WO2006109561A1 - Microscope imaging apparatus and method - Google Patents

Microscope imaging apparatus and method Download PDF

Info

Publication number
WO2006109561A1
WO2006109561A1 PCT/JP2006/306256 JP2006306256W WO2006109561A1 WO 2006109561 A1 WO2006109561 A1 WO 2006109561A1 JP 2006306256 W JP2006306256 W JP 2006306256W WO 2006109561 A1 WO2006109561 A1 WO 2006109561A1
Authority
WO
WIPO (PCT)
Prior art keywords
illumination
sample
image
light
optical system
Prior art date
Application number
PCT/JP2006/306256
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Ogino
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Priority to JP2007512740A priority Critical patent/JP5062588B2/en
Publication of WO2006109561A1 publication Critical patent/WO2006109561A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/46Systems using spatial filters

Definitions

  • the present invention relates to a microscope imaging apparatus and method for observing and imaging with high resolution and depth.
  • NA numerical aperture
  • Illumination plays a role as a probe to obtain sample force optical information, and since a microscope can produce an optimal light source for an artificial purpose, it is incoherent, partially coherent, or coherent. Band power Able to irradiate light of any condition up to light of a single wavelength.
  • the optical resolution which is the main performance of the objective observation system, depends on the nature and wavelength of light, and the theoretical resolution limit is 2NAZ for incoherent light and NA ⁇ ⁇ for coherent light.
  • the parameter that can increase the resolution here is to increase the aperture when the wavelength of light is determined.
  • use an optical material that has a large magnification and refractive index of the objective lens and good wavelength characteristics. was that.
  • Illumination methods that make this possible include:
  • the best illumination method is Koehler illumination (for example, Non-Patent Document 1).
  • Kohler illumination is telecentric on the image side and theoretically has a Lambertian surface with uniform brightness at infinity, which is an aperture stop on the front focal plane of the lens and a sample (covered) on the rear focal plane. Place the lens so that it is the illumination surface) and illuminate it.
  • the actual light source does not have a theoretically uniform Lambertian surface.
  • the luminance of a light emitting part of a tungsten filament, a mercury discharge lamp, etc. is uneven with respect to location and direction. This causes illumination spots.
  • the resolution limit of both the illumination system and the objective optical system is ⁇ ⁇ 2 ⁇ , that is, 2 ⁇ ⁇ (lines / mm) for incoherent light, and ⁇ ⁇ , that is, ⁇ / ⁇ (lines) for coherent light. / mm).
  • Partially coherent light is in-between but non-linear, and diffracted light extends to ⁇ Z4NA.
  • the basis of the resolution is based on the ability to identify the naked eye as a detector, and it is still the most powerful detector of humanity, and it is an image information input and processing device. Absent.
  • a transmission function is determined by integrally acting an illumination system and an objective optical system, and illumination can be changed to incoherent light power or partially coherent light by a diaphragm of the illumination system.
  • the numerical aperture of the objective optical system the incoherent light power can be changed even to partially coherent light to form an image.
  • the contrast discrimination ability of the eyes is the background.
  • L According to A LZL —Constant (0.01 to 0.02).
  • the background light L is established within the range of 3 to 3 ⁇ 10 3 cd Zm 2 .
  • the resolution of the optical system is a radial force ⁇ .61 called the Airy disk, which is the first dark ring of the point image by the circular aperture, that is, the two-dimensional Fourier transform of the aperture function by Fraunhofer diffraction.
  • ⁇ ⁇ the two-dimensional Fourier transform of the aperture function by Fraunhofer diffraction.
  • ⁇ ⁇ the two-dimensional Fourier transform of the aperture function by Fraunhofer diffraction.
  • ⁇ ⁇ contains about 84% of the light energy.
  • the square opening extends along a radial line perpendicular to the side, and the diffracted light spreads in a concentric ring around that.
  • a square opening extends along a radial line perpendicular to the side. Objects smaller than these diffract to this size and spread, and the contrast is significantly lower than real objects.
  • the detection limit of the difference in contrast with the background light is determined by the limit of the eye contrast discrimination ability.
  • the depth, resolution, wavelength band, etc. of the image connected by the optical system can be analyzed as a signal similar to an electromagnetic wave.
  • the contrast is reduced by background light (for example, imaging characteristics of the optical system, stray light, scattered light), self-luminescence of the optical material and sample holding material, fluorescence, and imaging system noise. . It is now possible to design these comprehensively.
  • the quantum efficiency of the image sensor is increased, the imaging time is lengthened, or a plurality of images are superimposed to detect the difference in contrast between the optical system and The functions of the image sensor are integrated. Therefore, by reaching the limits of each of them, the limits of the naked eye can be approached or exceeded.
  • the incoherent light is 2 ⁇
  • the coherent light is ⁇
  • the intermediate partial coherent light is determined by the numerical aperture. .
  • information on the phase difference that is normally too low to be detected as a contrast difference is reflected in the image as a phase modulation spectrum that includes high-frequency spatial spectral components. Demodulate and synthesize with processing.
  • the light modulated by the diffraction grating is demodulated and imaged after passing through the optical system (for example, Patent Document 2 and Non-Patent Document 3), or the light having a phase different by 120 degrees on the diffraction grating. After modulation and passing through the optical system, it is possible to easily demodulate (for example, Patent Document 3 and Non-Patent Document 4), or multiple images captured through the optical system by preparing a spatial modulation pattern. A method of processing and synthesizing has been proposed (for example, Patent Document 4).
  • the optical information contained in the sample can be detected as much as possible. If only a part of the layers was observed, information such as signs of important diseases was observed. There is a possibility of dropping. Therefore, the depth of the sample does not affect the observation image due to the difference in contrast due to dust adhering to the surface, dust contained in each layer of the encapsulating material, non-uniformity of the encapsulating material layer, etc. It is also desirable to capture as much material as possible contained in the sample as an image.
  • the illumination that they can be is incoherent light or partially coherent light.
  • it is partial coherent light that has an adequate depth of focus and an image of the entire visible light range.
  • a transparent and irregularly reflected one or a phase difference larger than 8Z ⁇ or 4 ⁇ can be detected even at a low contrast if the microscope has a sufficiently uniform illumination system and a deep focal depth.
  • the illumination system and objective system are made telecentric, and the illumination and iris diaphragm are made variable.
  • a variable iris diaphragm objective lens for example, Patent Document 5
  • the iris diaphragm is sufficiently in the range of about 0.6 to 0.05.
  • the contrast range ⁇ LZL constant (0.01 to 0.02) that can be identified by the eyes according to Weber'Fechner's law is set. There are attempts to exceed. It is desirable to have a comprehensive design and signal processing that can improve these performances, and to make the device more suitable for electronic measurement.
  • Patent Document 1 JP 2002-182119 A (Fig. 2)
  • Patent Document 2 Japanese Patent No. 3066874 (Fig. 1)
  • Patent Document 3 Japanese Patent Laid-Open No. 11 242189 (Fig. 1)
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2001-235316 (Fig. 1)
  • Patent Document 5 Japanese Patent Laid-Open No. 2003-028460 (FIGS. 2 and 5)
  • Non-Patent Document 1 E.Hect: "Optics Third Edition", ADDISON WESLEY, pp.453-465, Fi gurel0.30, Figurel0.24, 1998. (Fig. 1, 2)
  • Non-Patent Document 2 S.INOUE: "VIDEO MICROSCOPY The Fundamentals", Plenum, 1 997.
  • Non-Patent Document 3 W. Goodman: “Introduction to Fourier Optics", McGraw-Hill, 1986.
  • Non-Patent Document 4 W ⁇ ukosz: "Optical System with Resolving Powers Exceeding the CI assical Limit. ⁇ ", J. Opt. Soc. Am. 57, pp.932— 941, July 1967.
  • Patent Document 5 D. Mendlovic et al: One-dimensional superresolution optical system for temporally restricted objects ", J. Applied Optics, Vol.36, pp.2353- 2359, April 1
  • Non-Patent Document 6 F. Harary: “GRAPH THEORY”, Addison- Wesley, 1971
  • Non-Patent Document 7 K.APPEL, W.HAKEN: "THE SOLUTION OF THE FOUR-COLO
  • a general microscope is an illumination system and an observation system for incoherent light, in which the conditions of high, resolution, depth, and depth necessary to detect all optical information contained in a sample are balanced. It is difficult to achieve the function.
  • Partially coherent light is in the middle, and an image with moderately high resolution and deep depth can be observed.
  • partially coherent light is non-linear based on Fourier imaging theory, but remains linear in low contrast samples.
  • partial coherent light has a lower resolution but deeper depth than incoherent light.
  • An object of the present invention is to effectively use the resolution of the illumination system and the objective optical system and the image sensor. It is another object of the present invention to provide a microscope imaging apparatus and method for processing and synthesizing image information with contrast density and obtaining a bright image with high resolution and deep depth.
  • a microscope imaging apparatus includes an illumination optical system for illuminating a sample, an observation optical system for observing a sample illuminated by the illumination optical system, and an image of the sample observed by the observation optical system.
  • the illumination optical system is provided at a position where a uniform illumination image is formed, uniformly illuminates the entire surface of the sample, and provides coherent light or partially coherent light.
  • An image switching unit configured to illuminate the sample a plurality of times for each illumination group, and the imaging system composes an image corresponding to the sample illuminated by the illumination group to form one image.
  • the illumination group includes a single bright part or a plurality of bright parts that are not adjacent to each other, and a dark part surrounding the bright part, and the sample is covered by all the bright parts of the illumination group. The entire surface of the lamp is illuminated .
  • the microscope imaging method includes an illumination step for illuminating a sample, an observation step for observing the sample illuminated by the illumination step, and an imaging for acquiring an image of the sample observed by the observation step.
  • the illumination step uniformly illuminates the entire surface of the sample at a position where a uniform illumination image is formed, and the coherent light or the partial coherent light is emitted for each illumination group.
  • An illumination switching step of illuminating the sample a plurality of times includes an image synthesis step of composing an image corresponding to the sample illuminated by the illumination group to form one image
  • the illumination group has one bright part or a plurality of bright parts that are not adjacent to each other, and a dark part surrounding the bright part, and the entire surface of the sample is illuminated by all the bright parts of the illumination group. It is characterized by being.
  • the illumination group consists of one bright part or a plurality of bright parts that are not adjacent to each other (also referred to as “light spots” in this specification) and a dark part that surrounds the bright part (in this specification, “dark part”). Also referred to as “point”). And the entire surface of the sample is illuminated by all bright portions of the illumination group.
  • High-resolution images can be obtained for incoherent light, and partially coherent light is divided into a light spot connected to the sample surface and a dark spot around it to make the light spot independent.
  • partially coherent light or coherent light that also transmits or reflects the sample force, and collects and synthesizes multiple images of illuminated light spots, High resolution images can be acquired.
  • the illumination is switched through a liquid crystal shirt array, a reflective micromirror array, a reflective liquid crystal array, or a movable / rotatable pinhole array or a mosaic mirror array. As will be described later, the illumination switching is performed. It is preferable that the number of times of lighting is 4, 9, or 16.
  • the microscope When imaging information contained in a sample with high resolution, deep depth, and high resolution, the microscope forms an image via an imaging optical system that collects the light of the sample irradiated from the illumination optical system. The purpose of this is to perform the image properly with high resolution and depth and depth.
  • Observation of a sample 'imaging is to observe and image an image of light transmitted through or reflected from the sample.
  • These images include high-contrast images and low-contrast images, and biological samples, polymer materials, etc. are low-contrast images.
  • biological sample images have low contrast, transmitted light that is easy to detect is used, and a portion of the light irradiated on the sample is evenly distributed on the image plane and does not contain sample information. It is necessary to detect an image with low contrast buried in the background light.
