WO2006110381A1 - Multivalent pneumococcal polysaccharide-protein conjugate composition - Google Patents

Multivalent pneumococcal polysaccharide-protein conjugate composition Download PDF

Info

Publication number
WO2006110381A1
WO2006110381A1 PCT/US2006/012354 US2006012354W WO2006110381A1 WO 2006110381 A1 WO2006110381 A1 WO 2006110381A1 US 2006012354 W US2006012354 W US 2006012354W WO 2006110381 A1 WO2006110381 A1 WO 2006110381A1
Authority
WO
WIPO (PCT)
Prior art keywords
immunogenic composition
polysaccharide
serotype
adjuvant
serotypes
Prior art date
Application number
PCT/US2006/012354
Other languages
French (fr)
Inventor
William P. Hausdorff
George Rainer Siber
Peter R. Paradiso
Original Assignee
Wyeth
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36709976&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2006110381(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to KR1020227009488A priority Critical patent/KR102564388B1/en
Priority to KR1020237026417A priority patent/KR102611449B1/en
Priority to KR1020177019847A priority patent/KR102017842B1/en
Priority to SI200631301T priority patent/SI1868645T1/en
Priority to KR1020137007564A priority patent/KR101588939B1/en
Priority to CN202110498952.0A priority patent/CN113198013B/en
Priority to EP21211242.9A priority patent/EP4005595A1/en
Priority to DK06740419.4T priority patent/DK1868645T3/en
Priority to PL06740419T priority patent/PL1868645T3/en
Priority to KR1020197025300A priority patent/KR102220506B1/en
Priority to AU2006235013A priority patent/AU2006235013B2/en
Priority to EP06740419A priority patent/EP1868645B1/en
Priority to KR1020157012737A priority patent/KR101730750B1/en
Priority to MX2015010176A priority patent/MX358148B/en
Priority to KR1020157012734A priority patent/KR101730748B1/en
Priority to CN201210192553.2A priority patent/CN102716480B/en
Priority to KR1020217005073A priority patent/KR102378962B1/en
Priority to IL308456A priority patent/IL308456A/en
Priority to MX2007012336A priority patent/MX2007012336A/en
Priority to ES06740419T priority patent/ES2382048T3/en
Priority to CA2604363A priority patent/CA2604363C/en
Priority to MEP-2012-39A priority patent/ME01334B/en
Priority to AT06740419T priority patent/ATE548051T1/en
Priority to BRPI0607025A priority patent/BRPI0607025B8/en
Priority to KR1020157012736A priority patent/KR101730749B1/en
Priority to JP2008505426A priority patent/JP4472770B2/en
Priority to KR1020157012735A priority patent/KR20150061019A/en
Priority to KR1020077025884A priority patent/KR101298053B1/en
Priority to CN2006800177768A priority patent/CN101180079B/en
Priority to CN201810299488.0A priority patent/CN108404126B/en
Priority to NZ562406A priority patent/NZ562406A/en
Priority to RS20120142A priority patent/RS52249B/en
Application filed by Wyeth filed Critical Wyeth
Publication of WO2006110381A1 publication Critical patent/WO2006110381A1/en
Priority to IL186367A priority patent/IL186367A/en
Priority to HK08112248.7A priority patent/HK1120416A1/en
Priority to HR20120278T priority patent/HRP20120278T1/en
Priority to IL228035A priority patent/IL228035A0/en
Priority to IL267125A priority patent/IL267125B/en
Priority to IL282638A priority patent/IL282638A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/385Haptens or antigens, bound to carriers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/09Lactobacillales, e.g. aerococcus, enterococcus, lactobacillus, lactococcus, streptococcus
    • A61K39/092Streptococcus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/646Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent the entire peptide or protein drug conjugate elicits an immune response, e.g. conjugate vaccines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/16Otologicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55505Inorganic adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins
    • A61K2039/6037Bacterial toxins, e.g. diphteria toxoid [DT], tetanus toxoid [TT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/70Multivalent vaccine

