WO2006112179A1 - 通信端末装置、基地局装置及び受信方法 - Google Patents

通信端末装置、基地局装置及び受信方法 Download PDF

Info

Publication number
WO2006112179A1
WO2006112179A1 PCT/JP2006/304168 JP2006304168W WO2006112179A1 WO 2006112179 A1 WO2006112179 A1 WO 2006112179A1 JP 2006304168 W JP2006304168 W JP 2006304168W WO 2006112179 A1 WO2006112179 A1 WO 2006112179A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
signal
timing
pilot
pilot signal
Prior art date
Application number
PCT/JP2006/304168
Other languages
English (en)
French (fr)
Inventor
Hiroshi Tanae
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2007521121A priority Critical patent/JP4914352B2/ja
Priority to EP06715227A priority patent/EP1855406A1/en
Priority to US11/909,425 priority patent/US8249132B2/en
Publication of WO2006112179A1 publication Critical patent/WO2006112179A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26134Pilot insertion in the transmitter chain, e.g. pilot overlapping with data, insertion in time or frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/023Multiplexing of multicarrier modulation signals
    • H04L5/026Multiplexing of multicarrier modulation signals using code division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/692Hybrid techniques using combinations of two or more spread spectrum techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/70701Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation featuring pilot assisted reception
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present invention relates to a communication terminal device, a base station device, and a reception method, and more particularly, a one-frequency repetitive cellular system using OF CDM (Orthogonal Frequency and Code Division Multiplexing) in the downlink.
  • the present invention relates to a communication terminal device, a base station device, and a reception method.
  • the mobile station uses a base station device in the communication range with the mobile station to report information on other base station devices existing in the vicinity as broadcast information, etc. You can know the device. Then, the mobile station determines whether it is possible to perform handover to the switching candidate base station by actually receiving the radio waves of the switching candidate base station apparatus and measuring the radio wave propagation state. Thus, in order to smoothly perform handover near the cell boundary, the mobile station measures the reception state of a base station apparatus (hereinafter referred to as “active set”) predicted as a handover destination in advance.
  • active set a base station apparatus
  • each cell uses a code spreading method (CDMA) that uses a spreading code and performs spreading processing on the transmitting side and despreading processing on the receiving side.
  • CDMA code spreading method
  • the code spreading method is used, even if the same frequency is used in each cell, signals between cells can have orthogonality, so that the same frequency can be repeatedly used between cells.
  • Such a system is called a one-frequency repetitive cellular system.
  • a transmission side modulates an information signal with a plurality of subcarriers and inserts a guard interval into the transmission signal for the purpose of reducing waveform distortion due to a multinose delay wave. .
  • a frequency shift is caused by a Doppler frequency corresponding to the moving speed between the base station apparatus and the mobile station.
  • the Doppler frequency is different between one mobile station and each base station device.
  • the frequency shift due to the Doppler frequency exceeds 1 kHz.
  • the received radio waves from the two base station devices cause a frequency shift of 2 kHz or more.
  • the OFDM receiver corrects the frequency shift of the received radio wave including the Doppler frequency generated between the base station apparatus and the mobile station by drawing the frequency of the target cell in the RF section of the OFDM receiver. There must be.
  • the circuit for detecting the reception timing of the scramble code at the mobile station sets the FFT (Fast Fourier Transform) timing for each pilot signal of each active set, and detects the reception timing of each pilot signal.
  • the reception timing of pilot signals of all active sets is detected by one circuit, and when the pilot signals of each active set are received in a state of overlapping in time, one active
  • the frequency deviation of the set is corrected, it is not possible to correct the frequency deviation of other active sets with different frequency deviations at the corrected frequency.
  • the reception timing of pilot signals of other active sets is not correctly detected. This is because the noise signals of other active sets are subjected to FFT with the frequency shifted, and this is the force with which the orthogonality is broken. Therefore, when implementing an OFCDM one-frequency repetitive cellular system, an active cell is used to measure the active set.
  • a frequency pull-in circuit for each channel and an FFT circuit for detecting the synchronization timing are required.
  • the scramble code is a long-period spreading code, which is a code different for each cell and orthogonal to each other between cells.
  • a mobile station performs SIR measurement of received signals of up to 8 active sets.
  • the mobile station when the mobile station is required to receive the synchronization signal of multiple active sets, the mobile station has up to the frequency acquisition circuit power demodulation circuit. Must be provided in parallel.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2003-152681
  • An object of the present invention is to provide a communication terminal device, a base station device, and a receiving method capable of reducing the circuit scale by measuring a plurality of active sets with one circuit component. That is.
  • the communication terminal apparatus of the present invention receives a signal multiplied by a scramble code specific to each base station apparatus transmitted from a plurality of base station apparatuses, and each base station apparatus power included in the signal Receiving means for receiving pilot signals transmitted at non-overlapping timings at different timings, and detecting reception timing and scrambling codes of the pilot signals of each base station apparatus received at different timings by the receiving means Reception synchronization means, storage means for storing the reception timing and scramble code detected by the reception synchronization means for each base station device, and the reception timing and scramble stored in the storage means Based on the code, the signal of each base station apparatus received by the receiving means is despread and then recovered.
  • Demodulating means for the at the timing when the signal is despread for each base station apparatus by the demodulating means
  • a configuration is provided that includes the reception timing of the base station apparatus that is despreaded and stored in the storage means, and a switching means that switches the output so that the scramble code is output to the demodulation means.
  • the base station apparatus of the present invention includes a pilot scheduler means for setting a transmission timing of the pilot signal so that the pilot signal is transmitted at a timing that does not overlap with a pilot signal transmitted from another station.
  • a multiplication means for multiplying a transmission signal including the pilot signal for which the transmission timing is set by the pilot scheduler means by a scrambling code unique to each station, and the transmission timing set by the pilot scheduler means.
  • a transmission unit configured to transmit the transmission signal multiplied by the scramble code by the multiplication unit so that the pilot signal is transmitted.
  • the step of multiplying a signal including a pilot signal by a scramble code unique to each base station apparatus and the pilot signal transmitted from each base station apparatus overlap each other.
  • the reception timing of the pilot signal received at the timing and the scramble code A step of detecting for each ground station device, a step of storing the detected reception timing and the scramble code for each base station device, and demodulating among the stored reception timing and the scramble code.
  • a plurality of active sets can be measured with one circuit component.
  • the circuit scale can be reduced.
  • FIG. 1 is a block diagram showing a configuration of a communication terminal apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram showing a configuration of a base station apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is a block diagram showing a configuration of a scramble code reception timing detection circuit according to the first embodiment of the present invention.
  • FIG. 4 is a block diagram showing a configuration of a scramble code identification circuit according to the first embodiment of the present invention.
  • FIG. 5 is a diagram for explaining the operation of the base station apparatus according to Embodiment 1 of the present invention.
  • FIG. 6 is a diagram showing pilot signal transmission timing according to Embodiment 1 of the present invention.
  • FIG. 7 shows an lOFDM symbol according to Embodiment 1 of the present invention.
  • FIG. 8 is a diagram for explaining the operation of the communication terminal apparatus according to Embodiment 1 of the present invention.
  • FIG. 9 is a diagram showing pilot signal reception timing and detection state according to Embodiment 1 of the present invention.
  • FIG. 10 is a diagram showing pilot signal reception timing and detection state according to Embodiment 1 of the present invention.
  • FIG. 11 is a diagram showing pilot signal transmission timing according to Embodiment 2 of the present invention.
  • FIG. 12 is a diagram showing pilot signal transmission timing according to Embodiment 3 of the present invention.
  • FIG. 13 is a diagram showing pilot signal transmission timing according to Embodiment 3 of the present invention.
  • FIG. 14 is a diagram showing pilot signal transmission timing according to Embodiment 4 of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a block diagram showing a configuration of communication terminal apparatus 100 according to Embodiment 1 of the present invention.
  • the AZD conversion unit 101, the local oscillator 102, the multiplier 103, and the band filter 104 constitute a frequency conversion unit 118 (receiving means) that is a down converter.
  • the scramble code reception timing detection circuit 106 and the scramble code identification circuit 107 constitute a reception synchronization unit 119.
  • frequency shift memory 109, scramble code reception type The memory memory 110 and the scramble code memory 111 constitute a memory switching unit 120.
  • the reception synchronization unit 119, the frequency measurement unit 108, the demodulation circuit 112, and the memory switching unit 120 constitute a demodulation unit 121.
  • Synchronous base station switch 105, local oscillator 113, frequency converter 118, and demodulator 121 constitute receiver 122.
  • AZD conversion section 101 converts an input received signal into an analog signal power as a digital signal and outputs the digital signal to multiplier 103.
  • the received signal input to the AZD conversion unit 101 is not shown in the figure and is received and input by an antenna, and is a multicarrier high frequency (hereinafter referred to as “RF”) signal or multicarrier intermediate frequency. (Hereinafter referred to as “IF”)
  • the local oscillator 102 is a numerically controlled oscillator (NCO) using, for example, a direct digital synthesizer (DDS), and is input from the subsequent frequency shift memory 108 in order to draw the frequency of the target cell.
  • a signal having a predetermined frequency is generated based on the frequency shift information, which is information on the frequency shift, and is output to the multiplier 103.
  • a signal with a frequency shift fd such as a Doppler frequency with respect to the expected multicarrier input frequency fc is a received signal that is actually received.
  • the local oscillator 102 expects the actual received signal to be the expected multicarrier input frequency fc
  • the frequency signal for correcting the frequency shift fd of the actual received signal is generated so that the frequency can be synchronized with the frequency.
  • Multiplier 103 multiplies the received signal input from AZD converter 101 by the signal input from local oscillator 102 2 to correct a frequency shift caused by the Doppler frequency or the like, and outputs the result to band filter 104. To do.
  • the band filter 104 passes only a predetermined band of the reception signal input from the multiplier 103, and the scramble code reception timing detection circuit 106 and the scramble code identification circuit pass the reception signal of the predetermined band that has passed. 107, output to frequency measurement unit 108 and demodulation circuit 112.
  • Synchronous base station switcher 105 serving as a switching means uses the scramble code information of each base station device and each base station from the broadcast information of each base station device included in the received signal input from demodulation circuit 112. Information on the transmission timing of the pilot signal of the apparatus is extracted. Then, the synchronous base station switching unit 105 uses each of the extracted transmission timing information to The transmission pattern of the pilot signal of the apparatus is duplicated and stored. The synchronous base station switch 105 outputs a scramble code corresponding to the received signal of the base station device demodulated by the demodulation circuit 112 to the demodulation circuit 112 based on the extracted scramble code information of each base station device. The output instruction signal is output to the scramble code memory 111.
  • the synchronized base station switch 105 estimates the timing of despreading the received signal of each base station device with a scramble code from the stored transmission pattern of the pilot signal of each base station device.
  • the frequency shift memory 109, the scramble code reception timing memory 110, and the scramble code are output so that the frequency shift information, reception timing information, and scramble code information of the base station apparatus to be despread are output at the timing of the spread processing.
  • a switching timing signal is output to the memory 111.
  • the scramble code reception timing detection circuit 106 detects the reception timing of the pilot signal of each base station apparatus from the reception signal input from the band filter 104. Then, the scramble code reception timing detection circuit 106 outputs the detected reception timing information, which is information on the reception timing of the pilot signal of each base station apparatus, to the scramble code identification circuit 107 and the scramble code reception timing memory 110.
  • the scramble code reception timing detection circuit 106 can converge to the optimal reception timing by repeating the processing. The detailed configuration of the scramble code reception timing detection circuit 106 will be described later.
  • the scramble code identification circuit 107 detects the scramble code of each base station apparatus from the reception signal input from the band filter 104 and the reception timing information input from the scramble code reception timing detection circuit 106. Then, the scramble code identifying circuit 107 outputs scramble code information, which is detected scramble code information of each base station apparatus, to the scramble code memory 111. The scramble code identification circuit 107 can converge to an optimal scramble code by repeating the processing. Details of the configuration of the scramble code identification circuit 107 will be described later.
  • the frequency measurement unit 108 measures the frequency of the received signal input from the band filter 104. Then, the frequency measuring unit 108 compares the measured frequency with the reference frequency input from the local oscillator 113, and the frequency that is the difference between the measured frequency and the reference frequency. Detect number deviation fd. Then, the frequency measurement unit 108 outputs information on the detected frequency shift fd to the frequency shift memory 109 as frequency shift information.
  • the frequency shift memory 109 stores frequency shift information of the frequency shift fd input from the frequency measurement unit 108 for each base station apparatus. Then, the frequency shift memory 109 outputs, to the local oscillator 102, the frequency shift information of the base station apparatus indicated by the switch timing signal input from the synchronized base station switch 105 from the stored frequency shift information.
  • a scramble code reception timing memory 110 serving as a storage means stores pilot signal reception timing information input from the scramble code reception timing detection circuit 106 for each base station apparatus. Then, the scramble code reception timing memory 110 demodulates the scramble code reception timing information of the base station apparatus indicated by the switching timing signal input from the synchronous base station switch 105 from the stored reception timing information. Output to 112. The scramble code reception timing memory 110 outputs the stored reception timing information to the synchronization deviation calculation unit 115 at a predetermined timing.
  • a scramble code memory 111 as a storage means stores scramble code information to which the scramble code identification circuit 107 is also input for each base station apparatus.
  • the scrambling code memory 111 then demodulates the scramble code information of the base station apparatus designated by the switching timing signal input from the synchronous base station switch 105 from the stored scramble code information. Output to.
