WO2006114368A1 - Verfahren und vorrichtung zur geräuschunterdrückung - Google Patents

Verfahren und vorrichtung zur geräuschunterdrückung Download PDF

Info

Publication number
WO2006114368A1
WO2006114368A1 PCT/EP2006/061537 EP2006061537W WO2006114368A1 WO 2006114368 A1 WO2006114368 A1 WO 2006114368A1 EP 2006061537 W EP2006061537 W EP 2006061537W WO 2006114368 A1 WO2006114368 A1 WO 2006114368A1
Authority
WO
WIPO (PCT)
Prior art keywords
celp
tdac
decoded signal
env
contribution
Prior art date
Application number
PCT/EP2006/061537
Other languages
English (en)
French (fr)
Inventor
Martin Gartner
Stefan Schandl
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102005019863A external-priority patent/DE102005019863A1/de
Priority claimed from DE200510032079 external-priority patent/DE102005032079A1/de
Priority to JP2008508189A priority Critical patent/JP4819881B2/ja
Priority to US11/632,525 priority patent/US8612236B2/en
Priority to EP06725716A priority patent/EP1869671B1/de
Priority to CA2574468A priority patent/CA2574468C/en
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to CN2006800005032A priority patent/CN1993734B/zh
Priority to PL06725716T priority patent/PL1869671T3/pl
Priority to AT06725716T priority patent/ATE435481T1/de
Priority to DE502006004136T priority patent/DE502006004136D1/de
Priority to DK06725716T priority patent/DK1869671T3/da
Publication of WO2006114368A1 publication Critical patent/WO2006114368A1/de

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/022Blocking, i.e. grouping of samples in time; Choice of analysis windows; Overlap factoring
    • G10L19/025Detection of transients or attacks for time/frequency resolution switching
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/08Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters
    • G10L19/12Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters the excitation function being a code excitation, e.g. in code excited linear prediction [CELP] vocoders
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/16Vocoder architecture
    • G10L19/18Vocoders using multiple modes
    • G10L19/24Variable rate codecs, e.g. for generating different qualities using a scalable representation such as hierarchical encoding or layered encoding
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0316Speech enhancement, e.g. noise reduction or echo cancellation by changing the amplitude
    • G10L21/0364Speech enhancement, e.g. noise reduction or echo cancellation by changing the amplitude for improving intelligibility

