WO2006109003A1 - Dispositif de conditionnement d’air de type geothermique - Google Patents

Dispositif de conditionnement d’air de type geothermique Download PDF

Info

Publication number
WO2006109003A1
WO2006109003A1 PCT/FR2006/050343 FR2006050343W WO2006109003A1 WO 2006109003 A1 WO2006109003 A1 WO 2006109003A1 FR 2006050343 W FR2006050343 W FR 2006050343W WO 2006109003 A1 WO2006109003 A1 WO 2006109003A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
water
tube
exchanger
buried
Prior art date
Application number
PCT/FR2006/050343
Other languages
English (en)
Inventor
Denis Consigny
Original Assignee
Climatisation Par Puits Canadiens
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Climatisation Par Puits Canadiens filed Critical Climatisation Par Puits Canadiens
Publication of WO2006109003A1 publication Critical patent/WO2006109003A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/006Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an air-to-air heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/17Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • F24F2005/0053Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground receiving heat-exchange fluid from a well
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/272Solar heating or cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy

Definitions

  • the invention essentially relates to installations intended to improve the thermal comfort of living quarters, premises used for offices, industrial activities or leisure activities. It also relates to the products and components enabling the realization of such installations.
  • the invention finds preferential applications in improving the thermal comfort of individual homes but may also apply to collective premises, medical or not.
  • the installations according to the invention are intended to improve the temperature and hygrometry of the air distributed in the premises, with the lowest possible energy expenditure.
  • the installations according to the invention will advantageously be used for the preheating and the frost and humidity freezing of the living quarters in winter and for the cooling of these same premises in summer.
  • Controlling the temperatures and hygrometry rates of fresh air flows introduced into the premises becomes even more important that the use of double-glazed windows and insulated joinery implies the need to renew the air of these premises by mechanized devices, known as Controlled Mechanical Ventilation.
  • This technique consists of passing air through buried pipes at a depth sufficient for this air to be relatively temperate in winter and relatively cool in summer. If we take the precaution of providing sufficiently long passage lengths, we obtain with this solution a very significant contribution to the perceived comfort and energy balance of the premises.
  • These installations are based on the circulation of air in buried pipes at depths sufficient to benefit from the thermal inertia of the soil. However, they have the disadvantage of requiring long lengths of buried pipes, said pipes being difficult to access and therefore difficult to monitor and maintain.
  • these pipelines require the carrying out of long and expensive earthmoving operations, a large volume of soil to be removed and backfilled before and after laying the pipes. For reasons related to the characteristics of earth-moving machines and regulations, it is often difficult or impossible to place the pipes at a sufficient depth to benefit from a significant cooling in summer and a significant preheating in winter.
  • the volume of fresh air to be introduced into the premises being set according to the occupancy rate of the latter, it is virtually impossible to vary rapidly the temperature at which the air is introduced, the said temperature being directly a function of the state of the soil at the depth of burial of the pipes and the quality of the heat exchanges soil / pipe then pipe / air.
  • the preheating or cooling installations by Canadian wells or Provençal wells known in the state of the art do not allow to control the rate of humidity of the air finally introduced into the living quarters which in certain circumstances may be detrimental to perceived comfort.
  • the invention proposes to use the thermal mass of the soil at medium depths and use on the one hand a liquid as a primary vector and on the other hand air distributed in living quarters as a secondary vector.
  • the invention proposes an installation according to claim 1.
  • the invention proposes to make vertical wells, to fill these wells with water that will come mainly from the rainwater recovery and the condensation of the water.
  • the invention also provides for the use of excess water in relation to the filling of the wells, whether it is the water coming from the recovery of the rainwater or that coming from the condensation of the air passing through the water. exchange battery, for moistening the ground periphery of the buried vertical wells, so that the exchange between the ground and the tube containing the primary vector fluid is more efficient.
  • the invention provides for the addition of a second exchange battery, of the air / air battery type, with the aim of improving the thermal balance in the heating season as in the summer season.
  • This battery will indeed, in a known manner, complete the reheating of the air introduced through the calories contained in the extracted air flow by a device type mechanical ventilation controlled double flow or equivalent.
  • the invention proposes to use this second battery as a reverse evaporative exchanger during periods when you want to refresh the premises.
  • the invention proposes to diffuse, at the level of the secondary compartment of said exchanger, a water mist taken directly in the volume constituted by the open vertical well; this controlled diffusion of water possibly filtered will have the effect of cooling by evaporation one of the faces of the air / air exchanger; this cooling will be communicated to the flow of fresh air passing through the primary compartment of this same exchanger, without any mixing occurring between the air flows passing through the primary and secondary compartments, so that the hygrometry of the fresh air will not be increased compared to that of the outside air.
  • the first exchanger encountered by the fresh air acts as a cold wall dehumidifier: in contact with this exchanger, traversed by a water drawn in the lower part of the well, that is to say typically at a temperature of 10 ° C, a large part of the water contained in the air condenses on the exchanger and then falls by gravity into the well: thus obtaining an air not only cooled but still dehumidified. It is this cooled and dehumidified air that is introduced into the living quarters. It is also this same air that is extracted from the premises, by the ventilation devices.
  • the extracted air remains at a lower relative humidity level than the outside air, dehumidified that it happens to have been through its passage initial on the water / air exchange battery.
  • the evaporation of the water operated at the secondary compartment of the air / air exchanger will have an optimal or almost optimal efficiency in terms of additional cooling conferred on the air drawn outside and introduced into the local after successive passage on the water / air battery and on the secondary stage of the air / air exchanger.
  • the optional cooling supplement obtained at the second exchanger injecting a small amount of water into the secondary compartment of the latter without any mixing with the air passing through the primary compartment will ensure a temperature hygrometry particularly comfortable in the premises, and this with a particularly low energy consumption.
  • the energy and water consumption induced by the installations according to the invention are exceptionally moderate. They are limited, as far as energy is concerned, to one or two circulators and to the fans which are most often those which would have been necessary for a single or double flow controlled mechanical ventilation installation and, as far as energy is concerned, water, to that which comes from the condensation of the treated air as well as the recovery of rainwater coming either from the roof of the only shelter in which are placed the components of the installation or from the roof of the house or the room whose renewal air is prepared by said installation.
  • the invention proposes to carry out vertical drilling, placing in these holes a sealed tube at the bottom, filling said tube with a liquid and transferring calories or frigories by means of a pump or a circulator and a water / air exchanger.
  • the wall of the vertical tube will preferably be made of conductive material; it will advantageously be constituted by the casing which will be put in place at the time of drilling of the well, the casing will be completed by a sealed plug placed in the lower part of the well and made for example by pouring concrete or resin.
  • the wall of the tube may be provided with fins improving the heat transfer tube / soil. It will transmit the calories or frigories to the liquid contained in the said tube.
  • the lower part of the tube provided with a tight stopper, will be placed at a depth of the order of 6 meters. For some achievements, we can choose deeper depths, for example 20 meters.
  • the diameter of the tube will be relatively small compared to its length. For example, it will be chosen to make wells of 20 or 40 cm in diameter. In the case of collective buildings requiring very large volumes of fresh air, we can choose larger diameters. For these same buildings, it will be necessary to place a plurality of vertical wells, whose axes will be spaced at a distance at least equal to four times their diameter. The water contained in these different wells will be pumped and directed either on a single water / air exchange battery or on a plurality of batteries successively crossed by the fresh air flow.
  • the liquid will be pumped by a circulator and directed to a water / air exchanger, for example an automobile or truck radiator or a hot air heating or air conditioning battery.
  • This exchanger will be placed in a box through which a large quantity of air will be forced under the action of a fan, or by natural convection. The air having passed through this box will then be introduced into the living quarters.
