WO2006106816A1 - 信号減衰回路 - Google Patents

信号減衰回路 Download PDF

Info

Publication number
WO2006106816A1
WO2006106816A1 PCT/JP2006/306646 JP2006306646W WO2006106816A1 WO 2006106816 A1 WO2006106816 A1 WO 2006106816A1 JP 2006306646 W JP2006306646 W JP 2006306646W WO 2006106816 A1 WO2006106816 A1 WO 2006106816A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
impedance
terminal
circuit
diode
Prior art date
Application number
PCT/JP2006/306646
Other languages
English (en)
French (fr)
Inventor
Tadashi Kosuga
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to JP2007512845A priority Critical patent/JP4233107B2/ja
Priority to EP06730594A priority patent/EP1865609A4/en
Publication of WO2006106816A1 publication Critical patent/WO2006106816A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/24Frequency- independent attenuators
    • H03H7/25Frequency- independent attenuators comprising an element controlled by an electric or magnetic variable
    • H03H7/253Frequency- independent attenuators comprising an element controlled by an electric or magnetic variable the element being a diode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G1/00Details of arrangements for controlling amplification
    • H03G1/0005Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
    • H03G1/0035Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal using continuously variable impedance elements
    • H03G1/0052Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal using continuously variable impedance elements using diodes

Definitions

  • the present invention relates to a signal attenuation circuit that attenuates a signal from a signal source and sends the signal to a subsequent signal processing circuit.
  • receiving apparatuses typified by radio receivers have been widely used.
  • a receiving device when processing the signal induced in the antenna, it is common to perform frequency conversion, detection, etc. after making the signal size convenient for processing.
  • the signal source signal is input to the amplifying unit via the attenuation unit, and the attenuation unit is determined based on the detection result in the subsequent stage of the amplifying unit.
  • the automatic gain adjustment (AGC) method that adjusts the attenuation factor in the receiver is adopted by many receivers.
  • transmission line interference low-frequency interference
  • transmission line disturbance which is a kind of low-frequency interference wave
  • the magnitude of transmission line disturbance can reach a force amplitude of about 100 V depending on the distance to the transmission line.
  • the input signal level is out of the proper operating range of the high-frequency amplifier circuit. Such a situation would cause distortion and cross-modulation in the amplification result by the high frequency amplifier circuit.
  • a hum was generated.
  • the receiving apparatus 90 adopts the circuit configuration shown in FIG. ").
  • This receiver 90 attenuates (a) the antenna 1 represented by the capacitor CO as an equivalent circuit, and (b) the signal induced by the antenna 1 with an attenuation rate corresponding to the magnitude of the attenuation rate control signal AGC.
  • a high-frequency amplifier circuit 3 is provided at the first stage, and a post-stage signal processing circuit 2 that processes a signal via the clamp circuit 92.
  • the attenuation rate control signal A GC is generated in the subsequent signal processing circuit 2 and supplied to the signal attenuation circuit 91 via the resistor R1.
  • the signal attenuation circuit 91 includes (i) diodes Dl and D2 connected in series, and (ii) one terminal connected to a connection point between the diode D1 and the diode D2, and the other terminal connected to the antenna. And a capacitor C1 connected to the signal output terminal.
  • the force sword terminal of the diode D1 is grounded, and the anode terminal of the diode D2 is connected to a terminal different from the input terminal of the attenuation rate control signal AGC of the resistor R1.
  • the clamp circuit 92 includes diodes D3 and D4.
  • the anode terminal of the diode D3 is grounded, and the force sword terminal is connected to the signal input terminal of the high-frequency amplifier circuit 3.
  • the force sword terminal of the diode D4 is grounded, and the anode terminal of the diode D4 is connected to the signal input terminal of the high-frequency amplifier circuit 3.
  • the signal attenuation circuit 91 generates a level loss in the signal from the antenna 1 according to the impedance values of the diodes Dl and D2 determined according to the magnitude of the attenuation control signal AGC.
  • the level-loss signal is input to the clamp circuit 92.
  • the clamp circuit 92 when the input signal has a large voltage on the + side or the ⁇ side with respect to the ground level, the clamp processing by the diode D3 or the diode D4 is performed. As a result, the input signal level to the high-frequency amplifier circuit 3 in the post-stage signal processing circuit 2 can be optimized.
  • a receiving device 95 that employs the circuit configuration shown in FIG. 8 has also been proposed (see Patent Document 1; This is called “Conventional Example 2” below).
  • the receiving device 95 is obtained by replacing the signal attenuation circuit 91 and the clamp circuit 92 in the receiving device 90 described above with a signal attenuating circuit 96.
  • this signal attenuating circuit 96 has one terminal connected to the connection point between the diode D1 and the diode D2, and the other terminal serving as the signal output of the capacitor C1. It has a resistor R2 connected to the terminal.
  • the high-frequency signal induced in the antenna 1 Similarly to the case, a level loss corresponding to the impedance value of the diodes D 1 and D 2 determined by the magnitude of the attenuation rate control signal AGC occurs. If a low-frequency signal derived from a low-frequency interference wave having a large voltage on the + side of the ground level is present in the signal induced in the antenna, the impedance of the resistor R2 and the capacitor A level loss determined by the ratio between the impedance of C 1 and the combined impedance of diode D 1 and the impedance of antenna 1 occurs. In this way, in the receiving device 95, the input signal level to the high-frequency amplifier circuit 3 of the post-stage signal processing circuit 2 is optimized.
  • Patent Document 1 Japanese Patent Laid-Open No. 9 135180
  • Both of the techniques of Conventional Example 1 and Conventional Example 2 described above are techniques that utilize the characteristics of a diode as a rectifier element, which is a nonlinear response element having directionality in current flow.
  • the level of the signal input to the post-stage signal processing circuit 2 is limited by the clamp circuit 92 including two diodes D3 and D4. For this reason, even if the signal received by the antenna has a large voltage on the + side with respect to the ground level, or if it has a large voltage on the side with respect to the ground level, the signal processing circuit 2 to the subsequent stage From the viewpoint that the level of the input signal can be optimized.
  • the diode D1 of the signal attenuating circuit 96 is used for signal attenuation and also for signal clamping.
  • the rectifier means such as a diode is inferior to a resistor or a capacitor in terms of long-term operational stability. It is also expensive.
  • the resistance elements have increased compared to the technology of Conventional Example 1, but it is excellent in that the number of diodes as rectifier means can be reduced.
  • the diode D1 and the resistor R 2 makes it possible to optimize the level of the input signal to the post-stage signal processing circuit 2.
  • the input signal has a large voltage on the side of the ground level, go to the post-stage signal processing circuit 2. The power of the input signal was not able to be optimized.
  • the present invention has been made in view of the above circumstances, and aims to provide a new signal attenuation circuit that contributes to automatic gain adjustment and can take measures against low-frequency interference waves. Target.
  • the signal attenuating circuit of the present invention is a signal attenuating circuit that attenuates a signal from a signal source and sends the signal to a subsequent signal processing circuit, and includes an output terminal of the signal source and an input terminal of the subsequent signal processing circuit. And one terminal connected via the first impedance, and the other terminal connected via an AC ground level and the second impedance, corresponding to the magnitude of the attenuation control signal.
  • a first rectifier means of varying impedance one terminal connected via the AC ground level and a third impedance; and the other terminal connected to one terminal of the first rectifier means;
  • a second rectifier means connected in series with the first rectifier terminal in the rectification direction and having an impedance that changes in accordance with the magnitude of the attenuation rate control signal.
  • 1 impedance, front The second impedance and the third impedance are impedances of the first rectifier means and the second rectifier means corresponding to the magnitude of the attenuation rate control signal in a high frequency region to be processed by the subsequent signal processing circuit.
  • the impedance of the signal source and the input signal level of the subsequent signal processing circuit are appropriate.