Definitions

  • the present invention relates generally to the field of medicine, and specifically to microbiology, immunology, vaccines and the prevention of infection by a bacterial pathogen by immunization.
  • Streptococcus pneumoniae is a leading cause of meningitis, pneumonia, and severe invasive disease in infants and young children throughout the world.
  • the multivalent pneumococcal polysaccharide vaccines have been licensed for many years and have proved valuable in preventing pneumococcal disease in elderly adults and high-risk patients.
  • infants and young children respond poorly to most pneumococcal polysaccharides.
  • the 7-valent pneumococcal conjugate vaccine (7vPnC, Prevnar®) was the first of its kind demonstrated to be highly immunogenic and effective against invasive disease and otitis media in infants and young children. This vaccine is now approved in many countries around the world.
  • Prevnar contains the capsular polysaccharides from serotypes 4, 6B, 9V, 14, 18C, 19F and 23F, each conjugated to a carrier protein designated CRM 197 .
  • Prevnar covers approximately 80-90%, 60-80%, and 40-80% of invasive pneumococcal disease (IPD) in the US, Europe, and other regions of the world, respectively [1,2].
  • IPD invasive pneumococcal disease
  • Surveillance data gathered in the years following Prevnar's introduction has clearly demonstrated a reduction of invasive pneumococcal disease in US infants as expected (FIG. 1) [3,4].
  • the present invention provides generally a multivalent immunogenic composition
  • a multivalent immunogenic composition comprising 13 distinct polysaccharide-protein conjugates, wherein each of the conjugates contains a capsular polysaccharide from a different serotype of Streptococcus pneumoniae conjugated to a carrier protein, together with a physiologically acceptable vehicle.
  • an adjuvant such as an aluminum- based adjuvant, is included in the formulation.
  • the present invention provides a 13-valent pneumococcal conjugate (13vPnC) composition comprising the seven serotypes in the 7vPnC vaccine (4, 6B, 9V, 14, 18C, 19F and 23F) plus six additional serotypes (1 , 3, 5, 6A, 7F and 19A).
  • 13vPnC 13-valent pneumococcal conjugate
  • the present invention also provides a multivalent immunogenic composition, wherein the capsular polysaccharides are from serotypes 1 , 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F and 23F of Streptococcus pneumoniae and the carrier protein is CRM 197 .
  • the present invention further provides a multivalent immunogenic composition, wherein the capsular polysaccharides are from serotypes 1 , 3, 4, 5, 6A, 6B, 7F, 9v, 14, 18C, 19A, 19F and 23F of Streptococcus pneumoniae, the carrier protein is CRM 197 , and the adjuvant is an aluminum-based adjuvant, such as aluminum phosphate, aluminum sulfate and aluminum hydroxide. In a particular embodiment of the invention, the adjuvant is aluminum phosphate.
  • the present invention also provides a multivalent immunogenic composition, comprising polysaccharide-protein conjugates together with a physiologically acceptable vehicle, wherein each of the conjugates comprises a capsular polysaccharide from a different serotype of Streptococcus pneumoniae conjugated to a carrier protein, and the capsular polysaccharides are prepared from serotype 3 and at least one additional serotype.
  • the additional serotype is selected from the group consisting of serotypes 1 , 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, and 23F.
  • the carrier protein is CRM 197 .
  • the composition comprises an adjuvant, such as an aluminum-based adjuvant selected from aluminum phosphate, aluminum sulfate and aluminum hydroxide. In a particular embodiment, the adjuvant is aluminum phosphate.
  • the present invention also provides a multivalent immunogenic composition, comprising polysaccharide-protein conjugates together with a physiologically acceptable vehicle, wherein each of the conjugates comprises a capsular polysaccharide from a different serotype of Streptococcus pneumoniae conjugated to a carrier protein, and the capsular polysaccharides are prepared from serotypes 4, 6B 1 9V, 14, 18C, 19F, 23F and at least one additional serotype.
  • the additional serotype is selected from the group consisting of serotypes 1 , 3, 5, 6A, 7F, and 19A.
  • the carrier protein is CRMi 97 .
  • the composition comprises an adjuvant, such as an aluminum-based adjuvant selected from aluminum phosphate, aluminum sulfate and aluminum hydroxide.
  • the adjuvant is aluminum phosphate.
  • the present invention also provides a method of inducing an immune response to a Streptococcus pneumoniae capsular polysaccharide conjugate, comprising administering to a human an immunologically effective amount of any of the immunogenic compositions just described.
  • any of the immunogenic compositions administered is a single 0.5 mL dose formulated to contain: 2 ⁇ g of each saccharide, except for 6B at 4 ⁇ g; approximately 29 ⁇ g CRM 197 carrier protein;
  • FIG. 1 depicts the changes in IPD rates by serotype in US children ⁇ 2 years of age from baseline (1998/1999) to 2001.
  • FIG. 2 depicts the distribution of pneumococcal isolates with resistance to penicillin (PCN) in children ⁇ 5 years of age (1998).
  • PCN penicillin
  • FIG. 3 depicts the reverse cumulative distribution curves (RCDC) of OPA post-third dose results from the D118-P16 Prevnar trial.
  • serotype 1 In the US, the rate of IPD caused by serotype 1 in children under the age of 5 years is ⁇ 2%, about the same as for each of types 3 and 7F [1 ,6].
  • Serotypes 1 and 5 account for higher rates of IPD in US populations at high risk for invasive pneumococcal disease. Specifically, serotype 1 causes 3.5% of IPD in Alaskan native children ⁇ 2 years of age, and 18% in children 2-4 years of age [11]. Both serotype 1 and serotype 5 significantly cause disease in other parts of the world and in indigenous populations in developed countries [12,13,14].
  • Serotype 1 may also be associated with more severe disease as compared with other pneumococcal serotypes [15]. This observation is based on the difference in rates of case identification between the US and Europe, and the associated difference in medical practice. Overall, the incidence of IPD is lower in Europe than in the US. However, the percent of IPD caused by serotype 1 in Europe is disproportionately higher than in the US (6-7%, vs. 1-2%, respectively). In Europe, blood cultures are obtained predominantly from hospitalized children. In the US, it is routine medical practice to obtain blood cultures in an outpatient setting from children presenting with fever >39°C and elevated white blood cell counts.
  • serotype 1 the lower percent of disease caused by serotype 1 in the US may be diluted by higher rates of other serotypes causing milder disease, while the higher percent in Europe reflects more serious disease.
  • seroepidemiology studies of children with complicated pneumonia demonstrate that serotype 1 is disproportionately represented [16,17,18]. This suggests that inclusion of serotype 1 may reduce the amount of severe pneumococcal disease, as well as, contribute to a total reduction in invasive pneumococcal disease.
  • serotypes 3 and 7F will increase coverage against IPD in most areas of the world by approximately 3%-7%, and in Asia by around 9%. Thus, an 11-valent vaccine would cover 50% in Asia and around 80% of IPD in all other regions [1 ,2]. These serotypes are also important with respect to otitis media coverage [19]. In a multinational study of pneumococcal serotypes causing otitis media, Hausdorff et al found serotype 3 to be the 8th most common middle ear fluid isolate overall [20]. Serotype 3 accounted for up to 8.7% of pneumococcal serotypes associated with otitis media. Thus, the importance of types 3 and 7F in otitis media, as well as in IPD, warrants their inclusion in a pneumococcal conjugate vaccine.
  • opsonophagocytic assay results from infants who had received doses of 11 -Pn-PD failed to show antibody responses for serotype 3 at levels comparable to other tested serotypes (Gatchalian et al., 17 th Annual Meeting of the Eur. Soc. Paed. Inf. Dis. (ESPID), Poster No. 4, P1A Poster Session 1 , Istanbul Turkey, Mar. 27, 2001).
  • the vaccine did not provide protection against episodes caused by serotype 3 (Prymula et al. www. thelancet. com. Vol.
  • a pneumococcal conjugate vaccine comprising capsular polysaccharides from serotype 3 and capable of eliciting an immunogenic response to serotype 3 polysaccharides provides a significant improvement over the existing state of the art.
  • the licensed unconjugated pneumococcal polysaccharide vaccines (for use in persons at least two years of age) have contained 6A or 6B capsular polysaccharide but not both [21]. lmmunogenicity data generated at the time of formulation of the 23-valent pneumococcal polysaccharide vaccine demonstrated that a 6B monovalent vaccine induced antibody to both the 6A and 6B capsules.
  • the 19A and 19F capsules are quite different due to the presence of two additional side chains in the 19A polysaccharide.
  • immune responses measured in human volunteers immunized with 19F polysaccharide vaccine showed that responses to 19F were induced in 80% of subjects, but only 20% of subjects had a response to 19A [26].
  • Low levels of cross-reactive IgG and OPA responses to serotype 19A after immunization with 19F polysaccharide have also been documented in trials with conjugate vaccines as well [24,26].
  • 7vPnC and 9vPnC (7vPnC plus serotypes 1 and 5) efficacy trials is noted in Table 1 [30,10,31], The numbers of invasive disease cases are too small to allow any conclusions to be drawn for serotypes 6A and 19A.
  • the Finnish otitis media trial generated a large number of pneumococcal isolates [32].
  • 7vPnC was 84% (95% Cl 62%, 93%) efficacious against otitis media due to serotype 6B and 57% (95% Cl 24%, 76%) efficacious against otitis media due to serotype 6A (Table 1 ).
  • serotype-specific efficacy with the 7vPnC was not demonstrated for otitis media due to either 19F or 19A.
  • Post-marketing IPD surveillance data is also available from a case-controi trial conducted by the Centers for Disease Control to evaluate the effectiveness of Prevnar [33].
  • Cases of pneumococcal invasive disease occurring in children 3 to 23 months of age were identified in the surveillance laboratories and matched with three control cases by age and zip code.
  • medical and immunization history (subjects were considered immunized if they had received at least one dose of Prevnar) was obtained from parents and medical providers for cases and controls.
  • the preliminary results were presented at the 2003 ICAAC meeting and a summary of the findings for 6B 1 19F, 19A and 6A disease is presented in Table 2.
  • the present invention provides a multivalent immunogenic composition
  • a multivalent immunogenic composition comprising 13 distinct polysaccharide-protein conjugates, wherein each of the conjugates contains a different capsular polysaccharide conjugated to a carrier protein, and wherein the capsular polysaccharides are prepared from serotypes 1 , 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F and 23F of Streptococcus pneumoniae, together with a physiologically acceptable vehicle.
  • One such carrier protein is the diphtheria toxoid designated CRM 197 .
  • the immunogenic composition may further comprise an adjuvant, such as an aluminum-based adjuvant, such as aluminum phosphate, aluminum sulfate and aluminum hydroxide.
  • Capsular polysaccharides are prepared by standard techniques known to those skilled in the art.
  • capsular polysaccharides are prepared from serotypes 1 , 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F and 23F of Streptococcus pneumoniae.
  • These pneumococcal conjugates are prepared by separate processes and formulated into a single dosage formulation. For example, in one embodiment, each pneumococcal polysaccharide serotype is grown in a soy- based medium. The individual polysaccharides are then purified through centrifugation, precipitation, ultra-filtration, and column chromatography. The purified polysaccharides are chemically activated to make the saccharides capable of reacting with the carrier protein.
  • each capsular polysaccharide is separately conjugated to a carrier protein to form a glycoconjugate.
  • each capsular polysaccharide is conjugated to the same carrier protein.
  • the conjugation is effected by reductive amination.
  • Carrier proteins are preferably proteins that are non-toxic and non- reactogenic and obtainable in sufficient amount and purity. Carrier proteins should be amenable to standard conjugation procedures.
  • CRM 197 is used as the carrier protein.
  • CRM 197 (Wyeth, Sanford, NC) is a non-toxic variant (i.e., toxoid) of diphtheria toxin isolated from cultures of Corynebacterium diphtheria strain C7 ( ⁇ 197) grown in casamino acids and yeast extract-based medium.
  • CRM 197 is purified through ultrafiltration, ammonium sulfate precipitation, and ion-exchange chromatography.
  • CRM 197 is prepared recombinantly in accordance with U.S. Patent No. 5,614,382, which is hereby incorporated by reference.
  • Other diphtheria toxoids are also suitable for use as carrier proteins.
  • Suitable carrier proteins include inactivated bacterial toxins such as tetanus toxoid, pertussis toxoid, cholera toxoid (e.g., as described in International Patent Application WO2004/083251 [38]), E. coli LT, E. coli ST, and exotoxin A from Pseudomonas aeruginosa.
  • Bacterial outer membrane proteins such as outer membrane complex c (OMPC), porins, transferrin binding proteins, pneumolysin, pneumococcal surface protein A (PspA), pneumococcal adhesin protein (PsaA), C5a peptidase from Group A or Group B streptococcus, or Haemophilus influenzae protein D, can also be used.
  • Other proteins such as ovalbumin, keyhole limpet hemocyanin (KLH), bovine serum albumin (BSA) or purified protein derivative of tuberculin (PPD) can also be used as carrier proteins.
  • the polysaccharide-protein conjugates are purified (enriched with respect to the amount of polysaccharide-protein conjugate) by a variety of techniques. These techniques include concentration/diafiltration operations, precipitation/elution, column chromatography, and depth filtration. See examples below.
  • the individual glycoconjugates are compounded to formulate the immunogenic composition of the present invention, which can be used as a vaccine.
  • Formulation of the immunogenic composition of the present invention can be accomplished using art-recognized methods.
  • the 13 individual pneumococcal conjugates can be formulated with a physiologically acceptable vehicle to prepare the composition.
  • physiologically acceptable vehicles include, but are not limited to, water, buffered saline, polyols (e.g., glycerol, propylene glycol, liquid polyethylene glycol) and dextrose solutions.
  • the immunogenic composition will comprise one or more adjuvants.
  • an "adjuvant” is a substance that serves to enhance the immunogenicity of an immunogenic composition of this invention.
  • adjuvants are often given to boost the immune response and are well known to the skilled artisan.
  • Suitable adjuvants to enhance effectiveness of the composition include, but are not limited to:
  • aluminum salts such as aluminum hydroxide, aluminum phosphate, aluminum sulfate, etc.
  • oil-in-water emulsion formulations with or without other specific immunostimulating agents such as muramyl peptides (defined below) or bacterial cell wall components), such as, for example,
  • MF59 PCT Publ. No. WO 90/14837
  • Span 85 containing various amounts of MTP-PE (see below, although not required)
  • a microfluidizer such as Model 110Y microfluidizer (Microfluidics, Newton, MA)
  • SAF containing 10% Squalene, 0.4% Tween 80, 5% pluronic-blocked polymer L121 , and thr-MDP (see below) either microfluidized into a submicron emulsion or vortexed to generate a larger particle size emulsion
  • a microfluidizer such as Model 110Y microfluidizer (Microfluidics, Newton, MA)
  • SAF containing 10% Squalene, 0.4% Tween 80, 5% pluronic-blocked polymer L121 , and thr-MDP (see below) either microfluidized into a submicron emulsion or vortexed to generate a larger particle size emulsion
  • RibiTM adjuvant system (RAS), (Corixa, Hamilton, MT) containing 2% Squalene, 0.2% Tween 80, and one or more bacterial cell wall components from the group consisting of 3-O-deaylated monophosphorylipid A (MPLTM) described in U.S. Patent No. 4,912,094 (Corixa), trehalose dimycolate (TDM), and cell wall skeleton (CWS), preferably MPL + CWS (DetoxTM);
  • MPLTM 3-O-deaylated monophosphorylipid A
  • TDM trehalose dimycolate
  • CWS cell wall skeleton
  • saponin adjuvants such as Quil A or STIMULONTM QS-21 (Antigenics, Framingham, MA) (U.S. Patent No. 5,057,540) may be used or particles generated therefrom such as ISCOMs (immunostimulating complexes);
  • AGP is 2-[(R)-3-Tetradecanoyloxytetradecanoylamino]ethyl 2-Deoxy-4-O- phosphono-3-O-[(R)-3-tetradecanoyloxytetradecanoyl]-2-[(R)-3- tetradecanoyloxytetradecanoylaminoj-b-D-glucopyranoside, which is also know as 529 (formerly known as RC529), which is formulated as an aqueous form or as a stable emulsion, synthetic polynucleotides such as oligonucleotides containing CpG motif(s) (U.S. Patent No. 6,207,646);
  • cytokines such as interleukins (e.g., IL-1 , IL-2, IL-4, IL-5, IL-6, IL-7, IL-12, IL-15, IL-18, etc.), interferons (e.g., gamma interferon), granulocyte macrophage colony stimulating factor (GM-CSF), macrophage colony stimulating factor (M-CSF), tumor necrosis factor (TNF), costimulatory molecules B7-1 and B7-2, etc.;
  • interleukins e.g., IL-1 , IL-2, IL-4, IL-5, IL-6, IL-7, IL-12, IL-15, IL-18, etc.
  • interferons e.g., gamma interferon
  • GM-CSF granulocyte macrophage colony stimulating factor
  • M-CSF macrophage colony stimulating factor
  • TNF tumor necrosis factor
  • a bacterial ADP-ribosylating toxin such as a cholera toxin (CT) either in a wild-type or mutant form, for example, where the glutamic acid at amino acid position 29 is replaced by another amino acid, preferably a histidine, in accordance with published international patent application number WO 00/18434 (see also WO 02/098368 and WO 02/098369), a pertussis toxin (PT), or an E. coli heat-labile toxin (LT), particularly LT-K63, LT-R72, CT-S109, PT-K9/G129 (see, e.g., WO 93/13302 and WO 92/19265); and
  • CT cholera toxin
  • Muramyl peptides include, but are not limited to, N-acetyl-muramyl-L-threonyl-
  • thr-MDP D-isoglutamine
  • MTP-PE N-acetyl-normuramyl-L-alanine-2-(1'-2' dipalmitoyl-sn- glycero-3-hydroxyphosphoryloxy)-ethylamine
  • the vaccine formulations of the present invention can be used to protect or treat a human susceptible to pneumococcal infection, by means of administering the vaccine via a systemic or mucosal route.
  • administrations can include injection via the intramuscular, intraperitoneal, intradermal or subcutaneous routes; or via mucosal administration to the oral/alimentary, respiratory or genitourinary tracts.
  • intranasal administration is used for the treatment of pneumonia or otitis media (as nasopharyngeal carriage of pneumococci can be more effectively prevented, thus attenuating infection at its earliest stage).
  • the amount of conjugate in each vaccine dose is selected as an amount that induces an immunoprotective response without significant, adverse effects. Such amount can vary depending upon the pneumococcal serotype. Generally, each dose will comprise 0.1 to 100 ⁇ g of polysaccharide, particularly 0.1 to 10 ⁇ g, and more particularly 1 to 5 ⁇ g.
  • Optimal amounts of components for a particular vaccine can be ascertained by standard studies involving observation of appropriate immune responses in subjects. Following an initial vaccination, subjects can receive one or several booster immunizations adequately spaced.
  • the 13vPnC vaccine is a sterile liquid formulation of pneumococcal capsular polysaccharides of serotypes 1 ,
  • Each 0.5 mL dose is formulated to contain: 2 ⁇ g of each saccharide, except for 6B at 4 ⁇ g; approximately 29 ⁇ g CRM 197 carrier protein; 0.125 mg of elemental aluminum (0.5 mg aluminum phosphate) adjuvant; and sodium chloride and sodium succinate buffer as excipients.
  • the liquid is filled into single dose syringes without a preservative. After shaking, the vaccine is a homogeneous, white suspension ready for intramuscular administration.
  • the 7vPnC vaccine (Prevnar).
  • the 2 ⁇ g saccharide dose level was selected for all serotypes, except for 6B, which is at 4 ⁇ g per dose.
  • the 7vPnC vaccine has shown desirable safety, immunogenicity, and efficacy against IPD in the 2 ⁇ g saccharide dose level for serotypes 4, 9V, 14, 18C, 19F and 23F, and at the 4 ⁇ g dose for 6B.
  • the immunization schedule can follow that designated for the 7vPnC vaccine.
  • the routine schedule for infants and toddlers against invasive disease caused by S. pneumoniae due to the serotypes included in the 13vPnC vaccine is 2,
  • compositions of this invention are also suitable for use with older children, adolescents and adults.
  • compositions of this invention may further include one or more additional antigens for use against otitis media caused by infection with other bacteria.
  • additional antigens for use against otitis media caused by infection with other bacteria.
  • bacteria include nontypable Haemophilus influenza, Moraxella catarrhalis (formerly known as Branhamella catarrhalis) and Alloiococcus otitidis.
  • nontypable Haemophilus influenzae antigens suitable for inclusion include the P4 protein, also known as protein "e” (U.S. Patent No. 5,601,831; International Patent Application WO03/078453), the P6 protein, also known as the PAL or the PBOMP-1 protein (U.S. Patent No. 5,110,908; International Patent Application WO0100790), the P5 protein (U.S. Reissue Patent No. 37,741), the Haemophilus adhesion and penetration protein (U.S. Patent Nos. 6,245,337 and 6,676,948), the LKP tip adhesin protein (U.S. Patent No. 5,643,725) and the NucA protein (U.S. Patent No. 6,221 ,365).
  • P4 protein also known as protein "e”
  • P6 protein also known as the PAL or the PBOMP-1 protein
  • P5 protein U.S. Reissue Patent No. 37,741
  • the Haemophilus adhesion and penetration protein
  • Moraxella catarrhalis antigens suitable for inclusion include the following:
  • UspA2 protein (U.S. Patent Nos. 5,552,146, 6,310,190), the CD protein (U.S. Patent No. 5,725,862), the E protein (U.S. Patent No. 5,948,412) and the 74 kilodalton outer membrane protein (U.S. Patent No. 6,899,885).
  • Alloiococcus otitidis antigens suitable for inclusion include those identified in International Patent Application WO03/048304.
  • compositions of this invention may also include one or more proteins from Streptococcus pneumoniae.
  • Streptococcus pneumoniae proteins suitable for inclusion include those identified in International Patent Application
  • compositions of this invention may further include one or more proteins from Neisseria meningitidis type B.
  • Neisseria meningitidis type B proteins suitable for inclusion include those identified in International Patent
  • the first additional generation was made from an F3 vial, and the subsequent generation was made from a vial of the first additional generation.
  • Seed vials were stored frozen ( ⁇ -70°C) with synthetic glycerol as a cryopreservative.
  • lyophilized vials were prepared for the F4 generation.
  • F4 generation For cell bank preparation, all cultures were grown in a soy-based medium. Prior to freezing, cells were concentrated by centrifugation, spent medium was removed, and cell pellets were re- suspended in fresh medium containing a cryopreservative, such as synthetic glycerol.
  • Cultures from the working cell bank were used to inoculate seed bottles containing a soy-based medium. The bottles were incubated at 36°C ⁇ 2° C without agitation until growth requirements were met.
  • a seed bottle was used to inoculate a seed fermentor containing soy-based medium.
  • a pH of about 7.0 was maintained with sterile sodium carbonate solution.
  • the seed fermentor was used to inoculate the production fermentor containing soy- based medium.
  • the pH was maintained with sterile sodium carbonate solution.
  • the fermentation was terminated after cessation of growth or when the working volume of the fermentor was reached.
  • the fermentation pH of about 7.0 was maintained with 3N NaOH.
  • the seed fermentor was used to inoculate the production fermentor containing soy-based medium.
  • the pH was maintained with 3N NaOH.
  • the fermentation was terminated after cessation of growth or when the working volume of the fermentor was reached.
  • An appropriate amount of sterile 12% deoxycholate sodium was added to the culture to obtain a 0.12% concentration in the broth, to lyse the bacterial cells and release cell- associated polysaccharide.
  • the fermentor contents were held, with agitation, for a time interval between 8 and 24 hours at a temperature between 7°C and 13°C, to assure that complete cellular lysis and polysaccharide release had occurred. Agitation during this hold period prevented lysate sediment from settling on the fermentor walls and pH probe, thereby allowing the pH probe integrity to be maintained.
  • the pH of the lysed culture broth was adjusted to approximately pH 5.0 with 50% acetic acid.
  • the purification of the pneumococcal polysaccharide consisted of several concentration/diafiltration operations, precipitation/elution, column chromatography, and depth filtration steps. All procedures were performed at room temperature unless otherwise specified. Clarified broth from the fermentor cultures of S. pneumoniae serotype 1 were concentrated and diafiltered using a 100 kDa MWCO (kilodalton molecular weight cutoff) filter. Diafiltration was accomplished using sodium phosphate buffer at neutral pH. Diafiltration removed the low molecular weight medium components from the higher molecular weight biopolymers such as nucleic acid, protein and polysaccharide.
  • the polysaccharide was precipitated from the concentrated and diafiltered solution by adding hexadecyltrimethyl ammonium bromide (HB) from a stock solution to give a final concentration of 1% HB (w/v).
  • HB hexadecyltrimethyl ammonium bromide
  • the polysaccharide/HB precipitate was captured on a depth filter and the filtrate was discarded.
  • the polysaccharide precipitate was resolubilized and eluted by recirculating a sodium chloride solution through the precipitate-containing depth filter. The filters were then rinsed with additional sodium chloride solution.
  • NaI Sodium iodide
  • the precipitate was removed by depth filtration.
  • the filtrate contains the target polysaccharide.
  • the precipitation vessel and the filter were rinsed with a NaCI/Nal solution and the rinse was combined with the partially purified polysaccharide solution. The filter was discarded.
  • the polysaccharide was then filtered through a 0.2 ⁇ m filter.
  • the polysaccharide solution was concentrated on a 30 kDa MWCO ultrafilter and diafiltered with a sodium chloride solution.
  • the partially purified polysaccharide solution was further purified by filtration through a depth filter impregnated with activated carbon. After filtration, the carbon filter was rinsed with a sodium chloride solution. The rinse is combined with the polysaccharide solution, which is then filtered through a 0.2 ⁇ m filter.
  • the polysaccharide solution was concentrated on a 30 kDa MWCO ultrafilter and adjusted with a 1 M sodium phosphate buffer to achieve a final concentration of 0.025 M sodium phosphate.
  • the pH was checked and adjusted to 7.0 ⁇ 0.2.
  • the ceramic hydroxyapatite (HA) column was equilibrated with sodium phosphate buffer containing sodium chloride to obtain the appropriate conductivity ( ⁇ 15 ⁇ S).
  • the polysaccharide solution was then loaded onto the column. Under these conditions, impurities bound to the resin and the polysaccharide was recovered in the flow-through from the column.
  • the polysaccharide solution was filtered through 0.2 ⁇ m inline filters located before and after the column.
  • the polysaccharide solution was concentrated using a 30 kDa MWCO filter. The concentrate was then diafiltered with Water for Injection (WFI). The diafiltered polysaccharide solution was filtered through a 0.2 ⁇ m membrane filter into polypropylene bottles. Samples were removed for release testing and the purified polysaccharide was stored frozen at -25° ⁇ 5°C.
  • WFI Water for Injection
  • the 1 H-NMR data was consistent with the chemical structure by the assignment of signals assigned to the protons of the polysaccharide molecule.
  • the 1 H-NMR spectrum showed a series of well-resolved signals (protons from the methyl group) for the quantitation of the O-acetyl functional group in the polysaccharide.
  • the identity of the monovalent polysaccharide was confirmed by countercurrent Immunoelectrophoresis using specific antisera.
  • MALLS multiangle laser light scattering
  • Size exclusion chromatography media (CL-4B) was used to profile the relative molecular size distribution of the polysaccharide.
  • Containers of purified polysaccharide were thawed and combined in a reaction vessel.
  • 0.2 M sodium carbonate, pH 9.0 was added for partial deacetylation (hydrolysis) for 3 hours at 50 0 C.
  • the reaction was cooled to 20 0 C and neutralization was performed by 0.2 M acetic acid.
  • Oxidation in the presence of sodium periodate was performed by incubation at 2-8 0 C, and the mixture was stirred for 15-21 hours.
  • the activation reaction mixture was concentrated and diafiltered 10x with 0.9% NaCI using a 3OK MWCO membrane.
  • the retentate was 0.2 ⁇ m filtered.
  • the activated saccharide was filled into 100 mL glass lyophilization bottles and shell- frozen at -75 0 C and lyophilized.
  • "Shell-freezing” is a method for preparing samples for lyophilization (freeze- drying). Flasks are automatically rotated by motor driven rollers in a refrigerated bath containing alcohol or any other appropriate fluid. A thin coating of product is evenly frozen around the inside "shell" of a flask, permitting a greater volume of material to be safely processed during each freeze-drying run.
  • These automatic, refrigerated units provide a simple and efficient means of pre-freezing many flasks at a time, producing the desired coatings inside, and providing sufficient surface area for efficient freeze-drying.
  • Bottles of lyophilized material were brought to room temperature and resuspended in CRM 197 solution at a saccharide/protein ratio of 2:1.
  • 1M sodium phosphate buffer was added to a final 0.2M ionic strength and a pH of 7.5, then sodium cyanoborohydride was added.
  • the reaction was incubated at 23°C for 18 hours, followed by a second incubation at 37°C for 72 hours.
  • the reaction mixture was diluted with cold saline followed by the addition of 1M sodium carbonate to adjust the reaction mixture to pH 9.0. Unreacted aldehydes were quenched by addition of sodium borohydride by incubation at 23°C for 3-6 hours.
  • the reaction mixture was diluted 2-fold with saline and transferred through a 0.45 - 5 ⁇ m prefilter into a retentate vessel.
  • the reaction mixture is diafiltered 3Ox with 0.15 M phosphate buffer, pH 6, and 2Ox with saline.
  • the retentate was filtered through a 0.2 ⁇ m filter.
  • the conjugate solution was diluted to a target of 0.5 mg/mL in 0.9% saline, and then sterile filtered into final bulk concentrate (FBC) containers in a Class 100 hood.
  • the conjugate was stored at 2 - 8°C.
  • Size exclusion chromatography media (CL-4B) was used to profile the relative molecular size distribution of the conjugate. The identity of the conjugate was confirmed by the slot-blot assay using specific antisera.
  • saccharide and protein concentrations were determined by the uronic acid and Lowry assays, respectively.
  • the ratio of saccharide to protein in the covalently bonded conjugate complex was obtained by the calculation: ⁇ g/mL saccharide
  • O-acetyl content was measured by the Hestrin method (Hestrin et. al., J. Biol. Chem. 1949, 180, p. 249).
  • the ratio of O-acetyl concentration to total saccharide concentration gave ⁇ moles of O-acetyl per mg of saccharide.
  • S. pneumoniae serotype 3 was obtained from Dr. Robert Austrian, University of Pennsylvania, Philadelphia, Pennsylvania. For preparation of the cell bank system, see Example 1.
  • Fermentation and Harvesting Cultures from the working cell bank were used to inoculate seed bottles containing soy-based medium. The bottles were incubated at 36°C ⁇ 2° C without agitation until growth requirements were met.
  • a seed bottle was used to inoculate a seed fermentor containing soy-based medium.
  • a pH of about 7.0 was maintained with sterile sodium carbonate solution.
  • the seed fermentor was used to inoculate an intermediate seed fermentor.
  • the intermediate seed fermentor was used to inoculate the production fermentor.
  • the pH was maintained with sterile sodium carbonate solution. The fermentation was terminated after the working volume of the fermentor was reached.
  • the purification of the pneumococcal polysaccharide consisted of several concentration/diafiltration operations, precipitation/elution, column chromatography, and depth filtration steps. All procedures were performed at room temperature unless otherwise specified.
  • Clarified broth from the fermentor cultures of S. pneumoniae serotype 3 were concentrated and diafiltered using a 100 kDa MWCO filter. Diafiltration was accomplished using sodium phosphate buffer at neutral pH. Diafiltration removed the low molecular weight medium components from the higher molecular weight biopolymers such as nucleic acid, protein and polysaccharide.
  • hexadecyltrimethyl ammonium bromide Prior to the addition of hexadecyltrimethyl ammonium bromide (HB), a calculated volume of a NaCI stock solution was added to the concentrated and diafiltered polysaccharide solution to give a final concentration of 0.25 M NaCI. The polysaccharide was then precipitated by adding HB from a stock solution to give a final concentration of 1 % HB (w/v). The polysaccharide/HB precipitate was captured on a depth filter and the filtrate was discarded. The polysaccharide precipitate was resolubilized and eluted by recirculating a sodium chloride solution through the precipitate-containing depth filter. The filters were then rinsed with additional sodium chloride solution.
  • HB hexadecyltrimethyl ammonium bromide
  • Sodium iodide (NaI) was added to the polysaccharide solution from a stock NaI solution to achieve a final concentration of 0.5% to precipitate HB.
  • the precipitate was removed by depth filtration.
  • the filtrate contained the target polysaccharide.
  • the precipitation vessel and the filter were rinsed with a NaCI/Nal solution and the rinse was combined with the partially purified polysaccharide solution.
  • the filter was discarded.
  • the polysaccharide was then filtered through a 0.2 ⁇ m filter.
  • the polysaccharide solution was concentrated on a 30 kDa MWCO ultrafilter and diafiltered with a sodium chloride solution.