  • the water likely to come from the condensation of the air in contact with the exchanger will advantageously be collected to complete the filling of the interior volume of the vertical tube and then to humidify by gravity the ground in the immediate vicinity of the vertical tube and over a large part the length of the latter.
  • the installations according to the invention make it possible to obtain that the air is carried, in contact with the exchanger, at a temperature below its dew point, so that the installations according to the invention can have, in period summer, not only a cooling function but also a function of dehumidification of the renewal air of the living quarters.
  • the air from the box can be directed to the living quarters, through air ducts that can advantageously be partially or completely buried.
  • FIG. 1 represents a view of a simplified installation, comprising a single vertical tube and a water / air exchange battery.
  • FIG. 2 represents an installation identical to that represented in FIG. 1, supplemented by an air / air heat exchanger fed by the extracted air and provided with an unmixed evaporation device.
  • FIG. 3 represents a front view and a side view of an installation identical to that shown in FIG. 2 but comprising three vertical tubes connected to the same water / air exchange battery.
  • Figure 1 shows the implementation of the components of an installation according to the invention.
  • a buried vertical tube (1) with a small diameter opposite its height is used.
  • the wall of the tube (1) will be constituted by the casing, of plastic or metallic material, which will be put in place gradually during and during drilling operations of the well, so as to avoid the slump of the earth in the said well.
  • the tube (1) will be provided at its lower end with a plug (13) which will be made for example by injection of cement, resins or any self-solidifying waterproof material.
  • the vertical tube will be filled with a liquid, preferably water that will be used as the primary fluid vector to transfer calories (or, in summer frigories) from the ground to the premises.
  • the upper end of the vertical tube (1) will be located at a depth of about 1 meter below the ground level, so that the installation is not sensitive to freezing in winter.
  • the water contained in the tube (1) will be drawn into said tube and put into circulation by means of a pump or a simple circulator (2) of low power.
  • This tube will be implanted at sufficient depths to benefit from the thermal inertia of the soil; this depth may be for example between 6 and 10 meters for the lower part of said tube. In some cases, for collective buildings in particular, it will be possible to choose greater depths, without exceeding the priming capacity of the pumps used to circulate the water between the interior volume of the buried tube and the water / air exchanger.
  • the water drawn into the tube will be directed to the exchanger of a water / air battery (3), said battery being traversed by a stream of air drawn outside the room and introduced, after passing through this battery in the said local.
  • the passage of the air on the battery of exchange (3) will heat it in winter and cool in summer. In addition, during the summer, this passage will cause dehumidification of the air, the latter meeting the fins of the exchanger, which are carried by the action of the water circulating inside the heat exchanger. a temperature below the dew point.
  • a second receptacle (9) whose contents will also flow into the buried vertical tube (1) will be placed in such a way that it makes it possible to collect the water from the flow of rainwater on the blanket of the small shelter or box (10) in which will be placed and sheltered components of the installation according to the invention. Again, the collected water will be directed to the buried vertical tube, so that the level of the liquid in the tube is still sufficient.
  • the buried vertical tube may be provided with overflow orifices (11), so that the water resulting from the condensation on the battery (3) is spread at the periphery of the wall of the tube (1) so that said tube (1) will be placed in a soil abundantly and constantly humidified, which is favorable to the thermal efficiency of the installation.
  • all or part of the orifices (11) may lead to drains (12) for directing the overflow water to preferential areas near the walls of the tube (1).
  • the air taken outside will be accelerated by a fan (7) and then directed by a pipe (6), channeling preferentially buried towards the interior of the premises whose tempered atmosphere is sought.
  • FIG. 2 illustrates the passage of the air prepared by an installation according to the invention through two exchangers, the first of which is a water / air battery (3) and the second an air / air exchanger (20).
  • This air / air exchanger (20) is provided with two sealed compartments, the first compartment being traversed by the flow of air taken outside and having previously passed through the water / air battery (3) and the second compartment being crossed by air extracted from the room whose internal environment is tempered by the installation according to the invention.
  • this second exchanger will complete the cooling conferred to the air in summer; this result will be obtained by injecting a small amount of water into the secondary compartment of the air / air exchanger.
  • the water injector device (23) will be a nozzle fed through a small pump (24) drawing water into the interior of the tube (1).
  • the water recovered by dehumidification of the air on the battery (3) or by run-off on the cover of the shelter or even of the room itself will serve not only to fill the buried vertical tube (1) but also to complete the cooling conferred to the air flow finally introduced into the room.
  • the water resulting from the condensation at the water / air exchanger (3) and the passage through the secondary compartment of the air / air exchanger (20) will be collected by a receptacle (25) of sufficient size to recover all the water likely to flow in such a way as to direct the excess water (condensed or not evaporated) towards the interior volume of the buried vertical tube.
  • the circuit of the air taken outside will be the following one: drawn outside, it is sucked by a ventilator (7), passes through the stage air of the battery (3) where it can possibly see itself condensing the water vapor that it is contained, passes through the primary compartment of the air / air exchanger (20) and is introduced into the room through a pipe (6) preferably buried.
  • FIG. 3 illustrates an embodiment of the invention more particularly intended for collective buildings, in which a plurality of buried vertical tubes (1) filled with water circulating towards the exchanger of a water / air battery ( 3); this water will advantageously be collected by a network of pipes connected to a circulation pump (2) and rejected, after passing through the battery (3) in the interior volumes of the buried vertical tubes.
  • the installations according to the invention are intended to modify the temperature of the air introduced into a room. They use on the one hand the thermal inertia of the soil as a source of calories or frigories and on the other hand water as a primary vector and then air as a secondary vector to transmit the calories or frigories extracted from the soil towards said local .
  • the installations according to the invention comprise
  • this battery will be provided with a device (8) for collecting the condensation water that may form on the fins of said water / air exchange battery (3) and to evacuate these waters inside the volume contained in a buried vertical tube (1).
  • the installations according to the invention will be placed in a small box or shelter (5) provided with at least one external air intake.
  • said box or shelter (5) being placed vertically to the buried tube (1) and containing the water / air exchange battery (3) and the means for circulating the water between the volume interior of the buried vertical tube and said battery, the cover of said box or shelter (5) being provided with a rainwater recovery device (9) and means (10) for directing said rainwater towards the volume inside the buried vertical tube (1).
  • the vertical buried tube (1) will be provided in its upper part with at least one weir (11) through which any overflow of water contained in the sealed volume is directed into the earth immediately surrounding the outer wall of said buried tube (1), so as to improve the thermal contact between the tube and the ground and thus improve the performance and performance of the installation.
  • the installation will also include an air / air exchanger (20), placed downstream of the water / air exchange battery (3) with respect to the direction of air flow. , said air / air exchanger (20) having a primary stage and a secondary stage, the two stages being arranged in such a way that no air mixture can occur between the air flows passing through each of these two stages .
  • the primary stage of the exchanger will be crossed by the air flow introduced by the air intakes of the box then directed towards the local while the secondary stage will be crossed by a flow of air extracted from the local and then evacuated to the outside of the box.
  • Means will also be provided to diffuse a small amount of water in the form of droplets or fog upstream or at the secondary compartment of the air / air exchanger, so as to cause cooling by evaporation.
  • This water will preferably be removed, for example by means of a self-priming pump (24) at the internal volume of the buried vertical tube (1).
  • the air flow introduced into the room will be determined according to the occupancy rate and the use of the premises, while the water flow through the exchanger of the water / air coil will be adjusted. , for example by means of a housing (30) depending on the demands for temperatures necessary for the thermal comfort of the premises. In this way, it will be possible to fine-tune the temperature of the renewal air, regardless of the amount of air introduced, which is not possible with the known installations in the state of the art.
  • the installations according to the invention will comprise means (30) for varying the temperature at which the air is distributed in the premises, these means (30) acting on the flow of water passing through the water exchanger of the battery ( 3).

