WO2006109781A1 - Process for production of glycoprotein composition - Google Patents

Process for production of glycoprotein composition Download PDF

Info

Publication number
WO2006109781A1
WO2006109781A1 PCT/JP2006/307599 JP2006307599W WO2006109781A1 WO 2006109781 A1 WO2006109781 A1 WO 2006109781A1 JP 2006307599 W JP2006307599 W JP 2006307599W WO 2006109781 A1 WO2006109781 A1 WO 2006109781A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
cell
medium
cells
glycoprotein
Prior art date
Application number
PCT/JP2006/307599
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshinobu Konno
Yuki Kobayashi
Ken Takahashi
Shinji Sakae
Eiji Takahashi
Hiroshi Takasugi
Shinji Hosoi
Original Assignee
Kyowa Hakko Kogyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Hakko Kogyo Co., Ltd. filed Critical Kyowa Hakko Kogyo Co., Ltd.
Publication of WO2006109781A1 publication Critical patent/WO2006109781A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0018Culture media for cell or tissue culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0693Tumour cells; Cancer cells
    • C12N5/0694Cells of blood, e.g. leukemia cells, myeloma cells

Definitions

  • the present invention relates to a method for producing a glycoprotein composition. Specifically, a glycoprotein composition having glycoside-linked sugar chains produced from animal cells, characterized by controlling the osmotic pressure in a medium in which animal cells are cultured, is contained in the composition.
  • the present invention relates to a method for producing a glycoprotein composition in which the ratio of sugar chains in which fucose is not bound to sugar chains is changed with respect to all the glycoside-bonded sugar chains.
  • the present invention also includes a glycoprotein composition having a glycoside-linked sugar chain produced from an animal cell, characterized in that the osmotic pressure in a medium in which the animal cell is cultured is controlled.
  • the present invention relates to a method for changing the ratio of sugar chains in which fucose is not bonded to sugar chains to the total glycoside-linked sugar chains.
  • the osmotic pressure of the medium for producing useful substances using animal cells is 210_500mOsmZkg, which is widely used for the purpose of production research and industrialization of useful substances using animal cells.
  • No Non-Patent Document 1
  • animal cells such as Chineseno, Muster ovarian tissue-derived cells (hereinafter referred to as CHO cells), and hyperidoma, which are often used in production, productivity is improved when the osmotic pressure is increased to 450 _600 mOsm / kg.
  • Patent Documents 1 and 2 are known.
  • the N-glycoside-linked sugar chain that binds to the immune function molecule as the sugar chain that binds to the glycoprotein is N- A method of regulating the activity of an immune function molecule by the presence or absence of fucose binding to acetylyldarcosamine (Patent Document 5), a composition comprising an antibody molecule having an N-glycoside-linked complex type sugar chain in the Fc region, All N- binding to Fc region contained in the composition Encodes an antibody molecule that produces an antibody composition in which the percentage of sugar chains that do not have fucose bound to N-acetylyldarcosamine at the sugar chain reducing end of glycoside-linked complex sugar chains is 20% or more.
  • Patent Document 6 a method for producing an antibody using CHo cells derived from Chinese or muster ovary tissues into which a gene to be transferred has been known (Patent Document 6) is known.
  • Patent Document 7 a method for producing an antibody having high ADCC activity using YB2Z3.0Ag30 cells, which are rat myeloma cell lines, is known (Patent Document 7).
  • Patent Literature l W096 / 39488
  • Patent Document 2 US4724206
  • Patent Document 3 JP-A-62-292592
  • Patent Document 4 WO02 / 02793
  • Patent Document 5 WO00 / 61739
  • Patent Document 6 WO02 / 31140
  • Patent Document 7 WO01 / 29246
  • Non-patent literature l Biotechnol and Bioeng, 62, 1 120-123 (1999)
  • An object of the present invention is to provide a glycoprotein composition having a glycoside-linked sugar chain produced from an animal cell, characterized by controlling the osmotic pressure in a medium for culturing the animal cell.
  • An object of the present invention is to provide a method for producing a glycoprotein composition in which fucose is bound to a sugar chain with respect to all glycoside-linked sugar chains contained in the composition, and the ratio of sugar chain and sugar chain is changed. .
  • the present invention relates to the following (1) to (: 17).
  • glycoprotein composition having glycoside-linked sugar chains produced from animal cells by controlling the osmotic pressure in a medium for culturing animal cells
  • fucose is added to the glycoside-linked sugar chains of the glycoprotein.
  • a method for producing a glycoprotein composition, wherein the ratio of sugar chains to which no is bonded is changed.
  • the animal cell is a cell selected from rat cells, mouse cells, and hamster cells.
  • rat cell is a myeloma cell or a hybrid cell of a myeloma cell line.
  • mice cell is a cell selected from NS0 cells or Sp2 / 0 cells.
  • mice cell is a cell selected from NS0 cells or Sp2 / 0 cells. The method described.
  • a glycoprotein composition having a glycoside-linked sugar chain produced from an animal cell characterized in that the osmotic pressure in a medium for culturing the animal cell is controlled and contained in the composition
  • a method for producing a glycoprotein composition in which fucose is bonded to a sugar chain and the ratio of sugar chain and sugar chain is changed with respect to all glycoside-linked sugar chains.
  • FIG. 1 Each of anti-00 chimeric antibody producing 82/0 cell line 61_330 / ⁇ £ 1 ⁇ 1 BP— 7325)
  • FIG. 5 is a graph showing the results of calculating the proportion of sugar chains in which fucose is not bound to the terminal N-acetylyldarcosamine.
  • the vertical axis shows the ratio of the sugar chain in which the fucose is not bound to the N-acetylidanolosecosamine at the reducing end of the N-glycoside-bonded complex sugar chain that binds to the Fc region, contained in the antibody composition.
  • the horizontal axis shows the value of the osmotic pressure cultured.
  • FIG. 5 is a diagram showing the results of calculating the proportion of sugar chains that are not used.
  • the vertical axis shows the percentage of sugar chains in the antibody composition in which fucose is not bound to N-acetylyldarcosamine at the reducing end of the N-glycoside-bound complex sugar chain that binds to the Fc region of the antibody.
  • the axis shows the value of the osmotic pressure cultured.
  • the ratio of the sugar chain in which fucose is not bound to N-acetyl darcosamine at the reducing end of the N-glycoside-linked complex sugar chain that binds to the Fc region of the antibody was calculated.
  • the vertical axis shows the ratio of the sugar chain in which the fucose is not bound to the N-acetylyldarcosamine at the reducing end of the N-glycoside-bonded complex sugar chain that binds to the Fc region.
  • the axis shows the osmotic pressure values cultured.
  • FIG. 4 Anti-CCR4 chimeric antibody production YB2 / 0 strain (FERM BP-7054) was cultured in each osmotic medium in an Erlenmeyer flask and bound to the Fc region of the antibody in the antibody composition obtained from the culture medium.
  • the ratio of the sugar chain in which fucose is not bound to the N-acetylyldarcosamine at the reducing end of the N-glycoside-bonded sugar chain was calculated.
  • the vertical axis represents the ratio of the sugar chain in which fucose is not bound to N-acetyldylcosamine at the reducing end of the N-glycoside-bonded complex type sugar chain that binds to the Fc region. Indicates the value of the osmotic pressure cultured.
  • FIG. 5 Anti-CCR4 antibody producing strain YB2 / 0 (FERM BP-7054) was cultured in each osmotic medium for 1 L, and in the antibody composition obtained from the culture medium, the antibody was in the Fc region.
  • the ratio of the sugar chain in which fucose is not bound to N-acetylyldarcosamine at the reducing end of the N-glycoside-bonded complex sugar chain to be bound was calculated.
  • the vertical axis represents the proportion of sugar chains in which fucose is not bound to N-acetylcylcosamine at the reducing end of the N-glycoside-bonded complex sugar chain that binds to the Fc region. Indicates the value of the osmotic pressure cultured.
  • BP-3512 was cultivated in batch in each osmotic medium, and in the antibody composition obtained from the culture medium, the reducing end of the N-glycoside-linked complex sugar chain that binds to the Fc region of the antibody.
  • the proportion of sugar chains in which fucose is not bound to N-acetylyldarcosamine was calculated.
  • the vertical axis shows the ratio of fucose bound to N-acetylcylcosamine at the reducing end of the N-glycoside-bonded complex-type sugar chain that binds to the Fc region contained in the antibody composition.
  • the horizontal axis shows the osmotic pressure values cultured.
  • FIG. 7 Batch production of anti-CCR4 antibody producing NS0 strain (FERM BP-7964) in each osmotic medium, and binding to the Fc region of the antibody in the antibody composition obtained from the culture medium
  • the ratio of the sugar chain in which fucose is not bound to the N-acetylidanorecosamine at the reducing end of the N-glycoside-linked complex sugar chain was calculated.
  • the vertical axis shows the ratio of the sugar chain that is not bound to fucose to N-acetylcylcosamine at the reducing end of the N-glycoside-bonded complex-type sugar chain that binds to the Fc region in the antibody composition.
  • the axis shows the value of the osmotic pressure cultured.
  • the osmotic pressure (Osm) is
  • the method for controlling the osmotic pressure in the medium in the present invention includes a method of changing the concentration of a substance that adjusts the osmotic pressure in the medium (hereinafter referred to as an osmotic pressure regulator), and an osmotic pressure different from that of the medium.
  • an osmotic pressure regulator a substance that adjusts the osmotic pressure in the medium
  • an osmotic pressure different from that of the medium to control the osmotic pressure by changing the molarity or electrolysis of the medium depending on the substance produced in the medium.
  • the osmotic pressure adjusting agent is added to the medium, or the osmotic pressure adjusting agent in the medium is removed, thereby reducing the osmotic pressure in the medium.
  • the concentration of the osmotic pressure adjusting agent in the medium is adjusted.
  • the osmotic pressure adjusting agent may be any substance that is involved in the osmotic pressure of the medium, that is, a substance that changes the molar concentration or the electrolysis degree. Specific examples include sodium chloride (NaCl), potassium chloride.
  • KC1 salts such as lithium chloride (LiCl), glucose, galactose, mannose, fucose, funolectose, sucrose, mannitol, sugars such as xylose, trehalose, sorbitol, glycerol, various amino acids, vitamins, soybeans, wheat, Hydrolyzate from plants such as rice and corn, hydrolyzate from animals such as ushi protein and milk protein hydrolyzate, yeast extract such as yeast ixstrata, sodium hydroxide (NaOH), sodium carbonate (Na CO 2), sodium bicarbonate (NaHCO 3)
  • Examples of the method of adding a solution having an osmotic pressure different from that of the medium to the medium include a method of adding a solution having a higher osmotic pressure, a solution or a lower osmotic pressure, and a solution.
  • Solutions with high osmotic pressure include solutions that contain one or more salts such as sodium chloride in a medium that can be used for animal cells, solutions composed of high-concentration amino acids or vitamins, and animal cells. Examples include solutions in which salt, amino acids, vitamins, etc. are added to the medium.
  • the solution having a low osmotic pressure includes a solution obtained by removing one or more salts such as sodium chloride and sodium from a medium usable for animal cells, a solution composed of minimum medium components such as amino acids and vitamins, Examples of media that can be used for animal cells include RPMI1640 medium, IMDM medium, and DMEM medium.
  • Substances produced in the medium include substances produced by animal cells, substances produced by decomposition of medium components, and the like.
  • Examples of substances produced by animal cells include lactic acid and ammonia.
  • examples of the substance produced by the decomposition of the medium components include ammonia.
  • the time for controlling the osmotic pressure may be any time as long as animal cells are producing the glycoprotein composition.
  • Specific examples of the method for culturing while controlling the osmotic pressure in the medium include a method of appropriately adding the aforementioned osmotic pressure adjusting agent or a solution containing the osmotic pressure adjusting agent to the culture.
  • the addition method the osmotic pressure of the medium is monitored, and an osmotic pressure adjusting agent or a solution containing the osmotic pressure adjusting agent is added as needed so that the osmotic pressure of the medium becomes constant.
  • Examples thereof include a method of adding a regulator or a solution containing an osmotic pressure regulator, and a method of adding an osmotic pressure regulator or a solution containing an osmotic pressure regulator before seeding cells.
  • a method of adjusting the osmotic pressure only before seeding cells may be used.
  • the osmotic pressure in the medium can be measured as follows.
  • the osmotic pressure fluctuation during the culture period is small and the culture method is used, it may be measured by the osmotic pressure in the medium on the first culture day or the last culture day.
  • the osmotic pressure fluctuates during the culture. It is preferable to measure the osmotic pressure in the section). Since the increase / decrease amount of the glycoprotein composition produced per unit time correlates with the increase / decrease value of the osmotic pressure in the medium, the osmotic pressure can be calculated by the following formula 2.
  • Osmotic pressure ⁇ (osmotic pressure in the unit interval)
  • X glycoprotein / total production of glycoprotein in the unit interval
  • the osmotic pressure value is controlled to 200 to 400 mOsm / kg, preferably 240 to 360 mOsm / kg, more preferably 240 to 280 mOsm / kg.
  • the animal cell in the present invention may be any animal cell, but animal cells such as rat cells, mouse cells, human cells, monkey cells, inu cells, hamster cells, or hybrid cells of these animal cells. System.
  • animal cells include Chinese nomstar ovarian tissue-derived cells (CH cells), rat myeloma cell line YB2Z0 cell, mouse myeloma cell line NS0 cell, mouse myeloma cell line SP2 / 0_Agl4 cell, Syrian hamster kidney tissue Derived from BHK cells (ATCC CCL 10), MDCK (ATCC CCL 34), PER_C6 TM, hybridoma cells, human leukemia cell line Namalva cells, embryonic stem cells, fertilized egg cells, etc.
  • rat cells mouse cells Can be given. Examples of rat cells include Y 3Agl.2.3.
  • mouse cells include NSO (ATCC CRL— 1827). , Sp 2/0 (ATCC CRL-1581) and the like, and myeloma cells or myeloma cell line hybrid cells.
  • NSO ATCC CRL— 1827
  • Sp 2/0 ATCC CRL-1581
  • myeloma cells or myeloma cell line hybrid cells obtained by subjecting these cells to mutation treatment or cell fusion with B cells obtained by immunizing a non-human mammal with an antigen Cells having equivalent properties are also included in the animal cells in the present invention.
  • the glycoprotein is preferably a eukaryotic cell-derived glycoprotein, more preferably a mammalian cell-derived glycoprotein. Further, it may be an artificially modified glycoprotein such as a fused glycoprotein or a partial fragment thereof.
  • Glycoproteins include antibodies, erythropoietin (EPO) [J. Biol. Chem., 252, 5558 (1977)], thrombopoietin (TPO) [Nature, 369, 533 (1994)] tissue type plasminogen activator.
  • EPO erythropoietin
  • TPO thrombopoietin
  • EGF epidermal growth factor
  • HGF hepatocyte growth factor
  • M—CSF macrophage colony stimulating factor
  • the sugar chain that binds to the glycoprotein is composed of a sugar chain that binds to asparagine (N-glycoside-linked sugar chain) and a sugar chain that binds to serine, threonine, etc. (0-glycoside-linked sugar). It is roughly divided into two types. These are collectively referred to as glycoside-linked sugar chains.
  • N-glycoside-linked sugar chains have various structures [Biochemical Experimental Method 23-Glucose Protein Glycan Research Method (Academic Publishing Center) Atsuko Takahashi (1989)], In some cases, a common core structure represented by the following structural formula (I) is included. [0019] [Chemical 1]
  • the N-glycoside-linked sugar chain is a high mannose-type sugar chain in which only mannose is bonded to the non-reducing end of the core structure, and galactose—N-acetylidanolecosamine (hereinafter referred to as Gato GlcNAc) on the non-reducing end of the core structure. )) In parallel with one or more branches, and Gal-GlcNAc
  • a complex type (also called complex type) sugar chain with a structure such as sialic acid or bisecting N-acetylidanorecosamine on the non-reducing end side, and hymannose type and complex type on the non-reducing end side of the core structure Hybrid sugar chains with both branches
  • the reducing end of N-acetylgalatatosamine is ⁇ -bonded to the hydroxyl group of serine or threonine, and further galactose, ⁇ -acetyldarcosamine, ⁇ -acetylgalatato Examples include sugar chains to which samine, fucose, or sialic acid is bonded, sugar chains in which xylose is ⁇ -bonded to a hydroxyl group of selenium, and sugar chains in which galactose is ⁇ -bonded to a hydroxyl group of hydroxylysine.
  • sugar chains in which xylose is ⁇ -bonded to the hydroxyl group of serine usually a plurality of sugars are bonded to the 4-position of the xylose, and a linear polysaccharide consisting of disaccharides is bonded to the end of the bonded sugar. ing.
  • examples of the substance having such a sugar chain structure include cartilage proteodalycan.
  • examples of the substance having a sugar chain structure in which galactose is ⁇ -bonded to the hydroxyl group of hydroxylysine include collagen.
  • the glycoprotein composition refers to a composition comprising glycoprotein molecules having ⁇ -glycoside-linked sugar chains or 0-glycoside-linked sugar chains.
  • sugar chains that bind to glycoproteins Since the sugar chain structure is diverse, there are many combinations of sugar chains in the sugar chains of glycoproteins.
  • the glycoprotein composition in the present invention includes a composition composed of glycoprotein molecules bound to a single sugar chain structure, and a glycoprotein molecule bound to a plurality of different sugar chain structures. Such as a composition.
  • the composition of glycoprotein molecules to which glycoside-linked sugar chains are bound is contained in a composition comprising fucose bound to a glycoside-linked sugar chain.
  • a composition comprising fucose bound to a glycoside-linked sugar chain.
  • known methods such as degradation and enzymatic digestion [Biochemical Experimental Method 23-Glycoprotein Glycan Research Method (Academic Publishing Center) Takahashi Eiko (1989)]
  • the sugar chain is released and the released sugar chain is fluorescent. It can be determined by labeling or isotope labeling and separating the labeled sugar chain by a chromatographic method.
  • the released sugar chain can be analyzed and determined by the HPAED-PAD method [Journal 'Ob' Liquid 'Chromatography (J. Liq. Chromatogr.), 6, 1577 (1983)].
  • the 1-position of fucose is ⁇ -bonded to the 6-position of N-acetylcylcosamine of the N-glycoside-linked sugar chain.
  • ⁇ -glycoside-linked sugar chains are not included.
  • the antibody composition refers to a composition comprising antibody molecules having a ⁇ -glycoside-linked sugar chain in the Fc region.
  • An antibody is a tetramer in which two molecules of two types of polypeptide chains, a heavy chain and a light chain, are associated with each other. About one-quarter of the N-terminal side of the heavy chain and about one-half of the N-terminal side of the light chain (each about 100 amino acids) are called variable regions and are diverse and directly involved in antigen binding To do. Most of the parts other than the variable region are called constant regions. Antibody molecules are classified into IgG, IgM, IgA, IgD, and IgE classes based on the homology of the constant region.
  • the IgG class is further classified into IgGl to IgG4 subclasses based on the homology of the constant region.
  • the heavy chain is divided into four immunoglobulin domains, VH, CH1, CH2, and CH3, from the N-terminal side. Between CH1 and CH2, there is a highly flexible peptide region called a hinge region, and CH1 and CH2 are separated. It is done. The structural unit consisting of CH2 and CH3 after the hinge region is called the Fc region. N-glycoside-linked sugar chains are attached. This region also binds Fc receptors, complements, etc. (Immunology Illustrated Original 5th Edition, published February 10, 2000, Nanedo Edition, Introduction to Antibody Engineering, January 1994 25 First edition, Jinjinshokan).
  • N-glycoside-linked sugar chains that bind to antibody molecules have various structures, and the sugar structures of the sugar chains include those of the core structure represented by the structural formula (I).
  • sugar structures of the sugar chains include those of the core structure represented by the structural formula (I).
  • sugar chains in the two N-Dalcoside-linked sugar chains that bind to the antibody Therefore, as an antibody composition in the present invention, as long as the effects of the present invention can be obtained, a composition composed of an antibody molecule having a single sugar chain structure, an antibody molecule having a plurality of different sugar chain structures And the like, and the like.
  • the 1-position of the fucose is ⁇ -bonded to the 6-position of N-glycidyl-linked sugar chain reducing terminal N-acetylyldarcosamine.
  • ⁇ -glycoside-linked sugar chain preferably 1-position of the fucose is not ⁇ -bonded to the 6-position of ⁇ -glycylside glycosamine at the reducing end of ⁇ -glycoside-bonded sugar chain Examples include sugar chains.
  • ADCC activity refers to the fact that an antibody bound to a cell surface antigen such as a tumor cell in a living body is bound to an Fc region by binding an antibody Fc region to the Fc receptor present on the effector cell surface. Refers to the activity of activating the tumor cells and damaging tumor cells etc. [Monoclonal Antibodies: Principles and Applications, Wiley—Liss, In, Capter 2.1 (1995)]. Effector cells include killer cells, natural killer cells, activated macrophages, etc.
  • the antibody may be an antibody having such an antigen-binding property, but it binds to an antibody that binds to a tumor-related antigen, an antibody that binds to an antigen related to allergy or inflammation, or an antigen that relates to cardiovascular disease.
  • the antibody class is preferably an antibody that binds to an antigen associated with an autoimmune disease, or an antibody that binds to an antigen associated with a virus or bacterial infection, and the antibody class is preferably IgG.
  • Antibodies that bind to tumor-associated antigens include anti-GD2 antibody (Anticancer Res., 13, 331-33 6, 1993), anti-GD3 antibody (Cancer Immunol.
  • Anti-basic fibroblast growth factor antibody Anti-basic fibroblast growth factor antibody, anti-FGF8 receptor Antibody G. Biol. Chem., 265, 16455-16 463, 1990), anti-basic fibroblast growth factor receptor antibody, anti-insulin-like growth factor antibody (J. Neurosci. Res., 40, 647-659) , 1995), anti-insulin-like growth factor receptor antibody (J. Neurosci. Res., 40, 647-659, 1995), anti-PMSA antibody (J.
  • anti-vascular endothelial growth factor antibody (Cancer Res., 57, 4593-4599, 1997), anti-vascular endothelial cell growth factor receptor antibody (Oncogene, 19, 2138- 2146, 2000), anti-CA125 antibody, anti-17-1A antibody, anti-integrin ⁇ ⁇ 3 antibody, anti-CD33 antibody, anti-CD22 antibody, anti-HLA antibody, anti-HLA-DR antibody, anti-CD20 antibody, anti-CD19 antibody, anti-EGF Examples include receptor antibodies (Immunology Today, 21 (8), 403-410 (2000)), anti-CD10 antibodies (American Journal of Clinical Pathology, 113, 374-382, 2000) and the like.
  • antibodies that bind to antigens related to allergy or inflammation include anti-interleukin 6 antibody (Immunol. Rev., 127, 5-24, 1992), anti-interleukin 6 receptor antibody (Mole cular Immunol. , 31, 371-381, 1994), anti-interleukin 5 antibody (Immunol. Rev., 127,5 -24, 1992), anti-interleukin 5 receptor antibody, anti-interleukin 4 antibody (Cytokine, 3, 562- 567, 1991), anti-interleukin 4 receptor antibody (J. Immunol.
  • anti-tumor necrosis factor antibody Hybridoma, 13, 183-190, 1994
  • anti-tumor necrosis Factor receptor antibody MolecularPharmacol., 58, 237-245, 2000
  • anti-CCR4 antibody Nature, 400,77 6-780, 1999
  • anti-chemokine antibody J. Immunol. Meth., 174, 249-257, 1994
  • anti-chemoin receptor receptor antibody J. Exp.
  • anti-IgE antibody anti-CD23 antibody
  • anti-CDlla antibody Immunology Today, 21 (8), 403-410 (2000)
  • anti-CRTH2 antibody JI mm unol "162, 1278-1286 (1999)
  • anti-CCR8 antibody W099 / 25734
  • anti-CCR3 antibody US620 7155
  • Examples of antibodies that bind to an antigen associated with cardiovascular disease include anti-GpIIb / IIIa antibody (J. Immuno 1 "152, 2968-2976, 1994), anti-platelet-derived growth factor antibody (Science, 253, 1129- 1132, 1991), anti-platelet-derived growth factor receptor antibody (J. Biol. Chem., 272, 17400-17404, 199 7) or anticoagulant factor antibody (Circulation, 101, 1158-1164, 2000) It is possible.
  • Antibodies that bind to antigens associated with autoimmune diseases include anti-self DNA antibodies (Immunol. Letters, 72 , 61-68, 2000), anti-CDlla antibody, anti-ICAM3 antibody, anti-CD80 antibody, anti-CD2 antibody, anti-CD3 antibody, anti-CD4 antibody, anti-integrin ⁇ 4 7 antibody, anti-CD40L antibody, anti-IL-2 receptor And antibodies (Immunology Today, 21 (8), 403-410 (2000)).
  • anti-gpl20 antibody As an antibody that binds to an antigen associated with virus or bacterial infection, anti-gpl20 antibody
  • An antibody is a protein produced in a living body by an immune reaction as a result of stimulation with a foreign antigen, and has an activity that specifically binds to an antigen. If it is a molecule containing the Fc region of an antibody, , Such molecules are also included.