  • Demodulation circuit 112 which is a demodulation means, demodulates the received signal input from band filter 104 based on the reception timing information input from scramble code reception timing memory 110 and the scrambling code information input from scramble code memory 111. . Specifically, the demodulating circuit 112 performs the FFT operation by removing the guard signal (hereinafter referred to as “GI”) period from the received signal power input from the band filter 104. Then, the demodulation circuit 112 performs despreading processing with the scramble code of the scramble code information input from the scramble code memory 111 at the timing of the reception timing information input from the scramble code reception timing memory 110.
  • GI guard signal
  • the demodulator circuit 112 has memorized and memorized it.
  • the received signal is despread using a known short-period spreading code, and the despread received signal is converted from a parallel data format to a serial data format and demodulated and decoded.
  • Demodulation circuit 112 outputs the demodulated and decoded received signal to synchronous base station switch 105 and also outputs it as received data.
  • the local oscillator 113 generates a signal having a reference frequency and outputs the signal to the frequency measuring unit 108. Further, the local oscillator 113 outputs a frequency signal serving as a reference for the entire frequency converter 118 and demodulator 121 to the frequency converter 118 and demodulator 121.
  • Position information acquisition section 114 acquires position information, which is information on the position of the own station measured by GPS, and outputs the acquired position information to synchronization deviation calculation section 115.
  • Synchronization loss calculation section 115 stores in advance pilot signal reception timing information of each base station apparatus input from scramble code reception timing memory 110, position information input from position information acquisition section 114, and the like. Based on the position information of each base station device and the velocity of radio waves, a synchronization shift, which is an error with respect to a reference value of a difference in reception timing of pilot signals between base station devices, is calculated. Then, the synchronization deviation calculation unit 115 outputs the synchronization deviation information, which is information on the calculated synchronization deviation, to the multiplexing unit 116. Details of the method for calculating the synchronization loss will be described later.
  • the multiplexing unit 116 multiplexes the transmission data and the synchronization shift information input from the synchronization shift calculation unit 115 and outputs the multiplexed data to the modulation unit 117.
  • Modulating section 117 modulates the signal in which the synchronization error information and transmission data input from multiplexing section 116 are multiplexed, and outputs the modulated signal as an RF signal or an IF signal.
  • the RF signal or IF signal output from the modulation unit 117 is transmitted from an antenna (not shown).
  • the multiplexing unit 116 and the modulation unit 117 are notification means for notifying the base station apparatus of synchronization error information.
  • FIG. 2 is a block diagram showing the configuration of base station apparatus 200.
  • Transmission data generation section 201 transmission path encoding section 202, data modulation section 203, pilot scheduler section 204, multiplexing section 205, serial / parallel conversion section 206, copy section 207—l to 207—n (n is the number of subcarriers) ), Short-period spreading code generator 208 and multipliers 209—1—1 to 209—n—q (q is an arbitrary natural number), and signal processing units 216—1 to 216—r (r is an arbitrary natural number) Constitute.
  • synthesis unit 210 scramble code generation
  • the generator 211, the multipliers 212-1 to 212 -n, the IFFT unit 213, the GI addition unit 214, and the signal processing units 216-1 to 216 -r constitute a transmission device 217.
  • Transmission data generating section 201 generates transmission data including broadcast information and outputs the transmission data to transmission path code encoding section 202.
  • the broadcast information includes information on the scramble code used by the base station apparatus 200 and information on the transmission timing of the pilot signal in the base station apparatus 200.
  • Transmission path encoding section 202 encodes the transmission data input from transmission data generating section 201 and outputs the encoded transmission data to data modulating section 203.
  • Data modulation section 203 modulates the transmission data input from transmission line code key section 202 and outputs the result to multiplexing section 205.
  • Pilot scheduler section 204 stores the transmission timing of pilot signals of other base station apparatuses that are other stations, and stores the timing of transmission of pilot signals of other base station apparatuses. Based on the reference time, the transmission timing of the local station's pilot signal is set so as not to overlap with the pilot signal transmission timing in other base station apparatuses. Then, the pilot scheduler unit 204 instructs the multiplexing unit 205 to output so that the pilot signal is transmitted at the set transmission timing of the pilot signal. In addition, the no-lot scheduler unit 204 corrects the synchronization error with the other base station apparatus based on the synchronization error information input from the demodulation unit 215. A method for setting the transmission timing of the pilot signal will be described later.
  • Multiplexer 205 multiplexes the pilot signal and transmission data in accordance with instructions from pilot scheduler 204 and outputs the multiplexed signal to serial-parallel converter 206.
  • the serial / parallel conversion unit 206 converts the multiplexed data input from the multiplexing unit 205 from a serial data format to a parallel data format, and outputs the converted data to the copy units 207-1 to 207-n.
  • Copy units 207-1 to 207-n replicate the data input from serial / parallel conversion unit 206 and output the data to multipliers 209-1-1 to 209-n-q.
  • Short cycle spreading code generator 208 generates a short cycle spreading code and outputs it to multipliers 209-1 1 to 209-n-q.
  • the multipliers 209-1 1 to 209-n-q are the data input from the copy units 207-1 to 207-n. Multiplying the data by the short cycle spreading code input from the short cycle spreading code generator 208 and spreading the data, and outputs the spread data to the combining unit 210.
  • the combining unit 210 includes multipliers 209—l—l to 209-n of the signal processing units 216-l to 216-m.
  • the scramble code generator 211 generates a scramble code unique to each base station apparatus, and outputs the generated scramble code to the multipliers 212-l to 212-n.
  • Multipliers 212-1 to 212-n multiply the data input from combining section 210 by the scramble code input from scramble code generator 211 and output the result to IFFT section 213.
  • IFFT section 213 performs IFFT (inverse high-speed Fourier transform) processing on the data input from multipliers 212-1 to 212-n and outputs the result to GI adding section 214.
  • the GI adding unit 214 adds the GI period to the data input from the IFFT unit 213 and outputs the data.
  • the transmission signal output from the GI adding unit 214 is frequency-converted by a frequency conversion unit (transmission means) that is an up-converter (not shown), and is a multicarrier high frequency (RF) signal or intermediate frequency (IF) signal. Not shown as !! Sent from antenna.
  • a frequency conversion unit transmission means
  • RF radio frequency
  • IF intermediate frequency
  • Demodulation section 215 demodulates a high frequency (RF) signal or an intermediate frequency (IF) signal received by an antenna (not shown), thereby extracting synchronization deviation information included in the received signal.
  • Demodulation section 215 outputs the extracted synchronization deviation information to pilot scheduler section 204 and outputs demodulated data after demodulation.
  • FIG. 3 is a block diagram showing the configuration of the scramble code reception timing detection circuit 106.
  • the synchronization signal replica generator 304 and the correlator 305 constitute correlation calculation units 309-1 to 309 s (s is an arbitrary natural number).
  • the GI removal unit 302, the FFT unit 303, the adder 306, the correlation value and timing memory 307, and the correlation calculation units 309-1 to 309s constitute a synchronization signal correlation detection circuit 310-1 to 310s.
  • Correlation calculation sections 309-1 to 309 s are provided with the number of subcarriers on which the synchronization channel is multiplexed.
  • the synchronization signal correlation detection circuits 310-1 to 310-s are provided for each FFT timing set by the FFT timing setting circuit 301.
  • the FFT timing setting circuit 301 sets FFT timing determined in advance, and outputs FFT timing information, which is information on the set FFT timing, to the GI removal unit 302.
  • the GI removal unit 302 removes the GI period included in the received signal input from the bandpass filter 104 at the FFT timing of the FFT timing information input from the FFT timing setting circuit 301. Then, GI removal section 302 outputs the received signal after removing the GI period to FFT section 303.
  • the FFT unit 303 performs an FFT operation in the FFT window of the received signal input from the GI removal unit 302. Then, FFT section 303 outputs the result of FFT calculation of the symbol in which the pilot signal is inserted to correlator 305.
  • the synchronization signal replica generator 304 generates a synchronization signal having a known pattern included in the pilot signal, and outputs the generated synchronization signal to the correlator 305.
  • Correlator 305 performs a correlation calculation between the result of the FFT calculation input from FFT section 303 and the synchronization signal input from synchronization signal replica generator 304. Correlator 305 outputs the correlation calculation result to adder 306.
  • Adder 306 adds the correlation calculation results input from correlator 305 and outputs the result to correlation value and timing memory 307.
  • the correlation value and timing memory 307 stores the addition result of the correlation calculation result input from the adder 306. Then, the correlation value and timing memory 307 outputs the addition result selected by the timing detection circuit 308 from the stored correlation calculation result addition results to the timing detection circuit 308.
  • the timing detection circuit 308 detects, as a pilot signal reception timing, a timing at which the largest correlation value is obtained from the addition result of the correlation calculation results stored in the correlation value and timing memory 307. Then, the timing detection circuit 308 outputs reception timing information, which is information of the detected reception timing, to the scramble code identification circuit 107 and the scramble code reception timing memory 110. At this time, the timing detection circuit 308 detects the reception timing for each base station apparatus, and receives the reception timing information for each base station apparatus from the scramble code identification circuit 107 and the scramble code reception timing. Output to the memory 110.
  • FIG. 4 is a block diagram showing the configuration of the scramble code identification circuit 107.
  • GI removal section 401 removes the GI period included in the received signal input from band filter 104 at the reception timing of the reception timing information input from scramble code reception timing detection circuit 106, and outputs the result to FFT section 402. To do.
  • the FFT unit 402 performs an FFT operation on the received signal input from the GI removal unit 401 within the FFT window. Then, the FFT unit 402 outputs the FFT operation result to the correlators 404-1 to 404-s.
  • the scramble code replica generator 403 generates a scramble code that is a known pattern of each base station device at the reception timing of the reception timing information input from the scramble code reception timing detection circuit 106, and generates the scramble code The code is output to the correlator 40 4-l to 404-s.
  • Correlators 404-1 to 404-s perform a correlation operation between the FFT operation result input from FFT section 402 and the scramble code input from scrambling code replica generator 403. Then, the correlators 404-1 to 404-s output the correlation calculation results to the adder 405.
  • Adder 405 adds the correlation calculation results input from correlators 401-1 to 404-n and outputs the result to memory 406 for correlation values and code numbers.
  • the correlation value and code number memory 406 stores the addition result of the correlation calculation result input from the adder 405. Correlation value and code number memory 406 outputs the addition result selected by scramble code detection circuit 407 to the scramble code detection circuit 407 from the stored correlation calculation result addition results.
  • the scramble code detection circuit 407 selects the scramble code with the largest correlation value obtained from the correlation calculation result stored in the correlation value and code number memory 406. To do. Then, the scramble code detection circuit 407 outputs scramble code information, which is information on the selected scramble code, to the scramble code memory 111. At this time, the scramble code detection circuit 407 detects the scramble code for each base station apparatus, and scrambles the scramble code for each base station apparatus. Output to 111.
  • transmission data # 501 output from the transmission data generation unit 201 in the serial data format is encoded by the transmission path encoding unit 202, and the data Modulated by the modulation unit 203 and input to the multiplexing unit 205.
  • Pilot signal # 502 output from pilot scheduler section 204 in the serial data format is input to multiplexing section 205.
  • the pilot scheduler 204 sets the transmission timing of the pilot signal.
  • FIG. 6 shows an example of the transmission timing of the pilot signal set by pilot scheduler section 204.
  • the horizontal axis is time, and the vertical axis is frequency.
  • transmission signal # 601 is transmitted from base station apparatus 200-1
  • transmission signal # 602 is transmitted from base station apparatus 200-2
  • transmission signal # 603 is transmitted from base station apparatus 200-1.
  • Device 200—p (where p is any natural number greater than or equal to 2) is also transmitted.
  • the base station devices 200-1, 200-2, and 200-p are different base station devices and have the same configuration as FIG.
  • pilot signal # 604 is inserted in the first symbol of one radio frame # 607.
  • pilot signal # 605 is inserted in the first symbol of one radio frame # 6 08.
  • pilot signal # 606 is inserted in the first symbol of one radio frame # 609 in transmission signal # 603.
  • one radio frame # 607, # 608, and # 609 is configured with m symbol powers from “0” to “! N ⁇ 1”, and 0 symbol is the head symbol.
  • Each transmission signal # 601, # 602, and # 603 includes k subcarriers having subcarrier numbers from “l” to “k” arranged in the frequency axis direction.
  • Pilot scheduler section 204 of base station apparatus 200-1 starts transmission of a transmission signal at time tl. Thereby, pilot signal # 604 is transmitted at time tl. Also, pilot scheduler section 204 of base station apparatus 200-2 starts transmission of a transmission signal at time t2. Thereby, pilot signal # 605 is transmitted at time t2.
  • the time elapsed from time tl to time t2 is 1 symbol time # 610.
  • pilot scheduler section 204 of base station apparatus 200-p starts transmission of a transmission signal at time t3.
  • the pilot signal # 606 is transmitted at time t3. Where time tl to time t3 The time elapsed until is # 611 which is more than 2 symbols and less than m symbols.
  • multiplexing section 205 multiplexes the pilot signal and transmission data so that the pilot signal is inserted in the first symbol of each frame of the transmission signal, and generates a transmission signal. Then, multiplexing section 205 multiplexes the pilot signal and transmission data so as to be transmitted at the timing shown in FIG. 6 set by pilot scheduler section 204, and generates and outputs a transmission signal.
  • FIG. 5 (b) the serial-parallel converter 206 converts the transmission signal from the serial data format to the parallel data format.
  • the transmission signal is duplicated by the copy units 207-1 to 207-n, and spread by the multipliers 209-1 to 209-n-q and multiplied by the short-period spreading code.
  • FIG. 5 (c) is a diagram showing a transmission signal subjected to spreading processing.
  • FIG. 5 (d) is a diagram showing a transmission signal that has been IFFT and added with a GI period. Transmission data and a pilot signal are arranged in series on the time axis.
  • base station apparatus 200 transmits the transmission signal shown in FIG.
  • FIG. 7 shows a transmission signal of lOFDM symbol # 701 transmitted from base station apparatus 200.
  • lOFDM symbol # 701 is an effective symbol length # 702 with a GI period # 703.
  • GI period # 703 is a partial copy of the second half of effective symbol length # 702 added to the beginning.
  • communication terminal apparatus 100 that has received the signal shown in FIG. 8A transmitted from base station apparatus 200 AZD-converts the received signal at AZD conversion section 101, and provides multiplier 103. Correct the frequency shift caused by one frequency, etc., and pass only the specified band with the bandpass filter.
  • the communication terminal apparatus 100 uses the scramble code reception timing detection circuit 106 and the scramble code identification circuit 107 to pass through the FFT window # 704, which is a section in which the effective symbol length continues in the lOFDM symbol of the received signal. FFT is performed to detect the reception timing and scramble code of the pilot signal of each base station apparatus 200.