Abstract

L'invention concerne essentiellement les installations destinées à améliorer le confort thermique des locaux d'habitation, locaux à usage de bureaux, d'activités industrielles ou de loisirs. Elle décrit une installation destinée à modifier la température de l'air introduit dans un local, en utilisant d'une part l'inertie thermique du sol comme source de calories ou de frigories et d'autre part l'eau comme vecteur primaire puis l'air comme vecteur secondaire pour transmettre les calories ou les frigories extraites du sol vers ledit local. L'installation selon l'invention comporte un ou plusieurs tubes verticaux enterrés (1) remplis d'eau, laquelle eau est mise ne mouvement par un circulateur (2) entre le volume contenu dans le tube (1) et un échangeur eau / air (3) à travers lequel passe le flux d'air prélevé à l'extérieur puis introduit dans le locaux.

Description

DISPOSITIF DE CONDITIONNEMENT D ' AIR DE TYPE GEOTHERMIQUE
L'invention concerne essentiellement les installations destinées à améliorer le confort thermique des locaux d'habitation, locaux à usage de bureaux, d'activités industrielles ou de loisirs. Elle concerne également les produits et composants permettant la réalisation de telles installations. L'invention trouve des applications préférentielles dans l'amélioration du confort thermique des maisons individuelles mais peut également s'appliquer aux locaux collectifs, médicalisés ou non. Les installations selon l'invention sont destinées à améliorer la température et l'hygrométrie de l'air distribué dans les locaux, et ce moyennant des dépenses d'énergie aussi faibles que possible. Les installations selon l'invention seront avantageusement utilisées pour le préchauffage et la mise hors gel et hors humidité des locaux d'habitation en période hivernale et pour le rafraîchissement de ces mêmes locaux en période estivale.
La maîtrise des températures et des taux d'hygrométrie des flux d'air neuf introduits dans les locaux devient d'autant plus importante que l'utilisation de fenêtres à double vitrage et de menuiseries isolantes implique la nécessité de renouveler l'air de ces locaux par des dispositifs mécanisés, connus sous l'appellation de Ventilation mécanique contrôlée.
Il est connu de rafraîchir ou de préchauffer l'air de renouvellement de locaux d'habitation, au moyen d'installations de chauffage ou de climatisation. Il est également connu d'utiliser des dispositifs de ventilation dits double flux, dans lesquels les calories contenues dans l'air extrait sont transmises, par exemple à l'aide d'un échangeur, au flux d'air neuf introduit dans les locaux. Dans de nombreuses applications, on parvient à traiter l'ensemble des besoins relatifs au confort thermique et hygrométrique des locaux en traitant le flux d'air renouvelé; on parle dans ce cas de système de chauffage et/ou de climatisation à air, notamment qualifiés de systèmes "tout air neuf. II est enfin connu d'utiliser des puits canadiens, également dénommés puits californiens ou puits provençaux pour améliorer les températures auxquelles est introduit le flux d'air neuf dans les locaux. Cette technique consiste à faire passer de l'air dans des canalisations enterrées, à une profondeur suffisante pour que cet air soit relativement tempéré en hiver et relativement frais en été. Si on prend la précaution de ménager des longueurs de passage suffisamment longues, on obtient avec cette solution une contribution très significative au confort perçu et au bilan énergétique du local. Ces installations sont basées sur la circulation de l'air dans des canalisations enterrées, à des profondeurs suffisantes pour bénéficier de l'inertie thermique du sol. Elles présentent toutefois l'inconvénient de nécessiter de grandes longueurs de canalisations enterrées, les dites canalisations étant difficilement accessibles et par conséquent délicates à surveiller et à maintenir. De plus, ces canalisations nécessitent la réalisation d'opérations de terrassement longues et onéreuses, un important volume de terre devant être enlevé puis remblayé avant et après la pose des canalisations. Pour des raisons liées aux caractéristiques des engins de terrassement et à la réglementation, il est souvent difficile voire impossible de placer les canalisations à une profondeur suffisante pour bénéficier d'un rafraîchissement important en été et d'un préchauffage significatif en hiver.
En pratique, la profondeur d'enfouissement est souvent inférieure à 2 mètres, dans la mesure où les profondeurs plus importantes nécessitent de réaliser des tranchées blindées ou talutées, ce qui est techniquement et économiquement très délicat. La demande de brevet français N0 0401206 présentée par le demandeur décrit une proposition d'implantation verticale de puits canadiens, utilisant l'air comme seul vecteur dans des tubes compartimentés; Les performances de ce type d'installations sont satisfaisantes mais restent limitée par les pertes de charges induite par la succession de trajets descendants puis ascendants imposés à l'air. La modification essentielle contenue dans la présente demande consiste à utiliser l'eau comme vecteur primaire, ce qui permet de s'affranchir des problèmes de pertes de charges sur l'air et des problèmes de condensation en partie basse des puits verticaux enterrés.
Dans les puits canadiens connus à ce jour, le passage d'air comportant une hygrométrie importante peut provoquer une condensation dans les canalisations enterrées, ce qui induit d'importantes difficultés d'évacuation de l'eau issue de cette condensation. Cette évacuation est pourtant d'autant plus nécessaire que le passage de l'air destiné à être introduit dans les locaux dans une atmosphère humide peut provoquer des nuisances. A ces profondeurs inférieures à 2 mètres, la différence entre l'air extérieur et la terre est significative mais relativement faible. Dans ces conditions, un débit d'air important est nécessaire, ce qui pose d'importants problèmes de réalisation et génère une consommation d'énergie significative, au niveau des ventilateurs. On constate également que, le volume d'air neuf devant être introduit dans les locaux étant fixé en fonction du taux d'occupation de ces derniers, il est pratiquement impossible de faire varier rapidement la température à laquelle l'air est introduit, la dite température étant directement fonction de l'état du sol à la profondeur d'enfouissement des canalisations et de la qualité des échanges thermiques sol / canalisation puis canalisation / air. De même, les installations de préchauffage ou de rafraîchissement par puits canadiens ou puits provençaux connues dans l'état de la technique ne permettent-elles pas de maîtriser le taux d'hygrométrie de l'air finalement introduit dans les locaux d'habitation ce qui, dans certaines circonstances, peut s'avérer préjudiciable au confort perçu. Pour résoudre ces difficultés et obtenir des performances optimales, permettant dans des locaux situés dans un climat tempéré du type de celui existant dans une région comme l'Ile de France, de satisfaire à la totalité des besoins de rafraîchissement des locaux en période estivale et à la plus grande partie des besoins de chauffage