  • the illumination includes incoherent light, partially coherent light, or coherent light.
  • Incoherent light is an illumination of a collection of light of various wavelengths and phases, where the entire aperture of the imaging lens is illuminated uniformly by diffused light or condenser illumination.
  • Coherent light is illumination of light of a certain wavelength and phase, and is approximately when the condenser is narrowed down and brought close to a point light source.
  • Partially coherent light is an intermediate illumination and there is no linear relationship between the object and the image. However, if the contrast of an object is sufficiently low, such as a biological sample in microscopic observation, it becomes approximately linear and the transfer function can be defined.
  • illumination light serving as a detection probe and it
  • magnification is constant
  • parameters for determining the image include resolution and depth of focus parameters.
  • the sample can be illuminated uniformly;
  • Illumination can be performed with a stop suitable for the numerical aperture of the objective optical system.
  • objective optics For objective optics,
  • the numerical aperture can be selected according to the properties of the sample.
  • a microscope equipped with these illumination system and objective optical system is desired.
  • the technology that has been used in conventional confocal microscopes illuminates the sample while moving the light beam through the pinhole to the sample. Also, the scanning beam generated by oscillating a polygonal rotating mirror or mirror is used for the sample. I have been shooting images. However, since the light beam passing through the pinhole is irradiated onto the sample continuously on the scanning line, the coherent light connects the predetermined light spots, but the partially coherent light diffracts according to Fourier imaging theory. Light spreads in a non-linear manner and discontinuously illuminates around the light spot. For example, light energy spreads discontinuously in a circular shape in a circular shape, and light energy spreads unknowingly in all directions along each side.
  • the bright part is the 0th order diffracted light, the 1st order diffracted light, the 2nd order diffracted light, ...
  • the dark part is the 0th order dark part, the 1st order dark part, the 2nd order This is called the dark part, as shown in Figure 1.
  • the image is the image shown in Figure 2A for a circular bin Honoré, and the image shown in Figure 2B for a square pinhole.
  • the light irradiated to the sample is absorbed at the light spot and is secondarily excited to affect the surrounding points, or the reflected light may indirectly illuminate the surrounding points.
  • These shadows In order to reduce reverberation, a dark spot should be provided around the camera, so that mutual indirect illumination due to the light spot is removed so that images can be taken.
  • the world map coloring method based on this graph theory is "a method of solving the minimum number of colors required to paint a map" and separates the first term by dark spots. To color-enclose the surrounding area with one dark spot, it is possible to paint with a minimum of four colors (four points). Therefore, in order to illuminate and image with multiple unit light spots, it is possible to illuminate and image all points by changing the pattern at least four times.
  • coherent light has a single color and is deep and deep.
  • partially coherent light has moderate depth and high resolution even if it is affected by diffraction phenomenon. This is excellent for reading out all image information contained in a thick sample with a microscope. For example, if the depth is too deep, dust attached to the surface of the optical system or the surface of the cover glass may be detected, or spots due to the mounting medium between the cover glass and the sample may be detected. Therefore, an optical system and image processing that sufficiently detect the image information contained in the sample and remove those unrelated to the sample are necessary. [0047] The relationship between depth and resolution is summarized in the following table.
  • the imaging performance of a microscope is expressed in terms of an optical transfer function (OTF), which can be applied to an illumination system and an observation system.
  • OTF optical transfer function
  • the present invention is a kind of super-resolution technique and is expressed by a comprehensive transfer function including an imaging system.
  • the relationship between contrast and spatial frequency is as shown in the graph in Fig. 3.
  • the light spot can be detected with sufficient contrast, and a high transmission part or reflection part This reduces the indirect illumination effect on the surrounding pixels and the self-luminous phenomenon such as fluorescence, that is, background light or noise).
  • the imaging element By imaging by linking the checkered pattern illumination method in illumination or the checkered pattern image capturing method in function, the imaging element has the highest video frequency when capturing a checkered pattern image. Get higher.
  • the signal of the imaging system at this time repeats the highest signal value and the lowest signal value. This allows the image handling system to work under the most severe conditions.
  • the light spot and the dark spot (reference value) can always be compared, and the accumulation effect of the video signal in the amplifier circuit and the transmission line is the lowest.
  • a lower storage effect means the highest resolution.
  • the main component of the video signal is the AC component with the highest frequency
  • amplification and signal processing for example, detection by a lock-in amplifier method, AGC: Automatic Gain Control, and multi-image synthesis processing. It becomes easy.
  • FIG. 1 is a graph showing the spread of light by diffraction.
  • FIG. 2 is a diagram showing an image showing a circular bin hole and an image showing a square pinhole.
  • FIG. 3 is a graph showing the relationship between contrast and spatial frequency.
  • FIG. 4 is a diagram showing a first embodiment of a microscope imaging apparatus according to the present invention.
  • FIG. 5 is a diagram showing a second embodiment of the microscope imaging apparatus according to the present invention.
  • FIG. 6 is a diagram showing a third embodiment of the microscope imaging apparatus according to the present invention.
  • FIG. 7 is a diagram for explaining an example of a pattern of an illumination group when a light spot is surrounded by one dark spot.
  • FIG. 8 is a diagram for explaining an example of a pattern of an illumination group when a light spot is surrounded by two dark spots.
  • FIG. 9 is a diagram for explaining an example of an illumination group pattern when a light spot is surrounded by three dark spots.
  • FIG. 4 is a diagram showing a first embodiment of a microscope imaging apparatus according to the present invention.
  • the microscope imaging apparatus according to the present invention is realized in a transmission illumination microscope based on Fourier imaging theory, and includes a light source 1, a first collector lens 2, an optical integrator 3, and a second collector lens 4.
  • the light source 1 a tungsten lamp, a xenon lamp, a laser light source, or the like can be used.
  • the first collector lens 2 fluoresces the light from the light source 1 to provide uniform and parallel illumination.
  • the light integrator 3 makes the light from the first collector lens 2 more uniform.
  • the second collector lens 4 images the light from the optical integrator 3.
  • the unit multi-light spot light source 5 is composed of a pinhole array or a liquid crystal shirt array provided at a position where a uniform illumination image is formed.
  • the size of the light spot, the size of the dark spot, and the size of the dark area can be appropriately set, so that illumination and imaging conditions suitable for the sample can be set. Thereby, an image with high resolution and deep depth can be obtained.
  • the condenser optical system 6 irradiates the sample 9 by appropriately reducing the illumination of the unit multi-light spot transmitted from the unit multi-light spot light source 5.
  • the observation optical system 8 is composed of, for example, an objective optical system with an NA variable iris diaphragm, and forms an image using light that passes through the sample 9 or is reflected from the sample 9 as incoherent light, partially coherent light, or coherent light.
  • the imaging unit 8 detects the imaged light as an image.
  • the unit multi-light spot light source 5, the condenser optical system 6, the observation optical system 7, and the imaging unit 8 are controlled and interlocked by the calculation unit 10, and the calculation unit 10 stores the image input from the imaging unit 8. , Process and synthesize and transmit to the outside.
  • Incoherent light uniformly illuminates the entire surface.
  • Partially coherent light or coherent light has a light spot composed of a pinhole array or a transmissive liquid crystal shutter array, and the dark area around it blocks the equivalent unit area. In this way, the sample is illuminated with the light of unit multi-point light. As a result, the diffracted light of the light spot spreads to the dark part that is not illuminated.
  • the light energy is limited to a few percent of the bright part of Airy.
  • the image connected as incoherent light captures it.
  • the image combined as the partial coherent light or the coherent light is divided into a plurality of images, and the number of the illuminated images is picked up, input to the calculation unit 10, and processed and synthesized to obtain the entire image.
  • a map map coloring problem of a graph is applied. For example, to surround a light spot with one dark spot, at least four colors are required. With four colors, one light spot can be surrounded with a dark spot. As a result, the 0th order dark part and the 1st order bright part of the main nonlinear diffraction can be removed.
  • a light spot with three dark parts at least 16 colors are required. With 16 colors, one light spot can be enclosed. That is, 16 images are taken, and these light spots are processed and combined to take an image. As a result, the non-linear main spectrum, ie, the 0th order dark part, the 1st order bright part, the 1st order dark part, and the 2nd order bright part can be removed. This eliminates most of the unwanted nonlinear components.
  • the calculation unit 10 performs an illumination system (unit multi-light spot light source 5 and condenser optical system 6) and an imaging system (observation optical system 7).
  • the imaging unit 8 can reduce the accumulation effect of the amplifier circuit and the transmission line, and always compare it with the reference value (dark spot). Since the main component of the video signal is the AC component of the highest frequency, amplification and signal processing (for example, detection by the lock-in amplifier method, AGC: Automatic Gain Control, (Combining process) can be easily performed.
  • FIG. 5 is a diagram showing a second embodiment of the microscope imaging apparatus according to the present invention.
  • the microscope imaging apparatus according to the present invention is realized in a reflection type illumination microscope based on Fourier imaging theory, and the unit multi-light spot light source 5 is connected to a reflection type micromirror array, a reflection type liquid crystal array, or moving and rotating. It is composed of a free mosaic mirror array, which enables illumination with higher contrast and makes the captured image clearer.
  • This microscope imaging device The second collector lens 4 also reflects a part of the incident light to the unit multi-point light source 5, and reflects the other part of the incident light from the second collector lens 4 units and the unit multi-point.
  • a beam splitter 11 that transmits all of the light incident from the light source 5 is further provided.
  • FIG. 6 is a diagram showing a third embodiment of the microscope imaging apparatus according to the present invention.
  • the microscope imaging apparatus according to the present invention is realized in a reflection type illumination microscope based on Fourier imaging theory, and a pinhole in which a unit multi-light spot light source 5 is provided at the position of uniform illumination formed. It also constitutes the alignment or transmission type liquid crystal shirt alignment force.
  • the beam splitter 11 is disposed in the observation optical system 7 and reflects part of the light incident from the unit multi-light spot light source 5 toward the sample 9 and enters from the unit multi-light spot light source 5. Transmits all other incident light from other parts of light and sample 9.
  • FIG. 7 is a diagram for explaining an example of a pattern of an illumination group in a case where a bright part (light spot) is surrounded by one dark part (dark spot).
  • a bright part light spot
  • dark spot dark spot
  • FIG. 8 is a diagram for explaining an example of an illumination group pattern when a bright part (light spot) is surrounded by two dark parts (dark spots).
  • a bright part light spot
  • two dark parts dark spots
  • FIG. 9 is a diagram for explaining an example of a pattern of an illumination group when a bright part (light spot) is surrounded by three dark parts (dark spots).
  • a bright part light spot
  • dark spots dark spots
  • the illumination optical system and the observation optical system have a configuration other than the configuration shown in the above embodiment.
  • the illumination group can be a pattern other than the pattern shown in the above embodiment, and the number of times of illumination of the coherent light or the partial coherent light can be a number other than 4, 9, 16 times. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