  • antibody fragments in addition to antibodies, antibody fragments, fusion proteins containing an Fc region, and the like can be mentioned.
  • an antibody in addition to an antibody secreted by a hybridoma cell produced from a spleen cell of an immunized animal, an antibody produced by gene recombination technology, that is, an antibody gene is inserted. Examples thereof include an antibody obtained by introducing the antibody expression vector into a host cell. Specifically, antibodies produced by Hypridoma, humanized antibodies, human antibodies and the like can be mentioned.
  • the hyperidoma is obtained by fusing a B cell obtained by immunizing a mammal other than a human with a myeloma cell derived from a rat or mouse.
  • humanized antibodies include human chimeric antibodies, human type homology determining regions (hereinafter referred to as CDR) -grafted antibodies, and the like.
  • a human chimeric antibody is a non-human animal antibody heavy chain variable region (hereinafter, the heavy chain is also referred to as H chain, the variable region is also referred to as HV or VH) and an antibody light chain variable region (hereinafter referred to as "H chain”).
  • the light chain is also referred to as LV or VL as the L chain) and the heavy chain constant region of the human antibody (hereinafter the constant region is also referred to as CH as the C region) and the light chain constant region of the human antibody (hereinafter also referred to as CL).
  • mice, rats, mice, musters, rabbits, etc. can be used as long as they can produce mice and hybridomas.
  • cDNAs encoding VH and VL are obtained from a hybridoma producing a monoclonal antibody, and inserted into expression vectors for host cells having genes encoding human antibody CH and human antibody CL, respectively.
  • a human chimeric antibody expression vector introduce it into a host cell, express it and produce it.
  • the CH of the human chimeric antibody may be any of those belonging to human immunoglobulin (hereinafter referred to as hlg), but is preferably of the hlgG class, and more preferably hlgG1, hIgG2, hIgG3, Any of the subclasses such as hIgG4 can be used.
  • hlg human immunoglobulin
  • any ⁇ class or ⁇ class can be used as long as it belongs to hlg.
  • the human CDR-grafted antibody means an antibody obtained by grafting the VH and VL CDR amino acid sequences of a non-human animal antibody to appropriate positions of the human antibody VH and VL.
  • the human CDR-grafted antibody constructs a cDNA encoding the V region obtained by grafting the VH and VL CDR sequences of non-human animal antibodies to the VH and VL CDR sequences of any human antibody.
  • a human CDR-grafted antibody is constructed by constructing a human CDR-grafted antibody expression vector by inserting it into an expression vector for a host cell having a gene encoding the CL of a human antibody, and introducing the expression vector into the host cell. Can be expressed and produced.
  • the CH of the human CDR-grafted antibody may be any of those that belong to hlg, but those of the hlgG class are preferred, and those of hlgG, hIgG2, hIgG3, hIgG4 belonging to the hlgG class are preferred. Any of the subclasses can be used.
  • the CL of the human CDR-grafted antibody any KL class or I class can be used as long as it belongs to hlg.
  • the animal cell used in the present invention can be used as it is as long as it produces a glycoprotein composition.
  • Examples of expression vectors used for preparing a recombinant vector containing a DNA encoding a glycoprotein include pcDNAI, pcDM8 (Funakoshi), pAGE 107 (Japanese Patent Laid-Open No. 3-22979, 7) (: 1111010 ⁇ 3, 3,133 (1990)), pAS3-3 (Japanese Patent Laid-Open No. 2-227075), pCDM8 (Nature, 329, 840 (1987)), pcDNAl / Amp (Invitrogen), p REP4 (Invitrogen) PAGE103 [J. Biochem., 101, 1307 (1987)], pAGE210 and the like.
  • any promoter that functions in animal cells can be used.
  • CMV cytomegalovirus
  • an enhancer of the IE gene of human CMV may be used together with a promoter.
  • the host cell into which the recombinant vector is introduced may be any animal cell as described above, and preferably a rat cell or a mouse cell, such as Y3A gl.2.3., Y0, ⁇ 2 / 0, NS0, Sp2 / 0, etc., myeloma cells or myeloma cell line hybrid cells.
  • these cells can be obtained by subjecting these cells to mutation treatment, immunizing a non-human mammal with an antigen and cell fusion with a B cell obtained, and the like. .
  • any method for introducing a recombinant vector into a host cell any method can be used as long as it is a method for introducing DNA into the cell.
  • an electoresis method [Cytote chnology, 3, 133 ( 1990)), calcium phosphate method (JP-A-2-227075), ribofunction method (Proc. Natl. Acad. Sci. USA, 84, 7413 (1987), Virology, 52,456 (1973)), etc.
  • the ability to boil S is a method for introducing DNA into the cell.
  • an electoresis method [Cytote chnology, 3, 133 ( 1990)
  • calcium phosphate method JP-A-2-227075
  • ribofunction method Proc. Natl. Acad. Sci. USA, 84, 7413 (1987), Virology, 52,456 (1973)
  • a glycoprotein composition can be produced in a cell or in a culture supernatant by culturing animal cells into which a recombinant vector has been introduced by the above method in an appropriate medium.
  • animal cells that produce glycoprotein compositions include transformed cells that produce anti-GD human chimeric antibodies 7-9-151 (FERM BP-6691), anti-CC
  • Transformed cells producing R4 chimeric antibody KM2760 (FERM BP-7054), transformed cells producing anti-CCR4 humanized antibody KM8759 (FERM BP— 8129) j; KM87 60 (FERM BP— 8130), anti-IL 5 receptor Transformed cells producing ⁇ -chain chimeric antibody KM7399 (FERM BP—5649), transformed cells producing anti-IL 5 receptor ⁇ -chain human CDR-grafted antibody KM8399 (FERM BP—5648) and KM9399 (FERM BP—5647), transformed cells producing anti-GM2 human CDR-grafted antibodies KM8966 (FER M BP—5105), KM8967 (FERM BP—5106), KM8969 (FERM BP—55 27) and KM8970 (FERM BP— 5528 ) Etc.
  • FERM BP-7054 transformed cells producing anti-CCR4 humanized antibody KM8759 (FERM BP— 8129) j; KM87 60 (FERM
  • a glycoprotein composition having a glycoside-linked sugar chain fucose is bound to a glycoside-linked sugar chain that binds to the glycoprotein.
  • Any of the commonly used animal cell culture methods can be used as long as it is a culture method capable of changing the chain ratio and efficiently producing glycoprotein. For example, batch culture, repeat batch culture, fed-batch culture, perfusion culture, etc. In order to increase the productivity of glycoprotein, it is preferable to use feedbatch culture or perfusion culture.
  • Fuedbatch culture is a culture method in which physiologically active substances, nutrient factors, and the like are additionally supplied in small amounts continuously or intermittently. Fuedbachi culture can prevent a decrease in the cell density of the cultured cells due to accumulation of waste products in the culture medium where the metabolic efficiency of the cells is high.
  • the desired glycoprotein in the collected culture medium has a higher concentration than that obtained in batch culture, the glycoprotein can be easily separated and purified, and compared with batch culture, The production amount of the glycoprotein can be increased.
  • the osmotic pressure can be controlled using the added solution, and is easier to control than the notch culture.
  • Perfusion culture is efficiently separated by a device that separates the culture solution and cells, the concentrated cells are returned to the original culture tank, and the reduced amount of fresh medium is newly supplied to the culture tank. Is the method. This method is relatively easy to control because the culture environment in the culture tank is always kept good. Further, since the osmotic pressure in the tank can be controlled by supplying a fresh medium, it is preferable for controlling the osmotic pressure in the medium.
  • any basal medium used in the method of the present invention any basal medium used for normal animal cell culture can be used. If necessary, those containing each of the physiologically active substances and nutrient factors and containing a carbon source, a nitrogen source, etc. that can be assimilated by animal cells are used.
  • RPMI1640 medium [The Journal of the American Medical Association, 199, 519 (1967)], Eagle's MEM medium [Science, 122, 501 (1952)], Dulbecco's modified MEM medium [Virology, 8, 396 ( 1959), 199 medium (Proceeding of the Society for the Biological Medicine, 73, 1 (1950)), F12 medium (Proc. Natl. Acad. Sci. USA, 53,288 (1965)), IMDM medium J. Experimental Medicine , 147, 923 (1978)], etc., preferably DMEM medium, F12 medium, IMDM medium, Hybridoma Serum Free medium (Invitrogen), Chenically Defined Hybridoma Serum Free medium (Invitrogen) It is done.
  • the medium is supplemented with nutrient factors, physiologically active substances, and the like necessary for the growth of animal cells as necessary. These additives are appropriately added to the culture medium during the cultivation as necessary, depending on the force previously contained in the medium before the cultivation, or if necessary.
  • the supply method may be in the form of one solution or two or more solutions. Moreover, the addition method does not ask
  • Nutritional factors include sugars, amino acids, vitamins, hydrolysates, lipids and the like.
  • physiologically active substances include insulin, IGF_1, transferrin, anolebumin, coenzyme Q and the like.
  • sugar examples include glucose, mannose, fructose, and the like, and they are used alone or in combination of two or more.
  • Amino acids include L-alanine, L-arginine, L-asparagine, L-aspartic acid, L-cystine, L-glutamic acid, L-glutamine, glycine, L-histidine, L- Isoleucine, L-leucine, L-lysine, L-methionine, L-phenylalanine, L-purelin, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-noline, etc. Used in combination of one or more.
  • -Tocopherol etc. are used, and one or more are used in combination.
  • hydrolyzate examples include soybeans, wheat, rice, peas, cottonseed, yeast extract, etc., which are used as necessary.
  • lipids examples include cholesterol, linoleic acid, linolenic acid, and the like, which are used as necessary.
  • Various cultures are usually carried out under conditions such as pH 6-8 and 30-40 ° C for 3-12 days, and perfusion cultures for 3-40 days.
  • antibiotics such as streptomycin and penicillin may be added to the medium as needed during the culture.
  • dissolved oxygen concentration control, pH control, temperature control, stirring, etc. can be performed according to the method used for normal animal cell culture.
  • a glycoprotein composition can be produced by accumulating a protein composition and collecting the glycoprotein composition from the culture.
  • the production method of the glycoprotein composition of the present invention includes a direct expression method in which the glycoprotein composition is produced in the host cell, a method in which the glycoprotein composition is secreted and produced outside the host cell (Molecular 'Cloning 2nd Edition). ) Etc.
  • the glycoprotein composition was prepared by the method of Paulson et al. [J. Biol. Chem., 264, 17619 (1989)], the method of Lou et al. [Proc. Natl. Acad. Sci. USA, 86, 8227 (1989). Genes Develop., 4, 1288 (1990)], or by applying the method described in JP-A-5-336963, WO94Z23021, etc., it can be actively secreted outside the host cell. That is, the glycoprotein composition can be actively secreted out of the host cell by expressing it with a signal peptide added using a genetic recombination technique. [0058] Further, according to the method described in JP-A-2-227075, the production amount of the glycoprotein composition may be increased by using a gene amplification system using a dihydrofolate reductase gene or the like. it can.
  • glycoprotein produced by the method of the present invention can be isolated and purified using a normal glycoprotein isolation and purification method.
  • the glycoprotein composition produced by the method of the present invention is expressed in a dissolved state in the cells
  • the cells are collected by centrifugation after culturing, suspended in an aqueous buffer, Disrupt the cells with a sonic breaker, French press, Manton Gaurin homogenizer, dynomill, etc. to obtain a cell-free extract.
  • an ordinary enzyme isolation and purification method that is, a solvent extraction method, a salting-out method using ammonium sulfate, a desalting method, a precipitation method using an organic solvent, Anion-exchange chromatographic method using resin such as Jetylaminoethyl (DEAE) —Sepharose, DIAION HPA—75 (Mitsubishi Chemical), and positive using resin such as S-Sepharose FF (Falmasia) Ion exchange chromatography, hydrophobic chromatography using resins such as butyl sepharose and phenyl sepharose, gel filtration using molecular sieve, affinity chromatography using protein A, chromatofocusing, A purified preparation can be obtained by using electrophoresis methods such as isoelectric focusing alone or in combination.
  • electrophoresis methods such as isoelectric focusing alone or in combination.
  • the glycoprotein composition produced by the method of the present invention can be recovered in the culture supernatant. That is, a culture supernatant is obtained from the culture by a technique such as centrifugation as described above, and a purified preparation is obtained from the culture supernatant by using the same isolation and purification method as described above. Can do.
  • the antibody composition contains an N-glycoside-linked N-glycoside-linked complex-type sugar chain that binds to the Fc region of the antibody.
  • An antibody composition with an increased proportion of sugar chains in which fucose is not bound to acetylyldarcosamine is used for the treatment of diseases such as tumors, inflammation, allergies, congenital diseases, etc. with high antibody-dependent cytotoxicity (ADCC activity). Useful.
  • CD-Hybridoma medium (Invitrogene) was used as a culture medium for batch culture.
  • the osmotic pressure in the initial medium was 320 mOsm / kg.
  • CD-Hybridoma medium was diluted with sterile water to prepare a low osmotic pressure medium of about 250 mOsm / kg.
  • INS recombinant human insulin
  • MT X lmmol / L Methotrexate
  • Invitrogen 200 mmol / LL-glutamine
  • osmotic pressure regulator sodium chloride, potassium salt (manufactured by Wako Pure Chemical Industries, Ltd.), Creatine (manufactured by Sigma), Fucose, Fructose (manufactured by Nacalai), and Mannitol were added to the medium.
  • the medium was adjusted so as to have an osmotic pressure of 60 to 390 mOsm / kg and used for the following expansion culture.
  • CD-Hybridoma medium was used for expansion culture. After a sufficient number of cells was obtained, the cells were seeded in 3 ⁇ 10 6 cells ZmL in the various osmotic pressure media prepared in the 25 OmL conical flasks (manufactured by Cojung). Thereafter, the cells were cultured at 37 ° C for 11 days.
  • the antibody composition produced from the cells was collected in a culture medium, and the sugar composition in the antibody composition was analyzed.
  • the results are shown in Fig. 1.
  • Figure 1 regardless of the type of osmotic pressure regulator, when the osmotic pressure of the medium increases, the N-glycoside-binding complex that binds to the Fc region of the antibody in the antibody composition produced by animal cells.
  • the proportion of sugar chains in which fucose is not bound to N-acetylidanolosecosamine at the reducing end of the sugar chain decreased.
  • CD_Hybridoma medium (Invitrogen) having an initial osmotic pressure of 325 mOsmZkg was used.
  • CD_Hybridoma medium was diluted with sterile water to prepare low osmotic pressure media of 285 and 300 mOsmZkg, respectively.
  • NaCl was added to CD_Hybridoma medium to prepare a 340 mOsmZkg medium.
  • lOmgZmL INS manufactured by Invitrogen
  • 1 mmol / L MTX manufactured by Sigma
  • 200 mmol / LL-glutamine manufactured by Invitrogen
  • Expansion culture was performed on CD-Hybridoma medium, and when a sufficient number of cells were obtained, a 5 L jar containing media adjusted to osmotic pressures of 285, 300, 325, and 345 mOsm / kg was added. Cells were seeded at 3 ⁇ 10 5 cells / mL in the fermenter. Then 37. C, pH 7.1 and DO 50% were cultured for 11 days.
  • the culture broth was sampled once daily from each fermenter, and the viable cell density (cells / mL) and antibody concentration (mg / L) were measured.
  • the sugar chain of the antibody composition was analyzed.
  • the viable cell density was measured by a dye exclusion method using 0.4% trypan blue solution (Invitrogen), and the antibody concentration was measured by high performance liquid chromatography (hereinafter referred to as HPLC) (Shimadzu Corporation). did. The result is shown in Figure 2.
  • Figure 2 N-glycoside-linked complex-type glycans that bind to the Fc region of an antibody against an antibody composition produced in 285, 300, 325, 345 mOsm / kg osmotic pressure adjustment medium
  • the percentages of sugar chains in which fucose was not bound to N-acetylidanorecosamine at the reducing end were 70, 58, 45, and 40%, respectively.
  • the cumulative number of cells was shown as the sum of products of viable cell density and elapsed time.
  • the cumulative number of cells was simply shown as a value obtained by adding the viable cell density measured each time (cell ZmL x day).
  • the specific antibody production rate was calculated from the following formula.
  • ng / cell / day antibody concentration (mg / L) ⁇ cumulative viable cell count (cells / mL x day)
  • the specific antibody production rate at the end of the culture greatly affects the initial osmotic pressure. I did not receive it. Similarly, no significant change was observed in the cumulative number of viable cells.
  • CD-Hybridoma medium As the medium, CD-Hybridoma medium (Invitrogen) having an initial osmotic pressure of 350 mOsm / kg was used.
  • the low osmotic pressure medium CD-Hybridoma medium was diluted with sterile water, and 245, 260, 280, 300, 330 mOsm / kg low osmotic pressure medium was prepared.
  • 10 mg / mL INS manufactured by Invitrogen
  • 1 mmol / L MTX manufactured by Sigma
  • 200 mmol / LL-glutamine manufactured by Invitrogen
  • Expansion culture was performed with CD-Hybridoma medium, and after obtaining a sufficient number of cells, the cells were seeded in a 1 L bioreactor. After the start of culture, perfusion culture using a centrifuge (SORVAL LABII) was started on the third day. The medium exchange rate was lwd. Each of the 280, 260, 245, 300, and 330 mOsm / kg osmotic pressure media prepared in advance was changed every 5 days, and the cell density was maintained to be about 5 ⁇ 10 6 cells ZmL. The culture was performed at 35 ° C, pH 7.1, DO50% for 35 days.
  • the culture solution was sampled once a day, and the viable cell density (cell ZmL) and antibody concentration (mgZU were measured.
  • sugar chains that bind to the antibody produced in the medium The viable cell density was measured by a dye exclusion method using a 0.4% trypan blue solution (manufactured by Invitrogen), and the antibody concentration was measured by HPLC (manufactured by Shimadzu Corporation). This is shown in Fig. 3.
  • N-glycosidic conjugates that bind to the Fc region of antibodies in antibody compositions produced in 260, 280, 300, 330 mOs m / kg osmotic pressure adjusted medium.
  • the proportions of sugar chains in which fucose was not bound to N-acetylidanorecosamine at the reducing end of the type sugar chain were 85, 81, 76 to 64, and 47%, respectively.
  • CD-Hybridoma medium (Invitrogen) was used as the medium.
  • sodium chloride manufactured by Wako Pure Chemical Industries, Ltd.
  • the osmotic pressure of the medium was adjusted to 226, 242, 253, 284, 304, 313, 337, 359, and 375 mOsmZkg, respectively.
  • lOmg / mLINS manufactured by Invitrogene
  • 1 mmol / L MTX manufactured by Sigma
  • 200 mmol / L L-glutamine manufactured by Invitrogene
  • Expansion culture was performed in a medium with an osmotic pressure of 313 mOsm / kg, and when a sufficient number of cells were obtained, each of 226, 242, 253, 284, 226, 242, 253, 284, It was seeded in a medium of 304, 337, 359, 375 mOsm / kg osmotic pressure to give 3 ⁇ 10 5 Itodatsuki sachet / mL. Each Erlenmeyer flask was injected with 7.5% carbon dioxide gas at a flow rate of 2 L / min for 1 minute, and then cultured at 35 ° C. and lOOrpm for 8 days.
  • the culture solution was collected once every day, and the viable cell density (cells / mL) and antibody concentration (mg / L) were measured.
  • a sample for analyzing a sugar chain bound to the antibody produced in the culture solution at the end of the culture was obtained.
  • the viable cell density was measured by a dye exclusion method using a 0.4% trypan blue solution (manufactured by Invitrogen), and the antibody concentration was measured by HPLC (manufactured by Shimadzu Corporation). The results are shown in Fig. 4.
  • Figure 4 As shown, the results show that N_glycosidic linkages that bind to the Fc region of antibodies in antibody compositions produced in 226, 242, 253, 284, 304, 337, 359, 375 mOsm / kg permeation pressure media. Harm of leucose chain without fucose binding to N-acetylidanorecosamine at the reducing end of complex type sugar chain
  • J-joint was 90, 92, 92, 92, 89, 84, 80, 77% respectively It was.
  • Example 4 Using the same cells as in (1), the following Fuedbatch culture was performed.
  • CD-Hybridoma medium was used as the medium.
  • a medium with osmotic pressures of 227, 313, 333 and 406 mOsm / kg was prepared by adding sodium chloride to the CD-Hybridoma medium.
  • 10 mg / mL INS, 1 mmol / L MTX, 200 mmol / L L-gnoretamine was added to the medium after adjusting the osmotic pressure, and used for the culture.
  • Enlargement culture was performed in a medium with an osmotic pressure of 313 mOsm / kg. When a sufficient number of cells were obtained, each medium with 227, 333, 406 mOsm / kg osmotic pressure prepared in a 1 L bioreactor (manufactured by ABLE) was used. 3. Seeded at 5 ⁇ 10 5 cells / mL. Culturing was performed for 11 days under conditions of 35 ° C, pH 7.1, and DO50%.
  • the culture broth was collected once a day, and the viable cell density (cell ZmL) and antibody concentration (mgZmL) were measured.
  • the production antibody was purified from the culture solution at the end of the culture, and a sample for analyzing the sugar chain bound to the antibody was obtained.
  • the viable cell count was measured by a dye exclusion method using 0.4% trypan blue solution, and the production antibody concentration was measured by HPLC.
  • the antibody Fc region was produced in the antibody composition produced in the osmotic pressure adjustment medium 227, 333, 406 mOsm / kg.
  • the proportions of sugar chains in which fucose was not bound to N-acetylyldarcosamine at the reducing end of the N-glycoside-bonded complex sugar chain bound to N was 94, 79 and 61%, respectively. Therefore, in the 1L reactor culture of the anti-CCR4 antibody-producing YB2Z0 cell line, the lower the osmotic pressure of the medium, the lower the osmotic pressure of the culture medium, It was shown that the proportion of sugar chains in which fucose is not bound to acetylyldarcosamine increases.
  • the cumulative number of viable cells and the specific antibody production rate were calculated by the same method as described in Example 2.
  • the specific antibody production rate at the end of the culture was 6.9, 4.4, 4.6 mg / 10 6 cells / day in the order of 227, 333, 406 11103111 / 13 ⁇ 4 osmotic medium, and the cumulative number of cells was the specific antibody production rate. The lower it was, the more it increased.
  • RPMI1640 medium manufactured by Invitrogene
  • the hypoosmotic medium was prepared by diluting RPMI1640 medium with sterile water.
  • the hyperosmotic medium was adjusted by adding sodium chloride to RPMI1640 medium.
  • 10% Daigo GF21 manufactured by Nippon Pharmaceutical Co., Ltd.
  • lmmol / L MTX lmmol / L MTX
  • 50 mg / mL G418 manufactured by Nacalai Testa
  • the following culture was carried out using the medium of osmotic pressure 210, 238, 277, 312, 353, 407 mOsm / kg obtained by the above method.
  • Expansion culture was performed in RPMI1640 medium supplemented with 10% urine fetal serum JRH), 1 mmol / L MT X, 50 mg / mL G418. It seed
  • the produced antibody was purified from the culture medium after completion of the culture, and a sample for analyzing the sugar chain bound to the antibody was obtained.
  • the antibody composition produced in 210, 23, 38, 277, 312, 353, 407 mOsm / kg osmotic pressure adjusted medium
  • the percentage of sugar chains in which fucose is not bound to N-acetylyldarcosamine at the reducing end of the N-glycoside-bonded complex sugar chain that binds to the Fc region of the antibody is 25, 20, They were 20, 16, 16, and 15% (Fig. 6).
  • the following batch culture was performed using a transformed NS0 strain (FERM BP-7964) that produces an anti-CCR4 antibody.
  • RPMI1640 medium manufactured by Invitrogene
  • the hypotonic medium was prepared by diluting RPMI1640 medium with sterile water.
  • sodium chloride was added to RPMI medium.
  • 10% Daigo GF21 manufactured by Nippon Pharmaceutical Co., Ltd.
  • 500 nmol / L MTX were added to the medium after adjusting the osmotic pressure. Culturing was carried out using a medium having an osmotic pressure of 217, 241, 276, 305, 349, 399 mOsm / kg obtained by the above method.
  • a sample for analyzing a sugar chain bound to the antibody was obtained from the culture medium after completion of the culture.
  • the sugar composition that binds to the obtained antibody it binds to the Fc region of the antibody in the antibody composition produced in the conditioned medium of 217, 241, 276, 305, 349, 399mOsm / kg osmotic pressure.
  • the glycoprotein composition having glycoside-linked complex-type sugar chains produced from animal cells is reduced to a glycoprotein.
  • a method for producing a glycoprotein composition characterized in that the ratio of the sugar chain in which fucose is not bound to the glycoside-linked sugar chain is changed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Oncology (AREA)
  • Hematology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

A process for producing a composition of a glycoprotein having a complex glycoside-linked sugar chain from an animal cell, which is characterized in that the content of a fucose-free complex glycoside-linked sugar chain in the total amount of a complex glycoside-linked sugar chain contained in the composition is varied by culturing the animal cell in a culture medium under controlling the osmotic pressure of the culture medium.

