WO2006108391A2 - Device and method for measuring the stable isotopic conditions of oxygen, hydrogen, and nitrogen from inorganic and organic compounds and determining the quantitative, elementary composition of said compounds - Google Patents
Device and method for measuring the stable isotopic conditions of oxygen, hydrogen, and nitrogen from inorganic and organic compounds and determining the quantitative, elementary composition of said compounds Download PDFInfo
- Publication number
- WO2006108391A2 WO2006108391A2 PCT/DE2006/000629 DE2006000629W WO2006108391A2 WO 2006108391 A2 WO2006108391 A2 WO 2006108391A2 DE 2006000629 W DE2006000629 W DE 2006000629W WO 2006108391 A2 WO2006108391 A2 WO 2006108391A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- inorganic
- compounds
- oxygen
- quantitative
- tube
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B17/00—Furnaces of a kind not covered by any preceding group
- F27B17/02—Furnaces of a kind not covered by any preceding group specially designed for laboratory use
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/02—Details
- H01J49/04—Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6581—Total pressure below 1 atmosphere, e.g. vacuum
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/94—Products characterised by their shape
Definitions
- the invention relates to a device and a method for measuring the stable isotope ratios of oxygen, hydrogen and nitrogen from inorganic and organic compounds and the determination of the quantitative, elemental composition of the compounds.
- devices for measuring the stable isotope ratios of inorganic and organic compounds are used, for example, with a spring-loaded carbon tube which is inserted in a ceramic tube.
- the filling of the carbon tube consists of glassy carbon splinters and a mixture of carbon dust and nickel.
- the measurements are generally carried out between 1300 to 1600 0 C.
- the Boudouard equilibrium must be observed:
- the carbon tube has a strong reducing effect at a temperature> 1300 ° C. and thus represents a strong reducing agent at these temperatures.
- the distance between the carbon tube and the ceramic tube despite a flow of helium, does not prevent this reduction effect, so that there is a continuous transverse reaction between the carbon atom Carbon tube and the ceramic tube expires.
- CO gas is formed as a reaction product between the carbon tube and the ceramic tube with increasing temperature, as a result of which the measurement results are changed. falsifying side reaction on the mass 28 ( 12 C 16 O) and 30 ( 12 C 18 O) is formed.
- Another disadvantage of the carbon tube used so far is its inner diameter of about 8 to 10 mm.
- silver cartridges are used as Einwaagevehikel.
- the silver solidifies in the temperature zone of 961 ° C. It thus forms a restriction drop for the carrier gas helium in the carbon tube.
- the main flow of helium then no longer flows through the carbon tube, but escapes through the free spring support of the carbon tube in the space between the carbon tube and ceramic tube.
- the object is achieved by the features specified in the characterizing part of claim 1. Furthermore, the object is achieved on the basis of the preamble of claim 6 according to the invention with the features specified in the characterizing part of claim 6.
- Fig. 1 Arrangement of the device according to the invention
- FIG. 1 shows the device according to the invention for measuring the stable isotope ratios of inorganic and organic compounds.
- the pyrolysis tube 1 made of silicon carbide according to the invention is enclosed by a heating element 2, which has a temperature sensor 6.
- the pyrolysis tube 1 is provided with a filling 3 of Classy Carbon and nickel-plated carbon. Outside the heating element 2, the pyrolysis tube 1 is equipped with seals 4, which are tempered by cooling 5 to about 200 0 C.
- the reaction space comprises a pyrolysis tube 1 which consists of silicon carbide, a more accurate, reproducible measurement of the stable isotope ratios of oxygen, hydrogen and nitrogen and a complete pyrolysis or quantitative determination of the elemental composition of inorganic and organic compounds is possible.
- the silicon carbide which has a covalent bond structure without oxygen incorporation, provides chemically inert reaction conditions for the measurement of the stable isotopic composition. Falsifications of the measurement results by reactions with compounds derived from the material of the reaction space, as hitherto, for example, cross-reactions with the carbon tube and with the ceramic tube, are thus avoided.
- reaction space is to be understood as meaning the location in which the pyrolysis, ie by the reducing agent carbon, quantitatively transfers the inorganic and organic compound to carbon monoxide, hydrogen gas and nitrogen gas, ie under the required conditions
- the pyrolysis tube 1 is provided outside the pyrolysis furnace with seals 4 (for example made of Viton, rubber polymer seal), which are cooled.
- seals 4 for example made of Viton, rubber polymer seal
- a temperature below 200 0 C is set outside of the Pyro- lylysofens 2
- a temperature of about 1300 ° C to 1650 0 C is set.
- This cooling 5 may for example be a water cooling with a copper / brass block.
- the pyrolysis tube 1 has an inner diameter of about 0.05 to 24 mm.