There are provided a microscope imaging apparatus and a method for acquiring a bright image with high resolution and high depth. A unit multi-luminous point light source (5) is provided at a position for forming an image with uniform illumination. The light source (5) illuminates the entire surface of a sample (9) uniformly and illuminates the sample (9) a plurality of times for each illumination group with coherent light or partial coherent light. A calculation section (10) compounds an image acquired at an imaging section (8) in correspondence with the sample (9) illuminated by the illumination group, thus composing a sheet of image. The illumination group has one or a plurality of bright parts not continuous to each other and dark parts surrounding the bright parts. The entire surface of the sample is illuminated by all the bright parts of the illumination group.

Description

明 細 書  Specification
顕微鏡撮像装置及び方法  Microscope imaging apparatus and method
技術分野  Technical field
[0001] 本発明は、高 ヽ分解能及び深!ヽ深度で観察及び撮像する顕微鏡撮像装置及び方 法に関する。  [0001] The present invention relates to a microscope imaging apparatus and method for observing and imaging with high resolution and depth.
背景技術  Background art
[0002] 従来の顕微鏡は、観察することを主目的とし、明るくかつ高倍率で観察するために 、照明を均一にすることと開口数 (NA)を大きくする工夫がなされてきた。顕微鏡を構 成する要素には、大きく分けて(1)照明系と、(2)対物観察系に分けられる。顕微鏡 は、これらが一体となり最適な条件で試料を観察又は撮像できる装置である。  [0002] Conventional microscopes are mainly intended for observation, and in order to observe brightly and at a high magnification, contrivances have been made to make the illumination uniform and increase the numerical aperture (NA). The elements that make up a microscope can be broadly divided into (1) an illumination system and (2) an objective observation system. A microscope is an apparatus that enables these specimens to be observed and imaged under optimum conditions.
[0003] 照明は、試料力 光学的な情報を得るプローブとしての役割を果たし、顕微鏡では 人工の目的に最適な光源が作れることから、インコヒーレント光、部分コヒーレント光 又はコヒーレント光で、広 、波長帯域力 単一の波長の光まで任意の条件の光を照 射できる。  [0003] Illumination plays a role as a probe to obtain sample force optical information, and since a microscope can produce an optimal light source for an artificial purpose, it is incoherent, partially coherent, or coherent. Band power Able to irradiate light of any condition up to light of a single wavelength.
[0004] また、対物観察系の主な性能である光学分解能は、光の性質及び波長に依存し、 理論的な分解能の限界は、インコヒーレント光では 2NAZえ、コヒーレント光では NA Ζ λであり、ここで分解能を高めることができるパラメータは、光の波長を定めると開 口数を上げることで、具体的には、対物レンズの倍率及び屈折率が大きくて波長特 性の良好な光学材料を使うことであった。  [0004] The optical resolution, which is the main performance of the objective observation system, depends on the nature and wavelength of light, and the theoretical resolution limit is 2NAZ for incoherent light and NA Ζ λ for coherent light. The parameter that can increase the resolution here is to increase the aperture when the wavelength of light is determined.Specifically, use an optical material that has a large magnification and refractive index of the objective lens and good wavelength characteristics. Was that.
[0005] 従来、光学系で結ばれる像の観察は、肉眼による観察が主であり、そのために、照 明系の性能は、目による像の検出に適した照明に焦点が絞られ、照明装置の果たす 役割は次のようなものが挙げられる。  Conventionally, the observation of an image formed by an optical system has been mainly the observation with the naked eye. For this reason, the performance of the illumination system is focused on the illumination suitable for the detection of the image by the eye. The role played by is as follows.
(1)標本を一様に照明する。  (1) Illuminate the sample uniformly.
(2)対物レンズの開口を一様に照明する。  (2) Illuminate the aperture of the objective lens uniformly.
(3)結像に寄与しな 、光を対物レンズに入らな 、ようにする。  (3) Make sure that light does not enter the objective lens without contributing to image formation.
これを可能にした照明法に以下のものがある。  Illumination methods that make this possible include:
(a)リレーコンデンサ系 (b)ケーラ照明 (a) Relay capacitor system (b) Kerala lighting
(c)クリティカル照明  (c) Critical lighting
そのなかで、最も優れた照明方法はケーラ照明である(例えば、非特許文献 1)。  Among them, the best illumination method is Koehler illumination (for example, Non-Patent Document 1).
[0006] ケーラ照明は、像側でテレセントリックになっており、理論上無限遠に一様輝度のラ ンバート面があり、これを、レンズの前側焦点面に開口絞り、後焦点面に標本 (被照 射面)となるようにレンズを配置して照明する。  [0006] Kohler illumination is telecentric on the image side and theoretically has a Lambertian surface with uniform brightness at infinity, which is an aperture stop on the front focal plane of the lens and a sample (covered) on the rear focal plane. Place the lens so that it is the illumination surface) and illuminate it.
[0007] し力しながら、現実の光源は、理論的に均一なランバート面ではなぐ例えば、タン ダステンフィラメント、水銀放電灯の発光部等の輝度は、場所及び方向に関して不均 一であり、これが照明斑の原因となる。  [0007] However, the actual light source does not have a theoretically uniform Lambertian surface. For example, the luminance of a light emitting part of a tungsten filament, a mercury discharge lamp, etc. is uneven with respect to location and direction. This causes illumination spots.
[0008] 近年、像の検出の際に、目に代わって写真や撮像素子が使われるようになった。こ れらにより、更に均一な照明が必要になった。したがって、均一に照明するために、 ケーラ照明のコレクタレンズとコンデンサレンズとの間に、インテグレータと呼ばれるフ ライアイ'レンズを更に配置し、その各単位レンズで標本面を均一に照明することによ つて、それらの合成された全照度が一様になる。(例えば、特許文献 1)  In recent years, photographs and image sensors have been used instead of eyes when detecting images. As a result, more uniform illumination was required. Therefore, in order to illuminate uniformly, a fly's lens called an integrator is further arranged between the collector lens and condenser lens of the Koehler illumination, and the specimen surface is uniformly illuminated by each unit lens. , Their combined total illumination becomes uniform. (For example, Patent Document 1)
[0009] また、照明系や対物光学系の両者の光学系の分解能の限界は、インコヒーレント光 で λ Ζ2ΝΑすなわち 2ΝΑΖ λ (本/ mm)であり、コヒーレント光では λ ΖΝΑすなわち ΝΑ/ λ (本/ mm)である。部分コヒーレント光は、その間にあるが非線形であり、回折 光は λ Z4NAまで広がる。その分解能の基礎は、検出器としての肉眼の識別能力に 置かれていて、現在でも人類が持つ最も高性能の検出器であり、かつ、画像情報の 入力及び処理装置であることには変わりがない。  [0009] In addition, the resolution limit of both the illumination system and the objective optical system is λ ΝΑ2ΝΑ, that is, 2ΝΑΖ λ (lines / mm) for incoherent light, and λ ΖΝΑ, that is, ΝΑ / λ (lines) for coherent light. / mm). Partially coherent light is in-between but non-linear, and diffracted light extends to λ Z4NA. The basis of the resolution is based on the ability to identify the naked eye as a detector, and it is still the most powerful detector of humanity, and it is an image information input and processing device. Absent.
[0010] 顕微鏡は、一般に照明系と対物光学系とを一体として働力せることによって伝達関 数が決まり、照明系の絞りで照明をインコヒーレント光力 部分コヒーレント光まで変え られる。また、対物光学系の開口数を変えることによって、インコヒーレント光力も部分 コヒーレント光まで変えて像を結ぶことができる。一般には、照明の絞りを対物光学系 の開口数の 0.9程度として観察するのが適当とされて 、る。  [0010] Generally, in a microscope, a transmission function is determined by integrally acting an illumination system and an objective optical system, and illumination can be changed to incoherent light power or partially coherent light by a diaphragm of the illumination system. In addition, by changing the numerical aperture of the objective optical system, the incoherent light power can be changed even to partially coherent light to form an image. In general, it is appropriate to observe the illumination stop with an objective optical system having a numerical aperture of about 0.9.
[0011] し力しながら、光学系や光学系と電子装置を組み合わせた装置の基礎が肉眼のコ ントラスト識別能力にある以上、その限界は目にあり、例えば、目のコントラスト識別能 力は背景光の輝度をし、目が識別できる輝度差を Δ Lとすると Weber'Fechnerの法則 に従って A LZL=—定(0.01から 0.02)である。ただし、背景光 Lは 3から 3 X 103cd Zm2の範囲内で成り立つ。 [0011] However, as long as the basics of the optical system and the combination of the optical system and the electronic device are the contrast discrimination ability of the naked eye, the limitation is in the eyes. For example, the contrast discrimination ability of the eyes is the background. Weber'Fechner's law, where L According to A LZL = —Constant (0.01 to 0.02). However, the background light L is established within the range of 3 to 3 × 10 3 cd Zm 2 .
[0012] また、光学系の分解能は、 Fraunhofer回折により開口関数の 2次元 Fourier変換とな つて、円形開口による点像の第一暗環、換言すれば、 Airyの円盤と呼ばれる半径力^ .61 λ ΖΝΑで与えられる中央に明るい円があり、そこに光エネルギーの約 84%が含 まれている。同様に、四角開口は、その辺と直角の放射状の線に沿って広がり、それ を中心に回折光が同心円状の環に広がる。また、四角開口は、その辺と直角の放射 状の線に沿って広がる。それらより微小な物体は、この大きさにまで回折して広がり、 そのコントラストは、実物体より著しく低下する。この背景光とのコントラストの差の検出 限界が、目のコントラスト識別能力の限界で決まる。  [0012] Further, the resolution of the optical system is a radial force ^ .61 called the Airy disk, which is the first dark ring of the point image by the circular aperture, that is, the two-dimensional Fourier transform of the aperture function by Fraunhofer diffraction. There is a bright circle in the center given by λ ΖΝΑ, which contains about 84% of the light energy. Similarly, the square opening extends along a radial line perpendicular to the side, and the diffracted light spreads in a concentric ring around that. A square opening extends along a radial line perpendicular to the side. Objects smaller than these diffract to this size and spread, and the contrast is significantly lower than real objects. The detection limit of the difference in contrast with the background light is determined by the limit of the eye contrast discrimination ability.
[0013] 一方、近年は電子画像による計測が広がってきて、光学系も光センサーの一部と 考えて光信号を扱うことが多くなつた。その考えによると、光学系が結ぶ画像の深度、 分解能、波長帯域等も電磁波と同様な信号として解析できるようになった。また、コン トラストは、光学系を通すことによる背景光 (例えば、光学系の結像特性や迷光、散乱 光)、光学材料や試料保持材料の自己発光や蛍光及び撮像系のノイズにより低下す る。これらを総合して設計ができるようになった。  [0013] On the other hand, in recent years, measurement using electronic images has spread, and optical systems are often considered to be part of optical sensors and handle optical signals. According to this idea, the depth, resolution, wavelength band, etc. of the image connected by the optical system can be analyzed as a signal similar to an electromagnetic wave. In addition, the contrast is reduced by background light (for example, imaging characteristics of the optical system, stray light, scattered light), self-luminescence of the optical material and sample holding material, fluorescence, and imaging system noise. . It is now possible to design these comprehensively.
[0014] 低コントラスト物体の検出や独立微小物体の検出するためには、撮像素子の量子 効率を上げ、撮像時間を長くし、又は複数重畳することによって、コントラストの差の 検出を、光学系及び撮像素子の機能を総合して行う。したがって、それら各々の限界 を極めることによって、肉眼の限界に迫り又はそれを超えることができる。  [0014] In order to detect a low-contrast object or an independent minute object, the quantum efficiency of the image sensor is increased, the imaging time is lengthened, or a plurality of images are superimposed to detect the difference in contrast between the optical system and The functions of the image sensor are integrated. Therefore, by reaching the limits of each of them, the limits of the naked eye can be approached or exceeded.