en période hivernale, l'invention propose d'utiliser l'inertie thermique du sol à des profondeurs moyennes et d'utiliser d'une part un liquide comme vecteur primaire et d'autre part l'air distribué dans les locaux d'habitation comme vecteur secondaire. A cet effet, l'invention propose une installation selon la revendication 1. L'invention propose de réaliser des puits verticaux, de remplir ces puits avec de l'eau qui proviendra essentiellement de la récupération des eaux de pluies et de la condensation de la vapeur d'eau contenue dans l'air, de faire circuler cette eau dans une batterie d'échange eau/air, ladite batterie d'échange étant elle même traversée par de l'air prélevé à l'extérieur et finalement introduit dans les locaux. L'invention prévoit également d'utiliser l'eau excédentaire par rapport au remplissage des puits, qu'il s'agisse de l'eau provenant de la récupération des eaux de pluies ou de celle provenant de la condensation de l'air traversant la batterie d'échange, pour humidifier le sol en périphérie des puits verticaux enterrés, ceci de telle façon que l'échange entre le sol et le tube contenant le fluide vecteur primaire soit plus performant.
Dans un mode de réalisation préférentiel, l'invention prévoit d'ajouter une deuxième batterie d'échange, du type batterie air / air, dans le but d'améliorer le bilan thermique en saison de chauffage comme en saison estivale. Cette batterie permettra en effet, de façon connue, de compléter le réchauffage de l'air introduit grâce aux calories contenues dans le flux d'air extrait par un dispositif de type Ventilation mécanique contrôlée double flux ou équivalent. Pour éviter que cette deuxième batterie, qui aurait normalement un effet contraire à l'effet recherché en saison estivale, ne doive être débranchée ou by-passée hors période de chauffage et pour améliorer les performances en termes de rafraîchissement, l'invention propose d'utiliser cette deuxième batterie comme échangeur par évaporation inverse pendant les périodes ou l'on souhaite rafraîchir les locaux. Dans ce but, l'invention propose de diffuser, au niveau du compartiment secondaire dudit échangeur, un brouillard d'eau prélevée directement dans le volume constitué par le puits vertical ouvert; cette diffusion contrôlée d'eau possiblement filtrée aura pour effet de refroidir par évaporation l'une des faces de l'échangeur air / air; ce refroidissement sera communiqué au flux d'air neuf traversant le compartiment primaire de ce même échangeur, sans qu'aucun mélange ne se produise entre les flux d'air traversant les compartiments primaire et secondaire, si bien que l'hygrométrie de l'air neuf ne sera pas augmentée par rapport à celle de l'air extérieur.
Les expérimentations non divulguées réalisées par le demandeur ont montré que les installations selon l'invention avaient une contribution exceptionnellement efficace à l'amélioration du confort perçu en période estivale. En effet, lorsque l'air puisé à l'extérieur présente à la fois une température et une hygrométrie relative élevées, on sait que les installations de rafraîchissement par évaporation sont pratiquement inopérantes, l'air saturé par l'humidité n'étant pas rafraîchi par évaporation d'eau. A l'inverse, dans les installations selon l'invention, le premier échangeur que rencontre l'air neuf, à savoir la batterie d'échange eau/air joue le rôle de déshumidificateur à paroi froide: au contact de cet échangeur, parcouru par une eau puisée en partie basse du puits, c'est à dire typiquement à une température de 10°c, une grande partie de l'eau contenue dans l'air se condense sur l'échangeur puis retombe par gravité dans le puits: on obtient ainsi un air non seulement refroidi mais encore déshumidifié. C'est cet air refroidi et déshumidifié qui est introduit dans les locaux d'habitation. C'est également ce même air qui est extrait des locaux, par les dispositifs de ventilation. Malgré les apports d'humidité possiblement dus au métabolisme des occupants ou à toute autre cause, l'air extrait reste à un taux d'humidité relative inférieur à celui de l'air extérieur, déshumidifié qu'il se trouve avoir été par son passage initial sur la batterie d'échange eau / air. Dans ces conditions, l'évaporation de l'eau opérée au niveau du compartiment secondaire de l'échangeur air / air aura une efficacité optimale ou quasi optimale en termes de refroidissement complémentaire conféré à l'air puisé à l'extérieur et introduit dans le local après passage successif sur la batterie eau / air et sur l'étage secondaire de l'échangeur air / air.
Le complément optionnel de refroidissement obtenu au niveau du deuxième échangeur, en injectant une petite quantité d'eau dans le compartiment secondaire de ce dernier sans mélange aucun avec l'air traversant le compartiment primaire permettra d'assurer une température hygrométrie particulièrement confortables dans les locaux, et ce moyennant une consommation d'énergie particulièrement faible.
On constate que les consommations d'énergie et d'eau induites par les installations selon l'invention sont exceptionnellement modérées. Elles se limitent, pour ce qui concerne l'énergie, à un ou deux circulateurs et aux ventilateurs qui sont le plus souvent ceux qui auraient été nécessaires à une installation de ventilation mécanique contrôlée simple ou double flux et, pour ce qui est de l'eau, à celle qui provient de la condensation de l'air traité ainsi que de la récupération d'eaux de pluies provenant soit de la toiture du seul abri dans lequel sont placés les composants de l'installation soit de la toiture de l'habitation ou du local dont l'air de renouvellement est préparé par ladite installation.
Pour améliorer les performances, diminuer le prix de revient et faciliter la surveillance comme la maintenance des installations de préchauffage ou rafraîchissement des locaux utilisant l'inertie thermique du sol comme source de calories et de frigories, l'invention propose de réaliser des forages verticaux, de placer dans ces forages un tube étanche en partie inférieure, de remplir ledit tube par un liquide et de transférer les calories ou les frigories au moyen d'une pompe ou d'un circulateur et d'un échangeur eau / air. La paroi du tube vertical sera préférentiellement réalisé en matériau conducteur; elle sera de façon avantageuse constituée par le tubage qui sera mis en place au moment du forage du puits, le tubage sera complété par un bouchon étanche placé en partie basse du puits et réalisé par exemple par coulage de béton ou de résine. La paroi du tube pourra être munie d'ailettes améliorant le transfert thermique tube /sol. Elle transmettra les calories ou frigories au liquide contenu dans le dit tube. De façon préférée, la partie inférieure du tube, munie d'un bouchon étanche, sera placée à une profondeur de l'ordre de 6 mètres. Pour certaines réalisations, on pourra choisir des profondeurs plus importantes, par exemple 20 mètres. Le diamètre du tube sera relativement faible par rapport à sa longueur. On choisira par exemple de réaliser des puits de 20 ou 40 cm de diamètre. Dans le cas de bâtiments collectifs exigeant de très importants volumes d'air neuf, on pourra choisir des diamètres supérieurs. Pour ces mêmes bâtiments, il conviendra de placer une pluralité de puits verticaux, dont les axes seront espacés d'une distance au moins égale à quatre fois leur diamètre. L'eau contenue dans ces différents puits sera pompée puis dirigée soit sur une seule batterie d'échange eau/air soit sur une pluralité de batteries traversées successivement par le flux d'air neuf.