- the pyrolysis tube 1 has an inner diameter of about 0.05 to 24 mm.
- An inorganic or organic compound is as Solid in silver cartridges (alternatively: aluminum / tin) weighed. These are fed to the pyrolysis tube 1 via a sampler.
- the pyrolysis tube 1 is continuously flowed through with a helium flow (alternatively: argon) of about 50 ml / min as carrier gas. Liquids can be injected directly with a liquid autosampler. Within the pyrolysis tube 1 takes place at a temperature of for example 1489 0 C with the reducing agent is carbon, the quantitative conversion of the organic compound to put on and coal monoxide, hydrogen gas and nitrogen gas. These gases are supplied by means of the carrier gas, after an attached possible gas chromatographic separation, the mass spectrometer for measuring the isotopic ratios.
- both solid, liquid and gaseous compounds can be investigated.
- an internal diameter of the pyrolysis tube 1 of approximately 8 to 24 mm has proven to be particularly advantageous.
- an inner diameter of the pyrolysis tube from 0.05 to 2 mm has proven to be particularly advantageous because gaseous compounds can be examined directly without the use of silver cartridges and the volume of the reaction space can be reduced thereby so as not to create any dead spaces.
- the invention further relates to a method for measuring the stable isotope ratios of organic and inorganic compounds and the determination of their quantitative, elemental composition.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Analytical Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Clinical Laboratory Science (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
The invention relates to a device and a method for measuring the stable isotopic conditions of oxygen, hydrogen, and nitrogen from inorganic and organic compounds and determining the quantitative, elementary composition of said compounds. The invention is characterized in that the reaction chamber is embodied as a pyrolysis tube made of silicon carbide.
Description
B e s c h r e i b u n g Description
Vorrichtung sowie Verfahren zur Messung der stabilen Isotopenverhältnisse von Sauerstoff, Wasserstoff und Stickstoff aus anorganischen und organischen Verbindungen sowie die Bestimmung der quantitativen, elementaren Zusammensetzung der VerbindungenDevice and method for measuring the stable isotope ratios of oxygen, hydrogen and nitrogen from inorganic and organic compounds and the determination of the quantitative, elemental composition of the compounds
Die Erfindung betrifft eine Vorrichtung sowie ein Verfahren zur Messung der stabilen Isotopenverhältnisse von Sauerstoff, Wasserstoff und Stickstoff aus anorganischen und organischen Verbindungen sowie die Bestim- mung der quantitativen, elementaren Zusammensetzung der Verbindungen.The invention relates to a device and a method for measuring the stable isotope ratios of oxygen, hydrogen and nitrogen from inorganic and organic compounds and the determination of the quantitative, elemental composition of the compounds.
Nach dem Stand der Technik werden zur Messung der stabilen Isotopenverhältnisse von anorganischen und organischen Verbindungen beispielsweise Vorrichtungen ein- gesetzt mit einem federgelagerten Kohlenstoffröhr, das in einem Keramikrohr eingesetzt ist . Die Füllung des Kohlenstoffrohrs besteht aus Glassy-Carbon-Splittern und einem Gemisch aus Kohlenstoffstaub und Nickel . Die Messungen werden im Allgemeinen zwischen 1300 bis 1600 0C durchgeführt. Für eine vollständige Pyrolyse von insbesondere Kohlenstoff muss das Boudouard-Gleich- gewicht beachtet werden:According to the state of the art, devices for measuring the stable isotope ratios of inorganic and organic compounds are used, for example, with a spring-loaded carbon tube which is inserted in a ceramic tube. The filling of the carbon tube consists of glassy carbon splinters and a mixture of carbon dust and nickel. The measurements are generally carried out between 1300 to 1600 0 C. For complete pyrolysis of, in particular, carbon, the Boudouard equilibrium must be observed:
CO2 + C (s) O 2 CO mit ΔH = + 173 kJ/molCO 2 + C (s) O 2 CO with ΔH = + 173 kJ / mol
Mit abnehmender Temperatur verschiebt sich die Gleich- gewichtslage in Richtung CO2. Kohlendioxid ist in diesem Fall jedoch für die Vermessung der stabilen Isoto-
Penverhältniszusammensetzung des Sauerstoffs nicht auswertbar, da hiermit unkalkulierbare Kombinationsmöglichkeiten innerhalb des Sauerstoffs (16O/18O) der stabilen Isotopenzusammensetzung vorliegen können und die Massenvermessung des schweren 18O Sauerstoffs nicht reproduzierbar ist. Deshalb ist es zwingend notwendig Kohlenmonoxid nahezu quantitativ aus organischen und anorganischen Verbindungen darzustellen. Dies wird bisher nur durch hohe Temperaturen >1300°C und eine reine KohlenstoffUmgebung mit Hilfe eines Kohlenstoffrohres, welches von einem Keramikrohr umgeben wird, gewährleistet. Auch für die Bestimmung der stabilen Isotopenverhältnisse von Wasserstoff und Stickstoff muss eine quantitative Umsetzung zum Wasserstoffgas bzw. Stick- stoffgas vorliegen. Dies wird ebenfalls mit einer Kohlenstofffüllung als Reduktionsmittel nur bei hohen Temperaturen erreicht.As the temperature decreases, the equilibrium position shifts towards CO 2 . Carbon dioxide is in this case, however, for the measurement of stable isotope Pen ratio composition of oxygen can not be evaluated, since this incalculable combination possibilities can exist within the oxygen ( 16 O / 18 O) of the stable isotopic composition and the mass measurement of the heavy 18 O oxygen is not reproducible. Therefore, it is imperative to represent carbon monoxide almost quantitatively from organic and inorganic compounds. Up to now this has only been ensured by high temperatures> 1300 ° C and a pure carbon environment with the help of a carbon tube, which is surrounded by a ceramic tube. For the determination of the stable isotope ratios of hydrogen and nitrogen, there must also be a quantitative conversion to the hydrogen gas or nitrogen gas. This is also achieved with a carbon filling as a reducing agent only at high temperatures.