[0015] この論理を展開する上で重要となるのが Fourier結像論であり、これは、光学系の空 間周波数特性を電気信号伝送路の周波数特性と同様にして、光信号を Fourierスぺ タトル空間で扱う Fourier結像論 (例えば、非特許文献 2)に基づいて数式で表し、試 料からの像が光学系を通過する関係を伝達関数として表し、その光信号の空間周波 数スペクトルは、伝達関数によって定まり、伝達される特定の空間周波数領域と伝達 されない空間周波数領域とに分かれる。その理論的な境界は、対物レンズの開口数 で定まり、例えば、乾燥系では、インコヒーレント光は 2ΝΑΖ λとなり、コヒーレント光 は ΝΑΖ λとなり、その中間の部分コヒーレント光は、開口数の度合いで決まる。 [0016] この理論的な限界を超える方法として次の二つの方法がある力 いずれも基本とな る原理は同じであり、観察物体と結像光学系との間に空間周波数を変調する手段を 設けて位相を変えることにより、通常はコントラストの差として検出できないほど低い位 相差の情報を、高周波空間スペクトル成分を含む位相変調スペクトルとして画像に反 映させ、それらの像を、複数撮像するとともに画像処理で復調し及び合成する。 [0015] What is important in developing this logic is the Fourier imaging theory, in which the spatial frequency characteristic of the optical system is made the same as the frequency characteristic of the electric signal transmission line, and the optical signal is Fourier-squeezed. Based on Fourier imaging theory (e.g., Non-Patent Document 2) handled in the petal space, the relationship between the image from the sample passing through the optical system is expressed as a transfer function, and the spatial frequency spectrum of the optical signal Is determined by the transfer function, and is divided into a specific spatial frequency region that is transmitted and a spatial frequency region that is not transmitted. The theoretical boundary is determined by the numerical aperture of the objective lens. For example, in a dry system, the incoherent light is 2λλ, the coherent light is ΝΑΖλ, and the intermediate partial coherent light is determined by the numerical aperture. . [0016] There are the following two methods as methods that exceed this theoretical limit. The basic principle of both is the same, and there is a means for modulating the spatial frequency between the observation object and the imaging optical system. By providing and changing the phase, information on the phase difference that is normally too low to be detected as a contrast difference is reflected in the image as a phase modulation spectrum that includes high-frequency spatial spectral components. Demodulate and synthesize with processing.
[0017] 回折格子で変調した光を、光学系を通した後に復調して結像する方法 (例えば、特 許文献 2及び非特許文献 3)や、回折格子に 120度ずつ異なる位相の光に変調して 光学系を通した後、容易に復調できるようにする方法 (例えば、特許文献 3及び非特 許文献 4)や、空間変調パターンを用意して光学系を通して撮像された複数の画像を 画像処理し合成する方法 (例えば、特許文献 4)が提案されている。  [0017] The light modulated by the diffraction grating is demodulated and imaged after passing through the optical system (for example, Patent Document 2 and Non-Patent Document 3), or the light having a phase different by 120 degrees on the diffraction grating. After modulation and passing through the optical system, it is possible to easily demodulate (for example, Patent Document 3 and Non-Patent Document 4), or multiple images captured through the optical system by preparing a spatial modulation pattern. A method of processing and synthesizing has been proposed (for example, Patent Document 4).
[0018] し力しながら、顕微鏡下の自然な生物標本を観察及び計測する限り、その中に含ま れる多種多様な高分子による多種多様な光の振幅と位相をコントラストの差として検 出するのには、物理現象をモデル化した Fourier結像論では、一般性を持たない。  [0018] However, as long as a natural biological specimen under a microscope is observed and measured, a wide variety of light amplitudes and phases by various polymers contained therein are detected as contrast differences. The Fourier imaging theory that models physical phenomena has no generality.
[0019] 現実の試料は、スライドガラスの上に試料を置いた後に封入材を塗布してカバーガ ラスを載せて封入される。現在の観察では、焦点深度を、試料の極一部の層が像を 結ぶ程度の厚さにして!/、る。  [0019] An actual sample is placed on a slide glass, and then encapsulated material is applied and a cover glass is placed on the sample. In current observations, the depth of focus is set to a thickness that allows only a few layers of the sample to form an image!
[0020] し力しながら、試料に含まれる光学的な情報ができるだけ多く検出できることも重要 な条件であり、一部の層だけ観察していたのでは、重要な病気の兆候等の情報を見 落とす可能性がある。そこで、試料の厚さに対して、表面に付着するごみ、封入材等 の各層に含まれるごみ、封入材の層の不均一さ等によるコントラストの違 、が観察像 に影響しないような深度、かつ、試料に含まれるできるだけ多くの物質が像として捕ら えられるようにすることが望まれる。  [0020] However, it is also an important condition that the optical information contained in the sample can be detected as much as possible. If only a part of the layers was observed, information such as signs of important diseases was observed. There is a possibility of dropping. Therefore, the depth of the sample does not affect the observation image due to the difference in contrast due to dust adhering to the surface, dust contained in each layer of the encapsulating material, non-uniformity of the encapsulating material layer, etc. It is also desirable to capture as much material as possible contained in the sample as an image.
[0021] したがって、それらができる照明は、インコヒーレント光又は部分コヒーレント光であ る。それらのうち、焦点深度が適度に深くて可視光全域の像が得られるのは、部分コ ヒーレント光である。  [0021] Therefore, the illumination that they can be is incoherent light or partially coherent light. Among them, it is partial coherent light that has an adequate depth of focus and an image of the entire visible light range.
[0022] し力しながら、部分コヒーレント光は結像が線形でないことから、物体中に存在しな 力つたフーリエ成分の像が現れる。それが Fourier結像論による解析を必要とし、物体 力も光学系を介した像への伝達関数が定義できない。しかしながら、例えば、低コン トラストの試料は、背景光を明るくするとコントラストは低下するが、近似的に線形性が 保たれることからその低下を撮像素子で補うことにより観察することができる。 However, since partial coherent light is not linearly imaged, an image of a powerful Fourier component that does not exist in the object appears. This requires analysis by Fourier imaging theory, and the object force cannot define a transfer function to an image via an optical system. However, for example, low The contrast of the trust sample decreases when the background light is brightened. However, the linearity is approximately maintained, so that it can be observed by compensating the decrease with an image sensor.
[0023] 一つの方法として、透明で乱反射するものや位相差が 8Z λ又は 4Ζ λより大きい ものは、十分均一な照明系と焦点深度の深い顕微鏡であれば低いコントラストでも検 出できるとされている。その一例として、照明系及び対物系をテレセントリックにして照 明と虹彩絞りを可変にした ΝΑ可変虹彩絞り対物レンズ (例えば、特許文献 5)のように 、虹彩絞りを 0.6〜0.05程度の範囲で十分絞ることによって、ある程度大きな位相変化 や透明で乱反射するものは検出できる。  [0023] As one method, it is said that a transparent and irregularly reflected one or a phase difference larger than 8Zλ or 4Ζλ can be detected even at a low contrast if the microscope has a sufficiently uniform illumination system and a deep focal depth. Yes. As an example, the illumination system and objective system are made telecentric, and the illumination and iris diaphragm are made variable.ΝΑ A variable iris diaphragm objective lens (for example, Patent Document 5), the iris diaphragm is sufficiently in the range of about 0.6 to 0.05. By narrowing down, it is possible to detect large phase changes and transparent and irregular reflections.
[0024] さらに、高解像度の撮像素子と組み合わせて線形な感度領域で撮像することによ つて、 Weber'Fechnerの法則に従い、目が識別できるコントラストの範囲 Δ LZL =一 定 (0.01から 0.02)を超える試みがなされている。それら性能が高められる総合的な設 計や信号処理が行われるとともに、電子計測に更に適応した装置となることが望まし い。  [0024] Furthermore, by imaging in a linear sensitivity region in combination with a high-resolution image sensor, the contrast range Δ LZL = constant (0.01 to 0.02) that can be identified by the eyes according to Weber'Fechner's law is set. There are attempts to exceed. It is desirable to have a comprehensive design and signal processing that can improve these performances, and to make the device more suitable for electronic measurement.
[0025] Airyの円盤とその周辺を分けるためには、光点とそれに隣接する点とを分離させる 必要がある。その一つの手法として、世界地図で各国を隣接した国が同じ色にならな V、ように最少の数の色で塗り分けるグラフ理論の地図塗り分け方法がある。これは、 グラフ理論で最も有名な問題でそれまで解かれたことがな ヽオープン問題となって!/ヽ た。これは、「平面あるいは球の表面の上に描かれたどんな地図でも、四色あれば、 隣接する国が同じ色にならないように色分けできる。」という仮説 (例えば、非特許文 献 6)があり、その後、これは、計算機の支援を受けることによって 4色で塗り分けでき ることが証明された (例えば、非特許文献 7)。し力しながら、いまだに、数学の伝統的 な証明方法でグラフ理論を用いてエレガントに解かれては ヽな 、。  [0025] In order to separate the Airy disk and its periphery, it is necessary to separate the light spot and the adjacent point. One of the methods is a graph theory map painting method that separates each country with the smallest number of colors, such as V, where countries adjacent to each other on the world map must be the same color. This is the most famous problem in graph theory, and it has been solved so far! This is based on the hypothesis that any map drawn on the surface of a plane or sphere can be color-coded so that neighboring countries do not have the same color if there are four colors (for example, Non-Patent Document 6). After that, it was proved that it can be painted in four colors with the support of a computer (for example, Non-Patent Document 7). However, it is still unreasonable to be solved elegantly using graph theory in the traditional proof method of mathematics.
特許文献 1 :特開 2002— 182119号公報(図 2)  Patent Document 1: JP 2002-182119 A (Fig. 2)
特許文献 2:特許第 3066874号公報 (第 1図)  Patent Document 2: Japanese Patent No. 3066874 (Fig. 1)
特許文献 3:特開平 11 242189号公報 (第 1図)  Patent Document 3: Japanese Patent Laid-Open No. 11 242189 (Fig. 1)
特許文献 4:特開 2001— 235316号公報 (第 1図)  Patent Document 4: Japanese Unexamined Patent Publication No. 2001-235316 (Fig. 1)
特許文献 5 :特開 2003— 028460号公報 (第 2図、第 5図)  Patent Document 5: Japanese Patent Laid-Open No. 2003-028460 (FIGS. 2 and 5)
非特許文献 1 : E.Hect: "Optics Third Edition", ADDISON WESLEY, pp.453- 465,Fi gurel0.30,Figurel0.24 , 1998. (図 1, 2) Non-Patent Document 1: E.Hect: "Optics Third Edition", ADDISON WESLEY, pp.453-465, Fi gurel0.30, Figurel0.24, 1998. (Fig. 1, 2)
非特許文献 2 : S.INOUE: "VIDEO MICROSCOPY The Fundamentals", Plenum, 1 997.  Non-Patent Document 2: S.INOUE: "VIDEO MICROSCOPY The Fundamentals", Plenum, 1 997.
非特許文献 3 : W.Goodman: "Introduction to Fourier Optics", McGraw-Hill, 1986. 非特許文献 4 :W丄 ukosz: "Optical System with Resolving Powers Exceeding the CI assical Limit. Π", J. Opt. Soc. Am. 57, pp.932— 941, July 1967.  Non-Patent Document 3: W. Goodman: "Introduction to Fourier Optics", McGraw-Hill, 1986. Non-Patent Document 4: W 丄 ukosz: "Optical System with Resolving Powers Exceeding the CI assical Limit. Π", J. Opt. Soc. Am. 57, pp.932— 941, July 1967.
特許文献 5 : D. Mendlovic et al: One-dimensional superresolution optical system for temporally restricted objects", J. Applied Optics, Vol.36, pp.2353- 2359, April 1 Patent Document 5: D. Mendlovic et al: One-dimensional superresolution optical system for temporally restricted objects ", J. Applied Optics, Vol.36, pp.2353- 2359, April 1
997. 997.
非特許文献 6 : F. Harary : "GRAPH THEORY", Addison- Wesley, 1971  Non-Patent Document 6: F. Harary: "GRAPH THEORY", Addison- Wesley, 1971
非特許文献 7 : K.APPEL, W.HAKEN: "THE SOLUTION OF THE FOUR-COLO Non-Patent Document 7: K.APPEL, W.HAKEN: "THE SOLUTION OF THE FOUR-COLO
R-MAP PROBLEM", Sci. Amer. 237 no.4 pp.108- 121 1977. R-MAP PROBLEM ", Sci. Amer. 237 no.4 pp.108-121 1977.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0026] 一般の顕微鏡は、インコヒーレント光の照明系及び観察系であり、試料に含まれる あらゆる光学的な情報を検出するために必要な高 、分解能と深 、深度の条件を両 立させた機能を達成するのは困難である。  [0026] A general microscope is an illumination system and an observation system for incoherent light, in which the conditions of high, resolution, depth, and depth necessary to detect all optical information contained in a sample are balanced. It is difficult to achieve the function.
[0027] 高い分解能を得るためには、インコヒーレント光による像で観察することで達成され る。し力しながら、インコヒーレント光を用いて結ばれた像は、深度が浅くなる。また、 深い深度を得るためには、コヒーレント光による像で観察することで達成される。しか しながら、コヒーレント光は、一般に単色で深い深度が得られるものの、例えば、スラ イドガラスとカバーガラスの間に封入された生物試料や液晶などの観察 ·計測では、 試料表面又はガラス表面のごみや傷力 試料の像とともに検出される。  [0027] In order to obtain a high resolution, it is achieved by observing an image with incoherent light. However, the depth of an image formed by using incoherent light is reduced. In addition, deep depth can be achieved by observing images with coherent light. However, although coherent light is generally monochromatic and has a deep depth, for example, in observation and measurement of a biological sample or liquid crystal enclosed between a slide glass and a cover glass, dust or dirt on the sample surface or the glass surface can be obtained. Damage detected along with the sample image.
[0028] 部分コヒーレント光は、その中間にあり、適度な高い分解能と深い深度の像を観察 できる。し力しながら、部分コヒーレント光は、 Fourier結像論に基づき非線形であるが 、低いコントラスト試料においては線形が保たれる。また、部分コヒーレント光は、イン コヒーレント光に比べると分解能は低 、が深 、深度が得られる。  [0028] Partially coherent light is in the middle, and an image with moderately high resolution and deep depth can be observed. However, partially coherent light is non-linear based on Fourier imaging theory, but remains linear in low contrast samples. In addition, partial coherent light has a lower resolution but deeper depth than incoherent light.