  • frequency measurement section 108 compares the measured frequency with the reference frequency of the signal input from local oscillator 113, and the measured frequency and local oscillator 113 are compared.
  • the frequency deviation fd which is the difference from the frequency of the signal input from, is detected.
  • communication terminal apparatus 100 stores frequency deviation fd measured by frequency measurement section 108 as frequency deviation information in frequency deviation memory 109 for each base station apparatus 200, and scramble code reception timing.
  • the reception timing of the pilot signal detected by the detection circuit 106 is stored in the scramble code reception timing memory 110 for each base station apparatus 200, and the scramble code detected by the scramble code identification circuit 107 is stored in the scramble code memory. Stores every base station device 200 in ill.
  • communication terminal apparatus 100 demodulates the received signal at demodulation circuit 112 based on the reception timing of the pilot signal and the scramble code.
  • communication terminal apparatus 100 duplicates and stores the pilot signal transmission pattern shown in FIG.
  • the synchronous base station switch 105 demodulates pilot signal # 604 of base station apparatus 200-2 at time tl and pilot signal # 605 of base station apparatus 200-2 at time t2, as shown in FIG. Such a transmission pattern is copied and stored.
  • the synchronous base station switching unit 105 estimates the timing at which the signal of each base station device is demodulated by the demodulation circuit 112 based on the stored transmission pattern, and the estimated signal of each base station device is
  • the demodulated base station device is stored in the scramble code reception timing memory 110 at the demodulated timing and is demodulated, and the demodulated base station device is stored in the scrambling code memory ill. 200 scramble code power
  • the switching is controlled by the switching timing signal so that it is output to the demodulation circuit 112.
  • the demodulation circuit 112 removes the GI period from the received signal and performs an FFT operation on the received signal, and then performs a short-period spreading code and scramble. despread with code. As a result, the received signal is in the state shown in FIG. Further, the demodulating circuit 112 converts the received signal into a parallel data format and a serial data format. As a result, the received signal is in the state shown in FIG. Then, the demodulation circuit 112 outputs FIG. 8C as received data.
  • FIG. 9 and FIG. 9 and 10 are diagrams showing pilot signal reception timing and pilot signal detection states.
  • the pilot signals of each base station apparatus 200 should not overlap. Can do.
  • the communication terminal apparatus 100 can FFT the effective symbol length of the base station apparatus 200 with respect to each other within the GI period within the reception timing difference between the base station apparatuses 200. . For example, in FIG.
  • Station window 900-1 lOFDM symbol length # 901 FFT window # 903 and base station apparatus 900-2 OFDM symbol length # 902 FFT window # 904 must overlap in time!
  • communication terminal apparatus 100 can demodulate and can detect pilot signals # 905 and # 906 at the reception start timing of FFT windows # 903 and # 904.
  • a condition is that the difference # 907 between the reception timing of the pilot signal of the base station apparatus 900-1 and the reception timing of the pilot signal of the base station apparatus 900-2 is within the GI period.
  • the base station apparatuses 900-1, 900-2, 1000-1, and 1000-2 in FIGS. 9 and 10 have the same configuration as that in FIG.
  • the base station device 200 and the communication terminal obtained from the radio wave propagation time between each base station device 200 and the communication terminal device 100 based on the speed of the radio wave (3e + 8) mZsec and the position information and the position of the base station device Using the distance from device 100, the radio wave propagation time difference between base station devices 200 in communication terminal device 100 is calculated as a reference value.
  • the communication terminal device 100 measures the reception timing of the pilot signals of the two base station devices, and detects the reception timing difference between the measured base station devices. Then, the synchronization deviation between the base station devices is measured from the detected reception timing difference between the base station devices and the reference value.
  • the distance between base station apparatus 1 and communication terminal apparatus 100 is 100 m
  • the distance between base station apparatus 2 and communication terminal apparatus 100 is 500 m
  • the pilot signal power Slus of base station apparatus 2 is If transmitted
  • the radio wave propagation time difference should be 1.33 us.
  • the pilot signal of the base station apparatus 2 is detected with a delay of 1 us from the pilot signal of the base station apparatus 1, the pilot signal of the base station apparatus 2 may be shifted by 0.33 us. Recognize.
  • the communication terminal apparatus 100 notifies the base station apparatus 2 of information that the pilot signal of the base station apparatus 2 is 0.33 us, as synchronization error information that is error information.
  • the base station device 2 that has received the synchronization loss information Based on the deviation information, it is possible to synchronize with the base station apparatus 1 by delaying the transmission timing of the pilot signal by 0.33 us so that there is no error. In this way, transmission timing can be synchronized between all adjacent base station apparatuses.
  • the measurement of the amount of synchronization deviation is performed only once by one communication terminal device 100, and the communication terminal device 100 at different locations is performed multiple times at different times to obtain an average, thereby increasing the accuracy of detecting the amount of synchronization deviation. be able to.
  • demodulating section 121 is configured with one circuit component. It is possible to reduce the circuit scale from / to J.
  • FIG. 11 is a diagram showing pilot signal transmission timing according to Embodiment 2 of the present invention.
  • the configuration of the communication terminal apparatus is the same as that of FIG. 1, and the configuration of the base station apparatus is the same as that of FIG.
  • Pilot scheduler section 204 stores a symbol for inserting a pilot signal in each frame of another base station apparatus that is another station, and stores and inserts a pilot signal of the other base station apparatus. Set the pilot signal transmission timing of the local station so that the pilot signal is inserted into a symbol different from the symbol. Then, pilot scheduler section 204 instructs multiplexing section 205 to multiplex transmission data and pilot signals at the set pilot signal transmission timing. Pilot scheduler section 204 corrects the pilot signal synchronization deviation based on the synchronization deviation information input from demodulation section 215.
  • transmission signal # 1101 is transmitted from base station apparatus 200-1 and transmission signal # 1102 is transmitted from base station apparatus 200-2.
  • Transmit signal # 1101 contains pilot signal # 1104 inserted in the second symbol from the first symbol of one radio frame # 1103, and transmit signal # 1102 contains the first symbol of one radio frame # 1103.
  • Pilot signal # 1105 is inserted into the i 1 (0 ⁇ i ⁇ m— 1) th symbol!
  • One radio frame # 1103 is composed of m symbols from “0” to “m-l”. 0 symbol is the first symbol.
  • Each transmission signal # 1101, # 1102 has k subcarriers having subcarrier numbers “1” to “k” arranged in the frequency axis direction.
  • the pilot scheduler unit 204 of the base station device 200-1 and the base station device 200-2 starts transmission of transmission signals at the same time t20, but the symbols into which the pilot signals are inserted are different.
  • the pilot signal of station apparatus 200-1 and the pilot signal of base station apparatus 200-2 do not overlap on the time axis.
  • the pilot signals of the base station apparatuses must be overlapped! / And can be received at the reception timing, so that demodulator 121 is configured with one circuit component.
  • the circuit scale can be reduced.
  • the communication terminal apparatus since radio frames of a plurality of base station apparatuses are transmitted at the same timing, the communication terminal apparatus transmits an ACK and a retransmission request to each base station apparatus at the same timing. And the processing load due to the retransmission process can be reduced.
  • FIG. 12 and 13 are diagrams showing the transmission timing of the nolot signal according to Embodiment 3 of the present invention.
  • the configuration of the communication terminal apparatus is the same as that in FIG. 1, and the configuration of the base station apparatus is the same as that in FIG.
  • Pilot scheduler section 204 controls a position where a pilot signal is inserted among positions specified by subcarrier numbers l to k and the number of symbols from the head of each frame. Pilot scheduler section 204 stores a position specified by subcarrier numbers l to k and the number of symbols from the head of the frame in each frame of another base station apparatus which is another station. Then, set the pilot signal transmission timing of the local station so that the pilot signal is inserted at a position different from the position where the pilot signal of other base station equipment is inserted. Then, the no-lot scheduler unit 204 instructs the multiplexing unit 205 to insert the pilot signal at the set position and multiplex the transmission data and the pilot signal. Also, pilot scheduler section 204 corrects the pilot signal synchronization deviation based on the synchronization deviation information input from demodulation section 215.
  • the horizontal axis is time, and the vertical axis is frequency.
  • Fig. 12 Odor The transmission signal # 1201 is transmitted from the base station apparatus 200-1, and the transmission signal # 1202 is transmitted from the base station apparatus 200-2. Transmission signal # 1202 shifts the pilot signal and transmission data inserted at each position specified by the subcarrier number of transmission signal # 1201 and the number of symbols from the beginning of the frame by one symbol in the time axis direction. It is a thing. That is, in transmission signal # 1201, pilot signal # 1204 is inserted into subcarrier number 1 etc. of the first symbol of one radio frame # 1203, and pilot signal is sent to subcarrier number 3 etc. of the second symbol from the first symbol # 1205 is inserted.
  • pilot signal # 1206 is inserted in subcarrier number 10 etc. of the first symbol of 1 radio frame # 1203 in transmission signal # 1202, and pilot signal is assigned to subcarrier number 1 etc. of the second symbol from the first symbol # 1207 is purchased. In this way, control is performed so that the pilot signal is inserted into a different subcarrier number for each symbol.
  • one radio frame # 1203 includes m symbolers from “0” to “m ⁇ 1”, and 0 symbol is the head symbol.
  • Each transmission signal # 1201, # 1202 includes k subcarriers having subcarrier numbers from “l” to “k” arranged in the frequency axis direction.
  • Pilot scheduler section 204 of base station apparatus 200-1 and base station apparatus 200-2 determines the power of starting transmission of transmission signals simultaneously at time t30, subcarrier numbers l to k, and the number of symbols from the beginning of the frame. Since the pilot signal is inserted in the position specified by the base station apparatus 200-1 and the base station apparatus 200-2, the position of the pilot signal is different between the base station apparatus 200-1 and the base station apparatus 200. — The pilot signal of 2 does not overlap at the position specified by the subcarrier number and the number of symbols from the beginning of the frame.
  • transmission signal # 1301 is transmitted from base station apparatus 200-1
  • transmission signal # 1302 is transmitted from base station apparatus 200-2
  • Transmission signal # 1302 is a 1-subband signal in the frequency axis direction that contains the pilot signal and transmission data inserted at each position specified by the subcarrier number of transmission signal # 1301 and the number of symbols from the beginning of the frame. It is shifted by the carrier number.
  • the pilot signal # 1304 is inserted, and the pilot signal # 1305 is inserted into the subcarrier number 3 etc. of the second symbol from the first symbol.
  • pilot signal # 1306 is inserted in subcarrier number 2 etc.
  • pilot signal # 1307 is inserted. In this way, control is performed so that the pilot signal is inserted into a different subcarrier number for each symbol.
  • One radio frame # 1303 is composed of m symbols from “0” to “m ⁇ 1”, and the 0 symbol is the head symbol.
  • Each transmission signal # 1201, # 1202 has k subcarriers having subcarrier numbers from “l” to “k” arranged in the frequency axis direction.
  • Pilot scheduler section 204 of base station apparatus 200-1 and base station apparatus 200-2 determines the power of starting transmission of transmission signals simultaneously at time t35, subcarrier numbers l to k, and the number of symbols from the beginning of the frame. Since the pilot signal is inserted in the position specified in (1) and the position is different, the pilot signal of the base station apparatus 200-1 and the pilot signal and power of the base station apparatus 200-2 are subcarrier numbers and frame Do not overlap at the position specified by the number of symbols from the beginning.
  • the demodulation unit 121 is configured with one circuit component. By being able to configure, the circuit scale can be reduced. Further, according to the third embodiment, since radio frames of a plurality of base station apparatuses are transmitted at the same timing, the communication terminal apparatus transmits an ACK and a retransmission request to each base station apparatus at the same timing. And the processing load due to the retransmission process can be reduced.
  • FIG. 14 is a diagram showing pilot signal transmission timing according to Embodiment 4 of the present invention.
  • the configuration of the communication terminal apparatus is the same as that of FIG. 1, and the configuration of the base station apparatus is the same as that of FIG.
  • Pilot scheduler section 204 stores a subcarrier number into which a slot signal is inserted in each frame of another base station apparatus that is another station, and stores the pilot signal of the other base station apparatus. Insert a subcarrier number different from the subcarrier number to the pie mouth The transmission timing of the pilot signal of the own station is set so that the signal is inserted.
  • pilot scheduler section 204 instructs multiplexing section 205 to multiplex transmission data and pilot signals by inserting a pilot signal into the subcarrier of the set subcarrier number. Further, the pilot scheduler unit 204 corrects the pilot signal synchronization error based on the synchronization error information input from the demodulation unit 215.
  • the horizontal axis is time, and the vertical axis is frequency.
  • a transmission signal # 1401 is transmitted from the base station apparatus 200-1, and a transmission signal # 1402 is transmitted from the base station apparatus 200-2.
  • Pilot signal # 1404 is inserted in subcarrier number 1 etc. of 1 radio frame # 1403 in transmission signal # 1401, and pilot is sent in subcarrier number 2 etc. of 1 radio frame # 1403 in transmission signal # 1402
  • Signal # 1406 is inserted.
  • One radio frame # 1403 is composed of m symbols from “0” to “m ⁇ 1”, and 0 symbol is the head symbol.
  • Each transmission signal # 1401 and # 1402 is composed of k subcarriers having subcarrier numbers from “l” to “k” arranged in the frequency axis direction.
  • Pilot scheduler section 204 of base station apparatus 200-1 and base station apparatus 200-2 starts transmission of transmission signals simultaneously at time t40, but the subcarrier number into which the pilot signal is inserted is assigned to each base station. Since the apparatus differs, the pilot signal of base station apparatus 200-1 and the pilot signal of base station apparatus 200-2 do not overlap on the frequency axis.
  • demodulating section 121 can be configured with one circuit component. As a result, the circuit scale can be reduced. Further, according to the fourth embodiment, since radio frames of a plurality of base station apparatuses are transmitted at the same timing, the communication terminal apparatus transmits an ACK and a retransmission request to each base station apparatus at the same timing. It can be done.
  • the scramble code reception timing memory 110 and the scramble code memory 111 are provided separately.
  • the present invention is not limited to this, and the scramble code reception timing memory 110 is provided. And scramble code memory 111 into one memory You may do it.
  • the communication terminal apparatus, base station apparatus, and reception method according to the present invention are particularly suitable for use in a one-frequency repetition cellular system using OF CDM in the downlink.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 1つの回路部品にて複数個のアクティブセットの測定を行うことができることにより、回路規模を小さくすることができる通信端末装置。この装置では、同期基地局切替え器(105)は、各基地局装置の受信信号を逆拡散処理するタイミングで、逆拡散処理される基地局装置の周波数ずれ情報、受信タイミング情報及びスクランブルコード情報が出力されるように切替えタイミング信号を出力する。スクランブルコード受信タイミング検出回路(106)は、パイロット信号の受信タイミングを検出する。スクランブルコード同定回路(107)は、スクランブルコードを検出する。スクランブルコード受信タイミングメモリ(110)は、受信タイミング情報を基地局装置毎に記憶する。スクランブルコードメモリ(111)は、スクランブルコード情報を基地局装置毎に記憶する。復調回路(112)は、受信タイミング情報及びスクランブルコード情報に基づいて受信信号を復調する。