Description

明 細 書  Specification
糖タンパク質組成物の製造方法  Method for producing glycoprotein composition
技術分野  Technical field
[0001] 本発明は、糖タンパク質組成物の製造方法に関する。詳しくは、動物細胞を培養す る培地中の浸透圧を制御して培養することを特徴とする、動物細胞より生産されるグ リコシド結合糖鎖を有する糖タンパク質組成物の、該組成物中に含まれる全グリコシ ド結合糖鎖に対して、糖鎖にフコースが結合していない糖鎖の割合を変化させた糖 タンパク質組成物を製造する方法に関する。本発明はまた、動物細胞を培養する培 地中の浸透圧を制御することを特徴とする、動物細胞より生産されるグリコシド結合糖 鎖を有する糖タンパク質組成物の、該組成物中に含まれる全グリコシド結合糖鎖に 対して、糖鎖にフコースが結合していない糖鎖の割合を変化させる方法に関する。 背景技術  [0001] The present invention relates to a method for producing a glycoprotein composition. Specifically, a glycoprotein composition having glycoside-linked sugar chains produced from animal cells, characterized by controlling the osmotic pressure in a medium in which animal cells are cultured, is contained in the composition. The present invention relates to a method for producing a glycoprotein composition in which the ratio of sugar chains in which fucose is not bound to sugar chains is changed with respect to all the glycoside-bonded sugar chains. The present invention also includes a glycoprotein composition having a glycoside-linked sugar chain produced from an animal cell, characterized in that the osmotic pressure in a medium in which the animal cell is cultured is controlled. The present invention relates to a method for changing the ratio of sugar chains in which fucose is not bonded to sugar chains to the total glycoside-linked sugar chains. Background art
[0002] 動物細胞を用いた有用物質の生産研究や産業化を目的として広く行われてレ、る動 物細胞を用いた有用物質を生産するための培地の浸透圧は 210_ 500m〇smZk gである(非特許文献 1)。また、生産に多く用いられるチャイニーズノ、ムスター卵巣組 織由来細胞(以下、 CHO細胞と称す)、ハイプリドーマなどの動物細胞では、浸透圧 を 450 _600mOsm/kgにしたときに生産性が向上することが知られている(特許文 献 1、 2)。  [0002] The osmotic pressure of the medium for producing useful substances using animal cells is 210_500mOsmZkg, which is widely used for the purpose of production research and industrialization of useful substances using animal cells. Yes (Non-Patent Document 1). In addition, in animal cells such as Chineseno, Muster ovarian tissue-derived cells (hereinafter referred to as CHO cells), and hyperidoma, which are often used in production, productivity is improved when the osmotic pressure is increased to 450 _600 mOsm / kg. Are known (Patent Documents 1 and 2).
[0003] 糖タンパク質に結合している糖鎖の組成を制御する方法としては、培地中の糖組 成や糖濃度を変更することによって糖タンパク質に結合する糖鎖の種類を変更する 方法 (特許文献 3)、培地中の糖の比消費速度を変化させることによって糖鎖構造を 改変する方法 (特許文献 4)などが知られてレ、る。  [0003] As a method of controlling the composition of the sugar chain bound to the glycoprotein, a method of changing the type of sugar chain bound to the glycoprotein by changing the sugar composition or sugar concentration in the medium (patent) Document 3), a method of modifying the sugar chain structure by changing the specific consumption rate of sugar in the medium (Patent Document 4), etc. are known.
また、糖タンパク質に結合している糖鎖の組成を制御する方法としては、糖タンパク 質に結合する糖鎖として、免疫機能分子に結合する N-グリコシド結合糖鎖の還元末 端である N-ァセチルダルコサミンへのフコースの結合の有無により免疫機能分子の 活性を調節する方法 (特許文献 5)、 N-グリコシド結合複合型糖鎖を Fc領域に有する 抗体分子からなる組成物であって、該組成物中に含まれる Fc領域に結合する全 N- グリコシド結合複合型糖鎖のうち、糖鎖還元末端の N-ァセチルダルコサミンにフコー スが結合していない糖鎖の割合が 20%以上である抗体組成物を生産する、抗体分 子をコードする遺伝子を導入したチャイニーズノ、ムスター卵巣組織由来の CH〇細胞 を用いた抗体の製造方法(特許文献 6)などが知られている。また、ラットミエローマ細 胞系である YB2Z3.0Ag30細胞などを用いた ADCC活性の高い抗体の製造方法( 特許文献 7)などが知られてレ、る。 In addition, as a method for controlling the composition of the sugar chain bound to the glycoprotein, the N-glycoside-linked sugar chain that binds to the immune function molecule as the sugar chain that binds to the glycoprotein is N- A method of regulating the activity of an immune function molecule by the presence or absence of fucose binding to acetylyldarcosamine (Patent Document 5), a composition comprising an antibody molecule having an N-glycoside-linked complex type sugar chain in the Fc region, All N- binding to Fc region contained in the composition Encodes an antibody molecule that produces an antibody composition in which the percentage of sugar chains that do not have fucose bound to N-acetylyldarcosamine at the sugar chain reducing end of glycoside-linked complex sugar chains is 20% or more. For example, a method for producing an antibody using CHo cells derived from Chinese or muster ovary tissues into which a gene to be transferred has been known (Patent Document 6) is known. In addition, a method for producing an antibody having high ADCC activity using YB2Z3.0Ag30 cells, which are rat myeloma cell lines, is known (Patent Document 7).
特許文献 l :W096/39488  Patent Literature l: W096 / 39488
特許文献 2 : US4724206  Patent Document 2: US4724206
特許文献 3:特開平 6-292592  Patent Document 3: JP-A-62-292592
特許文献 4 :WO02/02793  Patent Document 4: WO02 / 02793
特許文献 5 :WO00/61739  Patent Document 5: WO00 / 61739
特許文献 6 :WO02/31140  Patent Document 6: WO02 / 31140
特許文献 7 :WO01/29246  Patent Document 7: WO01 / 29246
非特許文献 l : Biotechnol and Bioeng,62, 1 120-123(1999)  Non-patent literature l: Biotechnol and Bioeng, 62, 1 120-123 (1999)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 本発明の目的は、動物細胞を培養する培地中の浸透圧を制御して培養することを 特徴とする、動物細胞より生産されるグリコシド結合糖鎖を有する糖タンパク質組成 物の、該組成物中に含まれる全グリコシド結合糖鎖に対して、糖鎖にフコースが結合 してレ、なレ、糖鎖の割合を変化させた糖タンパク質組成物を製造する方法を提供する ことにある。 [0004] An object of the present invention is to provide a glycoprotein composition having a glycoside-linked sugar chain produced from an animal cell, characterized by controlling the osmotic pressure in a medium for culturing the animal cell. An object of the present invention is to provide a method for producing a glycoprotein composition in which fucose is bound to a sugar chain with respect to all glycoside-linked sugar chains contained in the composition, and the ratio of sugar chain and sugar chain is changed. .
課題を解決するための手段  Means for solving the problem
[0005] すなわち、本発明は、以下の(1)〜(: 17)に関する。 That is, the present invention relates to the following (1) to (: 17).
( 1 ) 動物細胞を培養する培地中の浸透圧を制御して培養することにより、動物細胞 より生産されるグリコシド結合糖鎖を有する糖タンパク質組成物において、糖タンパク 質のグリコシド結合糖鎖にフコースが結合していない糖鎖の割合を変化させることを 特徴とする、糖タンパク質組成物の製造方法。  (1) In a glycoprotein composition having glycoside-linked sugar chains produced from animal cells by controlling the osmotic pressure in a medium for culturing animal cells, fucose is added to the glycoside-linked sugar chains of the glycoprotein. A method for producing a glycoprotein composition, wherein the ratio of sugar chains to which no is bonded is changed.
(2) 動物細胞を培養する培地中の浸透圧を制御して培養することにより、動物細胞 より生産されるグリコシド結合糖鎖を有する糖タンパク質組成物において、糖タンパク 質のグリコシド結合糖鎖にフコースが結合していない糖鎖の割合を増加させることを 特徴とする、糖タンパク質組成物の製造方法。 (2) Animal cells are cultured by controlling the osmotic pressure in a medium for culturing animal cells. A glycoprotein composition having a glycoside-linked sugar chain produced more, wherein the ratio of the sugar chain in which fucose is not bound to the glycoside-linked sugar chain of the glycoprotein is increased. Method.
(3) 培地中の浸透圧が、 200〜400m〇sm/kgである、上記(1)または(2)記載の 方法。  (3) The method according to (1) or (2) above, wherein the osmotic pressure in the medium is 200 to 400 mOsm / kg.
(4) 動物細胞がラット細胞、マウス細胞およびハムスター細胞から選ばれる細胞で ある、上記(1)〜(3)のいずれか 1項に記載の方法。  (4) The method according to any one of (1) to (3) above, wherein the animal cell is a cell selected from rat cells, mouse cells, and hamster cells.
(5) ラット細胞がミエローマ細胞またはミエローマ細胞系の雑種細胞である、上記(4 )記載の方法。  (5) The method according to (4) above, wherein the rat cell is a myeloma cell or a hybrid cell of a myeloma cell line.
(6) ラット細胞力 SYB2/3HL.P2.G11.16Ag.20(ATCC CRL 1662、 ECACC No : 85110 501)細胞である、上記 (4)記載の方法。  (6) The method according to (4) above, which is a rat cell force SYB2 / 3HL.P2.G11.16Ag.20 (ATCC CRL 1662, ECACC No: 85110 501) cell.
(7) マウス細胞が NS0細胞または Sp2/0細胞から選ばれる細胞である、上記(4)記 載の方法。  (7) The method according to (4) above, wherein the mouse cell is a cell selected from NS0 cells or Sp2 / 0 cells.
(8) 動物細胞が、糖タンパク質をコードする DNAを含有する組換え体 DNAが導入さ れた細胞である、上記(1)〜(7)のレ、ずれか 1項に記載の方法。  (8) The method according to any one of (1) to (7) above, wherein the animal cell is a cell into which a recombinant DNA containing a DNA encoding a glycoprotein has been introduced.
(9) 糖タンパク質が抗体である、上記(1)〜(8)のいずれか 1項に記載の方法。 (9) The method according to any one of (1) to (8) above, wherein the glycoprotein is an antibody.
(10) 動物細胞を培養する培地中の浸透圧を制御して培養することにより、動物細 胞より生産されるグリコシド結合糖鎖を有する糖タンパク質組成物において、糖タンパ ク質のグリコシド結合糖鎖にフコースが結合していない糖鎖の割合を変化させる方法 (10) In a glycoprotein composition having a glycoside-linked sugar chain produced from animal cells by controlling the osmotic pressure in a medium for culturing animal cells, the glycoside-linked sugar chain of the glycoprotein is produced. To change the proportion of sugar chains that do not have fucose bonded to them
(11) 培地中の浸透圧が、 200〜400m〇smZkgである、上記(10)記載の方法。(11) The method according to (10) above, wherein the osmotic pressure in the medium is 200 to 400 mOsmZkg.
(12) 動物細胞がラット細胞、マウス細胞およびハムスター細胞から選ばれる細胞で ある、上記(10)または(11)記載の方法。 (12) The method according to (10) or (11) above, wherein the animal cell is a cell selected from rat cells, mouse cells and hamster cells.
(13) ラット細胞がミエローマ細胞またはミエローマ細胞系の雑種細胞である、上記( 12)記載の方法。  (13) The method according to (12) above, wherein the rat cell is a myeloma cell or a hybrid cell of a myeloma cell line.
(14) ラット細胞力 YB2/3HL.P2.G11.16Ag.20(ATCC CRL 1662、 ECACC No : 8511 0501)細胞である、上記(12)記載の方法。  (14) The method according to (12) above, which is a rat cell force YB2 / 3HL.P2.G11.16Ag.20 (ATCC CRL 1662, ECACC No: 8511 0501) cell.
(15) マウス細胞が NS0細胞または Sp2/0細胞から選ばれる細胞である、上記(11) 記載の方法。 (15) The above (11), wherein the mouse cell is a cell selected from NS0 cells or Sp2 / 0 cells. The method described.
(16) 動物細胞が、糖タンパク質をコードする DNAを含有する組換え体 DNAが導入 された細胞である、上記(10)〜(15)のいずれか 1項に記載の方法。  (16) The method according to any one of (10) to (15) above, wherein the animal cell is a cell into which a recombinant DNA containing a DNA encoding a glycoprotein has been introduced.
(17) 糖タンパク質が抗体である、上記(10)〜(: 16)のいずれ力 1項に記載の方法  (17) The method according to any one of (10) to (: 16) above, wherein the glycoprotein is an antibody.
発明の効果 The invention's effect
[0006] 動物細胞を培養する培地中の浸透圧を制御して培養することを特徴とする、動物 細胞より生産されるグリコシド結合糖鎖を有する糖タンパク質組成物の、該組成物中 に含まれる全グリコシド結合糖鎖に対して、糖鎖にフコースが結合してレ、なレ、糖鎖の 割合を変化させた糖タンパク質組成物を製造する方法を提供する。  [0006] A glycoprotein composition having a glycoside-linked sugar chain produced from an animal cell, characterized in that the osmotic pressure in a medium for culturing the animal cell is controlled and contained in the composition Provided is a method for producing a glycoprotein composition in which fucose is bonded to a sugar chain and the ratio of sugar chain and sugar chain is changed with respect to all glycoside-linked sugar chains.
図面の簡単な説明  Brief Description of Drawings
[0007] [図1]抗00キメラ抗体生産丫82/0細胞株61 _ 33 0/ ^£1^1 BP— 7325)を各  [0007] [FIG. 1] Each of anti-00 chimeric antibody producing 82/0 cell line 61_330 / ^ £ 1 ^ 1 BP— 7325)
3  Three
種浸透圧調整剤により調製された各種浸透圧の培地で培養を行い、培養培地中か ら得られた抗体組成物中において、抗体の Fc領域に結合する N-グリコシド結合複合 型糖鎖の還元末端の N-ァセチルダルコサミンにフコースが結合していない糖鎖の割 合を算出した結果を示した図である。縦軸には抗体組成物中に含まれる、 Fc領域に 結合する N-グリコシド結合複合型糖鎖の還元末端の N-ァセチルダノレコサミンにフコ ースが結合していない糖鎖の割合を、横軸には培養した浸透圧の値をそれぞれ示 す。  Cultivation in various osmotic pressure media prepared with a seed osmotic pressure regulator, and reduction of N-glycoside-linked complex sugar chains that bind to the Fc region of the antibody in the antibody composition obtained from the culture medium FIG. 5 is a graph showing the results of calculating the proportion of sugar chains in which fucose is not bound to the terminal N-acetylyldarcosamine. The vertical axis shows the ratio of the sugar chain in which the fucose is not bound to the N-acetylidanolosecosamine at the reducing end of the N-glycoside-bonded complex sugar chain that binds to the Fc region, contained in the antibody composition. The horizontal axis shows the value of the osmotic pressure cultured.
[図 2]抗 GDキメラ抗体生産 YB2/0細胞株 61— 33 γ (FERM BP— 7325)を各  [Fig.2] Production of anti-GD chimeric antibody YB2 / 0 cell line 61—33γ (FERM BP—7325)
3  Three
浸透圧培地でフエドバツチ培養を行い、培養培地中から得られた抗体組成物中に含 まれる、 Fc領域に結合する N-グリコシド結合複合型糖鎖の還元末端の N-ァセチルダ ルコサミンにフコースが結合していない糖鎖の割合を算出した結果を示した図である 。縦軸には抗体組成物中において、抗体の Fc領域に結合する N-グリコシド結合複合 型糖鎖の還元末端の N -ァセチルダルコサミンにフコースが結合していない糖鎖の割 合を、横軸には培養した浸透圧の値をそれぞれ示す。  Fucose binds to N-acetylcyldarcosamine at the reducing end of the N-glycoside-linked complex-type glycan that binds to the Fc region, which is contained in the antibody composition obtained from the culture medium after culturing Fuedbachig in an osmotic medium. FIG. 5 is a diagram showing the results of calculating the proportion of sugar chains that are not used. The vertical axis shows the percentage of sugar chains in the antibody composition in which fucose is not bound to N-acetylyldarcosamine at the reducing end of the N-glycoside-bound complex sugar chain that binds to the Fc region of the antibody. The axis shows the value of the osmotic pressure cultured.
[図 3]抗 GDキメラ抗体生産細胞株 61— 33 γ (FERM BP— 7325)を各浸透圧培  [Fig.3] Anti-GD chimera antibody-producing cell line 61—33γ (FERM BP—7355)
3  Three
地でパーフュージョン培養を行レ、、培養培地中から得られた抗体組成物中におレ、て 、抗体の Fc領域に結合する N -グリコシド結合複合型糖鎖の還元末端の N-ァセチル ダルコサミンにフコースが結合していない糖鎖の割合を算出した。縦軸には抗体組 成物中に含まれる、 Fc領域に結合する N -グリコシド結合複合型糖鎖の還元末端の N -ァセチルダルコサミンにフコースが結合していない糖鎖の割合を、横軸には培養し た浸透圧の値をそれぞれ示す。 Perform perfusion culture on the ground, in the antibody composition obtained from the culture medium. The ratio of the sugar chain in which fucose is not bound to N-acetyl darcosamine at the reducing end of the N-glycoside-linked complex sugar chain that binds to the Fc region of the antibody was calculated. The vertical axis shows the ratio of the sugar chain in which the fucose is not bound to the N-acetylyldarcosamine at the reducing end of the N-glycoside-bonded complex sugar chain that binds to the Fc region. The axis shows the osmotic pressure values cultured.
[図 4]抗 CCR4キメラ抗体生産 YB2/0株(FERM BP— 7054)を各浸透圧培地で 三角フラスコ培養を行い、培養培地中から得られた抗体組成物中において、抗体の Fc領域に結合する N-グリコシド結合複合型糖鎖の還元末端の N-ァセチルダルコサミ ンにフコースが結合していない糖鎖の割合を算出した。縦軸には抗体組成物中に含 まれる、 Fc領域に結合する N-グリコシド結合複合型糖鎖の還元末端の N-ァセチルダ ルコサミンにフコースが結合していない糖鎖の割合を、横軸には培養した浸透圧の 値をそれぞれ示す。  [Fig. 4] Anti-CCR4 chimeric antibody production YB2 / 0 strain (FERM BP-7054) was cultured in each osmotic medium in an Erlenmeyer flask and bound to the Fc region of the antibody in the antibody composition obtained from the culture medium. The ratio of the sugar chain in which fucose is not bound to the N-acetylyldarcosamine at the reducing end of the N-glycoside-bonded sugar chain was calculated. The vertical axis represents the ratio of the sugar chain in which fucose is not bound to N-acetyldylcosamine at the reducing end of the N-glycoside-bonded complex type sugar chain that binds to the Fc region. Indicates the value of the osmotic pressure cultured.
[図 5]抗 CCR4抗体生産 YB2/0株(FERM BP— 7054)を各浸透圧培地で 1Lリ アクター培養を行い、培養培地中から得られた抗体組成物中において、抗体の Fc領 域に結合する N-グリコシド結合複合型糖鎖の還元末端の N-ァセチルダルコサミンに フコースが結合していない糖鎖の割合を算出した。縦軸には抗体組成物中に含まれ る、 Fc領域に結合する N-グリコシド結合複合型糖鎖の還元末端の N-ァセチルダルコ サミンにフコースが結合していない糖鎖の割合を、横軸には培養した浸透圧の値を それぞれ示す。  [Fig. 5] Anti-CCR4 antibody producing strain YB2 / 0 (FERM BP-7054) was cultured in each osmotic medium for 1 L, and in the antibody composition obtained from the culture medium, the antibody was in the Fc region. The ratio of the sugar chain in which fucose is not bound to N-acetylyldarcosamine at the reducing end of the N-glycoside-bonded complex sugar chain to be bound was calculated. The vertical axis represents the proportion of sugar chains in which fucose is not bound to N-acetylcylcosamine at the reducing end of the N-glycoside-bonded complex sugar chain that binds to the Fc region. Indicates the value of the osmotic pressure cultured.
[図 6]抗 GDキメラ抗体を生産する形質転換 SP2/0細胞クローン KM— 871 (FERM  [Fig. 6] Transformed SP2 / 0 cell clone KM—871 (FERM
3  Three
BP— 3512)を各浸透圧培地でバッチ培養を行レ、、培養培地中から得られた抗体組 成物中において、抗体の Fc領域に結合する N -グリコシド結合複合型糖鎖の還元末 端の N-ァセチルダルコサミンにフコースが結合していない糖鎖の割合を算出した。縦 軸には抗体組成物中に含まれる、 Fc領域に結合する N-グリコシド結合複合型糖鎖の 還元末端の N-ァセチルダルコサミンにフコースが結合してレ、なレ、糖鎖の割合を、横 軸には培養した浸透圧の値をそれぞれ示す。  BP-3512) was cultivated in batch in each osmotic medium, and in the antibody composition obtained from the culture medium, the reducing end of the N-glycoside-linked complex sugar chain that binds to the Fc region of the antibody. The proportion of sugar chains in which fucose is not bound to N-acetylyldarcosamine was calculated. The vertical axis shows the ratio of fucose bound to N-acetylcylcosamine at the reducing end of the N-glycoside-bonded complex-type sugar chain that binds to the Fc region contained in the antibody composition. The horizontal axis shows the osmotic pressure values cultured.
[図 7]抗 CCR4抗体生産 NS0株(FERM BP— 7964)を各浸透圧培地でバッチ培 養を行い、培養培地中から得られた抗体組成物中において、抗体の Fc領域に結合 する N-グリコシド結合複合型糖鎖の還元末端の N-ァセチルダノレコサミンにフコース が結合していない糖鎖の割合を算出した。縦軸には抗体組成物中に含まれる、 Fc領 域に結合する N -グリコシド結合複合型糖鎖の還元末端の N -ァセチルダルコサミンに フコースが結合していない糖鎖の割合を、横軸には培養した浸透圧の値をそれぞれ 示す。 [Fig. 7] Batch production of anti-CCR4 antibody producing NS0 strain (FERM BP-7964) in each osmotic medium, and binding to the Fc region of the antibody in the antibody composition obtained from the culture medium The ratio of the sugar chain in which fucose is not bound to the N-acetylidanorecosamine at the reducing end of the N-glycoside-linked complex sugar chain was calculated. The vertical axis shows the ratio of the sugar chain that is not bound to fucose to N-acetylcylcosamine at the reducing end of the N-glycoside-bonded complex-type sugar chain that binds to the Fc region in the antibody composition. The axis shows the value of the osmotic pressure cultured.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0008] 本発明において、浸透圧(Osm)は、 In the present invention, the osmotic pressure (Osm) is
(式 1)  (Formula 1)
〇sm=RTiC  ○ sm = RTiC
(単位体積中の溶質のモル数: C、 R:気体定数、 T:絶対温度、 i :ファント'ホッフの 係数)で表すことができる。  (The number of moles of solute in a unit volume: C, R: gas constant, T: absolute temperature, i: Fant's Hoff coefficient).
[0009] 本発明における培地中の浸透圧を制御する方法としては、培地中での浸透圧を調 整する物質 (以下、浸透圧調整剤と称する)の濃度を変化させる方法、培地と異なる 浸透圧の溶液を培地へ添加する方法、浸透圧調整剤を溶解した溶液を培地へ添加 する方法、培地中で生産される物質により培地のモル濃度または電解度を変化させ て、浸透圧を制御する方法などがあげられる。  [0009] The method for controlling the osmotic pressure in the medium in the present invention includes a method of changing the concentration of a substance that adjusts the osmotic pressure in the medium (hereinafter referred to as an osmotic pressure regulator), and an osmotic pressure different from that of the medium. To control the osmotic pressure by changing the molarity or electrolysis of the medium depending on the substance produced in the medium. Methods.
[0010] 培地中での浸透圧調整剤の濃度を変化させる方法としては、浸透圧調整剤を培地 に添加する、または培地中の浸透圧調整剤を除去することにより、培地中の浸透圧 を変化させる方法があげられる。  [0010] As a method for changing the concentration of the osmotic pressure adjusting agent in the medium, the osmotic pressure adjusting agent is added to the medium, or the osmotic pressure adjusting agent in the medium is removed, thereby reducing the osmotic pressure in the medium. There are ways to change it.