  • the signal attenuation circuit is characterized by being determined in consideration of the range.
  • rectifier means refers to a combination of elements or elements that have a directivity in the ease of current flow and perform a non-linear response.
  • Rectifier direction refers to a direction in which current flows easily in the rectifier means. Say. In this specification, the terms “rectifier means” and “rectification direction” are used in this sense.
  • the first impedance, the second impedance, and the third impedance are the attenuation rate control signal in the high frequency region to be processed by the subsequent signal processing circuit. It is determined in consideration of the attenuation amount of the signal source power due to the impedance change of the first rectifier means and the second rectifier means according to the size of the signal. For this reason, in the case of a high-frequency signal, a level loss is applied according to the impedance of the first rectifier means and the second rectifier means determined by the magnitude of the attenuation rate control signal, and the signal source signal is appropriately transmitted. Attenuates.
  • an AC During a period in which the voltage is on the + side with respect to a certain ground level, a level loss determined by the ratio of the impedance of the signal source and the first impedance, the combined impedance of the first rectifier means and the second impedance is generated To do. Also, during the period when the voltage is on the side with respect to the AC ground level, the level is determined by the ratio of the impedance of the signal source to the impedance of the first impedance, the rectifying direction impedance of the second rectifier means and the third impedance Loss occurs.
  • the first impedance, the second impedance, and the third impedance are within the appropriate ranges of the signal source impedance and the input signal level of the subsequent signal processing circuit. It is determined in consideration. For this reason, even if low-frequency interference occurs, it is within the appropriate range of the input signal level of the subsequent signal processing circuit.
  • the signal output terminal of the signal source and one terminal of the first rectifier means are connected via a capacitive element and in parallel with the connection via the capacitive element.
  • the first impedance can be substantially connected by directly connecting the signal output terminal of the signal source and one terminal of the first rectifier means. It can also be set to 0.
  • the other terminal of the first rectifier means and the AC ground level may be directly connected, and the second impedance may be substantially zero. It is also possible to directly connect one terminal of the second rectifier means and the AC ground level so that the third impedance is substantially zero.
  • the first rectifier means and the second rectifier hand A diode can be employed as the stage.
  • FIG. 1 is a diagram showing a circuit configuration of a receiving device including a signal attenuation circuit according to an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining an example of a signal waveform at an input terminal of a high-frequency amplifier circuit in the apparatus of FIG. 1.
  • FIG. 3 is a diagram for explaining an example of a signal waveform of a comparative example.
  • FIG. 4 is a diagram illustrating a circuit configuration of a receiving device including a signal attenuation circuit according to Modification 1;
  • FIG. 5 is a diagram illustrating a circuit configuration of a receiving device including a signal attenuating circuit according to a second modification.
  • FIG. 6 is a diagram illustrating a circuit configuration of a receiving device including a signal attenuating circuit according to a third modification.
  • FIG. 7 is a diagram showing a circuit configuration including a signal attenuation circuit of Conventional Example 1.
  • FIG. 8 is a diagram showing a circuit configuration including a signal attenuation circuit of Conventional Example 2.
  • FIG. 1 shows a configuration of a receiving device 10 including a signal attenuation circuit 12 according to an embodiment of the present invention.
  • the receiving device 10 includes (a) an antenna 1 and (b) a high-frequency amplifier circuit 3 in the first stage in addition to the signal attenuation circuit 12.
  • a post-stage signal processing circuit 2 for processing a signal via the circuit 12 is provided.
  • the attenuation rate control signal AGC is generated in the post-stage signal processing circuit 2 and supplied to the signal attenuation circuit 12 via the resistor R13, as in the case of the receiving devices 90 and 95 described above. Yes.
  • the attenuation rate control signal AGC is generated based on the detection result of the signal amplified by the high-frequency amplifier circuit 3, the detection result subsequent to the high-frequency amplifier circuit 3, and the like.
  • the signal attenuation circuit 12 includes a diode Dl, a diode D2, a capacitor Cll, a resistor R11, and a resistor R12.
  • the force sword terminal of the diode D1 is grounded, and the anode terminal of the diode D1 is connected to the force sword terminal of the diode D2.
  • the attenuation rate control signal AGC is input to the anode terminal of the diode D2 via the resistor R13.
  • One terminal of the capacitor C11 is connected to the signal output terminal of the antenna and the signal input terminal of the high-frequency amplifier circuit 3 of the post-stage signal processing circuit 2, and the other terminal of the capacitor C11 is the anode of the diode D1.
  • one terminal of the resistor R11 is connected to the signal output terminal of the antenna 1 and the signal input terminal of the high-frequency amplifier circuit 3 of the post-stage signal processing circuit 2, and the other terminal of the resistor R11 is connected to the anode terminal of the diode D1. It is connected.
  • One terminal of the resistor R12 is grounded, and the other terminal of the resistor R12 is connected to the anode terminal of the diode D2.
  • the capacitance value of the capacitor C11 a capacitance value similar to the capacitance value of the capacitor C1 of the conventional example 1 is selected.
  • the resistance value of the resistor R13 a value similar to the resistance value of the conventional example 1 is selected.
  • the resistance value of the resistor R11 is a value sufficiently smaller than the impedance of the capacitor CO and the impedance of the capacitor C11, which are equivalent circuits of the antenna 1, in the frequency range of components derived from low-frequency interference. Is selected.
  • the resistance value of the resistor R12 is sufficiently smaller than the impedance of the capacitor CO, which is an equivalent circuit of the antenna 1, in the frequency range of the component derived from the low-frequency interference, and the sum of the resistance value of the resistor R11 and Then, the attenuation rate control signal AGC via the resistor R13 selects a value that can change the impedance of the diodes Dl and D2 within a sufficient range from the viewpoint of automatic gain adjustment.
  • the capacitance value of the capacitor CO is about 80pF, and the impedance of the capacitor CO is about 33 to 40 ⁇ , assuming a frequency of low frequency interference of 50 to 60Hz. It becomes.
  • the resistance values of the resistor R11 and the resistor R12 are It is a few lOOk ⁇ or less.
  • the resistance R13 is set so that the impedance of the diodes Dl and D2 can be changed within a sufficient range by the attenuation rate control signal AGC. Is selected.
  • a high frequency to be processed by a subsequent signal processing circuit 2 such as a broadcast wave signal induced in the antenna 1 If the signal has a voltage that is less than the sensitivity related to the automatic gain adjustment operation set in advance in the receiving device 10, the high-frequency signal is attenuated by the signal attenuating circuit 12, and the high-frequency signal in the subsequent signal processing circuit 2 is attenuated. Input to amplifier circuit 3. This is because the impedance in the direction opposite to the rectification direction of diode 2 is very large, and the current is not supplied by the attenuation rate control signal A GC, so the rectification direction impedance of diode D1 is very large. by.
  • the level of the high-frequency signal induced in the antenna 1 is optimized and is input to the high-frequency amplifier circuit 3.
  • the impedance of the resistor R11 is applied to the low-frequency signal. Since the dance is sufficiently smaller than the impedance of the capacitor C11, the signal attenuating circuit 12 operates in the same manner as when the impedance of the capacitor C11 is not present. That is, during the period when the low-frequency signal has a positive voltage, the voltage value is determined by the ratio of the impedance of the antenna R1 and the combined impedance of the impedance of the resistor R11 and the rectification direction impedance of the diode D1. .
  • the impedance of the antenna 1 is sufficiently larger than the impedance of the resistor R11 and the impedance of the resistor R12 for a low-frequency signal having a frequency of low-frequency interference
  • the amplitude of the low-frequency signal is If the above is large, the above operation is the conventional example 1