Description

明 細 書
通信端末装置、基地局装置及び受信方法
技術分野
[0001] 本発明は、通信端末装置、基地局装置及び受信方法に関し、特に下りリンクに OF CDM (Orthogonal Frequency and Code Division Multiplexing;直交周波数 ·符号分 割多重接続)を使用した 1周波数繰り返しセルラーシステムにおける通信端末装置、 基地局装置及び受信方法に関する。
背景技術
[0002] 従来の移動体セルラー通信システムにお 、て、拡散符号を使用した OFDM (Orth ogonal Frequency Division Multiplexing)、即ち OFCDMにおける 1周波数繰り返し セルラーシステムを実現する場合には、互いのセルの電波をスクランプリングコードを 使用して雑音化し、受信側にて逆拡散で信号を分離することで干渉量を低減するこ とができるものが知られている(例えば、特許文献 1)。また、基地局装置のセル半径 が有限である移動体セルラーシステムでは、移動局は、移動に伴って基地局装置を 順次切替える必要があるので、切替え候補の基地局装置を知る手段が必要である。 そこで、移動局は、移動局との通信圏内にある基地局装置から、周辺に存在する他 の基地局装置の情報を報知情報として報知してもらう方法等により、切替え候補の周 辺の基地局装置を知ることができる。そして、移動局は、切替え候補の基地局装置の 電波を実際に受信して電波伝播状況を測定することにより、切替え候補の基地局へ ハンドオーバーすることが可能力否かを判断している。このように、セル境界付近で ハンドオーバーをスムーズに行うために、移動局は、事前にハンドオーバー先として 予測される基地局装置 (以下「アクティブセット」と記載する)の受信状態を測定する。
[0003] セルラーシステムにお 、て、各セルでは、拡散符号を用いて、送信側では拡散処 理するとともに受信側では逆拡散処理する符号拡散方式 (CDMA)が用いられている 。符号拡散方式を用いる場合には、各セルで同一周波数を使用しても、セル間の信 号が直交性を持つことができるため、セル間で同一周波数を繰り返し使用することが できる。このようなシステムは、 1周波数繰り返しセルラーシステムと呼ばれる。 [0004] また、 OFDM変調方式などのマルチキャリア伝送方式では、送信側で情報信号を 複数のサブキャリアで変調し、マルチノ ス遅延波による波形歪みを低減する目的で 送信信号にガードインターバルを挿入する。
[0005] また、移動体通信では、基地局装置と移動局との間の移動速度に応じたドップラー 周波数による周波数ずれを起こす。また、ドップラー周波数は、一つの移動局と各基 地局装置との間では各々異なる周波数になる。基地局装置と移動局との相対速度を V、光速を C及び通信搬送波周波数を fOとした場合、ドップラー周波数 fdは、 fd= (V X fO) ZCにより求めることができる。例えば、 4GHzの搬送波において相対速度 300 kmZhの場合、ドップラー周波数による周波数のずれは 1kHzを超える値となる。 2 つの基地局装置と移動局との相対速度において、一方の基地局装置と移動局との 相対速度が + 300kmZhであり、他方の基地局装置と移動局との相対速度が 30 OkmZhの場合には、移動局における 2つの基地局装置からの受信電波は 2kHz以 上の周波数ずれを生じる。
[0006] また、 OFDM受信装置において離散フーリエ変換を行う場合には、周波数が異な ると直交性が崩れて復調精度が落ちる。従って、 OFDM受信装置は、 OFDM受信 装置の RF部にて目的のセルの周波数に引き込むことにより、基地局装置と移動局と の間で生じるドップラー周波数等を含めた受信電波の周波数ずれを補正しなければ ならない。また、移動局におけるスクランブルコードの受信タイミングを検出する回路 は、各アクティブセットのパイロット信号毎に FFT (高速フーリエ変換)タイミングを設 定して、各ノ ィロット信号の受信タイミングを検出する。この際、全てのアクティブセッ トのパイロット信号の受信タイミングを 1つの回路で検出する場合で、かつ各ァクティ ブセットのパイロット信号が時間的に重なった状態で受信された場合に、ある 1つのァ クティブセットの周波数ずれが補正された場合には、補正後の周波数にて、異なる周 波数ずれを持つ他のアクティブセットの周波数ずれを補正することはできな 、。この 結果、他のアクティブセットのパイロット信号の受信タイミングは、正しく検出されない 。なぜならば、他のアクティブセットのノ ィロット信号は、周波数のずれた状態で FFT することになり、直交性が崩れている力 である。従って、 OFCDMの 1周波数繰り返 しセルラーシステムを実現する場合、アクティブセットの測定を行うには、アクティブセ ットごとの周波数引き込み回路及び同期タイミングを検出する FFT回路が必要になる 。ここで、スクランブルコードとは、長周期拡散符号であり、セルごとに異なる符号であ るとともにセル間で互いに直交する符号である。
[0007] 現在、第 3世代移動体通信セルラーシステムでは、移動局は最大 8個のアクティブ セットの受信信号の SIR測定を行って 、る。 OFCDMを用いたセルラーシステムにお いて、第 3世代移動体通信セルラーシステムと同様に、複数のアクティブセットの同期 信号の受信が移動局に求められる場合、移動局には周波数引き込み回路力 復調 回路までを複数並列に設ける必要がある。
特許文献 1 :特開 2003— 152681号公報
発明の開示
発明が解決しょうとする課題
[0008] し力しながら、従来の装置においては、各アクティブセットの同期信号を受信するた めに、周波数引き込み用の局部発振器、 AZDコンバータ及び FFT回路等が複数 必要になるので、回路規模が大型化してしまうという問題がある。
[0009] 本発明の目的は、 1つの回路部品にて複数個のアクティブセットの測定を行うことが できることにより、回路規模を小さくすることができる通信端末装置、基地局装置及び 受信方法を提供することである。
課題を解決するための手段
[0010] 本発明の通信端末装置は、複数の基地局装置から送信された基地局装置毎に固 有のスクランブルコードが乗算された信号を受信するとともに、前記信号に含まれる 各基地局装置力 重ならないタイミングで送信された各パイロット信号を異なるタイミ ングで受信する受信手段と、前記受信手段にて異なるタイミングにて受信した各基地 局装置の前記パイロット信号の受信タイミングと前記スクランブルコードとを検出する 受信同期手段と、前記受信同期手段にて検出された前記受信タイミング及び前記ス クランブルコードを基地局装置毎に記憶する記憶手段と、前記記憶手段に記憶され て ヽる前記受信タイミング及び前記スクランブルコードに基づ ヽて、前記受信手段に て受信した各基地局装置の前記信号を逆拡散処理した後に復調する復調手段と、 前記復調手段にて各基地局装置の前記信号が逆拡散処理されるタイミングで前記 記憶手段に記憶されている逆拡散処理される基地局装置の前記受信タイミング及び 前記スクランブルコードが前記復調手段へ出力されるように出力を切り替える切替手 段と、を具備する構成を採る。
[0011] 本発明の基地局装置は、パイロット信号が他局から送信されるパイロット信号とは重 ならな 、タイミングで送信されるように前記パイロット信号の送信タイミングを設定する ノ ィロットスケジューラ手段と、前記パイロットスケジューラ手段にて前記送信タイミン グが設定された前記パイロット信号を含む送信信号に対して各局固有のスクランブル コードを乗算する乗算手段と、前記パイロットスケジューラ手段にて設定された前記 送信タイミングで前記パイロット信号が送信されるように前記乗算手段にて前記スクラ ンブルコードが乗算された前記送信信号を送信する送信手段と、を具備する構成を 採る。
[0012] 本発明の受信方法は、パイロット信号を含む信号に対して基地局装置毎に固有の スクランブルコードを乗算するステップと、各基地局装置から送信される前記パイロッ ト信号が互 、に重ならな 、タイミングで送信されるように前記パイロット信号の送信タ イミングを設定するステップと、設定された前記送信タイミングで前記パイロット信号が 送信されるように、前記スクランブルコードを乗算した前記パイロット信号を含む信号 を各基地局装置が送信するステップと、通信端末装置が、前記パイロット信号を含む 信号を受信するとともに各基地局装置力 送信された前記パイロット信号を異なるタ イミングで受信するステップと、異なるタイミングで受信した前記パイロット信号の受信 タイミングと前記スクランブルコードとを基地局装置毎に検出するステップと、検出さ れた前記受信タイミング及び前記スクランブルコードを基地局装置毎に記憶するステ ップと、記憶されている前記受信タイミング及び前記スクランブルコードの内、復調さ れる基地局装置の前記受信タイミング及び前記スクランブルコードを選択するステツ プと、選択された前記受信タイミング及び前記スクランブルコードに基づいて、受信し た前記パイロット信号を含む信号を基地局装置毎に逆拡散処理した後に復調するス テツプと、を具備するようにした。
発明の効果
[0013] 本発明によれば、 1つの回路部品にて複数個のアクティブセットの測定を行うことが できることにより、回路規模を小さくすることができる。
図面の簡単な説明
[0014] [図 1]本発明の実施の形態 1に係る通信端末装置の構成を示すブロック図
[図 2]本発明の実施の形態 1に係る基地局装置の構成を示すブロック図
[図 3]本発明の実施の形態 1に係るスクランブルコード受信タイミング検出回路の構成 を示すブロック図
[図 4]本発明の実施の形態 1に係るスクランブルコード同定回路の構成を示すブロッ ク図
[図 5]本発明の実施の形態 1に係る基地局装置の動作を説明する図
[図 6]本発明の実施の形態 1に係るパイロット信号の送信タイミングを示す図
[図 7]本発明の実施の形態 1に係る lOFDMシンボルを示す図
[図 8]本発明の実施の形態 1に係る通信端末装置の動作を説明する図
[図 9]本発明の実施の形態 1に係るパイロット信号の受信タイミング及び検出状態を 示す図
[図 10]本発明の実施の形態 1に係るパイロット信号の受信タイミング及び検出状態を 示す図
[図 11]本発明の実施の形態 2に係るパイロット信号の送信タイミングを示す図
[図 12]本発明の実施の形態 3に係るパイロット信号の送信タイミングを示す図
[図 13]本発明の実施の形態 3に係るパイロット信号の送信タイミングを示す図
[図 14]本発明の実施の形態 4に係るパイロット信号の送信タイミングを示す図 発明を実施するための最良の形態
[0015] 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
[0016] (実施の形態 1)
図 1は、本発明の実施の形態 1に係る通信端末装置 100の構成を示すブロック図 である。 AZD変換部 101、局部発振器 102、乗算器 103及び帯域フィルタ 104は、 ダウンコンバーターである周波数変換部 118 (受信手段)を構成する。また、スクラン ブルコード受信タイミング検出回路 106及びスクランブルコード同定回路 107は、受 信同期部 119を構成する。また、周波数ずれメモリ 109、スクランブルコード受信タイ ミングメモリ 110及びスクランブルコードメモリ 111は、メモリ切替え部 120を構成する 。また、受信同期部 119、周波数測定部 108、復調回路 112及びメモリ切替え部 12 0は、復調部 121を構成する。また、同期基地局切替え器 105、局部発振器 113、周 波数変換部 118及び復調部 121は、受信装置 122を構成する。
[0017] AZD変換部 101は、入力した受信信号をアナログ信号力もデジタル信号に変換し て乗算器 103へ出力する。ここで、 AZD変換部 101に入力した受信信号は、図示し な!、アンテナにて受信して入力したものであり、マルチキャリア高周波数 (以下「RF」 と記載する)信号またはマルチキャリア中間周波数 (以下「IF」と記載する)信号である
[0018] 局部発振器 102は、例えばダイレクトデジタルシンセサイザ (DDS)を用いた数値 制御発振器(NCO : Numerically Controlled Oscillator)であり、目的のセルの周波数 を引き込むために、後段の周波数ずれメモリ 108から入力した周波数ずれの情報で ある周波数ずれ情報に基づいて所定の周波数の信号を生成して乗算器 103へ出力 する。マルチキャリア入力周波数期待値 fcに対してドップラー周波数等の周波数ず れ fdが生じた信号が実際に受信した受信信号であるが、局部発振器 102は、実際の 受信信号がマルチキャリア入力周波数期待値 fcに周波数同期することができるように 、実際の受信信号の周波数ずれ fdを補正する周波数の信号を生成する。
[0019] 乗算器 103は、 AZD変換部 101から入力した受信信号に対して、局部発振器 10 2から入力した信号を乗算してドップラー周波数等に起因する周波数ずれを補正して 帯域フィルタ 104へ出力する。
[0020] 帯域フィルタ 104は、乗算器 103から入力した受信信号の所定の帯域のみを通過 させるものであり、通過した所定の帯域の受信信号をスクランブルコード受信タイミン グ検出回路 106、スクランブルコード同定回路 107、周波数測定部 108及び復調回 路 112へ出力する。
[0021] 切替手段である同期基地局切替え器 105は、復調回路 112から入力した受信信号 に含まれている各基地局装置の報知情報より、各基地局装置のスクランブルコードの 情報及び各基地局装置のパイロット信号の送信タイミングの情報を抽出する。そして 、同期基地局切替え器 105は、抽出した送信タイミングの情報を用いて、各基地局 装置のパイロット信号の送信パターンを複製して記憶する。また、同期基地局切替え 器 105は、抽出した各基地局装置のスクランブルコードの情報より、復調回路 112で 復調する基地局装置の受信信号に対応するスクランブルコードを復調回路 112に出 力するように、スクランブルコードメモリ 111へ出力指示信号を出力する。また、同期 基地局切替え器 105は、記憶している各基地局装置のパイロット信号の送信パター ンより、各基地局装置の受信信号をスクランブルコードで逆拡散処理するタイミングを 推定し、推定した逆拡散処理するタイミングで、逆拡散処理される基地局装置の周波 数ずれ情報、受信タイミング情報及びスクランブルコード情報が出力されるように、周 波数ずれメモリ 109、スクランブルコード受信タイミングメモリ 110及びスクランブルコ 一ドメモリ 111へ、切替えタイミング信号を出力する。
