気して、溶媒として使用した水及び 副成したメタノールを留去し、乾燥した。得られた乾燥物を、カッターミルを用いて粉 砕し、平均粒径 400 mの粒子状の架橋体を作成し、この 20g〖こメタノールを 100g 吸収させて、燃料組成物 (A1)を得た。 360 g (5 mol) of acrylic acid, 1.08 g of pentaerythritol triallyl ether and 40 g of water 11 were placed in a 2 liter adiabatic polymerization tank. After cooling the monomer solution to 0 ° C and reducing the dissolved oxygen through nitrogen in the solution, 2, 2'-azobis (2 amidinopropane) hydride chloride as a polymerization initiator 0.36 g, 35% 3. 1 g of hydrogen peroxide and 0.38 g of L-scorbic acid were added to initiate the polymerization. After polymerization, the resulting hydrogel was subdivided using a meat chopper, and this gel was then subjected to 60% methanol of 1, 2, 3, 4-tetramethylimidazolium cation methyl carbonate (molecular weight: 203). -When 1353 g (4 mol) of a solution (Sanyo Kasei Co., Ltd.) was added, it was observed that decarboxylation and demethanol occurred. Using a band-type dryer (air-permeable dryer, manufactured by Inoue Kinzoku Co., Ltd.) to the gel to which the imidazolinium cation has been added, hot air at 100 ° C. is passed through, and water used as a solvent and By-product methanol was distilled off and dried. The obtained dried product is pulverized using a cutter mill to prepare a particulate crosslinked product having an average particle diameter of 400 m, and 100 g of this 20 g of methanol is absorbed to obtain a fuel composition (A1). It was.
[0130] 〔実施例 1〜3〕 [Examples 1 to 3]
製造例 1〜3で得られたメタノール包接ィ匕合物又は燃料組成物 (A1)を、図 1に示 す燃料電池用燃料供給装置 1の燃料収納部 2にそれぞれ充填し、この燃料収納部 2 に水を含んだスポンジを押圧して水を吸入したところ、 、ずれの場合にもメタノール 水溶液が生成され、このメタノール水溶液を燃料電池試験装置に注入することにより The methanol clathrate compound or fuel composition (A1) obtained in Production Examples 1 to 3 is filled in the fuel storage section 2 of the fuel cell fuel supply device 1 shown in FIG. When a sponge containing water was pressed into part 2 and water was inhaled, a methanol aqueous solution was generated even in the case of deviation, and this methanol aqueous solution was injected into the fuel cell test device.
、燃料電池を発電させることができた。 The fuel cell was able to generate electricity.
[0131] また、この燃料電池用燃料供給装置を lmの高さから落下させても水漏れ等は生じ ず、 48時間室温で放置しても同様に燃料電池を発電させることができた。 [0131] Further, even if this fuel cell fuel supply device was dropped from the height of lm, no water leakage occurred, and the fuel cell could be similarly generated even when left at room temperature for 48 hours.

Claims

請求の範囲 The scope of the claims
[1] 液体燃料成分を固定化した燃料収納部と、  [1] A fuel storage unit in which a liquid fuel component is fixed;
この燃料収納部の燃料を流動させる流動手段とを備え、  Fluid means for fluidizing the fuel in the fuel storage section,
前記流動手段により液体燃料成分を流動させて、液体燃料成分を燃料電池に供 給可能としたことを特徴とする燃料電池用燃料供給装置。  A fuel supply device for a fuel cell, characterized in that a liquid fuel component is caused to flow by the flow means so that the liquid fuel component can be supplied to the fuel cell.
[2] 前記燃料収納部は、水と接触することによって燃料電池用燃料が放出する燃料電 池用燃料組成物を収納したものであり、  [2] The fuel storage portion stores a fuel composition for a fuel cell that is released by fuel cell fuel upon contact with water.
前記流動手段が、水分供給装置であり、  The flow means is a moisture supply device;
前記水分供給装置から前記燃料収納部に水を供給することにより、前記燃料電池 用燃料の水溶液が作成され、その水溶液状の燃料を燃料電池に供給可能としたこと を特徴とする請求項 1記載の燃料電池用燃料供給装置。  2. The aqueous solution of fuel for the fuel cell is created by supplying water from the moisture supply device to the fuel storage unit, and the aqueous fuel can be supplied to the fuel cell. Fuel cell fuel supply device.
[3] 前記燃料収納部は、その容積が増減可能となっていて、該燃料収納部に燃料電池 用燃料を収容したマイクロカプセルを充填し、 [3] The volume of the fuel storage section can be increased or decreased, and the fuel storage section is filled with microcapsules containing fuel for a fuel cell,
前記流動手段は、該燃料収納部の容積を変更する押圧体であり、  The flow means is a pressing body that changes the volume of the fuel storage portion,
該押圧体により燃料収納部の容積を減少させると、マイクロカプセルが破損して燃 料電池用燃料を放出して燃料電池用燃料を燃料電池に供給可能としたことを特徴と する請求項 1記載の燃料電池用燃料供給装置。  2. The fuel cell according to claim 1, wherein when the volume of the fuel storage portion is reduced by the pressing body, the microcapsule is broken to discharge the fuel cell fuel so that the fuel cell fuel can be supplied to the fuel cell. Fuel cell fuel supply device.
[4] 前記燃料収納部は、その容積が増減可能となっていて、該燃料収納部に水と接触 することによって燃料電池用燃料が放出する燃料電池用燃料組成物と、水を収容し たマイクロカプセルとが充填されており、 [4] The fuel storage portion can be increased or decreased in volume, and contains a fuel composition for a fuel cell that releases fuel for the fuel cell by contacting the fuel storage portion with water, and water. Filled with microcapsules,
前記流動手段が、該燃料収納部の容積を変更する押圧体であり、  The flow means is a pressing body that changes the volume of the fuel storage portion,
該押圧体により、燃料収納部の容積を減少させると、マイクロカプセルが破損して 水が漏洩し、前記燃料電池用燃料の水溶液が作成され、その水溶液状の燃料を燃 料電池に供給可能としたことを特徴とする請求項 1記載の燃料電池用燃料供給装置  When the volume of the fuel storage portion is reduced by the pressing body, the microcapsule is broken and water leaks, an aqueous solution of the fuel cell fuel is created, and the aqueous fuel can be supplied to the fuel cell. The fuel supply device for a fuel cell according to claim 1, wherein
[5] 前記燃料収納部に液体燃料吸収体を有することを特徴とする請求項 1〜4のいず れかに記載の燃料電池用燃料供給装置。 [5] The fuel supply device for a fuel cell according to any one of [1] to [4], wherein the fuel storage portion includes a liquid fuel absorber.
[6] 前記該燃料電池用燃料が、アルコール類、エーテル類、炭化水素類、及びァセタ ール類力 なる群より選ばれる 1種又は 2種以上であることを特徴とする請求項 1〜5 の!、ずれかに記載の燃料電池用燃料供給装置。 [6] The fuel for the fuel cell includes alcohols, ethers, hydrocarbons, and acetas. The fuel supply device for a fuel cell according to any one of claims 1 to 5, wherein the fuel supply device is one or more selected from the group consisting of
PCT/JP2006/302546 2005-04-20 2006-02-14 Fuel supply device for fuel cell WO2006114929A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-122063 2005-04-20
JP2005122063A JP2006302639A (en) 2005-04-20 2005-04-20 Fuel supply device for fuel cell