Die nach dem Stand der Technik bekannten Vorrichtungen mit den Kohlenstoffröhren weisen jedoch folgende Nach- teile auf:However, the devices with the carbon tubes known from the prior art have the following disadvantages:
Das Kohlenstoffröhr hat bei einer Temperatur > 13000C eine starke reduzierende Wirkung und stellt somit bei diesen Temperaturen ein starkes Reduktionsmittel dar. Der Abstand zwischen dem Kohlenstoffröhr und dem Kera- mikrohr unterbindet trotz eines Heliumflusses diese Reduktionswirkung nicht, so dass eine stetige Querreaktion zwischen dem Kohlenstoffröhr und dem Keramikrohr abläuft . Dadurch wird mit zunehmender Temperatur CO-Gas als Reaktionsprodukt zwischen Kohlenstoffröhr und Kera- mikrohr gebildet, wodurch eine die Messergebnisse ver-
fälschende Nebenreaktion auf der Masse 28 (12C16O) und 30 (12C18O) entsteht.The carbon tube has a strong reducing effect at a temperature> 1300 ° C. and thus represents a strong reducing agent at these temperatures. The distance between the carbon tube and the ceramic tube, despite a flow of helium, does not prevent this reduction effect, so that there is a continuous transverse reaction between the carbon atom Carbon tube and the ceramic tube expires. As a result, CO gas is formed as a reaction product between the carbon tube and the ceramic tube with increasing temperature, as a result of which the measurement results are changed. falsifying side reaction on the mass 28 ( 12 C 16 O) and 30 ( 12 C 18 O) is formed.
Ein Weglassen des Kohlenstoffrohrs erzielt keine Verbesserung, da einerseits keine quantitative Umsetzung vorliegt (s. Gleichung: Konzentration C(s) stark reduziert) und nicht zu kontrollierende Austauschreaktion des Sauerstoffs der pyrolysierten an- bzw. organischen Verbindung mit der Keramik (Al2O2Oa + C0b <=> Al2O2Ob + C0a) abläuft (a= Sauerstoff aus Keramikrohr; b = Sauer- stoff aus anorganischer/organischer Verbindung) . Andererseits kann auch nicht auf die Keramik verzichtet werden, da das Kohlenstoffröhr in ungehindertem Kontakt mit der Atmosphäre unter den Reaktionsbedingungen verbrennen würde .An omission of the carbon tube does not achieve any improvement since, on the one hand, there is no quantitative conversion (see equation: concentration C (s) greatly reduced) and uncontrollable exchange reaction of the oxygen of the pyrolyzed inorganic or organic compound with the ceramic (Al 2 O 2 O a + C0 b <=> Al 2 O 2 O b + C0 a ) (a = oxygen from ceramic tube, b = oxygen from inorganic / organic compound). On the other hand, can not be dispensed with the ceramic, since the carbon tube would burn in unhindered contact with the atmosphere under the reaction conditions.