Le liquide sera pompé par un circulateur et dirigé vers un échangeur eau /air, par exemple un radiateur d'automobile ou de camion ou une batterie de chauffage à air chaud ou de climatisation. Cet échangeur sera placé dans un caisson à travers lequel une importante quantité d'air sera forcée sous l'action d'un ventilateur, ou par convection naturelle. L'air ayant transité par ce caisson sera ensuite introduit dans les locaux d'habitation. L'eau susceptible de provenir de la condensation de l'air au contact de l'échangeur sera avantageusement collectée pour compléter le remplissage du volume intérieur du tube vertical puis pour humidifier par gravité le sol à proximité immédiate du tube vertical et sur une grande partie de la longueur de ce dernier. Les installations selon l'invention permettent en effet d'obtenir que l'air soit porté, au contact de l'échangeur, à une température inférieure à son point de rosée, si bien que les installations selon l'invention peuvent avoir, en période estivale, non seulement une fonction de rafraîchissement mais encore une fonction de déshumidification de l'air de renouvellement des locaux d'habitation.
L'air issu du caisson pourra être dirigé vers les locaux d'habitation, à travers des conduites d'air qui pourront de façon avantageuse être partiellement ou totalement enterrées.
D'autres avantages et caractéristiques de l'invention apparaîtront à la lecture suivante d'un mode de réalisation préférentiel de l'invention, donné à simple titre indicatif, et des dessins annexés dans lesquels:
La FIGURE 1 représente une vue d'une installation simplifiée, comportant un seul tube vertical et une batterie d'échange eau/air. La FIGURE 2 représente une installation identique à celle représentée en Figure 1 , complétée par un échangeur air / air alimenté par l'air extrait et muni d'un dispositif d'évaporation sans mélange.
La FIGURE 3 représente une vue de face et une vue de côté d'une installation identique à celle représentée en Figure 2 mais comportant Trois tubes verticaux reliés à une même batterie d'échange eau/air.
La Figure 1 montre l'implantation des composants d'une installation selon l'invention. A la base, on utilise un tube vertical enterré (1 ) d'un diamètre faible en regard de sa hauteur. De façon avantageuse, la paroi du tube (1 ) sera constituée par le tubage, en matériau plastique ou métallique, qui sera mis en place progressivement au cours et à l'occasion des opérations de forage du puits, de telle façon à éviter l'affaissement de la terre dans le dit puits. Le tube (1 ) sera muni à son extrémité inférieure d'un bouchon (13) lequel sera réalisé par exemple par injection de ciment, de résines ou d'un quelconque matériau étanche auto-solidifiant. Le tube vertical sera rempli d'un liquide, de préférence de l'eau qui sera utilisée comme fluide vecteur primaire pour transférer les calories (ou, en été les frigories) depuis le sol jusqu'au locaux. De façon préférée, l'extrémité haute du tube vertical (1 ) sera située à une profondeur d'environ 1 mètre sous le niveau du sol, de telle façon que l'installation ne soit pas sensible au gel en hiver. L'eau contenue dans le tube (1 ) sera puisée dans le dit tube et mise en circulation au moyen d'une pompe ou d'un simple circulateur (2) de faible puissance. Ce tube sera implanté à des profondeurs suffisantes pour bénéficier de l'inertie thermique du sol; cette profondeur pourra être par exemple comprise entre 6 et 10 mètres pour la partie basse du dit tube. Dans certains cas, pour les bâtiments collectifs notamment, on pourra choisir des profondeurs plus importantes, sans dépasser les capacités d'amorçage des pompes utilisées pour faire circuler l'eau entre le volume intérieur du tube enterré et l'échangeur eau / air. L'eau puisée dans le tube sera dirigée vers l'échangeur d'une batterie eau /air (3), ladite batterie étant traversée par un flux d'air puisé à l'extérieur du local et introduit, après son passage à travers cette batterie dans le dit local. Le passage de l'air sur la batterie d'échange (3) aura pour conséquence de le réchauffer en hiver et de le refroidir en été. De plus, en période estivale, ce passage provoquera une déshumidification de l'air, ce dernier rencontrant les ailettes de l'échangeur, lesquelles se trouvent portées, par l'action de l'eau circulant à l'intérieur de l'échangeur à une température inférieure au point de rosée. Il se produira donc une importante condensation au niveau des ailettes de la batterie (3), l'eau issue de cette condensation sera collectée par un réceptacle (8), le dit réceptacle se déversant dans le tube enterré vertical. De façon avantageuse, un deuxième réceptacle (9) dont le contenu se déversera également dans le tube vertical enterré (1 ) sera placé de telle façon qu'il permette de collecter les eaux issues de l'écoulement des eaux pluviales sur la couverture du petit abri ou caisson (10) dans lequel seront placés et abrités les composants de l'installation selon l'invention. Là encore, les eaux collectées seront dirigées vers le tube vertical enterré, de telle façon que le niveau du liquide contenu dans ce tube reste toujours suffisant. Le tube vertical enterré pourra être muni d'orifices de débordement (11 ), de sorte que l'eau issue de la condensation sur la batterie (3) soit répandue en périphérie de la paroi du tube (1 ) si bien que le dit tube (1 ) se trouvera placé dans un sol abondamment et constamment humidifié, ce qui est favorable au rendement thermique de l'installation. Dans une variante avantageuse, tout ou partie des orifices (11 ) pourra déboucher sur des drains (12) permettant de diriger l'eau de débordement vers des zones préférentielles à proximité des parois du tube (1 ). L'air prélevé à l'extérieur sera accéléré par un ventilateur (7) puis dirigé par une canalisation (6), canalisation préférentiellement enterrée vers l'intérieur des locaux dont on cherche à tempérer l'ambiance.