  • the partially purified polysaccharide solution was further purified by filtration through a depth filter impregnated with activated carbon. After filtration, the carbon filter was rinsed with a sodium chloride solution. The rinse was combined with the polysaccharide solution, which was then filtered through a 0.2 ⁇ m filter.
  • the polysaccharide solution was concentrated on a 30 kDa MWCO ultrafilter and adjusted with a 1 M sodium phosphate buffer to achieve a final concentration of 0.025M sodium phosphate.
  • the pH was checked and adjusted to 7.0 ⁇ 0.2.
  • the ceramic hydroxyapatite (HA) column was equilibrated with sodium phosphate buffer containing sodium chloride to obtain the appropriate conductivity (15 ⁇ S).
  • the polysaccharide solution was then loaded onto the column. Under these conditions, impurities bound to the resin and the polysaccharide was recovered in the flow-through from the column.
  • the polysaccharide was flushed through the column with buffer and was filtered through a 0.2 ⁇ m filter.
  • the polysaccharide solution was concentrated using a 30 kDa MWCO filter. The concentrate was then diafiltered with WFI.
  • the diafiltered polysaccharide solution was filtered through a 0.2 ⁇ m membrane filter into stainless steel containers. Samples were removed for release testing and the purified polysaccharide was stored frozen at -25° ⁇ 5°C.
  • the 1 H-NMR data was consistent with the chemical structure by the assignment of signals assigned to the protons of the polysaccharide molecule.
  • the identity of the monovalent polysaccharide was confirmed by countercurrent Immunoelectrophoresis using specific antisera.
  • High performance gel filtration chromatography coupled with refractive index and multiangle laser light scattering (MALLS) detectors, was used in conjunction with the sample concentration to calculate the molecular weight.
  • MALLS multiangle laser light scattering
  • Containers of purified serotype 3 saccharide were thawed and combined in a reaction vessel.
  • WFI and 2M acetic acid were added to a final concentration of 0.2M and 2mg/ml_ saccharide.
  • the temperature of the solution was raised to 85°C for one hour to hydrolyze the polysaccharide.
  • the reaction was cooled to ⁇ 25°C and 1 M magnesium chloride was added to a final concentration of
  • Oxidation in the presence of sodium periodate was performed by incubation for 16-24 hours at 23°C.
  • the activation reaction mixture was concentrated and diafiltered 10x with WFI using a 100K MWCO membrane.
  • the retentate was filtered through a 0.2- ⁇ m filter.
  • 0.2M sodium phosphate, pH 7.0 was added to the activated saccharide to a final concentration of 1OmM and a pH of 6.0-6.5.
  • CRM 197 carrier protein was mixed with the saccharide solution to a ratio of 2g of saccharide per 1g of CRM 197 .
  • the combined saccharide/protein solution was filled into 100 mL glass lyophilization bottles with a 5OmL target fill, shell-frozen at -75°C, and lyophilized.
  • Bottles of co-lyophilized saccharide/protein material were brought to room temperature and resuspended in 0.1 M sodium phosphate buffer, pH 7.0, to a final saccharide concentration of 20 mg/mL The pH was adjusted to 6.5 and then a 0.5 molar equivalent of sodium cyanoborohydride was added. The reaction was incubated at 37°C for 48 hours. Following the cyanoborohydride incubation, the reaction mixture was diluted with cold 5mM succinate/0.9% saline buffer. Unreacted aldehydes were quenched by the addition of sodium borohydride and incubation at
  • reaction mixture was transferred through a 0.45-5 ⁇ m prefilter into a retentate vessel.
  • the reaction mixture was diafiltered 3Ox with 0.1 M phosphate buffer (pH 9), 2Ox with 0.15M phosphate butter (pH 6), and 2Ox with 5mM succinate/0.9% saline.
  • the retentate was filtered through a 0.2- ⁇ m filter.
  • the conjugate solution was diluted to a saccharide target of 0.5 mg/mL, and then sterile filtered into FBC containers in a Class 100 hood. The conjugate was stored at 2 - 8°C.
  • the saccharide and protein concentrations were determined by the Anthrone 10 and Lowry assays, respectively.
  • the ratio of saccharide to protein in the covalently bonded conjugate complex was obtained by the calculation:
  • S. pneumoniae serotype 5 was obtained from Dr. Gerald Schiffman of the
  • Example 1 State University of New York, Brooklyn, New York.
  • Example 1 For preparation of the cell bank system, see Example 1.
  • Example 1 For fermentation, harvesting, purification and characterization of the polysaccharide, see Example 1.
  • Cultures from the working cell bank were used to inoculate seed bottles containing a soy-based medium and a 1OmM sterile NaHCO 3 solution. The bottles were incubated at 36 0 C ⁇ 2° C without agitation until growth requirements were met. 30 A seed bottle was used to inoculate a seed fermentor containing soy-based medium and a 1OmM sterile NaHCO 3 solution. A pH of about 7.0 was maintained with 3N NaOH. After the target optical density was reached, the seed fermentor was used to inoculate the production fermentor containing soy-based medium with a 1OmM NaHCO 3 concentration. The pH was maintained with 3N NaOH.
  • the fermentation was terminated after cessation of growth or when the working volume of the fermentor was reached.
  • An appropriate amount of sterile 12% sodium deoxycholate was added to the culture to obtain a 0.12% concentration in the broth, to lyse the bacterial cells and release cell-associated polysaccharide.
  • the fermentor contents were held, with agitation, for a time interval between 8 and 24 hours at a temperature between 7°C and 13°C to assure that complete cellular lysis and polysaccharide release had occurred. Agitation during this hold period prevented lysate sediment from settling on the fermentor walls and pH probe, thereby allowing the pH probe integrity to be maintained.
  • the pH of the lysed culture broth was adjusted to approximately pH 4.5 with 50% acetic acid. After a hold time without agitation, for a time interval between 12 and 24 hours at a temperature between 15 0 C and 25°C, a significant portion of the previously soluble proteins dropped out of solution as a solid precipitate with little loss or degradation of the polysaccharide, which remained in solution.
  • the solution with the precipitate was then clarified by continuous flow centrifugation followed by depth filtration and 0.45 ⁇ m microfiltration.
  • Containers of serotype 5 saccharide were thawed and combined in a reaction vessel.
  • 0.1 M sodium acetate, pH 4.7 was added followed by oxidation in the presence of sodium periodate by incubation for 16-22 hours at 23 0 C.
  • the activation reaction mixture was concentrated and diafiltered 1Ox with WFI using a 100K MWCO membrane.
  • the retentate was filtered through a 0.2 ⁇ m filter.
  • the serotype 5 activated saccharide was combined with CRMi 97 at a ratio of 0.8:1.
  • the combined saccharide/protein solution was filled into 100 mL glass lyophilization bottles (50 mL target fill), shell-frozen at -75°C, and co-lyophilized.
  • Bottles of co-lyophilized material were brought to room temperature and resuspended in 0.1 M sodium phosphate, pH 7.5, and sodium cyanoborohydride was added. The reaction was incubated at 30 0 C for 72 hours, followed by a second addition of cyanoborohydride and incubated at 30 0 C for 20-28 hours. Following the cyanoborohydride incubations, the reaction mixture was diluted
  • reaction mixture was diafiltered 3Ox with 0.01 M phosphate buffer, pH 8, 2Ox with
  • the conjugate solution was diluted to a saccharide target of 0.5 mg/mL, and then sterile filtered into FBC containers in a Class 100 hood.
  • the conjugate was stored at 2 - 8°C.
  • S. pneumoniae serotype 6A was obtained from Dr. Gerald Schiffman of the
  • Example 1 State University of New York, Brooklyn, New York.
  • Example 1 For preparation of the cell bank system, see Example 1.
  • Example 1 For fermentation, harvesting and purification of the polysaccharide, see Example 1 , except that during purification, the 30 kDa MWCO concentration step, prior to the chromatography step, is omitted.
  • Serotype 6A polysaccharide is a high molecular weight polymer that had to be reduced in size prior to oxidation.
  • Containers of serotype 6A saccharide were thawed and combined in a reaction vessel.
  • 2 M acetic acid was added to a final concentration of 0.1 M for hydrolysis for 1.5 hours at 60 0 C.
  • the reaction was cooled to 23°C and neutralization was performed by adjusting the reaction mixture with 1 M NaOH to pH 6. Oxidation in the presence of sodium periodate was performed by incubation at 23°C for 14-22 hours.
  • the activation reaction mixture was concentrated and diafiltered 10x with WFI using a 100K MWCO membrane.
  • the retentate was filtered through a 0.2 ⁇ m filter.
  • Serotype 6A was compounded with sucrose and filled into 100 mL glass lyophilization bottles (5OmL target fill) and shell-frozen at -75°C and lyophilized. Bottles of lyophilized material were brought to room temperature and resuspended in dimethylsulfoxide (DMSO) at a saccharide/protein ratio of 1 :1. After addition of sodium cyanoborohydride, the reaction mixture was incubated at 23 0 C for 18 hours. Following the cyanoborohydride incubation, the reaction mixture was diluted with cold saline. Unreacted aldehydes were quenched by addition of sodium borohydride by incubation at 23°C for 3-20 hours.
  • DMSO dimethylsulfoxide
  • the diluted reaction mixture was transferred through a 5 ⁇ m prefilter into a retentate vessel.
  • the reaction mixture was diafiltered 1Ox with 0.9% NaCI and 3Ox with succinate-buffered NaCI.
  • the retentate was filtered through a 0.2 ⁇ m filter.
  • the conjugate solution was diluted to a saccharide target of 0.5 mg/mL, and then sterile filtered into FBC containers in a Class 100 hood.
  • the conjugate was stored at 2 - 8°C.
  • S. pneumoniae serotype 7F was obtained from Dr. Gerald Schiffman of the
  • Example 3 State University of New York, Brooklyn, New York.
  • Example 3 For preparation of the cell bank system, and for fermentation and harvesting of the polysaccharide, see Example 3.
  • Example 3 For an alternate fermentation and harvesting process, see the alternate process described in Example 1.
  • the purification of the pneumococcal polysaccharide consisted of several concentration/diafiltration operations, precipitation/elution, column chromatography, and depth filtration steps. All procedures were performed at room temperature unless otherwise specified.
  • Clarified broth from fermentor cultures of S. pneumoniae serotype 7F were concentrated and diafiltered using a 100 kDa MWCO filter. Diafiltration was accomplished using sodium phosphate buffer at neutral pH. Diafiltration removed the low molecular weight medium components from the higher molecular weight biopolymers such as nucleic acid, protein and polysaccharide. Serotype 7F does not form a precipitate with HB. Instead, impurities were precipitated from the concentrated and diafiltered solution by adding the HB from a stock solution to a final concentration of 1 % HB. The precipitate was captured on a depth filter and the filter was discarded. The polysaccharide was contained in the filtrate.
  • NaI Sodium iodide
  • the precipitate was removed by depth filtration.
  • the filtrate contained the target polysaccharide.
  • the precipitation vessel and the filter were rinsed with a NaCI/Nal solution and the rinses were combined with the partially purified polysaccharide solution. The filter was discarded. The polysaccharide was then filtered through a 0.2 ⁇ m filter.
  • the polysaccharide solution was concentrated on a 30 kDa MWCO ultrafilter and diafiltered with a sodium chloride solution.
  • the partially purified polysaccharide solution was further purified by filtration through a depth filter impregnated with activated carbon. After filtration, the carbon filter was rinsed with a sodium chloride solution. The rinse was combined with the polysaccharide solution, which was then filtered through a 0.2 ⁇ m filter.
  • the polysaccharide solution was concentrated on a 30 kDa MWCO ultrafilter and adjusted with a 1 M sodium phosphate buffer to achieve a final concentration of 0.025M sodium phosphate.
  • the pH was checked and adjusted to 7.0 ⁇ 0.2.
  • the ceramic hydroxyapatite (HA) column was equilibrated with sodium phosphate buffer containing sodium chloride to obtain the appropriate conductivity (15 ⁇ S).
  • the polysaccharide solution was then loaded onto the column. Under these conditions, impurities bound to the resin and the polysaccharide was recovered in the flow-through from the column.
  • the polysaccharide was flushed through the column with buffer and was filtered through a 0.2 ⁇ m filter.
  • the polysaccharide solution was concentrated using a 30 kDa MWCO filter. The concentrate was then diafiltered with WFI. The diafiltered polysaccharide solution was filtered through a 0.2 ⁇ m membrane filter into stainless steel containers. Samples were removed for release testing and the purified polysaccharide was stored at 2° - 8°C.
  • Example 10 For characterization of the polysaccharide, see Example 3.
  • Example 10 For characterization of the polysaccharide, see Example 3.
  • the activation reaction mixture was concentrated and diafiltered 10x with 1OmM NaOAc, pH 4.5, using a 100K MWCO membrane.
  • the retentate was filtered through a 0.2 ⁇ m filter.
  • Serotype 7F was filled into 100 mL glass lyophilization bottles (50 ml. target fill) and shell-frozen at -75°C and lyophilized.
  • Bottles of lyophilized serotype 7F and CRM 197 were brought to room temperature and resuspended in DMSO at a saccharide/protein ratio of 1.5:1. After the addition of sodium cyanoborohydride, the reaction was incubated at 23°C for 8- 10 hours. Unreacted aldehydes were quenched by the addition of sodium borohydride by incubation at 23°C for 16 hours.
  • the reaction mixture was diluted 10-fold with cold saline and transferred through a 5 ⁇ m prefilter into a retentate vessel.
  • the reaction mixture was diafiltered 10x with 0.9% saline and 3Ox with succinate-buffered saline.
  • the retentate was filtered through a 0.2 ⁇ m filter.
  • the conjugate solution was diluted to a saccharide target of 0.5 mg/mL 0.9% saline, and then sterile filtered into FBC containers in a Class 100 hood.
  • the conjugate was stored at 2 - 8°C.
  • S. pneumoniae serotype 19A was obtained from Dr. Gerald Schiffman of the
  • Example 3 For preparation of the cell bank system, see Example 1. For fermentation, harvesting and purification of the polysaccharide, see Example 7. For characterization, see Example 3.
  • Containers of serotype 19A saccharide were thawed and combined in a reaction vessel.
  • Sodium acetate was added to 10 mM (pH 5.0) and oxidation was carried out in the presence of sodium periodate by incubation for 16-24 hrs at 23°C.
  • the activation reaction mixture was concentrated and diafiltered 1Ox with 1OmM acetate, pH 5.0, using a 100K MWCO membrane.
  • the retentate was filtered through a 0.2 ⁇ m filter.
  • the activated saccharide was compounded with sucrose followed by the addition of CRM 197 .
  • the serotype 19A activated saccharide and CRM 197 mixture (0.8:1 ratio) was filled into 100 ml_ glass lyophilization bottles (50 mL target fill) and shell-frozen at -75°C and lyophilized.
  • Bottles of lyophilized material were brought to room temperature and resuspended in DMSO.
  • sodium cyanoborohydride 100 mg/ml was added. The reaction was incubated at 23 0 C for 15 hours. Following the cyanoborohydride incubation, unreacted aldehydes were quenched by the addition of sodium borohydride by incubation at 23°C for 3-20 hours.
  • the reaction mixture was diluted 10-fold with cold saline and transferred through a 5 ⁇ m prefilter into a retentate vessel.
  • the reaction mixture was diafiltered 10x with 0.9% NaCI, 0.45- ⁇ m filtered, and 3Ox with diafiltration using 5mM succinate/ 0.9% NaCI buffer, pH 6.
  • the retentate was filtered through a 0.2 ⁇ m filter.
  • the conjugate solution was diluted to a target of 0.5 mg/mL using 5mM succinate/0.9% saline, and then sterile filtered into FBC containers in a Class 100 hood.
  • the conjugate was stored at 2 - 8°C.
  • S. pneumoniae serotypes 4, 6B, 9V, 18C 1 19F and 23F were obtained from Dr. Gerald Schiffman, State University of New York, Brooklyn, New York.
  • S. pneumoniae serotype 14 was obtained from the ATCC, strain 6314.
  • one vial of each of the desired serotypes of Streptococcus pneumoniae was used to start a fermentation batch.
  • Two bottles containing a soy- based medium and phenol red were adjusted to a pH range of 7.4 ⁇ 0.2 using sodium carbonate, and the required volume of 50% dextrose/1% magnesium sulfate solution was then added to the bottles.
  • the two bottles were inoculated with different amounts of seed.
  • the bottles were incubated at 36° ⁇ 2 0 C until the medium turned yellow. Following incubation, samples were removed from each bottle and tested for optical density (OD) (0.3 to 0.9) and pH (4.6 to 5.5). One of the two bottles was selected for inoculation of the seed fermentor.
  • OD optical density
  • Soy-based medium was transferred to the seed fermentor and sterilized. Then a volume of 50% dextrose/1 % magnesium sulfate solution was added to the fermentor. The pH and agitation of the seed fermentor were monitored and controlled (pH 6.7 to 7.4). The temperature was maintained at 36° ⁇ 2 0 C. The seed inoculum (bottle) was aseptically connected to the seed fermentor and the inoculum was transferred. The fermentor was maintained in pH control and samples were periodically removed and tested for OD and pH. When the desired OD of 0.5 at 600 nm was reached, the intermediate fermentor was inoculated with the fermentation broth from the seed fermentor.
  • Soy-based medium was transferred to the intermediate fermentor and sterilized. Then a volume of 50% dextrose/1% magnesium sulfate solution was added to the fermentor. The pH and agitation of the intermediate fermentor were monitored and controlled (pH 6.7 to 7.4). The temperature was maintained at 36° ⁇ 2 0 C. The contents of the seed fermentor were transferred to the intermediate fermentor. The fermentor was maintained in pH control and samples were periodically removed and tested for OD and pH. When the desired OD of 0.5 at 600 nm was reached, the production fermentor was inoculated with the fermentation broth from the intermediate fermentor.
  • Soy-based medium was transferred to the production fermentor and sterilized. Then a volume of 50% dextrose/1% magnesium sulfate solution was added to the fermentor. The pH and agitation of the production fermentor were monitored and controlled (pH 6.7 to 7.4). The temperature was maintained at 36° ⁇ 2 0 C. The fermentor was maintained in pH control and samples were periodically removed and tested for OD and pH, until the fermentation was complete.
  • Deoxycholate sodium was added to the fermentor to a final concentration of approximately 0.12% w/v.
  • the culture was mixed for a minimum of thirty minutes and the temperature set point was reduced to 1O 0 C.
  • the culture was incubated overnight and following confirmation of inactivation, the pH of the culture was adjusted to between 6.4 and 6.8, as necessary, with 50% acetic acid.
  • the temperature of the fermentor was increased to 20° ⁇ 5°C and the contents were transferred to the clarification hold tank.
  • the contents of the clarification hold tank (including the cellular debris) were processed through a centrifuge at a flow rate between 25 and 600 liters per hour
  • the supernatant was recirculated through a depth filter assembly until an OD of 0.05 ⁇ 0.03 was achieved. Then the supernatant was passed through the depth filter assembly and through a 0.45 ⁇ m membrane filter to the filtrate hold tank.
  • Clarified broth from the fermentor cultures of the desired S. pneumoniae serotype was concentrated and diafiltered using a 100 kDa MWCO filter.
  • Diafiltration was accomplished using sodium phosphate buffer at pH ⁇ 9.0.
  • Diafiltration removed the low molecular weight medium components from the higher molecular weight biopolymers such as nucleic acid, protein and polysaccharide.
  • the polysaccharide was precipitated from the concentrated and diafiltered solution by adding HB from a stock solution to give a final concentration of 1 % HB
  • the filters were then rinsed with additional sodium chloride solution.
  • NaI Sodium iodide
  • Serotype 6B which had a final concentration of 0.25%.
  • the precipitate was removed by depth filtration.
  • the filtrate contained the target polysaccharide.
  • the filter was discarded.
  • the polysaccharide was then filtered through a 0.2 ⁇ m filter.
  • the polysaccharide solution was concentrated on a 30 kDa MWCO ultrafilter and diafiltered with a sodium chloride solution.
  • the partially purified polysaccharide solution was further purified by filtration through a depth filter impregnated with activated carbon. After filtration, the carbon filter was rinsed with a sodium chloride solution. The rinse was combined with the polysaccharide solution, which was then filtered through a 0.2 ⁇ m filter. The polysaccharide solution was concentrated on a 30 kDa MWCO ultrafilter and the filter was rinsed with a sodium chloride solution. The pH was checked and adjusted to 7.0 ⁇ 0.3.
  • the ceramic hydroxyapatite (HA) column was equilibrated with sodium phosphate buffer containing sodium chloride until the pH is 7.0 ⁇ 0.3 and the conductivity was 26 + 4 ⁇ S.
  • the polysaccharide solution was then loaded onto the column. Under these conditions, impurities bound to the resin and the polysaccharide was recovered in the flow through from the column.
  • the polysaccharide solution was filtered through a 0.2 ⁇ m filter.
  • the polysaccharide solution was concentrated using a 30 kDa MWCO filter.
  • the concentrate was then diafiltered with WFI until the conductivity was ⁇ 15 ⁇ S.
  • the diafiltered polysaccharide solution was filtered through a 0.2 ⁇ m membrane filter into bulk containers and stored at 2-8°C.
  • Polysaccharide was transferred from the bulk containers to the reactor vessel. The polysaccharide was then diluted in WFI and sodium phosphate to a final concentration range of 1.6 - 2.4 mg/mL
  • pH was adjusted to pH 6.0 ⁇ 0.3.
  • the required sodium periodate molar equivalents for pneumococcal saccharide activation was determined using total saccharide content (except for serotype 4). For serotype 4, a ratio of 0.8-1.2 moles of sodium periodate per mole of saccharide was used. With thorough mixing, the oxidation reaction was allowed to proceed between 16 to 20 hours at 21 - 25°C for all serotypes except 19F for which the temperature was ⁇ 15°C.
  • Step 3 Ultrafiltration The oxidized saccharide was concentrated and diafiltered with WFI (0.01 M sodium phosphate buffer pH 6.0 for serotype 19F) on a 100 kDa MWCO ultrafilter (5 kDa ultrafilter for 18C). The permeate was discarded and the retentate was filtered through a 0.22 ⁇ m filter.
  • WFI 0.01 M sodium phosphate buffer pH 6.0 for serotype 19F
  • the concentrated saccharide was mixed with CRM 197 carrier protein, filled into glass bottles, shell-frozen and stored at ⁇ -65°C.
  • the frozen concentrated saccharide-CRM 197 was lyophiiized and then stored at -25° ⁇ 5°C.
  • serotypes 6B, 19F, and 23F a specified amount of sucrose was added which was calculated to achieve a 5% ⁇ 3% sucrose concentration in the conjugation reaction mixture.
  • Serotype 18C did not require sucrose addition.
  • the concentrated saccharide was then filled into glass bottles, shell-frozen and stored at ⁇ -65°C.
  • the frozen concentrated saccharide was lyophiiized and then stored at -25° ⁇ 5°C.
  • Aqueous Conjugation Step 1 Dissolution
  • the lyophilized activated saccharide-CRM ig7 mixture was thawed and equilibrated at room temperature.
  • the lyophilized activated saccharide-CRM 197 was then reconstituted in 0.1 M sodium phosphate buffer at a typical ratio of:
  • the reaction mixture was incubated at 37° ⁇ 2°C until total dissolution for the serotype 9V and at 23° ⁇ 2 0 C for serotypes 4 and 14.
  • the lyophilized saccharide was reconstituted in a solution of CRMi 97 in 1 M dibasic sodium phosphate at a typical ratio of 0.11 L of sodium phosphate per 1 L of CRM 197 solution.
  • the reaction mixture (8-12 g/L saccharide concentration) was incubated at 23° + 2°C until total dissolution.
  • the pH was tested as an in-process control at this stage.
  • Step 2 Conjugation Reaction
  • the conjugation reaction was initiated by adding the sodium cyanoborohydride solution (100 mg/mL) to achieve 1.0 - 1.4 moles sodium cyanoborohydride per mole of saccharide.
  • the reaction mixture was incubated for 44 - 52 hours at 37° ⁇ 2°C. The temperature was then reduced to 23° ⁇ 2°C and sodium chloride 0.9% was added to the reactor.
  • Sodium borohydride solution (100 mg/mL) was added to achieve 1.8 - 2.2 molar equivalents of sodium borohydride per mole saccharide.
  • the mixture was incubated for 3 - 6 hours at 23° ⁇ 2 0 C.
  • the mixture was diluted with sodium chloride 0.9% and the reactor was rinsed.
  • the diluted conjugation mixture was filtered using a 1.2 ⁇ m pre-filter into a holding vessel.
  • the conjugation reaction was initiated by adding the cyanoborohydride solution (100 mg/mL) to achieve 1.0 - 1.4 moles of sodium cyanoborohydride per mole of saccharide.
  • the reaction mixture was incubated for 12 - 24 hours at 23° ⁇ 2°C.
  • the temperature was increased to 37° ⁇ 2°C and the reaction was incubated for 72 - 96 hours.
  • the temperature was then reduced to 23° ⁇ 2 0 C and 0.9% sodium chloride was added to the reactor.
  • Sodium borohydride solution (100mg/mL) was added to achieve 1.8 - 2.2 molar equivalents of sodium borohydride per mole of saccharide.
  • the mixture was incubated for 3 - 6 hours at 23° ⁇ 2 0 C.
  • the mixture was diluted with 0.9% sodium chloride and the reactor was rinsed.
  • the diluted conjugation mixture was then filtered using a 1.2 ⁇ m pre-fiiter into a holding vessel.
  • Step 3 Ultrafiltration 100 kDa
  • the diluted conjugation mixture was concentrated and diafiltrated on a 100 kDa MWCO ultrafilter with either a minimum of 15 volumes (serotype 4) or 40 volumes (serotypes 9V, 14, and 18C) of 0.9% sodium chloride. The permeate was discarded.
  • the retentate was filtered through a 0.45 ⁇ m filter.
  • An in-process control saccharide content
  • the HA column was first neutralized using 0.5M sodium phosphate buffer (pH 7.0 + 0.3) and then equilibrated with 0.9% sodium chloride.
  • the filtered retentate (serotype 4) was loaded onto the column at a flow rate of 1.0 L/min.
  • the column was washed with 0.9% sodium chloride at a flow rate of ⁇ 2.0 L/min.
  • the product was then eluted with 0.5M sodium phosphate buffer at a flow rate of ⁇ 2.0 L/min.
  • the HA fraction was then concentrated and diafiltered on a 100 kDa MWCO membrane with a minimum of 20 volumes of 0.9% sodium chloride. The permeate was discarded.
  • Step 5 Sterile Filtration
  • the retentate after the 100 kDa MWCO diafiltration was filtered through a 0.22 ⁇ m filter.
  • In-process controls saccharide content, free protein, free saccharide and cyanide
  • In-process controls on filtered retentate were performed to determine whether additional concentration, diafiltration, and/or dilution were needed to meet FBC targets. These and additional tests were repeated in FBC samples.
  • the filtered conjugate was diluted with 0.9% sodium chloride in order to achieve a final concentration of less than 0.55 g/L. Release tests for saccharide content, protein content and saccharide: protein ratio were performed at this stage.
  • the conjugate was filtered (0.22 ⁇ m) and filled into 10 L stainless steel canisters at a typical quantity of 2.64 g/canister.
  • yield saccharide content, protein content, pH, saccharide:protein ratio and lysine content were performed as in-process controls.
  • Release testing (appearance, free protein, free saccharide, endotoxin, molecular size determination, residual cyanide, saccharide identity, CRM 197 identity) was performed at this stage.
  • the lyophilized activated saccharide serotypes 6B, 19F, 23F and the lyophilized CRM 197 carrier protein were equilibrated at room temperature and reconstituted in DMSO.
  • the dissolution concentration typically ranged from 2-3 grams of saccharide (2-2.5 g protein) per liter of DMSO.
  • Step II Conjugation Reaction
  • the activated saccharide and CRM 197 carrier protein were mixed for 60 - 75 minutes at 23° ⁇ 2°C at a ratio range of 0.6 g - 1.0 g saccharide/g CRM 197 for serotypes 6B and 19F or 1.2 to 1.8 g saccharide/g CRM 197 for serotype 23F.
  • the conjugation reaction was initiated by adding the sodium cyanoborohydride solution (100mg/ml_) at a ratio of 0.8 - 1.2 molar equivalents of sodium cyanoborohydride to one mole activated saccharide. WFI was added to the reaction mixture to a target of 1% (v/v) and the mixture was incubated for over 40 hours at 23°
  • the diluted conjugate mixture was filtered through a 1.2 ⁇ m filter and concentrated and diafiltered on a 100 kDa MWCO membrane with a minimum of 15 volumes of 0.9% sodium chloride (0.01 M sodium phosphate/0.05M NaCI buffer was used for serotype 23F). The permeate was discarded. The retentate was filtered through a 0.45 ⁇ m filter. An in-process saccharide content sample was taken at this stage.
  • This step was only performed for serotype 23F.
  • the DEAE column was equilibrated with 0.01 M sodium phosphate/0.05M sodium chloride buffer.
  • the filtered retentate (serotype 23F) was loaded onto the column and washed with 0.01 M sodium phosphate/0.05M sodium chloride buffer.
  • the column was then washed with 0.01 M sodium phosphate/0.9% NaCI buffer.
  • the product was then eluted with 0.01 M sodium phosphate/0.5M sodium chloride buffer.
  • Step V 100 kDa Ultrafiltration
  • the retentate from 6B and 19F was concentrated and diafiltered with at least 30 volumes of 0.9% sodium chloride. The permeate was discarded.
  • the eluate from serotype 23F was concentrated and diafiltered with a minimum of 20 volumes of 0.9% sodium chloride. The permeate was discarded.
  • Step Vl Sterile Filtration
  • the retentate after the 100 kDa MWCO dialfiltration was filtered through 0.22 ⁇ m filter.
  • In-process controls saccharide content, free protein, free saccharide, residual DMSO and residual cyanide
  • In-process controls on filtered retentate were performed to determine whether additional concentration, diafiltration, and/or dilution were needed to meet FBC targets. These and additional tests were repeated in FBC samples.
  • the filtered conjugate was diluted with 0.9% sodium chloride to achieve a final concentration of less than 0.55 g/L. Release tests for saccharide content, protein content and saccharide:protein ratio were performed at this stage.
  • the conjugate was filtered (0.22 ⁇ m) and filled into 10 L stainless steel canisters at a quantity of 2.64 g/canister.
  • yield saccharide content, protein content, pH, saccharide: protein ratio and lysine content were performed as in- process controls.
  • Release testing (appearance, free protein, free saccharide, endotoxin, molecular size determination, residual cyanide, residual DMSO, saccharide identity and CRM 197 identity) was performed at this stage.
  • Example 15 Formulation of a Multivalent Pneumococcal Conjugate Vaccine
  • the final bulk concentrates of the 13 conjugates contain 0.85% sodium chloride.
  • Type 3, 6A, 7F and 19A bulk concentrates also contain 5 mM sodium succinate buffer at pH 5.8.
  • the required volumes of bulk concentrates were calculated based on the batch volume and the bulk saccharide concentrations.
  • the preparation was then sterile filtered through a 0.22 ⁇ m membrane into a second container by using a Millipore Durapore membrane filter unit.
  • the first container was washed with the remaining 20% of 0.85% sodium chloride and the solution was passed through the same filter and collected into the second container.
  • the formulated bulk was mixed gently during and following the addition of bulk aluminum phosphate. The pH was checked and adjusted if necessary.
  • the formulated bulk product was stored at 2-8°C.
  • the formulated bulk product was filled into Type 1 borosilicate glass syringes obtained from Becton Dickinson.
  • the vaccine was monitored at regular intervals for turbidity to ensure the uniformity of the filling operation.
  • the filled vaccine (Final Product) was stored at 2-8°C.
  • the pneumococcal serotypes represented in the 13vPnC vaccine include types 1 , 3, 4, 5, 6A, 6B, 7F,
  • New Zealand White rabbits were immunized intramuscularly at week 0 and week 2 with the planned human clinical dose of each polysaccharide (2 ⁇ g of each PS, except 4 ⁇ g of 6B) formulated with or without AIPO 4 (100 ⁇ g /dose). Sera were collected at various time points. Serotype specific IgG was measured by ELISA and functional activity was assessed by OPA.
  • Table 3 shows the geometric mean titer (GMT) achieved in pooled serum samples, following two doses of the 13vPnC vaccine.
  • GTT geometric mean titer
  • the kinetic responses to each of the 13vPnC vaccine serotypes were evaluated from serum pools of both treatment groups. IgG titers to each serotype were measured from blood draws at week 0 and weeks 1 , 2, 3, 4, 8, 12, 26, and 39 and then compared. With the exception of serotype 1, antibody responses in animals receiving adjuvanted vaccine were superior to those that received non- adjuvanted vaccine and peaked at week 2 of the immunization schedule (data not shown).
  • Study #HT01-0036 compared rabbit immune responses to the polysaccharides (PSs) contained in the vaccine, after immunization with the 13vPnC vaccine with or without conjugation to the CRM 197 protein.
  • New Zealand White rabbits were immunized intramuscularly at week 0 and week 2 with a dose of 2.2 ⁇ g of each PS (except 4.4 ⁇ g of 6B).
  • Animals received one of three vaccine preparations: (a) 13vPnC (PS directly conjugated to CRM 197 ), (b) 13vPnPS, (free PS) or (c) 13vPnPS + CRM 197 (free PS mixed with CRM 197 ). All vaccine preparations contained AIPO 4 as the adjuvant at 125 ⁇ g/dose.
  • Serotype specific immune responses for all vaccine preparations were evaluated in an IgG ELISA and complement-mediated OPA measuring functional antibody. The immune responses were compared between the treatment groups.
  • Table 5 presents GMT data obtained from week 4 bleeds analyzed in antigen specific IgG ELISAs. Additional analyses show the ratio of GMT values at week 4 to week 0. The data indicate that the conjugate vaccine preparation elicited greater serum IgG titers than free PS or free PS + CRM 197 vaccine.
  • the 13vPnC vaccine was able to induce functional antibodies to the representative strains of S. pneumoniae in an OPA (Table 6). After two immunizations with either the 13vPnPS or 13vPnPS + CRM 197 vaccine, neither could induce OPA titers > 8-fold at week 4 relative to week 0 for 10 out of the 13 serotypes measured (Table 6).
  • Block SL Hedrick J, Harrison CJ, et al. Pneumococcal serotypes from acute otitis media in rural Kentucky. Pediatr Infect Dis J 2002; 21 :859-65.
  • PncT protect mice against invasive infection caused by Streptococcus pneumoniae serotypes 6A and 6B. J Infect Dis 2001 ; 183:253-60.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Virology (AREA)
  • Neurosurgery (AREA)
  • Pulmonology (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