Ein weiterer Nachteil der bisher eingesetzten Kohlenstoffröhre ist ihr Innendurchmesser von ca. 8 bis 10 mm. Zur Verbrennung der anorganischen und organischen Verbindungen werden als Einwaagevehikel Silberkartuschen verwendet . Das Silber verfestigt sich in der Temperaturzone von 9610C. Es bildet damit einen Restriktionstropfen für das Trägergas Helium im Kohlenstoffröhr. Der Hauptstrom des Heliums strömt dann nicht mehr durch das Kohlenstoffröhr, sondern entweicht durch die freie Federlagerung des Kohlenstoffrohrs in den Zwischenraum des Kohlenstoffrohrs und Keramikrohrs.Another disadvantage of the carbon tube used so far is its inner diameter of about 8 to 10 mm. For the combustion of the inorganic and organic compounds silver cartridges are used as Einwaagevehikel. The silver solidifies in the temperature zone of 961 ° C. It thus forms a restriction drop for the carrier gas helium in the carbon tube. The main flow of helium then no longer flows through the carbon tube, but escapes through the free spring support of the carbon tube in the space between the carbon tube and ceramic tube.
Eine vollständige Pyrolyse liegt damit nicht mehr vor.Complete pyrolysis is thus no longer available.
Es ist daher Aufgabe der Erfindung, eine Vorrichtung sowie ein Verfahren für die Messung der stabilen Isotopenverhältnisse sowie der quantitativen, elementaren Zusammensetzung von Sauerstoff, Wasserstoff und Stick-
stoff von anorganischen und organischen Verbindungen zu schaffen, die eine gegenüber dem Stand der Technik genauere und reproduzierbarere Messung der stabilen Isotopenverhältnisse sowie der quantitativen Elementarzu- sammensetzung ermöglichen.It is therefore an object of the invention to provide a device and a method for measuring the stable isotope ratios and the quantitative, elemental composition of oxygen, hydrogen and nitrogen. to provide material of inorganic and organic compounds that allow a more accurate and reproducible compared to the prior art measurement of the stable isotope ratios and the quantitative elemental composition.
Ausgehend vom Oberbegriff des Anspruchs 1 wird die Aufgabe erfindungsgemäß gelöst mit den im kennzeichnenden Teil des Anspruchs 1 angegebenen Merkmalen. Weiterhin wird die Aufgabe ausgehend vom Oberbegriff des An- spruchs 6 erfindungsgemäß gelöst mit den im kennzeichnenden Teil des Anspruchs 6 angegebenen Merkmalen.Starting from the preamble of claim 1, the object is achieved by the features specified in the characterizing part of claim 1. Furthermore, the object is achieved on the basis of the preamble of claim 6 according to the invention with the features specified in the characterizing part of claim 6.
Die Zeichnungen zeigen eine beispielhafte Ausführungs- form der erfindungsgemäßen Vorrichtung und des Verfahrens .The drawings show an exemplary embodiment of the device and the method according to the invention.
Es zeigt:It shows:
Fig. 1: Anordnung der erfindungsgemäßen VorrichtungFig. 1: Arrangement of the device according to the invention
Figur 1 zeigt die erfindungsgemäße Vorrichtung zur Messung der stabilen Isotopenverhältnisse von anorgani- sehen und organischen Verbindungen. Das erfindungsgemäße Pyrolyserohr 1 aus Siliciumcarbid wird von einem Heizelement 2 umschlossen, welches einen Temperatursensor 6 aufweist. Das Pyrolyserohr 1 wird mit einer Füllung 3 aus Classy Carbon und vernickelter Kohle verse- hen. Außerhalb des Heizelements 2 ist das Pyrolyserohr 1 mit Dichtungen 4 ausgestattet, die durch Kühlungen 5 auf ca. 200 0C temperiert werden.FIG. 1 shows the device according to the invention for measuring the stable isotope ratios of inorganic and organic compounds. The pyrolysis tube 1 made of silicon carbide according to the invention is enclosed by a heating element 2, which has a temperature sensor 6. The pyrolysis tube 1 is provided with a filling 3 of Classy Carbon and nickel-plated carbon. Outside the heating element 2, the pyrolysis tube 1 is equipped with seals 4, which are tempered by cooling 5 to about 200 0 C.