[0029] 本発明の目的は、照明系と対物光学系の分解能及び撮像素子を有効に利用して 、コントラストの濃淡の画像情報として処理及び合成し、高分解能及び深い深度の明 るい像を取得する顕微鏡撮像装置及び方法を提供することである。 An object of the present invention is to effectively use the resolution of the illumination system and the objective optical system and the image sensor. It is another object of the present invention to provide a microscope imaging apparatus and method for processing and synthesizing image information with contrast density and obtaining a bright image with high resolution and deep depth.
課題を解決するための手段  Means for solving the problem
[0030] 本発明による顕微鏡撮像装置は、試料を照明する照明光学系と、前記照明光学系 によって照明された試料を観察する観察光学系と、前記観察光学系によって観察さ れた試料の画像を取得する撮像系とを具え、前記照明光学系が、均一な照明の像 が結ばれる位置に設けられ、光を前記試料の全面に対して均一に照明し、コヒーレ ント光又は部分コヒーレント光を、照明群ごとに前記試料に複数回照明する照明切替 手段を有し、前記撮像系が、前記照明群で照明された試料に対応する画像を合成し て、 1枚の画像を構成する画像合成手段を有し、前記照明群が、 1個の明部又は互 いに隣接しない複数の明部と、前記明部を包囲する暗部とを有し、前記照明群の全 ての明部によって前記試料の全面が照明されるようにしたことを特徴とする。  [0030] A microscope imaging apparatus according to the present invention includes an illumination optical system for illuminating a sample, an observation optical system for observing a sample illuminated by the illumination optical system, and an image of the sample observed by the observation optical system. The illumination optical system is provided at a position where a uniform illumination image is formed, uniformly illuminates the entire surface of the sample, and provides coherent light or partially coherent light. An image switching unit configured to illuminate the sample a plurality of times for each illumination group, and the imaging system composes an image corresponding to the sample illuminated by the illumination group to form one image. And the illumination group includes a single bright part or a plurality of bright parts that are not adjacent to each other, and a dark part surrounding the bright part, and the sample is covered by all the bright parts of the illumination group. The entire surface of the lamp is illuminated .
[0031] 本発明による顕微鏡撮像方法は、試料を照明する照明ステップと、前記照明ステツ プによって照明された試料を観察する観察ステップと、前記観察ステップによって観 察された試料の画像を取得する撮像ステップとを具え、前記照明ステップが、均一な 照明の像が結ばれる位置において、光を前記試料の全面に対して均一に照明し、コ ヒーレント光又は及び部分コヒーレント光を、照明群ごとに前記試料に複数回照明す る照明切替ステップを有し、前記撮像ステップが、前記照明群で照明された試料に 対応する画像を合成して、 1枚の画像を構成する画像合成ステップを有し、前記照明 群が、 1個の明部又は互いに隣接しない複数の明部と、前記明部を包囲する暗部と を有し、前記照明群の全ての明部によって前記試料の全面が照明されることを特徴 とする。  [0031] The microscope imaging method according to the present invention includes an illumination step for illuminating a sample, an observation step for observing the sample illuminated by the illumination step, and an imaging for acquiring an image of the sample observed by the observation step. And the illumination step uniformly illuminates the entire surface of the sample at a position where a uniform illumination image is formed, and the coherent light or the partial coherent light is emitted for each illumination group. An illumination switching step of illuminating the sample a plurality of times, and the imaging step includes an image synthesis step of composing an image corresponding to the sample illuminated by the illumination group to form one image, The illumination group has one bright part or a plurality of bright parts that are not adjacent to each other, and a dark part surrounding the bright part, and the entire surface of the sample is illuminated by all the bright parts of the illumination group. It is characterized by being.
発明の効果  The invention's effect
[0032] 本発明によれば、均一な照明の像が結ばれる位置において、光を試料の全面に対 して均一に照明し、コヒーレント光又は部分コヒーレント光を、照明群ごとに複数回照 明し、照明群で照明された試料に対応する画像を合成して、 1枚の画像を構成する。 この場合、照明群は、 1個の明部又は互いに隣接しない複数の明部 (本明細書中、「 光点」とも称する。)と、明部を包囲する暗部 (本明細書中、「暗点」とも称する。)とを 有し、照明群の全ての明部によって試料の全面が照明される。 According to the present invention, light is uniformly illuminated on the entire surface of the sample at a position where a uniform illumination image is formed, and the coherent light or the partial coherent light is illuminated a plurality of times for each illumination group. Then, an image corresponding to the sample illuminated by the illumination group is synthesized to form one image. In this case, the illumination group consists of one bright part or a plurality of bright parts that are not adjacent to each other (also referred to as “light spots” in this specification) and a dark part that surrounds the bright part (in this specification, “dark part”). Also referred to as “point”). And the entire surface of the sample is illuminated by all bright portions of the illumination group.
[0033] これによつて、インコヒーレント光は高 、分解能の画像を得られ、部分コヒーレント光 ゃコヒーレント光は試料面に結ばれる光点とその周辺の暗点で分け、光点を独立さ せるようにして照明し、試料力も透過又は反射してくる部分コヒーレント光又はコヒー レント光を検出し、照明された光点から成る複数の画像を集めて合成することによつ て、深 、深度及び高 、分解能の画像を取得することができる。  [0033] With this, high-resolution images can be obtained for incoherent light, and partially coherent light is divided into a light spot connected to the sample surface and a dark spot around it to make the light spot independent. In this way, by detecting partially coherent light or coherent light that also transmits or reflects the sample force, and collects and synthesizes multiple images of illuminated light spots, High resolution images can be acquired.
[0034] 照明の切替は、液晶シャツタ配列、反射型マイクロミラー配列、反射型液晶配列又 は移動 ·回転自在のピンホール配列若しくはモザイクミラー配列を通じて行われ、後 に説明するように、照明切替の際の照明回数を 4回、 9回又は 16回とするのが好まし い。  [0034] The illumination is switched through a liquid crystal shirt array, a reflective micromirror array, a reflective liquid crystal array, or a movable / rotatable pinhole array or a mosaic mirror array. As will be described later, the illumination switching is performed. It is preferable that the number of times of lighting is 4, 9, or 16.
[0035] 試料に含まれる情報を高い分解能、深い深度及び高解像度で撮像するに際し、顕 微鏡では、照明光学系から照射された試料の光を集める結像光学系を介して結像さ せた像を高 ヽ分解能及び深 、深度を保って適正に行うことを目的として ヽる。  [0035] When imaging information contained in a sample with high resolution, deep depth, and high resolution, the microscope forms an image via an imaging optical system that collects the light of the sample irradiated from the illumination optical system. The purpose of this is to perform the image properly with high resolution and depth and depth.
[0036] 試料の観察'撮像は、試料を透過する光又は反射する光の像を観察及び撮像をす ることである。これらの像は、コントラストが高い像と低い像があり、生物試料、高分子 材料等はコントラストが低い像である。特に、生物試料像は、コントラストが低いため、 これを検出し易い透過光が使われ、試料に照射された光の一部で像面に一様に分 布し、試料の情報を含まな 、背景光からその中に埋もれたコントラストの低 、像を検 出する必要がある。  [0036] Observation of a sample 'imaging is to observe and image an image of light transmitted through or reflected from the sample. These images include high-contrast images and low-contrast images, and biological samples, polymer materials, etc. are low-contrast images. In particular, because biological sample images have low contrast, transmitted light that is easy to detect is used, and a portion of the light irradiated on the sample is evenly distributed on the image plane and does not contain sample information. It is necessary to detect an image with low contrast buried in the background light.
[0037] その照明には、インコヒーレント光、部分コヒーレント光、又は、コヒーレント光がある 。インコヒーレント光はさまざまな波長と位相の光の集まりの照明で、拡散光やコンデ ンサ一照明によって結像レンズの開口全体が一様に照明される場合である。コヒーレ ント光はある波長及び位相のそろった光の照明で、近似的にはコンデンサーを絞り 込んで点光源に近づけた場合である。部分コヒーレント光はその中間の照明で物体 と像の間に線形関係はない。し力しながら、顕微鏡観察における生物試料のように物 体のコントラストが十分に低いものにおいては近似的に線形となり伝達関数が定義で きる。  [0037] The illumination includes incoherent light, partially coherent light, or coherent light. Incoherent light is an illumination of a collection of light of various wavelengths and phases, where the entire aperture of the imaging lens is illuminated uniformly by diffused light or condenser illumination. Coherent light is illumination of light of a certain wavelength and phase, and is approximately when the condenser is narrowed down and brought close to a point light source. Partially coherent light is an intermediate illumination and there is no linear relationship between the object and the image. However, if the contrast of an object is sufficiently low, such as a biological sample in microscopic observation, it becomes approximately linear and the transfer function can be defined.
[0038] 試料を高い分解能で観察及び撮像するのには、検出プローブとなる照明光とそれ を像として捕らえる対物光学系がある。倍率が一定の場合、画像を決めるパラメータ として、分解能と焦点深度のパラメータがある。その照明光については、 [0038] In order to observe and image a sample with high resolution, illumination light serving as a detection probe and it There is an objective optical system that captures images as images. When the magnification is constant, parameters for determining the image include resolution and depth of focus parameters. About the illumination light,
(1)試料に均一に照明できることと、  (1) The sample can be illuminated uniformly;
(2)対物光学系の開口数に適した絞りで照明できることが挙げられる。 対物光学系については、  (2) Illumination can be performed with a stop suitable for the numerical aperture of the objective optical system. For objective optics,
(1)結像に適した倍率と、  (1) Magnification suitable for imaging,
(2)像の明るさと、  (2) image brightness,
(3)試料の性質により開口数を選べることとが挙げられる。  (3) The numerical aperture can be selected according to the properties of the sample.
これら照明系と対物光学系を備えた顕微鏡が望まれて ヽる。  A microscope equipped with these illumination system and objective optical system is desired.
[0039] 従来の共焦点顕微鏡で用いられてきた技術は、ピンホールを通した光線を試料に 移動させながら照明する、また、多角形回転ミラーやミラーを振動させて作り出した走 查光線を試料に照射して撮像してきた。しカゝしながら、ピンホールを通過する光線は 、走査線上に連続して試料に照射されるため、コヒーレント光では定められた光点を 結ぶが、部分コヒーレント光では、 Fourier結像論に従って回折光が非線形に広がり、 光点を中心として周辺に不連続に照射される。例えば、円形は円形状に不連続に光 エネルギーが広がり、四角形は各辺に沿って四方に不運続に光エネルギーが広がる  [0039] The technology that has been used in conventional confocal microscopes illuminates the sample while moving the light beam through the pinhole to the sample. Also, the scanning beam generated by oscillating a polygonal rotating mirror or mirror is used for the sample. I have been shooting images. However, since the light beam passing through the pinhole is irradiated onto the sample continuously on the scanning line, the coherent light connects the predetermined light spots, but the partially coherent light diffracts according to Fourier imaging theory. Light spreads in a non-linear manner and discontinuously illuminates around the light spot. For example, light energy spreads discontinuously in a circular shape in a circular shape, and light energy spreads unluckily in all directions along each side.
[0040] この回折による光スペクトルの広がりでは、明るい部分を第 0次回折光、第 1次回折 光、第 2次回折光、 · ·、暗い部分を第 0次暗部、第 1次暗部、第 2次暗部、…と呼び、 図 1のようになる。その像は、円形ビンホーノレは図 2Aに示す像になり、四角形のピン ホールは図 2Bに示す像になる。 [0040] In the broadening of the light spectrum due to this diffraction, the bright part is the 0th order diffracted light, the 1st order diffracted light, the 2nd order diffracted light, ..., the dark part is the 0th order dark part, the 1st order dark part, the 2nd order This is called the dark part, as shown in Figure 1. The image is the image shown in Figure 2A for a circular bin Honoré, and the image shown in Figure 2B for a square pinhole.
[0041] 部分コヒーレント光は、これら光の連続的な干渉により非線形な現象、例えば、エツ ジの強調などが像面に現れる。力かる干渉を避けるために、グラフの地図塗り分け問 題を適応して、光の振幅の主成分である Airyの環と呼ばれる回折の 0次回折光部と その周辺に広がる 0次喑輪部及び周辺の照明を遮り暗点として囲むことによって、図 1のグラフのように照射される光のコントラストを強調して照射する。  For partially coherent light, nonlinear phenomena such as edge enhancement appear on the image plane due to continuous interference of these lights. In order to avoid strong interference, the map map coloring problem is applied to the diffraction 0th order diffracted light part called Airy's ring, which is the main component of the light amplitude, and the 0th order ring part spreading around it. By surrounding the surrounding illumination as a dark spot and enclosing it as a dark spot, the contrast of the emitted light is emphasized as shown in the graph of Fig. 1.