Definitions

  • the invention relates to a method for decoding a
  • the invention further relates to a correspondingly configured device for decoding.
  • CELP Code Excited Linear Prediction
  • CELP works in the time domain and is based on an excitation model for a variable filter. In this case, the speech signal is represented both by filter parameters and by parameters which describe the excitation signal.
  • the corresponding decoder is also used, which can decrypt or decode the coded data.
  • Corresponding communication devices have such a so-called codec in order to be able to send and receive data, which is necessary for a communication.
  • perceptual codecs coder / decoder
  • codec coder / decoder
  • Scalable codecs are codecs that initially produce excellent audio quality with a relatively high bit rate of the encoded data stream. This results in relatively long, periodically transmitted packets.
  • a packet is a plurality of data that accumulate in a time interval and are transmitted together in that packet. For packets, often important data is transmitted first and less important data is subsequently transmitted. With these long packets, however, it is possible to shorten these packets by removing part of the data, in particular by truncating the last transmitted part of the packet. This goes hand in hand with a deterioration in quality.
  • scalable codecs may want to work at low bit rates with CELP codecs and higher bit rates with transform codecs. This has led to the development of hybrid CELP / transform codecs which encode a good quality base signal according to the CELP method and in addition generate an additional signal according to the transform codec method, which is used to generate the baseline signal. signal is improved. This then leads to the desired excellent quality.
  • a disadvantage of using these transform codecs is that a so-called "pre-echo effect" occurs, which is a noise that is distributed uniformly over the entire block length of a transform coder block Data that is coded together
  • a typical block length is 40 msec
  • the noise of the pre-echo effect is caused by quantization errors of transmitted spectral components
  • the level of this noise is everywhere below the level of the useful signal
  • a well-known example of this is the signal course when rattling a Castanette.
  • the associated energy envelope is determined from the two decoded signal contributions.
  • energy envelope is meant in particular the energy curve of a signal over time.
  • a key figure is formed, for example, a ratio.
  • This figure again serves to derive a gain factor.
  • This method has particular advantages when using energy, e.g. in the coding method, which leads to the first decoded signal contribution, is detected more reliably. In that case, a deviation can be detected by the characteristic number or the amplification factor.
  • the second decoded signal contribution can be multiplied by the gain factor.
  • the abovementioned deviation can be corrected.
  • All signals can be subdivided into time segments, wherein in particular the time segments which are used for the first decoded signal contribution can be shorter than those for the second one. Thus, due to the higher time resolution, energy deviations in the second signal contribution can be better corrected.
  • the first signal contribution can come from a CELP decoder which decodes a CELP coded signal, the second from a transform decoder which decodes a transform coded signal.
  • this transform-coded signal can also contain the first CELP-decoded signal contribution, which was transformed after the decoding, added to the transform-coded signal transmitted by the transmitter (ie already in the frequency domain), and then in the transform decoder as a contribution to the second signal contribution is decoded.
  • a summation of the transmitted CELP-coded signal and the transmitted transform-coded signal can also take place in the time domain.
  • the amplification factor may in particular be equal to the characteristic number. Then, when a suitable ratio is formed, a corresponding weakening of the second one can be decoded
  • the first decoder may be based on the CELP technology or / and the second coder may be a transform decoder. This results in a particularly effective noise reduction at the same time excellent quality of the decoded signal.
  • the change of the received total signal on the decoder side can be made in particular only if certain criteria are present.
  • changing the received total signal on the decoder side only occurs when the signal level change exceeds a certain threshold. This allows a particularly effective pre-echo reduction, since the pre-echo effect - as already explained - mainly occurs with level changes, since then the pre-echo noise is above the signal level.
  • this selective modification does not unnecessarily dispense with the quality improvement by the second coder.
  • a method in which, based on the method explained, the decoded signal or its first and second decoded signal contributions are treated separately according to frequency ranges.
  • This has the following advantage.
  • the desired energy for these frequency bands is known for a plurality of frequency bands, namely from the energy of the individual first decoded signal contributions separated by frequency ranges, for example CELP signals.
  • the second decoded signal contribution now makes it possible to provide an add-on signal (additional contribution), which, however, can deviate considerably in terms of its energy. Particularly problematic is when the energy of the second decoded signal contribution is significantly too high, e.g. due to pre-echo effects.
  • the method now introduces for each individually treated frequency band a limitation of the energy (or the level) of the second signal contribution as a function of the energy of the first signal contribution. This method is the more effective, the more frequency bands are treated separately in this way.
  • Figure 1 is an illustration of the essential components on an encoder side and a decoder side for explaining the exemplary sequence of a coding / decoding process.
  • Figure 2 is a schematic representation of a communication arrangement for transmitting a coded signal between communication devices via a communication network
  • FIG. 3 shows a decoding device or a noise suppression device for explaining the reduction of pre-echoes with the aid of gain adaptation, which is based on a CELP signal;
  • FIG. 4 shows a further embodiment for level matching or for reducing pre-echoes.
  • an analogue signal S to be transmitted to a receiver is preprocessed or preprocessed for the coding by means of a preprocessing device PP, for example by being digitized. Furthermore, a decomposition of the signal into time segments or frames in a subdivision unit F takes place. A signal prepared in this way is supplied to a coding unit COD.
  • the coding unit COD comprises a hybrid coder comprising a first coder, a CELP coder CODI and a second coder, a transform coder COD2.
  • the CELP coder CODI comprises a plurality of CELP coders COD1_A, CODI B, CODI C, which operate in different frequency ranges.
  • the CELP coder CODI delivers a basic contribution SG to the encoded total signal S_GES.
  • the transform coder COD2 provides an additional contribution SZ to the encoded total signal S_GES.
  • the coded total signal S_GES is transmitted by means of a communication device KC on the coder side C to a communication device KD on a decoder side D ü.
  • a processing for example, a splitting of the coded total signal into the contributions S_G and S_Z
  • a processing device PROC takes place, wherein subsequently the processed data or the processed signal of a decoding device DEC for subsequent decoding DEC are transmitted (see also Figures 3 and 4).
  • the decoding is followed by a noise reduction in a noise reduction device NR, which is shown in greater detail in FIG.
  • FIG. 2 shows a first communication device COM1 (representing, for example, the components on the coder side C of FIG. 1), which has a transmitting and receiving unit ANT1 (for example corresponding to the communication device KC) for transmitting and / or receiving data, as well as a computing unit CPU1 which is set up for the realization of the components on the encoder side C or for carrying out the coding method (processing on the encoder side C) shown in FIG.
  • the transmission of data by means of the transmitting / receiving unit ANTl via a communication network CN (which, for example, depending on the communication devices to be used as the Internet, a telephone network or mobile network can be set up).
  • a communication network CN which, for example, depending on the communication devices to be used as the Internet, a telephone network or mobile network can be set up).
  • Reception is carried out by a second communication device COM2 (for example, representing the components on the right side of FIG. 1), which in turn has a transmitting and receiving unit ANT2 (for example corresponding to the communication device KB), and a computing unit CPU2 which is used to implement the Components on the decoder side D or for performing a decoding method (processing on the decoder side D) according to FIG 1 is set up.
  • a second communication device COM2 for example, representing the components on the right side of FIG. 1
  • ANT2 for example corresponding to the communication device KB
  • CPU2 which is used to implement the Components on the decoder side D or for performing a decoding method (processing on the decoder side D) according to FIG 1 is set up.
  • Examples of possible implementations of the communication devices COM1 and COM2 in which this method can be used are IP telephones, voice gateways or mobile telephones.
  • a CELP coded signal S_COD, CELP (corresponding to the signal S_G) is sent by means of a full-band CELP decoder
  • the decoded signal S_CELP is forwarded, on the one hand, to a (first) energy envelope determination unit GE1 for determining the associated envelope ENV CELP, and, on the other hand, to a TDAC (Time Domain Aliasing Cancellation) encoder COD_TDAC.
  • TDAC encoding is an example of transform coding.
  • the coded signal S_COD, CELP, TDAC is fed together with the receiver-side derived transform coded signal S_COD, TDAC (corresponding to the signal S_Z) to a transform decoder DEC TDAC to generate a decoded signal S_TDAC. Also from this decoded signal S_TDAC the associated energy envelope ENV_TDAC is likewise stored in a (second) energy envelope determination unit GE2. Right.
  • a ratio determination unit D the ratio R of the energy envelopes to each other as a measure is determined in portions.
  • a condition-determining unit BFE it is determined whether the ratio R has a fixed minimum distance of 1 (1: both energy envelopes are equal), ie that the levels of both signals are the same or at least deviate from each other by only a predetermined percentage.
  • the energy or the level of this signal contribution can be moved to the more reliable value of the CELP-decoded signal S_CELP, so that the final signal S_out is noise-reduced.
  • FIG. 4 is intended to explain a further embodiment for reducing the pre-echo effect.
  • CELP codec there are multiple (CELP or other) codecs separated by frequency ranges.
  • the embodiment shown in FIG. 4 largely corresponds to the embodiment shown in FIG. 3 and is an extension in that the method shown in FIG. 3 is not applied to the overall signals of CELP (or other) decoder and transform decoder, but the method is separated is applied according to frequency ranges. That is, there is first a division of the total signal or of the individual signal contributions into frequency ranges, wherein the method of FIG. 3 can then be applied to the individual signal contributions per frequency range.
  • the desired energy for these frequency bands is known for several frequency bands, namely from the energy of the individual CELP signals separated according to frequency ranges.
  • the Transform Decoder now provides an add-on signal (additional contribution), which, however, can differ considerably in its energy.
  • the method now introduces a limitation of the Transformcodec energy depending on the CELP energy for each individually treated frequency band. This method is the more effective, the more frequency bands are treated separately in this way.
  • the total signal consists of a 2000 Hz sound, which comes entirely from the CELP codec portion.
  • the Transformcodec now provides an interference signal with a frequency of 6000 Hz; the energy of the interfering signal is 10% of the energy of the 2000 Hz tone.
  • the criterion for limiting the Transformcodec share is that this max. the same size as the CELP share may be.
  • Case 1 No splitting is made after frequency bands (first embodiment): Then the 6000 Hz interference signal is not suppressed since it has only 10% of the energy of the 2000 Hz tone from the CELP codec.
  • Case 2 The frequency bands A: 0 - 4000 Hz and B: 4000 Hz - 8000 Hz are treated separately (further embodiment): In this case, the interference signal is completely suppressed because in the upper frequency band, the CELP component is zero, and thus also the Transformcodecsignal is limited to the value zero.
  • FIG. 4 shows (corresponding to FIG. 3) again a decoding device DEC and a noise reduction device NR with the essential components for a schematic representation of the sequence of a level adaptation or pre-echo reduction.
  • DEC decoding device
  • NR noise reduction device
  • a CELP coded signal S_COD, CELP (corresponding to the signal contribution SG) is decoded by means of a whole-band CELP decoder DEC_GES, CELP '.
  • the total band CELP decoder comprises two decoding devices, a first decoding device DEC_FB_A for decoding the signal S COD, CELP in a first frequency band A and a second decoding device DEC_FB_B for decoding the signal S_COD, CELP in a second frequency band B.
  • a first decoded signal S CELP A is passed to a (first) energy envelope curve determination unit GE1_A for determining the associated envelope ENV CELP A, while a second decoded signal S_CELP_B is applied to a (second) energy envelope curve - Determination unit GEl B is passed to determine the associated envelope ENV_CELP_B.
  • a receiver-side transformed transform signal S COD, TDAC (corresponding to the signal S Z) is passed to a transform decoder DEC_TDAC to generate a decoded signal S TDAC, which in turn is applied to a frequency band splitter (frequency band splitter) FBS.
  • the division into frequency bands can optionally also take place in the frequency domain, before the inverse transformation into the time domain. This eliminates in particular the delay associated with a frequency band splitter operating in the time domain (high, low, or bandpass filter).
  • the associated energy envelope ENV_TDAC_A or ENV_TDAC_B is also determined from these decoded frequency band-dependent signals S TDAC A and S_TDAC_B in a (third) energy envelope determination unit GE2 A or a (fourth) energy envelope determination unit GE2_B.
  • a gain factor (or attenuation factor, since the gain is negative) G_A is determined for the frequency band A on the basis of the energy envelopes ENV_CELP_A and ENV TDAC A, while in a second gain determination unit BD B for the frequency band B Energy Envelopes ENV_CELP_B and ENV_TDAC_B a gain factor (damping factor) G_B is determined.
  • the determination of the respective amplification factor In accordance with the determination of FIG. 3 (compare components D, BFE), it can be done.
  • amplification factor G_A is multiplied by the signal S_TDAC_A and the amplification factor G_B is multiplied by the signal S TDAC B.
  • the multiplied (possibly attenuated) frequency band dependent signals are combined to produce a final noise reduced (total frequency) signal S_OUT '.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Quality & Reliability (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Noise Elimination (AREA)
  • Treating Waste Gases (AREA)
  • Reduction Or Emphasis Of Bandwidth Of Signals (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Filters And Equalizers (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

Verfahren zur Geräuschunterdrückung (S_OUT) bei einem decodierten Signal, welches sich aus einem ersten decodierten Signalbeitrag (S_CELP) und einem zweiten decodierten Signalbeitrag (S TDAC) zusammensetzt mit folgenden Schritten: Ermitteln einer ersten Energiehüllkurve (ENV_CELP) und einer zweiten Energiehüllkurve (ENV TDAC) des ersten Signalbeitrags (S_CELP) und des zweiten decodierten Signalbeitrags (S_TDAC); Bilden einer Kennzahl (R) in Abhängigkeit von einem Vergleich von erster und zweiter Energiehüllkurve (ENV_CELP, ENV_TDAC) ; Ableiten eines Verstärkungsfaktors (G) in Abhängigkeit von der Kennzahl (R) ; vorteilhafterweise Multiplizieren des zweiten decodierten Signalbeitrags mit dem Verstärkungsfaktor, was zur gewünschten Reduktion von Pre-Echo- und Post-Echo- Störgeräuschen führt.