浸透圧調整剤としては、培地の浸透圧に関与する物質、すなわちモル濃度または 電解度を変化させる物質であればいかなるものでもよいが、具体的には、塩化ナトリ ゥム(NaCl)、塩化カリウム(KC1)、塩化リチウム(LiCl)などの塩類、グルコース、ガラ クトース、マンノース、フコース、フノレクトース、シユークロース、マンニトーノレ、キシロー ス、トレハロース、ソルビトール、グリセロールなどの糖類、各種アミノ酸、ビタミン、大 豆、小麦、米、コーンなどの植物由来の加水分解物、ゥシタンパク、ミルクタンパク加 水分解物などの動物由来加水分解物、イーストイクストラタトなどの酵母抽出物、水酸 化ナトリウム(NaOH)、炭酸ナトリウム(Na CO )、炭酸水素ナトリウム(NaHCO )な  The osmotic pressure adjusting agent may be any substance that is involved in the osmotic pressure of the medium, that is, a substance that changes the molar concentration or the electrolysis degree. Specific examples include sodium chloride (NaCl), potassium chloride. (KC1), salts such as lithium chloride (LiCl), glucose, galactose, mannose, fucose, funolectose, sucrose, mannitol, sugars such as xylose, trehalose, sorbitol, glycerol, various amino acids, vitamins, soybeans, wheat, Hydrolyzate from plants such as rice and corn, hydrolyzate from animals such as ushi protein and milk protein hydrolyzate, yeast extract such as yeast ixstrata, sodium hydroxide (NaOH), sodium carbonate (Na CO 2), sodium bicarbonate (NaHCO 3)
2 3 3 ど培地の pH調整に用いるアルカリ類、コェンザィム Q 、クレアチン、フイコール、酪 酸などの培地添加物などがあげられる力 好ましくは塩化ナトリウムがあげられる。 2 3 3 Alkaline, Coenzyme Q, Creatine, Ficoll, Dairy Power capable of adding a medium additive such as an acid Preferably sodium chloride is used.
[0011] 培地と異なる浸透圧の溶液を培地へ添加する方法としては、培地より浸透圧の高 レ、溶液または浸透圧の低レ、溶液を添加する方法があげられる。  [0011] Examples of the method of adding a solution having an osmotic pressure different from that of the medium to the medium include a method of adding a solution having a higher osmotic pressure, a solution or a lower osmotic pressure, and a solution.
浸透圧の高い溶液としては、動物細胞に使用可能な培地に塩ィ匕ナトリウムなどの塩 を 1または複数添加した溶液、高濃度のアミノ酸またはビタミンなどにより構成された 溶液、動物細胞に使用可能な培地に塩、アミノ酸、ビタミンなどを加えた溶液などが あげられる。  Solutions with high osmotic pressure include solutions that contain one or more salts such as sodium chloride in a medium that can be used for animal cells, solutions composed of high-concentration amino acids or vitamins, and animal cells. Examples include solutions in which salt, amino acids, vitamins, etc. are added to the medium.
[0012] 浸透圧の低い溶液としては、動物細胞に使用可能な培地から塩ィ匕ナトリウム等の塩 を 1または複数除去した溶液、アミノ酸、ビタミンなどの最小限の培地成分により構成 された溶液、動物細胞に使用可能な培地を水で希釈した溶液、水などがあげられる 動物細胞に使用可能な培地としては、 RPMI1640培地、 IMDM培地、 DMEM培 地などがあげられる。  [0012] The solution having a low osmotic pressure includes a solution obtained by removing one or more salts such as sodium chloride and sodium from a medium usable for animal cells, a solution composed of minimum medium components such as amino acids and vitamins, Examples of media that can be used for animal cells include RPMI1640 medium, IMDM medium, and DMEM medium.
[0013] 培地中で生産される物質としては、動物細胞が生産する物質、培地成分の分解に より生成される物質などがあげられる。  [0013] Substances produced in the medium include substances produced by animal cells, substances produced by decomposition of medium components, and the like.
動物細胞が生産する物質としては、乳酸、アンモニアなどがあげられる。また、培地 成分の分解により生成される物質としては、アンモニアなどがあげられる。  Examples of substances produced by animal cells include lactic acid and ammonia. In addition, examples of the substance produced by the decomposition of the medium components include ammonia.
本発明において、浸透圧を制御する時期としては、動物細胞が糖タンパク質組成 物を生産している間であれば、いずれの時期でもよい。  In the present invention, the time for controlling the osmotic pressure may be any time as long as animal cells are producing the glycoprotein composition.
[0014] 培地中の浸透圧を制御して培養する方法の具体例としては、前述の浸透圧調整剤 または浸透圧調整剤を含有する溶液を培養中に適宜添加する方法などがあげられ る。添加方法としては、培地の浸透圧をモニタリングし、培地の浸透圧が一定になる ように随時浸透圧調整剤または浸透圧調整剤を含有する溶液を添加する方法、一 定時間間隔毎に浸透圧調整剤または浸透圧調整剤を含有する溶液を添加する方法 、細胞を播種する前に浸透圧調整剤または浸透圧調整剤を含有する溶液を添加す る方法などがあげられる。培養期間中の浸透圧変動が小さい培養方法を用いる場合 には、細胞を播種する前にのみ浸透圧を調整する方法を用いてもよい。  [0014] Specific examples of the method for culturing while controlling the osmotic pressure in the medium include a method of appropriately adding the aforementioned osmotic pressure adjusting agent or a solution containing the osmotic pressure adjusting agent to the culture. As the addition method, the osmotic pressure of the medium is monitored, and an osmotic pressure adjusting agent or a solution containing the osmotic pressure adjusting agent is added as needed so that the osmotic pressure of the medium becomes constant. Examples thereof include a method of adding a regulator or a solution containing an osmotic pressure regulator, and a method of adding an osmotic pressure regulator or a solution containing an osmotic pressure regulator before seeding cells. When using a culture method with small fluctuations in osmotic pressure during the culture period, a method of adjusting the osmotic pressure only before seeding cells may be used.
[0015] 培地中の浸透圧の測定は、次のように行うことができる。 本発明におレ、て、培養期間中の浸透圧変動が小さレ、培養方法を用いた場合は、 培養初日または培養最終日の培地中の浸透圧で測定すればよいが、培養中に浸透 圧調整剤または浸透圧調整剤を含有する溶液を培地に添加する培養方法を用いた 場合は、培養中に浸透圧が変動するため、培養期間中、以下のように一定期間毎( 以下、単位区間と称す)に浸透圧を測定することが好ましい。単位時間あたりに生産 される糖タンパク質組成物の増減量と、培地中の浸透圧の増減値とは相関するので 、以下の計算式 2により浸透圧を算出することができる。 [0015] The osmotic pressure in the medium can be measured as follows. In the present invention, when the osmotic pressure fluctuation during the culture period is small and the culture method is used, it may be measured by the osmotic pressure in the medium on the first culture day or the last culture day. When a culture method in which a solution containing a pressure regulator or an osmotic pressure regulator is added to the medium is used, the osmotic pressure fluctuates during the culture. It is preferable to measure the osmotic pressure in the section). Since the increase / decrease amount of the glycoprotein composition produced per unit time correlates with the increase / decrease value of the osmotic pressure in the medium, the osmotic pressure can be calculated by the following formula 2.
(式 2) (Formula 2)
浸透圧 =∑ (単位区間の浸透圧) X (単位区間の糖タンパク質/糖タンパク質総生 産量) Osmotic pressure = ∑ (osmotic pressure in the unit interval) X (glycoprotein / total production of glycoprotein in the unit interval)
本発明において、動物細胞より生産されるグリコシド結合糖鎖を有する糖タンパク 質組成物中、グリコシド結合複合型糖鎖にフコースが結合していない糖鎖を有する 糖タンパク質の割合を増加させるには、浸透圧の値を、 200〜400m〇sm/kg、好ま しくは 240〜360m〇sm/kg、より好ましくは 240〜280m〇sm/kgに制御する。  In the present invention, in the glycoprotein composition having a glycoside-linked sugar chain produced from an animal cell, to increase the proportion of glycoprotein having a sugar chain in which fucose is not bound to a glycoside-linked complex type sugar chain, The osmotic pressure value is controlled to 200 to 400 mOsm / kg, preferably 240 to 360 mOsm / kg, more preferably 240 to 280 mOsm / kg.
本発明における動物細胞としては、いかなる動物細胞でもよいが、ラット細胞、マウ ス細胞、ヒト細胞、サル細胞、ィヌ細胞、ハムスター細胞などの動物細胞、または、こ れらの動物細胞の雑種細胞系などがあげられる。  The animal cell in the present invention may be any animal cell, but animal cells such as rat cells, mouse cells, human cells, monkey cells, inu cells, hamster cells, or hybrid cells of these animal cells. System.
動物細胞の具体的な例としては、チャイニーズノヽムスター卵巣組織由来細胞(CH 〇細胞)、ラットミエローマ細胞株 YB2Z0細胞、マウスミエローマ細胞株 NS0細胞、 マウスミエローマ細胞株 SP2/0_Agl4細胞、シリアンハムスター腎臓組織由来 BHK 細胞(ATCC CCL 10)、 MDCK (ATCC CCL 34)、 PER_C6™、ハイブリド 一マ細胞、ヒト白血病細胞株ナマルバ細胞、胚性幹細胞、受精卵細胞などがあげら れる力 好ましくはラット細胞、マウス細胞があげられる。ラット細胞としては、例えば Y 3Agl.2.3. (ATCC CRL— 1631)、 YO (ECACC No: 85110501) , YB2/0 (AT CC CRL 1662)等、マウス細胞としては、例えば NSO (ATCC CRL— 1827)、 Sp 2/0 (ATCC CRL—1581)等、ミエローマ細胞またはミエローマ細胞系の雑種細 胞があげられる。また、これらの細胞に変異処理を施したり、ヒト以外の哺乳動物に抗 原を免疫して取得された B細胞と細胞融合することによって得られる、これらの細胞と 同等の性質を有する細胞も、本発明における動物細胞に含まれる。 Specific examples of animal cells include Chinese nomstar ovarian tissue-derived cells (CH cells), rat myeloma cell line YB2Z0 cell, mouse myeloma cell line NS0 cell, mouse myeloma cell line SP2 / 0_Agl4 cell, Syrian hamster kidney tissue Derived from BHK cells (ATCC CCL 10), MDCK (ATCC CCL 34), PER_C6 ™, hybridoma cells, human leukemia cell line Namalva cells, embryonic stem cells, fertilized egg cells, etc. Preferably, rat cells, mouse cells Can be given. Examples of rat cells include Y 3Agl.2.3. (ATCC CRL— 1631), YO (ECACC No: 85110501) and YB2 / 0 (AT CC CRL 1662). Examples of mouse cells include NSO (ATCC CRL— 1827). , Sp 2/0 (ATCC CRL-1581) and the like, and myeloma cells or myeloma cell line hybrid cells. In addition, these cells obtained by subjecting these cells to mutation treatment or cell fusion with B cells obtained by immunizing a non-human mammal with an antigen Cells having equivalent properties are also included in the animal cells in the present invention.
[0017] 本発明において糖タンパク質としては、好ましくは真核細胞由来糖タンパク質、さら に好ましくはほ乳動物細胞由来糖タンパク質があげられる。また、融合糖タンパク質 等、人工的に改変された糖タンパク質でもよいし、その部分断片でもよい。 [0017] In the present invention, the glycoprotein is preferably a eukaryotic cell-derived glycoprotein, more preferably a mammalian cell-derived glycoprotein. Further, it may be an artificially modified glycoprotein such as a fused glycoprotein or a partial fragment thereof.
糖タンパク質としては、抗体、エリスロポイエチン(EPO) [J. Biol. Chem., 252, 5558 (1977)]、トロンボポイエチン(TPO) [Nature, 369, 533 (1994)]組織型プラスミノーグ ンァクチベータ、プロゥロキナーゼ、トロンボモジュリン、アンチトロンビン III、プロティ ンじ、血液凝固因子 VII、血液凝固因子 VIII、血液凝固因子 IX、血液凝固因子 X、血 液凝固因子 XI、血液凝固因子 XII、プロトロンビン複合体、フイブリノゲン、アルブミン 、性腺刺激ホルモン、甲状腺刺激ホルモン、上皮増殖因子 (EGF)、肝細胞増殖 因子 (HGF)、ケラチノサイト増殖因子、ァクチビン、骨形成因子、顆粒球コロニー刺 激因子(G— CSF) [J. Biol. Chem., 258, 9017(1983)]、マクロファージコロニー刺激 因子(M— CSF) [J. Exp. Med., 173, 269 (1992)]などの幹細胞因子(SCF)、顆粒球 -マクロファージコロニー刺激因子(GM— CSF) [J.Biol. Chem., 252, 1998 (1977)]、 顆粒球-マクロファージコロニー刺激因子(GM— CSF) [J. Biol. Chem., 252,1998 (1 977)]、インターフェロン α、インターフェロン β、インターフェロン γ、インターロイキン — 2 (IL— 2) [Science, 193, 1007(1976)]、インターロイキン 6、インターロイキン 10、ィ ンターロイキン 11、インターロイキン一12 (IL— 12) [J. Leuc. Biol., 55, 280 (1994)]、 可溶性インターロイキン 4受容体、腫瘍壊死因子ひ、 Dnasel、ガラクトシダーゼ、 ひグ ルコシダーゼ、ダルコセレブロシダーゼ、ヘモグロビン、トランスフェリン等があげられ 、およびそれらの糖タンパク質の部分断片があげられる。  Glycoproteins include antibodies, erythropoietin (EPO) [J. Biol. Chem., 252, 5558 (1977)], thrombopoietin (TPO) [Nature, 369, 533 (1994)] tissue type plasminogen activator. , Prolokinase, thrombomodulin, antithrombin III, protein, blood coagulation factor VII, blood coagulation factor VIII, blood coagulation factor IX, blood coagulation factor X, blood coagulation factor XI, blood coagulation factor XII, prothrombin complex, fibrinogen, Albumin, gonadotropin, thyroid stimulating hormone, epidermal growth factor (EGF), hepatocyte growth factor (HGF), keratinocyte growth factor, activin, osteogenic factor, granulocyte colony stimulating factor (G—CSF) [J. Biol Chem., 258, 9017 (1983)], stem cell factor (SCF) such as macrophage colony stimulating factor (M—CSF) [J. Exp. Med., 173, 269 (1992)], granulocyte-macrophage colony -Stimulating factor (GM-CSF) [J.Biol. Chem., 252, 1998 (1977)], granulocyte-macrophage colony stimulating factor (GM-CSF) [J. Biol. Chem., 252,1998 (1 977) )], Interferon α, Interferon β, Interferon γ, Interleukin — 2 (IL-2) [Science, 193, 1007 (1976)], Interleukin 6, Interleukin 10, Interleukin 11, Interleukin 1-12 ( IL—12) [J. Leuc. Biol., 55, 280 (1994)], soluble interleukin 4 receptor, tumor necrosis factor, Dnasel, galactosidase, glycosidase, darcocerebrosidase, hemoglobin, transferrin, etc. And partial fragments of these glycoproteins.
[0018] 糖タンパク質に結合する糖鎖は、タンパク質部分との結合様式により、ァスパラギン と結合する糖鎖 (N -グリコシド結合糖鎖)とセリン、スレオニンなどと結合する糖鎖(0- グリコシド結合糖鎖)の 2種類に大別される。これらを総称してグリコシド結合糖鎖とレ、 う。 [0018] The sugar chain that binds to the glycoprotein is composed of a sugar chain that binds to asparagine (N-glycoside-linked sugar chain) and a sugar chain that binds to serine, threonine, etc. (0-glycoside-linked sugar). It is roughly divided into two types. These are collectively referred to as glycoside-linked sugar chains.
N-グリコシド結合糖鎖は、様々な構造を有しているが [生物化学実験法 23—糖タン パク質糖鎖研究法 (学会出版センター)高橋禮子編(1989年) ]、レ、ずれの場合も以 下の構造式 (I)に示す共通のコア構造を包含する。 [0019] [化 1] N-glycoside-linked sugar chains have various structures [Biochemical Experimental Method 23-Glucose Protein Glycan Research Method (Academic Publishing Center) Atsuko Takahashi (1989)], In some cases, a common core structure represented by the following structural formula (I) is included. [0019] [Chemical 1]
4GlcNAc
Figure imgf000011_0001
構造式 (I)
4GlcNAc
Figure imgf000011_0001
Structural formula (I)
[0020] 構造式 (I)におレ、て、ァスパラギンと結合する糖鎖の末端が還元末端、反対側が非 ¾元末端とレヽつ。  [0020] In Structural Formula (I), the end of the sugar chain that binds to asparagine is at the reducing end, and the opposite side is at the non-end.
N-グリコシド結合糖鎖としては、コア構造の非還元末端にマンノースのみが結合す るハイマンノース型糖鎖、コア構造の非還元末端側にガラクトース— N-ァセチルダノレ コサミン(以下、 Gaト GlcNAcと表記する)の枝を並行して 1ないしは複数本有し、更に Gal-GlcNAc  The N-glycoside-linked sugar chain is a high mannose-type sugar chain in which only mannose is bonded to the non-reducing end of the core structure, and galactose—N-acetylidanolecosamine (hereinafter referred to as Gato GlcNAc) on the non-reducing end of the core structure. )) In parallel with one or more branches, and Gal-GlcNAc
の非還元末端側にシアル酸、バイセクティングの N-ァセチルダノレコサミンなどの構造 を有するコンプレックス型 (複合型とも称す)糖鎖、コア構造の非還元末端側にハイマ ンノース型とコンプレックス型の両方の枝を持つハイブリッド型糖鎖などがあげられる  A complex type (also called complex type) sugar chain with a structure such as sialic acid or bisecting N-acetylidanorecosamine on the non-reducing end side, and hymannose type and complex type on the non-reducing end side of the core structure Hybrid sugar chains with both branches
[0021] 0-グリコシド結合糖鎖としては、 N-ァセチルガラタトサミンの還元末端がセリンまた はスレオニンの水酸基と α結合し、更にガラクトース、 Ν-ァセチルダルコサミン、 Ν-ァ セチルガラタトサミン、フコース、あるいはシアル酸が結合した糖鎖、キシロースがセリ ンの水酸基と β結合した糖鎖、ガラクトースがハイドロキシリジンの水酸基と β結合し た糖鎖などがあげられる。 [0021] As the 0-glycoside-linked sugar chain, the reducing end of N-acetylgalatatosamine is α-bonded to the hydroxyl group of serine or threonine, and further galactose, Ν-acetyldarcosamine, Ν-acetylgalatato Examples include sugar chains to which samine, fucose, or sialic acid is bonded, sugar chains in which xylose is β-bonded to a hydroxyl group of selenium, and sugar chains in which galactose is β-bonded to a hydroxyl group of hydroxylysine.
[0022] キシロースがセリンの水酸基と β結合した糖鎖は、通常、当該キシロースの 4位に複 数の糖が結合し、結合した糖の先に 2糖からなる直鎖状の多糖が結合している。この ような糖鎖構造を有する物質としては軟骨プロテオダリカン等があげられる。ガラタト ースがハイドロキシリジンの水酸基と β結合した糖鎖構造を有する物質としては、コラ 一ゲン等があげられる。  [0022] In sugar chains in which xylose is β-bonded to the hydroxyl group of serine, usually a plurality of sugars are bonded to the 4-position of the xylose, and a linear polysaccharide consisting of disaccharides is bonded to the end of the bonded sugar. ing. Examples of the substance having such a sugar chain structure include cartilage proteodalycan. Examples of the substance having a sugar chain structure in which galactose is β-bonded to the hydroxyl group of hydroxylysine include collagen.
[0023] 糖タンパク質組成物とは、 Ν-グリコシド結合糖鎖または 0-グリコシド結合糖鎖を有 する糖タンパク質分子からなる組成物をレ、う。糖タンパク質に結合する糖鎖は多数存 在し、その糖鎖構造は多様性であるために、糖タンパク質の糖鎖には多数の糖鎖の 組み合わせが存在することになる。したがって、本発明における糖タンパク質組成物 としては、単一の糖鎖構造が結合された糖タンパク質分子から構成される組成物、複 数の異なる糖鎖構造が結合された糖タンパク質分子から構成される組成物などがあ げられる。 [0023] The glycoprotein composition refers to a composition comprising glycoprotein molecules having Ν-glycoside-linked sugar chains or 0-glycoside-linked sugar chains. There are many sugar chains that bind to glycoproteins Since the sugar chain structure is diverse, there are many combinations of sugar chains in the sugar chains of glycoproteins. Accordingly, the glycoprotein composition in the present invention includes a composition composed of glycoprotein molecules bound to a single sugar chain structure, and a glycoprotein molecule bound to a plurality of different sugar chain structures. Such as a composition.
[0024] グリコシド結合糖鎖が結合された糖タンパク質分子からなる組成物中に含まれる、 グリコシド結合糖鎖にフコースが結合してレ、なレ、糖鎖の割合は、糖タンパク質分子か らヒドラジン分解や酵素消化などの公知の方法 [生物化学実験法 23—糖タンパク質 糖鎖研究法 (学会出版センター)高橋禮子編(1989) ]を用い、糖鎖を遊離させ、遊離 させた糖鎖を蛍光標識又は同位元素標識し、標識した糖鎖をクロマトグラフィー法に て分離することによって決定することができる。また、遊離させた糖鎖を HPAED-PAD 法 [ジャーナル'ォブ'リキッド 'クロマトグラフィー(J.Liq. Chromatogr.) , 6, 1577(1983) ]により分析し、決定することができる。  [0024] The composition of glycoprotein molecules to which glycoside-linked sugar chains are bound is contained in a composition comprising fucose bound to a glycoside-linked sugar chain. Using known methods such as degradation and enzymatic digestion [Biochemical Experimental Method 23-Glycoprotein Glycan Research Method (Academic Publishing Center) Takahashi Eiko (1989)], the sugar chain is released and the released sugar chain is fluorescent. It can be determined by labeling or isotope labeling and separating the labeled sugar chain by a chromatographic method. Moreover, the released sugar chain can be analyzed and determined by the HPAED-PAD method [Journal 'Ob' Liquid 'Chromatography (J. Liq. Chromatogr.), 6, 1577 (1983)].
[0025] 本発明において、グリコシド結合糖鎖にフコースが結合していない糖鎖としては、例 えば N-グリコシド結合糖鎖の N-ァセチルダルコサミンの 6位にフコースの 1位が α結 合していない Ν-グリコシド結合糖鎖があげられる。  [0025] In the present invention, as a sugar chain in which fucose is not bonded to a glycoside-linked sugar chain, for example, the 1-position of fucose is α-bonded to the 6-position of N-acetylcylcosamine of the N-glycoside-linked sugar chain. Ν-glycoside-linked sugar chains are not included.
上記にあげられた糖タンパク質中、抗体組成物とは、 Ν-グリコシド結合糖鎖を Fc領 域に有する抗体分子からなる組成物をレ、う。  Among the glycoproteins listed above, the antibody composition refers to a composition comprising antibody molecules having a Ν-glycoside-linked sugar chain in the Fc region.
[0026] 抗体は、重鎖、軽鎖の 2種類のポリペプチド鎖がそれぞれ 2分子ずつ会合した 4量 体である。重鎖の N末端側の約 4分の 1と軽鎖の N末端側の約 2分の 1 (それぞれ 100余 アミノ酸)は可変領域と呼ばれ、多様性に富み、抗原との結合に直接関与する。可変 領域以外の部分の大半は定常領域と呼ばれる。抗体分子は定常領域の相同性によ り IgG、 IgM、 IgA、 IgD、 IgEの各クラスに分類される。  [0026] An antibody is a tetramer in which two molecules of two types of polypeptide chains, a heavy chain and a light chain, are associated with each other. About one-quarter of the N-terminal side of the heavy chain and about one-half of the N-terminal side of the light chain (each about 100 amino acids) are called variable regions and are diverse and directly involved in antigen binding To do. Most of the parts other than the variable region are called constant regions. Antibody molecules are classified into IgG, IgM, IgA, IgD, and IgE classes based on the homology of the constant region.
[0027] また IgGクラスは定常領域の相同性により、さらに IgGl〜IgG4のサブクラスに分類さ れる。  [0027] The IgG class is further classified into IgGl to IgG4 subclasses based on the homology of the constant region.
重鎖は N末端側より VH、 CH1、 CH2、 CH3の 4つのィムノグロブリンドメインに分かれ 、 CH1と CH2の間にはヒンジ領域と呼ばれる可動性の高いペプチド領域があり、 CH1 と CH2とが区切られる。ヒンジ領域以降の CH2と CH3からなる構造単位は Fc領域と呼 ばれ、 N-グリコシド結合糖鎖が結合している。また、この領域は、 Fcレセプター、補体 などが結合する領域である(免疫学イラストレイテッド原書第 5版、 2000年 2月 10日発 行、南江堂版、抗体工学入門、 1994年 1月 25日初版、地人書館)。 The heavy chain is divided into four immunoglobulin domains, VH, CH1, CH2, and CH3, from the N-terminal side. Between CH1 and CH2, there is a highly flexible peptide region called a hinge region, and CH1 and CH2 are separated. It is done. The structural unit consisting of CH2 and CH3 after the hinge region is called the Fc region. N-glycoside-linked sugar chains are attached. This region also binds Fc receptors, complements, etc. (Immunology Illustrated Original 5th Edition, published February 10, 2000, Nanedo Edition, Introduction to Antibody Engineering, January 1994 25 First edition, Jinjinshokan).
[0028] 抗体分子の Fc領域には、 N-グリコシド結合糖鎖が 1力所ずつ結合する領域を有し ているので、抗体 1分子あたり 2本の糖鎖が結合している。抗体分子に結合する N -グ ルコシド結合糖鎖は様々な構造を有してレ、るが、レ、ずれの糖鎖構造も前記構造式 (I )で示されるコア構造を包含する。抗体に結合する 2本の N-ダルコシド結合糖鎖には 多数の糖鎖の組み合わせが存在することになる。したがって、本発明における抗体 組成物としては、本発明の効果が得られる範囲であれば、単一の糖鎖構造を有する 抗体分子から構成される組成物、複数の異なる糖鎖構造を有する抗体分子から構成 される組成物などがあげられる。  [0028] Since the Fc region of an antibody molecule has a region where N-glycoside-linked sugar chains are bound one by one, two sugar chains are bound per antibody molecule. N-glycoside-linked sugar chains that bind to antibody molecules have various structures, and the sugar structures of the sugar chains include those of the core structure represented by the structural formula (I). There are many combinations of sugar chains in the two N-Dalcoside-linked sugar chains that bind to the antibody. Therefore, as an antibody composition in the present invention, as long as the effects of the present invention can be obtained, a composition composed of an antibody molecule having a single sugar chain structure, an antibody molecule having a plurality of different sugar chain structures And the like, and the like.