[0042] また、試料に照射された光は、光点で吸収され、 2次励起されて周辺の点に影響を 与え、又は反射された光が周辺の点を間接的に照らすことが考えられる。これらの影 響を低減させるためにも、周辺に暗点を設け、光点による相互間接照明を取り除いて 撮像できるようにする。 [0042] In addition, the light irradiated to the sample is absorbed at the light spot and is secondarily excited to affect the surrounding points, or the reflected light may indirectly illuminate the surrounding points. . These shadows In order to reduce reverberation, a dark spot should be provided around the camera, so that mutual indirect illumination due to the light spot is removed so that images can be taken.
[0043] このグラフ理論による世界地図の塗り分け方法は、「地図を塗り分けするのに最少 何色を必要とするかを解く方法」で、第 1次の項まで暗点で分離する、すなわち、周辺 を 1暗点で囲むように色分けするには、最少 4色〈4点〉で塗り分け可能である。したが つて、単位多光点で照明及び撮像するには、最少 4回パターンを変えて行えば全て の点を照明して撮像できる。  [0043] The world map coloring method based on this graph theory is "a method of solving the minimum number of colors required to paint a map" and separates the first term by dark spots. To color-enclose the surrounding area with one dark spot, it is possible to paint with a minimum of four colors (four points). Therefore, in order to illuminate and image with multiple unit light spots, it is possible to illuminate and image all points by changing the pattern at least four times.
[0044] また、第 2次の項まで暗点で分離する、すなわち、周辺を 2つの暗点で囲むように色 分けするには最小 9色 (9点)で塗りわけできる。したがって、単位多光点で照明及び 撮像するには 9回パターンを変えて行えば、全ての点を照明して撮像できる。また、 第 3次の項まで時点で分離する、すなわち、周辺を 3つの時点で囲むように色分けす るには最小 16色(16点)で塗り分けできる。したがって、単位多光点で照明及び撮像 するには、 16回パターンを変えて行えば、全ての点を照明して撮像できる。このように 、一般には 1次の項 (Airyの円、角)の暗部までで光エネルギーの約 84%が含まれ、 2 次の項の暗部までで光の約 92%が含まれる。したがって、 3次の項まで分離し非線形 成分を除去して光点を合成することによって高い伝達関数が達成できる。  [0044] Further, in order to separate to the second term by dark spots, that is, color-coded so that the periphery is surrounded by two dark spots, a minimum of nine colors (9 points) can be used. Therefore, to illuminate and image with multiple unit light spots, if the pattern is changed nine times, all points can be illuminated and imaged. In addition, it is possible to separate at least 16 colors (16 points) to separate up to the 3rd term at the time, that is, to color the surrounding area at three points. Therefore, in order to illuminate and image with multiple unit light spots, if the pattern is changed 16 times, all points can be illuminated and imaged. Thus, in general, about 84% of the light energy is included up to the dark part of the first-order term (Airy circle, corner), and about 92% of the light is included up to the dark part of the second-order term. Therefore, a high transfer function can be achieved by separating the third-order terms and removing the nonlinear components to synthesize the light spot.
[0045] 均一な独立した単位多光点で照明された試料力も透過又は反射してくる光を、 NA 可変虹彩絞りを備えた試料面テレセントリック光学系で集光し、像面テレセントリック な第二対物レンズで撮像面に投影して撮像するのに、光点は、インコヒーレント光、 部分コヒリレント光及びコヒーレント光のいずれかに関係なく Fraunhofer回折現象を起 す。その影響が顕著に現れるのは、部分コヒーレント光である。  [0045] Light that is transmitted or reflected by the sample force illuminated by a uniform independent unit multi-light spot is condensed by a sample surface telecentric optical system equipped with an NA variable iris diaphragm to obtain an image surface telecentric second objective. When projecting onto the imaging surface with a lens, the light spot causes a Fraunhofer diffraction phenomenon regardless of whether it is incoherent, partially coherent, or coherent. The effect of this phenomenon is noticeable for partially coherent light.
[0046] また、コヒーレント光は、単色で深!、深度がある。し力しながら、部分コヒーレント光 は、回折現象の影響があっても、適度な深い深度及び高い分解能がある。これは、 厚い試料内部に含まれる全ての画像情報を顕微鏡で読み出すのに優れている。例 えば、深度が深すぎると、光学系の表面やカバーガラスの表面に付着したごみが検 出されたり、カバーガラスと試料の間の封入剤による斑が検出されたりすることがある 。したがって、試料に含まれる画像情報を十分検出し、かつ、それら試料に無関係な ものを除去する光学系及び画像処理が必要になる。 [0047] 深度と分解能の関係を表にまとめると以下のようになる。 [0046] Further, coherent light has a single color and is deep and deep. However, partially coherent light has moderate depth and high resolution even if it is affected by diffraction phenomenon. This is excellent for reading out all image information contained in a thick sample with a microscope. For example, if the depth is too deep, dust attached to the surface of the optical system or the surface of the cover glass may be detected, or spots due to the mounting medium between the cover glass and the sample may be detected. Therefore, an optical system and image processing that sufficiently detect the image information contained in the sample and remove those unrelated to the sample are necessary. [0047] The relationship between depth and resolution is summarized in the following table.
[0048] [表 1] [0048] [Table 1]
Figure imgf000013_0001
また、顕微鏡の結像性能は伝達関数(OTF: Optical Transfer Function)で表し、照 明系と観察系できまる。本発明は超解像技術の一種で撮像系も含めた総合的な伝 達関数で表す。そのコントラストと空間周波数との関係は図 3に示すグラフのようにな る。
Figure imgf000013_0001
In addition, the imaging performance of a microscope is expressed in terms of an optical transfer function (OTF), which can be applied to an illumination system and an observation system. The present invention is a kind of super-resolution technique and is expressed by a comprehensive transfer function including an imaging system. The relationship between contrast and spatial frequency is as shown in the graph in Fig. 3.
[0049] 既に説明したように、部分コヒーレント光の照明を、 2ΝΑΖ λより低くなる伝達関数 を周辺に暗部を設けて囲むことで高めてきた力 撮像においても、これと連動させて 撮像した複数の画像に含まれて!/、る Airyの光点だけを検出して取り出し、それら光点 を 1枚の画像に合成することによって、更に深い深度で高分解能の画像を取得するこ とがでさる。  [0049] As already described, even in force imaging in which partial coherent light illumination is enhanced by surrounding a transfer function lower than 2ΝΑΖλ with a dark portion around it, a plurality of images taken in conjunction with this are captured. It is possible to acquire high resolution images at a deeper depth by detecting and extracting only the Airy light spots included in the image and combining those light spots into a single image. .
[0050] 照明の単位多光点と、撮像された画像の単位多光点とを 1対 1に対応させることによ つて、十分なコントラストで光点を検出できるとともに、高い透過部又は反射部の輻射 が周辺の画素に間接照明効果や、蛍光等の自己発光現象を低減させて影響を及ぼ すしすなわち、背景光又はノイズとなる)のを軽減する。  [0050] By matching the unit multi-light spot of the illumination and the unit multi-light spot of the captured image on a one-to-one basis, the light spot can be detected with sufficient contrast, and a high transmission part or reflection part This reduces the indirect illumination effect on the surrounding pixels and the self-luminous phenomenon such as fluorescence, that is, background light or noise).
[0051] 照明における市松模様状の照明方法又は撮像における市松模様状の撮像方法を 機能的に連動させて撮像することによって、撮像素子は、市松模様状の画像を撮像 したときが最も映像周波数が高くなる。このときの撮像系の信号は、最も高い信号値 と最も低い信号値とを繰り返す。これは、操像系を最も酷しい条件で働カゝせる。その 一方で、常に光点と暗点 (基準値)とを比較することができ、増幅回路や伝送路にお ける映像信号の蓄積効果が最も低くなる。蓄積効果が低くなるということは、最も分解 能が高くなることを意味する。また、映像信号の主成分が最も高い周波数の交流成 分になるために、増幅及び信号号処理 (例えば、ロックインアンプ方式による検出や 、 AGC : Automatic Gain Contorolや、マルチ画像の合成処理)が容易になる。 図面の簡単な説明 [0051] By imaging by linking the checkered pattern illumination method in illumination or the checkered pattern image capturing method in function, the imaging element has the highest video frequency when capturing a checkered pattern image. Get higher. The signal of the imaging system at this time repeats the highest signal value and the lowest signal value. This allows the image handling system to work under the most severe conditions. On the other hand, the light spot and the dark spot (reference value) can always be compared, and the accumulation effect of the video signal in the amplifier circuit and the transmission line is the lowest. A lower storage effect means the highest resolution. In addition, since the main component of the video signal is the AC component with the highest frequency, amplification and signal processing (for example, detection by a lock-in amplifier method, AGC: Automatic Gain Control, and multi-image synthesis processing) are performed. It becomes easy. Brief Description of Drawings
[0052] [図 1]回折による光の広がりを示すグラフである。  [0052] FIG. 1 is a graph showing the spread of light by diffraction.
[図 2]円形ビンホールを示す像及び四角形のピンホールを示す像を表す図である。  FIG. 2 is a diagram showing an image showing a circular bin hole and an image showing a square pinhole.
[図 3]コントラストと空間周波数の関係を表したグラフである。  FIG. 3 is a graph showing the relationship between contrast and spatial frequency.
[図 4]本発明による顕微鏡撮像装置の第 1の実施の形態を示す図である。  FIG. 4 is a diagram showing a first embodiment of a microscope imaging apparatus according to the present invention.
[図 5]本発明による顕微鏡撮像装置の第 2の実施の形態を示す図である。  FIG. 5 is a diagram showing a second embodiment of the microscope imaging apparatus according to the present invention.
[図 6]本発明による顕微鏡撮像装置の第 3の実施の形態を示す図である。  FIG. 6 is a diagram showing a third embodiment of the microscope imaging apparatus according to the present invention.
[図 7]光点を一つの暗点で囲む場合の照明群のパターンの一例を説明するための図 である。  FIG. 7 is a diagram for explaining an example of a pattern of an illumination group when a light spot is surrounded by one dark spot.
[図 8]光点を二つの暗点で囲む場合の照明群のパターンの一例を説明するための図 である。  FIG. 8 is a diagram for explaining an example of a pattern of an illumination group when a light spot is surrounded by two dark spots.
[図 9]光点を三つの暗点で囲む場合の照明群のパターンの一例を説明するための図 である。  FIG. 9 is a diagram for explaining an example of an illumination group pattern when a light spot is surrounded by three dark spots.
符号の説明  Explanation of symbols
[0053] 1 光源 [0053] 1 light source
2 第 1コレクタレンズ  2 First collector lens
3 光インテグレータ  3 Optical integrator
4 第 2コレクタレンズ  4 Second collector lens
5 単位多光点光源  5-unit multi-point light source
6 コンデンサ光学系  6 Condenser optics
7 観察光学系  7 Observation optical system
8 撮像部  8 Imaging unit
9 試料  9 samples
10 計算部  10 Calculator
11 ビームスプリッタ  11 Beam splitter
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0054] 本発明による顕微鏡撮像装置及び方法の実施形態を、図面を参照して説明する。 An embodiment of a microscope imaging apparatus and method according to the present invention will be described with reference to the drawings.
なお、図面中、同一の要素には同一の符号を付すものとする。光学系の詳しい Fouri er結像論による解析は、上記非特許文献 2に従い、類推可能なものとして主要な部分 のみを説明することとする。 In the drawings, the same elements are denoted by the same reference numerals. Fouri with detailed optical system In the analysis based on er imaging theory, according to Non-Patent Document 2 described above, only the main part will be explained as analogizable.
[0055] 図 4は、本発明による顕微鏡撮像装置の第 1の実施の形態を示す図である。この場 合、本発明による顕微鏡撮像装置は、 Fourier結像論に基づく透過型照明顕微鏡に おいて実現され、光源 1と、第 1コレクタレンズ 2と、光インテグレータ 3と、第 2コレクタ レンズ 4と、単位多光点光源 5と、コンデンサ光学系 6と、観察光学系 7と、撮像部 8と を具える。 FIG. 4 is a diagram showing a first embodiment of a microscope imaging apparatus according to the present invention. In this case, the microscope imaging apparatus according to the present invention is realized in a transmission illumination microscope based on Fourier imaging theory, and includes a light source 1, a first collector lens 2, an optical integrator 3, and a second collector lens 4. A unit multi-point light source 5, a condenser optical system 6, an observation optical system 7, and an imaging unit 8.
[0056] 光源 1として、タングステンランプ、キセノンランプ、レーザー光源等を用いることが できる。第 1コレクタレンズ 2は、光源 1からの光魏光し、均一で平行な照明にする。 光インテグレータ 3は、第 1コレクタレンズ 2からの光を更に均一にする。第 2コレクタレ ンズ 4は、光インテグレータ 3からの光を結像する。  [0056] As the light source 1, a tungsten lamp, a xenon lamp, a laser light source, or the like can be used. The first collector lens 2 fluoresces the light from the light source 1 to provide uniform and parallel illumination. The light integrator 3 makes the light from the first collector lens 2 more uniform. The second collector lens 4 images the light from the optical integrator 3.