Description

Beschreibung
Verfahren und Vorrichtung zur Geräuschunterdrückung
Die Erfindung betrifft ein Verfahren zur Decodierung eines
Signals, welches mittels eines Hybridcodierers codiert wurde. Die Erfindung betrifft ferner eine entsprechend ausgestaltete Vorrichtung zur Decodierung.
Zur Codierung von Audiosignalen haben sich unterschiedliche Verfahren als besonders effektiv herausgestellt. So hat sich beispielsweise zur qualitativ guten Codierung von Sprachsignalen, welche eine gute Qualität aufweisen, und bei gleichzeitig niedrigen Bitraten des codierten Datenstroms insbeson- dere die sogenannte CELP Technologie (Code Excited Linear Prediction) als günstig erwiesen. CELP arbeitet im Zeitbereich und basiert auf einem Anregungsmodell für ein variables Filter. Hierbei wird das Sprachsignal sowohl durch Filterparameter als auch durch Parameter, welche das Anregungssignal beschreiben, dargestellt.
Zumeist wird in Hinblick auf Codierer auch von dem entsprechenden Decodierer gesprochen, der die codierten Daten wieder entschlüsseln bzw. decodieren kann. Entsprechende Kommunika- tionsgeräte weisen einen solchen sogenannten Codec auf, um eben Daten versenden und empfangen zu können, was für eine Kommunikation erforderlich ist.
Für die Codierung von Musik- und Sprachsignalen, welche eine sehr hohe Qualität insbesondere auch bei höheren Bitraten des codierten Datenstroms aufweisen sollen, haben sich vor allem sogenannte perceptuelle Codecs (Codec = Codierer/Decodierer) durchgesetzt. Diese perceptuellen Codecs basieren auf einer Informationsreduktion im Frequenzbereich und sie nutzen Mas- kierungseffekte des menschlichen Hörsystems aus, d.h., dass beispielsweise bestimmte Frequenzen oder Änderungen, die der Mensch nicht wahrnehmen kann, auch nicht dargestellt werden. Dadurch wird die Komplexität des Coders oder Codecs gesenkt. Da diese Coder meist mit einer Transformierung des Zeitsignals in den Frequenzbereich arbeiten, wobei die Transformierung beispielsweise mittels MDCT (Modified Discrete Cosine Transformation) vorgenommen wird, werden diese oft auch als Transformcoder oder -codecs bezeichnet. Dieser Ausdruck wird im Rahmen der weiteren Anmeldung verwendet.
In letzter Zeit kommen zunehmend sogenannte skalierbare Codecs zum Einsatz. Skalierbare Codecs sind solche Codecs, die zunächst eine exzellente Audioqualität bei relativ hoher Bit- rate des codierten Datenstroms erzeugen. Damit ergeben sich relativ lange, periodisch zu übertragende Pakete.
Ein Paket ist eine Mehrzahl Daten, welche in einem Zeitintervall anfallen, und zusammen eben in diesem Paket übertragen werden. Bei Paketen werden oftmals wichtige Daten zuerst und weniger wichtige Daten nachfolgend übertragen. Bei diesen langen Paketen besteht jedoch die Möglichkeit, diese Pakete zu kürzen, indem ein Teil der Daten entfernt wird, insbesondere indem der zeitlich zuletzt übertragene Teil des Paketes abgeschnitten wird. Damit geht natürlich eine Verschlechterung der Qualität einher.
Wegen der zuvor genannten Eigenschaften bietet es sich für skalierbare Codecs an, bei niedrigen Bitraten mit CELP Codecs zu arbeiten und bei höheren Bitraten mit Transformcodecs. Dies hat zur Entwicklung von hybriden CELP/Transformcodecs geführt, die ein Basissignal mit guter Qualität nach dem CELP Verfahren codieren und zusätzlich dazu ein Zusatzsignal nach dem Transformcodec-Verfahren generieren, mit dem das Basis- signal verbessert wird. Dies führt dann zu der erwünschten exzellenten Qualität.
Nachteilig bei der Verwendung dieser Transformcodecs ist, dass ein sogenannter „Pre-Echo Effekt" auftritt. Dabei handelt es sich um ein Störgeräusch, das gleichmäßig über die gesamte Blocklänge eines Transform-Coder Blocks verteilt ist. Unter einem Block versteht man, eine Gesamtheit von Daten, welche gemeinsam codiert werden. Für Transformcodecs beträgt eine typische Blocklänge 40 msec. Das Störgeräusch des Pre- Echo Effekts entsteht durch Quantisierungsfehler von übertragenen spektralen Komponenten. Bei gleichmäßigem Signalpegel liegt der Pegel dieses Störgeräusches überall unter dem Pegel des Nutzsignals. Hat man allerdings ein Nutzsignal mit einem Null-Pegel gefolgt von einem plötzlichen hohen Pegel, so ist dieses Störgeräusch vor dem Einsetzen des hohen Pegels deutlich zu hören. In der Literatur ist ein bekanntes Beispiel hierfür der Signalverlauf beim Klappern einer Castanette.
Zur Reduktion dieses Effekts werden bereits verschiedene Verfahren angewandt. Diese arbeiten aber alle mit der Übertragung von Zusatzinformationen, was wiederum das Coderdesign sehr komplex gestaltet oder erzwingt, dass die Coder mit vorübergehend erhöhten Bitraten arbeiten müssen.
Ausgehend von diesem Stand der Technik ist es Aufgabe der vorliegenden Erfindung, eine einfache Möglichkeit zu schaffen, eine Störgeräuschreduktion bei mittels eines hybriden Coders codierten Signalen herbeizuführen, bei der keine Zu- satzinformation benötigt wird.
Diese Aufgabe wird durch den Gegenstand der unabhängigen Ansprüche gelöst. Vorteilhafte Weiterbildungen sind Gegenstand der abhängigen Ansprüche. Für diese Störgeräuschreduktion bei einem decodierten Signal, das sich aus einem ersten, z.B. von einem CELP Decodierer stammenden, und einem zweiten, z.B. von einem Transform- Decodierer stammenden Signal zusammensetzt, werden folgende Schritte durchgeführt:
Aus den beiden decodierten Signalbeiträgen wird jeweils die zugehörige Energiehüllkurve ermittelt. Unter Energiehüllkurve versteht man insbesondere den Energieverlauf eines Signals gegenüber der Zeit.
Aus einem Vergleich beider Hüllkurven wird eine Kennzahl gebildet, beispielsweise ein Verhältnis.
Diese Kennzahl dient wiederum zum Ableiten eines Verstärkungsfaktors .
Dieses Verfahren weist insbesondere Vorteile auf, wenn Ener- gie z.B. bei dem Codierverfahren, welches zum ersten decodierten Signalbeitrag führt, zuverlässiger erkannt wird. Dann kann nämlich durch die Kennzahl oder den Verstärkungsfaktor eine Abweichung erkannt werden.
Insbesondere kann der zweite decodierte Signalbeitrag mit dem Verstärkungsfaktor multipliziert werden. Dadurch kann die o- ben erwähnte Abweichung korrigiert werden.
Sämtliche Signale können in Zeitabschnitte unterteilt sein, wobei insbesondere die Zeitabschnitte, welche für den ersten decodierten Signalbeitrag verwendet werden, kürzer sein können als diejenigen für den zweiten. Damit können aufgrund der höheren Zeitauflösung Energieabweichungen im zweiten Signalbeitrag besser korrigiert werden.
Der erste Signalbeitrag kann aus einem CELP Decodierer stam- men, der ein CELP codiertes Signal decodiert, der zweite aus einem Transformdecodierer, der ein transformcodiertes Signal decodiert. Dieses transformcodierte Signal kann insbesondere auch den ersten, CELP-decodierten Signalbeitrag enthalten, der nach der Decodierung transform-codiert wurde, zum vom Sender übertragenen transformcodierten Signal addiert wurde (also schon im Frequenzbereich) , und dann im Transformdeco- dierer als Beitrag zum zweiten Signalbeitrag decodiert wird.
Alternativ hierzu kann eine Summenbildung aus dem übertagenen CELP-codierten Signal und dem übertragenen transformcodier- ten-Signal auch im Zeitbereich erfolgen.
Der Verstärkungsfaktor kann insbesondere gleich der Kennzahl sein. Dann kann sich bei Bildung eines geeigneten Verhältnis- ses einen entsprechende Schwächung des zweiten decodierten
Signalbeitrages ergeben, wenn dieses vornehmlich das Pre-Echo noise enthält.
Insbesondere kann es sich bei dem ersten Decoder um einen auf der CELP-Technologie basierenden, oder/und bei dem zweiten Coder um einen Transformdecoder handeln. Damit ergibt sich eine besonders effektive Geräuschreduktion bei gleichzeitig exzellenter Qualität des decodierten Signals.