An immunogenic composition having 13 distinct polysaccharide-protein conjugates and optionally, an aluminum-based adjuvant, is described. Each conjugate contains a capsular polysaccharide prepared from a different serotype of Streptococcus pneumoniae (1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F and 23F) conjugated to a carrier protein. The immunogenic composition, formulated as a vaccine, increases coverage against pneumococcal disease in infants and young children globally, and provides coverage for serotypes 6A and 19A that is not dependent on the limitations of serogroup cross-protection.

Description

MULTIVALENT PNEUMOCOCCAL POLYSACCHARIDE-PROTEIN CONJUGATE COMPOSITION
FIELD OF THE INVENTION The present invention relates generally to the field of medicine, and specifically to microbiology, immunology, vaccines and the prevention of infection by a bacterial pathogen by immunization.
BACKGROUND OF THE INVENTION Streptococcus pneumoniae is a leading cause of meningitis, pneumonia, and severe invasive disease in infants and young children throughout the world. The multivalent pneumococcal polysaccharide vaccines have been licensed for many years and have proved valuable in preventing pneumococcal disease in elderly adults and high-risk patients. However, infants and young children respond poorly to most pneumococcal polysaccharides. The 7-valent pneumococcal conjugate vaccine (7vPnC, Prevnar®) was the first of its kind demonstrated to be highly immunogenic and effective against invasive disease and otitis media in infants and young children. This vaccine is now approved in many countries around the world. Prevnar contains the capsular polysaccharides from serotypes 4, 6B, 9V, 14, 18C, 19F and 23F, each conjugated to a carrier protein designated CRM197. Prevnar covers approximately 80-90%, 60-80%, and 40-80% of invasive pneumococcal disease (IPD) in the US, Europe, and other regions of the world, respectively [1,2]. Surveillance data gathered in the years following Prevnar's introduction has clearly demonstrated a reduction of invasive pneumococcal disease in US infants as expected (FIG. 1) [3,4].
Surveillance of IPD conducted in US infants prior to the introduction of
Prevnar demonstrated that a significant portion of disease due to serogroups 6 and 19 was due to the 6A (approximately one-third) and 19A (approximately one-fourth) serotypes [5,6]. Pneumococcal invasive disease surveillance conducted in the US after licensure of Prevnar suggests that a large burden of disease is still attributable to serotypes 6A and 19A (FIG. 1) [3]. Moreover, these two serotypes account for more cases of invasive disease than serotypes 1 , 3, 5, and 7F combined (8.2 vs. 3.3 cases/100,000 children 2 years and under). In addition, serotypes 6A and 19A are associated with high rates of antibiotic resistance (FIG. 2) [7,8,9]. While it is possible that serogroup cross-protection will result in a decline of serotype 6A and 19A disease as more children are immunized, there is evidence to suggest that there will be a limit to the decline, and a significant burden of disease due to these serotypes will remain (see below).
Given the relative burden and importance of invasive pneumococcal disease due to serotypes 1 , 3, 5, 6A, 7F, and 19A, adding these serotypes to the Prevnar formulation would increase coverage for invasive disease to >90% in the US and Europe, and as high as 70%-80% in Asia and Latin America. This vaccine would significantly expand coverage beyond that of Prevnar, and provide coverage for 6A and 19A that is not dependent on the limitations of serogroup cross-protection.
SUMMARY OF THE INVENTION Accordingly, the present invention provides generally a multivalent immunogenic composition comprising 13 distinct polysaccharide-protein conjugates, wherein each of the conjugates contains a capsular polysaccharide from a different serotype of Streptococcus pneumoniae conjugated to a carrier protein, together with a physiologically acceptable vehicle. Optionally, an adjuvant, such as an aluminum- based adjuvant, is included in the formulation. More specifically, the present invention provides a 13-valent pneumococcal conjugate (13vPnC) composition comprising the seven serotypes in the 7vPnC vaccine (4, 6B, 9V, 14, 18C, 19F and 23F) plus six additional serotypes (1 , 3, 5, 6A, 7F and 19A).
The present invention also provides a multivalent immunogenic composition, wherein the capsular polysaccharides are from serotypes 1 , 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F and 23F of Streptococcus pneumoniae and the carrier protein is CRM197.
The present invention further provides a multivalent immunogenic composition, wherein the capsular polysaccharides are from serotypes 1 , 3, 4, 5, 6A, 6B, 7F, 9v, 14, 18C, 19A, 19F and 23F of Streptococcus pneumoniae, the carrier protein is CRM197, and the adjuvant is an aluminum-based adjuvant, such as aluminum phosphate, aluminum sulfate and aluminum hydroxide. In a particular embodiment of the invention, the adjuvant is aluminum phosphate.
The present invention also provides a multivalent immunogenic composition, comprising polysaccharide-protein conjugates together with a physiologically acceptable vehicle, wherein each of the conjugates comprises a capsular polysaccharide from a different serotype of Streptococcus pneumoniae conjugated to a carrier protein, and the capsular polysaccharides are prepared from serotype 3 and at least one additional serotype.
In one embodiment of this multivalent immunogenic composition, the additional serotype is selected from the group consisting of serotypes 1 , 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, and 23F. In another embodiment, the carrier protein is CRM197. In yet another embodiment, the composition comprises an adjuvant, such as an aluminum-based adjuvant selected from aluminum phosphate, aluminum sulfate and aluminum hydroxide. In a particular embodiment, the adjuvant is aluminum phosphate.
The present invention also provides a multivalent immunogenic composition, comprising polysaccharide-protein conjugates together with a physiologically acceptable vehicle, wherein each of the conjugates comprises a capsular polysaccharide from a different serotype of Streptococcus pneumoniae conjugated to a carrier protein, and the capsular polysaccharides are prepared from serotypes 4, 6B1 9V, 14, 18C, 19F, 23F and at least one additional serotype.
In one embodiment of this multivalent immunogenic composition, the additional serotype is selected from the group consisting of serotypes 1 , 3, 5, 6A, 7F, and 19A. In another embodiment, the carrier protein is CRMi97. In yet another embodiment, the composition comprises an adjuvant, such as an aluminum-based adjuvant selected from aluminum phosphate, aluminum sulfate and aluminum hydroxide. In a particular embodiment, the adjuvant is aluminum phosphate. The present invention also provides a method of inducing an immune response to a Streptococcus pneumoniae capsular polysaccharide conjugate, comprising administering to a human an immunologically effective amount of any of the immunogenic compositions just described.
The present invention further provides that any of the immunogenic compositions administered is a single 0.5 mL dose formulated to contain: 2 μg of each saccharide, except for 6B at 4 μg; approximately 29 μg CRM197 carrier protein;
0.125 mg of elemental aluminum (0.5 mg aluminum phosphate) adjuvant; and sodium chloride and sodium succinate buffer as excipients.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 depicts the changes in IPD rates by serotype in US children <2 years of age from baseline (1998/1999) to 2001. FIG. 2 depicts the distribution of pneumococcal isolates with resistance to penicillin (PCN) in children <5 years of age (1998).
FIG. 3 depicts the reverse cumulative distribution curves (RCDC) of OPA post-third dose results from the D118-P16 Prevnar trial.
DETAILED DESCRIPTION OF THE INVENTION
Inclusion of Prevnar Serotypes 4, 6B, 9V, 14, 18C, 19F, 23F
Data from IPD surveillance between 1995-1998 estimated that the seven serotypes in Prevnar were responsible for around 82% of IPD in children <2 years of age [5]. In Northern California, the site of the efficacy trial, the Prevnar serotypes accounted for 90% of all cases of IPD in infants and young children [10]. Since introduction of the Prevnar vaccine in 2000, there has been a significant decrease in the overall IPD rates due to a decrease in disease due to the vaccine serotypes [3,4]. Therefore, there is no justification at this time to remove any of the Prevnar serotypes from the next generation of pneumococcal conjugate vaccines but rather to add serotypes to obtain wider coverage. Inclusion of Serotypes 1, 3, 5 and 7F
In the US, the rate of IPD caused by serotype 1 in children under the age of 5 years is <2%, about the same as for each of types 3 and 7F [1 ,6]. Serotypes 1 and 5 account for higher rates of IPD in US populations at high risk for invasive pneumococcal disease. Specifically, serotype 1 causes 3.5% of IPD in Alaskan native children <2 years of age, and 18% in children 2-4 years of age [11]. Both serotype 1 and serotype 5 significantly cause disease in other parts of the world and in indigenous populations in developed countries [12,13,14].
Serotype 1 may also be associated with more severe disease as compared with other pneumococcal serotypes [15]. This observation is based on the difference in rates of case identification between the US and Europe, and the associated difference in medical practice. Overall, the incidence of IPD is lower in Europe than in the US. However, the percent of IPD caused by serotype 1 in Europe is disproportionately higher than in the US (6-7%, vs. 1-2%, respectively). In Europe, blood cultures are obtained predominantly from hospitalized children. In the US, it is routine medical practice to obtain blood cultures in an outpatient setting from children presenting with fever >39°C and elevated white blood cell counts. Given the difference in medical practice, it is postulated that the lower percent of disease caused by serotype 1 in the US may be diluted by higher rates of other serotypes causing milder disease, while the higher percent in Europe reflects more serious disease. In addition, seroepidemiology studies of children with complicated pneumonia demonstrate that serotype 1 is disproportionately represented [16,17,18]. This suggests that inclusion of serotype 1 may reduce the amount of severe pneumococcal disease, as well as, contribute to a total reduction in invasive pneumococcal disease.
The addition of serotypes 3 and 7F will increase coverage against IPD in most areas of the world by approximately 3%-7%, and in Asia by around 9%. Thus, an 11-valent vaccine would cover 50% in Asia and around 80% of IPD in all other regions [1 ,2]. These serotypes are also important with respect to otitis media coverage [19]. In a multinational study of pneumococcal serotypes causing otitis media, Hausdorff et al found serotype 3 to be the 8th most common middle ear fluid isolate overall [20]. Serotype 3 accounted for up to 8.7% of pneumococcal serotypes associated with otitis media. Thus, the importance of types 3 and 7F in otitis media, as well as in IPD, warrants their inclusion in a pneumococcal conjugate vaccine.
However, attempts to produce a multivalent pneumococcal conjugate vaccine that exhibits significant immunogenicity with respect to serotype 3 polysaccharides have been unsuccessful. For example, in a study of the immunogenicity and safety of an 11-valent pneumococcal protein D conjugate vaccine (11 -Pn-PD), no priming effect was observed for serotype 3 in infants who had received three doses of the vaccine followed by a booster dose of either the same vaccine or a pneumococcal polysaccharide vaccine (Nurkka et al. (2004) Ped. Inf. Dis. J., 23:1008-1014). In another study, opsonophagocytic assay (OPA) results from infants who had received doses of 11 -Pn-PD failed to show antibody responses for serotype 3 at levels comparable to other tested serotypes (Gatchalian et al., 17th Annual Meeting of the Eur. Soc. Paed. Inf. Dis. (ESPID), Poster No. 4, P1A Poster Session 1 , Istanbul Turkey, Mar. 27, 2001). In yet another study, which assessed the efficacy of an 11- Pn-PD in the prevention of acute otitis media, the vaccine did not provide protection against episodes caused by serotype 3 (Prymula et al. www. thelancet. com. Vol. 367: 740-748 (March 4, 2006)). Accordingly, a pneumococcal conjugate vaccine comprising capsular polysaccharides from serotype 3 and capable of eliciting an immunogenic response to serotype 3 polysaccharides provides a significant improvement over the existing state of the art.
Inclusion of Serotypes 6A and 19A a. Epidemiology of Serotypes 6A and 19A
Surveillance data in the literature suggest that serotypes 6A and 19A account for more invasive pneumococcal disease in US children <2 years of age than serotypes 1, 3, 5, and 7F combined (FIG. 1) [1 ,5]. In addition, these serotypes are commonly associated with antibiotic resistance (FIG. 2) and play an important role in otitis media [6,19,20]. The ability of the current Prevnar vaccine to protect against disease due to 6A and 19A is not clear. The rationale for inclusion of 6A and 19A components in a 13vPnC vaccine is discussed below. b. Responses to 6A and 19A Induced by 6B and 19F Polysaccharides
The licensed unconjugated pneumococcal polysaccharide vaccines (for use in persons at least two years of age) have contained 6A or 6B capsular polysaccharide but not both [21]. lmmunogenicity data generated at the time of formulation of the 23-valent pneumococcal polysaccharide vaccine demonstrated that a 6B monovalent vaccine induced antibody to both the 6A and 6B capsules. The data from several trials assessing IgG and opsonophagocytic assay (OPA) responses in a variety of populations with free polysaccharide and with pneumococcal conjugate vaccines suggested that IgG responses to 6A are induced by 6B antigens, but the responses are generally lower, and the OPA activity with 6A organisms is different than with 6B organisms [22,23,24,25]. In addition, subjects responding with high 6B antibody may have little or no activity against 6A.
In contrast to the chemical composition of the 6A and 6B capsular polysaccharides where there exists a high degree of similarity, the 19A and 19F capsules are quite different due to the presence of two additional side chains in the 19A polysaccharide. Not surprisingly, immune responses measured in human volunteers immunized with 19F polysaccharide vaccine showed that responses to 19F were induced in 80% of subjects, but only 20% of subjects had a response to 19A [26]. Low levels of cross-reactive IgG and OPA responses to serotype 19A after immunization with 19F polysaccharide have also been documented in trials with conjugate vaccines as well [24,26].
Internal data on cross-reactive OPA responses to 6A and 19A have been generated from the 7vPnC bridging trial (D118-P16) conducted in US infants (FIG. 3). These studies are consistent with the findings of others, and demonstrate induction of cross-reactive functional antibody to 6A polysaccharide after immunization with 6B polysaccharide, although at a lower level, and very little functional antibody to 19A after immunization with 19F. Impact of 6B and 19F Immunization on 6A and 19A in Animal Models
Animal models have been used to evaluate the potential for cross-protection with polysaccharide immunization. In an otitis media model developed by Giebink et al., chinchillas were immunized with a tetravalent polysaccharide outer membrane protein (OMP) conjugate vaccine (containing 6B, 14, 19F, 23F saccharides) or placebo [27]. In this trial there appeared to be some cross-protection for 6A; however this did not reach statistical significance and the level of protection was lower than with 6B against otitis media. In this same model there was 100% protection against 19F otitis media, but only 17% protection against 19A otitis media.
Saeland et al. used sera from infants immunized with an 8-valent pneumococcal tetanus conjugate vaccine (containing 6B and 19F) to passively immunize mice prior to an intranasal challenge with 6A organisms, in a lung infection model [28]. Of the 59 serum samples, 53% protected mice against bacteremia with 6B and 37% protected against 6A. Mice passively immunized with sera from infants immunized with four doses of an 11-valent pneumococcal conjugate vaccine (containing 19F conjugated to tetanus toxoid) were given an intranasal challenge with 19A organisms in the same model [29]. Of 100 mice passively immunized and then challenged, 60 mice had no 19A organisms detected in lung tissue, whereas organisms were identified in all mice given saline placebo. However, passive immunization did not protect against challenge with 19F organisms in this model; therefore, the relevance of the model for serogroup 19 is questionable. In general these models provide evidence of some biological impact of 6B immunization on 6A organisms although the effect on the heterologous serotype was not as great as that observed with the homologous serotype. The impact of 19F immunization on 19A organisms is not well understood from these models.
Impact of 6B and 19F Polysaccharide Conjugate Immunization on 6A and 19A Disease in Efficacy/Effectiveness Trials The number of cases of disease due to the 6B, 6A, 19F and 19A serotypes in
7vPnC and 9vPnC (7vPnC plus serotypes 1 and 5) efficacy trials is noted in Table 1 [30,10,31], The numbers of invasive disease cases are too small to allow any conclusions to be drawn for serotypes 6A and 19A. However, the Finnish otitis media trial generated a large number of pneumococcal isolates [32]. In the per protocol analysis 7vPnC was 84% (95% Cl 62%, 93%) efficacious against otitis media due to serotype 6B and 57% (95% Cl 24%, 76%) efficacious against otitis media due to serotype 6A (Table 1 ). In contrast, serotype-specific efficacy with the 7vPnC was not demonstrated for otitis media due to either 19F or 19A.
Table 1. Cases of Pneumococcal Disease Due to Serotypes 6B, 6A, 19F, and 19A in Efficac Trials with the 7vPnC and 9vPnC Vaccines
Figure imgf000010_0001
Statistically significant efficacy demonstrated
From references 30, 10 and 33, and personal communications
Contr = control
ITT = intention to treat analysis
PP = per protocol analysis
Post-marketing IPD surveillance data is also available from a case-controi trial conducted by the Centers for Disease Control to evaluate the effectiveness of Prevnar [33]. Cases of pneumococcal invasive disease occurring in children 3 to 23 months of age were identified in the surveillance laboratories and matched with three control cases by age and zip code. After obtaining consent, medical and immunization history (subjects were considered immunized if they had received at least one dose of Prevnar) was obtained from parents and medical providers for cases and controls. The preliminary results were presented at the 2003 ICAAC meeting and a summary of the findings for 6B1 19F, 19A and 6A disease is presented in Table 2. These data indicate that Prevnar is able to prevent disease due to 6A, although at a level that may be somewhat lower than serotype 6B disease. These data also indicate that the cross-protection for invasive disease due to 19A is limited. Table 2. Preliminary results of a Case Control Trial Performed by the CDC (presented at ICAAC 2003
Figure imgf000011_0001
*Vaccine effectiveness comparing vaccinated (>1 dose) vs. unvaccinated, and adjusted for underlying conditions Reference 40 and personal/confidential communication
A published analysis [3] of the use of Prevnar also indicated that serotypes 6B and 19F conferred a moderate reduction in IPD caused by serotypes 6A and 19A among children under two years of age (Table 1 in [3]). Disease rates among unimmunized adults caused by serotypes 6A, 9A, 9L, 9N, 18A, 18B, 18F, 19A, 19B, 19C, 23A and 23B ("all vaccine-related serotypes") were somewhat reduced (Table 2 in [3]). These data establish that herd immunity from the use of Prevnar in children under two years of age was modest for serotypes 6A and 19A, and provide a basis for the inclusion of serotypes 6A and 19A in the 13vPnC vaccine of this invention.
Conclusion for addition of 6A and 19A
The post-marketing surveillance data and the case-control study results noted in FIG. 1 and Table 2 with the 7vPnC vaccine suggest that, consistent with the other information on immune responses and performance in the animals models described above, there may be some cross-protection against 6A disease, but to a lesser extent than to 6B disease. Furthermore, it appears the protection against 19A is limited. Therefore, a 13vPnC vaccine containing serotypes 6A and 19A provides coverage that is not dependent on the limitations of serogroup cross-protection by serotypes 6B and 19F. Accordingly, the present invention provides a multivalent immunogenic composition comprising 13 distinct polysaccharide-protein conjugates, wherein each of the conjugates contains a different capsular polysaccharide conjugated to a carrier protein, and wherein the capsular polysaccharides are prepared from serotypes 1 , 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F and 23F of Streptococcus pneumoniae, together with a physiologically acceptable vehicle. One such carrier protein is the diphtheria toxoid designated CRM197. The immunogenic composition may further comprise an adjuvant, such as an aluminum-based adjuvant, such as aluminum phosphate, aluminum sulfate and aluminum hydroxide.
Capsular polysaccharides are prepared by standard techniques known to those skilled in the art. In the present invention, capsular polysaccharides are prepared from serotypes 1 , 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F and 23F of Streptococcus pneumoniae. These pneumococcal conjugates are prepared by separate processes and formulated into a single dosage formulation. For example, in one embodiment, each pneumococcal polysaccharide serotype is grown in a soy- based medium. The individual polysaccharides are then purified through centrifugation, precipitation, ultra-filtration, and column chromatography. The purified polysaccharides are chemically activated to make the saccharides capable of reacting with the carrier protein.
Once activated, each capsular polysaccharide is separately conjugated to a carrier protein to form a glycoconjugate. In one embodiment, each capsular polysaccharide is conjugated to the same carrier protein. In this embodiment, the conjugation is effected by reductive amination.
The chemical activation of the polysaccharides and subsequent conjugation to the carrier protein are achieved by conventional means. See, for example, U.S. Pat. Nos. 4,673,574 and 4,902,506 [34,35].
Carrier proteins are preferably proteins that are non-toxic and non- reactogenic and obtainable in sufficient amount and purity. Carrier proteins should be amenable to standard conjugation procedures. In a particular embodiment of the present invention, CRM197 is used as the carrier protein.
CRM197 (Wyeth, Sanford, NC) is a non-toxic variant (i.e., toxoid) of diphtheria toxin isolated from cultures of Corynebacterium diphtheria strain C7 (β197) grown in casamino acids and yeast extract-based medium. CRM197 is purified through ultrafiltration, ammonium sulfate precipitation, and ion-exchange chromatography. Alternatively, CRM197 is prepared recombinantly in accordance with U.S. Patent No. 5,614,382, which is hereby incorporated by reference. Other diphtheria toxoids are also suitable for use as carrier proteins.
Other suitable carrier proteins include inactivated bacterial toxins such as tetanus toxoid, pertussis toxoid, cholera toxoid (e.g., as described in International Patent Application WO2004/083251 [38]), E. coli LT, E. coli ST, and exotoxin A from Pseudomonas aeruginosa. Bacterial outer membrane proteins such as outer membrane complex c (OMPC), porins, transferrin binding proteins, pneumolysin, pneumococcal surface protein A (PspA), pneumococcal adhesin protein (PsaA), C5a peptidase from Group A or Group B streptococcus, or Haemophilus influenzae protein D, can also be used. Other proteins, such as ovalbumin, keyhole limpet hemocyanin (KLH), bovine serum albumin (BSA) or purified protein derivative of tuberculin (PPD) can also be used as carrier proteins.
After conjugation of the capsular polysaccharide to the carrier protein, the polysaccharide-protein conjugates are purified (enriched with respect to the amount of polysaccharide-protein conjugate) by a variety of techniques. These techniques include concentration/diafiltration operations, precipitation/elution, column chromatography, and depth filtration. See examples below.
After the individual glycoconjugates are purified, they are compounded to formulate the immunogenic composition of the present invention, which can be used as a vaccine. Formulation of the immunogenic composition of the present invention can be accomplished using art-recognized methods. For instance, the 13 individual pneumococcal conjugates can be formulated with a physiologically acceptable vehicle to prepare the composition. Examples of such vehicles include, but are not limited to, water, buffered saline, polyols (e.g., glycerol, propylene glycol, liquid polyethylene glycol) and dextrose solutions.
In certain embodiments, the immunogenic composition will comprise one or more adjuvants. As defined herein, an "adjuvant" is a substance that serves to enhance the immunogenicity of an immunogenic composition of this invention. Thus, adjuvants are often given to boost the immune response and are well known to the skilled artisan. Suitable adjuvants to enhance effectiveness of the composition include, but are not limited to:
(1) aluminum salts (alum), such as aluminum hydroxide, aluminum phosphate, aluminum sulfate, etc.;
(2) oil-in-water emulsion formulations (with or without other specific immunostimulating agents such as muramyl peptides (defined below) or bacterial cell wall components), such as, for example,
(a) MF59 (PCT Publ. No. WO 90/14837), containing 5% Squalene, 0.5% Tween 80, and 0.5% Span 85 (optionally containing various amounts of MTP-PE (see below, although not required)) formulated into submicron particles using a microfluidizer such as Model 110Y microfluidizer (Microfluidics, Newton, MA), (b) SAF, containing 10% Squalene, 0.4% Tween 80, 5% pluronic-blocked polymer L121 , and thr-MDP (see below) either microfluidized into a submicron emulsion or vortexed to generate a larger particle size emulsion, and
(c) Ribi™ adjuvant system (RAS), (Corixa, Hamilton, MT) containing 2% Squalene, 0.2% Tween 80, and one or more bacterial cell wall components from the group consisting of 3-O-deaylated monophosphorylipid A (MPL™) described in U.S. Patent No. 4,912,094 (Corixa), trehalose dimycolate (TDM), and cell wall skeleton (CWS), preferably MPL + CWS (Detox™);
(3) saponin adjuvants, such as Quil A or STIMULON™ QS-21 (Antigenics, Framingham, MA) (U.S. Patent No. 5,057,540) may be used or particles generated therefrom such as ISCOMs (immunostimulating complexes);
(4) bacterial lipopolysaccharides, synthetic lipid A analogs such as aminoalkyl glucosamine phosphate compounds (AGP), or derivatives or analogs thereof, which are available from Corixa, and which are described in U.S. Patent No. 6,113,918; one such AGP is 2-[(R)-3-Tetradecanoyloxytetradecanoylamino]ethyl 2-Deoxy-4-O- phosphono-3-O-[(R)-3-tetradecanoyloxytetradecanoyl]-2-[(R)-3- tetradecanoyloxytetradecanoylaminoj-b-D-glucopyranoside, which is also know as 529 (formerly known as RC529), which is formulated as an aqueous form or as a stable emulsion, synthetic polynucleotides such as oligonucleotides containing CpG motif(s) (U.S. Patent No. 6,207,646);
(5) cytokines, such as interleukins (e.g., IL-1 , IL-2, IL-4, IL-5, IL-6, IL-7, IL-12, IL-15, IL-18, etc.), interferons (e.g., gamma interferon), granulocyte macrophage colony stimulating factor (GM-CSF), macrophage colony stimulating factor (M-CSF), tumor necrosis factor (TNF), costimulatory molecules B7-1 and B7-2, etc.;
(6) detoxified mutants of a bacterial ADP-ribosylating toxin such as a cholera toxin (CT) either in a wild-type or mutant form, for example, where the glutamic acid at amino acid position 29 is replaced by another amino acid, preferably a histidine, in accordance with published international patent application number WO 00/18434 (see also WO 02/098368 and WO 02/098369), a pertussis toxin (PT), or an E. coli heat-labile toxin (LT), particularly LT-K63, LT-R72, CT-S109, PT-K9/G129 (see, e.g., WO 93/13302 and WO 92/19265); and
(7) other substances that act as immunostimulating agents to enhance the effectiveness of the composition. Muramyl peptides include, but are not limited to, N-acetyl-muramyl-L-threonyl-
D-isoglutamine (thr-MDP), N-acetyl-normuramyl-L-alanine-2-(1'-2' dipalmitoyl-sn- glycero-3-hydroxyphosphoryloxy)-ethylamine (MTP-PE)1 etc.
The vaccine formulations of the present invention can be used to protect or treat a human susceptible to pneumococcal infection, by means of administering the vaccine via a systemic or mucosal route. These administrations can include injection via the intramuscular, intraperitoneal, intradermal or subcutaneous routes; or via mucosal administration to the oral/alimentary, respiratory or genitourinary tracts. In one embodiment, intranasal administration is used for the treatment of pneumonia or otitis media (as nasopharyngeal carriage of pneumococci can be more effectively prevented, thus attenuating infection at its earliest stage). The amount of conjugate in each vaccine dose is selected as an amount that induces an immunoprotective response without significant, adverse effects. Such amount can vary depending upon the pneumococcal serotype. Generally, each dose will comprise 0.1 to 100 μg of polysaccharide, particularly 0.1 to 10 μg, and more particularly 1 to 5 μg.
Optimal amounts of components for a particular vaccine can be ascertained by standard studies involving observation of appropriate immune responses in subjects. Following an initial vaccination, subjects can receive one or several booster immunizations adequately spaced.
In a particular embodiment of the present invention, the 13vPnC vaccine is a sterile liquid formulation of pneumococcal capsular polysaccharides of serotypes 1 ,
3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, and 23F individually conjugated to CRM197. Each 0.5 mL dose is formulated to contain: 2 μg of each saccharide, except for 6B at 4 μg; approximately 29 μg CRM197 carrier protein; 0.125 mg of elemental aluminum (0.5 mg aluminum phosphate) adjuvant; and sodium chloride and sodium succinate buffer as excipients. The liquid is filled into single dose syringes without a preservative. After shaking, the vaccine is a homogeneous, white suspension ready for intramuscular administration.
The choice of dose level for the 13vPnC vaccine is similar to the marketed
7vPnC vaccine (Prevnar). The 2 μg saccharide dose level was selected for all serotypes, except for 6B, which is at 4 μg per dose. The 7vPnC vaccine has shown desirable safety, immunogenicity, and efficacy against IPD in the 2 μg saccharide dose level for serotypes 4, 9V, 14, 18C, 19F and 23F, and at the 4 μg dose for 6B.
The immunization schedule can follow that designated for the 7vPnC vaccine.
For example, the routine schedule for infants and toddlers against invasive disease caused by S. pneumoniae due to the serotypes included in the 13vPnC vaccine is 2,
4, 6 and 12-15 months of age. The compositions of this invention are also suitable for use with older children, adolescents and adults. The compositions of this invention may further include one or more additional antigens for use against otitis media caused by infection with other bacteria. Such bacteria include nontypable Haemophilus influenza, Moraxella catarrhalis (formerly known as Branhamella catarrhalis) and Alloiococcus otitidis.
Examples of nontypable Haemophilus influenzae antigens suitable for inclusion include the P4 protein, also known as protein "e" (U.S. Patent No. 5,601,831; International Patent Application WO03/078453), the P6 protein, also known as the PAL or the PBOMP-1 protein (U.S. Patent No. 5,110,908; International Patent Application WO0100790), the P5 protein (U.S. Reissue Patent No. 37,741), the Haemophilus adhesion and penetration protein (U.S. Patent Nos. 6,245,337 and 6,676,948), the LKP tip adhesin protein (U.S. Patent No. 5,643,725) and the NucA protein (U.S. Patent No. 6,221 ,365).
Examples of Moraxella catarrhalis antigens suitable for inclusion include the
UspA2 protein (U.S. Patent Nos. 5,552,146, 6,310,190), the CD protein (U.S. Patent No. 5,725,862), the E protein (U.S. Patent No. 5,948,412) and the 74 kilodalton outer membrane protein (U.S. Patent No. 6,899,885).
Examples of Alloiococcus otitidis antigens suitable for inclusion include those identified in International Patent Application WO03/048304.
The compositions of this invention may also include one or more proteins from Streptococcus pneumoniae. Examples of Streptococcus pneumoniae proteins suitable for inclusion include those identified in International Patent Application
WO02/083855, as well as that described in International Patent Application
WO02/053761.
The compositions of this invention may further include one or more proteins from Neisseria meningitidis type B. Examples of Neisseria meningitidis type B proteins suitable for inclusion include those identified in International Patent
Applications WO03/063766, WO2004/094596, WO01 /85772, WO02/16612 and
WO01/87939. The above disclosure generally describes the present invention. A more complete understanding can be obtained by reference to the following specific examples. These examples are described solely for the purpose of illustration and are not intended to limit the scope of the invention.
EXAMPLES Example 1
Preparation of S. Pneumoniae Capsular Polysaccharide Serotype 1
Preparation of Master and Working Cell Banks S. pneumoniae serotype 1 was obtained from the American Type Culture
Collection, ATCC, strain 6301. Several generations of seed stocks were created in order to expand the strain and remove components of animal origin (generations F1 , F2, and F3). Two additional generations of seed stocks were produced. The first additional generation was made from an F3 vial, and the subsequent generation was made from a vial of the first additional generation. Seed vials were stored frozen (<-70°C) with synthetic glycerol as a cryopreservative. In addition to frozen vials, lyophilized vials were prepared for the F4 generation. For cell bank preparation, all cultures were grown in a soy-based medium. Prior to freezing, cells were concentrated by centrifugation, spent medium was removed, and cell pellets were re- suspended in fresh medium containing a cryopreservative, such as synthetic glycerol.
Fermentation and Harvesting
Cultures from the working cell bank were used to inoculate seed bottles containing a soy-based medium. The bottles were incubated at 36°C ± 2° C without agitation until growth requirements were met. A seed bottle was used to inoculate a seed fermentor containing soy-based medium. A pH of about 7.0 was maintained with sterile sodium carbonate solution. After the target optical density was reached, the seed fermentor was used to inoculate the production fermentor containing soy- based medium. The pH was maintained with sterile sodium carbonate solution. The fermentation was terminated after cessation of growth or when the working volume of the fermentor was reached. An appropriate amount of sterile 12% deoxycholate sodium was added to the culture to lyse the bacterial cells and release cell- associated polysaccharide. After lysing, the fermentor contents were cooled. The pH of the lysed culture broth was adjusted to approximately pH 6.6 with acetic acid. The lysate was clarified by continuous flow centrifugation followed by depth filtration and 0.45 μm microfiltration.
In an alternate process, the fermentation pH of about 7.0 was maintained with 3N NaOH. After the target optical density was reached, the seed fermentor was used to inoculate the production fermentor containing soy-based medium. The pH was maintained with 3N NaOH. The fermentation was terminated after cessation of growth or when the working volume of the fermentor was reached. An appropriate amount of sterile 12% deoxycholate sodium was added to the culture to obtain a 0.12% concentration in the broth, to lyse the bacterial cells and release cell- associated polysaccharide. After lysing, the fermentor contents were held, with agitation, for a time interval between 8 and 24 hours at a temperature between 7°C and 13°C, to assure that complete cellular lysis and polysaccharide release had occurred. Agitation during this hold period prevented lysate sediment from settling on the fermentor walls and pH probe, thereby allowing the pH probe integrity to be maintained. Next, the pH of the lysed culture broth was adjusted to approximately pH 5.0 with 50% acetic acid. After a hold time without agitation, for a time interval between 12 and 24 hours at a temperature between 15°C and 250C, a significant portion of the previously soluble proteins dropped out of solution as a solid precipitate with little loss or degradation of the polysaccharide, which remained in solution. The solution with the precipitate was then clarified by continuous flow centrifugation followed by depth filtration and 0.45 μm microfiltration.
Purification
The purification of the pneumococcal polysaccharide consisted of several concentration/diafiltration operations, precipitation/elution, column chromatography, and depth filtration steps. All procedures were performed at room temperature unless otherwise specified. Clarified broth from the fermentor cultures of S. pneumoniae serotype 1 were concentrated and diafiltered using a 100 kDa MWCO (kilodalton molecular weight cutoff) filter. Diafiltration was accomplished using sodium phosphate buffer at neutral pH. Diafiltration removed the low molecular weight medium components from the higher molecular weight biopolymers such as nucleic acid, protein and polysaccharide.
The polysaccharide was precipitated from the concentrated and diafiltered solution by adding hexadecyltrimethyl ammonium bromide (HB) from a stock solution to give a final concentration of 1% HB (w/v). The polysaccharide/HB precipitate was captured on a depth filter and the filtrate was discarded. The polysaccharide precipitate was resolubilized and eluted by recirculating a sodium chloride solution through the precipitate-containing depth filter. The filters were then rinsed with additional sodium chloride solution.
Sodium iodide (NaI) was added to the polysaccharide solution from a stock NaI solution to achieve a final concentration of 0.5% to precipitate HB. The precipitate was removed by depth filtration. The filtrate contains the target polysaccharide. The precipitation vessel and the filter were rinsed with a NaCI/Nal solution and the rinse was combined with the partially purified polysaccharide solution. The filter was discarded. The polysaccharide was then filtered through a 0.2 μm filter.
The polysaccharide solution was concentrated on a 30 kDa MWCO ultrafilter and diafiltered with a sodium chloride solution.
The partially purified polysaccharide solution was further purified by filtration through a depth filter impregnated with activated carbon. After filtration, the carbon filter was rinsed with a sodium chloride solution. The rinse is combined with the polysaccharide solution, which is then filtered through a 0.2 μm filter.
The polysaccharide solution was concentrated on a 30 kDa MWCO ultrafilter and adjusted with a 1 M sodium phosphate buffer to achieve a final concentration of 0.025 M sodium phosphate. The pH was checked and adjusted to 7.0 ± 0.2. The ceramic hydroxyapatite (HA) column was equilibrated with sodium phosphate buffer containing sodium chloride to obtain the appropriate conductivity (<15 μS). The polysaccharide solution was then loaded onto the column. Under these conditions, impurities bound to the resin and the polysaccharide was recovered in the flow-through from the column. The polysaccharide solution was filtered through 0.2μm inline filters located before and after the column.
The polysaccharide solution was concentrated using a 30 kDa MWCO filter. The concentrate was then diafiltered with Water for Injection (WFI). The diafiltered polysaccharide solution was filtered through a 0.2 μm membrane filter into polypropylene bottles. Samples were removed for release testing and the purified polysaccharide was stored frozen at -25° ± 5°C.
Characterization The 1 H-NMR data was consistent with the chemical structure by the assignment of signals assigned to the protons of the polysaccharide molecule. The 1 H-NMR spectrum showed a series of well-resolved signals (protons from the methyl group) for the quantitation of the O-acetyl functional group in the polysaccharide.
The identity of the monovalent polysaccharide was confirmed by countercurrent Immunoelectrophoresis using specific antisera.
High performance gel filtration chromatography coupled with refractive index and multiangle laser light scattering (MALLS) detectors was used in conjunction with the sample concentration to calculate the molecular weight.
Size exclusion chromatography media (CL-4B) was used to profile the relative molecular size distribution of the polysaccharide.
Example 2
Preparation of Serotype 1 Pneumococcal Saccharide - CRM197 Conjugate
Activation and Conjugation
Containers of purified polysaccharide were thawed and combined in a reaction vessel. To the vessel, 0.2 M sodium carbonate, pH 9.0 was added for partial deacetylation (hydrolysis) for 3 hours at 500C. The reaction was cooled to 200C and neutralization was performed by 0.2 M acetic acid. Oxidation in the presence of sodium periodate was performed by incubation at 2-80C, and the mixture was stirred for 15-21 hours. The activation reaction mixture was concentrated and diafiltered 10x with 0.9% NaCI using a 3OK MWCO membrane. The retentate was 0.2 μm filtered. The activated saccharide was filled into 100 mL glass lyophilization bottles and shell- frozen at -750C and lyophilized. "Shell-freezing" is a method for preparing samples for lyophilization (freeze- drying). Flasks are automatically rotated by motor driven rollers in a refrigerated bath containing alcohol or any other appropriate fluid. A thin coating of product is evenly frozen around the inside "shell" of a flask, permitting a greater volume of material to be safely processed during each freeze-drying run. These automatic, refrigerated units provide a simple and efficient means of pre-freezing many flasks at a time, producing the desired coatings inside, and providing sufficient surface area for efficient freeze-drying.
Bottles of lyophilized material were brought to room temperature and resuspended in CRM197 solution at a saccharide/protein ratio of 2:1. To the saccharide/protein mixture 1M sodium phosphate buffer was added to a final 0.2M ionic strength and a pH of 7.5, then sodium cyanoborohydride was added. The reaction was incubated at 23°C for 18 hours, followed by a second incubation at 37°C for 72 hours. Following the cyanoborohydride incubations, the reaction mixture was diluted with cold saline followed by the addition of 1M sodium carbonate to adjust the reaction mixture to pH 9.0. Unreacted aldehydes were quenched by addition of sodium borohydride by incubation at 23°C for 3-6 hours.
The reaction mixture was diluted 2-fold with saline and transferred through a 0.45 - 5 μm prefilter into a retentate vessel. The reaction mixture is diafiltered 3Ox with 0.15 M phosphate buffer, pH 6, and 2Ox with saline. The retentate was filtered through a 0.2 μm filter.
The conjugate solution was diluted to a target of 0.5 mg/mL in 0.9% saline, and then sterile filtered into final bulk concentrate (FBC) containers in a Class 100 hood. The conjugate was stored at 2 - 8°C.
Characterization
Size exclusion chromatography media (CL-4B) was used to profile the relative molecular size distribution of the conjugate. The identity of the conjugate was confirmed by the slot-blot assay using specific antisera.
The saccharide and protein concentrations were determined by the uronic acid and Lowry assays, respectively. The ratio of saccharide to protein in the covalently bonded conjugate complex was obtained by the calculation: μg/mL saccharide
I xClUU — ---—— ---«—— -——--- μg/mL protein
O-acetyl content was measured by the Hestrin method (Hestrin et. al., J. Biol. Chem. 1949, 180, p. 249). The ratio of O-acetyl concentration to total saccharide concentration gave μmoles of O-acetyl per mg of saccharide.
Example 3
Preparation of S. Pneumoniae Capsular Polysaccharide Serotype 3
Preparation of Master and Working Cell Banks
S. pneumoniae serotype 3 was obtained from Dr. Robert Austrian, University of Pennsylvania, Philadelphia, Pennsylvania. For preparation of the cell bank system, see Example 1.
Fermentation and Harvesting Cultures from the working cell bank were used to inoculate seed bottles containing soy-based medium. The bottles were incubated at 36°C ± 2° C without agitation until growth requirements were met. A seed bottle was used to inoculate a seed fermentor containing soy-based medium. A pH of about 7.0 was maintained with sterile sodium carbonate solution. After the target optical density was reached, the seed fermentor was used to inoculate an intermediate seed fermentor. After the target optical density was reached, the intermediate seed fermentor was used to inoculate the production fermentor. The pH was maintained with sterile sodium carbonate solution. The fermentation was terminated after the working volume of the fermentor was reached. An appropriate amount of sterile 12% sodium deoxycholate was added to the culture to lyse the bacterial cells and release cell-associated polysaccharide. After lysing, the fermentor contents were cooled. The pH of the lysed culture broth was adjusted to approximately pH 6.6 with acetic acid. The lysate was clarified by continuous flow centrifugation followed by depth filtration and 0.45 μm microfiltration.
Purification The purification of the pneumococcal polysaccharide consisted of several concentration/diafiltration operations, precipitation/elution, column chromatography, and depth filtration steps. All procedures were performed at room temperature unless otherwise specified.
Clarified broth from the fermentor cultures of S. pneumoniae serotype 3 were concentrated and diafiltered using a 100 kDa MWCO filter. Diafiltration was accomplished using sodium phosphate buffer at neutral pH. Diafiltration removed the low molecular weight medium components from the higher molecular weight biopolymers such as nucleic acid, protein and polysaccharide.
Prior to the addition of hexadecyltrimethyl ammonium bromide (HB), a calculated volume of a NaCI stock solution was added to the concentrated and diafiltered polysaccharide solution to give a final concentration of 0.25 M NaCI. The polysaccharide was then precipitated by adding HB from a stock solution to give a final concentration of 1 % HB (w/v). The polysaccharide/HB precipitate was captured on a depth filter and the filtrate was discarded. The polysaccharide precipitate was resolubilized and eluted by recirculating a sodium chloride solution through the precipitate-containing depth filter. The filters were then rinsed with additional sodium chloride solution.
Sodium iodide (NaI) was added to the polysaccharide solution from a stock NaI solution to achieve a final concentration of 0.5% to precipitate HB. The precipitate was removed by depth filtration. The filtrate contained the target polysaccharide. The precipitation vessel and the filter were rinsed with a NaCI/Nal solution and the rinse was combined with the partially purified polysaccharide solution. The filter was discarded. The polysaccharide was then filtered through a 0.2 μm filter. The polysaccharide solution was concentrated on a 30 kDa MWCO ultrafilter and diafiltered with a sodium chloride solution.
The partially purified polysaccharide solution was further purified by filtration through a depth filter impregnated with activated carbon. After filtration, the carbon filter was rinsed with a sodium chloride solution. The rinse was combined with the polysaccharide solution, which was then filtered through a 0.2 μm filter.
The polysaccharide solution was concentrated on a 30 kDa MWCO ultrafilter and adjusted with a 1 M sodium phosphate buffer to achieve a final concentration of 0.025M sodium phosphate. The pH was checked and adjusted to 7.0 ± 0.2.
The ceramic hydroxyapatite (HA) column was equilibrated with sodium phosphate buffer containing sodium chloride to obtain the appropriate conductivity (15 μS). The polysaccharide solution was then loaded onto the column. Under these conditions, impurities bound to the resin and the polysaccharide was recovered in the flow-through from the column. The polysaccharide was flushed through the column with buffer and was filtered through a 0.2μm filter.
The polysaccharide solution was concentrated using a 30 kDa MWCO filter. The concentrate was then diafiltered with WFI.
The diafiltered polysaccharide solution was filtered through a 0.2 μm membrane filter into stainless steel containers. Samples were removed for release testing and the purified polysaccharide was stored frozen at -25° ± 5°C.
Characterization
The 1 H-NMR data was consistent with the chemical structure by the assignment of signals assigned to the protons of the polysaccharide molecule.
The identity of the monovalent polysaccharide was confirmed by countercurrent Immunoelectrophoresis using specific antisera.
High performance gel filtration chromatography, coupled with refractive index and multiangle laser light scattering (MALLS) detectors, was used in conjunction with the sample concentration to calculate the molecular weight.
Size exclusion chromatography media (CL-4B) was used to profile the relative molecular size distribution of the polysaccharide. Example 4
Preparation of Serotype 3 Pneumococcal Saccharide - CRM197 Conjugate
Activation and Conjugation
Containers of purified serotype 3 saccharide were thawed and combined in a reaction vessel. To the vessel, WFI and 2M acetic acid were added to a final concentration of 0.2M and 2mg/ml_ saccharide. The temperature of the solution was raised to 85°C for one hour to hydrolyze the polysaccharide. The reaction was cooled to <25°C and 1 M magnesium chloride was added to a final concentration of
0.1 M. Oxidation in the presence of sodium periodate was performed by incubation for 16-24 hours at 23°C.
The activation reaction mixture was concentrated and diafiltered 10x with WFI using a 100K MWCO membrane. The retentate was filtered through a 0.2-μm filter.
