WO2006106752A1 - Noninvasive analysis method - Google Patents

Noninvasive analysis method Download PDF

Info

Publication number
WO2006106752A1
WO2006106752A1 PCT/JP2006/306506 JP2006306506W WO2006106752A1 WO 2006106752 A1 WO2006106752 A1 WO 2006106752A1 JP 2006306506 W JP2006306506 W JP 2006306506W WO 2006106752 A1 WO2006106752 A1 WO 2006106752A1
Authority
WO
WIPO (PCT)
Prior art keywords
luciferase
luminescence
cells
emission wavelength
maximum emission
Prior art date
Application number
PCT/JP2006/306506
Other languages
French (fr)
Japanese (ja)
Inventor
Tomomi Asai
Shigeaki Nishii
Ritsuko Shimizu
Masayuki Yamamoto
Yoshihiro Ohmiya
Original Assignee
Toyo Boseki Kabushiki Kaisha
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Boseki Kabushiki Kaisha, National Institute Of Advanced Industrial Science And Technology filed Critical Toyo Boseki Kabushiki Kaisha
Priority to JP2007512802A priority Critical patent/JPWO2006106752A1/en
Publication of WO2006106752A1 publication Critical patent/WO2006106752A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/66Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving luciferase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • G01N21/763Bioluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/80Indicating pH value