Die Veränderung des empfangenen Gesamtsignals auf Decoderseite kann insbesondere nur dann vorgenommen werden, wenn bestimmte Kriterien vorliegen. Insbesondere ist es vorgesehen, dass das Verändern des empfangenen Gesamtsignals auf Decoderseite nur erfolgt, wenn die Signalpegeländerung eine bestimmte Schwelle übersteigt. Dies ermöglicht eine besonders effektive Pre-Echo-Reduktion, da der Pre-Echo-Effekt - wie bereits dargelegt- hauptsächlich bei Pegeländerungen auftritt, da dann das Pre-Echo Geräusch überhalb des Signalpegels liegt. Andererseits wird durch dieses selektive Verändern nicht unnötigerweise auf die Qualitätsverbesserung durch den zweiten Coder verzichtet.
Gemäß einem weiteren Aspekt der Erfindung wird ein Verfahren geschaffen, bei dem aufbauend auf dem erläuterten Verfahren das decodierte Signal bzw. dessen erste und zweite decodierte Signalbeiträge nach Frequenzbereichen getrennt behandelt wer- den. Dies hat folgenden Vorteil. Beim Decodieren ist für mehrere Frequenzbänder die Sollenergie für diese Frequenzbändern bekannt, nämlich aus der Energie der einzelnen nach Frequenzbereichen getrennten ersten decodierten Signalbeiträge, beispielsweise CELP-Signale . Durch den zweiten decodierten Sig- nalbeitrag kann nun ein Add-on Signal (Zusatzbeitrag) bereitgestellt werden, welches jedoch in seiner Energie erheblich abweichen kann. Problematisch ist vor allem, wenn die Energie des zweiten decodierten Signalbeitrags erheblich zu hoch ist, z.B. aufgrund von Pre-Echo-Effekten. Das Verfahren führt nun für jedes einzeln behandelte Frequenzband eine Begrenzung der Energie (bzw. des Pegels) des zweiten Signalbeitrags abhängig von der Energie des ersten Signalbeitrags ein. Dieses Verfahren ist umso effektiver, je mehr Frequenzbänder auf diese Weise getrennt behandelt werden.
Weitere Vorteile der Erfindung werden anhand beispielhafter Ausführungsformen dargestellt.
Es zeigen: Figur 1 eine Darstellung der wesentlichen Komponenten auf einer Codiererseite und einer Decodiererseite zur Erläuterung des beispielhaften Ablaufs eines Codierungs/Decodierungsvorganges;
Figur 2 eine schematische Darstellung einer Kommunikationsanordnung zur Übertragung eines codierten Signals zwischen Kommunikationsgeräten über ein Kommunika- tionsnetz;
Figur 3 eine Decodiereinrichtung bzw. eine Geräuschunterdrückungseinrichtung zur Erläuterung der Reduktion von Pre-Echos mit Hilfe von Gain-Adaption, welche auf einem CELP Signal basiert;
Figur 4 eine weitere Ausführungsform zur Pegelanpassung bzw. zur Reduktion von Pre-Echos.
In FIG 1 ist der schematische Ablauf eines Codierungs- und
Decodierungsvorgang anhand einer Ausführungsführungsform gezeigt. Auf einer Codiererseite C wird ein analoges an einen Empfänger zu übertragendes Signal S mittels einer Vorverarbeitungseinrichtung PP für die Codierung vorverarbeitet bzw. vorbereitet, beispielsweise indem es digitalisiert wird. Es erfolgt weiterhin eine Zerlegung des Signals in Zeitabschnitte bzw. Rahmen in einer Unterteilungseinheit F. Ein derart vorbereitetes Signal wird einer Codierungseinheit COD zugeführt. Die Codierungseinheit COD weist einen hybriden Coder auf, der einen ersten Coder, einen CELP-Coder CODI und einen zweiten Coder, einen Transformcoder COD2 umfasst. Der CELP- Coder CODI umfasst eine Mehrzahl von CELP-Codern COD1_A, CODI B, CODI C, welche in unterschiedlichen Frequenzbereichen arbeiten. Durch diese Aufteilung in unterschiedliche Fre- quenzbereiche kann eine besonders akkurate Codierung gewährleistet werden. Ferner unterstützt diese Aufteilung in unterschiedliche Frequenzbereiche sehr gut das Konzept eines skalierbaren Codecs, da je nach gewünschter Skalierung nur ei- ner, mehrere oder alle Frequenzbereiche übertragen werden können. Der CELP-Coder CODI liefert einen Grundbeitrag S G zum codierten Gesamtsignal S_GES . Der Transformcoder COD2 liefert einen Zusatzbeitrag S Z zum codierten Gesamtsignal S_GES . Das codierte Gesamtsignal S_GES wird mittels einer Kommunikationsvorrichtung KC auf der Codiererseite C an eine Kommunikationsvorrichtung KD auf einer Decodiererseite D ü- bertragen. Hier erfolgt ggf. eine Verarbeitung (beispielsweise eine Aufspaltung des codierten Gesamtsignals in die Beiträge S_G und S_Z) der Daten bzw. des empfangenen codierten Gesamtsignals S_GES in einer Verarbeitungseinrichtung PROC, wobei anschließend die verarbeiteten Daten bzw. das verarbeitete Signal einer Decodiereinrichtung DEC zur nachfolgenden Decodierung DEC übertragen werden (vgl . dazu auch die Figuren 3 und 4) . An die Decodierung schließt sich eine Geräuschre- duktion in einer Geräuschreduktionseinrichtung NR an, die in Figur 3 in größerem Detail dargestellt ist.
In FIG 2 ist ein erstes Kommunikationsgerät COMl (beispielsweise repräsentierend die Komponenten auf der Codiererseite C von Figur 1) dargestellt, welches eine Sende- und Empfangseinheit ANTl (beispielsweise entsprechend der Kommunikationsvorrichtung KC) zum Übertragen oder/und Empfangen von Daten, sowie eine Recheneinheit CPUl aufweist, die zur Realisierung der Komponenten auf der Codiererseite C bzw. zur Durchführung des in FIG 1 dargestellten Codierverfahrens (Verarbeitung auf der Codiererseite C) eingerichtet ist. Die Übertragung von Daten erfolgt mittels der Sende/Empfangseinheit ANTl über ein Kommunikationsnetz CN (das beispielsweise je nach zu verwendenden Kommunikationsgeräten als Internet, ein Telefonnetz bzw. Mobilfunknetz eingerichtet sein kann) . Der Empfang erfolgt durch ein zweites Kommunikationsgerät COM2 (beispielsweise repräsentierend die Komponenten auf der rechten Seite der Figur 1), welches wiederum eine Sende- und Empfangsein- heit ANT2 (beispielsweise entsprechend der Kommunikationsvorrichtung KB) , sowie eine Recheneinheit CPU2 aufweist, welche zur Realisierung der Komponenten auf der Decodiererseite D bzw. zur Durchführung eines Decodierverfahrens (Verarbeitung auf der Decodiererseite D) gemäß FIG 1 eingerichtet ist. Beispiele für mögliche Realisierungen der Kommunikationsgeräte COMl und COM2, in denen dieses Verfahren zur Anwendung kommen kann, sind IP-Telefone, Voice-Gateways oder Mobiltelefone .
Es sei nun auf Figur 3 verwiesen, in der die Decodierungsein- richtung DEC und die Geräuschreduktionseinrichtung NR mit den wesentlichen Komponenten zur schematischen Darstellung des Ablaufs einer Pre-Echo-Reduktion zu sehen ist. Ein CELP-codiertes Signal S_COD,CELP (entsprechend dem Signal S_G) wird mittels eines Gesamtband-CELP-Decodierers
DEC_GES,CELP decodiert. Das decodierte Signal S_CELP wird einerseits zu einer (ersten) Energiehüllkurvenbestimmungsein- heit GEl zur Bestimmung der zugehörigen Hüllkurve ENV CELP, anderseits zu einem TDAC (Time domain aliasing cancellati- on) Encoder COD_TDAC weitergeleitet. Bei der TDAC-Codierung handelt es sich um ein Beispiel für eine Transformcodierung.
Das codierte Signal S_COD, CELP, TDAC wird zusammen mit dem von Empfängerseite stammenden transformcodierten Signal S_COD,TDAC (entsprechend dem Signal S_Z) zu einem Transform- decodierer DEC TDAC geleitet, um ein decodiertes Signal S_TDAC zu erzeugen. Auch aus diesem decodierten Signal S_TDAC wird ebenfalls in einer (zweiten) Energiehüllkurvenbestim- mungseinheit GE2 die zugehörige Energiehüllkurve ENV_TDAC be- stimmt. In einer Verhältnisbestimmungseinheit D wird das Verhältnis R der Energiehüllkurven zueinander als Kennzahl zeitabschnittweise bestimmt. In einer Bedingungsfeststellungsein- heit BFE wird festgestellt, ob das Verhältnis R einen festge- legten Mindestabstand von 1 (1: beide Energiehüllkurven gleich) hat, d.h. dass die Pegel beider Signale gleich sind oder zumindest nur um einen vorgegebenen Prozentsatz voneinander abweichen.