  • the clamping operation is the same as the clamping processing operation by the clamping circuit 92 in FIG. 1, and the result is equivalent to the clamping processing result by the clamping circuit 92 in the conventional example 1.
  • the level of the signal input to the high-frequency amplifier circuit 3 is optimized even if a low-frequency signal with a large signal force amplitude induced in the antenna 1 is superimposed.
  • the capacitance value of the capacitor CO which is an equivalent circuit of the antenna 1
  • the capacitance value of the capacitor C11 is set to 80 pF
  • the capacitance value of the capacitor C11 is set to
  • the resistance value of resistor R11 is 4.7k Q
  • the resistance of resistor R12 is 4.7k ⁇
  • diodes Dl and D2 are commercially available PN junction diodes.
  • the receiving device 90 of the conventional example 1 considered to be ideal as the clamping performance is set to the same value as the diodes Dl and D2 as the diodes D3 and D4, with the capacitance value of the capacitor C1 being 3300pF.
  • the other conditions were the same.
  • a low-frequency signal with the same conditions was induced in antenna 1.
  • the waveform at the input terminal of the high-frequency amplifier circuit 3 is as shown in FIG.
  • the high frequency signal received by the antenna 1 is attenuated according to the impedance of the diodes D1 and D2 determined by the magnitude of the attenuation rate control signal.
  • the high frequency signal is attenuated at a rate.
  • the circuit composed of resistor R11 and diode D1 or resistor R11 the circuit composed of diode D2 and resistor R12 clamps the voltage of the low frequency signal resulting from the low frequency interference.
  • the diode in the receiving device 10 is The level of the signal input to the high-frequency amplifier circuit 3 at the subsequent stage can be optimized while suppressing an increase in the number of rectifier means such as a card. Further, according to the signal attenuating circuit 12 of the present embodiment, it is possible to contribute to automatic gain adjustment and to take measures against low-frequency interference waves.
  • the signal attenuating circuit 22 of Modification 1 can be employed in place of the signal attenuating circuit 12.
  • the signal attenuating circuit 22 includes a diode Dl, a diode D2, and a resistor R22.
  • the power sword terminal of the diode D1 is grounded, and the anode terminal force of the diode D1.
  • the signal output terminal of the antenna 1 and the power sword terminal of the diode D2. It is connected to the.
  • the attenuation rate control signal AGC is input to the anode terminal of the diode D2 via the resistor R13.
  • the signal attenuating circuit 22 is characterized in that the anode terminal of the diode D1 is directly connected to the signal output terminal of the antenna 1 as compared with the signal attenuating circuit 12.
  • the high-frequency signal to be processed by the post-stage signal processing circuit 2 such as a broadcast wave signal induced in the antenna 1 is controlled by the attenuation rate as in the case of the receiving apparatus 10 described above. Attenuation operation according to the magnitude of the signal AGC is performed and input to the high-frequency amplifier circuit 3.
  • the signal induced in antenna 1 is a superposition of a low-frequency signal with a large amplitude due to low-frequency interference such as transmission line interference
  • the period during which the low-frequency signal has a large voltage value on the + side The low frequency signal is clamped by the diode D1.
  • the low frequency signal is clamped by the circuit composed of the diode D2 and the resistor R22.
  • the level of the signal input to the high-frequency amplifier circuit 3 is the same as the input to the high-frequency amplifier circuit 3. Appropriate signal level range It becomes.
  • the signal attenuating circuit 32 of Modification 2 can be employed in place of the signal attenuating circuit 12.
  • the signal attenuation circuit 32 includes a diode Dl, a diode D2, a capacitor C31, a resistor R31, and a resistor R32.
  • the anode terminal of the diode D2 is connected to the power supply voltage level (VCC) which is an AC ground level
  • the cathode terminal of the diode D2 is connected to the anode terminal of the diode D1.
  • the attenuation rate control signal AGC is input to the force sword terminal of the diode D1 through the resistor R13.
  • One terminal of the capacitor C31 is connected to the signal output terminal of the antenna and the signal input terminal of the high-frequency amplifier circuit 3 of the post-stage signal processing circuit 2, and the other terminal of the capacitor C31 is connected to the anode terminal of the diode D1.
  • one terminal of the resistor R31 is connected to the signal output terminal of the antenna 1 and the signal input terminal of the high-frequency amplifier circuit 3 of the post-stage signal processing circuit 2, and the other terminal of the resistor R31 is the anode of the diode D1.
  • One terminal of the resistor R32 is connected to the power supply voltage level, and the other terminal of the resistor R32 is connected to the force sword terminal of the diode D1.
  • the capacitance value of the capacitor C31, the resistance value of the resistor R31, and the resistance value of the resistor R32 are the same values as the capacitance value of the capacitor C11, the resistance value of the resistor R11, and the resistance value of the resistor R12. It is.
  • the high-frequency signal to be processed by the post-stage signal processing circuit 2 such as a broadcast wave signal induced in the antenna 1 is controlled by the attenuation factor as in the case of the receiving device 10 described above. Attenuation operation according to the magnitude of the signal AGC is performed and input to the high-frequency amplifier circuit 3.
  • the low-frequency signal when the signal induced in the antenna 1 is a superposition of a low-frequency signal having a large amplitude due to low-frequency interference such as transmission line interference, the low-frequency signal is large on the + side with respect to the power supply voltage level.
  • the low-frequency signal In the period with voltage, the low-frequency signal is clamped by a circuit composed of a resistor R31, a diode D1, and a resistor R32.
  • the low frequency signal During a period with a large voltage on the negative side, the low frequency signal is clamped by a circuit composed of a resistor R31 and a diode D2.
  • the level of the signal input to the high-frequency amplifier circuit 3 is the same as the input to the high-frequency amplifier circuit 3.
  • the signal level is within the appropriate range.
  • the signal attenuating circuit 42 of Modification 3 can be employed instead of the signal attenuating circuit 12.
  • the signal attenuating circuit 32 of the second modification is subjected to the same modification as the modification from the signal attenuating circuit 12 of the above-described embodiment to the signal attenuating circuit 22 of the first modified example. Is.
  • the signal attenuating circuit 42 includes a diode Dl, a diode D2, and a resistor R42.
  • the anode terminal of the diode D2 is connected to the power supply voltage level, and the cathode of the diode D2 is connected to the signal output terminal of the antenna 1. And connected to the anode terminal of the diode D1.
  • the attenuation rate control signal AGC is input to the force sword terminal of the diode D1 through the resistor R13.
  • One terminal of the resistor R42 is connected to the power supply voltage level, and the other terminal of the resistor R42 is connected to the force sword terminal of the diode D1. Note that the resistance value of the resistor R42 is set to be approximately the same as the resistance value of the resistor R32 in the third modification.
  • the high-frequency signal to be processed by the subsequent signal processing circuit 2 such as the broadcast wave signal induced in the antenna 1 is controlled by the attenuation rate as in the case of the receiving apparatus 30 described above. Attenuation operation according to the magnitude of the signal AGC is performed and input to the high-frequency amplifier circuit 3.
  • the low-frequency signal is The low frequency signal is clamped by the circuit consisting of the diode D1 and the resistor R42 during the period having In addition, the low frequency signal is clamped by the diode D2 while the low frequency signal has a large voltage on the side of the power supply voltage level. As a result, the signal force induced in antenna 1 is superimposed with a low-frequency signal with a large amplitude. Even so, the level of the signal input to the high-frequency amplifier circuit 3 is within the appropriate range of the input signal level for the high-frequency amplifier circuit 3.
  • a resistor is used as an element that performs clamping of a low-frequency signal having a large amplitude in cooperation with a diode. If it satisfies the selection criteria described, it can be used instead of the resistor.
  • any diode having a rectifying action similar to that of a force diode using a diode can be employed instead of the diode.
  • the present invention is applied to the signal attenuating circuit provided in the receiving device such as a radio receiver.
  • the signal processing device other than the receiving device is provided.
  • the present invention can also be applied to an attenuation circuit.