In überraschender Weise hat sich gezeigt, dass durch die erfindungsgemäße Vorrichtung, die dadurch gekenn-
zeichnet ist, dass der Reaktionsraum ein Pyrolyserohr 1 umfasst, welches aus Siliciumcarbid besteht, eine genauere, reproduzierbarere Messung der stabilen Isotopenverhältnisse von Sauerstoff, Wasserstoff und Stick- stoff sowie eine vollständige Pyrolyse bzw. quantitative Bestimmung der ElementarZusammensetzung von anorganischen und organischen Verbindungen möglich ist. Durch das Siliciumcarbid, welches eine kovalente Bindungsstruktur ohne Sauerstoffeinlagerungen besitzt, werden chemisch inerte Reaktionsbedingungen für die Messung der stabilen Isotopenzusammensetzung geschaffen. Verfälschungen der Messergebnisse durch Reaktionen mit Verbindungen, die aus dem Material des Reaktionsraums stammen, wie bisher beispielsweise Querreaktionen mit dem Kohlenstoffröhr sowie mit dem Keramikrohr, werden so vermieden. Durch das vakuumgesinterte Pyrolyserohr 1 aus Siliciumcarbid wird ein gasdichter Reaktionsraum geschaffen. Eine Querkontamination von Sauerstoff, Wasserstoff, Stickstoff durch den Einstrom von Atmosphä- rengasen (z. B. O2, N2) wird verhindert. Dadurch, dass das Trägergas vollständig im Reaktionsraum verbleibt, kann eine vollständige Pyrolyse stattfinden. So ist es möglich, auch eine quantitative Bestimmung der Elementarzusammensetzung von anorganischen und organischen Verbindungen durchzuführen. Unter der Bezeichnung „Reaktionsraum" soll im Rahmen der vorliegenden Erfindung der Ort verstanden werden, in dem die Pyrolyse, d. h. durch das Reduktionsmittel Kohlenstoff die quantitative Überführung der an- und organischen Verbindung zu Koh- lenmonoxid, Wasserstoffgas und Stickstoffgas d. h. unter den erforderlichen Bedingungen stattfindet.
In einer vorteilhaften Ausführung der Vorrichtung ist das Pyrolyserohr 1 außerhalb des Pyrolyseofens mit Dichtungen 4 (z. B. aus Viton, Gummipolymerdichtung) versehen, die gekühlt sind. So wird außerhalb des Pyro- lyseofens 2 eine Temperatur unterhalb von 2000C eingestellt, während für die Pyrolyse eine Temperatur von ca. 1300°c bis 16500C eingestellt wird. Durch die Kühlung 5 im Bereich der Dichtungen 4 kann eine stabile gasdichte Zu- und Abfuhr des Trägergases erreicht wer- den. Diese Kühlung 5 kann beispielsweise eine Wasserkühlung mit einem Kupfer/Messingblock sein.Surprisingly, it has been found that by the device according to the invention, the is characterized in that the reaction space comprises a pyrolysis tube 1 which consists of silicon carbide, a more accurate, reproducible measurement of the stable isotope ratios of oxygen, hydrogen and nitrogen and a complete pyrolysis or quantitative determination of the elemental composition of inorganic and organic compounds is possible. The silicon carbide, which has a covalent bond structure without oxygen incorporation, provides chemically inert reaction conditions for the measurement of the stable isotopic composition. Falsifications of the measurement results by reactions with compounds derived from the material of the reaction space, as hitherto, for example, cross-reactions with the carbon tube and with the ceramic tube, are thus avoided. By the vacuum-sintered pyrolysis tube 1 of silicon carbide, a gas-tight reaction space is created. Cross-contamination of oxygen, hydrogen, nitrogen by the influx of atmospheric gases (eg O 2 , N 2 ) is prevented. Due to the fact that the carrier gas remains completely in the reaction space, a complete pyrolysis can take place. Thus, it is possible to carry out a quantitative determination of the elemental composition of inorganic and organic compounds. In the context of the present invention, the term "reaction space" is to be understood as meaning the location in which the pyrolysis, ie by the reducing agent carbon, quantitatively transfers the inorganic and organic compound to carbon monoxide, hydrogen gas and nitrogen gas, ie under the required conditions , In an advantageous embodiment of the device, the pyrolysis tube 1 is provided outside the pyrolysis furnace with seals 4 (for example made of Viton, rubber polymer seal), which are cooled. Thus, a temperature below 200 0 C is set outside of the Pyro- lylysofens 2, while for the pyrolysis, a temperature of about 1300 ° C to 1650 0 C is set. By cooling 5 in the region of the seals 4, a stable gas-tight supply and removal of the carrier gas can be achieved. This cooling 5 may for example be a water cooling with a copper / brass block.
In einer vorteilhaften Ausführung der Vorrichtung hat das Pyrolyserohr 1 einen Innendurchmesser von ca. 0,05 bis 24 mm. Durch den gegenüber dem bisher eingesetzten Kohlenstoffröhr vergrößerten Innendurchmesser des erfindungsgemäßen Pyrolyserohrs 1 von bis zu 24 mm kann eine größere Menge an verfestigtem Silber für die Pyrolyse eingesetzt werden, bevor Restriktionserscheinungen auftreten. Selbst wenn erhebliche Restriktionswiderstände auftreten sollten, kann eine Pyrolyse immer noch gewährleistet werden, da dass System durch die Dichtungen 4 immer gasdicht abgeschlossen wird, so dass das Trägergas zwar in der Durchflussmenge abnimmt, aber kein Ausweichen möglich ist.In an advantageous embodiment of the device, the pyrolysis tube 1 has an inner diameter of about 0.05 to 24 mm. By compared to the previously used carbon tube enlarged inner diameter of the pyrolysis tube 1 according to the invention of up to 24 mm, a larger amount of solidified silver for pyrolysis can be used before restriction phenomena occur. Even if considerable restriction resistances should occur, pyrolysis can still be ensured, since the system is always sealed gas-tight by the seals 4, so that the carrier gas indeed decreases in the flow rate, but no escape is possible.