Ergebnis ist dann ein Verstärkungsfaktor bzw. Dämpfungsfaktor G, der im gezeigten Fall gleich dem Verhältnis R (Kennzahl) ist, mit dem der transformdecodierte Signalbeitrag S TDAC in einer Multiplikationseinrichtung M multipliziert wird, um ein endgültiges störgeräuschreduziertes Signal S OUT zu erhalten. Genauer gesagt, wird beispielsweise davon ausgegangen, dass das Verhältnis R gebildet wird durch R = ENV_CELP / ENV_TDAC, und wurde festgelegt, dass dieses Verhältnis einen vorbestimmten Schwellenwert SW nicht unterschreiten darf, so wird bei unterschreiten des Schwellenwerts SW der transformdeco- dierte Signalbeitrag S_TDAC mit einem Verstärkungsfaktor G, beispielsweise G = R multipliziert, was zu einer Dämpfung des Signalbeitrags S_TDAC führt. Es ist ferner möglich, in dem Fall, in dem der Schwellenwert SW nicht unterschritten wird, dem Verstärkungsfaktor G den Wert "1" zuzuordnen, so dass bei einer Multiplikation des Signalbeitrags S TDAC, die dann in jedem Fall stattfinden kann, der Wert S_TDAC unverändert bleibt.
Somit kann im Fall einer Abweichung der Energie des trans- formdecodierten Signalbeitrags S_TDAC, wobei die Abweichung eben der genannte Pre-Echo-Effekt ist, die Energie bzw. der Pegel dieses Signalbeitrags zum zuverlässigeren Wert des CELP-decodierten Signals S_CELP bewegt werden, so dass das endgültige Signal S_out störgeräuschreduziert ist. Es sei nun auf Figur 4 verwiesen, anhand der eine weitere Ausführungsform zur Reduzierung des Pre-Echoeffekts erläutert werden soll.
Es ist möglich, dass anstelle nur eines CELP-codecs mehrere, nach Frequenzbereichen getrennte (CELP- oder andere) Codecs vorhanden sind. Die in Figur 4 gezeigte Ausführungsform entspricht größtenteils der in Figur 3 gezeigten Ausführungsform und stellt ein Erweiterung diesbezüglich dar, dass das in Figur 3 gezeigte Verfahren nicht auf die Gesamtsignale von CELP (oder anderen) -Decoder und Transformdecoder angewendet wird, sondern dass das Verfahren getrennt nach Frequenzbereichen angewendet wird. Das heißt, es findet zunächst eine Auftei- lung des Gesamtsignals bzw. der einzelnen Signalbeiträge nach Frequenzbereichen statt, wobei das Verfahren von Figur 3 dann pro Frequenzbereich auf die einzelnen Signalbeiträge angewendet werden kann.
Der Vorteil davon wird im Folgenden erläutert. Beim Decoder ist für mehrere Frequenzbänder die Sollenergie für diese Frequenzbänder bekannt, nämlich aus der Energie der einzelnen nach Frequenzbereichen getrennten CELP-Signale . Der Transformdecoder liefert nun ein Add-on Signal (Zusatzbeitrag) , welches jedoch in seiner Energie erheblich abweichen kann.
Problematisch ist vor allem, wenn die Energie des Signals aus dem Transformdecoder erheblich zu hoch ist, z.B. aufgrund von Pre-Echo-Effekten. Das Verfahren führt nun für jedes einzeln behandelte Frequenzband eine Begrenzung der Transformcodec- Energie abhängig von der CELP-Energie ein. Dieses Verfahren ist umso effektiver, je mehr Frequenzbänder auf diese Weise getrennt behandelt werden.
Dies wird anhand von folgendem Beispiel sofort deutlich: Das Gesamtsignal bestehe aus einem 2000 Hz Ton, welches gänzlich aus dem CELP codec Anteil kommt. Zusätzlich, aufgrund von Preecho Effekten liefert der Transformcodec nun noch ein Störsignal mit einer Frequenz von 6000 Hz; die Energie des Störsignals sei 10% der Energie des 2000 Hz Tons.
Das Kriterium zur Begrenzung des Transformcodec-Anteils sei, dass dieser max. gleich groß wie der CELP-Anteil sein darf. Fall 1 : Es wird kein Splitting nach Frequenzbändern gemacht (erste Ausführungsform) : Dann wird das 6000 Hz Störsignal nicht unterdrückt, da es nur 10% der Energie des 2000Hz Tons aus dem CELP Codec hat.
Fall 2: Die Frequenzbänder A: 0 - 4000 Hz und B: 4000 Hz - 8000 Hz werden getrennt behandelt (weitere Ausführungsform) : In diesem Fall wird das Störsignal komplett unterdrückt, da im oberen Frequenzband der CELP-Anteil Null ist, und somit auch das Transformcodecsignal auf den Wert Null begrenzt wird.
In Figur 4 ist nun (entsprechend zu Figur 3) wieder eine De- codierungseinrichtung DEC und eine Geräuschreduktionseinrichtung NR mit den wesentlichen Komponenten zur schematischen Darstellung des Ablaufs einer Pegelanpassung bzw. Pre-Echo- Reduktion zu sehen. Für die Erzeugung von codierten Signalen bzw. die Übertragung an einen Empfänger sei wieder auf die Figuren 1 oder 2 verwiesen.
Ein CELP-codiertes Signal S_COD,CELP (entsprechend dem Signalbeitrag S G) wird mittels eines Gesamtband-CELP- Decodierers DEC_GES, CELP' decodiert. Der Gesamtband-CELP- Decodierer umfasst dabei zwei Decodiereinrichtungen, eine erste Decodiereinrichtung DEC_FB_A zum Decodieren des Signals S COD, CELP in einem ersten Frequenzband A und eine zweite Decodiereinrichtung DEC_FB_B zum Decodieren des Signals S_COD,CELP in einem zweiten Frequenzband B. Ein erstes decodiertes Signal S CELP A wird zu einer (ersten) Energiehüll- kurvenbestimmungseinheit GE1_A zur Bestimmung der zugehörigen Hüllkurve ENV CELP A geleitet, während ein zweites decodier- tes Signal S_CELP_B zu einer (zweiten) Energiehüllkurvenbe- stimmungseinheit GEl B zur Bestimmung der zugehörigen Hüllkurve ENV_CELP_B geleitet wird.
Ein von der Empfängerseite stammendes transformcodiertes Sig- nal S COD, TDAC (entsprechend dem Signal S Z) wird zu einem Transformdecodierer DEC_TDAC geleitet, um ein decodiertes Signal S TDAC zu erzeugen, das wiederum einem Frequenzbandsplitter (Frequenzbandaufteiler) FBS zugeführt wird. Dieser teilt das Signal S_TDAC in zwei Signale, nämlich S_TDAC_A für das Frequenzband A und S_TDAC_B für das Frequenzband B auf. Die Aufteilung in Frequenzbänder kann optional auch im Frequenzbereich, vor der Rücktransformation in den Zeitbereich, erfolgen. Dadurch entfällt insbesondere die mit einem im Zeitbereich arbeitenden Frequenzbandsplitter (Hoch-, Tief-, oder Bandpassfilter) einhergehende Verzögerung. Auch aus diesen decodierten frequenzbandabhängigen Signalen S TDAC A und S_TDAC_B wird ebenfalls in einer (dritten) Energiehüllkurven- bestimmungseinheit GE2 A bzw. einer (vierten) Energiehüllkur- venbestimmungseinheit GE2_B die zugehörige Energiehüllkurve ENV_TDAC_A bzw. ENV_TDAC_B bestimmt.
In einer ersten Verstärkungsbestimmungseinheit BD A wird für das Frequenzband A anhand der Energiehüllkurven ENV_CELP_A und ENV TDAC A ein Verstärkungsfaktor (oder auch Dämpfungs- faktor, da die Verstärkung negativ ist) G_A bestimmt, während in einer zweiten Verstärkungsbestimmungseinheit BD B für das Frequenzband B anhand der Energiehüllkurven ENV_CELP_B und ENV_TDAC_B ein Verstärkungsfaktor (Dämpfungsfaktor) G_B bestimmt wird. Die Bestimmung der jeweiligen Verstärkungsfakto- ren kann entsprechend der Bestimmung von Figur 3 (vgl. Komponenten D, BFE) von statten gehen. Es kann dabei beispielsweise wieder ein jeweiliges Verhältnis (Kennzahl) R_A, R_B der Energiehüllkurven für ein jeweiliges Frequenzband A und B, nämlich R_A = ENV_CELP_A/ ENV_TDAC_A bzw. R_B = ENV_CELP_B/ ENV TDAC B gebildet werden, wobei für ein jeweiliges Frequenzband ein Schwellenwert SW_A bzw. SW_B festgelegt wird, bei dessen Unterschreiten ein jeweiliger Verstärkungsfaktor G_A (beispielsweise G_A = R_A) bzw. G_B (beispielsweise G_B = R B) erzeugt wird, der schließlich auf ein jeweiliges frequenzbandabhängiges Signal S_TDAC_A bzw. S_TDAC_B anzuwenden ist (um eine Dämpfung herbeizuführen) . Wird ein jeweiliger Schwellenwert nicht unterschritten kann ein jeweiliger Verstärkungsfaktor G_A bzw. G_B auf "1" festgelegt werden, so dass bei einer Multiplikation ein jeweiliges frequenzbandabhängiges Signal S_TDAC_A bzw. S_TDAC_B unverändert bleibt.
In einer ersten Multiplikationseinrichtung M A für das Frequenzband A wird schließlich der Verstärkungsfaktor G_A mit dem Signal S_TDAC_A und wird der Verstärkungsfaktor G_B mit dem Signal S TDAC B multipliziert. Schließlich werden die multiplizierten (eventuell gedämpften) frequenzbandabhängigen Signale zusammengeführt, um ein endgültiges störgeräuschreduziertes (Gesamtfrequenz-) Signal S_OUT ' zu erzielen.
Es sei bemerkt, dass obwohl im vorliegenden Beispiel lediglich eine Aufspaltung der decodierten Signalbeiträge S_CELP_A, S_CELP_B, S_TDAC_A und S_TDAC_B in zwei Frequenzbereiche A und B stattgefunden hat, eine Aufteilung auch in 3 oder mehr Frequenzbereiche möglich und vorteilhaft sein kann.