La figure 2 illustre le passage de l'air préparé par une installation selon l'invention à travers deux échangeurs dont le premier est une batterie eau / air (3) et le second un échangeur air / air (20). Cet échangeur air / air (20) est muni de deux compartiments étanches, le premier compartiment étant traversé par le flux d'air prélevé à l'extérieur et ayant préalablement traversé la batterie eau / air (3) et le deuxième compartiment étant traversé par de l'air extrait du local dont l'ambiance intérieure est tempérée par l'installation selon l'invention. Outre l'effet bénéfique en hiver d'une récupération sur double flux, effet connu en soi, ce deuxième échangeur permettra de compléter le refroidissement conféré à l'air en période estivale; ce résultat sera obtenu en injectant une petite quantité d'eau dans le compartiment secondaire de l'échangeur air /air. Cette injection d'eau aura pour conséquence de provoquer une évaporation de cette eau au niveau de l'échangeur, l'évaporation provoquera une baisse de température dans le compartiment secondaire, puis, par conduction thermique, dans le compartiment primaire et ce sans mélange donc sans humidification du flux d'air finalement introduit dans les locaux. Le dispositif injecteur d'eau (23) sera une buse alimentée à travers une petite pompe (24) puisant l'eau dans le volume intérieur du tube (1 ). Ainsi, l'eau récupérée par déshumidification de l'air sur la batterie (3) ou par ruissellement sur la couverture de l'abri ou même du local lui-même servira non seulement à remplir le tube vertical enterré (1 ) mais encore à compléter le refroidissement conféré au flux d'air finalement introduit dans le local. L'eau issue de la condensation au niveau de l'échangeur eau / air (3) et du passage à travers le compartiment secondaire de l'échangeur air /air (20) sera collectée par un réceptacle (25) de dimension suffisante pour récupérer l'ensemble des eaux susceptibles de s'écouler de telle façon à diriger les eaux excédentaires (condensées ou non évaporées) vers le volume intérieur du tube vertical enterré. Le circuit de l'air prélevé à l'extérieur sera le suivant: puisé à l'extérieur, il est aspiré par un ventilateur (7), passe à travers l'étage air de la batterie (3) où il peut éventuellement voir se condenser la vapeur d'eau qu'il se trouve contenir, traverse le compartiment primaire de l'échangeur air / air (20) puis est introduit dans le local à travers une canalisation (6) préférentiellement enterrée. Cet air rempli et traverse les locaux, il est finalement extrait par un dispositif de ventilation mécanique contrôlée et réintroduit, après passage dans une canalisation spécifique (22) au niveau du compartiment secondaire de l'échangeur air / air (20). Le passage de cet air extrait dans l'échangeur air/air pourra être accéléré par un ventilateur extracteur (21 ) avant que cet air extrait ne soit finalement rejeté à l'extérieur. La figure 3 illustre un mode de réalisation de l'invention plus particulièrement destiné au bâtiments collectifs, dans lequel on place une pluralités de tubes verticaux enterrés (1) remplis d'eau qui circule vers l'échangeur d'une batterie eau / air (3); cette eau sera avantageusement collectée par un réseau de tubulures reliées à une pompe de circulation (2) et rejetée, après passage dans la batterie (3) dans les volumes intérieurs des tubes verticaux enterrés.
Les installations selon l'invention sont destinées à modifier la température de l'air introduit dans un local. Elles utilisent d'une part l'inertie thermique du sol comme source de calories ou de frigories et d'autre part l'eau comme vecteur primaire puis l'air comme vecteur secondaire pour transmettre les calories ou les frigories extraites du sol vers ledit local. Pour parvenir à ce résultat moyennant une consommation d'énergie très faible et une consommation quasiment inexistante, les installations selon l'invention comportent
- au moins un tube (1 ) enterré verticalement dont la paroi externe se trouve en contact thermique avec le sol, le dit tube étant étanche en partie basse et rempli d'eau la quasi-totalité de sa hauteur.
- un dispositif (2) de circulation d'eau depuis la partie basse du tube jusqu'à une batterie d'échange eau/air (3).
- les moyens (7) de mettre en circulation de l'air à travers ladite batterie d'échange eau/air.
- les moyens (6) de diriger l'air après son passage à travers ladite batterie d'échange eau /air (3) vers l'intérieur du local. Pour permettre la récupération de l'eau issue de la condensation au niveau de la batterie d'échange eau/air (3), cette batterie sera munie d'un dispositif (8) permettant de collecter les eaux de condensation susceptibles de se former sur les ailettes de la dite batterie d'échange eau/air (3) et d'évacuer ces eaux à l'intérieur du volume contenu dans un tube vertical enterré (1 ).
De façon préférée, les installations selon l'invention seront placées dans un petit caisson ou abri (5) muni d'au moins une prise d'air extérieure (4) , ledit caisson ou abri (5) étant placé à la verticale du tube enterré (1 ) et contenant la batterie d'échange eau/air (3) ainsi que les moyens de mise en circulation de l'eau entre le volume intérieur du tube vertical enterré et ladite batterie, la couverture du dit caisson ou abri (5) étant munie d'un dispositif de récupération d'eau de pluie (9) et des moyens (10) de diriger cette eau de pluie vers le volume intérieur du tube vertical enterré (1).
Dans un mode de réalisation avantageux le tube enterré vertical (1) sera muni dans sa partie supérieure d'au moins un déversoir (11) par lequel le trop-plein éventuel d'eau contenu dans le volume étanche est dirigé dans la terre entourant immédiatement la paroi extérieure dudit tube enterré (1), ceci de façon à améliorer le contact thermique entre le tube et le sol et donc à améliorer le rendement et les performances de l'installation.
Pour parfaire les performances de rafraîchissement en période estivale, l'installation comprendra en outre un échangeur air / ai (20), placé en aval de la batterie d'échange eau/air (3) par rapport au sens de circulation de l'air, le dit échangeur air / air (20) comportant un étage primaire et un étage secondaire, les deux étages étant agencés de telle façon qu'aucun mélange d'air ne puisse se produire entre les flux d'air traversant chacun de ces deux étages. L'étage primaire de l'échangeur sera traversé par le flux d'air introduit par les prises d'air du caisson puis dirigé vers le local tandis que l'étage secondaire sera traversé par un flux d'air extrait du local puis évacué vers l'extérieur du caisson.
On prévoira en outre les moyens de diffuser de petite quantité d'eau sous forme de gouttelettes ou de brouillard en amont ou au niveau du compartiment secondaire de l'échangeur air /air, ceci de façon à provoquer un refroidissement par évaporation. Cette eau sera préférentiellement prélevée, par exemple au moyen d'une pompe auto-amorcante (24) au niveau du volume intérieur du tube vertical enterré (1 ).
De façon avantageuse, le débit d'air introduit dans le local sera déterminé en fonction du taux d'occupation et du mode d'utilisation des locaux, tandis que le débit d'eau traversant l'échangeur de la batterie eau / air sera ajusté, par exemple au moyen d'un boîtier (30) en fonction des demandes de températures nécessaires au confort thermique des locaux. De cette façon, on obtiendra une possibilité de régulation fine de la température de l'air de renouvellement, indépendamment de la quantité d'air introduite, ce qui n'est pas possible avec les installations connues dans l'état de la technique. Les installations selon l'invention comporteront les moyens (30) de faire varier la température à laquelle l'air est distribué dans les locaux, ces moyens (30) agissant sur le débit d'eau traversant l'échangeur à eau de la batterie (3).
Bien entendu la présente description est donnée à titre indicatif et l'on pourra choisir d'autres modes d'implantations des tubes et des échangeurs sans pour autant sortir du cadre de la présente invention.