Landscapes

  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Control Of Amplification And Gain Control (AREA)
  • Tone Control, Compression And Expansion, Limiting Amplitude (AREA)

Abstract

 アンテナ1に誘起された高周波信号は、減衰率制御信号AGCの大きさにより定まる整流器素子D1のインピーダンスに応じて減衰される。一方、送電線妨害等の低周波妨害が発生し、アンテナ1で誘起された信号の振幅が低周波で大きく変動する場合には、抵抗R11及びダイオードD1で構成される回路、又は、抵抗R11、ダイオードD2及び抵抗R12で構成される回路によって、低周波妨害に由来する低周波信号の電圧がクランプされる。この結果、後段信号処理回路2への入力信号のレベルが適正化される。

Description

明 細 書
信号減衰回路
技術分野
[0001] 本発明は、信号源からの信号を減衰させて、後段信号処理回路へ送る信号減衰回 路に関する。
背景技術
[0002] 従来から、ラジオ受信機を代表とする受信装置が広く普及している。こうした受信装 置においては、アンテナに誘起された信号の処理に際して、信号の大きさを処理に 都合の良い大きさにした後に、周波数変換や検波などを行うことが一般的である。こ のような信号源力もの信号の大きさを変換するに際し、信号源力もの信号を、減衰手 段を介して増幅手段に入力させ、増幅手段の後段における検波結果等に基づいて 、減衰手段における減衰率を調節する自動利得調整 (AGC)方式が、多くの受信装 置で採用されている。
[0003] また、例えば、車載のラジオ受信機等のように、電力の送電線の直下において受信 を行うことがある受信装置の場合には、我が国のように交流送電を採用している国で は、送電周波数 (我が国においては、 50Hz又は 60Hz)の低周波妨害波を受信する こと (以下、「送電線妨害」と呼ぶ)があることを避けることができない。低周波妨害波 の一種である送電線妨害の大きさは、送電線との距離にもよる力 振幅が 100V程度 にも達することがあり、受信装置における初段の増幅回路である高周波増幅回路へ の入力信号レベルが高周波増幅回路の適正動作範囲から外れてしまう場合がある。 こうした事態は、高周波増幅回路による増幅結果に歪や混変調を発生させることにな り、例えばラジオ受信機の場合にはハム音を生じる結果を招くこととなっていた。
[0004] かかる事態を防止し、かつ、自動利得調整 (AGC)機能を実現するために、図 7に 示される回路構成を採用した受信装置 90とすることが考えられる(以下、「従来例 1」 と呼ぶ)。この受信装置 90は、(a)等価回路としてキャパシタ COで表されるアンテナ 1 と、(b)アンテナ 1で誘起された信号を、減衰率制御信号 AGCの大きさに応じた減衰 率で減衰させる信号減衰回路 91と、(c)信号減衰回路 91を介した信号をクランプす るクランプ回路 92と、(d)初段に高周波増幅回路 3が配設され、クランプ回路 92を介 した信号を処理する後段信号処理回路 2とを備えている。ここで、減衰率制御信号 A GCは、後段信号処理回路 2において生成され、抵抗 R1を介して、信号減衰回路 91 に供給されるようになって 、る。
[0005] 信号減衰回路 91は、(i)直列に接続されたダイオード Dl, D2と、(ii)ダイオード D1 とダイオード D2との接続点に一方の端子が接続されるとともに、他方の端子がアンテ ナ 1の信号出力端子に接続されたキャパシタ C1とを備えている。そして、ダイオード D1の力ソード端子が接地されるとともに、ダイオード D2のアノード端子が抵抗 R1の 減衰率制御信号 AGCの入力端子とは異なる端子に接続されている。
[0006] クランプ回路 92は、ダイオード D3, D4を備えている。ここで、ダイオード D3のァノ ード端子は接地され、力ソード端子は高周波増幅回路 3の信号入力端子に接続され ている。また、ダイオード D4の力ソード端子は接地され、ダイオード D4のアノード端 子は高周波増幅回路 3の信号入力端子に接続されている。
[0007] 受信装置 90では、信号減衰回路 91が、アンテナ 1からの信号に、減衰率制御信号 AGCの大きさに応じて決定されたダイオード Dl, D2のインピーダンス値に応じたレ ベル損失を発生させる。こうしてレベル損失された信号は、クランプ回路 92に入力さ れる。クランプ回路 92では、入力信号が接地レベルに対して +側又は—側に大きな 電圧を有している場合には、ダイオード D3又はダイオード D4によるクランプ処理が 施される。この結果、後段信号処理回路 2の高周波増幅回路 3への入力信号レベル の適正化が図られるようになって!/、る。
[0008] また、後段信号処理回路 2への入力信号のレベルの適正化を達成するために、図 8に示される回路構成を採用する受信装置 95も提案されている (特許文献 1参照;以 下、「従来例 2」と呼ぶ)。この受信装置 95は、上述した受信装置 90における信号減 衰回路 91及びクランプ回路 92を、信号減衰回路 96に置き換えたものである。この信 号減衰回路 96は、上述した信号減衰回路 91の構成要素に加えて、ダイオード D1と ダイオード D2との接続点に一方の端子が接続されるとともに、他方の端子がキャパ シタ C1の信号出力端子に接続された抵抗 R2を備えている。
[0009] 受信装置 95では、アンテナ 1に誘起された高周波信号については、受信装置 90の 場合と同様にして、減衰率制御信号 AGCの大きさにより決定されたダイオード D 1 , D2のインピーダンス値に応じたレベル損失が発生する。また、アンテナに誘起された 信号に接地レベルに対して +側に大きな電圧を有する低周波妨害波由来の低周波 信号が存在する場合には、当該低周波信号については、抵抗 R2のインピーダンス、 キャパシタ C 1のインピーダンス及びダイオード D 1の整流方向インピーダンスの合成 インピーダンスと、アンテナ 1のインピーダンスとの比で定まるレベル損失が発生する 。こうして、受信装置 95では、後段信号処理回路 2の高周波増幅回路 3への入力信 号レベルの適正化が図られて 、る。
[0010] なお、受信装置 95の説明に際しては、受信装置 90の場合と同一又は同等の要素 については同一の符号を付し、重複する説明を省略した。
[0011] 特許文献 1 :特開平 9 135180号公報
発明の開示
発明が解決しょうとする課題
[0012] 上述した従来例 1及び従来例 2の技術は、共に、電流の流し易さに方向性を有する 非線形応答素子である整流器素子としてのダイオードの特性を活用した技術である 。ここで、従来例 1の技術では、 2つのダイオード D3, D4から成るクランプ回路 92に よって、後段信号処理回路 2へ入力される信号のレベルを制限している。このため、 アンテナによる受信信号が、接地レベルに対して +側に大きな電圧を有する場合で あっても、接地レベルに対して 側に大きな電圧を有する場合であっても、後段信号 処理回路 2への入力信号のレベルを適正化することができるという観点からは優れた ものである。