Claims

Patentansprüche
1. Verfahren zur Geräuschunterdrückung (S_OUT) bei einem decodierten Signal, welches sich aus einem ersten deco- dierten Signalbeitrag (S_CELP) und einem zweiten decodierten Signalbeitrag (S TDAC) zusammensetzt mit folgenden Schritten: a. Ermitteln einer ersten Energiehüllkurve (ENV CELP) und einer zweiten Energiehüllkurve (ENV_TDAC) des ersten Signalbeitrags (S_CELP) und des zweiten decodierten Signalbeitrags (S_TDAC) ; b. Bilden einer Kennzahl (R) in Abhängigkeit von einem Vergleich von erster und zweiter Energiehüllkurve
(ENV_CELP, ENV_TDAC) ; c. Ableiten eines Verstärkungsfaktors (G) in Abhängigkeit von der Kennzahl (R) .
2. Verfahren nach Anspruch 1 mit folgendem weiteren Schritt: d. Multiplizieren des zweiten decodierten Signalbeitrags (S TDAC) mit dem Verstärkungsfaktor (G) , wenn die Kennzahl (R) ein festgelegtes Kriterium (C) nicht erfüllt.
3. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die decodierte Signalbeiträge (S_TDAC, S_CELP) in
Zeitabschnitte unterteilt ist und die Schritte a) bis d) zeitabschnittweise erfolgen.
4. Verfahren nach Anspruch 3, bei dem die Länge der Zeitab- schnitte für den ersten und den zweiten decodierten Signalbeitrag (S_TDAC, S_CELP) unterschiedlich ist und die Schritte a) bis d) zeitabschnittweise für den kürzeren Zeitabschnitt erfolgen.
5. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der erste decodierte Signalbeitrag (S_CELP) durch Decodieren eines ersten Codierbeitrags (S_COD, CELP) aus einem ersten Decodierer (DEC GES, CELP) stammt und der zweite decodierte Signalbeitrag (S_TDAC) durch Decodieren eines zweiten Codierbeitrags (S_COD,TDAC, S_COD, CELP, TDAC) aus einem zweiten Decodierer (DEC_TDAC) stammt .
6. Verfahren nach Anspruch 5, bei dem der zweite Codierbeitrag (S_TDAC) den ersten Codierbeitrag (S_CELP) enthält.
7. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Kennzahl (R) durch das Bilden des Verhältnisses von erster und zweiter Energiehüllkurve (ENV_CELP, ENV_TDAC) gebildet wird.
8. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der Verstärkungsfaktor (G) gleich der Kennzahl (R) ist.
9. Verfahren nach einem der vorhergehenden Ansprüche, bei dem das erste decodierte Signal (S_CELP) durch Decodieren eines Signals (S_COD, CELP) gebildet wird, welches von einer Mehrzahl von ersten Codierern (CODI A, CODI B, COD_C) stammt, welche in unterschiedlichen Frequenzbereichen arbeiten.
10. Verfahren nach einem der vorhergehenden Ansprüche 5 oder 6, bei dem der erste Decodierer (DEC_GES_CELP) durch einen CELP-Decodierer gebildet wird.
11. Verfahren nach einem der vorhergehenden Ansprüche 5, 6 oder 10, bei dem der zweite Decodierer (DEC TDAC) durch einen Transform Decodierer gebildet wird.
12. Verfahren nach einem der vorhergehenden Ansprüche 5, 6, 10 oder 11, bei dem erster und zweiter Decodierer (DEC_TDAC, DEC_CELP) den gleichen Frequenzbereich umfassen.
13. Verfahren zur Geräuschunterdrückung bei einem einem Frequenzband zugeordneten decodierten Signal , welches sich aus einem jeweiligen ersten decodierten Signalbeitrag (S_CELP_A, S CELP B) und einem jeweiligen zweiten decodierten Signalbei- trag (S_TDAC_A, S_TDAC_B) für ein jeweiliges Teilfrequenzband des Frequenzbands zusammensetzt, mit folgenden Schritten: a. Ermitteln einer ersten Energiehüllkurve (ENV_CELP_A, ENV CELP B) des jeweiligen ersten decodierten Signalbeitrags und einer zweiten Energiehüllkurve (ENV_TDAC_A, ENV_TDAC_B) und des jeweiligen zweiten decodierten Signalbeitrags für ein jeweiliges Teilfrequenzband; b. Bilden einer jeweiligen Kennzahl (R A, R B) in Abhängigkeit von einem Vergleich von erster und zweiter Energiehüllkurve für ein jeweiliges Teilfrequenzband; c. Ableiten eines jeweiligen Verstärkungsfaktors (G_A,
G B) in Abhängigkeit von der jeweiligen Kennzahl für ein jeweiliges Teilfrequenzband.
14. Verfahren nach Anspruch 13 mit folgendem weiteren Schritt: d. Multiplizieren des zweiten decodierten Signalbeitrags (S_TDAC_A, S_TDAC_B) mit dem jeweiligen Verstärkungsfaktor (G_A, G_B) für ein jeweiliges Teilfrequenzband, wenn die jeweilige Kennzahl (R_A, R_B) ein festgelegtes Kriterium nicht erfüllt.
15. Vorrichtung, insbesondere Kommunikationsgerät, mit einer Recheneinheit (CPU2), die zur Durchführung eines Verfahrens nach Anspruch 1 bis 14 ausgebildet ist.
PCT/EP2006/061537 2005-04-28 2006-04-12 Verfahren und vorrichtung zur geräuschunterdrückung WO2006114368A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
DK06725716T DK1869671T3 (da) 2005-04-28 2006-04-12 Fremgangsmåde og anordning til stöjundertrykkelse
DE502006004136T DE502006004136D1 (de) 2005-04-28 2006-04-12 Verfahren und vorrichtung zur geräuschunterdrückung
US11/632,525 US8612236B2 (en) 2005-04-28 2006-04-12 Method and device for noise suppression in a decoded audio signal
EP06725716A EP1869671B1 (de) 2005-04-28 2006-04-12 Verfahren und vorrichtung zur geräuschunterdrückung
CA2574468A CA2574468C (en) 2005-04-28 2006-04-12 Noise suppression process and device
JP2008508189A JP4819881B2 (ja) 2005-04-28 2006-04-12 ノイズを抑制するための方法と装置
CN2006800005032A CN1993734B (zh) 2005-04-28 2006-04-12 噪声抑止的方法和设备
PL06725716T PL1869671T3 (pl) 2005-04-28 2006-04-12 Sposób i urządzenie do tłumienia szumów
AT06725716T ATE435481T1 (de) 2005-04-28 2006-04-12 Verfahren und vorrichtung zur geräuschunterdrückung