[0022] スクランブルコード受信タイミング検出回路 106は、帯域フィルタ 104から入力した 受信信号より、各基地局装置のパイロット信号の受信タイミングを検出する。そして、 スクランブルコード受信タイミング検出回路 106は、検出した各基地局装置のパイロッ ト信号の受信タイミングの情報である受信タイミング情報を、スクランブルコード同定 回路 107及びスクランブルコード受信タイミングメモリ 110へ出力する。スクランブルコ ード受信タイミング検出回路 106は、処理を繰り返すことにより、最適な受信タイミング に収束させることができる。なお、スクランブルコード受信タイミング検出回路 106の 構成の詳細については後述する。
[0023] スクランブルコード同定回路 107は、帯域フィルタ 104から入力した受信信号及び スクランブルコード受信タイミング検出回路 106から入力した受信タイミング情報より、 各基地局装置のスクランブルコードを検出する。そして、スクランブルコード同定回路 107は、検出した各基地局装置のスクランブルコードの情報であるスクランブルコード 情報をスクランブルコードメモリ 111へ出力する。スクランブルコード同定回路 107は 、処理を繰り返すことにより、最適なスクランブルコードに収束させることができる。な お、スクランブルコード同定回路 107の構成の詳細については後述する。
[0024] 周波数測定部 108は、帯域フィルタ 104から入力した受信信号の周波数を測定す る。そして、周波数測定部 108は、測定した周波数と局部発振器 113から入力した基 準となる周波数とを比較して、測定した周波数と基準となる周波数との差である周波 数ずれ fdを検出する。そして、周波数測定部 108は、検出した周波数ずれ fdの情報 を周波数ずれ情報として周波数ずれメモリ 109へ出力する。
[0025] 周波数ずれメモリ 109は、周波数測定部 108から入力した周波数ずれ fdの周波数 ずれ情報を基地局装置毎に記憶する。そして、周波数ずれメモリ 109は、記憶してい る周波数ずれ情報の中から、同期基地局切替え器 105から入力した切替えタイミン グ信号にて指示された基地局装置の周波数ずれ情報を局部発振器 102へ出力する
[0026] 記憶手段であるスクランブルコード受信タイミングメモリ 110は、スクランブルコード 受信タイミング検出回路 106から入力した、パイロット信号の受信タイミング情報を基 地局装置毎に記憶する。そして、スクランブルコード受信タイミングメモリ 110は、記憶 している受信タイミング情報の中から、同期基地局切替え器 105から入力した切替え タイミング信号にて指示された基地局装置のスクランブルコード受信タイミング情報を 復調回路 112へ出力する。また、スクランブルコード受信タイミングメモリ 110は、記 憶している受信タイミング情報を所定のタイミングにて同期ずれ算出部 115へ出力す る。
[0027] 記憶手段であるスクランブルコードメモリ 111は、スクランブルコード同定回路 107 力も入力したスクランブルコード情報を基地局装置毎に記憶する。そして、スクランプ ルコードメモリ 111は、記憶しているスクランブルコード情報の中から、同期基地局切 替え器 105から入力した切替えタイミング信号にて指示された基地局装置のスクラン ブルコード情報を復調回路 112へ出力する。
[0028] 復調手段である復調回路 112は、スクランブルコード受信タイミングメモリ 110から 入力した受信タイミング情報及びスクランブルコードメモリ 111から入力したスクランプ ルコード情報に基づいて、帯域フィルタ 104から入力した受信信号を復調する。具体 的には、復調回路 112は、帯域フィルタ 104から入力した受信信号力もガードインタ 一バル (以下「GI」と記載する)期間を除去して FFT演算を行う。そして、復調回路 11 2は、スクランブルコード受信タイミングメモリ 110から入力した受信タイミング情報のタ イミングにて、スクランブルコードメモリ 111から入力したスクランブルコード情報のスク ランブルコードにて逆拡散処理を行う。さらに、復調回路 112は、あら力じめ記憶して いる既知のパターンの短周期拡散符号を用いて、受信信号を逆拡散処理し、逆拡散 処理した受信信号を、並列データ形式から直列データ形式に変換して復調及び復 号する。そして、復調回路 112は、復調及び復号した受信信号を同期基地局切替え 器 105へ出力するとともに受信データとして出力する。
[0029] 局部発振器 113は、基準となる周波数の信号を生成して、周波数測定部 108へ出 力する。また、局部発振器 113は、周波数変換部 118及び復調部 121全体の基準と なる周波数の信号を周波数変換部 118及び復調部 121へ出力する。
[0030] 位置情報取得部 114は、 GPSにて測定した自局の位置の情報である位置情報を 取得して、取得した位置情報を同期ずれ算出部 115へ出力する。
[0031] 同期ずれ算出部 115は、スクランブルコード受信タイミングメモリ 110から入力した 各基地局装置のパイロット信号の受信タイミング情報と、位置情報取得部 114から入 力した位置情報と、あらかじめ記憶している各基地局装置の位置の情報と、電波の 速度とに基づいて、基地局装置間のパイロット信号の受信タイミング差の基準値に対 する誤差である同期ずれを算出する。そして、同期ずれ算出部 115は、算出した同 期ずれの情報である同期ずれ情報を多重部 116へ出力する。なお、同期ずれを算 出する方法の詳細については後述する。
[0032] 多重部 116は、送信データと同期ずれ算出部 115から入力した同期ずれ情報とを 多重して変調部 117へ出力する。
[0033] 変調部 117は、多重部 116から入力した同期ずれ情報と送信データが多重された 信号を変調して、 RF信号または IF信号として出力する。変調部 117から出力された RF信号または IF信号は図示しな ヽアンテナより送信される。多重部 116及び変調部 117は、同期ずれ情報を基地局装置に通知する通知手段である。
[0034] 次に、基地局装置 200の構成にっ 、て、図 2を用いて説明する。図 2は、基地局装 置 200の構成を示すブロック図である。送信データ発生部 201、伝送路符号化部 20 2、データ変調部 203、パイロットスケジューラ部 204、多重部 205、直並列変換部 20 6、コピー部 207— l〜207—n (nはサブキャリア数)、短周期拡散符号生成器 208 及び乗算器 209— 1— 1〜209— n— q (qは任意の自然数)は、信号処理部 216— 1 〜216— r(rは任意の自然数)を構成する。また、合成部 210、スクランブルコード生 成器 211、乗算器 212— 1〜212— n、 IFFT部 213、 GI付加部 214及び信号処理 部 216— 1〜216— rは、送信装置 217を構成する。
[0035] 送信データ発生部 201は、報知情報を含む送信データを生成して伝送路符号ィ匕 部 202へ出力する。報知情報は、基地局装置 200が使用しているスクランブルコード の情報及び基地局装置 200におけるパイロット信号の送信タイミングの情報を含んで いる。
[0036] 伝送路符号化部 202は、送信データ発生部 201から入力した送信データを符号化 してデータ変調部 203へ出力する。
[0037] データ変調部 203は、伝送路符号ィ匕部 202から入力した送信データを変調して多 重部 205へ出力する。
[0038] パイロットスケジューラ部 204は、他局である他の基地局装置のパイロット信号の送 信タイミングを記憶しており、記憶して 、る他の基地局装置のノ ィロット信号の送信タ イミングと基準時間とに基づいて、他の基地局装置におけるパイロット信号の送信タ イミングと重ならないように、自局のノ ィロット信号の送信タイミングを設定する。そして 、 ノ ィロットスケジューラ部 204は、設定したパイロット信号の送信タイミングにてパイ ロット信号が送信されるように、多重部 205に対して出力を指示する。また、ノ ィロット スケジューラ部 204は、復調部 215から入力した同期ずれ情報に基づいて、ノイロッ ト信号の他の基地局装置との同期ずれを補正する。なお、パイロット信号の送信タイ ミングを設定する方法にっ 、ては後述する。
[0039] 多重部 205は、パイロットスケジューラ部 204の指示に従って、パイロット信号と送信 データとを多重して直並列変換部 206へ出力する。
[0040] 直並列変換部 206は、多重部 205から入力した多重されたデータを直列データ形 式から並列データ形式に変換してコピー部 207— l〜207—nへ出力する。
[0041] コピー部 207— 1〜207— nは、直並列変換部 206から入力したデータを複製して 乗算器 209— 1— 1〜209— n— qへ出力する。
[0042] 短周期拡散符号生成器 208は、短周期拡散符号を生成して乗算器 209— 1 1〜 209—n—qへ出力する。
[0043] 乗算器 209— 1 1〜209— n— qは、コピー部 207— 1〜207— nから入力したデ 一タに短周期拡散符号生成器 208から入力した短周期拡散符号を乗算して拡散処 理し、拡散処理後のデータを合成部 210へ出力する。
[0044] 合成部 210は、各信号処理部 216— l〜216—mの乗算器 209— l— l〜209—n
- qから入力した拡散処理後のデータを合成して乗算器 212— 1〜212— nへ出力 する。
[0045] スクランブルコード生成器 211は、各基地局装置に固有のスクランブルコードを生 成して、生成したスクランブルコードを乗算器 212— l〜212—nへ出力する。
[0046] 乗算器 212— 1〜212— nは、合成部 210から入力したデータにスクランブルコード 生成器 211から入力したスクランブルコードを乗算して IFFT部 213へ出力する。
[0047] IFFT部 213は、乗算器 212— 1〜212— nから入力したデータを IFFT (逆高速フ 一リエ変換)処理して GI付加部 214へ出力する。
[0048] GI付加部 214は、 IFFT部 213から入力したデータに GI期間を付加して出力する。
そして、 GI付加部 214から出力された送信信号は、図示しないアップコンバータであ る周波数変換部 (送信手段)で周波数変換されて、マルチキャリア高周波数 (RF)信 号または中間周波数 (IF)信号として図示しな!ヽアンテナから送信される。
[0049] 復調部 215は、図示しないアンテナにて受信した高周波数 (RF)信号または中間 周波数 (IF)信号を復調することにより、受信信号に含まれている同期ずれ情報を抽 出する。そして、復調部 215は、抽出した同期ずれ情報をパイロットスケジューラ部 2 04へ出力するとともに、復調後の復調データを出力する。
[0050] 次に、スクランブルコード受信タイミング検出回路 106の構成の詳細について、図 3 を用いて説明する。図 3は、スクランブルコード受信タイミング検出回路 106の構成を 示すブロック図である。同期信号レプリカ生成器 304及び相関器 305は、相関演算 部 309— 1〜309 s (sは任意の自然数)を構成する。また、 GI除去部 302、 FFT部 303、加算器 306、相関値とタイミングのメモリ 307及び相関演算部 309— 1〜309 sは、同期信号相関検出回路 310— 1〜310 sを構成する。相関演算部 309— 1 〜309 sは、同期チャネルが多重されているサブキャリア数設けられる。また、同期 信号相関検出回路 310— 1〜310— sは、 FFTタイミング設定回路 301にて設定され る FFTタイミング毎に設けられる。 [0051] FFTタイミング設定回路 301は、あら力じめ決められている FFTタイミングを設定し て、設定した FFTタイミングの情報である FFTタイミング情報を GI除去部 302へ出力 する。
[0052] GI除去部 302は、 FFTタイミング設定回路 301から入力した FFTタイミング情報の FFTタイミングで、帯域フィルタ 104から入力した受信信号に含まれる GI期間を取り 除く。そして、 GI除去部 302は、 GI期間を取り除いた後の受信信号を FFT部 303へ 出力する。
[0053] FFT部 303は、 GI除去部 302から入力した受信信号の FFTウィンドウ内を FFT演 算する。そして、 FFT部 303は、パイロット信号が挿入されているシンボルの FFT演 算した結果を相関器 305へ出力する。
[0054] 同期信号レプリカ生成器 304は、パイロット信号に含まれて 、る既知パターンの同 期信号を生成し、生成した同期信号を相関器 305へ出力する。
[0055] 相関器 305は、 FFT部 303から入力した FFT演算した結果と同期信号レプリカ生 成器 304から入力した同期信号との相関演算を行う。そして、相関器 305は、相関演 算結果を加算器 306へ出力する。
[0056] 加算器 306は、相関器 305から入力した相関演算結果を加算して相関値とタイミン グのメモリ 307へ出力する。
[0057] 相関値とタイミングのメモリ 307は、加算器 306から入力した相関演算結果の加算 結果を記憶する。そして、相関値とタイミングメモリ 307は、記憶している相関演算結 果の加算結果の中から、タイミング検出回路 308にて選択された加算結果をタイミン グ検出回路 308へ出力する。
[0058] タイミング検出回路 308は、相関値とタイミングのメモリ 307に記憶されている相関 演算結果の加算結果の中から、最も大きい相関値が得られたタイミングをパイロット 信号の受信タイミングとして検出する。そして、タイミング検出回路 308は、検出した 受信タイミングの情報である受信タイミング情報をスクランブルコード同定回路 107及 びスクランブルコード受信タイミングメモリ 110へ出力する。この時、タイミング検出回 路 308は、基地局装置毎に受信タイミングを検出するとともに、基地局装置毎の受信 タイミング情報をスクランブルコード同定回路 107及びスクランブルコード受信タイミン グメモリ 110へ出力する。