Publications (1)

Publication Number Publication Date
WO2006114929A1 true WO2006114929A1 (en) 2006-11-02

Family

ID=37214560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302546 WO2006114929A1 (en) 2005-04-20 2006-02-14 Fuel supply device for fuel cell

Country Status (3)

Country Link
JP (1) JP2006302639A (en)
TW (1) TWI374570B (en)
WO (1) WO2006114929A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008097987A (en) * 2006-10-11 2008-04-24 Kurita Water Ind Ltd Fuel cell, fuel cell system, and portable electronic equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185184A (en) * 1999-12-28 2001-07-06 Toshiba Corp Fuel cell and its fuel tank
JP2004119276A (en) * 2002-09-27 2004-04-15 Kurita Water Ind Ltd Fuel cell power generation system
JP2004127659A (en) * 2002-10-01 2004-04-22 Sanyo Chem Ind Ltd Fuel storage object for fuel cell, and fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185184A (en) * 1999-12-28 2001-07-06 Toshiba Corp Fuel cell and its fuel tank
JP2004119276A (en) * 2002-09-27 2004-04-15 Kurita Water Ind Ltd Fuel cell power generation system
JP2004127659A (en) * 2002-10-01 2004-04-22 Sanyo Chem Ind Ltd Fuel storage object for fuel cell, and fuel cell

Also Published As

Publication number Publication date
TWI374570B (en) 2012-10-11
JP2006302639A (en) 2006-11-02
TW200638594A (en) 2006-11-01

Similar Documents

Publication Publication Date Title
US7749625B2 (en) Fuel for fuel cell, fuel cell and application thereof
JP3862166B2 (en) Fuel storage for fuel cell and fuel cell
US7255947B2 (en) Fuel substance and associated cartridge for fuel cell
WO2006120784A1 (en) Fuel battery system
WO2006009100A1 (en) Fuel cell device
EP1487041A1 (en) Electrolyte film and solid polymer fuel cell using the same
JP4867126B2 (en) Proton exchanger, proton exchange membrane, and fuel cell using the same
WO2006126313A1 (en) Fuel cell system
WO2006114929A1 (en) Fuel supply device for fuel cell
JP2006156198A (en) Supply device of fuel for fuel cell, supply method of fuel, and fuel cell system
JP2005203335A (en) Fuel for fuel cell and its feeding method
WO2008047632A1 (en) Direct methanol-type fuel battery system and portable electronic equipment
JP2007087646A (en) Fuel cell system
JP5083487B2 (en) Removal method of harmful substances generated from direct methanol fuel cell
JP2007122895A (en) Fuel cell system
JP2006040629A (en) Fuel discharge method from fuel composition for fuel cell
JP4924862B2 (en) Fuel cell separator and manufacturing method thereof
US20110217606A1 (en) Hydrogen generation device and fuel cell
JP2006156197A (en) Device for and method of supplying fuel for fuel cell
KR101163243B1 (en) Fuel for fuel cell, fuel cell and application thereof
JP2006079838A (en) Fuel for fuel cell and fuel cell using it
JP2005327626A (en) Fuel cell power generation system
JP4806905B2 (en) Method for detecting abundance of fuel substance in fuel composition for fuel cell
JP2008034138A (en) Direct methanol type fuel cell and methanol concentration adjusting method
JP2005327624A (en) Fuel discharge system for fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06713687

Country of ref document: EP

Kind code of ref document: A1