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE102005019863.5 2005-04-28
DE102005019863A DE102005019863A1 (de) 2005-04-28 2005-04-28 Verfahren und Vorrichtung zur Geräuschunterdrückung
DE102005028182.6 2005-06-17
DE102005028182 2005-06-17
DE102005032079.1 2005-07-08
DE200510032079 DE102005032079A1 (de) 2005-07-08 2005-07-08 Verfahren und Vorrichtung zur Geräuschunterdrückung

Publications (1)

Publication Number Publication Date
WO2006114368A1 true WO2006114368A1 (de) 2006-11-02

Family

ID=36621841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/061537 WO2006114368A1 (de) 2005-04-28 2006-04-12 Verfahren und vorrichtung zur geräuschunterdrückung

Country Status (11)

Country Link
US (1) US8612236B2 (de)
EP (2) EP1869671B1 (de)
JP (1) JP4819881B2 (de)
KR (1) KR100915726B1 (de)
AT (1) ATE435481T1 (de)
CA (1) CA2574468C (de)
DE (1) DE502006004136D1 (de)
DK (1) DK1869671T3 (de)
ES (1) ES2327566T3 (de)
PL (1) PL1869671T3 (de)
WO (1) WO2006114368A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007096552A2 (fr) * 2006-02-20 2007-08-30 France Telecom Procede de discrimination et d'attenuation fiabilisees des echos d'un signal numerique dans un decodeur et dispositif correspondant
JP2013508765A (ja) * 2009-10-20 2013-03-07 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン オーディオ信号符号器、オーディオ信号復号器、エイリアシング消去を用いたオーディオ信号の符号化又は復号化方法
JP2013508766A (ja) * 2009-10-20 2013-03-07 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ オーディオ信号符号器、オーディオ信号復号器、オーディオコンテンツの符号化表現を供給するための方法、オーディオコンテンツの復号化表現を供給するための方法、および低遅延アプリケーションにおける使用のためのコンピュータ・プログラム

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090006081A1 (en) * 2007-06-27 2009-01-01 Samsung Electronics Co., Ltd. Method, medium and apparatus for encoding and/or decoding signal
RU2481650C2 (ru) * 2008-09-17 2013-05-10 Франс Телеком Ослабление опережающих эхо-сигналов в цифровом звуковом сигнале
WO2011048798A1 (ja) 2009-10-20 2011-04-28 パナソニック株式会社 符号化装置、復号化装置およびこれらの方法
US9838784B2 (en) 2009-12-02 2017-12-05 Knowles Electronics, Llc Directional audio capture
US8798290B1 (en) 2010-04-21 2014-08-05 Audience, Inc. Systems and methods for adaptive signal equalization
US9558755B1 (en) 2010-05-20 2017-01-31 Knowles Electronics, Llc Noise suppression assisted automatic speech recognition
CN101908342B (zh) * 2010-07-23 2012-09-26 北京理工大学 利用频域滤波后处理进行音频暂态信号预回声抑制的方法
US8615394B1 (en) * 2012-01-27 2013-12-24 Audience, Inc. Restoration of noise-reduced speech
US9536540B2 (en) 2013-07-19 2017-01-03 Knowles Electronics, Llc Speech signal separation and synthesis based on auditory scene analysis and speech modeling
CN107112025A (zh) 2014-09-12 2017-08-29 美商楼氏电子有限公司 用于恢复语音分量的系统和方法
DE112016000545B4 (de) 2015-01-30 2019-08-22 Knowles Electronics, Llc Kontextabhängiges schalten von mikrofonen
US9820042B1 (en) 2016-05-02 2017-11-14 Knowles Electronics, Llc Stereo separation and directional suppression with omni-directional microphones

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6453282B1 (en) * 1997-08-22 2002-09-17 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Method and device for detecting a transient in a discrete-time audiosignal
EP1335353A2 (de) * 2002-02-08 2003-08-13 NTT DoCoMo, Inc. Dekodierungsgerät, Kodierungsgerät, Dekodierungsverfahren und Kodierungsverfahren