Definitions

  • the present invention relates to a method for more effectively analyzing and measuring a biological process in a mammalian subject by noninvasive imaging. More specifically, the present invention relates to a method for performing more effective optical non-invasive imaging using a luminescent enzyme that exhibits luminescence activity on the long wavelength side with high tissue permeability and has substantially no fluctuation in emission spectrum due to pH. . Background art
  • Non-Patent Literature l Chalfie, M., Tu, Y “Eusmün, G” Ward, WW, and Prasher, DC; Green fluorescent protein as a marker for gene expression, Science. 1994, Feb ⁇ ⁇ ; 263 (5148): 802-805.
  • Patent Document 2 Morin, J.G. and Hastings, J.W .; Biochemistry of the Dioluminescence of f colonial hydroids and other coelenterates, J. Cell.Physiol. 1971 Jun; 77 (3): 305-12.
  • bioluminescent molecules do not require irradiation with excitation light to emit light, and there is almost no background signal compared to fluorescence detection.
  • bioluminescent molecules include the luciferase family and have been identified in various prokaryotes and eukaryotes.
  • Prokaryotic luciferases include Vibrio and Photobacterium Enzymes derived from marine bacteria, terrestrial bacteria belonging to the genus Xenorhabdus are known.
  • luciferases derived from beetles such as Photinus pyralis and Pyrophorus plagioph thalamus or marine organisms such as Renilla reniformis (Sea pansy) are known.
  • Prokaryotic luciferase is a heterodimeric luciferase, which is cumbersome to handle, whereas eukaryotic luciferase is more widely used because it also has the power of one protein.
  • eukaryotic luciferases derived from luminescent beetles such as Photinus pyralis and Pyrop horus plagiophthalamus convert beetle luciferin (D-luciferin) into ATP-dependent oxyluciferin, while Renilla luciferase ( Rluc) uses coelenterazine as a substrate and converts to coelenteramide independent of ATP.
  • the most widely used luciferase derived from Photinus pyralis as a luciferase using D-luciferin as a substrate is characterized in that the emission spectrum fluctuates due to a force pH that is said to have an emission wavelength peak at 562 nm. There is. As detection sensitivity, about 10 3 luciferase-expressing cells are required, and detection of a smaller number of cells is difficult.
  • An object of the present invention is to provide a method for more effectively analyzing and measuring a biological process in a mammal by non-invasive imaging. Furthermore, it exhibits luminescence activity on the long wavelength side with high tissue permeability, and the influence of its luminescence spectrum by pH.
  • the present invention relates to a method for performing optical non-invasive imaging with high accuracy and more effectively using a luminescent enzyme that is substantially free from luminescence.
  • Patent Document 1 red luminescence luciferase derived from a railroad worm as a luciferase having a maximum emission wavelength on the longest wavelength side among the luciferases found so far.
  • Patent Document 2 there was an example where it was possible to express it in mammalian cells by modifying the structure of the railworm photoprotein gene (Patent Document 2), but noninvasive imaging was performed using living mammalian subjects. I have not done it.
  • the present inventors have previously disclosed a method for measuring the three promoter activities simultaneously using the expression of the red luciferase of the railway worm, the green and orange luciferases derived from Irimotobotaru in mammalian cells.
  • Patent Literature 3 As a result of further intensive research, the present inventors have detected a probe in a living mammal more efficiently using a luciferase having a maximum emission wavelength of 600 or more, such as a railroad worm red-emitting luciferase. In other words, we found a more efficient non-invasive imaging method for living mammals and completed the present invention.
  • Patent Document 2 WO2003-016839
  • Patent Document 3 WO2004 / 099421
  • the present invention has the following constitutional power.
  • a noninvasive imaging method comprising administering a luciferase having a maximum emission wavelength of 600 nm or more and luciferin to a mammal and detecting the luminescence.
  • a noninvasive imaging method characterized by detecting luminescence of the luciferase in a mammal expressing a luciferase gene having a maximum emission wavelength of 600 or more under the control of a specific promoter.
  • luciferase gene is a luciferase gene derived from a luminescent beetle having a maximum emission wavelength of 620 or more.
  • luciferase is a luciferase derived from the firefly family, the mosquito family, the rice family, or the Iriomote family.
  • luciferase is a red light-emitting luciferase derived from a railroad worm.
  • the cells are selected from the group consisting of tumor cells, normal cells, ES cells, and stem cells.
  • the method of the present invention reduces the rate of tissue absorption of luciferase, which is a reporter of a specific biological process within a living animal individual, thus affecting the type or depth of surrounding tissue. It has become possible to detect more directly and more effectively without being affected. Furthermore, the present method can maintain the luminescence tissue permeation efficiency constant by using luciferase that is not affected by the emission spectrum strength H, so that detection with higher accuracy is possible.