[0057] 単位多光点光源 5は、均一な照明の像が結ばれる位置に設けたピンホール配列又 は液晶シャツタ配列からなる。特に、液晶シャツタ配列の場合、光点の大きさ、暗点の 大きさ及び暗部領域の大きさを適切にできることから、試料に適した照明と撮像の条 件が設定できる。これにより高い分解能及び深い深度の像を得ることができる。コン デンサ光学系 6は、単位多光点光源 5から透過してくる単位多光点の照明を適切に 絞り、試料 9に照射する。観察光学系 8は、例えば NA可変虹彩絞り付き対物光学系 によって構成され、試料 9を透過し又は試料 9から反射する光をインコヒーレント光、 部分コヒーレント光又はコヒーレント光にして結像する。撮像部 8は、結像された光を 像として検出する。  The unit multi-light spot light source 5 is composed of a pinhole array or a liquid crystal shirt array provided at a position where a uniform illumination image is formed. In particular, in the case of a liquid crystal shirt arrangement, the size of the light spot, the size of the dark spot, and the size of the dark area can be appropriately set, so that illumination and imaging conditions suitable for the sample can be set. Thereby, an image with high resolution and deep depth can be obtained. The condenser optical system 6 irradiates the sample 9 by appropriately reducing the illumination of the unit multi-light spot transmitted from the unit multi-light spot light source 5. The observation optical system 8 is composed of, for example, an objective optical system with an NA variable iris diaphragm, and forms an image using light that passes through the sample 9 or is reflected from the sample 9 as incoherent light, partially coherent light, or coherent light. The imaging unit 8 detects the imaged light as an image.
[0058] 単位多光点光源 5、コンデンサ光学系 6及び観察光学系 7及び撮像部 8は、計算部 10によって制御及び連動され、計算部 10は、撮像部 8から入力された画像を記憶し 、処理し及び合成して外部に伝送する。インコヒーレント光は、全面に均一に照明し、 部分コヒーレント光又はコヒーレント光は、光点をピンホール配列又は透過型液晶シ ャッタ配列で構成し、その周辺の暗部は、それと等価な単位面積を遮蔽することで実 現した単位多光点光の光で試料を照明している。これによつて、光点の回折光が、 照明されていない暗部にまで広がる力 その光エネルギーは、 Airyの明部の数パー セント程度に制限される。また、インコヒーレント光として結ばれた像はそれを撮像す る。部分コヒーレント光又はコヒーレント光として結ばれた像は、複数に分けて照明さ れた数の像を撮像し、それらを計算部 10に入力し、処理及び合成して全体の画像を 得る。 The unit multi-light spot light source 5, the condenser optical system 6, the observation optical system 7, and the imaging unit 8 are controlled and interlocked by the calculation unit 10, and the calculation unit 10 stores the image input from the imaging unit 8. , Process and synthesize and transmit to the outside. Incoherent light uniformly illuminates the entire surface. Partially coherent light or coherent light has a light spot composed of a pinhole array or a transmissive liquid crystal shutter array, and the dark area around it blocks the equivalent unit area. In this way, the sample is illuminated with the light of unit multi-point light. As a result, the diffracted light of the light spot spreads to the dark part that is not illuminated. The light energy is limited to a few percent of the bright part of Airy. In addition, the image connected as incoherent light captures it. The The image combined as the partial coherent light or the coherent light is divided into a plurality of images, and the number of the illuminated images is picked up, input to the calculation unit 10, and processed and synthesized to obtain the entire image.
[0059] 光点を暗点で囲むためには、グラフの地図塗り分け問題を適用する。例えば、光点 を一つの暗点で囲むためには最低 4色が必要であり、 4色あれば一つの光点を暗点 で囲むことができる。これにより、非線形の主な回折の 0次暗部、 1次明部を除去でき る。  In order to surround the light spot with a dark spot, a map map coloring problem of a graph is applied. For example, to surround a light spot with one dark spot, at least four colors are required. With four colors, one light spot can be surrounded with a dark spot. As a result, the 0th order dark part and the 1st order bright part of the main nonlinear diffraction can be removed.
[0060] また、光点を二つの暗点で囲むためには最低 9色が必要であり、 9色あれば一つの 光点を囲むことができる。すなわち、 9枚の画像を撮像し、これらの光点を処理し、合 成して撮像する。これにより、非線形の主な回折の 0次暗部、 1次明部、 1次暗部, 2次 明部を除去できる。  [0060] In addition, in order to surround a light spot with two dark spots, at least nine colors are required. With nine colors, one light spot can be surrounded. In other words, nine images are taken, these light spots are processed, combined and taken. As a result, the non-linear main diffraction zero-order dark portion, first-order bright portion, first-order dark portion, and second-order bright portion can be removed.
[0061] さらに、光点を三つの暗部で囲むためには最低 16色が必要であり、 16色あれば一 つの光点を囲むことができる。すなわち、 16枚撮像し、これらの光点を処理して合成 することで撮像する。これにより、非線形の主なスペクトルである 0次暗部、 1次明部、 1 次暗部、 2次明部を除去できる。これにより不要なほとんどの非線形成分を除去でき る。  [0061] Further, in order to enclose a light spot with three dark parts, at least 16 colors are required. With 16 colors, one light spot can be enclosed. That is, 16 images are taken, and these light spots are processed and combined to take an image. As a result, the non-linear main spectrum, ie, the 0th order dark part, the 1st order bright part, the 1st order dark part, and the 2nd order bright part can be removed. This eliminates most of the unwanted nonlinear components.
[0062] 後に説明する市松模様状の照明方法又は市松模様状の撮像方法により、計算部 1 0が、照明系(単位多光点光源 5及びコンデンサ光学系 6)と撮像系 (観察光学系 7及 び撮像部 8)とを機能的に連動させ、撮像することによって、撮像部 8は、増幅回路や 伝送路の蓄積効果を低くすることができ、常に基準値 (暗点)と比較することができ、 かつ、映像信号の主成分が最も高い周波数の交流成分になることから、増幅及び信 号処理(例えば、ロックインアンプ方式による検出や AGC : Automatic Gain Controlや 、得られたマルチ画像の合成処理)が容易にできる。  [0062] By a checkered pattern illumination method or a checkered pattern imaging method, which will be described later, the calculation unit 10 performs an illumination system (unit multi-light spot light source 5 and condenser optical system 6) and an imaging system (observation optical system 7). In addition, the imaging unit 8 can reduce the accumulation effect of the amplifier circuit and the transmission line, and always compare it with the reference value (dark spot). Since the main component of the video signal is the AC component of the highest frequency, amplification and signal processing (for example, detection by the lock-in amplifier method, AGC: Automatic Gain Control, (Combining process) can be easily performed.
[0063] 図 5は、本発明による顕微鏡撮像装置の第 2の実施の形態を示す図である。この場 合、本発明による顕微鏡撮像装置は、 Fourier結像論に基づく反射型照明顕微鏡に おいて実現され、単位多光点光源 5を、反射型マイクロミラー配列、反射型液晶配列 又は移動'回転自在のモザイクミラー配列によって構成し、これによつて、更にコント ラストの高い照明が可能になり、撮像される像も鮮明になる。この顕微鏡撮像装置は 、第 2コレクタレンズ 4力も入射された光の一部を単位多光点光源 5に向力つて反射 するとともに、第 2コレクタレンズ 4カゝら入射された光の他の部分及び単位多光点光源 5から入射された光の全てを透過するビームスプリッタ 11を更に具える。 FIG. 5 is a diagram showing a second embodiment of the microscope imaging apparatus according to the present invention. In this case, the microscope imaging apparatus according to the present invention is realized in a reflection type illumination microscope based on Fourier imaging theory, and the unit multi-light spot light source 5 is connected to a reflection type micromirror array, a reflection type liquid crystal array, or moving and rotating. It is composed of a free mosaic mirror array, which enables illumination with higher contrast and makes the captured image clearer. This microscope imaging device The second collector lens 4 also reflects a part of the incident light to the unit multi-point light source 5, and reflects the other part of the incident light from the second collector lens 4 units and the unit multi-point. A beam splitter 11 that transmits all of the light incident from the light source 5 is further provided.
[0064] 図 6は、本発明による顕微鏡撮像装置の第 3の実施の形態を示す図である。この場 合、本発明による顕微鏡撮像装置は、 Fourier結像論に基づく反射型照明顕微鏡に おいて実現され、単位多光点光源 5を、結像された均一な照明の位置に設けたピン ホール配列又は透過型液晶シャツタ配列力も構成する。また、ビームスプリッタ 11は 、観察光学系 7に配置され、単位多光点光源 5から入射された光の一部を試料 9〖こ 向かって反射するとともに、単位多光点光源 5から入射された光の他の部分及び試 料 9から入射された光の全てを透過する。  FIG. 6 is a diagram showing a third embodiment of the microscope imaging apparatus according to the present invention. In this case, the microscope imaging apparatus according to the present invention is realized in a reflection type illumination microscope based on Fourier imaging theory, and a pinhole in which a unit multi-light spot light source 5 is provided at the position of uniform illumination formed. It also constitutes the alignment or transmission type liquid crystal shirt alignment force. The beam splitter 11 is disposed in the observation optical system 7 and reflects part of the light incident from the unit multi-light spot light source 5 toward the sample 9 and enters from the unit multi-light spot light source 5. Transmits all other incident light from other parts of light and sample 9.
[0065] 図 7は、明部(光点)を一つの暗部(暗点)で囲む場合の照明群のパターンの一例 を説明するための図である。既に説明したように、単位多光点で照明及び撮像する には、最少 4回パターンを変えて行えば全ての点を照明して撮像できるので、 4パタ 一ンの明部 al〜a4の照明群(図 7A)を有すればよぐ al〜a4のパターンで順次明 部を構成する(図 7B〜7E参照)。  FIG. 7 is a diagram for explaining an example of a pattern of an illumination group in a case where a bright part (light spot) is surrounded by one dark part (dark spot). As already explained, in order to illuminate and image with multiple unit light spots, it is possible to illuminate and image all points by changing the pattern at least four times, so the illumination of 4 patterns of bright parts al to a4 If there is a group (Fig. 7A), the bright parts are formed in order from al to a4 patterns (see Figs. 7B to 7E).
[0066] 図 8は、明部(光点)を二つの暗部(暗点)で囲む場合の照明群のパターンの一例 を説明するための図である。既に説明したように、単位多光点で照明及び撮像する には、最少 9回パターンを変えて行えば全ての点を照明して撮像できるので、 9パタ 一ンの明部 bl〜b9の照明群(図 8A)を有すればよぐ先ず、明部を blのパターンで 構成し、最後に、明部を b9のパターンで構成する(図 8B及び 8C参照)。  FIG. 8 is a diagram for explaining an example of an illumination group pattern when a bright part (light spot) is surrounded by two dark parts (dark spots). As already explained, in order to illuminate and image with multiple unit light spots, it is possible to illuminate and image all points by changing the pattern a minimum of 9 times, so the illumination of 9 patterns of bright part bl to b9 It is sufficient to have a group (Fig. 8A). First, the bright part is composed of the bl pattern, and finally, the bright part is composed of the b9 pattern (see Figures 8B and 8C).
[0067] 図 9は、明部(光点)を三つの暗部(暗点)で囲む場合の照明群のパターンの一例 を説明するための図である。既に説明したように、単位多光点で照明及び撮像する には、最少 16回パターンを変えて行えば全ての点を照明して撮像できるので、 16パ ターンの明部 cl〜cl6の照明群(図 9A)を有すればよぐ先ず、明部を clのパター ンで構成し、最後に、明部を cl6のパターンで構成する(図 9B及び 9C参照)。  FIG. 9 is a diagram for explaining an example of a pattern of an illumination group when a bright part (light spot) is surrounded by three dark parts (dark spots). As already explained, in order to illuminate and image with multiple unit light spots, it is possible to illuminate and image all points by changing the pattern at least 16 times, so the illumination group of 16 patterns of bright parts cl to cl6 (Figure 9A) First, the bright part is composed of cl pattern, and finally the bright part is composed of cl6 pattern (see Figures 9B and 9C).
[0068] 本発明は、上記実施の形態に限定されるものではなぐ幾多の変更及び変形が可 能である。  [0068] The present invention is not limited to the above-described embodiment, and many changes and modifications are possible.
例えば、照明光学系及び観察光学系を、上記実施の形態で示した構成以外の構 成とすることができる。また、照明群を、上記実施の形態で示したパターン以外のバタ ーンとすることができ、コヒーレント光又は部分コヒーレント光の照明回数を、 4,9, 16 回以外の回数とすることができる。 For example, the illumination optical system and the observation optical system have a configuration other than the configuration shown in the above embodiment. Can be made. Further, the illumination group can be a pattern other than the pattern shown in the above embodiment, and the number of times of illumination of the coherent light or the partial coherent light can be a number other than 4, 9, 16 times. .