[0029] N-ァセチルダルコサミンにフコースが結合していない糖鎖としては、該フコースの 1 位が N-グリコシド結合糖鎖還元末端の N-ァセチルダルコサミンの 6位に α結合して いない Ν-グリコシド結合糖鎖があげられ、好ましくは該フコースの 1位が Ν-グリコシド 結合糖鎖還元末端の Ν-ァセチルダルコサミンの 6位に α結合していない Ν-グリコシ ド結合複合型糖鎖があげられる。  [0029] As the sugar chain in which fucose is not bonded to N-acetylyldarcosamine, the 1-position of the fucose is α-bonded to the 6-position of N-glycidyl-linked sugar chain reducing terminal N-acetylyldarcosamine. Ν-glycoside-linked sugar chain, preferably 1-position of the fucose is not α-bonded to the 6-position of ァ -glycylside glycosamine at the reducing end of Ν-glycoside-bonded sugar chain Examples include sugar chains.
[0030] ADCC活性とは、生体内で、腫瘍細胞等の細胞表面抗原などに結合した抗体が、 抗体 Fc領域とエフヱクタ一細胞表面上に存在する Fcレセプターとの結合を介してェ フエクタ一細胞を活性化し、腫瘍細胞等を傷害する活性をいう [モノクローナル 'アン ティボディズ:プリンシプノレズ'アンド ·アプリケーションズ (MonoclonalAntibodies: Princ iples and Applications), Wiley— Liss,In , Capter 2.1 (1995)]。エフェクター細胞として は、キラー細胞、ナチュラルキラー細胞、活性化されたマクロファージ等があげられる  [0030] ADCC activity refers to the fact that an antibody bound to a cell surface antigen such as a tumor cell in a living body is bound to an Fc region by binding an antibody Fc region to the Fc receptor present on the effector cell surface. Refers to the activity of activating the tumor cells and damaging tumor cells etc. [Monoclonal Antibodies: Principles and Applications, Wiley—Liss, In, Capter 2.1 (1995)]. Effector cells include killer cells, natural killer cells, activated macrophages, etc.
[0031] 抗体としては、レ、かなる抗原結合性を有する抗体でもよいが、腫瘍関連抗原に結合 する抗体、アレルギーあるいは炎症に関連する抗原に結合する抗体、循環器疾患に 関連する抗原に結合する抗体、自己免疫疾患に関連する抗原に結合する抗体、ま たはウィルスあるいは細菌感染に関連する抗原に結合する抗体であることが好ましく 、抗体のクラスは IgGが好ましい。 [0032] 腫瘍関連抗原に結合する抗体としては、抗 GD2抗体 (Anticancer Res., 13, 331-33 6, 1993)、抗 GD3抗体(Cancer Immunol. Immunother. , 36,260-266, 1993)、抗 GM 2抗体(Cancer Res., 54, 1511-1516, 1994)、抗 HER2抗体(Proc. Natl.Acad. Sci. U SA, 89, 4285-4289, 1992)、抗 CD52抗体(Nature, 332, 323-327, 1988)、抗 MAGE抗 体(British J. Cancer, 83, 493-497, 2000)、抗 HMl . 24抗体(MolecularlmmunoL , 36 , 387-395, 1999)、抗副甲状腺ホルモン関連蛋白(PTHrP)抗体(Cancer, 88, 2909- 2911, 2000)、抗 FGF8抗体(Proc. Natl.Acad. Sci. USA, 86, 9911-9915, 1989)抗塩 基性繊維芽細胞増殖因子抗体、抗 FGF8受容体抗体 G.Biol. Chem., 265, 16455-16 463, 1990)、抗塩基性繊維芽細胞増殖因子受容体抗体、抗インスリン様増殖因子抗 体(J. Neurosci. Res., 40, 647-659, 1995)、抗インスリン様増殖因子受容体抗体 (J. Neurosci. Res., 40, 647-659, 1995)、抗 PMSA抗体(J. Urology, 160,2396-2401, 199 8)、抗血管内皮細胞増殖因子抗体(Cancer Res., 57, 4593-4599, 1997)、抗血管内 皮細胞増殖因子受容体抗体(Oncogene, 19, 2138-2146, 2000)、抗 CA125抗体、抗 17-1A抗体、抗インテグリン α ν 3抗体、抗 CD33抗体、抗 CD22抗体、抗 HLA抗体、 抗 HLA-DR抗体、抗 CD20抗体、抗 CD19抗体、抗 EGF受容体抗体(Immunology Tod ay、 21(8)、 403-410 (2000) )、抗 CD 10抗体(American Journal of ClinicalPathology, 1 13, 374-382, 2000)などがあげられる。 [0031] The antibody may be an antibody having such an antigen-binding property, but it binds to an antibody that binds to a tumor-related antigen, an antibody that binds to an antigen related to allergy or inflammation, or an antigen that relates to cardiovascular disease. The antibody class is preferably an antibody that binds to an antigen associated with an autoimmune disease, or an antibody that binds to an antigen associated with a virus or bacterial infection, and the antibody class is preferably IgG. [0032] Antibodies that bind to tumor-associated antigens include anti-GD2 antibody (Anticancer Res., 13, 331-33 6, 1993), anti-GD3 antibody (Cancer Immunol. Immunother., 36,260-266, 1993), anti-GM 2 antibodies (Cancer Res., 54, 1511-1516, 1994), anti-HER2 antibodies (Proc. Natl. Acad. Sci. USA, 89, 4285-4289, 1992), anti-CD52 antibodies (Nature, 332, 323- 327, 1988), anti-MAGE antibody (British J. Cancer, 83, 493-497, 2000), anti-HMl. 24 antibody (MolecularlmmunoL, 36, 387-395, 1999), anti-parathyroid hormone-related protein (PTHrP) Antibody (Cancer, 88, 2909-2911, 2000), anti-FGF8 antibody (Proc. Natl. Acad. Sci. USA, 86, 9911-9915, 1989) Anti-basic fibroblast growth factor antibody, anti-FGF8 receptor Antibody G. Biol. Chem., 265, 16455-16 463, 1990), anti-basic fibroblast growth factor receptor antibody, anti-insulin-like growth factor antibody (J. Neurosci. Res., 40, 647-659) , 1995), anti-insulin-like growth factor receptor antibody (J. Neurosci. Res., 40, 647-659, 1995), anti-PMSA antibody (J. U rology, 160,2396-2401, 199 8), anti-vascular endothelial growth factor antibody (Cancer Res., 57, 4593-4599, 1997), anti-vascular endothelial cell growth factor receptor antibody (Oncogene, 19, 2138- 2146, 2000), anti-CA125 antibody, anti-17-1A antibody, anti-integrin α ν3 antibody, anti-CD33 antibody, anti-CD22 antibody, anti-HLA antibody, anti-HLA-DR antibody, anti-CD20 antibody, anti-CD19 antibody, anti-EGF Examples include receptor antibodies (Immunology Today, 21 (8), 403-410 (2000)), anti-CD10 antibodies (American Journal of Clinical Pathology, 113, 374-382, 2000) and the like.
[0033] アレルギーあるいは炎症に関連する抗原に結合する抗体としては、抗インターロイ キン 6抗体(Immunol. Rev., 127, 5-24, 1992)、抗インターロイキン 6受容体抗体(Mole cular Immunol.,31, 371-381, 1994)、抗インターロイキン 5抗体(Immunol. Rev., 127,5 -24, 1992)、抗インターロイキン 5受容体抗体、抗インターロイキン 4抗体(Cytokine, 3 , 562-567, 1991)、抗インターロイキン 4受容体抗体(J. Immunol. Meth. , 217, 41-50, 1 998)、抗腫瘍壊死因子抗体(Hybridoma, 13, 183-190, 1994)、抗腫瘍壊死因子受 容体抗体(MolecularPharmacol., 58, 237-245, 2000)、抗 CCR4抗体(Nature, 400,77 6-780, 1999)、抗ケモカイン抗体(J. Immunol. Meth. , 174, 249-257, 1994)、抗ケモ 力イン受容体抗体(J. Exp. Med. , 186, 1373-1381, 1997)、抗 IgE抗体、抗 CD23抗体 、抗 CDl la抗体(ImmunologyToday、 21(8)、 403- 410 (2000) )、抗 CRTH2抗体(J Imm unol" 162, 1278-1286 (1999))、抗 CCR8抗体 (W099/25734)、抗 CCR3抗体(US620 7155)などがあげられる。 [0033] Examples of antibodies that bind to antigens related to allergy or inflammation include anti-interleukin 6 antibody (Immunol. Rev., 127, 5-24, 1992), anti-interleukin 6 receptor antibody (Mole cular Immunol. , 31, 371-381, 1994), anti-interleukin 5 antibody (Immunol. Rev., 127,5 -24, 1992), anti-interleukin 5 receptor antibody, anti-interleukin 4 antibody (Cytokine, 3, 562- 567, 1991), anti-interleukin 4 receptor antibody (J. Immunol. Meth., 217, 41-50, 1 998), anti-tumor necrosis factor antibody (Hybridoma, 13, 183-190, 1994), anti-tumor necrosis Factor receptor antibody (MolecularPharmacol., 58, 237-245, 2000), anti-CCR4 antibody (Nature, 400,77 6-780, 1999), anti-chemokine antibody (J. Immunol. Meth., 174, 249-257, 1994), anti-chemoin receptor receptor antibody (J. Exp. Med., 186, 1373-1381, 1997), anti-IgE antibody, anti-CD23 antibody, anti-CDlla antibody (Immunology Today, 21 (8), 403-410 (2000)), anti-CRTH2 antibody (JI mm unol "162, 1278-1286 (1999)), anti-CCR8 antibody (W099 / 25734), anti-CCR3 antibody (US620 7155).
[0034] 循環器疾患に関連する抗原に結合する抗体としては、抗 GpIIb/IIIa抗体 (J. Immuno 1" 152, 2968-2976, 1994)、抗血小板由来増殖因子抗体(Science, 253,1129-1132, 1991)、抗血小板由来増殖因子受容体抗体(J. Biol. Chem., 272, 17400-17404, 199 7)または抗血液凝固因子抗体(Circulation,101, 1158-1164, 2000)などが挙げられ る。 [0034] Examples of antibodies that bind to an antigen associated with cardiovascular disease include anti-GpIIb / IIIa antibody (J. Immuno 1 "152, 2968-2976, 1994), anti-platelet-derived growth factor antibody (Science, 253, 1129- 1132, 1991), anti-platelet-derived growth factor receptor antibody (J. Biol. Chem., 272, 17400-17404, 199 7) or anticoagulant factor antibody (Circulation, 101, 1158-1164, 2000) It is possible.
自己免疫疾患 (乾癬、関節リウマチ、クローン病、潰瘍性大腸炎、全身性エリテマト 一デス、多発性硬化症など)に関連する抗原に結合する抗体としては、抗自己 DNA 抗体(Immunol. Letters, 72, 61-68, 2000)、抗 CDl la抗体、抗 ICAM3抗体、抗 CD80 抗体、抗 CD2抗体、抗 CD3抗体、抗 CD4抗体、抗インテグリン α 4 7抗体、抗 CD40L 抗体、抗 IL-2受容体抗体(ImmunologyToday、 21(8)、 403-410 (2000) )などが挙げら れる。  Antibodies that bind to antigens associated with autoimmune diseases (such as psoriasis, rheumatoid arthritis, Crohn's disease, ulcerative colitis, systemic lupus erythematosus, multiple sclerosis) include anti-self DNA antibodies (Immunol. Letters, 72 , 61-68, 2000), anti-CDlla antibody, anti-ICAM3 antibody, anti-CD80 antibody, anti-CD2 antibody, anti-CD3 antibody, anti-CD4 antibody, anti-integrin α4 7 antibody, anti-CD40L antibody, anti-IL-2 receptor And antibodies (Immunology Today, 21 (8), 403-410 (2000)).
[0035] ウィルスあるいは細菌感染に関連する抗原に結合する抗体としては、抗 gpl20抗体  [0035] As an antibody that binds to an antigen associated with virus or bacterial infection, anti-gpl20 antibody
(Structure, 8, 385-395, 2000)、抗 CD4抗体(J.Rheumatology, 25, 2065-2076, 1998 )、抗 CCR4抗体、抗ベロ毒素抗体(J. Clin.Microbiol., 37, 396-399, 1999)などが挙 げられる。  (Structure, 8, 385-395, 2000), anti-CD4 antibody (J. Rheumatology, 25, 2065-2076, 1998), anti-CCR4 antibody, anti-verotoxin antibody (J. Clin. Microbiol., 37, 396-399) , 1999).
[0036] 抗体とは、外来抗原刺激の結果、免疫反応によって生体内に産生されるタンパク質 で、抗原と特異的に結合する活性を有するものをいい、抗体の Fc領域を含む分子で あればレ、かなる分子も包含される。  [0036] An antibody is a protein produced in a living body by an immune reaction as a result of stimulation with a foreign antigen, and has an activity that specifically binds to an antigen. If it is a molecule containing the Fc region of an antibody, , Such molecules are also included.
具体的には、抗体のほか、抗体の断片、 Fc領域を含む融合タンパク質などがあげ られる。  Specifically, in addition to antibodies, antibody fragments, fusion proteins containing an Fc region, and the like can be mentioned.
[0037] 抗体としては、動物に抗原を免疫し、免疫動物の脾臓細胞より作製したハイブリド 一マ細胞が分泌する抗体の他、遺伝子組換え技術により作製された抗体、すなわち 、抗体遺伝子を揷入した抗体発現ベクターを、宿主細胞へ導入することにより取得さ れた抗体などがあげられる。具体的には、ハイプリドーマが生産する抗体、ヒト化抗体 、ヒト抗体などをあげることができる。  [0037] As an antibody, in addition to an antibody secreted by a hybridoma cell produced from a spleen cell of an immunized animal, an antibody produced by gene recombination technology, that is, an antibody gene is inserted. Examples thereof include an antibody obtained by introducing the antibody expression vector into a host cell. Specifically, antibodies produced by Hypridoma, humanized antibodies, human antibodies and the like can be mentioned.
[0038] 本発明において、ハイプリドーマとは、ヒト以外の哺乳動物に抗原を免疫して取得さ れた B細胞と、ラット、またはマウスに由来するミエローマ細胞とを細胞融合させて得ら れる、所望の抗原特異性を有したモノクローナル抗体を産生する細胞を意味する。 ヒト化抗体としては、ヒト型キメラ抗体、ヒト型相同性決定領域(complementarity dete rmining region :以下、 CDRという)移植抗体などがあげられる。 [0038] In the present invention, the hyperidoma is obtained by fusing a B cell obtained by immunizing a mammal other than a human with a myeloma cell derived from a rat or mouse. Means a cell producing a monoclonal antibody having a desired antigen specificity. Examples of humanized antibodies include human chimeric antibodies, human type homology determining regions (hereinafter referred to as CDR) -grafted antibodies, and the like.
[0039] ヒト型キメラ抗体は、ヒト以外の動物の抗体重鎖可変領域 (以下、重鎖は H鎖として 、可変領域は V領域として HVまたは VHともいう)および抗体軽鎖可変領域 (以下、 軽鎖は L鎖として LVまたは VLともいう)とヒト抗体の重鎖定常領域(以下、定常領域 は C領域として CHともいう)およびヒト抗体の軽鎖定常領域(以下、 CLともいう)とから なる抗体を意味する。ヒト以外の動物としては、マウス、ラット、ノ、ムスター、ラビット等、 ノ、イブリドーマを作製することが可能であれば、いかなるものも用いることができる。  [0039] A human chimeric antibody is a non-human animal antibody heavy chain variable region (hereinafter, the heavy chain is also referred to as H chain, the variable region is also referred to as HV or VH) and an antibody light chain variable region (hereinafter referred to as "H chain"). The light chain is also referred to as LV or VL as the L chain) and the heavy chain constant region of the human antibody (hereinafter the constant region is also referred to as CH as the C region) and the light chain constant region of the human antibody (hereinafter also referred to as CL). Is an antibody. As animals other than humans, mice, rats, mice, musters, rabbits, etc. can be used as long as they can produce mice and hybridomas.
[0040] ヒト型キメラ抗体は、モノクローナル抗体を生産するハイブリドーマより VHおよび VL をコードする cDNAを取得し、ヒト抗体 CHおよびヒト抗体 CLをコードする遺伝子を有 する宿主細胞用発現ベクターにそれぞれ挿入してヒト型キメラ抗体発現ベクターを構 築し、宿主細胞へ導入することにより発現させ、製造すること力 Sできる。  [0040] For a human chimeric antibody, cDNAs encoding VH and VL are obtained from a hybridoma producing a monoclonal antibody, and inserted into expression vectors for host cells having genes encoding human antibody CH and human antibody CL, respectively. Thus, it is possible to construct a human chimeric antibody expression vector, introduce it into a host cell, express it and produce it.
ヒト型キメラ抗体の CHとしては、ヒトイムノグロブリン(以下、 hlgという)に属すればい かなるものでもよいが、 hlgGクラスのものが好適であり、さらに hlgGクラスに属する hlgG 1、 hIgG2、 hIgG3、 hIgG4といったサブクラスのいずれも用いることができる。また、ヒト 型キメラ抗体の CLとしては、 hlgに属すればいかなるものでもよぐ κクラスあるいは λ クラスのものを用いることができる。  The CH of the human chimeric antibody may be any of those belonging to human immunoglobulin (hereinafter referred to as hlg), but is preferably of the hlgG class, and more preferably hlgG1, hIgG2, hIgG3, Any of the subclasses such as hIgG4 can be used. As the CL of the human chimeric antibody, any κ class or λ class can be used as long as it belongs to hlg.
[0041] ヒト型 CDR移植抗体は、ヒト以外の動物の抗体の VHおよび VLの CDRのアミノ酸 配列をヒト抗体の VHおよび VLの適切な位置に移植した抗体を意味する。  [0041] The human CDR-grafted antibody means an antibody obtained by grafting the VH and VL CDR amino acid sequences of a non-human animal antibody to appropriate positions of the human antibody VH and VL.
ヒト型 CDR移植抗体は、ヒト以外の動物の抗体の VHおよび VLの CDR配列を任意 のヒト抗体の VHおよび VLの CDR配列に移植した V領域をコードする cDNAを構築 し、ヒト抗体の CHおよびヒト抗体の CLをコードする遺伝子を有する宿主細胞用発現 ベクターにそれぞれ揷入してヒト型 CDR移植抗体発現ベクターを構築し、該発現べ クタ一を宿主細胞へ導入することによりヒト型 CDR移植抗体を発現させ、製造するこ とがでさる。  The human CDR-grafted antibody constructs a cDNA encoding the V region obtained by grafting the VH and VL CDR sequences of non-human animal antibodies to the VH and VL CDR sequences of any human antibody. A human CDR-grafted antibody is constructed by constructing a human CDR-grafted antibody expression vector by inserting it into an expression vector for a host cell having a gene encoding the CL of a human antibody, and introducing the expression vector into the host cell. Can be expressed and produced.
[0042] ヒト型 CDR移植抗体の CHとしては、 hlgに属すればレ、かなるものでもよいが、 hlgG クラスのものが好適であり、さらに hlgGクラスに属する hIgGl、 hIgG2、 hIgG3、 hIgG4と レ、つたサブクラスのいずれも用いることができる。また、ヒト型 CDR移植抗体の CLとし ては、 hlgに属すればいかなるものでもよぐ κクラスまたは; Iクラスのものを用いること ができる。 [0042] The CH of the human CDR-grafted antibody may be any of those that belong to hlg, but those of the hlgG class are preferred, and those of hlgG, hIgG2, hIgG3, hIgG4 belonging to the hlgG class are preferred. Any of the subclasses can be used. As the CL of the human CDR-grafted antibody, any KL class or I class can be used as long as it belongs to hlg.
[0043] 本発明で用いられる動物細胞は、糖タンパク質組成物を生産するものであればそ のまま用いることができる力 糖タンパク質をコードする DNAを含有する組換え体べク ターを導入した動物細胞を用いることもできる。  [0043] The animal cell used in the present invention can be used as it is as long as it produces a glycoprotein composition. An animal into which a recombinant vector containing a DNA encoding a glycoprotein has been introduced. Cells can also be used.
糖タンパク質をコードする DNAを含有する組換え体ベクターを調製するために用 いられる発現ベクターとしては、例えば、 pcDNAI、 pcDM8 (フナコシ社製)、 pAGE 107〔特開平3— 22979、じ7 (^(:1111010§, 3, 133(1990)〕、 pAS3— 3 (特開平 2— 2 27075)、 pCDM8 [Nature,329, 840 (1987)〕、 pcDNAl/Amp (Invitrogen社製)、 p REP4 (Invitrogen社製)、 pAGE103〔J. Biochem.,101, 1307 (1987)〕、 pAGE210等 があげられる。 Examples of expression vectors used for preparing a recombinant vector containing a DNA encoding a glycoprotein include pcDNAI, pcDM8 (Funakoshi), pAGE 107 (Japanese Patent Laid-Open No. 3-22979, 7) (: 1111010 § 3, 3,133 (1990)), pAS3-3 (Japanese Patent Laid-Open No. 2-227075), pCDM8 (Nature, 329, 840 (1987)), pcDNAl / Amp (Invitrogen), p REP4 (Invitrogen) PAGE103 [J. Biochem., 101, 1307 (1987)], pAGE210 and the like.
[0044] 組換え体ベクターを調整するためのプロモーターとしては、動物細胞中で機能する ものであればいずれも用いることができ、例えば、サイトメガロウィルス(CMV)の IE (i mmediateearly)遺伝子のプロモーター、 SV40の初期プロモーター、レトロウイルスの プロモーター、メタ口チォネインプロモーター、ヒートショックプロモーター、 SR aプロ モーター等をあげることができる。また、ヒト CMVの IE遺伝子のェンハンサーをプロ モーターとともに用いてもよい。  [0044] As a promoter for preparing a recombinant vector, any promoter that functions in animal cells can be used. For example, the promoter of cytomegalovirus (CMV) IE (immediateearly) gene And SV40 early promoter, retrovirus promoter, metamouthonein promoter, heat shock promoter, SRa promoter, and the like. In addition, an enhancer of the IE gene of human CMV may be used together with a promoter.
[0045] 組換えベクターを導入する宿主細胞としては、上述の動物細胞であればいかなるも のでもよいが、好ましくはラット細胞、あるいはマウス細胞などがあげられ、例えば Y3A gl.2.3.、 Y0、 ΥΒ2/0, NS0、 Sp2/0等、ミエローマ細胞またはミエローマ細胞系 の雑種細胞があげられる。また、これらの細胞に変異処理を施したり、ヒト以外の哺乳 動物に抗原を免疫して取得された B細胞と細胞融合等によって得られ、これらの細胞 と同等の性質を有する細胞等があげられる。  [0045] The host cell into which the recombinant vector is introduced may be any animal cell as described above, and preferably a rat cell or a mouse cell, such as Y3A gl.2.3., Y0, ΥΒ2 / 0, NS0, Sp2 / 0, etc., myeloma cells or myeloma cell line hybrid cells. In addition, these cells can be obtained by subjecting these cells to mutation treatment, immunizing a non-human mammal with an antigen and cell fusion with a B cell obtained, and the like. .
[0046] 宿主細胞への組換え体ベクターの導入方法としては、当該細胞に DNAを導入す る方法であればいずれも用いることができ、例えば、エレクト口ポレーシヨン法〔Cytote chnology, 3, 133 (1990)〕、リン酸カルシウム法(特開平 2— 227075)、リボフヱクショ ン法〔Proc.Natl. Acad. Sci. USA, 84, 7413 (1987)、 Virology, 52,456 (1973)〕等をあ げること力 Sできる。 [0046] As a method for introducing a recombinant vector into a host cell, any method can be used as long as it is a method for introducing DNA into the cell. For example, an electoresis method [Cytote chnology, 3, 133 ( 1990)), calcium phosphate method (JP-A-2-227075), ribofunction method (Proc. Natl. Acad. Sci. USA, 84, 7413 (1987), Virology, 52,456 (1973)), etc. The ability to boil S.
[0047] 上記方法で組換え体ベクターを導入された動物細胞を、適当な培地中で培養する ことにより、細胞内または培養上清中に、糖タンパク質組成物を生産することができる 本発明において、糖タンパク質組成物を生産する動物細胞としては、例えば抗 GD ヒト型キメラ抗体を生産する形質転換細胞 7— 9一 51 (FERM BP— 6691)、抗 CC [0047] A glycoprotein composition can be produced in a cell or in a culture supernatant by culturing animal cells into which a recombinant vector has been introduced by the above method in an appropriate medium. Examples of animal cells that produce glycoprotein compositions include transformed cells that produce anti-GD human chimeric antibodies 7-9-151 (FERM BP-6691), anti-CC
3 Three
R4キメラ抗体を生産する形質転換細胞 KM2760 (FERM BP-7054)、抗 CCR4 ヒト化抗体を生産する形質転換細胞 KM8759 (FERM BP— 8129) j; KM87 60 (FERM BP— 8130)、抗 IL 5受容体 α鎖キメラ抗体を生産する形質転換細 胞 KM7399 (FERM BP— 5649)、抗 IL 5受容体 α鎖ヒト型 CDR移植抗体を生 産する形質転換細胞 KM8399 (FERM BP— 5648)および KM9399 (FERM B P— 5647)、抗 GM2ヒト型 CDR移植抗体を生産する形質転換細胞 KM8966 (FER M BP— 5105)、 KM8967 (FERM BP— 5106)、 KM8969 (FERM BP— 55 27)および KM8970 (FERM BP— 5528)等があげられる。  Transformed cells producing R4 chimeric antibody KM2760 (FERM BP-7054), transformed cells producing anti-CCR4 humanized antibody KM8759 (FERM BP— 8129) j; KM87 60 (FERM BP— 8130), anti-IL 5 receptor Transformed cells producing α-chain chimeric antibody KM7399 (FERM BP—5649), transformed cells producing anti-IL 5 receptor α-chain human CDR-grafted antibody KM8399 (FERM BP—5648) and KM9399 (FERM BP—5647), transformed cells producing anti-GM2 human CDR-grafted antibodies KM8966 (FER M BP—5105), KM8967 (FERM BP—5106), KM8969 (FERM BP—55 27) and KM8970 (FERM BP— 5528 ) Etc.