[0013] 一方、上述した従来例 2の技術では、信号減衰回路 96のダイオード D1を信号減 衰用に利用するとともに、信号クランプ用にも利用している。このため、ダイオード等 の整流器手段は、長期的な動作安定性の観点力もは、抵抗やキャパシタに比べて 劣ると言わざるを得ない。また、高価でもある。これらのことを考えると、従来例 1の技 術と比べて、抵抗素子が増カロしているが、整流器手段であるダイオードの数を低減で きる点ですぐれている。し力しながら、従来例の技術では、アンテナによる受信信号 が接地レベルに対して +側に大きな電圧を有する場合には、ダイオード D1と抵抗 R 2とによって構成される回路によって、後段信号処理回路 2への入力信号のレベルを 適正化することができるが、接地レベルに対して 側に大きな電圧を有する場合に は、後段信号処理回路 2への入力信号のレベルを適正化することができな力つた。
[0014] 本発明は、上記の事情を鑑みてなされたものであり、自動利得調整に寄与するとと もに、低周波妨害波対策を行うことができる新たな信号減衰回路を提供することを目 的とする。
課題を解決するための手段
[0015] 本発明の信号減衰回路は、信号源からの信号を減衰させて、後段信号処理回路 へ送る信号減衰回路であって、前記信号源の出力端子及び前記後段信号処理回 路の入力端子と第 1インピーダンスを介して接続された一方の端子と、交流的な接地 レベルと第 2インピーダンスを介して接続された他方の端子とを有し、減衰率制御信 号の大きさに対応してインピーダンスが変化する第 1整流器手段と;前記交流的な接 地レベルと第 3インピーダンスを介して接続された一方の端子と、前記第 1整流器手 段の一方の端子と接続された他方の端子とを有し、整流方向について前記第 1整流 器端子と直列に接続されるとともに、前記減衰率制御信号の大きさに対応してインピ 一ダンスが変化する第 2整流器手段と;を備え、前記第 1インピーダンス、前記第 2ィ ンピーダンス及び前記第 3インピーダンスが、前記後段信号処理回路が処理すべき 高周波領域においては、前記減衰率制御信号の大きさに応じた前記第 1整流器手 段及び前記第 2整流器手段のインピーダンス変化による前記信号源からの信号の減 衰量を考慮して定められるとともに、低周波妨害が発生し得る低周波領域において は、前記信号源のインピーダンス及び前記後段信号処理回路の入力信号レベルの 適正範囲を考慮して定められている、ことを特徴とする信号減衰回路である。ここで、 「整流器手段」とは、電流の流し易さに方向性を有し、非線形応答を行う素子又は素 子の組合せをいい、「整流方向」とは、整流器手段において電流を流しやすい方向を いう。本明細書においては、この意味で、「整流器手段」及び「整流方向」の用語を用 いる。
[0016] この信号減衰回路では、第 1インピーダンス、第 2インピーダンス及び第 3インピー ダンスは、後段信号処理回路が処理すべき高周波領域において、減衰率制御信号 の大きさに応じた前記第 1整流器手段及び前記第 2整流器手段のインピーダンス変 化による信号源力もの信号の減衰量を考慮して定められている。このため、高周波信 号の場合には、減衰率制御信号の大きさにより定まる第 1整流器手段及び第 2整流 器手段のインピーダンスに応じたレベル損失が施され、前記信号源力 の信号が適 切に減衰する。
[0017] また、低周波妨害が発生し得る低周波領域においては、例えば、第 1整流器手段 の整流方向が第 1整流器手段の一方の端子から他方の端子への方向であるとすると 、交流的な接地レベルに対して +側に電圧を有する期間では、第 1インピーダンス、 第 1整流器手段の整流方向インピーダンス及び第 2インピーダンスの合成インピーダ ンスと、信号源のインピーダンスとの比で定まるレベル損失が発生する。また、交流的 な接地レベルに対して 側に電圧を有する期間では、第 1インピーダンス、第 2整流 器手段の整流方向インピーダンス及び第 3インピーダンスの合成インピーダンスと、 信号源のインピーダンスとの比で定まるレベル損失が発生する。
[0018] ここで、低周波妨害が発生し得る低周波領域においては、第 1インピーダンス、第 2 インピーダンス及び第 3インピーダンスは、信号源のインピーダンス及び後段信号処 理回路の入力信号レベルの適正範囲を考慮して定められている。このため、低周波 妨害が発生したとしても、後段信号処理回路の入力信号レベルの適正範囲に収めら れる。
[0019] 本発明の信号減衰回路では、前記信号源の信号出力端子と前記第 1整流器手段 の一方の端子とを、容量素子を介して接続するとともに、前記容量素子を介した接続 と並列して抵抗素子を介して接続する構成とすることもできるし、前記信号源の信号 出力端子と前記第 1整流器手段の一方の端子とを直接的に接続して、前記第 1イン ピーダンスを実質的に 0とする構成とすることもできる。また、本発明の信号減衰回路 では、前記第 1整流器手段の他方の端子と前記交流的な接地レベルとが直接的に 接続され、前記第 2インピーダンスを実質的に 0とする構成とすることもできるし、前記 第 2整流器手段の一方の端子と前記交流的な接地レベルとを直接的に接続し、前記 第 3インピーダンスを実質的に 0とする構成とすることもできる。
[0020] なお、本発明の信号減衰回路では、前記第 1整流器手段及び前記第 2整流器手 段としてダイオードを採用することができる。
図面の簡単な説明
[0021] [図 1]本発明の一実施形態に係る信号減衰回路を備える受信装置の回路構成を示 す図である。
[図 2]図 1の装置における高周波増幅回路の入力端子における信号波形の例を説明 するための図である。
[図 3]比較例の信号波形の例を説明するための図である。
[図 4]変形例 1の信号減衰回路を備える受信装置の回路構成を示す図である。
[図 5]変形例 2の信号減衰回路を備える受信装置の回路構成を示す図である。
[図 6]変形例 3の信号減衰回路を備える受信装置の回路構成を示す図である。
[図 7]従来例 1の信号減衰回路を備える回路構成を示す図である。
[図 8]従来例 2の信号減衰回路を備える回路構成を示す図である。
発明を実施するための最良の形態
[0022] 以下、本発明の一実施形態を、図 1〜図 3を参照して説明する。
[0023] 図 1には、本発明の一実施形態に係る信号減衰回路 12を備える受信装置 10の構 成が示されている。図 1に示されるように、受信装置 10は、信号減衰回路 12に加え て、(a)アンテナ 1と、(b)初段に高周波増幅回路 3を有し、アンテナ 1により受信され た後に信号減衰回路 12を介した信号を処理する後段信号処理回路 2とを備えてい る。ここで、減衰率制御信号 AGCは、上述の受信装置 90, 95の場合と同様に、後段 信号処理回路 2において生成され、抵抗 R13を介して、信号減衰回路 12に供給され るようになっている。なお、減衰率制御信号 AGCは、高周波増幅回路 3により増幅さ れた信号の検波結果や、高周波増幅回路 3よりも後段の検波結果等に基づいて生 成される。
[0024] 信号減衰回路 12は、ダイオード Dl、ダイオード D2、キャパシタ Cl l、抵抗 R11及 び抵抗 R12を備えている。ここで、ダイオード D1の力ソード端子が接地されるとともに 、ダイオード D1のアノード端子がダイオード D2の力ソード端子に接続されている。ダ ィオード D2のアノード端子には、抵抗 R13を介して、減衰率制御信号 AGCが入力さ れている。 [0025] また、キャパシタ Cl lの一方の端子がアンテナの信号出力端子及び後段信号処理 回路 2の高周波増幅回路 3の信号入力端子に接続されるとともに、キャパシタ C11の 他方の端子がダイオード D1のアノード端子に接続されている。また、抵抗 R11の一 方の端子がアンテナ 1の信号出力端子及び後段信号処理回路 2の高周波増幅回路 3の信号入力端子に接続されるとともに、抵抗 R11の他方の端子がダイオード D1の アノード端子に接続されている。また、抵抗 R12の一方の端子が接地されるとともに、 抵抗 R12の他方の端子がダイオード D2のアノード端子に接続されている。