[0059] 次に、スクランブルコード同定回路 107の構成の詳細について、図 4を用いて説明 する。図 4は、スクランブルコード同定回路 107の構成を示すブロック図である。
[0060] GI除去部 401は、スクランブルコード受信タイミング検出回路 106から入力した受 信タイミング情報の受信タイミングで、帯域フィルタ 104から入力した受信信号に含ま れる GI期間を除去して FFT部 402へ出力する。
[0061] FFT部 402は、 GI除去部 401から入力した受信信号を FFTウィンドウ内にて FFT 演算する。そして、 FFT部 402は、 FFT演算結果を相関器 404— 1〜404— sへ出 力する。
[0062] スクランブルコードレプリカ生成器 403は、スクランブルコード受信タイミング検出回 路 106から入力した受信タイミング情報の受信タイミングで、各基地局装置の既知パ ターンであるスクランブルコードを生成して、生成したスクランブルコードを相関器 40 4—l〜404— sへ出力する。
[0063] 相関器 404— 1〜404— sは、 FFT部 402から入力した FFT演算結果とスクランプ ルコードレプリカ生成器 403から入力したスクランブルコードとの相関演算を行う。そ して、相関器 404— 1〜404— sは、相関演算結果を加算器 405へ出力する。
[0064] 加算器 405は、相関器 401—1〜404—nから入力した相関演算結果を加算して 相関値とコード番号のメモリ 406へ出力する。
[0065] 相関値とコード番号のメモリ 406は、加算器 405から入力した相関演算結果の加算 結果を記憶する。そして、相関値とコード番号メモリ 406は、記憶している相関演算結 果の加算結果の中から、スクランブルコード検出回路 407にて選択された加算結果 をスクランブルコード検出回路 407へ出力する。
[0066] スクランブルコード検出回路 407は、相関値とコード番号のメモリ 406に記憶されて V、る相関演算結果の加算結果の中から、最も大き!/、相関値が得られたスクランブル コードを選択する。そして、スクランブルコード検出回路 407は、選択したスクランプ ルコードの情報であるスクランブルコード情報をスクランブルコードメモリ 111へ出力 する。この時、スクランブルコード検出回路 407は、基地局装置毎にスクランブルコー ドを検出するとともに、基地局装置毎のスクランブルコードをスクランブルコードメモリ 111へ出力する。
[0067] 次に、通信端末装置 100及び基地局装置 200の動作について説明する。
[0068] 最初に、図 5 (a)に示すように、送信データ発生部 201より直列データ形式にて出 力された送信データ # 501は、伝送路符号化部 202にて符号化され、データ変調部 203にて変調されて多重部 205に入力する。また、パイロットスケジューラ部 204より 直列データ形式にて出力されたパイロット信号 # 502は、多重部 205に入力する。そ して、ノ ィロットスケジューラ部 204は、パイロット信号の送信タイミングを設定する。
[0069] 図 6は、パイロットスケジューラ部 204が設定するパイロット信号の送信タイミングの 一例を示すものである。図 6において、横軸が時間であり、縦軸が周波数である。図 6 において、送信信号 # 601は基地局装置 200— 1から送信されるものであり、送信信 号 # 602は基地局装置 200— 2から送信されるものであるとともに送信信号 # 603は 基地局装置 200— p (pは 2以上の任意の自然数)力も送信されるものである。なお、 基地局装置 200—1、 200— 2、 200— pは各々異なる基地局装置であるとともに、図 2と同一構成を有する。送信信号 # 601には、 1無線フレーム # 607の先頭シンボル にパイロット信号 # 604が挿入されており、送信信号 # 602には、 1無線フレーム # 6 08の先頭シンボルにパイロット信号 # 605が挿入されているとともに、送信信号 # 60 3には、 1無線フレーム # 609の先頭シンボルにパイロット信号 # 606が挿入されて いる。また、 1無線フレーム # 607、 # 608、 # 609は、「0」〜「! n— 1」までの m個の シンボル力も構成されており、 0シンボルが先頭シンボルである。また、各送信信号 # 601、 # 602、 # 603は、「l」〜「k」までのサブキャリア番号を有する k個のサブキヤリ ァが周波数軸方向に配列して 、る。
[0070] 基地局装置 200— 1のパイロットスケジューラ部 204は、時刻 tlに送信信号の送信 を開始する。これにより、パイロット信号 # 604は、時刻 tlに送信される。また、基地 局装置 200— 2のパイロットスケジューラ部 204は、時刻 t2に送信信号の送信を開始 する。これにより、パイロット信号 # 605は、時刻 t2に送信される。ここで、時刻 tlから 時刻 t2までに経過した時間は、 1シンボルの時間 # 610である。また、基地局装置 2 00— pのパイロットスケジューラ部 204は、時刻 t3に送信信号の送信を開始する。こ れにより、ノ ィロット信号 # 606は、時刻 t3に送信される。ここで、時刻 tlから時刻 t3 までに経過した時間は、 2シンボル以上でかつ mシンボル未満の時間 # 611である。
[0071] 次に、多重部 205は、送信信号の各フレームの先頭シンボルにパイロット信号が揷 入されるようにパイロット信号と送信データとを多重して送信信号を生成する。そして 、多重部 205は、パイロットスケジューラ部 204にて設定された図 6に示すようなタイミ ングで送信されるように、パイロット信号と送信データとを多重して送信信号を生成し て出力する。
[0072] 次に、図 5 (b)に示すように、直並列変換部 206は、送信信号を直列データ形式か ら並列データ形式に変換する。次に、送信信号は、コピー部 207— 1〜207— nにて 複製されて、乗算器 209— 1— 1〜209— n— qで短周期拡散符号と乗算されること により拡散処理される。図 5 (c)は、拡散処理された送信信号を示す図である。
[0073] 次に、拡散処理された送信信号は、合成部 210にて合成されるとともに、乗算器 21 2— l〜212—nにてスクランブルコードと乗算され、 IFFT部 213にて IFFT処理され る。そして、 IFFT処理された送信信号は、 GI付加部 214にて GI期間が付加される。 図 5 (d)は、 IFFTされて GI期間が付加された送信信号を示す図であり、送信データ とパイロット信号とが時間軸上に直列に配列される。次に、基地局装置 200は、図 5 ( d)に示す送信信号を送信する。
[0074] 図 7は、基地局装置 200から送信される lOFDMシンボル # 701の送信信号を示 すものである。 lOFDMシンボル # 701は、有効シンボル長 # 702に GI期間 # 703 を付カ卩したものである。 GI期間 # 703は、有効シンボル長 # 702の後半の一部のコ ピーを先頭に付加したものである。
[0075] 次に、基地局装置 200から送信された、図 8 (a)に示す信号を受信した通信端末装 置 100は、 AZD変換部 101にて受信信号を AZD変換し、乗算器 103にてドッブラ 一周波数等に起因する周波数ずれを補正して、帯域フィルタにて所定の帯域のみ通 過させる。次に、通信端末装置 100は、スクランブルコード受信タイミング検出回路 1 06及びスクランブルコード同定回路 107にて、受信信号の lOFDMシンボル内の任 意の有効シンボル長連続した区間である FFTウィンドウ # 704内を FFTして、各基 地局装置 200のパイロット信号の受信タイミング及びスクランブルコードを検出する。 ノ ィロット信号の受信タイミング及びスクランブルコードを検出する際には、有効シン ボル区間が干渉を受けないように FFTタイミングを選択するとともに、送信周波数と同 じ周波数でかつ送信側と同じ有効シンボル時間で FFTする必要がある。なお、 lOF DMシンボルにおいて、 FFTウィンドウ # 704以外は FFT演算に使用されないので、 FFTウィンドウ # 704以外に妨害及び干渉を含んで 、ても FFT演算結果には影響し ない。
[0076] また、通信端末装置 100は、周波数測定部 108にて、測定した周波数と局部発振 器 113から入力した信号の基準となる周波数とを比較して、測定した周波数と局部発 振器 113から入力した信号の周波数との差である周波数ずれ fdを検出する。
[0077] 次に、通信端末装置 100は、周波数測定部 108にて測定した周波数のずれ fdを周 波数ずれ情報として周波数ずれメモリ 109にて基地局装置 200毎に記憶し、スクラン ブルコード受信タイミング検出回路 106にて検出したノ ィロット信号の受信タイミング をスクランブルコード受信タイミングメモリ 110にて基地局装置 200毎に記憶するとと もに、スクランブルコード同定回路 107にて検出したスクランブルコードをスクランプ ルコードメモリ i l lにて基地局装置 200毎に記憶する。
[0078] 次に、通信端末装置 100は、パイロット信号の受信タイミング及びスクランブルコー ドに基づいて、復調回路 112にて受信信号の復調を行う。この際、通信端末装置 10 0は、同期基地局切替え器 105にて、図 6に示すパイロット信号の送信パターンを複 製して記憶する。例えば、同期基地局切替え器 105は、図 6に示すように、時刻 tlで 基地局装置 200— 2のパイロット信号 # 604を、時刻 t2で基地局装置 200— 2のパイ ロット信号 # 605を復調するような送信パターンを複製して記憶するする。そして、同 期基地局切替え器 105は、記憶している送信パターンに基づいて、復調回路 112で 各基地局装置の信号が復調されるタイミングを推定し、推定した各基地局装置の信 号が復調されるタイミングで、スクランブルコード受信タイミングメモリ 110に記憶され て 、る復調される基地局装置 200のパイロット信号の受信タイミング、及びスクランプ ルコードメモリ i l lに記憶されて 、る復調される基地局装置 200のスクランブルコード 力 復調回路 112へ出力されるように、切替タイミング信号にて切り替えを制御する。 復調回路 112における復調処理は、復調回路 112にて、受信信号から GI期間を除 去するとともに受信信号を FFT演算し、その後に短周期拡散符号及びスクランブル コードで逆拡散処理する。これにより、受信信号は、図 8 (b)に示す状態になる。さら に、復調回路 112にて、受信信号を並列データ形式力 直列データ形式に変換する 。これにより、受信信号は、図 8 (c)に示す状態になる。そして、復調回路 112は、図 8 (c)を受信データとして出力する。
[0079] 次に、各基地局装置から送信されるパイロット信号の送信タイミングの設定の詳細 について、図 9及び図 10を用いて説明する。図 9及び図 10は、パイロット信号の受信 タイミング及びパイロット信号の検出の状態を示す図である。
[0080] 各基地局装置 200におけるパイロット信号の送信タイミングの差は、最小分解能で ある lOFDMシンボル長以上の時間に設定すれば、各基地局装置 200のパイロット 信号が重ならな 、ようにすることができる。基地局装置 200間で OFDMシンボルの送 信信号を送信する場合、タイミングずれが生じる場合を想定する。 GI期間を付加した OFDMは、復調時には FFTウィンドウ以外のデータである GI期間のデータは破棄さ れる。従って、通信端末装置 100は、基地局装置 200間の受信タイミング差力この GI 期間以内であれば、互 、の基地局装置 200の有効シンボル長を時間分割処理で F FTすることが可能になる。例えば、図 9において、基地局装置 900— 1のパイロット信 号の lOFDMシンボル長 # 901と、基地局装置 900— 2のパイロット信号の lOFD Mシンボル長 # 902が時間軸上で重なる場合でも、基地局装置 900— 1の lOFDM シンボル長 # 901における FFTウィンドウ # 903と、基地局装置 900— 2の OFDM シンボル長 # 902における FFTウィンドウ # 904とが時間軸上で重ならな!/、状態で 受信できれば通信端末装置 100は復調可能であり、 FFTウィンドウ # 903、 # 904の 受信開始タイミングにてパイロット信号 # 905、 # 906を検出することができる。ただし 、この場合、基地局装置 900— 1のパイロット信号の受信タイミングと基地局装置 900 —2のパイロット信号の受信タイミングの差 # 907が GI期間以内であることが条件とな る。
[0081] また、基地局装置 900— 1のパイロット信号の受信タイミングと基地局装置 900— 2 のパイロット信号の受信タイミングの差 # 907が GI期間以内に収めることが困難な場 合には、 lOFDMシンボル時間以上の受信タイミング差にて受信することができれば 、通信端末装置 100は、互いの基地局装置 200の有効シンボル長を時間分割処理 で FFTすることが可能になる。例えば、図 10において、基地局装置 1000— 1のパイ ロット信号の lOFDMシンボル長 # 1001と基地局装置 1000— 2のパイロット信号の lOFDMシンボル長 # 1002の受信タイミングの差 # 1007力 時間軸上で lOFDM シンボル時間以上あれば、通信端末装置 100は復調可能であり、 FFTウィンドウ # 1 003、 # 1004の受信開始タイミングにてノ ィロット信号 # 1005、 # 1006を検出する ことができる。即ち、各基地局装置におけるパイロット信号の送信タイミングは、他局 のパイロット信号の送信タイミングに対して、フレーム毎に lOFDMシンボルの有効シ ンボル長より長 、時間差を設ければ、通信端末装置 100にて受信タイミング及びスク ランブルコードを検出することができる。なお、図 9及び図 10の基地局装置 900— 1、 900— 2、 1000—1、 1000— 2は、図 2と同一構成である。
[0082] 次に、同期ずれ算出部 115において基地局装置間の同期ずれ量を算出する具体 的な方法について説明する。各基地局装置 200と通信端末装置 100との間の電波 伝播時間を、電波の速度(3e + 8) mZsec、及び位置情報と基地局装置の位置とに より求めた基地局装置 200と通信端末装置 100との距離を用いて、通信端末装置 1 00における基地局装置 200間の電波伝搬時間差を基準値として算出する。また、通 信端末装置 100にて 2つの基地局装置のパイロット信号の受信タイミングを測定し、 測定した基地局装置間の受信タイミング差を検出する。そして、検出した基地局装置 間の受信タイミング差と基準値とから、基地局装置間の同期ずれを測定する。