Im Folgenden soll beispielhaft das Verfahren zur Bestimmung der stabilen Isotopenverhältnisse von anorga- nischen oder organischen Verbindungen beschrieben werden: Eine anorganische oder organische Verbindung wird als
Feststoff in Silberkartuschen (alternativ: Aluminium/Zinn) eingewogen. Diese werden über einen Probengeber dem Pyrolyserohr 1 fallend zugeführt. Das Pyrolyserohr 1 wird stetig mit einem Heliumfluss (alternativ: Argon) von ca. 50 ml/min als Trägergas durchflössen. Flüssigkeiten können mit einem Flüssigautosampler direkt injiziert werden. Innerhalb des Pyrolyserohrs 1 erfolgt bei einer Temperatur von beispielsweise 14890C mit dem Reduktionsmittel Kohlenstoff die quantitative Überführung der an- und organischen Verbindung zu Koh- lenmonoxid, Wasserstoffgas und Stickstoffgas . Diese Gase werden mit Hilfe des Trägergases, nach einer angefügten möglichen gaschromatographisehen Auftrennung, dem Massenspektrometer zur Vermessung der Isotopenver- hältnisse zugeführt.The following is an example of the method for determining the stable isotopic ratios of inorganic or organic compounds are described: An inorganic or organic compound is as Solid in silver cartridges (alternatively: aluminum / tin) weighed. These are fed to the pyrolysis tube 1 via a sampler. The pyrolysis tube 1 is continuously flowed through with a helium flow (alternatively: argon) of about 50 ml / min as carrier gas. Liquids can be injected directly with a liquid autosampler. Within the pyrolysis tube 1 takes place at a temperature of for example 1489 0 C with the reducing agent is carbon, the quantitative conversion of the organic compound to put on and coal monoxide, hydrogen gas and nitrogen gas. These gases are supplied by means of the carrier gas, after an attached possible gas chromatographic separation, the mass spectrometer for measuring the isotopic ratios.
Mit Hilfe des erfindungsgemäßen Pyrolyserohrs 1 können sowohl feste, flüssige als auch gasförmige Verbindungen untersucht werden. Für die Messungen fester als auch flüssiger Verbindungen hat sich dabei ein Innendurchmesser des Pyrolyserohrs 1 von ca. 8 bis 24 mm als besonders vorteilhaft erwiesen. Für die Messung von gasförmigen Verbindungen, z. B. mittels eines Gaschromatographen- Pyrolyse- Isotopen-Massenspektrometers, hat sich ein Innendurchmesser des Pyrolyserohrs von 0,05 bis 2 mm als besonders vorteilhaft erwiesen, da gasförmige Verbindungen direkt ohne Verwendung von Silberkartuschen untersucht werden können und das Volumen des Reaktionsraums dadurch verkleinert werden kann, um kei- ne Toträume entstehen zu lassen.With the aid of the pyrolysis tube 1 according to the invention, both solid, liquid and gaseous compounds can be investigated. For the measurements of solid and liquid compounds, an internal diameter of the pyrolysis tube 1 of approximately 8 to 24 mm has proven to be particularly advantageous. For the measurement of gaseous compounds, eg. Example by means of a gas chromatograph pyrolysis isotope mass spectrometer, an inner diameter of the pyrolysis tube from 0.05 to 2 mm has proven to be particularly advantageous because gaseous compounds can be examined directly without the use of silver cartridges and the volume of the reaction space can be reduced thereby so as not to create any dead spaces.
Neben der Bestimmung der stabilen Isotopenverhältnisse
kann gleichzeitig auch durch z. B. einen Leitfähigkeitsdetektor oder durch eine Massenaufsummierung des Massenspektrometers die quantitative Elementarzusammensetzung der untersuchten Verbindungen bestimmt werden.In addition to the determination of stable isotope ratios can also be replaced by z. As a conductivity detector or by mass accumulation of the mass spectrometer, the quantitative elemental composition of the compounds investigated are determined.
Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben.Advantageous developments are specified in the subclaims.
Die Erfindung betrifft weiterhin ein Verfahren zur Messung der stabilen Isotopenverhältnisse von organischen und anorganischen Verbindungen sowie die Bestimmung deren quantitativer, elementarer Zusammensetzung.