For compounding, 0.2M sodium phosphate, pH 7.0, was added to the activated saccharide to a final concentration of 1OmM and a pH of 6.0-6.5. CRM197 carrier protein was mixed with the saccharide solution to a ratio of 2g of saccharide per 1g of CRM197. The combined saccharide/protein solution was filled into 100 mL glass lyophilization bottles with a 5OmL target fill, shell-frozen at -75°C, and lyophilized.
Bottles of co-lyophilized saccharide/protein material were brought to room temperature and resuspended in 0.1 M sodium phosphate buffer, pH 7.0, to a final saccharide concentration of 20 mg/mL The pH was adjusted to 6.5 and then a 0.5 molar equivalent of sodium cyanoborohydride was added. The reaction was incubated at 37°C for 48 hours. Following the cyanoborohydride incubation, the reaction mixture was diluted with cold 5mM succinate/0.9% saline buffer. Unreacted aldehydes were quenched by the addition of sodium borohydride and incubation at
23°C for 3-6 hours. The reaction mixture was transferred through a 0.45-5 μm prefilter into a retentate vessel.
The reaction mixture was diafiltered 3Ox with 0.1 M phosphate buffer (pH 9), 2Ox with 0.15M phosphate butter (pH 6), and 2Ox with 5mM succinate/0.9% saline. The retentate was filtered through a 0.2-μm filter. The conjugate solution was diluted to a saccharide target of 0.5 mg/mL, and then sterile filtered into FBC containers in a Class 100 hood. The conjugate was stored at 2 - 8°C.
Characterization
5 Size exclusion chromatography media (CL-4B) was used to profile the relative molecular size distribution of the conjugate.
The identity of the conjugate was confirmed by the slot-blot assay using specific antisera.
The saccharide and protein concentrations were determined by the Anthrone 10 and Lowry assays, respectively. The ratio of saccharide to protein in the covalently bonded conjugate complex was obtained by the calculation:
μg/mL saccharide
Λ c Ratin — μg/mL protein
Example 5 Preparation of S. Pneumoniae Capsular Polysaccharide Serotype 5
20 S. pneumoniae serotype 5 was obtained from Dr. Gerald Schiffman of the
State University of New York, Brooklyn, New York. For preparation of the cell bank system, see Example 1. For fermentation, harvesting, purification and characterization of the polysaccharide, see Example 1.
25 Alternate Fermentation Process
Cultures from the working cell bank were used to inoculate seed bottles containing a soy-based medium and a 1OmM sterile NaHCO3 solution. The bottles were incubated at 360C ± 2° C without agitation until growth requirements were met. 30 A seed bottle was used to inoculate a seed fermentor containing soy-based medium and a 1OmM sterile NaHCO3 solution. A pH of about 7.0 was maintained with 3N NaOH. After the target optical density was reached, the seed fermentor was used to inoculate the production fermentor containing soy-based medium with a 1OmM NaHCO3 concentration. The pH was maintained with 3N NaOH. The fermentation was terminated after cessation of growth or when the working volume of the fermentor was reached. An appropriate amount of sterile 12% sodium deoxycholate was added to the culture to obtain a 0.12% concentration in the broth, to lyse the bacterial cells and release cell-associated polysaccharide. After lysing, the fermentor contents were held, with agitation, for a time interval between 8 and 24 hours at a temperature between 7°C and 13°C to assure that complete cellular lysis and polysaccharide release had occurred. Agitation during this hold period prevented lysate sediment from settling on the fermentor walls and pH probe, thereby allowing the pH probe integrity to be maintained. Next, the pH of the lysed culture broth was adjusted to approximately pH 4.5 with 50% acetic acid. After a hold time without agitation, for a time interval between 12 and 24 hours at a temperature between 150C and 25°C, a significant portion of the previously soluble proteins dropped out of solution as a solid precipitate with little loss or degradation of the polysaccharide, which remained in solution. The solution with the precipitate was then clarified by continuous flow centrifugation followed by depth filtration and 0.45 μm microfiltration.
Example 6
Preparation of Serotype 5 Pneumococcal Saccharide - CRM197 Conjugate
Activation and Conjugation
Containers of serotype 5 saccharide were thawed and combined in a reaction vessel. To the vessel, 0.1 M sodium acetate, pH 4.7, was added followed by oxidation in the presence of sodium periodate by incubation for 16-22 hours at 230C. The activation reaction mixture was concentrated and diafiltered 1Ox with WFI using a 100K MWCO membrane. The retentate was filtered through a 0.2 μm filter.
The serotype 5 activated saccharide was combined with CRMi97 at a ratio of 0.8:1. The combined saccharide/protein solution was filled into 100 mL glass lyophilization bottles (50 mL target fill), shell-frozen at -75°C, and co-lyophilized.
Bottles of co-lyophilized material were brought to room temperature and resuspended in 0.1 M sodium phosphate, pH 7.5, and sodium cyanoborohydride was added. The reaction was incubated at 300C for 72 hours, followed by a second addition of cyanoborohydride and incubated at 300C for 20-28 hours. Following the cyanoborohydride incubations, the reaction mixture was diluted
2-fold with saline and transferred through a 0.45-5 μm prefilter into a retentate vessel.
The reaction mixture was diafiltered 3Ox with 0.01 M phosphate buffer, pH 8, 2Ox with
0.15M phosphate buffer, pH 6, and 2Ox with saline. The retentate was filtered through a 0.2 μm filter.
The conjugate solution was diluted to a saccharide target of 0.5 mg/mL, and then sterile filtered into FBC containers in a Class 100 hood. The conjugate was stored at 2 - 8°C.
For the characterization of the conjugate, see Example 2.
Example 7 Preparation of S. Pneumoniae Capsular Polysaccharide Serotype 6A
S. pneumoniae serotype 6A was obtained from Dr. Gerald Schiffman of the
State University of New York, Brooklyn, New York. For preparation of the cell bank system, see Example 1. For fermentation, harvesting and purification of the polysaccharide, see Example 1 , except that during purification, the 30 kDa MWCO concentration step, prior to the chromatography step, is omitted.
Example 8 Preparation of Serotype 6A Pneumococcal Saccharide - CRM197 Conjugate
Activation and Conjugation
Serotype 6A polysaccharide is a high molecular weight polymer that had to be reduced in size prior to oxidation. Containers of serotype 6A saccharide were thawed and combined in a reaction vessel. To the vessel, 2 M acetic acid was added to a final concentration of 0.1 M for hydrolysis for 1.5 hours at 600C. The reaction was cooled to 23°C and neutralization was performed by adjusting the reaction mixture with 1 M NaOH to pH 6. Oxidation in the presence of sodium periodate was performed by incubation at 23°C for 14-22 hours. The activation reaction mixture was concentrated and diafiltered 10x with WFI using a 100K MWCO membrane. The retentate was filtered through a 0.2 μm filter.
Serotype 6A was compounded with sucrose and filled into 100 mL glass lyophilization bottles (5OmL target fill) and shell-frozen at -75°C and lyophilized. Bottles of lyophilized material were brought to room temperature and resuspended in dimethylsulfoxide (DMSO) at a saccharide/protein ratio of 1 :1. After addition of sodium cyanoborohydride, the reaction mixture was incubated at 230C for 18 hours. Following the cyanoborohydride incubation, the reaction mixture was diluted with cold saline. Unreacted aldehydes were quenched by addition of sodium borohydride by incubation at 23°C for 3-20 hours.
The diluted reaction mixture was transferred through a 5 μm prefilter into a retentate vessel. The reaction mixture was diafiltered 1Ox with 0.9% NaCI and 3Ox with succinate-buffered NaCI. The retentate was filtered through a 0.2 μm filter. The conjugate solution was diluted to a saccharide target of 0.5 mg/mL, and then sterile filtered into FBC containers in a Class 100 hood. The conjugate was stored at 2 - 8°C.
For the characterization of the conjugate, see Example 2.
Example 9
Preparation of S. Pneumoniae Capsular Polysaccharide Serotype 7F
S. pneumoniae serotype 7F was obtained from Dr. Gerald Schiffman of the
State University of New York, Brooklyn, New York. For preparation of the cell bank system, and for fermentation and harvesting of the polysaccharide, see Example 3. For an alternate fermentation and harvesting process, see the alternate process described in Example 1.
Purification
The purification of the pneumococcal polysaccharide consisted of several concentration/diafiltration operations, precipitation/elution, column chromatography, and depth filtration steps. All procedures were performed at room temperature unless otherwise specified.
Clarified broth from fermentor cultures of S. pneumoniae serotype 7F were concentrated and diafiltered using a 100 kDa MWCO filter. Diafiltration was accomplished using sodium phosphate buffer at neutral pH. Diafiltration removed the low molecular weight medium components from the higher molecular weight biopolymers such as nucleic acid, protein and polysaccharide. Serotype 7F does not form a precipitate with HB. Instead, impurities were precipitated from the concentrated and diafiltered solution by adding the HB from a stock solution to a final concentration of 1 % HB. The precipitate was captured on a depth filter and the filter was discarded. The polysaccharide was contained in the filtrate.
Sodium iodide (NaI) was added to the polysaccharide solution from a stock NaI solution to achieve a final concentration of 0.5% to precipitate HB. The precipitate was removed by depth filtration. The filtrate contained the target polysaccharide. The precipitation vessel and the filter were rinsed with a NaCI/Nal solution and the rinses were combined with the partially purified polysaccharide solution. The filter was discarded. The polysaccharide was then filtered through a 0.2μm filter.
The polysaccharide solution was concentrated on a 30 kDa MWCO ultrafilter and diafiltered with a sodium chloride solution. The partially purified polysaccharide solution was further purified by filtration through a depth filter impregnated with activated carbon. After filtration, the carbon filter was rinsed with a sodium chloride solution. The rinse was combined with the polysaccharide solution, which was then filtered through a 0.2 μm filter.
The polysaccharide solution was concentrated on a 30 kDa MWCO ultrafilter and adjusted with a 1 M sodium phosphate buffer to achieve a final concentration of 0.025M sodium phosphate. The pH was checked and adjusted to 7.0 ± 0.2.
The ceramic hydroxyapatite (HA) column was equilibrated with sodium phosphate buffer containing sodium chloride to obtain the appropriate conductivity (15 μS). The polysaccharide solution was then loaded onto the column. Under these conditions, impurities bound to the resin and the polysaccharide was recovered in the flow-through from the column. The polysaccharide was flushed through the column with buffer and was filtered through a 0.2 μm filter.
The polysaccharide solution was concentrated using a 30 kDa MWCO filter. The concentrate was then diafiltered with WFI. The diafiltered polysaccharide solution was filtered through a 0.2 μm membrane filter into stainless steel containers. Samples were removed for release testing and the purified polysaccharide was stored at 2° - 8°C.
For characterization of the polysaccharide, see Example 3. Example 10
Preparation of Serotype 7F Pneumococcal Saccharide - CRM197 Conjugate
Activation and Conjugation Oxidation in the presence of sodium periodate was performed by incubation for 16-24 hrs at 23°C.
The activation reaction mixture was concentrated and diafiltered 10x with 1OmM NaOAc, pH 4.5, using a 100K MWCO membrane. The retentate was filtered through a 0.2 μm filter. Serotype 7F was filled into 100 mL glass lyophilization bottles (50 ml. target fill) and shell-frozen at -75°C and lyophilized.
Bottles of lyophilized serotype 7F and CRM197 were brought to room temperature and resuspended in DMSO at a saccharide/protein ratio of 1.5:1. After the addition of sodium cyanoborohydride, the reaction was incubated at 23°C for 8- 10 hours. Unreacted aldehydes were quenched by the addition of sodium borohydride by incubation at 23°C for 16 hours.
The reaction mixture was diluted 10-fold with cold saline and transferred through a 5 μm prefilter into a retentate vessel. The reaction mixture was diafiltered 10x with 0.9% saline and 3Ox with succinate-buffered saline. The retentate was filtered through a 0.2 μm filter.
The conjugate solution was diluted to a saccharide target of 0.5 mg/mL 0.9% saline, and then sterile filtered into FBC containers in a Class 100 hood. The conjugate was stored at 2 - 8°C.
For characterization of the conjugate, see Example 4.
Example 11 Preparation of S. Pneumoniae Capsular Polysaccharide Serotype 19A
S. pneumoniae serotype 19A was obtained from Dr. Gerald Schiffman of the
State University of New York, Brooklyn, New York. For preparation of the cell bank system, see Example 1. For fermentation, harvesting and purification of the polysaccharide, see Example 7. For characterization, see Example 3.
Example 12
Preparation of Serotype 19A Pneumococcal Saccharide - CRM197 Conjugate
Activation and Conjugation
Containers of serotype 19A saccharide were thawed and combined in a reaction vessel. Sodium acetate was added to 10 mM (pH 5.0) and oxidation was carried out in the presence of sodium periodate by incubation for 16-24 hrs at 23°C.
The activation reaction mixture was concentrated and diafiltered 1Ox with 1OmM acetate, pH 5.0, using a 100K MWCO membrane. The retentate was filtered through a 0.2 μm filter.
The activated saccharide was compounded with sucrose followed by the addition of CRM197. The serotype 19A activated saccharide and CRM197 mixture (0.8:1 ratio) was filled into 100 ml_ glass lyophilization bottles (50 mL target fill) and shell-frozen at -75°C and lyophilized.
Bottles of lyophilized material were brought to room temperature and resuspended in DMSO. To the saccharide/protein mixture, sodium cyanoborohydride (100 mg/ml) was added. The reaction was incubated at 230C for 15 hours. Following the cyanoborohydride incubation, unreacted aldehydes were quenched by the addition of sodium borohydride by incubation at 23°C for 3-20 hours.
The reaction mixture was diluted 10-fold with cold saline and transferred through a 5 μm prefilter into a retentate vessel. The reaction mixture was diafiltered 10x with 0.9% NaCI, 0.45-μm filtered, and 3Ox with diafiltration using 5mM succinate/ 0.9% NaCI buffer, pH 6. The retentate was filtered through a 0.2 μm filter. The conjugate solution was diluted to a target of 0.5 mg/mL using 5mM succinate/0.9% saline, and then sterile filtered into FBC containers in a Class 100 hood. The conjugate was stored at 2 - 8°C.
For characterization of the conjugate, see Example 4.
Example 13
Preparation of S. Pneumoniae Capsular Polysaccharide Serotypes 4, 6B, 9V, 14, 18C, 19F and 23F
Preparation of the S. pneumoniae Seed Culture
S. pneumoniae serotypes 4, 6B, 9V, 18C1 19F and 23F were obtained from Dr. Gerald Schiffman, State University of New York, Brooklyn, New York. S. pneumoniae serotype 14 was obtained from the ATCC, strain 6314.
Separately, one vial of each of the desired serotypes of Streptococcus pneumoniae was used to start a fermentation batch. Two bottles containing a soy- based medium and phenol red were adjusted to a pH range of 7.4 ± 0.2 using sodium carbonate, and the required volume of 50% dextrose/1% magnesium sulfate solution was then added to the bottles. The two bottles were inoculated with different amounts of seed. The bottles were incubated at 36° ± 20C until the medium turned yellow. Following incubation, samples were removed from each bottle and tested for optical density (OD) (0.3 to 0.9) and pH (4.6 to 5.5). One of the two bottles was selected for inoculation of the seed fermentor.
Soy-based medium was transferred to the seed fermentor and sterilized. Then a volume of 50% dextrose/1 % magnesium sulfate solution was added to the fermentor. The pH and agitation of the seed fermentor were monitored and controlled (pH 6.7 to 7.4). The temperature was maintained at 36° ± 20C. The seed inoculum (bottle) was aseptically connected to the seed fermentor and the inoculum was transferred. The fermentor was maintained in pH control and samples were periodically removed and tested for OD and pH. When the desired OD of 0.5 at 600 nm was reached, the intermediate fermentor was inoculated with the fermentation broth from the seed fermentor.
Soy-based medium was transferred to the intermediate fermentor and sterilized. Then a volume of 50% dextrose/1% magnesium sulfate solution was added to the fermentor. The pH and agitation of the intermediate fermentor were monitored and controlled (pH 6.7 to 7.4). The temperature was maintained at 36° ± 20C. The contents of the seed fermentor were transferred to the intermediate fermentor. The fermentor was maintained in pH control and samples were periodically removed and tested for OD and pH. When the desired OD of 0.5 at 600 nm was reached, the production fermentor was inoculated with the fermentation broth from the intermediate fermentor.
Soy-based medium was transferred to the production fermentor and sterilized. Then a volume of 50% dextrose/1% magnesium sulfate solution was added to the fermentor. The pH and agitation of the production fermentor were monitored and controlled (pH 6.7 to 7.4). The temperature was maintained at 36° ± 20C. The fermentor was maintained in pH control and samples were periodically removed and tested for OD and pH, until the fermentation was complete.
Deoxycholate sodium was added to the fermentor to a final concentration of approximately 0.12% w/v. The culture was mixed for a minimum of thirty minutes and the temperature set point was reduced to 1O0C. The culture was incubated overnight and following confirmation of inactivation, the pH of the culture was adjusted to between 6.4 and 6.8, as necessary, with 50% acetic acid. The temperature of the fermentor was increased to 20° ± 5°C and the contents were transferred to the clarification hold tank.
The contents of the clarification hold tank (including the cellular debris) were processed through a centrifuge at a flow rate between 25 and 600 liters per hour
(except Serotype 4, wherein the cell debris was discarded and the flow rate tightened to between 25 and 250 liters per hour). Samples of the supernatant were removed and tested for OD. The desired OD during the centrifugation was < 0.15.
Initially, the supernatant was recirculated through a depth filter assembly until an OD of 0.05 ± 0.03 was achieved. Then the supernatant was passed through the depth filter assembly and through a 0.45 μm membrane filter to the filtrate hold tank.
Subsequently, the product was transferred through closed pipes to the purification area for processing.
All of the above operations (centrifugation, filtration and transfer) were performed between 100C to 300C. For an alternate fermentation and harvesting process for serotypes 4 and 6B, see the alternate process described in Example 1.
Purification The purification of each pneumococcal polysaccharide consisted of several concentration/diafiltration operations, precipitation/elution, column chromatography, and depth filtration steps. All procedures were performed at room temperature unless otherwise specified.
Clarified broth from the fermentor cultures of the desired S. pneumoniae serotype was concentrated and diafiltered using a 100 kDa MWCO filter.
Diafiltration was accomplished using sodium phosphate buffer at pH < 9.0.
Diafiltration removed the low molecular weight medium components from the higher molecular weight biopolymers such as nucleic acid, protein and polysaccharide.
The polysaccharide was precipitated from the concentrated and diafiltered solution by adding HB from a stock solution to give a final concentration of 1 % HB
(w/v) (except Serotype 23F, which had a final concentration of 2.5%). The polysaccharide/HB precipitate was captured on a depth filter and the filtrate was discarded. (Note: Serotype 14 does not precipitate; therefore the filtrate was retained.) The polysaccharide precipitate was resolubilized and eluted by recirculating a sodium chloride solution through the precipitate-containing depth filter.
The filters were then rinsed with additional sodium chloride solution.
Sodium iodide (NaI) was added to the polysaccharide solution from a stock
NaI solution to achieve a final concentration of 0.5% to precipitate HB (except for
Serotype 6B, which had a final concentration of 0.25%). The precipitate was removed by depth filtration. The filtrate contained the target polysaccharide. The filter was discarded. The polysaccharide was then filtered through a 0.2μm filter.
The polysaccharide solution was concentrated on a 30 kDa MWCO ultrafilter and diafiltered with a sodium chloride solution.
The partially purified polysaccharide solution was further purified by filtration through a depth filter impregnated with activated carbon. After filtration, the carbon filter was rinsed with a sodium chloride solution. The rinse was combined with the polysaccharide solution, which was then filtered through a 0.2μm filter. The polysaccharide solution was concentrated on a 30 kDa MWCO ultrafilter and the filter was rinsed with a sodium chloride solution. The pH was checked and adjusted to 7.0 ± 0.3.
The ceramic hydroxyapatite (HA) column was equilibrated with sodium phosphate buffer containing sodium chloride until the pH is 7.0 ± 0.3 and the conductivity was 26 + 4μS. The polysaccharide solution was then loaded onto the column. Under these conditions, impurities bound to the resin and the polysaccharide was recovered in the flow through from the column. The polysaccharide solution was filtered through a 0.2μm filter. The polysaccharide solution was concentrated using a 30 kDa MWCO filter.
The concentrate was then diafiltered with WFI until the conductivity was < 15μS.
The diafiltered polysaccharide solution was filtered through a 0.2μm membrane filter into bulk containers and stored at 2-8°C.
Example 14
Preparation of Pneumococcal Saccharide - CRM197 Conjugates For Serotypes 4, 6B, 9V, 14, 18C, 19F and 23F
Activation Process The different serotype saccharides follow different pathways for activation
(hydrolysis or no hydrolysis prior to activation) and conjugation (aqueous or DMSO reactions) as described in this example.
Polysaccharide was transferred from the bulk containers to the reactor vessel. The polysaccharide was then diluted in WFI and sodium phosphate to a final concentration range of 1.6 - 2.4 mg/mL
Step 1.
For serotypes 6B, 9V, 14, 19F and 23F, pH was adjusted to pH 6.0 ± 0.3.
For serotype 4, hydrochloric acid (0.01 M final acid concentration) was added and the solution was incubated for 25 - 35 minutes at 45° ± 2°C. Hydrolysis was stopped by cooling to 21 - 25°C and adding 1M sodium phosphate to a target of pH
6.7 ± 0.2. An in-process test was done to confirm an appropriate level of depyruvylation. For serotype 18C, glacial acetic acid (0.2 M final acid concentration) was added and the solution was incubated for 205 - 215 minutes at 94° ± 2°C. Temperature was then decreased to 21 - 25°C and 1 - 2 M sodium phosphate was added to a target of pH 6.8 ± 0.2.
Step 2: Periodate Reaction
The required sodium periodate molar equivalents for pneumococcal saccharide activation was determined using total saccharide content (except for serotype 4). For serotype 4, a ratio of 0.8-1.2 moles of sodium periodate per mole of saccharide was used. With thorough mixing, the oxidation reaction was allowed to proceed between 16 to 20 hours at 21 - 25°C for all serotypes except 19F for which the temperature was ≤ 15°C.
Step 3: Ultrafiltration The oxidized saccharide was concentrated and diafiltered with WFI (0.01 M sodium phosphate buffer pH 6.0 for serotype 19F) on a 100 kDa MWCO ultrafilter (5 kDa ultrafilter for 18C). The permeate was discarded and the retentate was filtered through a 0.22 μm filter.
Step 4: Lyophilization
For serotypes 4, 9V, and 14 the concentrated saccharide was mixed with CRM197 carrier protein, filled into glass bottles, shell-frozen and stored at < -65°C. The frozen concentrated saccharide-CRM197 was lyophiiized and then stored at -25° ± 5°C. For serotypes 6B, 19F, and 23F a specified amount of sucrose was added which was calculated to achieve a 5% ± 3% sucrose concentration in the conjugation reaction mixture. Serotype 18C did not require sucrose addition. The concentrated saccharide was then filled into glass bottles, shell-frozen and stored at < -65°C. The frozen concentrated saccharide was lyophiiized and then stored at -25° ± 5°C.
Conjugation Process
Two conjugation processes were used: aqueous conjugation for serotypes 4, 9V, 14 and 18C, and DMSO conjugation for serotypes 6B, 19F and 23F. Aqueous Conjugation Step 1: Dissolution
For serotypes 4, 9V and 14, the lyophilized activated saccharide-CRMig7 mixture was thawed and equilibrated at room temperature. The lyophilized activated saccharide-CRM197 was then reconstituted in 0.1 M sodium phosphate buffer at a typical ratio of:
• 1 L of buffer per 16 - 24 g of saccharide for serotype 4 and 9V
• 1 L of buffer per 6 - 10 g of saccharide for serotype 14
The reaction mixture was incubated at 37° ± 2°C until total dissolution for the serotype 9V and at 23° ± 20C for serotypes 4 and 14.
For serotype 18C, the lyophilized saccharide was reconstituted in a solution of CRMi97 in 1 M dibasic sodium phosphate at a typical ratio of 0.11 L of sodium phosphate per 1 L of CRM197 solution. The reaction mixture (8-12 g/L saccharide concentration) was incubated at 23° + 2°C until total dissolution.
The pH was tested as an in-process control at this stage.
Step 2: Conjugation Reaction For serotypes 4 and 9V, the conjugation reaction was initiated by adding the sodium cyanoborohydride solution (100 mg/mL) to achieve 1.0 - 1.4 moles sodium cyanoborohydride per mole of saccharide. The reaction mixture was incubated for 44 - 52 hours at 37° ± 2°C. The temperature was then reduced to 23° ± 2°C and sodium chloride 0.9% was added to the reactor. Sodium borohydride solution (100 mg/mL) was added to achieve 1.8 - 2.2 molar equivalents of sodium borohydride per mole saccharide. The mixture was incubated for 3 - 6 hours at 23° ± 20C. The mixture was diluted with sodium chloride 0.9% and the reactor was rinsed. The diluted conjugation mixture was filtered using a 1.2 μm pre-filter into a holding vessel.
For serotypes 14 and 18C, the conjugation reaction was initiated by adding the cyanoborohydride solution (100 mg/mL) to achieve 1.0 - 1.4 moles of sodium cyanoborohydride per mole of saccharide. The reaction mixture was incubated for 12 - 24 hours at 23° ± 2°C. The temperature was increased to 37° ± 2°C and the reaction was incubated for 72 - 96 hours. The temperature was then reduced to 23° ± 20C and 0.9% sodium chloride was added to the reactor. Sodium borohydride solution (100mg/mL) was added to achieve 1.8 - 2.2 molar equivalents of sodium borohydride per mole of saccharide. The mixture was incubated for 3 - 6 hours at 23° ± 20C. The mixture was diluted with 0.9% sodium chloride and the reactor was rinsed. The diluted conjugation mixture was then filtered using a 1.2 μm pre-fiiter into a holding vessel.
Step 3: Ultrafiltration 100 kDa
The diluted conjugation mixture was concentrated and diafiltrated on a 100 kDa MWCO ultrafilter with either a minimum of 15 volumes (serotype 4) or 40 volumes (serotypes 9V, 14, and 18C) of 0.9% sodium chloride. The permeate was discarded.
For serotype 4, the retentate was filtered through a 0.45μm filter. An in-process control (saccharide content) was performed at this step.
Step 4: HA Column Purification
This step was only performed for the serotype 4 conjugate. The HA column was first neutralized using 0.5M sodium phosphate buffer (pH 7.0 + 0.3) and then equilibrated with 0.9% sodium chloride. The filtered retentate (serotype 4) was loaded onto the column at a flow rate of 1.0 L/min. The column was washed with 0.9% sodium chloride at a flow rate of < 2.0 L/min. The product was then eluted with 0.5M sodium phosphate buffer at a flow rate of < 2.0 L/min.
The HA fraction was then concentrated and diafiltered on a 100 kDa MWCO membrane with a minimum of 20 volumes of 0.9% sodium chloride. The permeate was discarded.
Step 5: Sterile Filtration
The retentate after the 100 kDa MWCO diafiltration was filtered through a 0.22μm filter. In-process controls (saccharide content, free protein, free saccharide and cyanide) were performed on the filtered product. In-process controls on filtered retentate were performed to determine whether additional concentration, diafiltration, and/or dilution were needed to meet FBC targets. These and additional tests were repeated in FBC samples. As necessary, the filtered conjugate was diluted with 0.9% sodium chloride in order to achieve a final concentration of less than 0.55 g/L. Release tests for saccharide content, protein content and saccharide: protein ratio were performed at this stage. Finally, the conjugate was filtered (0.22 μm) and filled into 10 L stainless steel canisters at a typical quantity of 2.64 g/canister. At this stage, yield, saccharide content, protein content, pH, saccharide:protein ratio and lysine content were performed as in-process controls. Release testing (appearance, free protein, free saccharide, endotoxin, molecular size determination, residual cyanide, saccharide identity, CRM197 identity) was performed at this stage.
DMSO Conjugation Step I: Dissolution
The lyophilized activated saccharide serotypes 6B, 19F, 23F and the lyophilized CRM197 carrier protein were equilibrated at room temperature and reconstituted in DMSO. The dissolution concentration typically ranged from 2-3 grams of saccharide (2-2.5 g protein) per liter of DMSO.
Step II: Conjugation Reaction The activated saccharide and CRM197 carrier protein were mixed for 60 - 75 minutes at 23° ± 2°C at a ratio range of 0.6 g - 1.0 g saccharide/g CRM197 for serotypes 6B and 19F or 1.2 to 1.8 g saccharide/g CRM197 for serotype 23F.
The conjugation reaction was initiated by adding the sodium cyanoborohydride solution (100mg/ml_) at a ratio of 0.8 - 1.2 molar equivalents of sodium cyanoborohydride to one mole activated saccharide. WFI was added to the reaction mixture to a target of 1% (v/v) and the mixture was incubated for over 40 hours at 23°
± 2°C.
Sodium borohydride solution, 100 mg/mL (typical 1.8 - 2.2 molar equivalents sodium borohydride per mole activated saccharide) and WFI (target 5% v/v) were added to the reaction and the mixture was incubated for 3 - 6 hours at 23° ± 20C.
This procedure reduced any unreacted aldehydes present on the saccharides. Then the reaction mixture was transferred to a dilution tank containing 0.9% sodium chloride at < 15°C. Step III: 100 kDa Ultrafiltration
The diluted conjugate mixture was filtered through a 1.2 μm filter and concentrated and diafiltered on a 100 kDa MWCO membrane with a minimum of 15 volumes of 0.9% sodium chloride (0.01 M sodium phosphate/0.05M NaCI buffer was used for serotype 23F). The permeate was discarded. The retentate was filtered through a 0.45 μm filter. An in-process saccharide content sample was taken at this stage.
Step IV: DEAE Column Purification
This step was only performed for serotype 23F.
The DEAE column was equilibrated with 0.01 M sodium phosphate/0.05M sodium chloride buffer. The filtered retentate (serotype 23F) was loaded onto the column and washed with 0.01 M sodium phosphate/0.05M sodium chloride buffer. The column was then washed with 0.01 M sodium phosphate/0.9% NaCI buffer. The product was then eluted with 0.01 M sodium phosphate/0.5M sodium chloride buffer. Step V: 100 kDa Ultrafiltration
The retentate from 6B and 19F was concentrated and diafiltered with at least 30 volumes of 0.9% sodium chloride. The permeate was discarded. The eluate from serotype 23F was concentrated and diafiltered with a minimum of 20 volumes of 0.9% sodium chloride. The permeate was discarded.
Step Vl: Sterile Filtration
The retentate after the 100 kDa MWCO dialfiltration was filtered through 0.22 μm filter. In-process controls (saccharide content, free protein, free saccharide, residual DMSO and residual cyanide) were performed on the filtered product. In- process controls on filtered retentate were performed to determine whether additional concentration, diafiltration, and/or dilution were needed to meet FBC targets. These and additional tests were repeated in FBC samples. As necessary, the filtered conjugate was diluted with 0.9% sodium chloride to achieve a final concentration of less than 0.55 g/L. Release tests for saccharide content, protein content and saccharide:protein ratio were performed at this stage. Finally, the conjugate was filtered (0.22 μm) and filled into 10 L stainless steel canisters at a quantity of 2.64 g/canister. At this stage, yield, saccharide content, protein content, pH, saccharide: protein ratio and lysine content were performed as in- process controls. Release testing (appearance, free protein, free saccharide, endotoxin, molecular size determination, residual cyanide, residual DMSO, saccharide identity and CRM197 identity) was performed at this stage.
Example 15 Formulation of a Multivalent Pneumococcal Conjugate Vaccine The final bulk concentrates of the 13 conjugates contain 0.85% sodium chloride. Type 3, 6A, 7F and 19A bulk concentrates also contain 5 mM sodium succinate buffer at pH 5.8. The required volumes of bulk concentrates were calculated based on the batch volume and the bulk saccharide concentrations. After 80% of the 0.85% sodium chloride (physiological saline) and the required amount of succinate buffer were added to the pre-labeled formulation vessel, bulk concentrates were added. The preparation was then sterile filtered through a 0.22 μm membrane into a second container by using a Millipore Durapore membrane filter unit. The first container was washed with the remaining 20% of 0.85% sodium chloride and the solution was passed through the same filter and collected into the second container. The formulated bulk was mixed gently during and following the addition of bulk aluminum phosphate. The pH was checked and adjusted if necessary. The formulated bulk product was stored at 2-8°C.
The formulated bulk product was filled into Type 1 borosilicate glass syringes obtained from Becton Dickinson. The vaccine was monitored at regular intervals for turbidity to ensure the uniformity of the filling operation. The filled vaccine (Final Product) was stored at 2-8°C.
Example 16 lmmunogenicity of the 13-Valent Conjugate Vaccine
To date, the preclinical studies performed on the 13vPnC vaccine have been in rabbits. Studies #HT01-0021 and #HT01-0036 were designed to independently examine the effect of chemical conjugation of capsular polysaccharides (PSs) from
S. pneumoniae to CRM197 and the effect of aluminum phosphate (AIPO4) adjuvant on the immune response to the 13vPnC vaccine in rabbits. These effects were characterized by antigen-specific ELISA for serum IgG concentrations and for antibody function by opsonophagocytic assay (OPA).
Study #HT01 -0021
Study #HT01-0021 examined the ability of the 13vPnC vaccine with AIPO4 adjuvant to elicit vaccine serotype-specific immune responses. The pneumococcal serotypes represented in the 13vPnC vaccine include types 1 , 3, 4, 5, 6A, 6B, 7F,
9V, 14, 18C1 19A, 19F and 23F. Secondary objectives included an evaluation of the kinetics and duration of the antibody response. New Zealand White rabbits were immunized intramuscularly at week 0 and week 2 with the planned human clinical dose of each polysaccharide (2 μg of each PS, except 4 μg of 6B) formulated with or without AIPO4 (100 μg /dose). Sera were collected at various time points. Serotype specific IgG was measured by ELISA and functional activity was assessed by OPA.
Table 3 shows the geometric mean titer (GMT) achieved in pooled serum samples, following two doses of the 13vPnC vaccine. A ratio of the IgG GMTs was used to compare responses from week 4 to week 0. These data demonstrate that the inclusion of AIPO4 in the 13vPnC formulation elicited higher levels of IgG antibody in comparison to the same vaccine without adjuvant. Although the antibody responses were greater when AIPO4 was included in the formulation, these increases were not statistically significant.
Functional antibody responses were also assessed in rabbits following immunization with the two 13vPnC formulations (Table 4). When comparing vaccine formulations with or without adjuvant, higher OPA GMTs were observed in the 13vPnC + AIPO4 vaccine treatment group. OPA titers were detected in week 4 serum pools to all vaccine serotypes in both groups. For the majority of the serotypes, OPA titers measured at week 4 were at least 4-fold higher than those at week 0 (baseline).
The kinetic responses to each of the 13vPnC vaccine serotypes were evaluated from serum pools of both treatment groups. IgG titers to each serotype were measured from blood draws at week 0 and weeks 1 , 2, 3, 4, 8, 12, 26, and 39 and then compared. With the exception of serotype 1, antibody responses in animals receiving adjuvanted vaccine were superior to those that received non- adjuvanted vaccine and peaked at week 2 of the immunization schedule (data not shown).
Overall, the data indicate that the 13vPnC vaccine formulated with aluminum phosphate is immunogenic in rabbits, eliciting substantial antibody responses to the pneumococcal capsular polysaccharides contained in the vaccine and these responses are associated with functional activity. The responses observed to the seven core serotypes following immunization with 13vPnC + AIPO4 are consistent with historical responses of rabbits to the heptavalent formulation.
Table 3. Rabbit IgG Immune Responses (GMTs) Following Immunization with Two Doses of 13-valent Pneumococcal Glycoconjugate
Diluent with ALPO4 3 13vPnCa 13vPnC + ALPO4 3
Ratio Week 4 Ratio Week 4 Ratio
Serotype Week O Week 4 Wk4:WkO Week O (95% Cl) Wk4:WkO Week O (95% Cl) Wk4:WkO
1 <100 <100 11,091
1.0 50 5,926 (2,758-12,733) 119 50 222 (5,327-23,093)
3 <100 <100 6,647 16,443
1.0 50 (2,773-15,932) 133 58 284 (7,096-38,106)
4 <100 <100 1.0 50 13,554 584 (8,031-22,875) 271 50 29,183 (15,342-55,508)
5 134 <100 5,859
0.4 50 334 (2,450-14,009) 117 50 16,714 (6,959-40,140)
6A 141 <100 0.4 74 22,415 768 (11 ,987-41 ,914) 303 83 63,734 (21,141-192,146)
6B <100 <100 1.0 57 8,108 (3,564-18,444) 142 54 23,505 435 (11 ,286-48,955)
7F 3,859 579 0.2 171 43,591 84,888 496 (26,931-70,557) 444 143 (46,445-155,151)
9V 289 995 3.4 205 15,780 43,331" 217 (7,193-34,616) 125 208 (23,256-71 ,510)
14 437 177 0.4 61 6,906 (3,416-13,962) 113 70 16,076 322 (9,649-26,785)
18C <100 <100 1.0 35,040
50 21,283 701 (15,770-28,725) 426 50 (24,708-49,692)
19A <100 <100 1.0 121 113,599 280,976 1 ,951 (54,518-236,707) 939 144 (119,587-660,167)
19F <100 <100 1.0 50 14,365 24,912 (7,346-28,090) 287 50 (9,243-67,141) 498
23F <100 <100 1.0 50 5 323 50 15,041 301 (1,894-14,962) 106 (4,711-48,018) a: GMTs of pooled sera consisted of equal volumes of serum from each individual rabbit within a group b: Statistically different (p=0.022) from treatment group without ALPO4
Table 4. S. pneumoniae OPA GMTs for NZW Rabbit Serum Pools Following
Immunization with Two Doses of 13-valent Pneumococcal Glycoconjugate
13vPnCa 13vPnC + ALPO4 a
Ratio Ratio
Week O Week 4
Serotype Wk4:WkO Week O Week 4 Wk4:WkO
1 <8 64 16 <8 64 16
3 <8 8 2 <8 16 4
4 <8 16 4 <8 32 8
5 <8 128 32 <8 512 128
6A 8 128 16 8 512 64
6B <8 256 64 8 1 ,024 128
7F 8 64 8 8 128 16
9V 8 64 8 8 128 16
14 16 32 2 16 32 2
18C 8 256 32 <8 256 64
19A <8 256 64 <8 1 ,024 256
19F <8 128 32 <8 512 128
23F 8 64 8 <8 256 64
A: Pools consisted of equal volumes of serum from individual rabbits within a treatment group (n=12)
Study #HT01 -0036
Study #HT01-0036 compared rabbit immune responses to the polysaccharides (PSs) contained in the vaccine, after immunization with the 13vPnC vaccine with or without conjugation to the CRM197 protein. New Zealand White rabbits were immunized intramuscularly at week 0 and week 2 with a dose of 2.2 μg of each PS (except 4.4 μg of 6B). Animals received one of three vaccine preparations: (a) 13vPnC (PS directly conjugated to CRM197), (b) 13vPnPS, (free PS) or (c) 13vPnPS + CRM197 (free PS mixed with CRM197). All vaccine preparations contained AIPO4 as the adjuvant at 125 μg/dose.
Serotype specific immune responses for all vaccine preparations were evaluated in an IgG ELISA and complement-mediated OPA measuring functional antibody. The immune responses were compared between the treatment groups.
Table 5 presents GMT data obtained from week 4 bleeds analyzed in antigen specific IgG ELISAs. Additional analyses show the ratio of GMT values at week 4 to week 0. The data indicate that the conjugate vaccine preparation elicited greater serum IgG titers than free PS or free PS + CRM197 vaccine. With the exception of S. pneumoniae type 14, the 13vPnC vaccine was able to induce functional antibodies to the representative strains of S. pneumoniae in an OPA (Table 6). After two immunizations with either the 13vPnPS or 13vPnPS + CRM197 vaccine, neither could induce OPA titers > 8-fold at week 4 relative to week 0 for 10 out of the 13 serotypes measured (Table 6).
In conclusion, these results indicate that conjugation of the 13-valent pneumococcal vaccine polysaccharides produces higher serum IgG titers and overall greater functional antibody activity than seen with free polysaccharide alone or mixed with unconjugated CRM197.
Table 5. Rabbit IgG Responses (GMTs) to PnPS by ELISA Following Immunization with Two Doses of 13-valent Pneumococcal Glycoconjugate
13vPnPS = CRM i97
13vPnPS (free PS) (PS mixed with CRMiJ17) 13vPnC
Week 4 Ratio Week 4 Ratio Week4 Ratio
Serotype Week 0 (95% CQ Wk4:WkO Week 0 (95% Cl) Wk4:WkO Week 0 (95% Cl) Wk4:WkO
1 2,290 1,959 35,970
378 5.8 395 5.0 472 76.2 (843-5,790) (809-4,739) (29,130-44,417) 3 240 163 10,414 57 4.2 89 1.8 50 208.3 (64-908) (74-358) (10,414-16,676) 4 379 607 12,890 50 7.6 50 12.1 50 257.8 (150-959) (313-1,178) (9,117-18,224) 5 226 321 35,264
343 4.5 50 6.4 50 (113-450) (147-701) 705.3 (24,467-50,824)
6A 466 210 234,245
154 3.0 98 2.1 163 1,437.1 (316-688) (95-464) (167,152-328,283)
6B 727 745 33,599
63 11.6 62 12.0 131 256.5 (384-1,375) (384-1,440) (22,934-49,222)
7F 61 72 35,702
50 1.2 50 1.4 50 714.0 (39-95) (47-111) (24,350-52,347)
9V 104 169 50,033
50 2.1 55 3.0 50 1,000.7 (48-195) (74-390) (34,765-72,007)
14 298 195 20,121
66 4.5 50 3.9 50 402.4 (117-757) (71-535) (12,087-32,138)
18C 1,555 761 71,451
89 17.5 66 11.5 101 707.4 (655-3,688) (300-1,935) (32,745-124,641)
19A 89 80 23,485
50 1.8 50 1.6 50 469.7 (44-179) (39-163) (12,857-42,723)
19F 1,362 991 19,358
61 22.3 61 16.3 67 288.9 (559-3,317) (370-2,654) (12,553-33,173)
23F 1,085 638 45,972
73 14.9 121 5.3 68 676.1 (487-2,420) (311-1,311) (25,134-84,089)
Table 6. S. pneumoniae OPA Titers for Rabbit Serum Pools Following Immunization with Two Doses of 13-valent Pneumococcal Vaccines
OPA Titers
13vPnPS + CRMi97
No 13vPnPS (free PS) (free PS mixed with 13vPnC Treatment CRM197)
Serotype Week 0a ;ek 4 Ratio Week 4 Ratio Week 4 Ratio
Wk4:WkO Wk4:WkO Wk4:WkO
1 4 16 4 16 4 8 32
3 4 4 1 4 1 4 8
4 4 4 1 4 1 4 64
5 4 32 8 16 4 16 64
6A 8 64 8 32 4 32 664
6B 8 64 8 32 4 32 32
7F 16 32 2 16 1 16 16
9V 16 16 1 32 2 32 8
14 16 16 1 16 1 16 2
18C 4 16 4 16 4 8 64
19A 8 8 1 8 1 16 64
19F 4 4 1 4 1 8 64
23F 16 32 2 16 1 32 32 a: Used as week 0 values for all groups
It should be understood that the foregoing discussion and examples merely present a detailed description of certain embodiments. It therefore should be apparent to those of ordinary skill in the art that various modifications and equivalents can be made without departing from the spirit and scope of the invention.
All journal articles, other references, patents and patent applications that are identified in this patent application are incorporated by reference in their entirety.
REFERENCES
1. Hausdorff WP, Bryant J, Paradiso PR, Siber GR. Which pneumococcal serogroups cause the most invasive disease: implications for conjugate vaccine formulation and use, part I. CHn Infect Dis 2000; 30: 100-21.
2. Hausdorff WP, Bryant J, Kloek C, Paradiso PR, Siber GR. The contribution of specific pneumococcal serogroups to different disease manifestations: implications for conjugate vaccine formulation and use, part I. CHn Infect Dis 2000; 30:122-40.
3. Whitney CG, Farley MM, Hadler J, et al. Decline in invasive pneumococcal disease after the introduction of protein-polysaccharide conjugate vaccine. New Engl J Med 2003; 348(18): 1737-46.
4. Black S, Shinefield H, Hansen J, et al. Postlicensure evaluation of the effectiveness of seven valent pneumococcal conjugate vaccine. Pediatr Infect Dis J 2001 ; 20; 1105-7.
5. Robinson KA, Baughman W, Rothrock G, et al. Epidemiology of invasive Streptococcus pneumoniae infections in the United States, 1995-1998: Opportunities for prevention in the conjugate vaccine era. JAMA 2001 ; 285:1729-35.
6. Butler J, Breiman R, Lipman H, et al. Serotype distribution of Streptococcus pneumoniae infections among preschool children in the United States, 1978- 1994. J Infect Dis 1995; 171 :885-9.
7. Whitney CG, Farley MM, Hadler J, et al. Increasing prevalence of multidrug- resistant Streptococcus pneumoniae in the United States. N Engl J Med 2000; 343:1917-24.
8. Hofmann J, Cetron MS, Farley MM, et al. The prevalence of drug-resistant Streptococcus pneumoniae in Atlanta. N Engl J Med 1995; 333:481-6. 9. Joloba ML, Windau A, Bajaksouzian S, Appelbaum PC Hausdorff WP, Jacobs MR. Pneumococcal conjugate vaccine serotypes of Streptococcus pneumoniae isolates and the antimicrobial susceptibility of such isolates in children with otitis media. CHn Infect Dis 2001 ; 33:1489-94.
10. Black S, Shinefield H, Fireman B, et al. Efficacy, safety, and immunogenicity of heptavalent pneumococcal conjugate vaccine in children. Pediatr Infect Dis J 2000; 19:187-95.
11. Rudolph KM, Parkinson AJ, Reasonover AL, Bulkow LR, Parks DJ, Butler JC. Serotype distribution and antimicrobial resistance pattenrs of invasive isolates of Streptococcus pneumoniae: Alaska, 1991 -1998. J Infect Dis 2000; 182:490-
6.
12. Sniadack DH, Schwartz B, Lipman H, et al. Potential interventions for the prevention of childhood pneumonia: geographic and temporal differences in serotype and serogroup distribution of sterile site pneumococcal isolates from children: implications for vaccine strategies. Pediatr Infect Dis J 1995; 14:503-
10.
13. Fagan RL, Hanna JN, Messer RD, Brookes DL, Murphy DM. The epidemiology of invasive pneumococcal disease in children in Far North Queensland. J. Paediatr Child Health 2001 ; 37:571-5.
14. Kertesz DA, Di Fabio JL, de Cunto Brandileone MC, et al. Invasive Streptococcus pneumoniae infection in Latin American children: results of the Pan American Health Organization Surveillance Study. CHn Infect Dis 1998; 26:1355-61.
15. Hausdorff W, Siber G, Paradiso P. Geographical differences in invasive pneumococcal disease rates and serotype frequency in young children. Lancet
2001; 357:950-52.
16. Buckingham SC, King MD, Miller ML. Incidence and etiologies of complicated parapneumonic effusions in children, 1996 to 2001. Pediatr Infect Dis J 2003; 22:499-504. 17. Byington C1 Spencer L, Johnson T, et al. An epidemiological investigation of a sustained high rate of pediatric parapneumonic empyema: risk factors and microbiological associations. Clin Infect Dis 2002; 34:434-40.
18. Tan T, Mason E, WaId E, et al. Clinical characteristics with complicated pneumonia caused by Streptococcus pneumoniae. Pediatrics 2002; 110:1-6.
19. Block SL, Hedrick J, Harrison CJ, et al. Pneumococcal serotypes from acute otitis media in rural Kentucky. Pediatr Infect Dis J 2002; 21 :859-65.
20. Hausdorff WP, Yothers G, Dagan R, et al. Multinational study of pneumococcal serotypes causing acute otitis media in children. Pediatr Infect Dis J 2002; 21 :1008-16.
21. Robbins JB, Austrian R, Lee CJ, et al. Considerations for formulating the second-generation pneumococcal capsular polysaccharide vaccine with emphasis on the cross-reactive types within groups. J Infect Dis 1983; 148:1136-59.
22. Nahm MH, Olander JV, Magyarlaki M. Identification of cross-reactive antibodies with low opsonophagocytic activity for Streptococcus pneumoniae. J Infect Dis 1997; 176:698-703.
23. Yu X, Gray B, Chang S, Ward Jl, Edwards KM, Nahm MH. Immunity to cross- reactive serotypes induced by pneumococcal conjugate vaccines in infants. J Infect Dis 1999; 180: 1569-76.
24. Vakevainen M, Eklund C, Eskola J, Kayhty H. Cross-reactivity of antibodies to type 6B and 6A polysaccharides of Streptococcus pneumoniae, evoked by pneumococcal conjugate vaccines, in infants. J Infect Dis 2001; 184:789-93.
25. Ekstrom N, Kilpi T, Lahdenkari M1 Lehtonen H1 Ahman H, Kayhty, H. Immune response to cross-reacting pneumococcal serotypes 6A/6B and 19A/19F in the
FmOM vaccine trial, Third World of Congress of Pediatric Infectious Diseases, Santiago, Chile, November 19-23, 2003. 26. Penn RL, Lewin EB, Douglas RG, Jr., Schiffman G, Lee CJ, Robbins JB. Antibody responses in adult volunteers to pneumococcal polysaccharide types 19F and 19A administered singly and in combination. Infect Immυn 1982; 36:1261-2.
27. Giebink GS, Meier JD, Quartey MK, Liebeler CL1 Le CT. lmmunogenicity and efficacy of Streptococcus pneumoniae polysaccharide-protein conjugate vaccines against homologous and heterologous serotypes in the chinchilla otitis media model. J Infect Dis 1996; 173:119-27.
28. Saeland E, Jakobsen H, lngolfsdottir G, Sigurdardottir ST, Jonsdottir I. Serum samples from infants vaccinated with a pneumococcal conjugate vaccine,
PncT, protect mice against invasive infection caused by Streptococcus pneumoniae serotypes 6A and 6B. J Infect Dis 2001 ; 183:253-60.
29. Jakobsen H, Sigurdsson VD, Sigurdardottir S, Schulz D, Jonsdottir I. Pneumococcal serotype 19F conjugate vaccine induces cross-protective immunity in serotype 19A in a murine pneumococcal pneumonia model. Infect lmmun 2003; 71:2956-9.
30. Klugman KP, Madhi SA, Huebner RE, Kohberger R, Mbelle N, Pierce N. A trial of a 9-valent pneumococcal conjugate vaccine in children with and those without HIV infection. N Engl J Med 2003; 349:1341-8.
31. O'Brien KL, Moulton LH, Reid R, et al. Efficacy and safety of seven-valent conjugate pneumococcal vaccine in American Indian children: group randomised trial. Lancet 2003; 362:355-61.
32. Eskola J, Kilpi T, Palmu A, et al. Efficacy of a pneumococcal conjugate vaccine against acute otitis media. N Engl J Med 2001 : 344:403-9.
33. Pilishvili T, Farley M, Vazquez M, Reingold A, Nyquist A, et al. Effectiveness of heptavalent pneumococcal conjugate vaccine in children. Abst G-1079, ICAAC, Chicago, IL, 2003.
34. U.S. Patent No. 4,673,574. 5. U.S. Patent No. 4,902,506.