[0026] キャパシタ C11の容量値としては、従来例 1のキャパシタ C1の容量値と同様の容量 値が選択される。また、抵抗 R13の抵抗値としては、従来例 1の抵抗値と同様の値が 選択される。
[0027] また、抵抗 R11の抵抗値としては、低周波妨害に由来する成分の周波数範囲につ いて、アンテナ 1の等価回路であるキャパシタ COのインピーダンス及びキャパシタ C1 1のインピーダンスよりも十分に小さい値が選択される。また、抵抗 R12の抵抗値とし ては、低周波妨害に由来する成分の周波数範囲について、抵抗 R11の抵抗値との 和がアンテナ 1の等価回路であるキャパシタ COのインピーダンスよりも十分に小さぐ かつ、抵抗 R13を介した減衰率制御信号 AGCにより、ダイオード Dl, D2のインピー ダンスを自動利得調整の観点から十分な範囲で変化させることができる値が選択さ れる。
[0028] 例えば、アンテナ 1がロッドアンテナである場合に、キャパシタ COの容量値が 80pF 程度であり、低周波妨害の周波数として 50〜60Hzを想定すると、キャパシタ COのィ ンピーダンスは 33〜40Μ Ω程度となる。この場合に、 100V程度までの振幅の低周 波妨害を数 lOOmV程度の振幅にクランプして、高周波増幅回路 3の入力適正電圧 範囲内とするためは、抵抗 R11及び抵抗 R12の抵抗値は、数 lOOk Ω程度以下とい うこと〖こなる。こうした範囲で選択された抵抗 R12の抵抗値に応じて、減衰率制御信 号 AGCにより、ダイオード Dl, D2のインピーダンスを自動利得調整の観点力も十分 な範囲で変化させることができるように、抵抗 R13の抵抗値が選択される。
[0029] 次に、以上のようにして構成された受信装置 10の動作について説明する。
[0030] アンテナ 1に誘起された放送波信号等の後段信号処理回路 2が処理すべき高周波 信号は、受信装置 10において予め設定されている自動利得調節動作に関する感度 以下の電圧であった場合には、高周波信号は、信号減衰回路 12により減衰されるこ となぐ後段信号処理回路 2の高周波増幅回路 3に入力される。これは、ダイオード 2の整流方向とは逆方向のインピーダンスが非常に大きぐかつ、減衰率制御信号 A GCによる電流供給がなされないために、ダイオード D1の整流方向インピーダンスが 非常に大きな値となることによる。
[0031] また、アンテナ 1に誘起された高周波信号の振幅が大きくなり、自動利得調節動作 に関する感度を超える電圧となると、減衰率制御信号 AGCによる電流供給がなされ ることにより減衰指令がなされ、ダイオード Dl, D2のインピーダンスが変化する。この 結果、ダイオード D1のアノード端子が +レベルとなる。そして、キャパシタ C 11のイン ピーダンス、抵抗 Rl 1のインピーダンス及びダイオード D1の整流方向インピーダンス との合成インピーダンスと、アンテナ 1のインピーダンスとの比で定まるレベル損失が 、高周波信号について発生し、アンテナ 1に誘起された高周波信号が減衰される。
[0032] 以上のようにして、アンテナ 1に誘起された高周波信号のレベルが適正化されて、 高周波増幅回路 3に入力される。
[0033] 一方、アンテナ 1に誘起される信号力 送電線妨害等と 、つた低周波妨害の周波 数程度の低周波信号が重畳されると、この低周波信号に対しては抵抗 R11のインピ 一ダンスがキャパシタ C11のインピーダンスよりも十分に小さいので、信号減衰回路 1 2は、キャパシタ C11のインピーダンスが無い場合と同様の動作を行う。すなわち、低 周波信号が +側の電圧を有する期間には、ほぼ、抵抗 R11のインピーダンス及びダ ィオード D1の整流方向インピーダンスの合成インピーダンスと、アンテナ 1のインピー ダンスとの比で定まる電圧値とされる。また、低周波信号が 側の電圧を有する期間 には、ほぼ、抵抗 R11のインピーダンス、ダイオード D2の整流方向インピーダンス及 び抵抗 R12のインピーダンスの合成インピーダンスと、アンテナ 1のインピーダンスと の比で定まる電圧値とされる。
[0034] ここで、アンテナ 1のインピーダンスが、低周波妨害の周波数程度の低周波信号に ついては、抵抗 R11のインピーダンス及び抵抗 R12のインピーダンスよりも十分に大 きいことを考えると、低周波信号の振幅が大きな場合には、上記の動作は、従来例 1 におけるクランプ回路 92によるクランプ処理動作と同様のクランプ動作といえ、結果 も従来例 1におけるクランプ回路 92によるクランプ処理結果と同等なものとなる。この ため、アンテナ 1に誘起される信号力 振幅の大きな低周波信号が重畳したものとな つても、高周波増幅回路 3に入力される信号のレベルが適正化される。
[0035] 本実施形態の受信装置 10における高周波増幅回路 3への入力信号レベル適正化 動作の確認のため、アンテナ 1の等価回路であるキャパシタ COの容量値を 80pF、キ ャパシタ C11の容量値を 3300pF、抵抗 R11の抵抗値を 4. 7k Q、抵抗 R12を 4. 7k Ωとするとともに、ダイオード Dl, D2を通常に市販されている PN接合ダイオードを 採用した受信装置を試作した。そして、信号出力端子が開放状態にある場合におい て、最高最低振幅が 100V、 50Hzの低周波信号となる低周波妨害波を、アンテナ 1 に印加する実験を行った。この場合に、信号減衰回路 12の出力端子おける波形は、 図 2に示されるようなものであり、最高最低振幅 VE は、 480mVであった。
PP
[0036] また、比較例として、クランプ性能としては理想的と考えられる従来例 1の受信装置 90を、キャパシタ C1の容量値を 3300pFとし、ダイオード D3, D4として上記のダイ オード Dl, D2と同種のものを採用するともに、他の条件は同一として試作した。そし て、同一条件の低周波信号をアンテナ 1に誘起させた。この場合に、高周波増幅回 路 3の入力端子おける波形は、図 3に示されるようなものであり、最高最低振幅 VR
PP
は、 450mVであった。
[0037] これにより、受信装置 10における高周波増幅回路 3への入力信号レベル適正化性 能は、従来例 1の受信装置 90の場合と比べて遜色がないことが実証された。
[0038] 以上説明したように、本実施形態の信号減衰回路 12では、アンテナ 1により受信さ れた高周波信号については、減衰率制御信号の大きさにより定まるダイオード D1, D2のインピーダンスに応じた減衰率で、高周波信号が減衰される。一方、送電線妨 害等の低周波妨害が発生し、アンテナ 1で誘起された信号の振幅が低周波で大きく 変動する場合には、抵抗 R11及びダイオード D1で構成される回路、又は、抵抗 R11 、ダイオード D2及び抵抗 R12で構成される回路によって、低周波妨害に由来する低 周波信号の電圧がクランプされる。
[0039] したがって、本実施形態の信号減衰回路 12によれば、受信装置 10におけるダイォ ード等の整流器手段の数の増加を抑えつつ、後段の高周波増幅回路 3に入力され る信号のレベルを適正化することができる。また、本実施形態の信号減衰回路 12に よれば、自動利得調整に寄与するとともに、低周波妨害波対策を行うことができる。
[0040] 本発明は、上記の実施形態に限定されるものではなぐ様々な変形が可能である。