[0083] 例えば、基地局装置 1と通信端末装置 100との距離が 100mであり、基地局装置 2 と通信端末装置 100との距離が 500mであるとともに、基地局装置 2のパイロット信号 力 Slusで送信されている場合、基地局装置 1の伝播時間は、 100/3e + 8 = 0. 33u sであり、基地局装置 2の伝播時間は 500Z (3e + 8) = 1. 66usであるので、基地局 装置 1と基地局装置 2とが同期していれば、電波伝搬時間差は 1. 33usになるはず である。しかし、基地局装置 2のパイロット信号が基地局装置 1のパイロット信号から 1 usだけ遅れて検出された場合には、基地局装置 2のパイロット信号は 0. 33us進んだ 方向にずれていることがわかる。従って、通信端末装置 100は、基地局装置 2のパイ ロット信号は 0. 33us進んでいる旨の情報を、誤差の情報である同期ずれ情報として 基地局装置 2へ通知する。同期ずれ情報を受信した基地局装置 2は、受信した同期 ずれ情報に基づいて、誤差がなくなるようにパイロット信号の送信タイミングを 0. 33u s遅らせ、基地局装置 1と同期を取ることが出来る。このようにして隣り合う全ての基地 局装置間で送信タイミングの同期をとることが出来る。同期ずれ量の測定は 1つの通 信端末装置 100が 1度行うだけでなぐ異なる場所の通信端末装置 100が異なる時 間に複数回行って平均をとることにより、同期ずれ量の検出精度を上げることができ る。
[0084] このように、本実施の形態 1によれば、各基地局装置のパイロット信号を重ならな 、 受信タイミングで受信することができるので、復調部 121を 1つの回路部品にて構成 することができること〖こより、回路規模を/ J、さくすることができる。
[0085] (実施の形態 2)
図 11は、本発明の実施の形態 2に係るパイロット信号の送信タイミングを示す図で ある。なお、通信端末装置の構成は図 1と同一構成であり、基地局装置の構成は図 2 と同一構成であるので、その説明は省略する。
[0086] パイロットスケジューラ部 204は、他局である他の基地局装置の各フレームにおける パイロット信号を挿入するシンボルを記憶しており、記憶して 、る他の基地局装置の パイロット信号を挿入するシンボルと異なるシンボルにパイロット信号を挿入するよう に、自局のノ ィロット信号の送信タイミングを設定する。そして、パイロットスケジューラ 部 204は、設定したパイロット信号の送信タイミングにて送信データとパイロット信号と が多重されるように、多重部 205に対して指示する。また、パイロットスケジューラ部 2 04は、復調部 215から入力した同期ずれ情報に基づいてパイロット信号の同期ずれ を補正する。
[0087] 図 11において、横軸が時間であり、縦軸が周波数である。図 11において、送信信 号 # 1101は基地局装置 200 - 1力 送信されるものであるとともに、送信信号 # 11 02は基地局装置 200— 2から送信されるものである。送信信号 # 1101には、 1無線 フレーム # 1103の先頭シンボルから 2番目のシンボルにパイロット信号 # 1104が揷 入されているとともに、送信信号 # 1102には、 1無線フレーム # 1103の先頭シンポ ルから i 1 (0< i< m— 1)番目のシンボルにパイロット信号 # 1105が挿入されて!ヽ る。また、 1無線フレーム # 1103は、「0」〜「m—l」までの m個のシンボルから構成さ れており、 0シンボルが先頭シンボルである。また、各送信信号 # 1101、 # 1102は 、周波数軸方向に「1」〜「k」までのサブキャリア番号を有する k個のサブキャリアが配 列している。
[0088] 基地局装置 200— 1及び基地局装置 200— 2のパイロットスケジューラ部 204は、 時刻 t20に同時に送信信号の送信を開始するが、パイロット信号が挿入されているシ ンボルが異なるため、基地局装置 200— 1のパイロット信号と基地局装置 200— 2の パイロット信号とが時間軸上で重なることはない。
[0089] このように、本実施の形態 2によれば、各基地局装置のパイロット信号を重ならな!/、 受信タイミングで受信することができるので、復調部 121を 1つの回路部品にて構成 することができることにより、回路規模を小さくすることができる。また、本実施の形態 2 によれば、複数の基地局装置の無線フレームが同一タイミングで送信されるので、通 信端末装置は ACK及び再送要求を各基地局装置に対して同一タイミングで送信す ることができ、再送処理による処理負荷を軽減することができる。
[0090] (実施の形態 3)
図 12及び図 13は、本発明の実施の形態 3に係るノ ィロット信号の送信タイミングを 示す図である。なお、通信端末装置の構成は図 1と同一構成であり、基地局装置の 構成は図 2と同一構成であるので、その説明は省略する。
[0091] パイロットスケジューラ部 204は、サブキャリア番号 l〜kと各フレームの先頭からの シンボル数とで特定される位置の内で、パイロット信号を挿入する位置を制御する。 また、パイロットスケジューラ部 204は、他局である他の基地局装置の各フレームにお けるサブキャリア番号 l〜kとフレームの先頭からのシンボル数とで特定される位置を 記憶しており、記憶して!/、る他の基地局装置のパイロット信号を挿入する位置と異な る位置にノ ィロット信号を挿入するように、自局のパイロット信号の送信タイミングを設 定する。そして、ノ ィロットスケジューラ部 204は、設定した位置にパイロット信号を挿 入して送信データとパイロット信号とを多重するように、多重部 205に対して指示する 。また、パイロットスケジューラ部 204は、復調部 215から入力した同期ずれ情報に基 づ 、てパイロット信号の同期ずれを補正する。
[0092] 図 12及び図 13において、横軸が時間であり、縦軸が周波数である。図 12におい て、送信信号 # 1201は基地局装置 200— 1から送信されるものであるとともに、送信 信号 # 1202は基地局装置 200— 2から送信されるものである。送信信号 # 1202は 、送信信号 # 1201のサブキャリア番号とフレームの先頭からのシンボル数とによって 特定される各位置に挿入されて ヽるパイロット信号及び送信データを、時間軸方向 に 1シンボルだけシフトしたものである。即ち、送信信号 # 1201には、 1無線フレーム # 1203の先頭シンボルのサブキャリア番号 1等にパイロット信号 # 1204が挿入され ており、先頭シンボルから 2番目のシンボルのサブキャリア番号 3等にパイロット信号 # 1205が挿入される。また、送信信号 # 1202には、 1無線フレーム # 1203の先頭 シンボルのサブキャリア番号 10等にパイロット信号 # 1206が挿入されており、先頭 シンボルから 2番目のシンボルのサブキャリア番号 1等にパイロット信号 # 1207が揷 入される。このように、シンボル毎に異なるサブキャリア番号にパイロット信号が挿入さ れるように制御する。また、 1無線フレーム # 1203は、「0」〜「m— 1」までの m個のシ ンボルカも構成されており、 0シンボルが先頭シンボルである。また、各送信信号 # 1 201、 # 1202は、周波数軸方向に「l」〜「k」までのサブキャリア番号を有する k個の サブキャリアが配列して 、る。
[0093] 基地局装置 200— 1及び基地局装置 200— 2のパイロットスケジューラ部 204は、 時刻 t30に同時に送信信号の送信を開始する力 サブキャリア番号 l〜kとフレーム の先頭からのシンボル数とで特定される位置の内でパイロット信号が挿入されて 、る 位置が基地局装置 200— 1と基地局装置 200— 2とで異なるため、基地局装置 200 —1のパイロット信号と基地局装置 200— 2のパイロット信号とが、サブキャリア番号と フレームの先頭からのシンボル数とによって特定される位置において重なることはな い。
[0094] 図 13において、送信信号 # 1301は基地局装置 200— 1から送信されるものである とともに、送信信号 # 1302は基地局装置 200— 2から送信されるものである。送信信 号 # 1302は、送信信号 # 1301のサブキャリア番号とフレームの先頭からのシンポ ル数とによって特定される各位置に挿入されているノ ィロット信号及び送信データを 、周波数軸方向に 1サブキャリア番号分だけシフトしたものである。即ち、送信信号 # 1301には、 1無線フレーム # 1303の先頭シンボルのサブキャリア番号 1等にパイ口 ット信号 # 1304が挿入されており、先頭シンボルから 2番目のシンボルのサブキヤリ ァ番号 3等にパイロット信号 # 1305が挿入される。また、送信信号 # 1302には、 1 無線フレーム # 1303の先頭シンボルのサブキャリア番号 2等にパイロット信号 # 130 6が挿入されており、先頭シンボルから 2番目のシンボルのサブキャリア番号 4等にパ ィロット信号 # 1307が挿入される。このように、シンボル毎に異なるサブキャリア番号 にパイロット信号が挿入されるように制御する。また、 1無線フレーム # 1303は、「0」 〜「m— 1」までの m個のシンボルから構成されており、 0シンボルが先頭シンボルで ある。また、各送信信号 # 1201、 # 1202は、周波数軸方向に「l」〜「k」までのサブ キャリア番号を有する k個のサブキャリアが配列している。
[0095] 基地局装置 200— 1及び基地局装置 200— 2のパイロットスケジューラ部 204は、 時刻 t35に同時に送信信号の送信を開始する力 サブキャリア番号 l〜kとフレーム の先頭からのシンボル数とで特定される位置の内でパイロット信号が挿入されて 、る 位置が異なるため、基地局装置 200 - 1のノ ィロット信号と基地局装置 200 - 2のパ ィロット信号と力 サブキャリア番号とフレームの先頭からのシンボル数とによって特 定される位置にぉ 、て重なることはな 、。
[0096] このように、本実施の形態 3によれば、各基地局装置のパイロット信号を重ならな!/、 受信タイミングで受信することができるので、復調部 121を 1つの回路部品にて構成 することができることにより、回路規模を小さくすることができる。また、本実施の形態 3 によれば、複数の基地局装置の無線フレームが同一タイミングで送信されるので、通 信端末装置は ACK及び再送要求を各基地局装置に対して同一タイミングで送信す ることができ、再送処理による処理負荷を軽減することができる。
[0097] (実施の形態 4)
図 14は、本発明の実施の形態 4に係るパイロット信号の送信タイミングを示す図で ある。なお、通信端末装置の構成は図 1と同一構成であり、基地局装置の構成は図 2 と同一構成であるので、その説明は省略する。
[0098] パイロットスケジューラ部 204は、他局である他の基地局装置の各フレームにおける ノ ィロット信号を挿入するサブキャリア番号を記憶しており、記憶して 、る他の基地局 装置のパイロット信号を挿入するサブキャリア番号と異なるサブキャリア番号にパイ口 ット信号を挿入するように、自局のパイロット信号の送信タイミングを設定する。そして
、パイロットスケジューラ部 204は、設定したサブキャリア番号のサブキャリアにパイ口 ット信号を挿入することにより送信データとパイロット信号とが多重されるように、多重 部 205に対して指示する。また、ノ ィロットスケジューラ部 204は、復調部 215から入 力した同期ずれ情報に基づいてパイロット信号の同期ずれを補正する。
[0099] 図 14において、横軸が時間であり、縦軸が周波数である。図 14において、送信信 号 # 1401は基地局装置 200— 1から送信されるものであるとともに、送信信号 # 14 02は基地局装置 200— 2から送信されるものである。送信信号 # 1401には、 1無線 フレーム # 1403のサブキャリア番号 1等にパイロット信号 # 1404が挿入されている とともに、送信信号 # 1402には、 1無線フレーム # 1403のサブキャリア番号 2等に パイロット信号 # 1406が挿入されている。また、 1無線フレーム # 1403は、「0」〜「 m— 1」までの m個のシンボルから構成されており、 0シンボルが先頭シンボルである 。また、各送信信号 # 1401、 # 1402は、周波数軸方向に「l」〜「k」までのサブキヤ リア番号を有する k個のサブキャリアが配列して 、る。
[0100] 基地局装置 200— 1及び基地局装置 200— 2のパイロットスケジューラ部 204は、 時刻 t40に同時に送信信号の送信を開始するが、パイロット信号が挿入されているサ ブキャリア番号が各基地局装置において異なるため、基地局装置 200— 1のパイロッ ト信号と基地局装置 200— 2のパイロット信号とが周波数軸上において重なることは ない。
[0101] このように、本実施の形態 4によれば、各基地局装置のパイロット信号を重ならない 受信タイミングで受信することができるので、復調部 121を 1つの回路部品にて構成 することができることにより、回路規模を小さくすることができる。また、本実施の形態 4 によれば、複数の基地局装置の無線フレームが同一タイミングで送信されるので、通 信端末装置は ACK及び再送要求を各基地局装置に対して同一タイミングで送信す ることがでさる。
[0102] なお、上記実施の形態 1〜実施の形態 4にお 、ては、スクランブルコード受信タイミ ングメモリ 110とスクランブルコードメモリ 111を別々に設けたが、これに限らず、スクラ ンブルコード受信タイミングメモリ 110とスクランブルコードメモリ 111を 1つのメモリに しても良い。
[0103] 本明糸田書 ίま、 2005年 3月 30日出願の特願 2005— 97988に基づく。この内容【ま すべてここに含めておく。
産業上の利用可能性
[0104] 本発明にかかる通信端末装置、基地局装置及び受信方法は、特に下りリンクに OF CDMを使用した 1周波数繰り返しセルラーシステムに用いるのに好適である。