Claims

Revendications
1.- Installation destinée à modifier la température de l'air introduit dans un local, utilisant d'une part l'inertie thermique du sol comme source de calories ou de frigories et d'autre part l'eau comme vecteur primaire puis l'air comme vecteur secondaire pour transmettre les calories ou les frigories extraites du sol vers ledit local, ladite installation étant caractérisée par :
• au moins un tube (1) enterré dont la paroi externe se trouve en contact thermique avec le sol, le dit tube étant étanche en partie basse et rempli d'eau sur la quasi-totalité de sa hauteur, cette eau étant puisée dans ledit tube (1 ) et étant mise en circulation au moyen d'un circulateur (2) de faible puissance depuis le tube (1) jusqu'à une batterie d'échange eau/air (3),
• des moyens (7) pour mettre en circulation de l'air à travers ladite batterie d'échange eau/air (3), et
• des moyens (6) pour diriger l'air après son passage à travers ladite batterie d'échange eau /air (3) vers l'intérieur du local.
2.- Installation selon revendication 1 , caractérisée en ce que la batterie d'échange eau/air (3) est munie d'un dispositif (8) permettant de collecter les eaux de condensation susceptibles de se former sur les ailettes de la dite batterie d'échange eau/air (3) et d'évacuer ces eaux à l'intérieur du volume contenu dans un tube vertical enterré (1 ).
3.- Installation selon revendication 1 , caractérisée en ce qu'elle comporte un petit caisson (5) muni d'au moins une prise d'air extérieure (4) , ledit caisson (5) étant placé à la verticale du tube enterré (1) et contenant la batterie d'échange eau/air (3) ainsi que les moyens de mise en circulation de l'eau entre le volume intérieur du tube vertical enterré et ladite batterie, la couverture du dit caisson (5) étant munie d'un dispositif de récupération d'eau de pluie (9) et des moyens (10) de diriger cette eau de pluie vers le volume intérieur du tube vertical enterré (1 ).
4.- Installation selon revendication 2 ou 3, caractérisée en ce que le tube enterré vertical (1 ) est muni dans sa partie supérieure d'au moins un déversoir (11 ) par lequel le trop-plein éventuel d'eau contenu dans le volume étanche est dirigé dans la terre entourant immédiatement la paroi extérieure dudit tube enterré (1 ).
5.- Installation selon revendication 1 , caractérisée en ce qu'elle comprend en outre un échangeur air / air, placé en aval de la batterie d'échange eau/air par rapport au sens de circulation de l'air, le dit échangeur air / air comportant un étage primaire et un étage secondaire, les deux étages étant agencés de telle façon qu'aucun mélange d'air ne puisse se produire entre les flux d'air traversant chacun de ces deux étages.
6.- Installation selon la revendication 5, caractérisée en ce que l'étage primaire de l'échangeur est traversé par le flux d'air introduit par les prises d'air du caisson puis dirigé vers le local tandis que l'étage secondaire est traversé par un flux d'air extrait du local puis évacué vers l'extérieur du caisson.
7.- Installation selon revendication 5, caractérisée en en ce qu'elle comporte en outre les moyens de diffuser de petite quantité d'eau sous forme de gouttelettes ou de brouillard en amont ou au niveau du compartiment secondaire de l'échangeur air /air.
8.- Installation selon revendication 7, caractérisée en ce qu'elle comporte des registres permettant de faire traverser l'étage secondaire de l'échangeur air/air par une partie de l'air préalablement traité par passage à travers la batterie d'échange eau/air.
9.- Installation selon revendication 7, caractérisée en ce que l'eau diffusée en amont ou au niveau du compartiment secondaire de l'échangeur air/air est prélevée dans le volume intérieur du tube vertical enterré.
PCT/FR2006/050343 2005-04-12 2006-04-12 Dispositif de conditionnement d’air de type geothermique WO2006109003A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0503640A FR2884300A1 (fr) 2005-04-12 2005-04-12 Installation permettant de temperer l'air introduit dans les locaux
FR0503640 2005-04-12

Publications (1)

Publication Number Publication Date
WO2006109003A1 true WO2006109003A1 (fr) 2006-10-19

Family

ID=35106666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/050343 WO2006109003A1 (fr) 2005-04-12 2006-04-12 Dispositif de conditionnement d’air de type geothermique

Country Status (2)