例えば、以下の変形例 1〜3への変形が可能である。
[0041] <変形例 1 >
図 4に示される受信装置 20のように、信号減衰回路 12に代えて、変形例 1の信号 減衰回路 22を採用することができる。この信号減衰回路 22は、ダイオード Dl、ダイ オード D2及び抵抗 R22を備え、ダイオード D1の力ソード端子が接地されるとともに、 ダイオード D1のアノード端子力 アンテナ 1の信号出力端子及びダイオード D2に力 ソード端子に接続されている。また、ダイオード D2のアノード端子には、抵抗 R13を 介して、減衰率制御信号 AGCが入力されている。そして、抵抗 R22の一方の端子が 接地されるとともに、抵抗 R22の他方の端子がダイオード D2のアノード端子に接続さ れている。なお、抵抗 R22の抵抗値は、上記の実施形態における抵抗 R12の抵抗値 と同程度の抵抗値とされている。すなわち、信号減衰回路 22は、信号減衰回路 12と 比べて、ダイオード D1のアノード端子がアンテナ 1の信号出力端子に直接的に接続 されている点に特徴がある。
[0042] こうして構成された受信装置 20では、アンテナ 1に誘起された放送波信号等の後段 信号処理回路 2が処理すべき高周波信号は、上述した受信装置 10の場合と同様に 、減衰率制御信号 AGCの大きさに応じた減衰動作が行われて、高周波増幅回路 3 に入力される。
[0043] 一方、アンテナ 1に誘起される信号が、送電線妨害等の低周波妨害による振幅の 大きな低周波信号が重畳したものとなると、低周波信号が +側に大きな電圧値を有 する期間には、低周波信号は、ダイオード D1によりクランプされる。また、低周波信 号が 側に大きな電圧値を有する期間には、低周波信号は、ダイオード D2及び抵 抗 R22により構成される回路によりクランプされる。この結果、アンテナ 1に誘起される 信号が、振幅の大きな低周波信号が重畳したものとなっても、高周波増幅回路 3に入 力される信号のレベルは、高周波増幅回路 3にとつての入力信号レベルの適正範囲 となる。
[0044] <変形例 2>
図 5に示される受信装置 30のように、信号減衰回路 12に代えて、変形例 2の信号 減衰回路 32を採用することができる。
[0045] この信号減衰回路 32は、ダイオード Dl、ダイオード D2、キャパシタ C31、抵抗 R3 1及び抵抗 R32を備えている。ここで、ダイオード D2のアノード端子が、交流的な接 地レベルである電源電圧レベル (VCC)に接続されるとともに、ダイオード D2のカソ ード端子がダイオード D1のアノード端子に接続されている。ダイオード D1の力ソード 端子には、抵抗 R13を介して、減衰率制御信号 AGCが入力されている。
[0046] キャパシタ C31の一方の端子がアンテナの信号出力端子及び後段信号処理回路 2の高周波増幅回路 3の信号入力端子に接続されるとともに、キャパシタ C31の他方 の端子がダイオード D1のアノード端子に接続されている。また、抵抗 R31の一方の 端子がアンテナ 1の信号出力端子及び後段信号処理回路 2の高周波増幅回路 3の 信号入力端子に接続されるとともに、抵抗 R31の他方の端子がダイオード D1のァノ ード端子に接続されている。また、抵抗 R32の一方の端子が電源電圧レベルに接続 されるとともに、抵抗 R32の他方の端子がダイオード D1の力ソード端子に接続されて いる。
[0047] キャパシタ C31の容量値、抵抗 R31の抵抗値及び抵抗 R32の抵抗値は、上述した キャパシタ C 11の容量値、抵抗 R 11の抵抗値及び抵抗 R 12の抵抗値と同様の値とさ れている。
[0048] こうして構成された受信装置 30では、アンテナ 1に誘起された放送波信号等の後段 信号処理回路 2が処理すべき高周波信号は、上述した受信装置 10の場合と同様に 、減衰率制御信号 AGCの大きさに応じた減衰動作が行われて、高周波増幅回路 3 に入力される。
[0049] 一方、アンテナ 1に誘起される信号が、送電線妨害等の低周波妨害による振幅の 大きな低周波信号が重畳したものとなると、低周波信号が電源電圧レベルに対して +側に大きな電圧を有する期間には、低周波信号は、抵抗 R31、ダイオード D1及び 抵抗 R32で構成される回路によりクランプされる。また、低周波信号が電源電圧レべ ルに対して—側に大きな電圧を有する期間には、低周波信号は、抵抗 R31及びダイ オード D2で構成される回路によりクランプされる。この結果、アンテナ 1に誘起される 信号が、振幅の大きな低周波信号が重畳したものとなっても、高周波増幅回路 3に入 力される信号のレベルは、高周波増幅回路 3にとつての入力信号レベルの適正範囲 となる。
[0050] <変形例 3 >
図 6に示される受信装置 40のように、信号減衰回路 12に代えて、変形例 3の信号 減衰回路 42を採用することができる。この変形例 3の信号減衰回路 42は、上記の実 施形態の信号減衰回路 12から変形例 1の信号減衰回路 22への変形と同様の変形 を、変形例 2の信号減衰回路 32に施したものである。
[0051] この信号減衰回路 42は、ダイオード Dl、ダイオード D2及び抵抗 R42を備え、ダイ オード D2のアノード端子が電源電圧レベルに接続されとともに、ダイオード D2のカソ ードが、アンテナ 1の信号出力端子及びダイオード D1のアノード端子に接続されて いる。また、ダイオード D1の力ソード端子には、抵抗 R13を介して、減衰率制御信号 AGCが入力されている。そして、抵抗 R42の一方の端子が電源電圧レベルに接続さ れるとともに、抵抗 R42の他方の端子がダイオード D1の力ソード端子に接続されて いる。なお、抵抗 R42の抵抗値は、変形例 3における抵抗 R32の抵抗値と同程度の 抵抗値とされている。
[0052] こうして構成された受信装置 40では、アンテナ 1に誘起された放送波信号等の後段 信号処理回路 2が処理すべき高周波信号は、上述した受信装置 30の場合と同様に 、減衰率制御信号 AGCの大きさに応じた減衰動作が行われて、高周波増幅回路 3 に入力される。
[0053] 一方、アンテナ 1に誘起される信号力 送電線妨害等の低周波妨害による振幅の 大きな低周波信号が重畳したものとなると、低周波信号が電源電圧レベルに対して +側に大きな電圧を有する期間には、低周波信号は、ダイオード D1及び抵抗 R42 で構成される回路〖こよりクランプされる。また、低周波信号が電源電圧レベルに対し て 側に大きな電圧を有する期間には、低周波信号は、ダイオード D2によりクランプ される。この結果、アンテナ 1に誘起される信号力 振幅の大きな低周波信号が重畳 したものとなっても、高周波増幅回路 3に入力される信号のレベルは、高周波増幅回 路 3にとつての入力信号レベルの適正範囲となる。
[0054] また、上記の実施形態及び変形例 1〜3では、振幅の大きな低周波信号のクランプ をダイオードと協働して行う素子を抵抗としたが、上記の実施形態の説明にお 、て記 載した選択基準を満たすものであれば、抵抗に代えて採用することもできる。
[0055] また、上記の実施形態及び変形例 1〜3では、ダイオードを使用した力 ダイオード と同様な整流作用を有するものであれば、ダイオードに代えて採用することができる。
[0056] また、上記の実施形態及び変形例 1〜3では、本発明をラジオ受信機等の受信装 置が装備する信号減衰回路に適用したが、受信装置以外の信号処理装置が装備す る減衰回路にも適用することができるのは、勿論である。