Claims

What is claimed is:
1. A multivalent immunogenic composition, comprising: 13 distinct polysaccharide-protein conjugates, together with a physiologically acceptable vehicle, wherein each of the conjugates comprises a capsular polysaccharide from a different serotype of Streptococcus pneumoniae conjugated to a carrier protein, and the capsular polysaccharides are prepared from serotypes 1 , 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F and 23F.
2. The immunogenic composition of claim 1 , wherein the carrier protein is CRM197.
3. The immunogenic composition of claim 1 , further comprising an adjuvant.
4. The immunogenic composition claim 3, wherein the adjuvant is an aluminum- based adjuvant.
5. The immunogenic composition of claim 4, wherein the adjuvant is selected from the group consisting of aluminum phosphate, aluminum sulfate and aluminum hydroxide.
6. The immunogenic composition of claim 5, wherein the adjuvant is aluminum phosphate.
7. A method of inducing an immune response to a Streptococcus pneumoniae capsular polysaccharide conjugate, comprising administering to a human an immunologically effective amount of the immunogenic composition of claim 1.
8. The method of claim 7, wherein the immunogenic composition administered is a single 0.5 ml_ dose formulated to contain: 2 μg of each saccharide, except for 6B at 4 μg; approximately 29 μg CRM197 carrier protein; 0.125 mg of elemental aluminum (0.5 mg aluminum phosphate) adjuvant; and sodium chloride and sodium succinate buffer as excipients.
9. A multivalent immunogenic composition, comprising polysaccharide-protein conjugates together with a physiologically acceptable vehicle, wherein each of the conjugates comprises a capsular polysaccharide from a different serotype of Streptococcus pneumoniae conjugated to a carrier protein, and the capsular polysaccharides are prepared from serotype 3 and at least one additional serotype.
10. The immunogenic composition of claim 9, wherein the additional serotype is selected from the group consisting of serotypes 1, 4, 5, 6A, 6B, 7F, 9V, 14,
18C, 19A, 19F, and 23F.
11. The immunogenic composition of claim 9, wherein the carrier protein is
CRM197.
12. The immunogenic composition of claim 9, further comprising an adjuvant.
13. The immunogenic composition claim 12, wherein the adjuvant is an aluminum-based adjuvant.
14. The immunogenic composition of claim 13, wherein the adjuvant is selected from the group consisting of aluminum phosphate, aluminum sulfate and aluminum hydroxide.
15. The immunogenic composition of claim 14, wherein the adjuvant is aluminum phosphate.
16. A method of inducing an immune response to a Streptococcus pneumoniae capsular polysaccharide conjugate, comprising administering to a human an immunologically effective amount of the immunogenic composition of claim 9.
17. The method of claim 16, wherein the immunogenic composition administered is a single 0.5 ml. dose formulated to contain: 2 μg of each saccharide, except for 6B at 4 μg; approximately 29 μg CRM197 carrier protein; 0.125 mg of elemental aluminum (0.5 mg aluminum phosphate) adjuvant; and sodium chloride and sodium succinate buffer as excipients.
18. A multivalent immunogenic composition, comprising polysaccharide-protein conjugates together with a physiologically acceptable vehicle, wherein each of the conjugates comprises a capsular polysaccharide from a different serotype of Streptococcus pneumoniae conjugated to a carrier protein, and the capsular polysaccharides are prepared from serotypes 4, 6B, 9V, 14, 18C, 19F, 23F and at least one additional serotype.
19. The immunogenic composition of claim 18, wherein said additional serotype is selected from the group consisting of serotypes 1 , 3, 5, 6A, 7F, and 19A.
20. The immunogenic composition of claim 18, wherein the carrier protein is CRM197.
21. The immunogenic composition of claim 18, further comprising an adjuvant.
22. The immunogenic composition claim 21 , wherein the adjuvant is an aluminum-based adjuvant.
23. The immunogenic composition of claim 22, wherein the adjuvant is selected from the group consisting of aluminum phosphate, aluminum sulfate and aluminum hydroxide.
24. The immunogenic composition of claim 23, wherein the adjuvant is aluminum phosphate.
25. A method of inducing an immune response to a Streptococcus pneumoniae capsular polysaccharide conjugate, comprising administering to a human an immunologically effective amount of the immunogenic composition of claim 18. 6. The method of claim 25, wherein the immunogenic composition administered is a single 0.5 mL dose formulated to contain: 2 μg of each saccharide, except for 6B at 4 μg; approximately 29 μg CRM197 carrier protein; 0.125 mg of elemental aluminum (0.5 mg aluminum phosphate) adjuvant; and sodium chloride and sodium succinate buffer as excipients.
PCT/US2006/012354 2005-04-08 2006-03-31 Multivalent pneumococcal polysaccharide-protein conjugate composition WO2006110381A1 (en)

Priority Applications (38)

Application Number Priority Date Filing Date Title
ES06740419T ES2382048T3 (en) 2005-04-08 2006-03-31 Multivalent pneumococcal protein-polysaccharide conjugate composition
CN2006800177768A CN101180079B (en) 2005-04-08 2006-03-31 Multivalent pneumococcal polysaccharide-protein conjugate composition
KR1020177019847A KR102017842B1 (en) 2005-04-08 2006-03-31 Multivalent pneumococcal polysaccharide-protein conjugate composition
SI200631301T SI1868645T1 (en) 2005-04-08 2006-03-31 Multivalent pneumococcal polysaccharide-protein conjugate composition
KR1020137007564A KR101588939B1 (en) 2005-04-08 2006-03-31 Multivalent pneumococcal polysaccharide-protein conjugate composition
CN202110498952.0A CN113198013B (en) 2005-04-08 2006-03-31 Multivalent pneumococcal polysaccharide-protein conjugate composition
MX2007012336A MX2007012336A (en) 2005-04-08 2006-03-31 Multivalent pneumococcal polysaccharide-protein conjugate composition.
DK06740419.4T DK1868645T3 (en) 2005-04-08 2006-03-31 Multivalent pneumococcal saccharide-protein conjugate composition
PL06740419T PL1868645T3 (en) 2005-04-08 2006-03-31 Multivalent pneumococcal polysaccharide-protein conjugate composition
KR1020197025300A KR102220506B1 (en) 2005-04-08 2006-03-31 Multivalent pneumococcal polysaccharide-protein conjugate composition
AU2006235013A AU2006235013B2 (en) 2005-04-08 2006-03-31 Multivalent pneumococcal polysaccharide-protein conjugate composition
EP06740419A EP1868645B1 (en) 2005-04-08 2006-03-31 Multivalent pneumococcal polysaccharide-protein conjugate composition
KR1020157012737A KR101730750B1 (en) 2005-04-08 2006-03-31 Multivalent pneumococcal polysaccharide-protein conjugate composition
MX2015010176A MX358148B (en) 2005-04-08 2006-03-31 Multivalent pneumococcal polysaccharide-protein conjugate composition.
KR1020157012734A KR101730748B1 (en) 2005-04-08 2006-03-31 Multivalent pneumococcal polysaccharide-protein conjugate composition
CN201210192553.2A CN102716480B (en) 2005-04-08 2006-03-31 Multivalent pneumococcal polysaccharide-protein conjugate composition
KR1020217005073A KR102378962B1 (en) 2005-04-08 2006-03-31 Multivalent pneumococcal polysaccharide-protein conjugate composition
CA2604363A CA2604363C (en) 2005-04-08 2006-03-31 Multivalent pneumococcal polysaccharide-protein conjugate composition
EP21211242.9A EP4005595A1 (en) 2005-04-08 2006-03-31 Multivalent pneumococcal polysaccharide-protein conjugate composition
KR1020227009488A KR102564388B1 (en) 2005-04-08 2006-03-31 Multivalent pneumococcal polysaccharide-protein conjugate composition
IL308456A IL308456A (en) 2005-04-08 2006-03-31 Multivalent pneumococcal polysacharide-protein conjugate composition
MEP-2012-39A ME01334B (en) 2005-04-08 2006-03-31 Multivalent pneumococcal polysaccharide-protein conjugate composition
AT06740419T ATE548051T1 (en) 2005-04-08 2006-03-31 MULTIVALENT PNEUMOCOCCAL POLYSACCHARIDE PROTEIN CONJUGATE COMPOSITION
BRPI0607025A BRPI0607025B8 (en) 2005-04-08 2006-03-31 13-valent immunogenic composition, and use of 13 distinct polysaccharide-protein conjugates
KR1020157012736A KR101730749B1 (en) 2005-04-08 2006-03-31 Multivalent pneumococcal polysaccharide-protein conjugate composition
JP2008505426A JP4472770B2 (en) 2005-04-08 2006-03-31 Polyvalent pneumococcal polysaccharide-protein conjugate composition
KR1020157012735A KR20150061019A (en) 2005-04-08 2006-03-31 Multivalent pneumococcal polysaccharide-protein conjugate composition
KR1020077025884A KR101298053B1 (en) 2005-04-08 2006-03-31 Multivalent pneumococcal polysaccharide-protein conjugate composition
KR1020237026417A KR102611449B1 (en) 2005-04-08 2006-03-31 Multivalent pneumococcal polysaccharide-protein conjugate composition
CN201810299488.0A CN108404126B (en) 2005-04-08 2006-03-31 Multivalent pneumococcal polysaccharide-protein conjugate composition
NZ562406A NZ562406A (en) 2005-04-08 2006-03-31 Multivalent pneumococcal polysaccharide-protein conjugate composition
RS20120142A RS52249B (en) 2005-04-08 2006-03-31 Multivalent pneumococcal polysaccharide-protein conjugate composition
IL186367A IL186367A (en) 2005-04-08 2007-10-07 Multivalent pneumococcal polysaccharide-protein conjugate composition
HK08112248.7A HK1120416A1 (en) 2005-04-08 2008-11-07 Multivalent pneumococcal polysaccharide-protein conjugate composition
HR20120278T HRP20120278T1 (en) 2005-04-08 2012-03-29 Multivalent pneumococcal polysaccharide-protein conjugate composition
IL228035A IL228035A0 (en) 2005-04-08 2013-08-20 Multivalent pneumococcal polysacharide-protein conjugate composition
IL267125A IL267125B (en) 2005-04-08 2019-06-05 Multivalent pneumococcal polysacharide-protein conjugate composition
IL282638A IL282638A (en) 2005-04-08 2021-04-26 Multivalent pneumococcal polysacharide-protein conjugate composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US66960505P 2005-04-08 2005-04-08
US60/669,605 2005-04-08

Publications (1)

Publication Number Publication Date
WO2006110381A1 true WO2006110381A1 (en) 2006-10-19

Family

ID=36709976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/012354 WO2006110381A1 (en) 2005-04-08 2006-03-31 Multivalent pneumococcal polysaccharide-protein conjugate composition

Country Status (29)

Country Link
US (9) US20060228380A1 (en)
EP (9) EP4005595A1 (en)
JP (3) JP4472770B2 (en)
KR (11) KR20150061019A (en)
CN (6) CN104815327A (en)
AR (2) AR053354A1 (en)
AT (1) ATE548051T1 (en)
AU (1) AU2006235013B2 (en)
BR (1) BRPI0607025B8 (en)
CA (4) CA2878579C (en)
CL (2) CL2016000566A1 (en)
CY (1) CY1112777T1 (en)
DK (1) DK1868645T3 (en)
ES (1) ES2382048T3 (en)
HK (3) HK1120416A1 (en)
HR (1) HRP20120278T1 (en)
IL (5) IL308456A (en)
ME (1) ME01334B (en)
MX (3) MX358148B (en)
MY (1) MY145150A (en)
NZ (1) NZ562406A (en)
PL (1) PL1868645T3 (en)
PT (1) PT1868645E (en)
RS (1) RS52249B (en)
SA (1) SA06270323B1 (en)
SI (1) SI1868645T1 (en)
TW (3) TWI445545B (en)
WO (1) WO2006110381A1 (en)
ZA (1) ZA200709483B (en)

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007071710A3 (en) * 2005-12-22 2007-11-29 Glaxosmithkline Biolog Sa Vaccine comprising streptococcus pneumoniae capsular polysaccharide conjugates
WO2008079653A1 (en) * 2006-12-22 2008-07-03 Wyeth Multivalent pneumococcal polysaccharide-protein conjugate composition
WO2008079732A2 (en) * 2006-12-22 2008-07-03 Wyeth Multivalent pneumococcal polysaccharide-protein conjugate composition
WO2008135514A1 (en) * 2007-05-02 2008-11-13 Glaxosmithkline Biologicals S.A. Vaccine
EP2004224A2 (en) 2006-04-07 2008-12-24 GlaxoSmithKline Biologicals S.A. Conjugate vaccines
WO2009000824A2 (en) * 2007-06-26 2008-12-31 Glaxosmithkline Biologicals S.A. Vaccine comprising streptococcus pneumoniae capsular polysaccharide conjugates
WO2008143709A3 (en) * 2006-12-22 2009-01-08 Wyeth Corp Multivalent pneumococcal polysaccharide-protein conjugate composition
WO2009010877A3 (en) * 2007-07-17 2009-11-19 Novartis Ag Conjugate purification
WO2011110241A1 (en) 2010-03-09 2011-09-15 Glaxosmithkline Biologicals S.A. Immunogenic composition comprising s. pneumoniae polysaccharides conjugated to carrier proteins
WO2011151760A2 (en) 2010-06-04 2011-12-08 Wyeth Llc Vaccine formulations
EP2533805A1 (en) * 2010-02-09 2012-12-19 Merck Sharp & Dohme Corp. 15-valent pneumococcal polysaccharide-protein conjugate vaccine composition
US8562999B2 (en) 2006-04-26 2013-10-22 Wyeth Llc Formulations which stabilize and inhibit precipitation of immunogenic compositions
WO2014027302A1 (en) 2012-08-16 2014-02-20 Pfizer Inc. Glycoconjugation processes and compositions
WO2014038879A1 (en) 2012-09-07 2014-03-13 에스케이케미칼주식회사 Production method for capsular polysaccharide having pneumococcal serotype
US8808708B2 (en) 2005-04-08 2014-08-19 Wyeth Llc Multivalent pneumococcal polysaccharide-protein conjugate composition
AU2012216628B2 (en) * 2006-04-26 2014-10-30 Wyeth Llc Novel Formulations which Stabilize and Inhibit Precipitation of Immunogenic Compositions
WO2015110941A2 (en) 2014-01-21 2015-07-30 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof
WO2015121783A1 (en) 2014-02-14 2015-08-20 Pfizer Inc. Immunogenic glycoprotein conjugates
US9205143B2 (en) 2009-04-30 2015-12-08 Coley Pharmaceutical Group Inc. Pneumococcal vaccine and uses thereof
US9265839B2 (en) 2010-03-09 2016-02-23 Glaxosmithkline Biologicals S.A. Conjugation process of bacterial polysaccharides to carrier proteins
WO2016113644A1 (en) 2015-01-15 2016-07-21 Pfizer Inc. Immunogenic compositions for use in pneumococcal vaccines
WO2016178123A1 (en) * 2015-05-04 2016-11-10 Pfizer Inc. Group b streptococcus polysaccharide-protein conjugates, methods for producing conjugates, immunogenic compositions comprising conjugates, and uses thereof
EP2865392B1 (en) 2012-06-20 2016-11-16 SK Chemicals Co., Ltd. Polyvalent pneumococcal polysaccharide-protein conjugate composition
RU2606152C1 (en) * 2012-12-11 2017-01-10 Ск Кемикалс Ко., Лтд. Multivalent composition based on pneumococcal polysaccharide-protein conjugates
WO2017013548A1 (en) 2015-07-21 2017-01-26 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens, kits comprising the same and uses thereof
EP2155244B1 (en) * 2007-04-23 2017-03-22 Serum Institute of India Private Limited Antigenic polysaccharides and process for their preparation
WO2017085586A1 (en) 2015-11-20 2017-05-26 Pfizer Inc. Immunogenic compositions for use in pneumococcal vaccines
WO2018027123A1 (en) 2016-08-05 2018-02-08 Sanofi Pasteur, Inc. Multivalent pneumococcal polysaccharide-protein conjugate composition
WO2018027126A1 (en) 2016-08-05 2018-02-08 Sanofi Pasteur, Inc. Multivalent pneumococcal polysaccharide-protein conjugate composition
WO2018134693A1 (en) 2017-01-20 2018-07-26 Pfizer Inc. Immunogenic compositions for use in pneumococcal vaccines
WO2019050815A1 (en) 2017-09-07 2019-03-14 Merck Sharp & Dohme Corp. Pneumococcal polysaccharides and their use in immunogenic polysaccharide-carrier protein conjugates
WO2019139692A2 (en) 2017-12-06 2019-07-18 Merck Sharp & Dohme Corp. Compositions comprising streptococcus pneumoniae polysaccharide-protein conjugates and methods of use thereof
CN110302375A (en) * 2019-06-27 2019-10-08 康希诺生物股份公司 A kind of glycoconjugate and application thereof
AU2018204779B2 (en) * 2006-04-26 2019-10-31 Wyeth Llc Novel formulations which stabilize and inhibit precipitation of immunogenic compositions
WO2019220304A1 (en) * 2018-05-14 2019-11-21 Tergene Biotech Pvt. Ltd. 15 valent pneumococcal polysaccharide conjugate vaccine
WO2020039359A2 (en) 2018-08-24 2020-02-27 Pfizer Inc. Escherichia coli compositions and methods thereof
WO2020121159A1 (en) 2018-12-12 2020-06-18 Pfizer Inc. Immunogenic multiple hetero-antigen polysaccharide-protein conjugates and uses thereof
WO2020131763A2 (en) 2018-12-19 2020-06-25 Merck Sharp & Dohme Corp. Compositions comprising streptococcus pneumoniae polysaccharide-protein conjugates and methods of use thereof
WO2020170190A1 (en) 2019-02-22 2020-08-27 Pfizer Inc. Methods for purifying bacterial polysaccharides
WO2020208502A1 (en) 2019-04-10 2020-10-15 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens, kits comprising the same and uses thereof
GB202016165D0 (en) 2020-10-12 2020-11-25 Optivalent Ltd Vaccine
WO2021021729A1 (en) 2019-07-31 2021-02-04 Sanofi Pasteur Inc. Multivalent pneumococcal polysaccharide-protein conjugate compositions and methods of using the same
WO2021084429A1 (en) 2019-11-01 2021-05-06 Pfizer Inc. Escherichia coli compositions and methods thereof
US11090374B2 (en) 2017-02-24 2021-08-17 Merck Sharp & Dohme Corp. Enhancing immunogenicity of Streptococcus pneumoniae polysaccharide-protein conjugates
US11090375B2 (en) * 2014-01-21 2021-08-17 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof
WO2021165847A1 (en) 2020-02-21 2021-08-26 Pfizer Inc. Purification of saccharides
WO2021165928A2 (en) 2020-02-23 2021-08-26 Pfizer Inc. Escherichia coli compositions and methods thereof
US11197921B2 (en) 2017-01-31 2021-12-14 Merck Sharp & Dohme Corp. Methods for making polysaccharide-protein conjugates
WO2022084852A1 (en) 2020-10-22 2022-04-28 Pfizer Inc. Methods for purifying bacterial polysaccharides
WO2022090893A2 (en) 2020-10-27 2022-05-05 Pfizer Inc. Escherichia coli compositions and methods thereof
WO2022097010A1 (en) 2020-11-04 2022-05-12 Pfizer Inc. Immunogenic compositions for use in pneumococcal vaccines
WO2022101745A2 (en) 2020-11-10 2022-05-19 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof
WO2022137078A1 (en) 2020-12-23 2022-06-30 Pfizer Inc. E. coli fimh mutants and uses thereof
US11376315B2 (en) 2008-12-18 2022-07-05 Wyeth Llc Method for controlling Streptococcus pneumoniae polysaccharide molecular weight using carbon dioxide
US11389540B2 (en) 2017-09-07 2022-07-19 Merck Sharp & Dohme Llc Pneumococcal polysaccharides and their use in immunogenic polysaccharide-carrier protein conjugates
US11395849B2 (en) 2017-09-07 2022-07-26 Merck Sharp & Dohme Llc Pneumococcal polysaccharides and their use in immunogenic polysaccharide-carrier protein conjugates
KR20220126300A (en) * 2021-02-10 2022-09-16 에스케이바이오사이언스(주) A method of preparing a conjugate of Streptococcus pneumoniae polysaccharide and carrier protein
WO2022234416A1 (en) 2021-05-03 2022-11-10 Pfizer Inc. Vaccination against pneumoccocal and covid-19 infections
WO2022234405A1 (en) 2021-05-03 2022-11-10 Pfizer Inc. Vaccination against bacterial and betacoronavirus infections
WO2022249107A2 (en) 2021-05-28 2022-12-01 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof
RU2791468C2 (en) * 2016-11-09 2023-03-09 Пфайзер Инк. Immunogenic polysaccharide-protein conjugates containing a polysaccharide derived from group b streptococcus
WO2023144527A1 (en) 2022-01-25 2023-08-03 Van De Velde Nicolas Intradermal vaccine complement
WO2023218322A1 (en) 2022-05-11 2023-11-16 Pfizer Inc. Process for producing of vaccine formulations with preservatives
US11883502B2 (en) 2017-01-31 2024-01-30 Merck Sharp & Dohme Llc Methods for production of capsular polysaccharide protein conjugates from Streptococcus pneumoniae serotype 19F
US11896656B2 (en) 2018-04-30 2024-02-13 Merck Sharp & Dohme Llc Methods for providing a homogenous solution of lyophilized mutant diptheria toxin in dimethylsulfoxide
EP4090364A4 (en) * 2020-01-17 2024-02-21 Inventprise, Inc. Multivalent streptococcus vaccines
US11951165B2 (en) 2016-12-30 2024-04-09 Vaxcyte, Inc. Conjugated vaccine carrier proteins
WO2024084397A1 (en) 2022-10-19 2024-04-25 Pfizer Inc. Vaccination against pneumoccocal and covid-19 infections
US11992521B2 (en) 2018-04-30 2024-05-28 Merck Sharp & Dohme Llc Methods for producing Streptococcus pneumoniae capsular polysaccharide carrier protein conjugates
WO2024110839A2 (en) 2022-11-22 2024-05-30 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof
US11998599B2 (en) 2016-12-30 2024-06-04 Vaxcyte, Inc. Polypeptide-antigen conjugates with non-natural amino acids
WO2024116096A1 (en) 2022-12-01 2024-06-06 Pfizer Inc. Pneumococcal conjugate vaccine formulations