[0048] 本発明において、動物細胞を培養する方法としては、グリコシド結合糖鎖を有する 糖タンパク質組成物において、糖タンパク質に結合するグリコシド結合糖鎖にフコー スが結合してレ、なレ、糖鎖の割合を変化させることができ、かつ糖タンパク質を効率よ く生産できる培養方法であれば、通常用いられる動物細胞の培養方法のいずれでも 用いられる。例えば、バッチ培養、リピートバッチ培養、フエドバツチ培養、パーフュー ジョン培養等があげられる力 糖タンパク質の生産性を高めるためには、フヱドバッチ 培養またはパーフュージョン培養を用いることが好ましい。 [0048] In the present invention, as a method for culturing animal cells, in a glycoprotein composition having a glycoside-linked sugar chain, fucose is bound to a glycoside-linked sugar chain that binds to the glycoprotein. Any of the commonly used animal cell culture methods can be used as long as it is a culture method capable of changing the chain ratio and efficiently producing glycoprotein. For example, batch culture, repeat batch culture, fed-batch culture, perfusion culture, etc. In order to increase the productivity of glycoprotein, it is preferable to use feedbatch culture or perfusion culture.
[0049] フエドバツチ培養は、生理活性物質、栄養因子等を連続的、または間欠的に少量 ずつ追加供給する培養方法である。フエドバツチ培養は、細胞の代謝効率が高ぐ培 養液中の老廃物が蓄積されることによる培養細胞の到達細胞密度の低下を防止する こと力 Sできる。また、回収された培養液中の所望の糖タンパク質はバッチ培養で得ら れた場合に比べて高濃度であるため、該糖タンパク質の分離'精製が容易で、バッチ 培養に比べ、培地当たりの該糖タンパク質の生産量を増大させることができる。さらに は、添加溶液を用いた浸透圧の制御ができ、ノくツチ培養よりも制御が容易である。 [0050] パーフュージョン培養は、培養液と細胞とを分離する装置により効率的に分離され 、濃縮された細胞が元の培養槽に戻り、減少した分の新鮮培地が培養槽に新たに供 給される方法である。本方法は、培養槽内の培養環境が常に良好に保たれるため、 制御としては相対的に易しい方法である。また、新鮮培地を供給することにより槽内 の浸透圧を制御することができるため、培地中の浸透圧を制御するために好ましい。 [0049] Fuedbatch culture is a culture method in which physiologically active substances, nutrient factors, and the like are additionally supplied in small amounts continuously or intermittently. Fuedbachi culture can prevent a decrease in the cell density of the cultured cells due to accumulation of waste products in the culture medium where the metabolic efficiency of the cells is high. In addition, since the desired glycoprotein in the collected culture medium has a higher concentration than that obtained in batch culture, the glycoprotein can be easily separated and purified, and compared with batch culture, The production amount of the glycoprotein can be increased. Furthermore, the osmotic pressure can be controlled using the added solution, and is easier to control than the notch culture. [0050] Perfusion culture is efficiently separated by a device that separates the culture solution and cells, the concentrated cells are returned to the original culture tank, and the reduced amount of fresh medium is newly supplied to the culture tank. Is the method. This method is relatively easy to control because the culture environment in the culture tank is always kept good. Further, since the osmotic pressure in the tank can be controlled by supplying a fresh medium, it is preferable for controlling the osmotic pressure in the medium.
[0051] 本発明における方法において用いられる培地としては、通常の動物細胞の培養に 用いられる基礎培地であればいずれも用いることができる。必要に応じて、各生理活 性物質、栄養因子が添加され、かつ動物細胞が同化しうる炭素源、窒素源等を含有 させたものが用いられる。  [0051] As a medium used in the method of the present invention, any basal medium used for normal animal cell culture can be used. If necessary, those containing each of the physiologically active substances and nutrient factors and containing a carbon source, a nitrogen source, etc. that can be assimilated by animal cells are used.
具体的には、 RPMI1640培地〔The Journal of the American Medical Association, 199, 519(1967)〕、 Eagleの MEM培地 [Science, 122, 501 (1952)〕、ダルベッコ改変 MEM培地 [Virology, 8, 396(1959)〕、 199培地 [Proceeding of the Society for the Bi ological Medicine, 73, 1(1950)〕、 F12培地〔Proc. Natl. Acad. Sci. USA, 53,288(1965 )〕、 IMDM培地 J.Experimental Medicine, 147, 923 (1978)〕等があげられる力 好ま しくは、 DMEM培地、 F12培地、 IMDM培地、 Hybridoma Serum Free培地(ィ ンビトロジェン社)、 Chenically Defined Hybridoma Serum Free培地 (インビ トロジヱン社)等が用いられる。  Specifically, RPMI1640 medium [The Journal of the American Medical Association, 199, 519 (1967)], Eagle's MEM medium [Science, 122, 501 (1952)], Dulbecco's modified MEM medium [Virology, 8, 396 ( 1959), 199 medium (Proceeding of the Society for the Biological Medicine, 73, 1 (1950)), F12 medium (Proc. Natl. Acad. Sci. USA, 53,288 (1965)), IMDM medium J. Experimental Medicine , 147, 923 (1978)], etc., preferably DMEM medium, F12 medium, IMDM medium, Hybridoma Serum Free medium (Invitrogen), Chenically Defined Hybridoma Serum Free medium (Invitrogen) It is done.
[0052] 培地には、必要に応じて動物細胞の生育に必要な栄養因子、生理活性物質等を 添加する。これらの添加物は、培養前に予め培地に含有させる力、または必要に応 じて、培養中に培養液へ適宜追加供給する。供給方法は、 1溶液または 2種以上の 溶液などの形態を問わない。また、添加方法は連続、断続を問わない。栄養因子とし ては、糖、アミノ酸、ビタミン、加水分解物、脂質等があげられる。生理活性物質として は、インシュリン、 IGF_ 1、トランスフェリン、ァノレブミン、補酵素 Q 等があげられ、必  [0052] The medium is supplemented with nutrient factors, physiologically active substances, and the like necessary for the growth of animal cells as necessary. These additives are appropriately added to the culture medium during the cultivation as necessary, depending on the force previously contained in the medium before the cultivation, or if necessary. The supply method may be in the form of one solution or two or more solutions. Moreover, the addition method does not ask | require continuous or intermittent. Nutritional factors include sugars, amino acids, vitamins, hydrolysates, lipids and the like. Examples of physiologically active substances include insulin, IGF_1, transferrin, anolebumin, coenzyme Q and the like.
10  Ten
要に応じて用いられる。  Used as needed.
[0053] 糖としては、グルコース、マンノース、フルクトース、等があげられ、 1種または 2種以 上組み合わせて用いられる。  [0053] Examples of the sugar include glucose, mannose, fructose, and the like, and they are used alone or in combination of two or more.
アミノ酸としては、 L—ァラニン、 L—アルギニン、 L—ァスパラギン、 L—ァスパラギ ン酸、 L—シスチン、 L—グルタミン酸、 L—グルタミン、グリシン、 L—ヒスチジン、 L— イソロイシン、 L—ロイシン、 L—リジン、 L—メチォニン、 L—フエ二ルァラニン、 L—プ 口リン、 L—セリン、 L—スレォニン、 L—トリプトファン、 L—チロシン、 L—ノ リン等があ げられ、 1種または 2種以上組み合わせて用いられる。 Amino acids include L-alanine, L-arginine, L-asparagine, L-aspartic acid, L-cystine, L-glutamic acid, L-glutamine, glycine, L-histidine, L- Isoleucine, L-leucine, L-lysine, L-methionine, L-phenylalanine, L-purelin, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-noline, etc. Used in combination of one or more.
[0054] ビタミンとしては、 d _ピオチン、 D—パントテン酸、コリン、葉酸、 myo _イノシトール[0054] As vitamins, d_piotine, D-pantothenic acid, choline, folic acid, myo_inositol
、ナイァシンアミド、ピリドキサ一ノレ、リボフラビン、チアミン、シァノコバラミン、 DL- a, Niacinamide, pyridoxanol, riboflavin, thiamine, cyanocobalamin, DL-a
—トコフエロール等があげられ、 1種または 2種以上組み合わせて用いられる。 -Tocopherol, etc. are used, and one or more are used in combination.
加水分解物としては、大豆、小麦、米、えんどう豆、綿実、酵母抽出物などがあげら れ、必要に応じて用いられる。  Examples of the hydrolyzate include soybeans, wheat, rice, peas, cottonseed, yeast extract, etc., which are used as necessary.
[0055] 脂質としては、コレステロール、リノール酸、リノレイン酸などがあげられ、必要に応じ て用いられる。 [0055] Examples of lipids include cholesterol, linoleic acid, linolenic acid, and the like, which are used as necessary.
各種培養は、通常 pH6〜8、 30〜40°C等の条件下で 3〜12日間、パーフュージョ ン培養では 3〜40日間行う。また、培養中必要に応じて、ストレプトマイシン、ぺニシリ ン等の抗生物質を培地に添加してもよい。なお、溶存酸素濃度制御、 pH制御、温度 制御、攪拌などは通常の動物細胞の培養に用いられる方法に準じて行うことができる  Various cultures are usually carried out under conditions such as pH 6-8 and 30-40 ° C for 3-12 days, and perfusion cultures for 3-40 days. In addition, antibiotics such as streptomycin and penicillin may be added to the medium as needed during the culture. In addition, dissolved oxygen concentration control, pH control, temperature control, stirring, etc. can be performed according to the method used for normal animal cell culture.
[0056] 上記のとおり、動物細胞を培養し、グリコシド結合複合型糖鎖を有する糖タンパク質 組成物中、グリコシド結合複合型糖鎖にフコースが結合していない糖鎖の割合を変 化させた糖タンパク質組成物を生成蓄積させ、該培養物より該糖タンパク質組成物を 採取することにより、糖タンパク質組成物を製造することができる。 [0056] As described above, saccharides obtained by culturing animal cells and changing the proportion of sugar chains in which fucose is not bound to glycoside-bound complex type sugar chains in the glycoprotein composition having glycoside-bound complex type sugar chains are changed. A glycoprotein composition can be produced by accumulating a protein composition and collecting the glycoprotein composition from the culture.
本発明の糖タンパク質組成物の製造方法としては、宿主細胞内に糖タンパク質組 成物を生産させる直接発現方法、宿主細胞外に糖タンパク質組成物を分泌生産さ せる方法(モレキュラー 'クローニング第 2版)等があげられる。  The production method of the glycoprotein composition of the present invention includes a direct expression method in which the glycoprotein composition is produced in the host cell, a method in which the glycoprotein composition is secreted and produced outside the host cell (Molecular 'Cloning 2nd Edition). ) Etc.
[0057] 糖タンパク質組成物は、ポールソンらの方法〔J. Biol. Chem. , 264, 17619 (1989)〕、 ロウらの方法〔Proc. Natl.Acad. Sci. USA, 86, 8227 (1989)、 Genes Develop. , 4, 1288 ( 1990)〕、または特開平 5— 336963、 WO94Z23021等に記載の方法を準用するこ とにより、宿主細胞外へ積極的に分泌させることができる。すなわち、遺伝子組換え の手法を用いて、シグナルペプチドを付加した形で発現させることにより、糖タンパク 質組成物を宿主細胞外に積極的に分泌させることができる。 [0058] また、特開平 2— 227075に記載されている方法に準じて、ジヒドロ葉酸還元酵素 遺伝子等を用いた遺伝子増幅系を利用することにより、糖タンパク質組成物の生産 量を上昇させることもできる。 [0057] The glycoprotein composition was prepared by the method of Paulson et al. [J. Biol. Chem., 264, 17619 (1989)], the method of Lou et al. [Proc. Natl. Acad. Sci. USA, 86, 8227 (1989). Genes Develop., 4, 1288 (1990)], or by applying the method described in JP-A-5-336963, WO94Z23021, etc., it can be actively secreted outside the host cell. That is, the glycoprotein composition can be actively secreted out of the host cell by expressing it with a signal peptide added using a genetic recombination technique. [0058] Further, according to the method described in JP-A-2-227075, the production amount of the glycoprotein composition may be increased by using a gene amplification system using a dihydrofolate reductase gene or the like. it can.
本発明の方法により製造される糖タンパク質は、通常の糖タンパク質の単離精製法 を用いて単離精製することができる。  The glycoprotein produced by the method of the present invention can be isolated and purified using a normal glycoprotein isolation and purification method.
[0059] 本発明の方法により製造される糖タンパク質組成物が細胞内に溶解状態で発現し た場合には、培養終了後、細胞を遠心分離により回収し、水系緩衝液にけん濁後、 超音波破碎機、フレンチプレス、マントンガウリンホモゲナイザー、ダイノミル等により 細胞を破砕し、無細胞抽出液を得る。該無細胞抽出液を遠心分離することにより得ら れる上清から、通常の酵素の単離精製法、即ち、溶媒抽出法、硫安等による塩析法 、脱塩法、有機溶媒による沈殿法、ジェチルアミノエチル (DEAE)—セファロース、 DIAION HPA— 75 (三菱化学社製)等のレジンを用いた陰イオン交換クロマトダラ フィ一法、 S—セファロース FF (フアルマシア社製)等のレジンを用いた陽イオン交換 クロマトグラフィー法、ブチルセファロース、フエ二ルセファロース等のレジンを用いた 疎水性クロマトグラフィー法、分子篩を用いたゲルろ過法、プロテイン Aを用いたァフ ィニティークロマトグラフィー法、クロマトフォーカシング法、等電点電気泳動等の電気 泳動法等を、単独あるいは組み合わせて用レ、、精製標品を得ることができる。  [0059] When the glycoprotein composition produced by the method of the present invention is expressed in a dissolved state in the cells, the cells are collected by centrifugation after culturing, suspended in an aqueous buffer, Disrupt the cells with a sonic breaker, French press, Manton Gaurin homogenizer, dynomill, etc. to obtain a cell-free extract. From the supernatant obtained by centrifuging the cell-free extract, an ordinary enzyme isolation and purification method, that is, a solvent extraction method, a salting-out method using ammonium sulfate, a desalting method, a precipitation method using an organic solvent, Anion-exchange chromatographic method using resin such as Jetylaminoethyl (DEAE) —Sepharose, DIAION HPA—75 (Mitsubishi Chemical), and positive using resin such as S-Sepharose FF (Falmasia) Ion exchange chromatography, hydrophobic chromatography using resins such as butyl sepharose and phenyl sepharose, gel filtration using molecular sieve, affinity chromatography using protein A, chromatofocusing, A purified preparation can be obtained by using electrophoresis methods such as isoelectric focusing alone or in combination.
[0060] 本発明の方法により製造される糖タンパク質組成物が細胞外に分泌された場合に は、培養上清に該糖タンパク質組成物を回収することができる。即ち、該培養物を上 記と同様の遠心分離等の手法により培養上清を取得し、該培養上清から、上記と同 様の単離精製法を用いることにより、精製標品を得ることができる。 [0060] When the glycoprotein composition produced by the method of the present invention is secreted extracellularly, the glycoprotein composition can be recovered in the culture supernatant. That is, a culture supernatant is obtained from the culture by a technique such as centrifugation as described above, and a purified preparation is obtained from the culture supernatant by using the same isolation and purification method as described above. Can do.
本発明の方法により製造される糖タンパク質組成物のなかでも、抗体組成物におい ては、該抗体組成物において、抗体の Fc領域に結合する N-グリコシド結合複合型糖 鎖の還元末端の N -ァセチルダルコサミンにフコースが結合していない糖鎖の割合が 増加した抗体組成物は抗体依存性細胞障害活性 (ADCC活性)が高ぐ腫瘍、炎症 、アレルギー、先天症等の疾患の治療等に有用である。  Among the glycoprotein compositions produced by the method of the present invention, the antibody composition contains an N-glycoside-linked N-glycoside-linked complex-type sugar chain that binds to the Fc region of the antibody. An antibody composition with an increased proportion of sugar chains in which fucose is not bound to acetylyldarcosamine is used for the treatment of diseases such as tumors, inflammation, allergies, congenital diseases, etc. with high antibody-dependent cytotoxicity (ADCC activity). Useful.
[0061] 以下の実施例により本発明をより具体的に説明するが、実施例は本発明の単なる 例示にすぎず、本発明の範囲を限定するものではない。 実施例 1 [0061] The present invention will be described more specifically with reference to the following examples. However, the examples are merely illustrative of the present invention and do not limit the scope of the present invention. Example 1
[0062] YB2/0細胞株を用いたバッチ培養での抗 GD抗体の製造  [0062] Production of anti-GD antibody in batch culture using YB2 / 0 cell line
3  Three
抗 GD抗体を生産する形質転換ラットーラット融合細胞 YB2/0株 61— 33 γ (FE Transformed rat-rat fusion cells producing anti-GD antibody YB2 / 0 strain 61—33 γ (FE
3 Three
RM BP— 7325)を用いて以下のバッチ培養を行った。  The following batch culture was performed using RM BP-7325).
バッチ培養の培地としては、 CD— Hybridoma培地(インビトロジヱン社製)を用い た。初発の培地中の浸透圧は 320 m〇sm/kgであった。  As a culture medium for batch culture, CD-Hybridoma medium (Invitrogene) was used. The osmotic pressure in the initial medium was 320 mOsm / kg.
[0063] CD— Hybridoma培地を無菌水で希釈し、約 250 mOsm/kgの低浸透圧培地を 調整した。次いで、浸透圧調整後の培地に 10 mg/mLリコンビナントヒトインスリン( 以下、 INSと称す)(インビトロジェン社製)、 lmmol/L Methotrexate (以下、 MT Xと称す)(シグマ社製)、 200 mmol/L L—グルタミン(インビトロジェン社製)を添 加した。 [0063] CD-Hybridoma medium was diluted with sterile water to prepare a low osmotic pressure medium of about 250 mOsm / kg. Next, 10 mg / mL recombinant human insulin (hereinafter referred to as INS) (manufactured by Invitrogen), lmmol / L Methotrexate (hereinafter referred to as MT X) (manufactured by Sigma), 200 mmol / LL-glutamine (Invitrogen) was added.
[0064] 浸透圧調整剤として、塩化ナトリウム、塩ィ匕カリウム(和光純薬社製)、 Creatine (シ グマ社製)、 Fucose、 Fructose (ナカライ社製)、 Mannitol各々を培地に添加し、 2 60〜390m〇sm/kgの浸透圧になるように培地を調整し、以下の拡大培養に用い た。  [0064] As an osmotic pressure regulator, sodium chloride, potassium salt (manufactured by Wako Pure Chemical Industries, Ltd.), Creatine (manufactured by Sigma), Fucose, Fructose (manufactured by Nacalai), and Mannitol were added to the medium. The medium was adjusted so as to have an osmotic pressure of 60 to 390 mOsm / kg and used for the following expansion culture.
拡大培養には、 CD— Hybridoma培地を用いた。充分な細胞数が得られた後、 25 OmL容量三角フラスコ(コーユング社製)に準備した上述の各種浸透圧の培地に 3 X 106細胞 ZmLとなるように細胞をそれぞれ播種した。その後、 37°Cで 11日間培養し た。 CD-Hybridoma medium was used for expansion culture. After a sufficient number of cells was obtained, the cells were seeded in 3 × 10 6 cells ZmL in the various osmotic pressure media prepared in the 25 OmL conical flasks (manufactured by Cojung). Thereafter, the cells were cultured at 37 ° C for 11 days.
[0065] 培養培地中に細胞から生産された抗体組成物を採取し、抗体組成物中の糖組成 分析を行った。その結果を図 1に示す。図 1に示した通り、浸透圧調整剤の種類に関 わらず、培地の浸透圧が上昇すると、動物細胞が生産する抗体組成物において、抗 体の Fc領域に結合する N-グリコシド結合複合型糖鎖の還元末端の N-ァセチルダノレ コサミンにフコースが結合していない糖鎖の割合が低下していた。  [0065] The antibody composition produced from the cells was collected in a culture medium, and the sugar composition in the antibody composition was analyzed. The results are shown in Fig. 1. As shown in Figure 1, regardless of the type of osmotic pressure regulator, when the osmotic pressure of the medium increases, the N-glycoside-binding complex that binds to the Fc region of the antibody in the antibody composition produced by animal cells. The proportion of sugar chains in which fucose is not bound to N-acetylidanolosecosamine at the reducing end of the sugar chain decreased.
実施例 2  Example 2
[0066] YB2/0細胞株を用いたフエドバツチ培養での抗 GD抗体の製造  [0066] Production of anti-GD antibody in Fuedbatch culture using YB2 / 0 cell line
3  Three
抗 GD抗体を生産する形質転換ラット—ラット融合細胞 YB2/0株 61— 33 γ (FE Transformed rat producing rat anti-GD antibody—rat fusion cell line YB2 / 0 61— 33 γ (FE
3 Three
RM BP— 7325)を用いて以下のフヱドバッチ培養を行った。 培地には、初発浸透圧が 325mOsmZkgの CD_Hybridoma培地(インビトロジ ヱン社製)を用いた。低浸透圧培地としては、 CD_Hybridoma培地を無菌水で希 釈し、 285および 300m〇smZkgの低浸透圧培地をそれぞれ調整した。高浸透圧 培地としては、 CD_Hybridoma培地に NaClを添加し、 340m〇smZkgの培地を 調製した。次いで、これらの培地に lOmgZmL INS (インビトロジェン社製)、 1 mm ol/L MTX (シグマ社製)、 200 mmol/L L—グルタミン(インビトロジヱン社製)を それぞれ添加した。 The following food batch culture was performed using RM BP-7325). As the medium, CD_Hybridoma medium (Invitrogen) having an initial osmotic pressure of 325 mOsmZkg was used. As the low osmotic pressure medium, CD_Hybridoma medium was diluted with sterile water to prepare low osmotic pressure media of 285 and 300 mOsmZkg, respectively. As a hyperosmotic medium, NaCl was added to CD_Hybridoma medium to prepare a 340 mOsmZkg medium. Subsequently, lOmgZmL INS (manufactured by Invitrogen), 1 mmol / L MTX (manufactured by Sigma), and 200 mmol / LL-glutamine (manufactured by Invitrogen) were added to these media.
[0067] 拡大培養は、 CD— Hybridoma培地で行い、充分な細胞数を獲得したところで、 2 85、 300、 325、 345 m〇sm/kgの各浸透圧に調整した培地がそれぞれ入った 5L ジャーフアーメンターに、 3 X 105細胞/ mLとなるように細胞を播種した。その後、 37 。C、 pH7. 1、 DO 50%で 11日間培養した。 [0067] Expansion culture was performed on CD-Hybridoma medium, and when a sufficient number of cells were obtained, a 5 L jar containing media adjusted to osmotic pressures of 285, 300, 325, and 345 mOsm / kg was added. Cells were seeded at 3 × 10 5 cells / mL in the fermenter. Then 37. C, pH 7.1 and DO 50% were cultured for 11 days.
培養開始から培養終了まで、各フアーメンターから培養液を毎日一回ずつサンプリ ングし、生細胞密度(細胞/ mL)および抗体濃度 (mg/L)を測定し、また、培地中 に生産された抗体組成物の糖鎖を分析した。なお、生細胞密度は、 0. 4%トリパンブ ルー溶液 (インビトロジェン社製)による色素排除法により、抗体濃度は高速液体クロ マトグラフィー(以下、 HPLCと称す)(島津製作所社製)により、それぞれ測定した。 その結果を図 2【こ示す。図 2【こ示した通り、 285、 300、 325、 345mOsm/kg浸透 圧調整培地で生産された抗体組成物にぉレ、て、抗体の Fc領域に結合する N-グリコ シド結合複合型糖鎖の還元末端の N-ァセチルダノレコサミンにフコースが結合してい ない糖鎖の割合はそれぞれ 70、 58、 45、 40%であった。  From the beginning of the culture to the end of the culture, the culture broth was sampled once daily from each fermenter, and the viable cell density (cells / mL) and antibody concentration (mg / L) were measured. The sugar chain of the antibody composition was analyzed. The viable cell density was measured by a dye exclusion method using 0.4% trypan blue solution (Invitrogen), and the antibody concentration was measured by high performance liquid chromatography (hereinafter referred to as HPLC) (Shimadzu Corporation). did. The result is shown in Figure 2. Figure 2 [As shown, N-glycoside-linked complex-type glycans that bind to the Fc region of an antibody against an antibody composition produced in 285, 300, 325, 345 mOsm / kg osmotic pressure adjustment medium The percentages of sugar chains in which fucose was not bound to N-acetylidanorecosamine at the reducing end were 70, 58, 45, and 40%, respectively.
[0068] また、生細胞密度と経過時間の積の総和で累積細胞数を示した。本実施例におい ては生細胞密度を 1日 1回測定したので、累積細胞数は毎回測定した生細胞密度を 加算した値 (細胞 ZmL X日)として簡易的に示した。また、比抗体生産速度は以下 の式より算出した。 [0068] In addition, the cumulative number of cells was shown as the sum of products of viable cell density and elapsed time. In this example, since the viable cell density was measured once a day, the cumulative number of cells was simply shown as a value obtained by adding the viable cell density measured each time (cell ZmL x day). The specific antibody production rate was calculated from the following formula.