Country Link
FR (1) FR2884300A1 (fr)
WO (1) WO2006109003A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105115074A (zh) * 2015-07-13 2015-12-02 浙江建设职业技术学院 一种适合山区建筑夏季降温的排热系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2916040A1 (fr) * 2007-02-28 2008-11-14 Michel Albert Greter Systeme de recuperation de calories de l'air provenant de diverses sources de chaleur
WO2012046243A1 (fr) * 2010-10-08 2012-04-12 Raj Vijay Rohlania Dispositif de régulation de la température utilisant un système géothermique

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2295361A1 (fr) * 1974-12-18 1976-07-16 Coustau Robert Dispositif de climatisation d'enceinte
FR2444903A1 (fr) * 1978-12-19 1980-07-18 Schoof Hermann Dispositif pour utiliser la chaleur terrestre a des fins de chauffage
US4237859A (en) * 1977-04-25 1980-12-09 Goettl Adam D Thermal energy storage and utilization system
JPS57169551A (en) * 1981-04-13 1982-10-19 Shimizu Constr Co Ltd Feeder for air-conditioning heat source utilizing pipe pile
US4375831A (en) * 1980-06-30 1983-03-08 Downing Jr James E Geothermal storage heating and cooling system
US4448237A (en) * 1980-11-17 1984-05-15 William Riley System for efficiently exchanging heat with ground water in an aquifer
US4771611A (en) * 1985-08-30 1988-09-20 Dricon Air Pty Limited Air conditioning means and method
EP0499466A2 (fr) * 1991-02-14 1992-08-19 Harrell, James Elton jr Système d'échange de chaleur efficace de refroidissement de la nappe souterraine dans un forage profond
US5671608A (en) * 1996-04-19 1997-09-30 Geothermal Heat Pumps, Inc. Geothermal direct expansion heat pump system
WO1999042767A1 (fr) * 1998-02-20 1999-08-26 Garofoli - S.P.A. Systeme de compensation thermique d'une unite de conditionnement d'air avec une pompe a chaleur
WO2004016457A2 (fr) * 2002-08-16 2004-02-26 Imperial Sheet Metal Ltd. Systeme de commande proportionnelle pour moteur

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2295361A1 (fr) * 1974-12-18 1976-07-16 Coustau Robert Dispositif de climatisation d'enceinte
US4237859A (en) * 1977-04-25 1980-12-09 Goettl Adam D Thermal energy storage and utilization system
FR2444903A1 (fr) * 1978-12-19 1980-07-18 Schoof Hermann Dispositif pour utiliser la chaleur terrestre a des fins de chauffage
US4375831A (en) * 1980-06-30 1983-03-08 Downing Jr James E Geothermal storage heating and cooling system
US4448237A (en) * 1980-11-17 1984-05-15 William Riley System for efficiently exchanging heat with ground water in an aquifer
JPS57169551A (en) * 1981-04-13 1982-10-19 Shimizu Constr Co Ltd Feeder for air-conditioning heat source utilizing pipe pile
US4771611A (en) * 1985-08-30 1988-09-20 Dricon Air Pty Limited Air conditioning means and method
EP0499466A2 (fr) * 1991-02-14 1992-08-19 Harrell, James Elton jr Système d'échange de chaleur efficace de refroidissement de la nappe souterraine dans un forage profond
US5671608A (en) * 1996-04-19 1997-09-30 Geothermal Heat Pumps, Inc. Geothermal direct expansion heat pump system
WO1999042767A1 (fr) * 1998-02-20 1999-08-26 Garofoli - S.P.A. Systeme de compensation thermique d'une unite de conditionnement d'air avec une pompe a chaleur
WO2004016457A2 (fr) * 2002-08-16 2004-02-26 Imperial Sheet Metal Ltd. Systeme de commande proportionnelle pour moteur

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 007, no. 012 (M - 186) 19 January 1983 (1983-01-19) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105115074A (zh) * 2015-07-13 2015-12-02 浙江建设职业技术学院 一种适合山区建筑夏季降温的排热系统

Also Published As

Publication number Publication date
FR2884300A1 (fr) 2006-10-13

Similar Documents

Publication Publication Date Title
EP2005069B1 (fr) Dispositif de chauffage, rafraichissement et production d'eau chaude sanitaire par thermopompe et reserve thermique a basse temperature
US20100025008A1 (en) Geothermal Heating, Ventilating and Cooling System
FR2918086A1 (fr) Echangeur visse vertical enterre pour installation de chauffage ou de rafraichissement
FR2957388A1 (fr) Cheminee solaire de production d'electricite, de recyclage d'eau et de production agricole
FR2913761A1 (fr) Dispositif de sechage de produits a l'etat pateux, en particulier de boues de stations d'epuration
WO2006109003A1 (fr) Dispositif de conditionnement d’air de type geothermique
EP2313696A1 (fr) Procédé et dispositif de régulation de la température et de l'hygrométrie a l'intérieur d'un bâtiment
WO2012146846A1 (fr) Procédé et dispositif de régulation de la température et de l'humidité relative dans un bâtiment
EP2339253B1 (fr) Maison d'habitation avec système de climatisation passive
FR2941517A1 (fr) Installation immobiliere environnementale
FR2476806A1 (fr) Maison solaire a captage et chauffage d'ambiance a air
FR2943122A1 (fr) Dispositif de chauffage et climatisation utilisant notamment l'energie geothermique et l'energie solaire
FR2882426A1 (fr) Capteur solaire hybride thermique (liquide et gaz de facon alternative) et photovoltaique
FR2938319A1 (fr) Dispositif de chauffage, de rafraichissement et de traitement de l'air
EP2299196A1 (fr) Dispositif de ventilation d'un bâtiment de type puits canadien
FR2512182A1 (fr) Procede de prelevement de chaleur a partir d'air en mouvement et de precipitations
FR2866101A1 (fr) Installation destinee a temperer un local en utilisant l'inertie thermique du sol et composants de cette installation
CH649370A5 (fr) Pompe a chaleur.
WO2017162254A1 (fr) Serre maraîchère ou horticole fermée intelligente
FR2912444A1 (fr) Dispositif de capteur thermique solaire integre aux toitures et terrasses
FR2492955A1 (fr) Chauffage central solaire a air d'un batiment
FR2962793A1 (fr) Procede de regulation thermique par ventilation forcee d'un batiment incorporant un vide sanitaire et batiment pour la realisation de ce procede
FR2890157A1 (fr) Installation permettant de temperer l'air introduit dans les locaux et regards modulaires pour une telle installation
EP1636432A1 (fr) DISPOSITIF D’EXTRACTION DE L’EAU PRESENTE DANS L’AIR PAR CONDENSATION
EP3561402B1 (fr) Procédé et dispositif de contrôle thermique d'un bâtiment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06743804

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6743804

Country of ref document: EP