Claims

請求の範囲
[1] 信号源からの信号を減衰させて、後段信号処理回路へ送る信号減衰回路であって 前記信号源の出力端子及び前記後段信号処理回路の入力端子と第 1インピーダ ンスを介して接続された一方の端子と、交流的な接地レベルと第 2インピーダンスを 介して接続された他方の端子とを有し、減衰率制御信号の大きさに対応してインピー ダンスが変化する第 1整流器手段と;
前記交流的な接地レベルと第 3インピーダンスを介して接続された一方の端子と、 前記第 1整流器手段の一方の端子と接続された他方の端子とを有し、整流方向につ いて前記第 1整流器端子と直列に接続されるとともに、前記減衰率制御信号の大きさ に対応してインピーダンスが変化する第 2整流器手段と;を備え、
前記第 1インピーダンス、前記第 2インピーダンス及び前記第 3インピーダンスが、 前記後段信号処理回路が処理すべき高周波領域にお!、ては、前記減衰率制御信 号の大きさに応じた前記第 1整流器手段及び前記第 2整流器手段のインピーダンス 変化による前記信号源力もの信号の減衰量を考慮して定められるとともに、低周波妨 害が発生し得る低周波領域にお!ヽては、前記信号源のインピーダンス及び前記後 段信号処理回路の入力信号レベルの適正範囲を考慮して定められている、ことを特 徴とする信号減衰回路。
[2] 前記信号源の信号出力端子と前記第 1整流器手段の一方の端子とは、容量素子 を介して接続されるとともに、前記容量素子を介した接続と並列して抵抗素子を介し て接続される、ことを特徴する請求項 1に記載の信号減衰回路。
[3] 前記信号源の信号出力端子と前記第 1整流器手段の一方の端子とは直接的に接 続され、前記第 1インピーダンスが実質的に 0である、ことを特徴する請求項 1に記載 の信号減衰回路。
[4] 前記第 1整流器手段の他方の端子と前記交流的な接地レベルとは直接的に接続 され、前記第 2インピーダンスが実質的に 0である、ことを特徴する請求項 1に記載の 信号減衰回路。
[5] 前記第 2整流器手段の一方の端子と前記交流的な接地レベルとは直接的に接続 され、前記第 3インピーダンスが実質的に 0である、ことを特徴する請求項 1に記載の 信号減衰回路。
[6] 前記第 1整流器手段及び前記第 2整流器手段はダイオードである、ことを特徴とす る請求項 1に記載の信号減衰回路。
PCT/JP2006/306646 2005-03-31 2006-03-30 信号減衰回路 WO2006106816A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007512845A JP4233107B2 (ja) 2005-03-31 2006-03-30 信号減衰回路
EP06730594A EP1865609A4 (en) 2005-03-31 2006-03-30 ATTENUATOR CIRCUIT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-102794 2005-03-31
JP2005102794 2005-03-31

Publications (1)

Publication Number Publication Date
WO2006106816A1 true WO2006106816A1 (ja) 2006-10-12

Family

ID=37073372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306646 WO2006106816A1 (ja) 2005-03-31 2006-03-30 信号減衰回路

Country Status (3)

Country Link
EP (1) EP1865609A4 (ja)
JP (1) JP4233107B2 (ja)
WO (1) WO2006106816A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US553267A (en) 1896-01-21 Table and bracket
JPS6335338U (ja) * 1986-08-25 1988-03-07
JPS6454432U (ja) * 1987-09-30 1989-04-04

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5532647A (en) * 1993-10-12 1996-07-02 Pioneer Electronic Corporation Receiver having ACG circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US553267A (en) 1896-01-21 Table and bracket
JPS6335338U (ja) * 1986-08-25 1988-03-07
JPS6454432U (ja) * 1987-09-30 1989-04-04

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1865609A4 *

Also Published As

Publication number Publication date
EP1865609A1 (en) 2007-12-12
JP4233107B2 (ja) 2009-03-04
EP1865609A4 (en) 2008-10-15
JPWO2006106816A1 (ja) 2008-09-11

Similar Documents

Publication Publication Date Title
US6639465B2 (en) Dynamic bias for a power amplifier
CN205453670U (zh) 一种红外接收电路及红外接收器
EP4005097A1 (en) Receiver circuits with blocker attenuating rf filter
CN101635694A (zh) 一种自适应均衡器和自适应均衡方法
WO2021147737A1 (en) Receiver circuits with blocker attenuating mixer
JPWO2005053171A1 (ja) 自動利得制御装置
US8693716B1 (en) Hearing device with analog filtering and associated method
WO2010074658A1 (en) System and method for dynamic bass frequency control
KR950701468A (ko) 텔레비젼의 제1검출기로부터 각각의 입력 필터를 통해 신호를 공급하는 병렬형 비동조화상 중간 주파수 증폭기
US20100284541A1 (en) Receiving apparatus
CN102270971A (zh) 一种低功耗高集成度自动增益控制放大器
WO2006106816A1 (ja) 信号減衰回路
US5355530A (en) Receiver using receiving condition signal for correcting influence of the reception band width
CN205453707U (zh) 一种抗电源干扰红外接收电路及红外接收器
US9281792B2 (en) Receiver and method for gain control
JP3005472B2 (ja) 受信機
JPS632364B2 (ja)
US2220260A (en) Method and means for reducing disturbances in wireless reception
US2037456A (en) Automatic volume control
US2235040A (en) Radio receiving device
JP2842813B2 (ja) 振幅等化器
CN105812012A (zh) 对讲机及降低其误码率的电路
EP0969596A2 (en) Variable attenuation circuit
US9083299B2 (en) Filter of adjustable frequency response and method thereof
US1733117A (en) Electron relay control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007512845

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006730594

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006730594

Country of ref document: EP