(式 3)  (Formula 3)
比抗体生産速度( n g/細胞/日) =抗体濃度 (mg/L) ÷累積生細胞数 (細胞/ mL X日)  Specific antibody production rate (ng / cell / day) = antibody concentration (mg / L) ÷ cumulative viable cell count (cells / mL x day)
その結果、培養終了時における比抗体生産速度は初発の浸透圧に大きく影響を 受けなかった。同様に、累積生細胞数にも大きな変化は認められなかった。 As a result, the specific antibody production rate at the end of the culture greatly affects the initial osmotic pressure. I did not receive it. Similarly, no significant change was observed in the cumulative number of viable cells.
実施例 3  Example 3
[0069] YB2/0細胞株を用いたパーフュージョン培養での抗 GD抗体の製造  [0069] Production of anti-GD antibody in perfusion culture using YB2 / 0 cell line
3  Three
抗 GD抗体を生産する形質転換ラットーラット融合細胞 YB2/0株 61— 33 γ (FE Transformed rat-rat fusion cells producing anti-GD antibody YB2 / 0 strain 61—33 γ (FE
3 Three
RM BP— 7325)を用いて以下のパーフュージョン培養を行った。  The following perfusion culture was performed using RM BP-7325).
培地には、初発浸透圧が 350 mOsm/kgの CD— Hybridoma培地(インビトロジ ェン社製)を用いた。低浸透圧培地としては、 CD— Hybridoma培地を無菌水で希 釈し、 245、 260、 280、 300、 330m〇sm/kgの低浸透圧培地をそれぞれ調整した 。次いで、浸透圧調整後の培地に 10 mg/mL INS (インビトロジェン社製)、 1 mm ol/L MTX (シグマ社製)、 200 mmol/LL—グルタミン(インビトロジヱン社製)を 添加した。  As the medium, CD-Hybridoma medium (Invitrogen) having an initial osmotic pressure of 350 mOsm / kg was used. As the low osmotic pressure medium, CD-Hybridoma medium was diluted with sterile water, and 245, 260, 280, 300, 330 mOsm / kg low osmotic pressure medium was prepared. Next, 10 mg / mL INS (manufactured by Invitrogen), 1 mmol / L MTX (manufactured by Sigma), and 200 mmol / LL-glutamine (manufactured by Invitrogen) were added to the medium after adjusting the osmotic pressure.
[0070] 拡大培養は、 CD— Hybridoma培地で行レ、、充分な細胞数を取得した後、 1Lバイ オリアクターに播種した。培養開始後、 3日目より遠心分離器(SORVAL LABII)を 用いた灌流培養を開始した。培地交換速度は lwdとした。予め準備した各 280、 26 0、 245、 300、 330mOsm/kg浸透圧の培地を 5日間毎に培地交換し、約 5 X 106 細胞 ZmLとなるように細胞密度を維持した。培養は、 35°C、 pH7. 1、 DO50%で 3 5日間培養した。 [0070] Expansion culture was performed with CD-Hybridoma medium, and after obtaining a sufficient number of cells, the cells were seeded in a 1 L bioreactor. After the start of culture, perfusion culture using a centrifuge (SORVAL LABII) was started on the third day. The medium exchange rate was lwd. Each of the 280, 260, 245, 300, and 330 mOsm / kg osmotic pressure media prepared in advance was changed every 5 days, and the cell density was maintained to be about 5 × 10 6 cells ZmL. The culture was performed at 35 ° C, pH 7.1, DO50% for 35 days.
[0071] 培養開始から培養終了まで、培養液を毎日一回ずつサンプリングし、生細胞密度( 細胞 ZmL)、抗体濃度 (mgZUを測定した。また、培地中に生産された抗体に結合 する糖鎖を分析した。なお、生細胞密度は 0. 4%トリパンブルー溶液 (インビトロジェ ン社製)による色素排除法で、抗体濃度は HPLC (島津製作所社製)により、それぞ れ測定した。その結果を図 3に示す。図 3に示した通り、 260、 280、 300、 330mOs m/kg浸透圧調整培地で生産された抗体組成物中において、抗体の Fc領域に結 合する N-グリコシド結合複合型糖鎖の還元末端の N-ァセチルダノレコサミンにフコー スが結合していない糖鎖の割合はそれぞれ 85、 81、 76〜64、 47%であった。  [0071] From the start of culture to the end of culture, the culture solution was sampled once a day, and the viable cell density (cell ZmL) and antibody concentration (mgZU were measured. In addition, sugar chains that bind to the antibody produced in the medium The viable cell density was measured by a dye exclusion method using a 0.4% trypan blue solution (manufactured by Invitrogen), and the antibody concentration was measured by HPLC (manufactured by Shimadzu Corporation). This is shown in Fig. 3. As shown in Fig. 3, N-glycosidic conjugates that bind to the Fc region of antibodies in antibody compositions produced in 260, 280, 300, 330 mOs m / kg osmotic pressure adjusted medium. The proportions of sugar chains in which fucose was not bound to N-acetylidanorecosamine at the reducing end of the type sugar chain were 85, 81, 76 to 64, and 47%, respectively.
[0072] 245 m〇sm/kgは培養不良を示していた力 S、原因はアルカリが添加され実測浸 透圧 278 m〇sm/kgに上昇したことが考えられる。このときの浸透圧調整培地で生 産された抗体組成物中に含まれる、 Fc領域に結合する N-グリコシド結合複合型糖鎖 の還元末端の N -ァセチルダルコサミンにフコースが結合していない糖鎖の割合は 76 %であった。 [0072] It was considered that 245 mOsm / kg was a force S that showed a culture failure, and the cause was that alkali was added and the measured infiltration pressure increased to 278 mOsm / kg. The N-glycoside-linked complex type sugar chain that binds to the Fc region contained in the antibody composition produced in the osmotic pressure adjustment medium at this time The ratio of the sugar chain in which fucose was not bound to N-acetylyldarcosamine at the reducing end was 76%.
[0073] 以上より、培地の浸透圧が高い時には、抗体組成物において、抗体の Fc領域に結 合する N-グリコシド結合複合型糖鎖の還元末端の N-ァセチルダノレコサミンにフコー スが結合していない糖鎖の割合は減少し、培地の浸透圧が低い時には、抗体組成 物において、抗体の Fc領域に結合する N -グリコシド結合複合型糖鎖の還元末端の N -ァセチルダルコサミンにフコースが結合していない糖鎖の割合は増加していた。 実施例 4  [0073] From the above, when the osmotic pressure of the medium is high, in the antibody composition, fucose is present in the reducing terminal N-acetylidanorecosamine of the N-glycoside-bonded complex sugar chain that binds to the Fc region of the antibody. The proportion of unbound sugar chains decreases, and when the osmotic pressure of the medium is low, N-acetylyldarcosamine at the reducing end of the N-glycoside-linked complex sugar chain that binds to the Fc region of the antibody in the antibody composition In addition, the proportion of sugar chains without fucose was increased. Example 4
[0074] YB2/0株を用いたフエドバツチ培養による、抗 CCR4抗体の製造  [0074] Production of anti-CCR4 antibody by Fuedbatch culture using YB2 / 0 strain
(1)三角フラスコでのフヱドバッチ培養  (1) Food batch culture in Erlenmeyer flask
抗 CCR4抗体を生産する形質転換ラットーラット融合細胞 YB2/0株(FERM BP — 7054)を用いて、以下のフエドバツチ培養を行った。  Using the transformed rat-rat fusion cell strain YB2 / 0 (FERM BP — 7054) that produces anti-CCR4 antibody, the following Fuedbac culture was performed.
培地には、 CD— Hybridoma培地(インビトロジェン社製)を用いた。 CD— Hybrid oma培地に塩化ナトリウム(和光純薬社製)を添加することにより、培地の浸透圧を 22 6、 242、 253、 284、 304、 313、 337、 359、 375mOsmZkgにそれぞれ調整した 。次いで、浸透圧調整後の各種培地に lOmg/mLINS (インビトロジヱン社製)、 1 mmol/L MTX (シグマ社製)、 200mmol/L L—グルタミン(インビトロジヱン社製 )を添加し、培養を行った。  CD-Hybridoma medium (Invitrogen) was used as the medium. By adding sodium chloride (manufactured by Wako Pure Chemical Industries, Ltd.) to the CD-Hybridoma medium, the osmotic pressure of the medium was adjusted to 226, 242, 253, 284, 304, 313, 337, 359, and 375 mOsmZkg, respectively. Next, lOmg / mLINS (manufactured by Invitrogene), 1 mmol / L MTX (manufactured by Sigma), and 200 mmol / L L-glutamine (manufactured by Invitrogene) were added to the various media after osmotic pressure adjustment, followed by culturing.
[0075] 拡大培養は浸透圧 313 mOsm/kgの培地で行レ、、充分な細胞数を獲得したとこ ろで 500mL容三角フラスコ(コーユング社製)に準備した各 226、 242、 253、 284、 304、 337、 359、 375m〇sm/kg浸透圧の培地に 3 X 105糸田月包/ mLとなるように 播種した。各三角フラスコに流速 2 L/分の 7. 5%炭酸ガスを 1分間注入した後、 35 °C、 lOOrpmの条件で 8日間培養した。 [0075] Expansion culture was performed in a medium with an osmotic pressure of 313 mOsm / kg, and when a sufficient number of cells were obtained, each of 226, 242, 253, 284, 226, 242, 253, 284, It was seeded in a medium of 304, 337, 359, 375 mOsm / kg osmotic pressure to give 3 × 10 5 Itodatsuki sachet / mL. Each Erlenmeyer flask was injected with 7.5% carbon dioxide gas at a flow rate of 2 L / min for 1 minute, and then cultured at 35 ° C. and lOOrpm for 8 days.
[0076] 培養開始から培養終了まで、培養液を毎日一回ずつ採取し、生細胞密度 (細胞/ mL)および抗体濃度 (mg/L)を測定した。また、培養終了時の培養液中に生産され た抗体に結合する糖鎖を分析するための試料を取得した。なお、生細胞密度は 0. 4 %トリパンブルー溶液 (インビトロジェン社製)を用いた色素排除法で、抗体濃度は H PLC (島津製作所社製)によってそれぞれ測定した。その結果を図 4に示す。図 4に 示した通り、結果、 226、 242、 253、 284、 304、 337、 359、 375mOsm/kgの浸 透圧培地で生産された抗体組成物中において、抗体の Fc領域に結合する N_グリコ シド結合複合型糖鎖の還元末端の N-ァセチルダノレコサミンにフコースが結合してい なレヽ糖鎖の害 |J合はそれぞれ 90、 92、 92、 92、 89、 84、 80、 77%であった。したカっ て、抗 CCR4抗体生産 YB2Z0株の三角フラスコフヱドバッチ培養では、培地浸透圧 が低いほど生産された抗体組成物において、抗体 Fc領域に結合する N-グリコシド結 合複合型糖鎖の還元末端の N -ァセチルダルコサミンにフコースが結合していない糖 鎖の割合が増大することが示された。 [0076] From the start of the culture to the end of the culture, the culture solution was collected once every day, and the viable cell density (cells / mL) and antibody concentration (mg / L) were measured. In addition, a sample for analyzing a sugar chain bound to the antibody produced in the culture solution at the end of the culture was obtained. The viable cell density was measured by a dye exclusion method using a 0.4% trypan blue solution (manufactured by Invitrogen), and the antibody concentration was measured by HPLC (manufactured by Shimadzu Corporation). The results are shown in Fig. 4. Figure 4 As shown, the results show that N_glycosidic linkages that bind to the Fc region of antibodies in antibody compositions produced in 226, 242, 253, 284, 304, 337, 359, 375 mOsm / kg permeation pressure media. Harm of leucose chain without fucose binding to N-acetylidanorecosamine at the reducing end of complex type sugar chain | J-joint was 90, 92, 92, 92, 89, 84, 80, 77% respectively It was. Therefore, in the conical flask fed batch culture of the anti-CCR4 antibody-producing YB2Z0 strain, the lower the osmotic pressure of the medium, the lower the osmotic pressure of the medium, the N-glycoside-conjugated complex sugar chain that binds to the antibody Fc region. It was shown that the proportion of sugar chains in which fucose is not bound to the N-acetylyldarcosamine at the reducing end of the protein increased.
[0077] また、実施例 2に記載の方法と同様の方法で累積生細胞数および比抗体生産速度 を算出した。その結果、培養終了時における比抗体生産速度は培地浸透圧が低くな るほど増大していた。累積生細胞数は培地浸透圧による大きな変化は認められなか つた。 [0077] In addition, the cumulative number of viable cells and the specific antibody production rate were calculated by the same method as described in Example 2. As a result, the specific antibody production rate at the end of the culture increased as the medium osmotic pressure decreased. The cumulative number of viable cells did not change significantly due to the osmotic pressure of the medium.
(2) 1Lリアクターでの培養  (2) Culture in 1L reactor
実施例 4 (1)と同じ細胞を用いて以下のフエドバツチ培養を実施した。  Example 4 Using the same cells as in (1), the following Fuedbatch culture was performed.
[0078] 培地には、 CD— Hybridoma培地を用いた。 CD— Hybridoma培地に塩化ナトリ ゥムを添カロすることで浸透圧 227、 313、 333、 406 mOsm/kgの培地を調整した。 次いで、浸透圧調整後の培地に 10mg/mL INS、 1 mmol/L MTX、 200 mmol /L L—グノレタミンを添カ卩し、培養に用いた。  [0078] As the medium, CD-Hybridoma medium was used. A medium with osmotic pressures of 227, 313, 333 and 406 mOsm / kg was prepared by adding sodium chloride to the CD-Hybridoma medium. Subsequently, 10 mg / mL INS, 1 mmol / L MTX, 200 mmol / L L-gnoretamine was added to the medium after adjusting the osmotic pressure, and used for the culture.
拡大培養は浸透圧 313 mOsm/kgの培地で実施し、充分な細胞数を獲得したと ころで 1Lバイオリアクター(ABLE社製)に準備した各 227、 333、 406 mOsm/kg 浸透圧の培地に 3. 5 X 105細胞/ mLとなるように播種した。培養は 35°C、 pH7. 1、 DO50%の条件下で 11日間行った。 Enlargement culture was performed in a medium with an osmotic pressure of 313 mOsm / kg. When a sufficient number of cells were obtained, each medium with 227, 333, 406 mOsm / kg osmotic pressure prepared in a 1 L bioreactor (manufactured by ABLE) was used. 3. Seeded at 5 × 10 5 cells / mL. Culturing was performed for 11 days under conditions of 35 ° C, pH 7.1, and DO50%.
[0079] 培養開始から終了まで、培養液を毎日一回ずつ採取し、生細胞密度 (細胞 ZmL) および抗体濃度 (mgZmL)を測定した。また、培養終了時の培養液から生産抗体を 精製し、抗体に結合する糖鎖を分析するための試料を取得した。なお、生細胞数は 0. 4%トリパンブルー溶液を用いた色素排除法で計測し、生産抗体濃度は HPLCに よって測定した。得られた抗体に結合する糖組成を分析した結果、 227、 333、 406 mOsm/kg浸透圧調整培地で生産された抗体組成物中におレ、て、抗体の Fc領域 に結合する N -グリコシド結合複合型糖鎖の還元末端の N -ァセチルダルコサミンにフ コースが結合していない糖鎖の割合はそれぞれ 94、 79、 61 %であった。したがって 、抗 CCR4抗体生産 YB2Z0細胞株の 1Lリアクター培養では、培地の浸透圧が低 いほど、抗体組成物において、抗体の Fc領域に結合する N-グリコシド結合複合型糖 鎖の還元末端の N -ァセチルダルコサミンにフコースが結合していない糖鎖の割合が 高くなることが示された。 [0079] From the start to the end of the culture, the culture broth was collected once a day, and the viable cell density (cell ZmL) and antibody concentration (mgZmL) were measured. In addition, the production antibody was purified from the culture solution at the end of the culture, and a sample for analyzing the sugar chain bound to the antibody was obtained. The viable cell count was measured by a dye exclusion method using 0.4% trypan blue solution, and the production antibody concentration was measured by HPLC. As a result of analyzing the sugar composition that binds to the obtained antibody, the antibody Fc region was produced in the antibody composition produced in the osmotic pressure adjustment medium 227, 333, 406 mOsm / kg. The proportions of sugar chains in which fucose was not bound to N-acetylyldarcosamine at the reducing end of the N-glycoside-bonded complex sugar chain bound to N was 94, 79 and 61%, respectively. Therefore, in the 1L reactor culture of the anti-CCR4 antibody-producing YB2Z0 cell line, the lower the osmotic pressure of the medium, the lower the osmotic pressure of the culture medium, It was shown that the proportion of sugar chains in which fucose is not bound to acetylyldarcosamine increases.
[0080] また、実施例 2に記載の方法と同様の方法で累積生細胞数および比抗体生産速度 を算出した。その結果、培養終了時における比抗体生産速度は、 227、 333、 406 11103111/1¾浸透圧培地の順に6.9、 4.4、 4.6mg/106細胞/日であり、累積細胞 数は比抗体生産速度が低いほど増大してレ、た。 [0080] Further, the cumulative number of viable cells and the specific antibody production rate were calculated by the same method as described in Example 2. As a result, the specific antibody production rate at the end of the culture was 6.9, 4.4, 4.6 mg / 10 6 cells / day in the order of 227, 333, 406 11103111 / 1¾ osmotic medium, and the cumulative number of cells was the specific antibody production rate. The lower it was, the more it increased.
実施例 5  Example 5
[0081] Sp2Z0株を用いたバッチ培養での抗 GD抗体の製造  [0081] Production of anti-GD antibody in batch culture using Sp2Z0 strain
3  Three
抗 GDモノクローナル抗体を生産する形質転換マウスミエローマ Sp2/0株(FER Transformed mouse myeloma strain Sp2 / 0 that produces anti-GD monoclonal antibodies (FER
3 Three
M BP _ 3512)を用レ、て以下のバッチ培養を実施した。  The following batch culture was performed using M BP — 3512).
培地として、 RPMI1640培地(インビトロジヱン社製)を用いた。低浸透圧培地の調 整は、 RPMI1640培地を無菌水で希釈して行った。同様に、高浸透圧培地の調整 は、 RPMI1640培地に塩化ナトリウムを添加して行った。次いで、浸透圧調整後の 培地に 10%ダイゴ GF21 (日本製薬社製)、 lmmol/L MTX、 50 mg/mL G418 (ナカライテスタ社製)を添カ卩した。上述の方法で得られた浸透圧 210、 238、 277、 3 12、 353、 407 mOsm/kgの培地を用レ、て以下の培養を行った。  As the medium, RPMI1640 medium (manufactured by Invitrogene) was used. The hypoosmotic medium was prepared by diluting RPMI1640 medium with sterile water. Similarly, the hyperosmotic medium was adjusted by adding sodium chloride to RPMI1640 medium. Next, 10% Daigo GF21 (manufactured by Nippon Pharmaceutical Co., Ltd.), lmmol / L MTX, and 50 mg / mL G418 (manufactured by Nacalai Testa) were added to the medium after adjusting the osmotic pressure. The following culture was carried out using the medium of osmotic pressure 210, 238, 277, 312, 353, 407 mOsm / kg obtained by the above method.
[0082] 拡大培養は RPMI1640培地に 10%ゥシ胎児血清 JRH社製)、 1 mmol/L MT X、 50 mg/mL G418を添加した培地で実施し、充分な細胞数を獲得したところで lOOOmL容 CELL BAG (Medtronic社製)に準備した各 210、 238、 277、 312、 3 53、 407 mOsm/kg浸透圧の培地に 2. 5 X 105細胞/ mLとなるように播種した。 培養は、 37°C、 5%炭酸ガスインキュベーター内で 7日間行った。 [0082] Expansion culture was performed in RPMI1640 medium supplemented with 10% urine fetal serum JRH), 1 mmol / L MT X, 50 mg / mL G418. It seed | inoculated so that it might become 2.5 * 10 < 5 > cell / mL in the culture medium of each 210,238,277,312,353,407mOsm / kg osmotic pressure prepared for CELL BAG (made by Medtronic). The culture was performed in a 37 ° C, 5% carbon dioxide incubator for 7 days.
[0083] 培養終了後の培養培地中から生産抗体を精製し、抗体に結合する糖鎖の分析す るための試料を取得した。得られた抗体に結合する糖組成を分析した結果、 210、 2 38、 277、 312、 353、 407m〇sm/kg浸透圧調整培地で生産された抗体組成物 中におレ、て、抗体の Fc領域に結合する N -グリコシド結合複合型糖鎖の還元末端の N -ァセチルダルコサミンにフコースが結合していない糖鎖の割合は、それぞれ 25、 20 、 20、 16、 16、 15%であった(図 6)。 [0083] The produced antibody was purified from the culture medium after completion of the culture, and a sample for analyzing the sugar chain bound to the antibody was obtained. As a result of analyzing the sugar composition that binds to the obtained antibody, the antibody composition produced in 210, 23, 38, 277, 312, 353, 407 mOsm / kg osmotic pressure adjusted medium The percentage of sugar chains in which fucose is not bound to N-acetylyldarcosamine at the reducing end of the N-glycoside-bonded complex sugar chain that binds to the Fc region of the antibody is 25, 20, They were 20, 16, 16, and 15% (Fig. 6).
実施例 6  Example 6
[0084] NS0株を用いたバッチ培養での抗 CCR4抗体の製造  [0084] Production of anti-CCR4 antibody in batch culture using NS0 strain
抗 CCR4抗体を生産する形質転換 NS0株(FERM BP— 7964)を用いて、以下 のバッチ培養を実施した。  The following batch culture was performed using a transformed NS0 strain (FERM BP-7964) that produces an anti-CCR4 antibody.
培地として、 RPMI1640培地(インビトロジヱン社製)を用いた。低浸透圧培地の調 整は、 RPMI1640培地を無菌水で希釈した。高浸透圧培地の調整は、 RPMI培地 に塩化ナトリウムを添加した。次いで、浸透圧調整後の培地に 10%ダイゴ GF21 (日 本製薬社製)、 500 nmol/L MTX、を添加した。上記の方法で得られた、浸透圧 2 17、 241、 276、 305、 349、 399 mOsm/kgの培地を用レヽて培養を行った。  As the medium, RPMI1640 medium (manufactured by Invitrogene) was used. The hypotonic medium was prepared by diluting RPMI1640 medium with sterile water. To adjust the hyperosmotic medium, sodium chloride was added to RPMI medium. Subsequently, 10% Daigo GF21 (manufactured by Nippon Pharmaceutical Co., Ltd.) and 500 nmol / L MTX were added to the medium after adjusting the osmotic pressure. Culturing was carried out using a medium having an osmotic pressure of 217, 241, 276, 305, 349, 399 mOsm / kg obtained by the above method.
[0085] 拡大培養は RPMI1640培地に 10。/。ゥシ胎児血清 tFRH社製)、 500nmol/L M TX、を添加した培地で実施し、充分な細胞数を獲得したところで T225cm2フラスコ( 岩城硝子社製)に準備した各 217、 241、 276、 305、 349、 399 mOsmZkg浸透 圧の培地に 3 X 105細胞 ZmLとなるように播種した。培養は、 37°C、 5%炭酸ガスィ ンキュベータ一内で 5日間行った。 [0085] Enlarged cultures in RPMI 1640 medium10. /. 217, 241, 276, 305 prepared in a T225cm 2 flask (manufactured by Iwaki Glass Co., Ltd.) when a sufficient number of cells was obtained. , 349, 399 mOsmZkg Osmotic medium was seeded at 3 × 10 5 cells ZmL. Cultivation was carried out in a 37 ° C, 5% carbon dioxide incubator for 5 days.
[0086] 培養終了後の培養培地中から抗体に結合する糖鎖の分析するための試料を取得 した。得られた抗体に結合する糖組成を分析した結果、 217、 241、 276、 305、 349 、 399m〇sm/kg浸透圧の調整培地で生産された抗体組成物において、抗体の Fc 領域に結合する N-グリコシド結合複合型糖鎖の還元末端の N-ァセチルダルコサミン にフコース力 S結合してレヽなレヽ糖鎖の害 ij合 ίま、それぞれ 70、 73、 73、 69、 56、 40% であった(図 7)。  [0086] A sample for analyzing a sugar chain bound to the antibody was obtained from the culture medium after completion of the culture. As a result of analyzing the sugar composition that binds to the obtained antibody, it binds to the Fc region of the antibody in the antibody composition produced in the conditioned medium of 217, 241, 276, 305, 349, 399mOsm / kg osmotic pressure. N-glycidyl-linked glycan N-acetylyldarcosamine at the reducing end of fucose force S-bonded to the damage of low-grade glycans, 70, 73, 73, 69, 56, 40%, respectively (Fig. 7).
産業上の利用可能性  Industrial applicability
[0087] 動物細胞を培養する培地中の浸透圧を制御して培養することにより、動物細胞より 生産されるグリコシド結合複合型糖鎖を有する糖タンパク質組成物にぉレ、て、糖タン パク質のグリコシド結合糖鎖にフコースが結合していない糖鎖の割合を変化させるこ とを特徴とする、糖タンパク質組成物の製造方法を提供する。 [0087] By culturing while controlling the osmotic pressure in a medium for culturing animal cells, the glycoprotein composition having glycoside-linked complex-type sugar chains produced from animal cells is reduced to a glycoprotein. There is provided a method for producing a glycoprotein composition, characterized in that the ratio of the sugar chain in which fucose is not bound to the glycoside-linked sugar chain is changed.