Claims

請求の範囲
[1] 複数の基地局装置力 送信された基地局装置毎に固有のスクランブルコードが乗 算された信号を受信するとともに、前記信号に含まれる各基地局装置力 重ならない タイミングで送信された各パイロット信号を異なるタイミングで受信する受信手段と、 前記受信手段にて異なるタイミングにて受信した各基地局装置の前記パイロット信 号の受信タイミングと前記スクランブルコードとを検出する受信同期手段と、
前記受信同期手段にて検出された前記受信タイミング及び前記スクランブルコード を基地局装置毎に記憶する記憶手段と、
前記記憶手段に記憶されている前記受信タイミング及び前記スクランブルコード〖こ 基づ!、て、前記受信手段にて受信した各基地局装置の前記信号を逆拡散処理した 後に復調する復調手段と、
前記復調手段にて各基地局装置の前記信号が逆拡散処理されるタイミングで前記 記憶手段に記憶されている逆拡散処理される基地局装置の前記受信タイミング及び 前記スクランブルコードが前記復調手段へ出力されるように出力を切り替える切替手 段と、
を具備する通信端末装置。
[2] 自局の位置の情報である位置情報を取得する位置情報取得手段と、
前記受信同期手段にて検出された前記受信タイミングの基地局装置間の差と前記 位置情報取得手段にて取得された前記位置情報とあらかじめ記憶している基地局装 置の位置の情報と電波の速度とに基づいて、基地局装置間の前記パイロット信号の 受信タイミングの差の基準値に対する誤差を算出する同期ずれ算出手段と、 前記同期ずれ算出手段にて算出された前記誤差の情報である同期ずれ情報を基 地局装置に通知する通知手段と、
を具備する請求項 1記載の通信端末装置。
[3] ノ ィロット信号が他局から送信されるパイロット信号とは重ならないタイミングで送信 されるように前記ノ ィロット信号の送信タイミングを設定するノ ィロットスケジューラ手 段と、
前記ノ ィロットスケジューラ手段にて前記送信タイミングが設定された前記パイロット 信号を含む送信信号に対して各局固有のスクランブルコードを乗算する乗算手段と 前記ノ ィロットスケジューラ手段にて設定された前記送信タイミングで前記パイロット 信号が送信されるように前記乗算手段にて前記スクランブルコードが乗算された前記 送信信号を送信する送信手段と、
を具備する基地局装置。
[4] 前記ノ ィロットスケジューラ手段は、他局の前記パイロット信号の送信タイミングに対 して lOFDMシンボルの有効シンボル長より長い時間差を設けて前記パイロット信号 の送信タイミングをフレーム毎に設定する請求項 3記載の基地局装置。
[5] 送信信号の各フレームの先頭シンボルに前記パイロット信号が挿入されるように前 記パイロット信号と送信データとを多重して前記送信信号を生成する多重手段を具 備し、
前記パイロットスケジューラ手段は、前記多重手段にて生成された前記送信信号の 各フレームの前記多重手段力 の出力開始のタイミングを設定することにより前記パ ィロット信号の送信タイミングを設定する請求項 3記載の基地局装置。
[6] 送信信号の各フレームにおける所定のシンボルに前記パイロット信号を挿入するこ とにより前記パイロット信号と送信データとを多重して前記送信信号を生成する多重 手段を具備し、
前記パイロットスケジューラ手段は、前記多重手段にて前記パイロット信号が挿入さ れるシンボルの位置を設定するとともに他局と同一のタイミングで前記多重手段から 各フレームの前記送信信号を出力させることにより前記パイロット信号の送信タイミン グを設定する請求項 3記載の基地局装置。
[7] サブキャリア番号とフレームの先頭からのシンボル数とで特定される所定の位置に 前記パイロット信号を挿入して前記パイロット信号と送信データとを多重して前記送 信信号を生成する多重手段を具備し、
前記パイロットスケジューラ手段は、前記多重手段にて前記パイロット信号が挿入さ れるサブキャリア番号とフレームの先頭力 のシンボル数とで特定される位置を設定 することにより前記パイロット信号の送信タイミングを設定する請求項 3記載の基地局 装置。
[8] 自局と他局とから送信された前記パイロット信号の通信相手における受信タイミング の差の基準値に対する誤差の情報である同期ずれ情報を受信する受信手段を具備 し、
前記パイロットスケジューラ手段は、前記受信手段にて受信した前記同期ずれ情報 の前記誤差がなくなるように前記パイロット信号の前記送信タイミングを補正する請求 項 3記載の基地局装置。
[9] ノ ィロット信号を含む信号に対して基地局装置毎に固有のスクランブルコードを乗 算するステップと、
各基地局装置力 送信される前記パイロット信号が互いに重ならないタイミングで 送信されるように前記ノ ィロット信号の送信タイミングを設定するステップと、
設定された前記送信タイミングで前記パイロット信号が送信されるように、前記スクラ ンブルコードを乗算した前記パイロット信号を含む信号を各基地局装置が送信するス テツプと、
通信端末装置が、前記パイロット信号を含む信号を受信するとともに各基地局装置 力 送信された前記パイロット信号を異なるタイミングで受信するステップと、 異なるタイミングで受信した前記ノ ィロット信号の受信タイミングと前記スクランブル コードとを基地局装置毎に検出するステップと、
検出された前記受信タイミング及び前記スクランブルコードを基地局装置毎に記憶 するステップと、
記憶されて 、る前記受信タイミング及び前記スクランブルコードの内、復調される基 地局装置の前記受信タイミング及び前記スクランブルコードを選択するステップと、 選択された前記受信タイミング及び前記スクランブルコードに基づ 、て、受信した 前記パイロット信号を含む信号を基地局装置毎に逆拡散処理した後に復調するステ ップと、
を具備する受信方法。
PCT/JP2006/304168 2005-03-30 2006-03-03 通信端末装置、基地局装置及び受信方法 WO2006112179A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007521121A JP4914352B2 (ja) 2005-03-30 2006-03-03 通信端末装置及び基地局装置
EP06715227A EP1855406A1 (en) 2005-03-30 2006-03-03 Communication terminal, base station, and receiving method
US11/909,425 US8249132B2 (en) 2005-03-30 2006-03-03 Communication terminal and receiving method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-097988 2005-03-30
JP2005097988 2005-03-30

Publications (1)

Publication Number Publication Date
WO2006112179A1 true WO2006112179A1 (ja) 2006-10-26

Family

ID=37114914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304168 WO2006112179A1 (ja) 2005-03-30 2006-03-03 通信端末装置、基地局装置及び受信方法

Country Status (5)

Country Link
US (1) US8249132B2 (ja)
EP (1) EP1855406A1 (ja)
JP (1) JP4914352B2 (ja)
CN (1) CN101151832A (ja)
WO (1) WO2006112179A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090225895A1 (en) * 2008-03-04 2009-09-10 Industrial Technology Research Institute Transmission architecture of transmitter
JP2012157019A (ja) * 2008-06-11 2012-08-16 Ind Technol Res Inst 無線通信システム及び基準信号を用いる方法
US8848667B2 (en) 2006-09-28 2014-09-30 Fujitsu Limited Wireless communication device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1953982B1 (en) * 2007-02-05 2011-04-27 Sequans Communications Method and device for timing synchronization and neighbor scanning for cellular OFDM Systems
JP5106970B2 (ja) * 2007-10-01 2012-12-26 株式会社エヌ・ティ・ティ・ドコモ ユーザ装置及びベリフィケーション方法
WO2009118905A1 (ja) 2008-03-28 2009-10-01 富士通株式会社 携帯端末装置および携帯端末装置の省電力制御方法
US8611313B2 (en) * 2008-08-27 2013-12-17 Qualcomm Incorporated Multiplexing of control information and data for wireless communication
CN102138350A (zh) * 2008-08-27 2011-07-27 株式会社Ntt都科摩 移动通信方法、移动通信系统以及无线基站
US20110228730A1 (en) * 2009-10-30 2011-09-22 Qualcomm Incorporated Scheduling simultaneous transmissions in wireless network
US8543872B2 (en) * 2011-01-24 2013-09-24 Infineon Technologies Ag Detecting and eliminating potential performance degradation caused by neighboring identical scrambling codes
US8867392B2 (en) * 2011-06-16 2014-10-21 Empire Technology Development Llc Handoff of a mobile device moving at a high relative velocity to base stations for a wireless network
US9615296B2 (en) 2013-01-28 2017-04-04 Nokia Solutions And Networks Oy System and method for scrambling code association

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10126331A (ja) * 1996-10-18 1998-05-15 Fujitsu Ltd 移動通信システム及びその装置
JPH1127180A (ja) * 1997-07-02 1999-01-29 Sony Corp 受信装置、受信方法
JPH11284548A (ja) * 1998-03-30 1999-10-15 Sony Corp パイロット信号検出方法及び受信機
JP2002101445A (ja) * 2000-09-25 2002-04-05 Sony Corp 測位システム
JP2004032124A (ja) * 2002-06-24 2004-01-29 Hitachi Ltd セルラ基地局の送信タイミングのオフセット測定方法および測定システム
WO2004021616A1 (ja) * 2002-08-28 2004-03-11 Fujitsu Limited 送受信装置及び送受信方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6137773A (en) * 1997-03-24 2000-10-24 Motorola, Inc. Method and apparatus for CDMA code domain parameter estimation
JP3805520B2 (ja) * 1998-01-28 2006-08-02 富士通株式会社 移動通信における速度推定装置および方法
CN1086542C (zh) 1998-10-20 2002-06-19 北京信威通信技术有限公司 同步码分多址通信系统接力切换的方法
EP1155589A1 (en) * 1999-02-26 2001-11-21 QUALCOMM Incorporated Method and system for handoff between an asynchronous cdma base station and a synchronous cdma base station
KR100350481B1 (ko) * 1999-12-30 2002-08-28 삼성전자 주식회사 비동기 이동통신시스템에서 동기 이동통신시스템으로의핸드오프 수행장치 및 방법
CA2361247C (en) 2000-11-06 2008-10-07 Ntt Docomo, Inc. Transmitter, transmitting method, receiver, and receiving method for mc-cdma communication system
JP3634793B2 (ja) 2000-11-06 2005-03-30 株式会社エヌ・ティ・ティ・ドコモ スクランブルコードを用いたマルチキャリアcdma方式による移動通信システム及び方法
US7190749B2 (en) * 2001-06-06 2007-03-13 Qualcomm Incorporated Method and apparatus for canceling pilot interference in a wireless communication system
US7224942B2 (en) * 2001-07-26 2007-05-29 Telefonaktiebolaget Lm Ericsson (Publ) Communications system employing non-polluting pilot codes
US7912014B2 (en) * 2001-09-28 2011-03-22 At&T Intellectual Property Ii, Lp Method and apparatus for reducing interference in multiple-input-multiple-output (MIMO) systems
US20030179737A1 (en) * 2002-03-25 2003-09-25 Avner Dor Processing non-pilot channels in a CDMA searcher
WO2004008671A1 (ja) 2002-07-16 2004-01-22 Matsushita Electric Industrial Co., Ltd. 通信方法およびそれを用いた送信装置と受信装置
JP4157443B2 (ja) 2002-07-16 2008-10-01 松下電器産業株式会社 送信方法、送信信号生成方法およびそれを用いた送信装置
WO2007141848A1 (ja) * 2006-06-07 2007-12-13 Fujitsu Limited 基地局及びパイロット系列への周波数割り当て方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10126331A (ja) * 1996-10-18 1998-05-15 Fujitsu Ltd 移動通信システム及びその装置
JPH1127180A (ja) * 1997-07-02 1999-01-29 Sony Corp 受信装置、受信方法
JPH11284548A (ja) * 1998-03-30 1999-10-15 Sony Corp パイロット信号検出方法及び受信機
JP2002101445A (ja) * 2000-09-25 2002-04-05 Sony Corp 測位システム
JP2004032124A (ja) * 2002-06-24 2004-01-29 Hitachi Ltd セルラ基地局の送信タイミングのオフセット測定方法および測定システム
WO2004021616A1 (ja) * 2002-08-28 2004-03-11 Fujitsu Limited 送受信装置及び送受信方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8848667B2 (en) 2006-09-28 2014-09-30 Fujitsu Limited Wireless communication device
US20090225895A1 (en) * 2008-03-04 2009-09-10 Industrial Technology Research Institute Transmission architecture of transmitter
US8238507B2 (en) * 2008-03-04 2012-08-07 Industrial Technology Research Institute Transmission architecture of transmitter
JP2012157019A (ja) * 2008-06-11 2012-08-16 Ind Technol Res Inst 無線通信システム及び基準信号を用いる方法

Also Published As

Publication number Publication date
CN101151832A (zh) 2008-03-26
US20090052504A1 (en) 2009-02-26
JPWO2006112179A1 (ja) 2008-12-04
EP1855406A1 (en) 2007-11-14
JP4914352B2 (ja) 2012-04-11
US8249132B2 (en) 2012-08-21

Similar Documents

Publication Publication Date Title
JP4914352B2 (ja) 通信端末装置及び基地局装置
CA2681590C (en) Pilot signal transmitting method, base station, mobile station and cellular system to which the method is applied
JP4440895B2 (ja) 送信装置および送信方法
US20080043702A1 (en) Method and apparatus for cell search in a communication system
CN101536336B (zh) 用于快速小区搜索的方法和装置
JP5401428B2 (ja) マルチ搬送波cdmaシステムにおける同期化
EP1337069B1 (en) Synchronisation in a spread-spectrum multicarrier system
KR101012857B1 (ko) 제1차 동기채널과 제2차 동기채널이 tdm으로 구성된ofdm 셀룰라 시스템에서의 셀 탐색 방법
US7843804B2 (en) Orthogonal frequency division multiplex transmission method
EP1932269B1 (en) Apparatus, method and computer program product providing initial cell acquisition and pilot sequence detection
US20020054585A1 (en) Transmitter, transmitting method, receiver, and receiving method for MC-CDMA communication system
EP2115904A1 (en) Preamble design for synchronization and cell search
WO2007069329A1 (ja) 移動通信システムにおける送信処理方法及び基地局
JPWO2007142194A1 (ja) 通信システム、送信装置、受信装置及び同期検出方法
JP3778780B2 (ja) 携帯電話機
AU2013200317B2 (en) Pilot signal transmitting method, and base station, mobile station and cellular system to which that method is applied
RU2427083C2 (ru) Способ передачи пилот-сигнала, базовая станция, мобильная станция и система сотовой связи, в которой применен этот способ
JP5083434B2 (ja) 移動局及び移動局の通信方法
CA2828983A1 (en) Pilot signal transmitting method, base station, mobile station and cellular system to which the method is applied

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680010719.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11909425

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006715227

Country of ref document: EP

Ref document number: 2007521121

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006715227

Country of ref document: EP