The invention further relates to a method for measuring the stable isotope ratios of organic and inorganic compounds and the determination of their quantitative, elemental composition.
Claims
1. Vorrichtung zur Messung der stabilen Isotopenverhältnisse von Sauerstoff, Wasserstoff und Stickstoff von anorganischen und organischen Verbindungen sowie die Bestimmung deren quantitativer, elementarer Zu- sammensetzung, dadurch gekennzeichnet, dass der Reaktionsraum ein Pyrolyserohr (1) umfasst, welches aus Siliciumcarbid besteht.1. A device for measuring the stable isotope ratios of oxygen, hydrogen and nitrogen of inorganic and organic compounds and the determination of their quantitative, elemental composition, characterized in that the reaction space comprises a pyrolysis tube (1), which consists of silicon carbide.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das Pyrolyserohr (1) vakuumgesintert ist.2. Apparatus according to claim 1, characterized in that the pyrolysis tube (1) is vacuum sintered.
3. Vorrichtung nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass das Pyrolyserohr (1) durch Dichtungen (4) gas- dicht abgeschlossen ist.3. Device according to one of claims 1 to 2, characterized in that the pyrolysis tube (1) by gaskets (4) is sealed gas-tight.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Dichtungen (4) eine Kühlung (5) aufweisen.4. Device according to one of claims 1 to 3, characterized in that the seals (4) have a cooling (5).
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Pyrolyserohr (1) einen Innendurchmesser von 0,05 bis 24 mm aufweist.5. Device according to one of claims 1 to 4, characterized in that the pyrolysis tube (1) has an inner diameter of 0.05 to 24 mm.
6. Verfahren zur Messung der stabilen Isotopenverhältnisse von Sauerstoff, Wasserstoff und Stickstoff von anorganischen und organischen Verbindungen sowie die Bestimmung deren quantitativer, elementarer Zusammensetzung, dadurch gekennzeichnet, dass als Reaktionsraum ein Pyrolyserohr (1) beste- hend aus Siliciumcarbid eingesetzt wird.6. A method for measuring the stable isotope ratios of oxygen, hydrogen and nitrogen of inorganic and organic compounds and the Determining their quantitative, elemental composition, characterized in that a pyrolysis tube (1) consisting of silicon carbide is used as the reaction space.
7. Verfahren nach Anspruch 6 dadurch gekennzeichnet, dass ein Pyrolyserohr (1) , welches vakuumgesintert ist, eingesetzt wird.7. The method according to claim 6, characterized in that a pyrolysis tube (1), which is vacuum sintered, is used.
8. Verfahren nach einem der Ansprüche 6 bis 7, dadurch gekennzeichnet, dass ein Pyrolyserohr (1) eingesetzt wird, welches Dichtungen (4) aufweist, die gekühlt werden.8. The method according to any one of claims 6 to 7, characterized in that a pyrolysis tube (1) is used, which has seals (4) which are cooled.
9. Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass die Pyrolyse bei Temperaturen zwischen 13000C und 16500C durchgeführt wird. 9. The method according to any one of claims 6 to 8, characterized in that the pyrolysis is carried out at temperatures between 1300 0 C and 1650 0 C.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005017192.3 | 2005-04-13 | ||
DE200510017192 DE102005017192B4 (en) | 2005-04-13 | 2005-04-13 | Apparatus and method for measuring the stable isotope ratios of oxygen, hydrogen and nitrogen from inorganic and organic compounds and for determining the quantitative elemental composition of the compounds |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2006108391A2 true WO2006108391A2 (en) | 2006-10-19 |
WO2006108391A3 WO2006108391A3 (en) | 2007-10-25 |
Family
ID=36954813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2006/000629 WO2006108391A2 (en) | 2005-04-13 | 2006-04-10 | Device and method for measuring the stable isotopic conditions of oxygen, hydrogen, and nitrogen from inorganic and organic compounds and determining the quantitative, elementary composition of said compounds |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102005017192B4 (en) |
WO (1) | WO2006108391A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2236208A1 (en) * | 2009-04-03 | 2010-10-06 | Università degli Studi di Parma | Reactor device for chemical and isotopic analyses |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010001677B4 (en) | 2010-02-08 | 2012-01-19 | Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum - GFZ Stiftung des Öffentlichen Rechts des Landes Brandenburg | Process for the thermal conversion of sample material into sample gas |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3985820A (en) * | 1973-05-14 | 1976-10-12 | Union Carbide Corporation | Cracking process |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3852099A (en) * | 1972-11-27 | 1974-12-03 | Gen Electric | Dense silicon carbide ceramic and method of making same |