Claims

請求の範囲 The scope of the claims
[1] 試料を均一に照明する照明光学系と、  [1] An illumination optical system that uniformly illuminates the sample;
前記照明光学系によって照明された試料を観察する観察光学系と、  An observation optical system for observing the sample illuminated by the illumination optical system;
前記観察光学系によって観察された試料の画像を取得する撮像系とを具え、 前記照明光学系が、  An imaging system for acquiring an image of a sample observed by the observation optical system, and the illumination optical system,
均一な照明の像が結ばれる位置に設けられ、光を前記試料の全面に対して均一に 照明し、コヒーレント光又は部分コヒーレント光を、照明群ごとに前記試料に複数回照 明する照明切替手段を有し、  Illumination switching means that is provided at a position where an image of uniform illumination is formed, uniformly illuminates the entire surface of the sample, and irradiates the sample with the coherent light or partial coherent light multiple times for each illumination group. Have
前記撮像系が、  The imaging system is
前記照明群で照明された試料に対応する画像を合成して、 1枚の画像を構成する 画像合成手段を有し、  The image corresponding to the sample illuminated by the illumination group is synthesized, and image synthesis means for configuring one image is provided.
前記照明群が、 1個の明部又は互いに隣接しない複数の明部と、前記明部を包囲 する暗部とを有し、前記照明群の全ての明部によって前記試料の全面が照明される ようにしたことを特徴とする顕微鏡撮像装置。  The illumination group has one bright part or a plurality of bright parts that are not adjacent to each other and a dark part surrounding the bright part, and the entire surface of the sample is illuminated by all the bright parts of the illumination group. A microscope imaging apparatus characterized by the above.
[2] 前記照明切替手段が、液晶シャツタ配列、反射型マイクロミラー配列、反射型液晶 配列又は移動 ·回転自在のピンホール配列若しくはモザイクミラー配列を有すること を特徴とする請求項 1記載の顕微鏡撮像装置。  2. The microscope imaging according to claim 1, wherein the illumination switching means has a liquid crystal shirt array, a reflective micromirror array, a reflective liquid crystal array, or a movable / rotatable pinhole array or a mosaic mirror array. apparatus.
[3] 前記照明切替手段の照明回数を、 4回、 9回又は 16回としたことを特徴とする請求 項 1又は 2記載の顕微鏡撮像装置。 [3] The microscope imaging apparatus according to [1] or [2], wherein the number of illuminations of the illumination switching means is 4, 9, or 16.
[4] 試料を照明する照明ステップと、 [4] an illumination step for illuminating the sample;
前記照明ステップによって照明された試料を観察する観察ステップと、 前記観察ステップによって観察された試料の画像を取得する撮像ステップとを具え 前記照明ステップが、  An observing step of observing the sample illuminated by the illuminating step; and an imaging step of acquiring an image of the sample observed by the observing step.
均一な照明の像が結ばれる位置において、光を前記試料の全面に対して均一に 照明し、コヒーレント光又は部分コヒーレント光を、照明群ごとに前記試料に複数回照 明する照明切替ステップを有し、  There is an illumination switching step that uniformly illuminates the entire surface of the sample at a position where a uniform illumination image is formed, and irradiates the sample multiple times for each illumination group with coherent light or partial coherent light. And
前記撮像ステップが、 前記照明群で照明された試料に対応する画像を合成して、 1枚の画像を構成する 画像合成ステップを有し、 The imaging step includes An image composing step of composing an image corresponding to the sample illuminated by the illumination group to form one image;
前記照明群が、 1個の明部又は互いに隣接しない複数の明部と、前記明部を包囲 する暗部とを有し、前記照明群の全ての明部によって前記試料の全面が照明される ことを特徴とする顕微鏡撮像方法。  The illumination group has one bright part or a plurality of bright parts not adjacent to each other and a dark part surrounding the bright part, and the entire surface of the sample is illuminated by all the bright parts of the illumination group. A microscope imaging method characterized by the above.
[5] 前記照明切替ステップが、液晶シャツタ配列、反射型マイクロミラー配列、反射型液 晶配列又は移動 ·回転自在のピンホール配列若しくはモザイクミラー配列を通じて行 われることを特徴とする請求項 4記載の顕微鏡撮像方法。  5. The illumination switching step is performed through a liquid crystal shirt array, a reflective micromirror array, a reflective liquid crystal array, or a movable / rotatable pinhole array or a mosaic mirror array. Microscopic imaging method.
[6] 前記照明切替ステップの照明回数を、 4回、 9回又は 16回とすることを特徴とする請 求項 4又は 5記載の顕微鏡撮像方法。  [6] The microscope imaging method according to claim 4 or 5, wherein the number of times of illumination in the illumination switching step is set to 4, 9, or 16.
PCT/JP2006/306256 2005-04-07 2006-03-28 Microscope imaging apparatus and method WO2006109561A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007512740A JP5062588B2 (en) 2005-04-07 2006-03-28 Microscope imaging apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-110763 2005-04-07
JP2005110763 2005-04-07

Publications (1)

Publication Number Publication Date
WO2006109561A1 true WO2006109561A1 (en) 2006-10-19

Family

ID=37086843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306256 WO2006109561A1 (en) 2005-04-07 2006-03-28 Microscope imaging apparatus and method

Country Status (2)

Country Link
JP (1) JP5062588B2 (en)
WO (1) WO2006109561A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013161809A (en) * 2012-02-01 2013-08-19 Nikon Corp Lighting device, inspection apparatus and manufacturing method of image pickup element
EP2902833A1 (en) * 2014-01-30 2015-08-05 Olympus Corporation Microscope illumination apparatus, microscope, and microscope illumination method
DE102016107041A1 (en) * 2016-04-15 2017-10-19 Carl Zeiss Microscopy Gmbh Microscope and microscopy method
CN111650739A (en) * 2020-05-21 2020-09-11 中国科学院苏州生物医学工程技术研究所 Single-frame exposure rapid three-dimensional fluorescence imaging system and method based on DMD

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04328718A (en) * 1991-04-30 1992-11-17 Japan Synthetic Rubber Co Ltd High-resolution optical microscope and mask for generating irradiation spot light
JP2004219537A (en) * 2003-01-10 2004-08-05 Nikon Engineering Co Ltd Confocal microscope

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04328718A (en) * 1991-04-30 1992-11-17 Japan Synthetic Rubber Co Ltd High-resolution optical microscope and mask for generating irradiation spot light
JP2004219537A (en) * 2003-01-10 2004-08-05 Nikon Engineering Co Ltd Confocal microscope

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013161809A (en) * 2012-02-01 2013-08-19 Nikon Corp Lighting device, inspection apparatus and manufacturing method of image pickup element
EP2902833A1 (en) * 2014-01-30 2015-08-05 Olympus Corporation Microscope illumination apparatus, microscope, and microscope illumination method
US9690085B2 (en) 2014-01-30 2017-06-27 Olympus Corporation Microscope illumination apparatus, microscope, and microscope illumination method
DE102016107041A1 (en) * 2016-04-15 2017-10-19 Carl Zeiss Microscopy Gmbh Microscope and microscopy method
CN111650739A (en) * 2020-05-21 2020-09-11 中国科学院苏州生物医学工程技术研究所 Single-frame exposure rapid three-dimensional fluorescence imaging system and method based on DMD
CN111650739B (en) * 2020-05-21 2022-06-03 中国科学院苏州生物医学工程技术研究所 Single-frame exposure rapid three-dimensional fluorescence imaging system and method based on DMD

Also Published As

Publication number Publication date
JPWO2006109561A1 (en) 2008-10-30
JP5062588B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
JP4831072B2 (en) Microscope equipment
US8019136B2 (en) Optical sectioning microscopy
US8780192B2 (en) Sample observation device for generating super resolution image
US6031661A (en) Confocal microscopic equipment
US7385709B2 (en) Microscopy imaging apparatus and method for generating an image
US8675062B2 (en) Shape measuring device, observation device, and image processing method
JP2016507752A (en) Surface topography interferometer with surface color
JPH11242189A (en) Method and device for forming image
JP3483948B2 (en) Defect detection device
US20180246307A1 (en) Polarisation microscope
JP2015064462A (en) Confocal microscope
WO2006109561A1 (en) Microscope imaging apparatus and method
JP2007286379A (en) Real time confocal microscope using dispersion optical system
JP2000356513A (en) Three-dimensional inspection apparatus for object
JPH02247605A (en) Laser scanning fluorescent microscope
JP4518704B2 (en) Phase shift mask inspection apparatus and phase shift mask inspection method
Sheppard Scanning confocal microscopy
JP5201185B2 (en) Observation optical system and laser processing apparatus
JPH0682373A (en) Inspection of defect
JPH0682380A (en) Defect inspection device
CN115272504A (en) Signal extraction and image reconstruction method for wide-field illumination confocal microscopic imaging system
Paul Improving Sensitive Microscopy Techniques: SERS, SIM, and Spinning Disks
JP2002196253A (en) Interference fringe projection optical system and microscope using this optical system
Qiu et al. CCD on-chip imaging for smart micro-object and fluorescence imaging system
Juskaitis et al. Microscopy using an interference pattern as illumination source

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007512740

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06730204

Country of ref document: EP

Kind code of ref document: A1