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130122810A (en) * 2005-06-27 2013-11-08 글락소스미스클라인 바이오로지칼즈 에스.에이. Process for manufacturing vaccines
AU2013200552B9 (en) * 2006-04-07 2014-07-03 Glaxosmithkline Biologicals S.A. Conjugate vaccines
US8808707B1 (en) 2006-05-08 2014-08-19 Wyeth Llc Pneumococcal dosing regimen
PT2129693T (en) * 2007-03-23 2017-02-14 Wyeth Llc Shortened purification process for the production of capsular streptococcus pneumoniae polysaccharides
GB0818453D0 (en) 2008-10-08 2008-11-12 Novartis Ag Fermentation processes for cultivating streptococci and purification processes for obtaining cps therefrom
WO2009106085A1 (en) * 2008-02-28 2009-09-03 Nordic Vaccine A/S Vaccine compositions comprising saccharide antigens
US9125863B2 (en) * 2008-05-22 2015-09-08 Children's Medical Center Corporation Synergistic immunogenic fusion protein-polysaccharide conjugate
GB0822634D0 (en) 2008-12-11 2009-01-21 Novartis Ag Meningitis vaccines
MX2011006432A (en) 2008-12-18 2011-09-29 Wyeth Llc Method for controlling streptococcus pneumoniae serotype 19a polysaccharide molecular weight.
RU2555757C2 (en) 2009-03-24 2015-07-10 Новартис Аг Combinations of meningococcal factor-h-binding protein and pneumococcal saccharide conjugates
CA2756522C (en) 2009-03-24 2018-06-26 Novartis Ag Adjuvanting meningococcal factor h binding protein
CN101785857B (en) * 2010-03-05 2012-09-26 成都安特金生物技术有限公司 Novel pneumococcal conjugate vaccine and preparation method thereof
WO2011148382A1 (en) 2010-05-28 2011-12-01 Biological E Limited An improved process for the purification of capsular polysaccharides of haemophilus influenza - b, neisseria meningitis such as serotypes a, c, y and w-135, and other similar related capsular polysaccharides produced from both gram negative and gram positive microorganisms using aluminium phosphate with alcohol.
WO2011161653A1 (en) 2010-06-25 2011-12-29 Novartis Ag Combinations of meningococcal factor h binding proteins
BR112013022397A2 (en) 2011-03-02 2017-09-26 Derek O’Hagan vaccines combined with lower doses of antigen and / or adjuvant
KR101315599B1 (en) * 2011-10-25 2013-10-10 건국대학교 산학협력단 Glycoprotein conjugate of cps14 and horseradish peroxidase
US10596246B2 (en) 2011-12-29 2020-03-24 Glaxosmithkline Biological Sa Adjuvanted combinations of meningococcal factor H binding proteins
JP2015510872A (en) 2012-03-07 2015-04-13 ノバルティス アーゲー Enhanced formulation of Streptococcus pneumoniae antigen
EP2822584A1 (en) 2012-03-08 2015-01-14 Novartis AG Combination vaccines with tlr4 agonists
CN104487086B (en) * 2012-07-07 2019-08-30 巴拉特生物技术国际有限公司 Non-animal derived nonalcoholic vaccine composition and preparation method thereof
CN104602705A (en) 2012-09-06 2015-05-06 诺华股份有限公司 Combination vaccines with serogroup b meningococcus and D/T/P
KR20140075201A (en) * 2012-12-11 2014-06-19 에스케이케미칼주식회사 Multivalent pneumococcal polysaccharide-protein conjugate composition
CN105007935A (en) 2012-12-18 2015-10-28 葛兰素史密丝克莱恩生物有限公司 Conjugates for protecting against diphtheria and/or tetanus
ITMI20130142A1 (en) 2013-01-31 2014-08-01 Biosynth Srl GLYCOCOUGUGAR VACCINES INCLUDING BASIC UNITS OF AN EXPRIMENT MOLECULAR CONSTRUCTED MULTIPLE EPITHOPES INCORPORATED
CN104151426A (en) * 2013-05-14 2014-11-19 北京天成新脉生物技术有限公司 Monoclonal antibody of thirteen capsular polysaccharides of streptococcus pneumonia and application thereof
CN103495161B (en) * 2013-10-08 2019-06-18 江苏康泰生物医学技术有限公司 A kind of mixture and preparation method thereof of polynary pneumococcal capsular polysaccharide-protein conjugate
KR102099741B1 (en) * 2014-01-21 2020-04-10 화이자 인코포레이티드 Streptococcus pneumoniae capsular polysaccharides and conjugates thereof
EP3096786B1 (en) 2014-01-21 2021-07-07 Pfizer Inc. Streptococcus pneumoniae capsular polysaccharides and conjugates thereof
US9107906B1 (en) 2014-10-28 2015-08-18 Adma Biologics, Inc. Compositions and methods for the treatment of immunodeficiency
PL3313436T3 (en) 2015-06-23 2021-06-14 Biological E Limited Multivalent pneumococcal conjugate vaccine
EP3347042A4 (en) * 2015-09-10 2019-02-20 Inventprise, LLC. Multivalent vlp conjugates
WO2018048141A1 (en) * 2016-09-06 2018-03-15 주식회사 엘지화학 Composition comprising multivalent capsular polysaccharide-transport protein and use thereof
EP3518965A1 (en) * 2016-09-30 2019-08-07 Biological E Limited Multivalent pneumococcal vaccine compositions comprising polysaccharide-protein conjugates
US10751402B2 (en) 2016-11-09 2020-08-25 Pfizer Inc. Immunogenic compositions and uses thereof
US11246918B2 (en) 2017-02-03 2022-02-15 Eva Barbara Schadeck Haemophilus influenzae saccharide-carrier conjugate compositions and uses thereof
US20200054740A1 (en) * 2017-02-24 2020-02-20 Merck Sharp & Dohme Corp. Pneumococcal conjugate vaccine formulations
US10259865B2 (en) 2017-03-15 2019-04-16 Adma Biologics, Inc. Anti-pneumococcal hyperimmune globulin for the treatment and prevention of pneumococcal infection
KR102028693B1 (en) * 2017-04-27 2019-10-04 주식회사 유바이오로직스 Method for manufacturing of Streptococcus pneumonia capsule polysaccharide
JP7132954B2 (en) 2017-06-10 2022-09-07 インベントプライズ リミテッド ライアビリティ カンパニー Multivalent conjugate vaccines comprising bivalent or multivalent conjugated polysaccharides providing improved immunogenicity and avidity
US10729763B2 (en) 2017-06-10 2020-08-04 Inventprise, Llc Mixtures of polysaccharide-protein pegylated compounds
MX2019015524A (en) 2017-06-23 2020-09-10 Univ Maryland Immunogenic compositions.
EP3431168A1 (en) * 2017-07-19 2019-01-23 Bayer Aktiengesellschaft Élimination de médicament non lié après couplage conjugué anticorps-médicament
KR20200051003A (en) * 2017-09-07 2020-05-12 머크 샤프 앤드 돔 코포레이션 Pneumococcal polysaccharide and its use in immunogenic polysaccharide-carrier protein conjugates
AU2019215216A1 (en) 2018-02-05 2020-07-23 Sk Bioscience Co., Ltd. Multivalent pneumococcal polysaccharide-protein conjugate composition
BR112020021296A2 (en) 2018-04-18 2021-01-26 Sk Bioscience Co., Ltd. capsular polysaccharide of streptococcus pneumoniae and its immunogenic conjugate
CN112074294A (en) * 2018-04-30 2020-12-11 默沙东公司 Method for producing streptococcus pneumoniae capsular polysaccharide carrier protein conjugate from freeze-dried spheres
WO2020010016A1 (en) 2018-07-04 2020-01-09 Sutrovax, Inc. Self-adjuvanted immunogenic conjugates
WO2020010000A1 (en) 2018-07-04 2020-01-09 Sutrovax, Inc. Improved methods for the preparation of immunogenic conjugates
EP3817775A1 (en) 2018-07-04 2021-05-12 Vaxcyte, Inc. Improvements in immunogenic conjugates
CN112969474A (en) * 2018-09-12 2021-06-15 艾芬尼维克斯公司 Multivalent pneumococcal vaccine
CN113194987A (en) * 2018-10-12 2021-07-30 生物E有限公司 Multivalent pneumococcal polysaccharide-protein conjugated vaccines
CN112741901B (en) * 2019-10-31 2024-05-10 北京科兴中维生物技术有限公司 Vaccine containing streptococcus pneumoniae capsular polysaccharide type 5 and preparation method thereof
US20230321212A1 (en) 2020-08-26 2023-10-12 Pfizer Inc. Group b streptococcus polysaccharide-protein conjugates, methods for producing conjugates, immunogenic compositions comprising conjugates, and uses thereof
JP2024522395A (en) 2021-05-28 2024-06-19 ファイザー・インク Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof
CN114106210A (en) * 2021-11-09 2022-03-01 北京智飞绿竹生物制药有限公司 Production process of 23-valent pneumococcal polysaccharide vaccine
WO2023135515A1 (en) 2022-01-13 2023-07-20 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof
WO2023161817A1 (en) 2022-02-25 2023-08-31 Pfizer Inc. Methods for incorporating azido groups in bacterial capsular polysaccharides
WO2024062494A1 (en) 2022-09-19 2024-03-28 Biological E Limited Method for the purification of capsular polysaccharides
WO2024110827A1 (en) 2022-11-21 2024-05-30 Pfizer Inc. Methods for preparing conjugated capsular saccharide antigens and uses thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0497525A2 (en) 1991-01-28 1992-08-05 Merck & Co. Inc. Pneumococcal polysaccharide conjugate vaccine
US20010048929A1 (en) 1998-02-23 2001-12-06 Pele Chong Novel multi-oligosaccharide glycoconjugate bacterial meningitis vaccines
WO2004011027A1 (en) 2002-07-30 2004-02-05 Baxter International Inc. Chimeric multivalent polysaccharide conjugate vaccines

Family Cites Families (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US37741A (en) 1863-02-24 Improvement in bee-hives
US4097666A (en) 1976-04-29 1978-06-27 The Institute Of Paper Chemistry Solvent system for polysaccharides
CA1115210A (en) 1977-11-28 1981-12-29 Dennis J. Carlo Pneumococcal vaccine
US4372945A (en) 1979-11-13 1983-02-08 Likhite Vilas V Antigen compounds
US4356170A (en) 1981-05-27 1982-10-26 Canadian Patents & Development Ltd. Immunogenic polysaccharide-protein conjugates
BE889979A (en) 1981-08-14 1982-02-15 Smith Kline Rit PROCESS FOR THE PREPARATION OF PURIFIED ANTIGENIC CAPSULAR BACTERIAL POLYSACCHARIDES, PRODUCTS OBTAINED AND THEIR USE
US5097020A (en) 1983-07-05 1992-03-17 The University Of Rochester Immunogenic conjugates
US5360897A (en) * 1981-08-31 1994-11-01 The University Of Rochester Immunogenic conjugates of streptococcus pneumonial capsular polymer and toxin or in toxiad
US4673574A (en) 1981-08-31 1987-06-16 Anderson Porter W Immunogenic conjugates
US4902506A (en) * 1983-07-05 1990-02-20 The University Of Rochester Immunogenic conjugates
US4619828A (en) 1982-07-06 1986-10-28 Connaught Laboratories, Inc. Polysaccharide exotoxoid conjugate vaccines
CH660375A5 (en) 1983-02-08 1987-04-15 Sclavo Spa PROCEDURE FOR THE PRODUCTION OF PROPHINES RELATED TO DIPHTERIC TOXIN.
US4762713A (en) * 1983-07-05 1988-08-09 The University Of Rochester Boosting of immunogenic conjugate vaccinations by unconjugated bacterial capsular polymers
US4761283A (en) * 1983-07-05 1988-08-02 The University Of Rochester Immunogenic conjugates
US4808700A (en) * 1984-07-09 1989-02-28 Praxis Biologics, Inc. Immunogenic conjugates of non-toxic E. coli LT-B enterotoxin subunit and capsular polymers
IT1187753B (en) 1985-07-05 1987-12-23 Sclavo Spa GLYCOPROTEIC CONJUGATES WITH TRIVALENT IMMUNOGENIC ACTIVITY
US5110908A (en) 1986-12-31 1992-05-05 Praxis Biologics, Inc. Haemophilus influenzae peptides and proteins
US5057540A (en) 1987-05-29 1991-10-15 Cambridge Biotech Corporation Saponin adjuvant
US4912094B1 (en) 1988-06-29 1994-02-15 Ribi Immunochem Research Inc. Modified lipopolysaccharides and process of preparation
CA2047681C (en) 1989-03-09 2000-02-01 Bruce A. Green Vaccines for nontypable haemophilus influenzae
HU212924B (en) 1989-05-25 1996-12-30 Chiron Corp Adjuvant formulation comprising a submicron oil droplet emulsion
SE466259B (en) 1990-05-31 1992-01-20 Arne Forsgren PROTEIN D - AN IGD BINDING PROTEIN FROM HAEMOPHILUS INFLUENZAE, AND THE USE OF THIS FOR ANALYSIS, VACCINES AND PURPOSE
US5153312A (en) * 1990-09-28 1992-10-06 American Cyanamid Company Oligosaccharide conjugate vaccines
CA2059693C (en) 1991-01-28 2003-08-19 Peter J. Kniskern Polysaccharide antigens from streptococcus pneumoniae
IL101715A (en) 1991-05-02 2005-06-19 Amgen Inc Recombinant dna-derived cholera toxin subunit analogs
US5552146A (en) 1991-08-15 1996-09-03 Board Of Regents, The University Of Texas System Methods and compositions relating to useful antigens of Moraxella catarrhalis
JPH07507854A (en) 1991-12-23 1995-08-31 ツォッヒェ,ミヒャエル Engine with oil removal device
IT1253009B (en) 1991-12-31 1995-07-10 Sclavo Ricerca S R L DETOXIFIED IMMUNOGENIC MUTANTS OF COLERIC TOXIN AND TOXIN LT, THEIR PREPARATION AND USE FOR THE PREPARATION OF VACCINES
DE69434079T2 (en) 1993-03-05 2005-02-24 Wyeth Holdings Corp. Plasmid for the production of CRM protein and diphtheria toxin
AU678613B2 (en) 1993-09-22 1997-06-05 Henry M. Jackson Foundation For The Advancement Of Military Medicine Method of activating soluble carbohydrate using novel cyanylating reagents for the production of immunogenic constructs
US5712118A (en) 1993-09-29 1998-01-27 Research Foundation Of State University Of New York Vaccine for branhamella catarrhalis
US5770213A (en) 1994-05-05 1998-06-23 American Cyanamid Company Purified nontypable haemophilus influenzae P5 protein as a vaccine for nontypable haemophilus influenzae infection
US5607846A (en) 1994-05-17 1997-03-04 Research Foundation Of State University Of New York Vaccine for moraxella catarrhalis
US6207646B1 (en) 1994-07-15 2001-03-27 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US5643725A (en) 1994-07-19 1997-07-01 American Cyanamid Company Sequence and analysis of LKP pilin structural genes and the LKP pili operon of nontypable haemophilus influenzae
US5565204A (en) 1994-08-24 1996-10-15 American Cyanamid Company Pneumococcal polysaccharide-recombinant pneumolysin conjugate vaccines for immunization against pneumococcal infections
US6245337B1 (en) 1994-08-25 2001-06-12 Washington University Haemophilus adherence and penetration proteins
US6676948B2 (en) 1994-08-25 2004-01-13 Washington University Haemophilus adherence and penetration proteins
US5714354A (en) 1995-06-06 1998-02-03 American Home Products Corporation Alcohol-free pneumococcal polysaccharide purification process
US5695768A (en) * 1995-06-07 1997-12-09 Alberta Research Council Immunostimulating activity of Streptococcus pneumoniae serotype 8 oligosaccharides
US7341727B1 (en) 1996-05-03 2008-03-11 Emergent Product Development Gaithersburg Inc. M. catarrhalis outer membrane protein-106 polypeptide, methods of eliciting an immune response comprising same
ES2227709T3 (en) 1996-07-26 2005-04-01 Wyeth Holdings Corporation NUCA PROTEIN OF HAEMOPHILUS INNFLUENZAE AND GEN CODIFYING SUCH PROTEIN.
DE69740108D1 (en) 1996-12-20 2011-03-10 Univ Texas MORAXELLA CATARRHALIS ANTIGENE USPA1 AND USPA2
AU747479B2 (en) 1997-01-31 2002-05-16 Wyeth Holdings Corporation The 74 kilodalton outer membrane protein from (moraxella catarrhalis)
US6113918A (en) 1997-05-08 2000-09-05 Ribi Immunochem Research, Inc. Aminoalkyl glucosamine phosphate compounds and their use as adjuvants and immunoeffectors
FR2763244B1 (en) 1997-05-14 2003-08-01 Pasteur Merieux Serums Vacc MULTIVALENT VACCINE COMPOSITION WITH MIXED CARRIER
ES2346022T3 (en) * 1997-12-23 2010-10-07 Baxter Healthcare S.A. PROCEDURE FOR THE EXTRACTION AND ISOLATION OF BACTERIAL CAPSULAR POLYSACARIDS FOR USE AS VACCINES OR LINKS TO PROTEINS AS VACCINES OF CONJUGATES.
CN1200730C (en) * 1998-02-12 2005-05-11 惠氏控股有限公司 Pneumococcal and Meningococcal vaccines formulated with interleukin-12
CA2233725A1 (en) * 1998-03-31 1999-09-30 Hemosol Inc. Hemoglobin-hydroxyethyl starch complexes
US7227011B2 (en) 1998-06-04 2007-06-05 United States Of America As Represented By The Secretary Of The Department Of Health And Human Services, Centers For Disease Control And Prevention Nucleic acid vaccines for prevention of flavivirus infection
MXPA01003073A (en) * 1998-09-24 2002-04-24 Univ Minnesota Human complement c3-degrading polypeptide from streptococcus pneumoniae.
BR9914160A (en) 1998-09-30 2001-06-26 American Cyanamid Co Antigenic composition, method for increasing the capacity of an antigenic composition that contains an antigen selected from a pathogenic bacterium, virus, fungus or parasite, haemophilus influenzae, helicobacter pylori, respiratory syncytial virus, rotavirus, and simple virus of the herpes to evoke the immune response of a vertebrate host, plasmid, host cell, method to produce an immunogenic mutant cholera holotoxin, and use of an effective auxiliary amount of a mutant cholera holotoxin
EP1034792A1 (en) 1999-03-11 2000-09-13 Pasteur Merieux Serums Et Vaccins Intranasal delivery of pneumococcal polysaccharide vaccines
EP1035137A1 (en) 1999-03-12 2000-09-13 Pasteur Merieux Serums Et Vaccins Method for the reductive amination of polysaccharides
AR022963A1 (en) * 1999-03-19 2002-09-04 Smithkline Beecham Biolog VACCINE
GB9909077D0 (en) * 1999-04-20 1999-06-16 Smithkline Beecham Biolog Novel compositions
KR100833364B1 (en) 1999-06-25 2008-05-28 와이어쓰 홀딩스 코포레이션 Production of the lipidated form of the peptidoglycan-associated lipoproteins of gram-negative bacteria
GB0011108D0 (en) 2000-05-08 2000-06-28 Microscience Ltd Virulence gene and protein and their use
GB0012079D0 (en) 2000-05-18 2000-07-12 Microscience Ltd Virulence gene and protein, and their use
GB0108364D0 (en) 2001-04-03 2001-05-23 Glaxosmithkline Biolog Sa Vaccine composition
EA006313B1 (en) 2000-06-29 2005-10-27 Глаксосмитклайн Байолоджикалс С.А. Multi-valent immunogenic compositions and methods for using same
GB0020952D0 (en) 2000-08-24 2000-10-11 Microscience Ltd Genes and proteins and their uses
GB0022742D0 (en) * 2000-09-15 2000-11-01 Smithkline Beecham Biolog Vaccine
WO2002048029A1 (en) 2000-12-13 2002-06-20 Sca Hygiene Products Zeist B.V. Recovery process for spent periodate
EP1355918B9 (en) 2000-12-28 2012-01-25 Wyeth LLC Recombinant protective protein from $i(streptococcus pneumoniae)
BR0208944A (en) 2001-04-16 2006-10-10 Wyeth Corp streptococus pneumoniae open reading frames encoding polypeptide antigens and their uses
DE60234695D1 (en) 2001-06-07 2010-01-21 Univ Colorado MUTANT TONS OF CHOLERA HOLOTOXIN AS ADJUVANS
JP2005508143A (en) 2001-06-07 2005-03-31 ワイス・ホールデイングス・コーポレーシヨン Mutated form of cholera holotoxin as an adjuvant
GB0115176D0 (en) 2001-06-20 2001-08-15 Chiron Spa Capular polysaccharide solubilisation and combination vaccines
CN100350972C (en) 2001-07-26 2007-11-28 启龙股份公司 Vaccines comprising aluminium adjuvants and histidine
MX339524B (en) 2001-10-11 2016-05-30 Wyeth Corp Novel immunogenic compositions for the prevention and treatment of meningococcal disease.
US20050203280A1 (en) 2001-11-29 2005-09-15 Mcmichael John C. Alloiococcus otitidis open reading frames (orfs) encoding polypeptide antigens, immunogenic compositions and uses thereof
GB0130215D0 (en) * 2001-12-18 2002-02-06 Glaxosmithkline Biolog Sa Vaccine
CN100593544C (en) 2002-03-15 2010-03-10 惠氏控股有限公司 Mutants of the P4 protein of nontypable haemophilus influenzae with reduced enzymatic activity
WO2003094961A1 (en) 2002-05-09 2003-11-20 Massimo Porro Improved polysaccharide and glycoconjugate vaccines_____________
WO2004026024A2 (en) 2002-09-20 2004-04-01 The United States Of America As Represented By The Secretary Of Agriculture Vaccine compositions and adjuvant
FR2850106B1 (en) * 2003-01-17 2005-02-25 Aventis Pasteur CONJUGATES OBTAINED BY REDUCTIVE AMINATION OF THE CAPSULAR POLYSACCHARIDE OF THE SEROTYPE PNEUMOCOCCUS 5
US20060251675A1 (en) 2003-03-17 2006-11-09 Michael Hagen Mutant cholera holotoxin as an adjuvant and an antigen carrier protein
MXPA05011110A (en) 2003-04-16 2006-01-24 Wyeth Corp Novel immunogenic compositions for the prevention and treatment of meningococcal disease.
CN1241937C (en) * 2003-07-04 2006-02-15 上海健益科技发展有限公司 Polyvalent pneumococcal polysaccharide combination vaccine
BRPI0413309B8 (en) 2003-08-06 2021-05-25 The Government Of The Us Secretary Department Of Health And Human Services method for preparing a polysaccharide-protein conjugate vaccine
ATE460498T1 (en) 2003-09-11 2010-03-15 Staat Der Nederlanden Vert Doo METHOD FOR PRODUCING A CAPSULE POLYSACCHARIDE FOR USE IN CONJUGATE VACCINES
FR2857364B1 (en) 2003-12-08 2005-09-23 Aventis Pasteur DOSAGE OF TECHIC ACIDS OF BACTERIA GRAM +
WO2005058940A2 (en) 2003-12-17 2005-06-30 Wyeth Immunogenic peptide carrier conjugates and methods of producing same
US20060022838A1 (en) 2004-07-27 2006-02-02 Fisher Richard A Speed limit indicia for traffic signals
US7955605B2 (en) 2005-04-08 2011-06-07 Wyeth Llc Multivalent pneumococcal polysaccharide-protein conjugate composition
TWI445545B (en) 2005-04-08 2014-07-21 Wyeth Corp Multivalent pneumococcal polysaccharide-protein conjugate composition
US7709001B2 (en) 2005-04-08 2010-05-04 Wyeth Llc Multivalent pneumococcal polysaccharide-protein conjugate composition
US20070184072A1 (en) 2005-04-08 2007-08-09 Wyeth Multivalent pneumococcal polysaccharide-protein conjugate composition
EP3470080A1 (en) 2005-12-22 2019-04-17 GlaxoSmithKline Biologicals S.A. Vaccine comprising streptococcus pneumoniae capsular polysaccharide conjugates
ES2560452T3 (en) 2006-09-29 2016-02-19 The Research Foundation For Microbial Diseases Of Osaka University IPV-DPT vaccine
CN101784282B (en) 2007-06-26 2015-07-08 葛兰素史密丝克莱恩生物有限公司 Vaccine comprising streptococcus pneumoniae capsular polysaccharide conjugates
SI2222710T1 (en) 2007-12-24 2016-11-30 Id Biomedical Corporation Of Quebec Recombinant rsv antigens
TW201136603A (en) 2010-02-09 2011-11-01 Merck Sharp & Amp Dohme Corp 15-valent pneumococcal polysaccharide-protein conjugate vaccine composition
KR102057217B1 (en) 2012-06-20 2020-01-22 에스케이바이오사이언스 주식회사 Multivalent pneumococcal polysaccharide-protein conjugate composition
KR20140075201A (en) 2012-12-11 2014-06-19 에스케이케미칼주식회사 Multivalent pneumococcal polysaccharide-protein conjugate composition
KR20140075196A (en) 2012-12-11 2014-06-19 에스케이케미칼주식회사 Multivalent pneumococcal polysaccharide-protein conjugate composition
PE20161095A1 (en) 2014-01-21 2016-10-26 Pfizer IMMUNOGENIC COMPOSITIONS INCLUDING CONJUGATED CAPSULAR SACCHARID ANTIGENS AND THE USE OF THE SAME
KR20240011879A (en) * 2017-02-24 2024-01-26 머크 샤프 앤드 돔 엘엘씨 Enhancing immunogenicity of streptococcus pneumoniae polysaccharide-protein conjugates

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0497525A2 (en) 1991-01-28 1992-08-05 Merck & Co. Inc. Pneumococcal polysaccharide conjugate vaccine
US20010048929A1 (en) 1998-02-23 2001-12-06 Pele Chong Novel multi-oligosaccharide glycoconjugate bacterial meningitis vaccines
WO2004011027A1 (en) 2002-07-30 2004-02-05 Baxter International Inc. Chimeric multivalent polysaccharide conjugate vaccines

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
ANDERSON P ET AL., VACCINE, vol. 21, no. 13-14, 2003, pages 1554 - 9
CHOO S ET AL: "Immunogenicity and reactogenicity of a pneumococcal conjugate vaccine administered combined with a Haemophilus influenzae type b conjugate in United Kingdom infants", PEDIATRIC INFECTIOUS DISEASE JOURNAL, WILLIAMS & WILKINS, BALTIMORE, MD, US, vol. 19, no. 9, 2000, pages 854 - 862, XP002970987, ISSN: 0891-3668 *
DAGAN ET AL., INFECTION AND IMMUNITY, 1998, pages 2093 - 2098
FATTOM ET AL., VACCINE, vol. 17, 1999, pages 126 - 133
GATCHALIAN ET AL., EUR. SOC. PAED. INF. DIS (ESPID, 2001
HAUSDORFF W ET AL., CLINICAL INFECTIOUS DISEASES, vol. 30, 2000, pages 100 - 121
HAUSDORFF W P ET AL: "Which pneumococcal serogroups cause the most invasive disease: implications for conjugate vaccine formulation and use, part I.", CLINICAL INFECTIOUS DISEASES : AN OFFICIAL PUBLICATION OF THE INFECTIOUS DISEASES SOCIETY OF AMERICA. JAN 2000, vol. 30, no. 1, January 2000 (2000-01-01), pages 100 - 121, XP002393673, ISSN: 1058-4838 *
MBELLE ET AL., J INFECT DIS., vol. 180, no. 4, 1999, pages 1171 - 6
MBELLE N ET AL: "Immunogenicity and impact on nasopharyngeal carriage of a nonavalent pneumococcal conjugate vaccine.", THE JOURNAL OF INFECTIOUS DISEASES. OCT 1999, vol. 180, no. 4, October 1999 (1999-10-01), pages 1171 - 1176, XP002393672, ISSN: 0022-1899 *
NURKKA ET AL., PED. INF DIS. J., vol. 23, 2004, pages 1008 - 1014
WUORIMAA ET AL., THE PAEDIATRIC INFECTIOUS DISEASE JOURNAL, vol. 20, no. 3, 2001, pages 272 - 277