US5179050A (en) * | 1989-08-18 | 1993-01-12 | Kabushiki Kaisha Toshiba | Sic-based pressureless sintered product |
DE9320711U1 (en) * | 1993-07-21 | 1995-01-19 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 80636 München | Chemical reactor with integrated burner |
DE69722873T2 (en) * | 1996-08-27 | 2004-05-19 | Asahi Glass Co., Ltd. | High corrosion resistant silicon carbide product |
DE19816348C1 (en) * | 1998-04-02 | 1999-08-05 | Ufz Leipzighalle Gmbh | Pyrolysis reactor for organic and inorganic specimens in geology, hydrology, anthropology, ecology, food chemistry or medicine |
DE10235662A1 (en) * | 2002-08-03 | 2004-02-12 | Forschungszentrum Jülich GmbH | Method and device for determining the isotope ratios of 18O and 16O as well as 15N and 14N |
-
2005
- 2005-04-13 DE DE200510017192 patent/DE102005017192B4/en active Active
-
2006
- 2006-04-10 WO PCT/DE2006/000629 patent/WO2006108391A2/en not_active Application Discontinuation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3985820A (en) * | 1973-05-14 | 1976-10-12 | Union Carbide Corporation | Cracking process |
Non-Patent Citations (1)
Title |
---|
CHAMBREAU S D ET AL: "Photoionization of methyl t-butyl ether (MTBE) and t-octyl methyl ether (TOME) and analysis of their pyrolyses by supersonic jet/photoionization mass spectrometry" INTERNATIONAL JOURNAL OF MASS SPECTROMETRY, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, Bd. 199, Nr. 1-3, Juni 2000 (2000-06), Seiten 17-27, XP004202172 ISSN: 1387-3806 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2236208A1 (en) * | 2009-04-03 | 2010-10-06 | Università degli Studi di Parma | Reactor device for chemical and isotopic analyses |
Also Published As
Publication number | Publication date |
---|---|
DE102005017192A1 (en) | 2006-10-19 |
WO2006108391A3 (en) | 2007-10-25 |
DE102005017192B4 (en) | 2013-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102005040311B3 (en) | Apparatus for measuring temperature in molten metal especially iron or steel having a tube of insulating metal and oxygen reducing metal in powder form | |
EP2492666B1 (en) | Device and method for determining a gas concentration in a flowing gas mixture | |
DE2520444C3 (en) | Device for continuous measurement of the hydrogen concentration in argon gas | |
DE102017004633B4 (en) | Elemental analysis system and method | |
DE9109308U1 (en) | Temperature measuring device | |
DE102005017192B4 (en) | Apparatus and method for measuring the stable isotope ratios of oxygen, hydrogen and nitrogen from inorganic and organic compounds and for determining the quantitative elemental composition of the compounds | |
DE102010039275B4 (en) | Method and apparatus for the online determination of the isotopic ratio of chlorine, bromine or sulfur in an organic sample | |
EP0278096A2 (en) | Method for continuously controlling emissions and immissions of mercury | |
DE69209149T2 (en) | Process for storing gas mixtures in passivated metal containers in order to increase the stability of gaseous hydride mixtures in contact with them at low concentrations | |
DE19620129A1 (en) | Process for separating pollutants from exhaust gases | |
DE2534620A1 (en) | METHOD AND DEVICE FOR DETERMINING THE INORGANIC CARBON CONTENT OF A LIQUID | |
EP0362736B1 (en) | Oxygen probe for a heat treatment oven | |
DE19825644C2 (en) | Humidified SF6 atmosphere when extracting magnesium | |
DE1252187B (en) | Process for purifying helium | |
DE1077893B (en) | Method and device for determining the content of deuterium hydride in hydrogen | |
DE2359273C2 (en) | Method for measuring the amount of exhaust gases escaping from a steel melt during controlled decarburization | |
DE10254748B3 (en) | Device and method for the detection of sulfuryl fluoride | |
DE102008008288B4 (en) | Method for oxygen elemental analysis and oxygen isotope measurement of nitrogen-containing, organic substances | |
DE2831287C2 (en) | Method for generating a defined amount of water vapor in low concentration and device for carrying out the method | |
DE1598361B2 (en) | Method for determining the inorganic carbon content of a liquid | |
DE69217542T2 (en) | Soldering method and device | |
AT523258B1 (en) | Method for the determination of isotope ratios | |
DE3205580A1 (en) | DEVICE AND METHOD FOR THE ANALYSIS OF REFRACTORY SUBSTANCES | |
DE2716284A1 (en) | DEVICE FOR DETERMINING GAS COMPONENTS | |
EP0909951B1 (en) | Method and device for determining the amount of free and/or bound hydrogen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: RU |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06742230 Country of ref document: EP Kind code of ref document: A2 |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 6742230 Country of ref document: EP |