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3317470B2 (ja) 1995-03-28 2002-08-26 日本電信電話株式会社 音響信号符号化方法、音響信号復号化方法
US5825320A (en) * 1996-03-19 1998-10-20 Sony Corporation Gain control method for audio encoding device
US6169971B1 (en) * 1997-12-03 2001-01-02 Glenayre Electronics, Inc. Method to suppress noise in digital voice processing
US6415253B1 (en) * 1998-02-20 2002-07-02 Meta-C Corporation Method and apparatus for enhancing noise-corrupted speech
US6453289B1 (en) * 1998-07-24 2002-09-17 Hughes Electronics Corporation Method of noise reduction for speech codecs
US6442275B1 (en) * 1998-09-17 2002-08-27 Lucent Technologies Inc. Echo canceler including subband echo suppressor
US6353808B1 (en) * 1998-10-22 2002-03-05 Sony Corporation Apparatus and method for encoding a signal as well as apparatus and method for decoding a signal
AU1352999A (en) * 1998-12-07 2000-06-26 Mitsubishi Denki Kabushiki Kaisha Sound decoding device and sound decoding method
US6978236B1 (en) * 1999-10-01 2005-12-20 Coding Technologies Ab Efficient spectral envelope coding using variable time/frequency resolution and time/frequency switching
US6757395B1 (en) * 2000-01-12 2004-06-29 Sonic Innovations, Inc. Noise reduction apparatus and method
US7058572B1 (en) * 2000-01-28 2006-06-06 Nortel Networks Limited Reducing acoustic noise in wireless and landline based telephony
FR2813722B1 (fr) * 2000-09-05 2003-01-24 France Telecom Procede et dispositif de dissimulation d'erreurs et systeme de transmission comportant un tel dispositif
JP4282227B2 (ja) * 2000-12-28 2009-06-17 日本電気株式会社 ノイズ除去の方法及び装置
SE522553C2 (sv) * 2001-04-23 2004-02-17 Ericsson Telefon Ab L M Bandbreddsutsträckning av akustiska signaler
US6658383B2 (en) * 2001-06-26 2003-12-02 Microsoft Corporation Method for coding speech and music signals
EP1440433B1 (de) 2001-11-02 2005-05-04 Matsushita Electric Industrial Co., Ltd. Vorrichtung zur kodierung und dekodierung von audiosignalen
US7146316B2 (en) * 2002-10-17 2006-12-05 Clarity Technologies, Inc. Noise reduction in subbanded speech signals
KR100547113B1 (ko) 2003-02-15 2006-01-26 삼성전자주식회사 오디오 데이터 인코딩 장치 및 방법
DE60315522T2 (de) * 2003-08-18 2008-04-30 Koninklijke Philips Electronics N.V. Klickgeräusch-erkennung in einem digitalen audiosignal
EP1638083B1 (de) * 2004-09-17 2009-04-22 Harman Becker Automotive Systems GmbH Bandbreitenerweiterung von bandbegrenzten Tonsignalen
KR100956877B1 (ko) * 2005-04-01 2010-05-11 콸콤 인코포레이티드 스펙트럼 엔벨로프 표현의 벡터 양자화를 위한 방법 및장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6453282B1 (en) * 1997-08-22 2002-09-17 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Method and device for detecting a transient in a discrete-time audiosignal
EP1335353A2 (de) * 2002-02-08 2003-08-13 NTT DoCoMo, Inc. Dekodierungsgerät, Kodierungsgerät, Dekodierungsverfahren und Kodierungsverfahren

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MAHIEUX Y ET AL: "HIGH-QUALITY AUDIO TRANSFORM CODING AT 64 KBPS", IEEE TRANSACTIONS ON COMMUNICATIONS, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 42, no. 11, 1 November 1994 (1994-11-01), pages 3010 - 3019, XP000475155, ISSN: 0090-6778 *
PAINTER T ET AL: "Perceptual coding of digital audio", PROCEEDINGS OF THE IEEE, IEEE. NEW YORK, US, vol. 88, no. 4, April 2000 (2000-04-01), pages 451 - 515, XP002197929, ISSN: 0018-9219 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007096552A2 (fr) * 2006-02-20 2007-08-30 France Telecom Procede de discrimination et d'attenuation fiabilisees des echos d'un signal numerique dans un decodeur et dispositif correspondant
WO2007096552A3 (fr) * 2006-02-20 2007-10-18 France Telecom Procede de discrimination et d'attenuation fiabilisees des echos d'un signal numerique dans un decodeur et dispositif correspondant
JP2009527773A (ja) * 2006-02-20 2009-07-30 フランス テレコム デコーダおよび対応するデバイス中のディジタル信号のエコーの訓練された弁別および減衰のための方法
US8756054B2 (en) 2006-02-20 2014-06-17 France Telecom Method for trained discrimination and attenuation of echoes of a digital signal in a decoder and corresponding device
JP2013508765A (ja) * 2009-10-20 2013-03-07 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン オーディオ信号符号器、オーディオ信号復号器、エイリアシング消去を用いたオーディオ信号の符号化又は復号化方法
JP2013508766A (ja) * 2009-10-20 2013-03-07 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ オーディオ信号符号器、オーディオ信号復号器、オーディオコンテンツの符号化表現を供給するための方法、オーディオコンテンツの復号化表現を供給するための方法、および低遅延アプリケーションにおける使用のためのコンピュータ・プログラム

Also Published As

Publication number Publication date
EP1869671B1 (de) 2009-07-01
EP1869671A1 (de) 2007-12-26
DE502006004136D1 (de) 2009-08-13
CA2574468A1 (en) 2006-11-02
DK1869671T3 (da) 2009-10-19
US8612236B2 (en) 2013-12-17
JP2008539456A (ja) 2008-11-13
EP1953739A2 (de) 2008-08-06
PL1869671T3 (pl) 2009-12-31
CA2574468C (en) 2014-01-14
EP1953739B1 (de) 2014-06-04
ATE435481T1 (de) 2009-07-15
JP4819881B2 (ja) 2011-11-24
KR100915726B1 (ko) 2009-09-04
ES2327566T3 (es) 2009-10-30
EP1953739A3 (de) 2008-10-08
KR20070062493A (ko) 2007-06-15
US20070282604A1 (en) 2007-12-06

Similar Documents

Publication Publication Date Title
EP1869671B1 (de) Verfahren und vorrichtung zur geräuschunterdrückung
DE60214027T2 (de) Kodiervorrichtung und dekodiervorrichtung
EP1145227B1 (de) Verfahren und vorrichtung zum verschleiern eines fehlers in einem codierten audiosignal und verfahren und vorrichtung zum decodieren eines codierten audiosignals
EP0954909B1 (de) Verfahren zum codieren eines audiosignals
DE60202881T2 (de) Wiederherstellung von hochfrequenzkomponenten
DE60117471T2 (de) Breitband-signalübertragungssystem
DE102004009954B4 (de) Vorrichtung und Verfahren zum Verarbeiten eines Multikanalsignals
EP1825461A1 (de) Verfahren und vorrichtung zur künstlichen erweiterung der bandbreite von sprachsignalen
EP0978172B1 (de) Verfahren zum verschleiern von fehlern in einem audiodatenstrom
DE602005003358T2 (de) Audiokodierung
WO2001043503A2 (de) Verfahren und vorrichtung zum verarbeiten eines stereoaudiosignals
DE102007007627A1 (de) Steganographie in digitalen Signal-Codierern
EP1023777B1 (de) Verfahren und vorrichtung zur erzeugung eines bitratenskalierbaren audio-datenstroms
DE60311619T2 (de) Datenreduktion in Audiokodierern unter Ausnutzung nichtharmonischer Effekte
DE69629485T2 (de) Kompressionsystem für sich wiederholende töne
DE102004009949B4 (de) Vorrichtung und Verfahren zum Ermitteln eines Schätzwertes
EP0635177A1 (de) Verfahren zum übertragen und/oder speichern digitalisierter, datenreduzierter audiosignale.
DE4430864A1 (de) Verfahren zum unbemerktem Übertragen und/oder Speichern von Zusatzinformationen innerhalb eines quellencodierten, datenreduzierten Audiosignals
DE112008003153B4 (de) Frequenzband-Bestimmungsverfahren zum Formen von Quantisierungsrauschen
DE102005032079A1 (de) Verfahren und Vorrichtung zur Geräuschunterdrückung
DE102005019863A1 (de) Verfahren und Vorrichtung zur Geräuschunterdrückung
DE69119005T2 (de) Verfahren und Einrichtung zur Kodierung eines Analogsignals mit Wiederholeigenschaft
WO2006072526A1 (de) Verfahren zur bandbreitenerweiterung
DE69031749T2 (de) Einrichtung und Verfahren zur Sprachkodierung mit Regular-Pulsanregung
DE10065363B4 (de) Vorrichtung und Verfahren zum Decodieren eines codierten Datensignals

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006725716

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 187/DELNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020077000819

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200680000503.2

Country of ref document: CN

Ref document number: 2007101541

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 2574468

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11632525

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008508189

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 11632525

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2006725716

Country of ref document: EP