Cited By (183)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10716848B2 (en) 2005-04-08 2020-07-21 Wyeth Llc Process for preparing pneumococcal polysaccharide-protein conjugates
US7955605B2 (en) 2005-04-08 2011-06-07 Wyeth Llc Multivalent pneumococcal polysaccharide-protein conjugate composition
US9981035B2 (en) 2005-04-08 2018-05-29 Wyeth Llc Process for preparing pneumococcal polysaccharide-protein conjugates
US9981045B2 (en) 2005-04-08 2018-05-29 Wyeth Llc Multivalent pneumococcal polysaccharide-protein conjugate composition
US8808708B2 (en) 2005-04-08 2014-08-19 Wyeth Llc Multivalent pneumococcal polysaccharide-protein conjugate composition
US11969474B2 (en) 2005-04-08 2024-04-30 Wyeth Llc Multivalent pneumococcal polysaccharide-protein conjugate composition
US8603484B2 (en) 2005-04-08 2013-12-10 Wyeth Llc Multivalent pneumococcal polysaccharide-protein conjugate composition
US8895724B2 (en) 2005-04-08 2014-11-25 Wyeth Llc Multivalent pneumococcal polysaccharide-protein conjugate composition
US8895024B2 (en) 2005-04-08 2014-11-25 Wyeth Llc Multivalent pneumococcal polysaccharide-protein conjugate composition
US11191830B2 (en) 2005-04-08 2021-12-07 Wyeth Llc Process for preparing pneumococcal polysaccharide-protein conjugates
US10780160B2 (en) 2005-04-08 2020-09-22 Wyeth Llc Process for preparing pneumococcal polysaccharide-protein conjugates
US9399060B2 (en) 2005-04-08 2016-07-26 Wyeth Llc Multivalent pneumococcal polysaccharide-protein conjugate composition
US7709001B2 (en) 2005-04-08 2010-05-04 Wyeth Llc Multivalent pneumococcal polysaccharide-protein conjugate composition
US9480736B2 (en) 2005-04-08 2016-11-01 Wyeth Llc Multivalent pneumococcal polysaccharide-protein conjugate composition
US9107872B2 (en) 2005-12-22 2015-08-18 Glaxosmithkline Biologicals S.A. Pneumococcal polysaccharide conjugate vaccine
US11400147B2 (en) 2005-12-22 2022-08-02 Glaxosmithkline Biologicals Sa Pneumococcal capsular saccharide conjugate vaccine
US10646564B2 (en) 2005-12-22 2020-05-12 Glaxosmithkline Biologicals S.A. Vaccine
EP3017827B1 (en) 2005-12-22 2018-11-07 GlaxoSmithKline Biologicals s.a. Pneumococcal polysaccharide conjugate vaccine
EA014107B1 (en) * 2005-12-22 2010-10-29 Глаксосмитклайн Байолоджикалс С.А. Vaccine comprising streptococcus pneumoniae capsular polysaccharide conjugates
WO2007071710A3 (en) * 2005-12-22 2007-11-29 Glaxosmithkline Biolog Sa Vaccine comprising streptococcus pneumoniae capsular polysaccharide conjugates
US10279033B2 (en) 2005-12-22 2019-05-07 Glaxosmithkline Biologicals Sa Vaccine comprising Streptococcus pneumoniae capsular polysaccharide conjugates
CN101374548B (en) * 2005-12-22 2013-05-01 葛兰素史密丝克莱恩生物有限公司 Vaccine comprising streptococcus pneumoniae capsular polysaccharide conjugates
EP3017827A1 (en) * 2005-12-22 2016-05-11 GlaxoSmithKline Biologicals s.a. Pneumococcal polysaccharide conjugate vaccine
US9884113B2 (en) 2005-12-22 2018-02-06 Glaxosmithkline Biologicals, Sa Pneumoccal polysacchride conjugate vaccine
EP3470080A1 (en) * 2005-12-22 2019-04-17 GlaxoSmithKline Biologicals S.A. Vaccine comprising streptococcus pneumoniae capsular polysaccharide conjugates
JP2014240395A (en) * 2006-04-07 2014-12-25 グラクソスミスクライン バイオロジカルズ ソシエテ アノニム Vaccine
EP2004224A2 (en) 2006-04-07 2008-12-24 GlaxoSmithKline Biologicals S.A. Conjugate vaccines
AU2018204779B2 (en) * 2006-04-26 2019-10-31 Wyeth Llc Novel formulations which stabilize and inhibit precipitation of immunogenic compositions
AU2012216628B9 (en) * 2006-04-26 2021-10-21 Wyeth Llc Novel Formulations which Stabilize and Inhibit Precipitation of Immunogenic Compositions
US8562999B2 (en) 2006-04-26 2013-10-22 Wyeth Llc Formulations which stabilize and inhibit precipitation of immunogenic compositions
EP2010219B1 (en) 2006-04-26 2015-10-28 Wyeth LLC Formulations which stabilize and inhibit precipitation of immunogenic compositions
EP3517129A1 (en) * 2006-04-26 2019-07-31 Wyeth LLC Immunogenic compositions
EP2676679B1 (en) 2006-04-26 2019-01-02 Wyeth LLC Formulations which stabilize and inhibit precipitation of immunogenic compositions
AU2012216628B2 (en) * 2006-04-26 2014-10-30 Wyeth Llc Novel Formulations which Stabilize and Inhibit Precipitation of Immunogenic Compositions
AU2019202132B2 (en) * 2006-04-26 2020-07-23 Wyeth Llc Novel formulations which stabilize and inhibit precipitation of immunogenic compositions
AU2007337214B2 (en) * 2006-12-22 2013-05-16 Wyeth Llc Multivalent pneumococcal polysaccharide-protein conjugate composition
EP2417983A1 (en) * 2006-12-22 2012-02-15 Wyeth LLC Multivalent pneumococcal polysaccharide-protein conjugate composition
KR101700837B1 (en) 2006-12-22 2017-02-01 와이어쓰 엘엘씨 Multivalent pneumococcal polysaccharide-protein conjugate composition
JP2010513550A (en) * 2006-12-22 2010-04-30 ワイス エルエルシー Polyvalent pneumococcal polysaccharide-protein conjugate composition
CN103599529A (en) * 2006-12-22 2014-02-26 惠氏公司 Multivalent pneumococcal polysaccharide-protein conjugate composition
JP2010513549A (en) * 2006-12-22 2010-04-30 ワイス エルエルシー Polyvalent pneumococcal polysaccharide-protein conjugate composition
CN101610785B (en) * 2006-12-22 2013-11-27 惠氏公司 Multivalent pneumococcal polysaccharide-protein conjugate composition
WO2008143709A3 (en) * 2006-12-22 2009-01-08 Wyeth Corp Multivalent pneumococcal polysaccharide-protein conjugate composition
AU2007337214B9 (en) * 2006-12-22 2013-10-31 Wyeth Llc Multivalent pneumococcal polysaccharide-protein conjugate composition
AU2007353769B2 (en) * 2006-12-22 2013-01-10 Wyeth Llc Multivalent pneumococcal polysaccharide-protein conjugate composition
KR101511392B1 (en) 2006-12-22 2015-04-13 와이어쓰 엘엘씨 Multivalent pneumococcal polysaccharide-protein conjugate composition
KR101511393B1 (en) 2006-12-22 2015-04-13 와이어쓰 엘엘씨 Multivalent pneumococcal polysaccharide-protein conjugate composition
RU2493870C2 (en) * 2006-12-22 2013-09-27 Вайет Multivalent composition of pneumococcal polysaccharide-protein conjugate
WO2008079732A2 (en) * 2006-12-22 2008-07-03 Wyeth Multivalent pneumococcal polysaccharide-protein conjugate composition
WO2008079732A3 (en) * 2006-12-22 2008-12-24 Wyeth Corp Multivalent pneumococcal polysaccharide-protein conjugate composition
RU2484846C2 (en) * 2006-12-22 2013-06-20 Вайет Multivalent composition of pneumococcal polysaccharide-protein conjugate
WO2008079653A1 (en) * 2006-12-22 2008-07-03 Wyeth Multivalent pneumococcal polysaccharide-protein conjugate composition
EP2094304B1 (en) 2006-12-22 2015-11-18 Wyeth LLC Multivalent pneumococcal polysaccharide-protein conjugate composition
CN105079800A (en) * 2006-12-22 2015-11-25 惠氏公司 Multivalent pneumococcal polysaccharide-protein conjugate composition
KR20150140411A (en) * 2006-12-22 2015-12-15 와이어쓰 엘엘씨 Multivalent pneumococcal polysaccharide-protein conjugate composition
EP2155244B1 (en) * 2007-04-23 2017-03-22 Serum Institute of India Private Limited Antigenic polysaccharides and process for their preparation
EP2682127A1 (en) * 2007-05-02 2014-01-08 GlaxoSmithKline Biologicals S.A. Vaccine
WO2008135514A1 (en) * 2007-05-02 2008-11-13 Glaxosmithkline Biologicals S.A. Vaccine
WO2009000824A3 (en) * 2007-06-26 2009-03-05 Glaxosmithkline Biolog Sa Vaccine comprising streptococcus pneumoniae capsular polysaccharide conjugates
EP2687228A3 (en) * 2007-06-26 2014-04-30 GlaxoSmithKline Biologicals S.A. Vaccine comprising streptococcus pneumoniae capsular polysaccharide conjugates
EA020817B1 (en) * 2007-06-26 2015-02-27 Глаксосмитклайн Байолоджикалс С.А. Vaccine, comprising streptococcus pneumoniae capsular polysaccharide conjugates
US9610340B2 (en) 2007-06-26 2017-04-04 Glaxosmithkline Biologicals, S.A. Vaccine comprising Streptococcus pneumoniae capsular polysaccharide conjugates
US9610339B2 (en) 2007-06-26 2017-04-04 Glaxosmithkline Biologicals, S.A. Vaccine comprising Streptococcus pneumoniae capsular polysaccharide conjugates
WO2009000824A2 (en) * 2007-06-26 2008-12-31 Glaxosmithkline Biologicals S.A. Vaccine comprising streptococcus pneumoniae capsular polysaccharide conjugates
AU2008277353B2 (en) * 2007-07-17 2012-11-08 Glaxosmithkline Biologicals S.A. Conjugate purification
CN101795713B (en) * 2007-07-17 2014-03-05 诺华股份有限公司 Conjugate purification
WO2009010877A3 (en) * 2007-07-17 2009-11-19 Novartis Ag Conjugate purification
US9463250B2 (en) 2007-07-17 2016-10-11 Glaxosmithkline Biologicals Sa Conjugate purification
EP2659912A3 (en) * 2007-07-17 2013-12-04 Novartis AG Conjugate purification
AU2008277353C1 (en) * 2007-07-17 2013-05-02 Glaxosmithkline Biologicals S.A. Conjugate purification
US11376315B2 (en) 2008-12-18 2022-07-05 Wyeth Llc Method for controlling Streptococcus pneumoniae polysaccharide molecular weight using carbon dioxide
US9205143B2 (en) 2009-04-30 2015-12-08 Coley Pharmaceutical Group Inc. Pneumococcal vaccine and uses thereof
EP2533805A1 (en) * 2010-02-09 2012-12-19 Merck Sharp & Dohme Corp. 15-valent pneumococcal polysaccharide-protein conjugate vaccine composition
EP2533805A4 (en) * 2010-02-09 2013-08-28 Merck Sharp & Dohme 15-valent pneumococcal polysaccharide-protein conjugate vaccine composition
WO2011110241A1 (en) 2010-03-09 2011-09-15 Glaxosmithkline Biologicals S.A. Immunogenic composition comprising s. pneumoniae polysaccharides conjugated to carrier proteins
US9265840B2 (en) 2010-03-09 2016-02-23 Glaxosmithkline Biologicals S.A. Conjugation process of bacterial polysaccharides to carrier proteins
US9265839B2 (en) 2010-03-09 2016-02-23 Glaxosmithkline Biologicals S.A. Conjugation process of bacterial polysaccharides to carrier proteins
EP3626263A1 (en) 2010-06-04 2020-03-25 Wyeth LLC Vaccine formulations
EP3170508A1 (en) 2010-06-04 2017-05-24 Wyeth LLC Vaccine formulations
WO2011151760A2 (en) 2010-06-04 2011-12-08 Wyeth Llc Vaccine formulations
US9095567B2 (en) 2010-06-04 2015-08-04 Wyeth Llc Vaccine formulations
RU2605834C2 (en) * 2012-06-20 2016-12-27 Ск Кемикалс Ко., Лтд. Polyvalent composition containing pneumococcal polysaccharide-protein conjugates
EP2865392B1 (en) 2012-06-20 2016-11-16 SK Chemicals Co., Ltd. Polyvalent pneumococcal polysaccharide-protein conjugate composition
US10034949B2 (en) 2012-06-20 2018-07-31 Sk Chemicals Co., Ltd. Polyvalent pneumococcal polysaccharide-protein conjugate composition
US10058607B2 (en) 2012-06-20 2018-08-28 Sk Chemicals Co., Ltd. Polyvalent pneumococcal polysaccharide-protein conjugate composition
EP3421051A1 (en) 2012-08-16 2019-01-02 Pfizer Inc Glycoconjugation processes and compositions
US11110160B2 (en) 2012-08-16 2021-09-07 Pfizer Inc. Glycoconjugation processes and compositions
US9517274B2 (en) 2012-08-16 2016-12-13 Pfizer Inc. Glycoconjugation processes and compositions
US9950054B2 (en) 2012-08-16 2018-04-24 Pfizer Inc. Glycoconjugation processes and compositions
WO2014027302A1 (en) 2012-08-16 2014-02-20 Pfizer Inc. Glycoconjugation processes and compositions
US10583187B2 (en) 2012-08-16 2020-03-10 Pfizer Inc. Glycoconjugation processes and compositions
US20230355735A1 (en) * 2012-08-16 2023-11-09 Pfizer Inc. Glycoconjugation processes and compositions
US11723965B2 (en) 2012-08-16 2023-08-15 Pfizer Inc. Glycoconjugation processes and compositions
US9636392B2 (en) 2012-09-07 2017-05-02 Sk Chemical Co., Ltd. Production method for capsular polysaccharide having pneumococcal serotype
KR101944960B1 (en) 2012-09-07 2019-02-07 에스케이바이오사이언스 주식회사 Process for preparing a capsular polysaccharide having a serotype of Streptococcus pneumoniae
KR20140032912A (en) * 2012-09-07 2014-03-17 에스케이케미칼주식회사 Process for preparing a capsular polysaccharide having a serotype of streptococcus pneumoniae
WO2014038879A1 (en) 2012-09-07 2014-03-13 에스케이케미칼주식회사 Production method for capsular polysaccharide having pneumococcal serotype
US9981029B2 (en) 2012-12-11 2018-05-29 Sk Chemical Co., Ltd. Multivalent pneumococcal polysaccharide-protein conjugate composition
RU2606152C1 (en) * 2012-12-11 2017-01-10 Ск Кемикалс Ко., Лтд. Multivalent composition based on pneumococcal polysaccharide-protein conjugates
US9492559B2 (en) 2014-01-21 2016-11-15 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof
CN106102770B (en) * 2014-01-21 2022-03-22 辉瑞公司 Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof
WO2015110941A2 (en) 2014-01-21 2015-07-30 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof
US11160855B2 (en) 2014-01-21 2021-11-02 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof
US11872274B2 (en) 2014-01-21 2024-01-16 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof
EP3616716A2 (en) 2014-01-21 2020-03-04 Pfizer Inc Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof
US11090375B2 (en) * 2014-01-21 2021-08-17 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof
EP3607966A1 (en) 2014-01-21 2020-02-12 Pfizer Inc Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof
CN106102770A (en) * 2014-01-21 2016-11-09 辉瑞公司 Comprise immunogenic composition of conjugated capsular CA and application thereof
US10668164B2 (en) 2014-02-14 2020-06-02 Pfizer Inc. Immunogenic glycoprotein conjugates
WO2015121783A1 (en) 2014-02-14 2015-08-20 Pfizer Inc. Immunogenic glycoprotein conjugates
EP3443983A1 (en) 2014-02-14 2019-02-20 Pfizer Inc Immunogenic glycoprotein conjugates
US11707529B2 (en) 2014-02-14 2023-07-25 Pfizer Inc. Immunogenic glycoprotein conjugates
US11135279B2 (en) 2015-01-15 2021-10-05 Pfizer Inc. Immunogenic compositions for use in pneumococcal vaccines
WO2016113644A1 (en) 2015-01-15 2016-07-21 Pfizer Inc. Immunogenic compositions for use in pneumococcal vaccines
US10653764B2 (en) 2015-01-15 2020-05-19 Pfizer Inc. Immunogenic compositions for use in pneumococcal vaccines
AU2016258284C1 (en) * 2015-05-04 2020-09-03 Pfizer Inc. Group B Streptococcus polysaccharide-protein conjugates, methods for producing conjugates, immunogenic compositions comprising conjugates, and uses thereof
WO2016178123A1 (en) * 2015-05-04 2016-11-10 Pfizer Inc. Group b streptococcus polysaccharide-protein conjugates, methods for producing conjugates, immunogenic compositions comprising conjugates, and uses thereof
US10226525B2 (en) 2015-05-04 2019-03-12 Pfizer Inc. Group B Streptococcus polysaccharide-protein conjugates, methods for producing conjugates, immunogenic compositions comprising conjugates, and uses thereof
AU2016258284B2 (en) * 2015-05-04 2019-01-17 Pfizer Inc. Group B Streptococcus polysaccharide-protein conjugates, methods for producing conjugates, immunogenic compositions comprising conjugates, and uses thereof
US10946086B2 (en) 2015-05-04 2021-03-16 Pfizer Inc. Group B Streptococcus polysaccharide-protein conjugates, methods for producing conjugates, immunogenic compositions comprising conjugates, and uses thereof
US10124050B2 (en) 2015-07-21 2018-11-13 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens, kits comprising the same and uses thereof
WO2017013548A1 (en) 2015-07-21 2017-01-26 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens, kits comprising the same and uses thereof
US11020469B2 (en) 2015-07-21 2021-06-01 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens, kits comprising the same and uses thereof
WO2017085586A1 (en) 2015-11-20 2017-05-26 Pfizer Inc. Immunogenic compositions for use in pneumococcal vaccines
US10786561B2 (en) 2015-11-20 2020-09-29 Pfizer Inc. Immunogenic compositions for use in pneumococcal vaccines
WO2018027126A1 (en) 2016-08-05 2018-02-08 Sanofi Pasteur, Inc. Multivalent pneumococcal polysaccharide-protein conjugate composition
WO2018027123A1 (en) 2016-08-05 2018-02-08 Sanofi Pasteur, Inc. Multivalent pneumococcal polysaccharide-protein conjugate composition
RU2791468C2 (en) * 2016-11-09 2023-03-09 Пфайзер Инк. Immunogenic polysaccharide-protein conjugates containing a polysaccharide derived from group b streptococcus
US11951165B2 (en) 2016-12-30 2024-04-09 Vaxcyte, Inc. Conjugated vaccine carrier proteins
US11998599B2 (en) 2016-12-30 2024-06-04 Vaxcyte, Inc. Polypeptide-antigen conjugates with non-natural amino acids
AU2018208844B2 (en) * 2017-01-20 2021-02-25 Pfizer Inc. Immunogenic compositions for use in pneumococcal vaccines
RU2762723C2 (en) * 2017-01-20 2021-12-22 Пфайзер Инк. Immunogenic compositions for use in pneumococcal vaccines
KR102459629B1 (en) * 2017-01-20 2022-10-28 화이자 인코포레이티드 Immunogenic compositions for use in pneumococcal vaccines
US11413344B2 (en) 2017-01-20 2022-08-16 Pfizer Inc. Immunogenic compositions for use in pneumococcal vaccines
WO2018134693A1 (en) 2017-01-20 2018-07-26 Pfizer Inc. Immunogenic compositions for use in pneumococcal vaccines
CN110198735A (en) * 2017-01-20 2019-09-03 辉瑞公司 For the immunogenic composition in Pnu-Imune 23
KR20190097176A (en) * 2017-01-20 2019-08-20 화이자 인코포레이티드 Immunogenic Compositions for Use in Pneumococcal Vaccines
US11883502B2 (en) 2017-01-31 2024-01-30 Merck Sharp & Dohme Llc Methods for production of capsular polysaccharide protein conjugates from Streptococcus pneumoniae serotype 19F
US11197921B2 (en) 2017-01-31 2021-12-14 Merck Sharp & Dohme Corp. Methods for making polysaccharide-protein conjugates
US11090374B2 (en) 2017-02-24 2021-08-17 Merck Sharp & Dohme Corp. Enhancing immunogenicity of Streptococcus pneumoniae polysaccharide-protein conjugates
US11759510B2 (en) 2017-09-07 2023-09-19 Merck, Sharp & Dohme LLC Pneumococcal polysaccharides and their use in immunogenic polysaccharide-carrier protein conjugates
WO2019050815A1 (en) 2017-09-07 2019-03-14 Merck Sharp & Dohme Corp. Pneumococcal polysaccharides and their use in immunogenic polysaccharide-carrier protein conjugates
US11759511B2 (en) 2017-09-07 2023-09-19 Merck Sharp & Dohme Llc Pneumococcal polysaccharides and their use in immunogenic polysaccharide-carrier protein conjugates
US11759523B2 (en) 2017-09-07 2023-09-19 Merck Sharp & Dohme Llc Pneumococcal polysaccharides and their use in immunogenic polysaccharide-carrier protein conjugates
US11964023B2 (en) 2017-09-07 2024-04-23 Merck Sharp & Dohme Llc Pneumococcal polysaccharides and their use in immunogenic polysaccharide-carrier protein conjugates
US11389540B2 (en) 2017-09-07 2022-07-19 Merck Sharp & Dohme Llc Pneumococcal polysaccharides and their use in immunogenic polysaccharide-carrier protein conjugates
US11395849B2 (en) 2017-09-07 2022-07-26 Merck Sharp & Dohme Llc Pneumococcal polysaccharides and their use in immunogenic polysaccharide-carrier protein conjugates
US11850278B2 (en) 2017-12-06 2023-12-26 Merck Sharp & Dohme Llc Compositions comprising Streptococcus pneumoniae polysaccharide-protein conjugates and methods of use thereof
WO2019139692A2 (en) 2017-12-06 2019-07-18 Merck Sharp & Dohme Corp. Compositions comprising streptococcus pneumoniae polysaccharide-protein conjugates and methods of use thereof
US11116828B2 (en) 2017-12-06 2021-09-14 Merck Sharp & Dohme Corp. Compositions comprising Streptococcus pneumoniae polysaccharide-protein conjugates and methods of use thereof
US11896656B2 (en) 2018-04-30 2024-02-13 Merck Sharp & Dohme Llc Methods for providing a homogenous solution of lyophilized mutant diptheria toxin in dimethylsulfoxide
US11992521B2 (en) 2018-04-30 2024-05-28 Merck Sharp & Dohme Llc Methods for producing Streptococcus pneumoniae capsular polysaccharide carrier protein conjugates
WO2019220304A1 (en) * 2018-05-14 2019-11-21 Tergene Biotech Pvt. Ltd. 15 valent pneumococcal polysaccharide conjugate vaccine
WO2020039359A2 (en) 2018-08-24 2020-02-27 Pfizer Inc. Escherichia coli compositions and methods thereof
WO2020121159A1 (en) 2018-12-12 2020-06-18 Pfizer Inc. Immunogenic multiple hetero-antigen polysaccharide-protein conjugates and uses thereof
WO2020131763A2 (en) 2018-12-19 2020-06-25 Merck Sharp & Dohme Corp. Compositions comprising streptococcus pneumoniae polysaccharide-protein conjugates and methods of use thereof
US12016914B2 (en) 2018-12-19 2024-06-25 Merck Sharp & Dohme Llc Compositions comprising Streptococcus pneumoniae polysaccharide-protein conjugates and methods of use thereof
US11642406B2 (en) 2018-12-19 2023-05-09 Merck Sharp & Dohme Llc Compositions comprising Streptococcus pneumoniae polysaccharide-protein conjugates and methods of use thereof
WO2020170190A1 (en) 2019-02-22 2020-08-27 Pfizer Inc. Methods for purifying bacterial polysaccharides
WO2020208502A1 (en) 2019-04-10 2020-10-15 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens, kits comprising the same and uses thereof
CN110302375A (en) * 2019-06-27 2019-10-08 康希诺生物股份公司 A kind of glycoconjugate and application thereof
WO2021021729A1 (en) 2019-07-31 2021-02-04 Sanofi Pasteur Inc. Multivalent pneumococcal polysaccharide-protein conjugate compositions and methods of using the same
WO2021084429A1 (en) 2019-11-01 2021-05-06 Pfizer Inc. Escherichia coli compositions and methods thereof
EP4090364A4 (en) * 2020-01-17 2024-02-21 Inventprise, Inc. Multivalent streptococcus vaccines
WO2021165847A1 (en) 2020-02-21 2021-08-26 Pfizer Inc. Purification of saccharides
WO2021165928A2 (en) 2020-02-23 2021-08-26 Pfizer Inc. Escherichia coli compositions and methods thereof
GB202016165D0 (en) 2020-10-12 2020-11-25 Optivalent Ltd Vaccine
WO2022084852A1 (en) 2020-10-22 2022-04-28 Pfizer Inc. Methods for purifying bacterial polysaccharides
WO2022090893A2 (en) 2020-10-27 2022-05-05 Pfizer Inc. Escherichia coli compositions and methods thereof
WO2022097010A1 (en) 2020-11-04 2022-05-12 Pfizer Inc. Immunogenic compositions for use in pneumococcal vaccines
WO2022101745A2 (en) 2020-11-10 2022-05-19 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof
WO2022137078A1 (en) 2020-12-23 2022-06-30 Pfizer Inc. E. coli fimh mutants and uses thereof
KR102610292B1 (en) * 2021-02-10 2023-12-04 에스케이바이오사이언스(주) A method of preparing a conjugate of Streptococcus pneumoniae polysaccharide and carrier protein
WO2022173248A3 (en) * 2021-02-10 2022-10-06 에스케이바이오사이언스 주식회사 Method for preparing conjugate of streptococcus pneumoniae polysaccharide and carrier protein
KR20220126300A (en) * 2021-02-10 2022-09-16 에스케이바이오사이언스(주) A method of preparing a conjugate of Streptococcus pneumoniae polysaccharide and carrier protein
WO2022234405A1 (en) 2021-05-03 2022-11-10 Pfizer Inc. Vaccination against bacterial and betacoronavirus infections
WO2022234416A1 (en) 2021-05-03 2022-11-10 Pfizer Inc. Vaccination against pneumoccocal and covid-19 infections
WO2022249107A2 (en) 2021-05-28 2022-12-01 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof
WO2023144527A1 (en) 2022-01-25 2023-08-03 Van De Velde Nicolas Intradermal vaccine complement
WO2023218322A1 (en) 2022-05-11 2023-11-16 Pfizer Inc. Process for producing of vaccine formulations with preservatives
WO2024084397A1 (en) 2022-10-19 2024-04-25 Pfizer Inc. Vaccination against pneumoccocal and covid-19 infections
WO2024110839A2 (en) 2022-11-22 2024-05-30 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof
WO2024116096A1 (en) 2022-12-01 2024-06-06 Pfizer Inc. Pneumococcal conjugate vaccine formulations

Also Published As

Publication number Publication date
JP5173920B2 (en) 2013-04-03
KR20150061020A (en) 2015-06-03
ME01334B (en) 2013-12-20
EP2425853A1 (en) 2012-03-07
IL282638A (en) 2021-06-30
KR102017842B1 (en) 2019-09-03
CA2604363A1 (en) 2006-10-19
JP2013006881A (en) 2013-01-10
ZA200709483B (en) 2009-03-25
CN108404126B (en) 2022-10-18
PT1868645E (en) 2012-05-17
AR053354A1 (en) 2007-05-02
TWI511739B (en) 2015-12-11
KR101298053B1 (en) 2013-08-20
KR101588939B1 (en) 2016-01-26
MX358148B (en) 2018-08-07
KR20230118200A (en) 2023-08-10
JP2009161567A (en) 2009-07-23
AU2006235013B2 (en) 2011-11-03
US20190388537A1 (en) 2019-12-26
MY145150A (en) 2011-12-30
US8895024B2 (en) 2014-11-25
KR101730749B1 (en) 2017-04-26
JP5730261B2 (en) 2015-06-03
KR101730750B1 (en) 2017-04-26
EP2425855A1 (en) 2012-03-07
KR20070118700A (en) 2007-12-17
HK1257962A1 (en) 2019-11-01
MX2007012336A (en) 2007-11-21
NZ562406A (en) 2009-09-25
CA2604363C (en) 2015-06-16
TW201438734A (en) 2014-10-16
US20200179508A1 (en) 2020-06-11
CL2016000566A1 (en) 2016-10-28
AR107018A2 (en) 2018-03-14
PL1868645T3 (en) 2012-07-31
BRPI0607025B8 (en) 2021-05-25
HK1213184A1 (en) 2016-06-30
US20160158345A1 (en) 2016-06-09
CN101180079A (en) 2008-05-14
CL2017002206A1 (en) 2018-03-23
IL228035A0 (en) 2013-09-30
CN108404126A (en) 2018-08-17
AU2006235013A1 (en) 2006-10-19
CA2986862A1 (en) 2006-10-19
US20090130137A1 (en) 2009-05-21
IL308456A (en) 2024-01-01
US20120237542A1 (en) 2012-09-20
JP4472770B2 (en) 2010-06-02
CN113198013B (en) 2024-02-20
EP4005595A1 (en) 2022-06-01
CA3165042A1 (en) 2006-10-19
US20060228380A1 (en) 2006-10-12
EP1868645B1 (en) 2012-03-07
CN102716480A (en) 2012-10-10
KR20150061018A (en) 2015-06-03
CN102716480B (en) 2023-03-21
ATE548051T1 (en) 2012-03-15
US11191830B2 (en) 2021-12-07
US20180250390A1 (en) 2018-09-06
US10716848B2 (en) 2020-07-21
KR102611449B1 (en) 2023-12-06
BRPI0607025A2 (en) 2009-07-28
TWI445545B (en) 2014-07-21
US20140314805A1 (en) 2014-10-23
EP2425852A1 (en) 2012-03-07
IL267125A (en) 2019-08-29
DK1868645T3 (en) 2012-04-10
CA2986862C (en) 2022-09-27
EP2425854A1 (en) 2012-03-07
CA2878579C (en) 2018-01-23
RS52249B (en) 2012-10-31
IL186367A0 (en) 2008-01-20
CN113198012A (en) 2021-08-03
KR20150061021A (en) 2015-06-03
KR101730748B1 (en) 2017-04-26
SI1868645T1 (en) 2012-04-30
US9399060B2 (en) 2016-07-26
KR20220042483A (en) 2022-04-05
KR102220506B1 (en) 2021-03-02
TWI386222B (en) 2013-02-21
EP2425856A1 (en) 2012-03-07
US8808708B2 (en) 2014-08-19
EP2425851A1 (en) 2012-03-07
CN104815327A (en) 2015-08-05
KR20190104241A (en) 2019-09-06
KR20210022768A (en) 2021-03-03
KR102378962B1 (en) 2022-03-28
EP3311836A1 (en) 2018-04-25
CN113198013A (en) 2021-08-03
ES2382048T3 (en) 2012-06-04
SA06270323B1 (en) 2010-10-05
TW200719911A (en) 2007-06-01
TW201212937A (en) 2012-04-01
CN101180079B (en) 2012-07-18
MX2019008863A (en) 2019-09-13
HK1120416A1 (en) 2009-04-03
US9981035B2 (en) 2018-05-29
KR20170086139A (en) 2017-07-25
HRP20120278T1 (en) 2012-04-30
JP2008535838A (en) 2008-09-04
EP1868645A1 (en) 2007-12-26
IL186367A (en) 2013-09-30
BRPI0607025B1 (en) 2019-11-12
CY1112777T1 (en) 2016-02-10
KR102564388B1 (en) 2023-08-08
CA2878579A1 (en) 2006-10-19
KR20130048262A (en) 2013-05-09
KR20150061019A (en) 2015-06-03
IL267125B (en) 2021-05-31
US20210283247A1 (en) 2021-09-16
US10780160B2 (en) 2020-09-22

Similar Documents

Publication Publication Date Title
US10716848B2 (en) Process for preparing pneumococcal polysaccharide-protein conjugates
US9981045B2 (en) Multivalent pneumococcal polysaccharide-protein conjugate composition
US8603484B2 (en) Multivalent pneumococcal polysaccharide-protein conjugate composition
US20090234108A1 (en) Multivalent pneumococcal polysaccharide-protein conjugate composition
AU2016222335A1 (en) Multivalent pneumococcal polysaccharide-protein conjugate composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680017776.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2604363

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/012336

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2008505426

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 186367

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 12007502218

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 562406

Country of ref document: NZ

Ref document number: 2006740419

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 8081/DELNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2006235013

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 07117685A

Country of ref document: CO

Ref document number: 07117685

Country of ref document: CO

Ref document number: 1020077025884

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

ENP Entry into the national phase

Ref document number: 2006235013

Country of ref document: AU

Date of ref document: 20060331

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0607025

Country of ref document: BR

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: P-2012/0142

Country of ref document: RS

WWE Wipo information: entry into national phase

Ref document number: 1020137007564

Country of ref document: KR