Claims

請求の範囲  The scope of the claims
[I] 動物細胞を培養する培地中の浸透圧を制御して培養することにより、動物細胞より生 産されるグリコシド結合糖鎖を有する糖タンパク質組成物において、糖タンパク質の グリコシド結合糖鎖にフコースが結合してレ、なレ、糖鎖の割合を変化させることを特徴 とする、糖タンパク質組成物の製造方法。  [I] In a glycoprotein composition having a glycoside-linked sugar chain produced from animal cells by controlling the osmotic pressure in a medium for culturing animal cells, fucose is added to the glycoside-linked sugar chain of the glycoprotein. The method for producing a glycoprotein composition is characterized in that the ratio of les, nares and sugar chains is changed by binding.
[2] 動物細胞を培養する培地中の浸透圧を制御して培養することにより、動物細胞より生 産されるグリコシド結合糖鎖を有する糖タンパク質組成物において、糖タンパク質の グリコシド結合糖鎖にフコースが結合してレ、なレ、糖鎖の割合を増加させることを特徴 とする、糖タンパク質組成物の製造方法。  [2] In a glycoprotein composition having glycoside-linked sugar chains produced from animal cells by controlling the osmotic pressure in a medium for culturing animal cells, fucose is added to the glycoside-linked sugar chains of the glycoprotein. The method for producing a glycoprotein composition is characterized in that the ratio of les, nares and sugar chains is increased by binding.
[3] 培地中の浸透圧が、 200〜400mOsm/kgである、請求項 1または 2記載の方法。  [3] The method according to claim 1 or 2, wherein the osmotic pressure in the medium is 200 to 400 mOsm / kg.
[4] 動物細胞がラット細胞、マウス細胞およびハムスター細胞から選ばれる細胞である、 請求項 1〜3のいずれか 1項に記載の方法。  [4] The method according to any one of claims 1 to 3, wherein the animal cell is a cell selected from a rat cell, a mouse cell and a hamster cell.
[5] ラット細胞がミエローマ細胞またはミエローマ細胞系の雑種細胞である、請求項 4記 載の方法。  5. The method according to claim 4, wherein the rat cell is a myeloma cell or a hybrid cell of a myeloma cell line.
[6] ラット細胞力 SYB2/3Hし P2.G11.16Ag.20(ATCC CRL 1662、 ECACC No : 85110501) 細胞である、請求項 4記載の方法。  [6] The method according to claim 4, wherein the rat cell force is SYB2 / 3H P2.G11.16Ag.20 (ATCC CRL 1662, ECACC No: 85110501) cells.
[7] マウス細胞が NS0細胞または Sp2/0細胞から選ばれる細胞である、請求項 4記載の方 法。 [7] The method according to claim 4, wherein the mouse cell is a cell selected from NS0 cells or Sp2 / 0 cells.
[8] 動物細胞が、糖タンパク質をコードする DNAを含有する組換え体 DNAが導入された 細胞である、請求項:!〜 7のいずれか 1項に記載の方法。  [8] The method according to any one of [7] to [7] above, wherein the animal cell is a cell into which a recombinant DNA containing a DNA encoding a glycoprotein has been introduced.
[9] 糖タンパク質が抗体である、請求項 1〜8のいずれ力 1項に記載の方法。 [9] The method according to any one of claims 1 to 8, wherein the glycoprotein is an antibody.
[10] 動物細胞を培養する培地中の浸透圧を制御して培養することにより、動物細胞より生 産されるグリコシド結合糖鎖を有する糖タンパク質組成物において、糖タンパク質の グリコシド結合糖鎖にフコースが結合してレ、なレ、糖鎖の割合を変化させる方法。 [10] In a glycoprotein composition having glycoside-linked sugar chains produced from animal cells by controlling the osmotic pressure in a medium for culturing animal cells, fucose is added to the glycoside-linked sugar chains of the glycoprotein. Is a method of changing the proportion of sugar chains.
[I I] 培地中の浸透圧が、 200〜400mOsm/kgである、請求項 10記載の方法。  [I I] The method according to claim 10, wherein the osmotic pressure in the medium is 200 to 400 mOsm / kg.
[12] 動物細胞がラット細胞、マウス細胞およびハムスター細胞から選ばれる細胞である、 請求項 10または 11記載の方法。  12. The method according to claim 10 or 11, wherein the animal cell is a cell selected from a rat cell, a mouse cell and a hamster cell.
[13] ラット細胞がミエローマ細胞またはミエローマ細胞系の雑種細胞である、請求項 12記 載の方法。 [13] The rat cell according to claim 12, wherein the rat cell is a myeloma cell or a hybrid cell of a myeloma cell line. The method of publication.
[14] ラット細胞力 YB2/3Hし P2.G11.16Ag.20(ATCC CRL 1662、 ECACC No : 85110501) 細胞である、請求項 12記載の方法。  [14] The method according to claim 12, wherein the rat cell force is YB2 / 3H P2.G11.16Ag.20 (ATCC CRL 1662, ECACC No: 85110501) cells.
[15] マウス細胞が NS0細胞または Sp2/0細胞から選ばれる細胞である、請求項 11記載の 方法。 15. The method according to claim 11, wherein the mouse cell is a cell selected from NS0 cells or Sp2 / 0 cells.
[16] 動物細胞が、糖タンパク質をコードする DNAを含有する組換え体 DNAが導入された 細胞である、請求項 10〜: 15のいずれか 1項に記載の方法。  [16] The method according to any one of [10] to [15], wherein the animal cell is a cell into which a recombinant DNA containing a DNA encoding a glycoprotein has been introduced.
[17] 糖タンパク質が抗体である、請求項 10〜: 16のいずれ力 1項に記載の方法。 [17] The method according to any one of [10] to [16], wherein the glycoprotein is an antibody.
PCT/JP2006/307599 2005-04-11 2006-04-11 Process for production of glycoprotein composition WO2006109781A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-113263 2005-04-11
JP2005113263 2005-04-11

Publications (1)

Publication Number Publication Date
WO2006109781A1 true WO2006109781A1 (en) 2006-10-19

Family

ID=37087052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307599 WO2006109781A1 (en) 2005-04-11 2006-04-11 Process for production of glycoprotein composition

Country Status (1)

Country Link
WO (1) WO2006109781A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008173221A (en) * 2007-01-17 2008-07-31 Transcu Ltd Electrode structure for osmotic pressure action relieving iontophoresis
JP2010524467A (en) * 2007-04-16 2010-07-22 モメンタ ファーマシューティカルズ インコーポレイテッド Defined glycoprotein products and related methods
US9879229B2 (en) 2011-03-14 2018-01-30 National Research Council Of Canada Method of viral production in cells

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6656466B1 (en) * 1995-06-06 2003-12-02 Genetech, Inc. Human tumor necrosis factor—immunoglobulin(TNFR1-IgG1) chimera composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6656466B1 (en) * 1995-06-06 2003-12-02 Genetech, Inc. Human tumor necrosis factor—immunoglobulin(TNFR1-IgG1) chimera composition

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
OKAZAKI A. ET AL.: "Fucose depletion from human IgG1 oligosaccharide enhances binding enthalpy and association rate between IgG1 and Fc gamma RIIIa", J. MOL. BIOL., vol. 336, no. 5, 5 March 2004 (2004-03-05), pages 1239 - 1249, XP004490178 *
SHIELDS R.L. ET AL.: "Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fc gamma RIII and antibody-dependent cellular toxicity", J. BIOL. CHEM., vol. 277, no. 30, 26 July 2002 (2002-07-26), pages 26733 - 26740, XP002964542 *
SHINKAWA T. ET AL.: "The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular", J. BIOL. CHEM., vol. 278, no. 5, 31 January 2003 (2003-01-31), pages 3466 - 3473, XP002355427 *
YAMANE-OHNUKI N. ET AL.: "Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity", BIOTECHNOL. BIOENG., vol. 87, no. 5, 6 August 2004 (2004-08-06), pages 614 - 622, XP002983758 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008173221A (en) * 2007-01-17 2008-07-31 Transcu Ltd Electrode structure for osmotic pressure action relieving iontophoresis
JP2010524467A (en) * 2007-04-16 2010-07-22 モメンタ ファーマシューティカルズ インコーポレイテッド Defined glycoprotein products and related methods
US9879229B2 (en) 2011-03-14 2018-01-30 National Research Council Of Canada Method of viral production in cells

Similar Documents

Publication Publication Date Title
US11459595B2 (en) Methods for increasing mannose content of recombinant proteins
JP7267284B2 (en) Methods for Modulating Protein Mannosylation Profiles Using Polyether Ionophores
AU2021258023B2 (en) Methods for modulating protein galactosylation profiles of recombinant proteins using peracetyl galactose
US20130130317A1 (en) Method for producing substance
AU2016354052B2 (en) Methods for modulating production profiles of recombinant proteins
KR20220143108A (en) Mammalian Cell Culture Process
WO2006109781A1 (en) Process for production of glycoprotein composition
WO2008035631A1 (en) Method of producing substance
JPWO2012091023A1 (en) Method for preparing aqueous solution containing medium and chelating agent
WO2022225060A1 (en) Method for suppressing production of degradation products
US20240191179A1 (en) Method for suppressing production of degradation products
JP2023522417A (en) Enzyme and pathway regulation using sulfhydryl compounds and their derivatives
WO2016162514A1 (en) Methods for modulating protein glycosylation profiles of recombinant proteins

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 06731546

Country of ref document: EP

Kind code of ref document: A1