  • FIG.l Lucinase from Photinus pyralis (HLuc, maximum emission wavelength of about 560 nm) Luciferase from Ragopht halmus ohbai (Rol, maximum emission wavelength of about 550 nm) Mutant luciferase from Ragophthalmus oh bai (Rol T226N, maximum emission wavelength of about 560 nm) 580 nm), Phrixothrix hi Among the luminescence of various luciferases using a lysate of HeLa S3 cells that expressed rtus luciferase (PhRE, maximum emission wavelength of about 630 nm), Phrixothrix hirtus luciferase (PhRE) is particularly suitable for tissue permeability. These are data and graphs showing that the emission ratio in the long wavelength region (600 nm or more) is high V.
  • FIG.2 Good luminescence detection with a high-sensitivity CCD camera in living cells expressing Ragophthalmus ohbai-derived noreluciferase (Rol), Ragophthalmus ohbai-derived variant luciferase (Rol T226N), and Phrixothrix hirtus-derived luciferase (PhRE) It is an image, a measured value, and a graph showing that is recognized.
  • Rol Ragophthalmus ohbai-derived noreluciferase
  • Rol T226N Ragophthalmus ohbai-derived variant luciferase
  • Phrixothrix hirtus-derived luciferase Phrixothrix hirtus-derived luciferase
  • FIG. 4 A graph suggesting that the luminescence of Phrixothrix hirtus-derived luciferase (PhRE) is detected at a very high efficiency compared to other luciferases.
  • FIG. 5 shows the structure of the G1HRD-PhRE transgene constructed in Example 4.
  • Examples include, but are not limited to, methods of imaging using a system equipped with a camera.
  • the CCD camera converts the photons that hit the silicon wafer into electrons, encrypts the projected photon density spatially into a charge pattern, and generates an image.
  • the CCD camera can be cooled to reduce noise caused by heat, and by installing it in a dark box, the sensitivity of the camera that detects bioluminescence, which is faint light, can be increased.
  • Non-invasive methods include bioimaging optical imaging, PET (positoron emission tomography) and MRI (magnetic resonance imaging) systems, which are less three-dimensional than other systems.
  • the luciferase luminescence reaction requires intravenous injection, intraperitoneal injection, or target site injection of luciferase as a luciferase substrate in the individual animal. Injection, sustained release of D-luciferin It can be detected by administering it with a sustained-release preparation, etc.
  • the beetle luciferin (D-luciferin) is a substrate for biomolecules such as Cytochrome P450 or Caspase, as well as natural luciferin derived from fireflies. And a D-luciferin derivative that is modified to D-luciferin by the active molecule.
  • D-luciferin is commercially available from a number of manufacturers and is readily available. Also, there are no reports of dangers such as acute toxicity.
  • the amount of ATP is transformed with a luciferase-expressing mammalian cell or a luciferase linked to an inducible promoter such as an organ or tissue-specific promoter, time-specific or cold-inducible promoter. It can also be detected in transgenic mammals.
  • the activity state of the site can be monitored. For example, it is possible to screen improvers by monitoring ATP levels in brains whose activity has been reduced by Alzheimer.
  • the myocardial cerebral nerve cell has a function of opening and self-protecting the ATP-sensitive K channel depending on the intracellular ATP concentration during ischemia.
  • -Ng can be expected to be applied to ischemic heart disease Also, intracellular A
  • the column f shows luciferase genes linked to the promoters of genes that change expression in association with obesity, such as Peroxisome proliferators—activated receptor y (PPAR lucose Transporter 4 (GLUT4), lipoprotein lipase ⁇ adiponectin, TNF- Combining with normal animals, as well as obesity models and diabetes model animals, it is possible to evaluate drugs that improve diabetes and obesity using the luminescence of the expressed luciferase as an index, or inflammatory site strength (eg, IL- 1, IL-6, IL-11, TNF- ⁇ , etc.) and the luciferase gene can be linked to evaluate anti-inflammatory agents, as well as PCNA, cdc2 kinase, c-myc, c Cell cycle regulation gene promoters such as -myb are linked to the luciferase gene to evaluate the inhibitory effect on cell growth inhibition, thereby inhibiting myocardial treatment The ability to be used as a vascular restenosis inhibitor
  • luciferase protein
  • it may be administered in an amount of about 100 to 1000 ( ⁇ ⁇ / body weight 1 ⁇ g.
  • the 10 2 to 10 omega pieces about the cell can be transplanted.
  • the present invention because it uses luciferase maximum emission wavelength of above 600 nm, are possible imaging even amount luciferase is very small
  • tumor cells expressing luciferase even about 1 X 10 3 cells can be detected by imaging sufficiently, so it is not necessary to sacrifice animals and make tissue sections as in the past. It is also possible to image a small number of tumor cells (eg 1000 or less, preferably 100 or less) that cannot be recognized by the naked eye. It is very suitable for grayed.
  • Luciferin can be imaged by administering to a mammal an amount of about 10 to 1000 mg / kg body weight.
  • luminescence intensity is preferably high in mammalian cells when detecting the expression of a transgene in which the abundance ratio of luciferase is high.
  • Examples of this include luciferase genes modified to have high V and codon usage in mammalian cells, luciferase genes with sequences such as Kozak sequences added to increase translation efficiency, and constitutive expression profiles.
  • Motors include, but are not limited to, luciferase genes linked to promoters with high expression and expression activity such as CAG promoter and CMV promoter.
  • the wavelength is related to the tissue permeability of light. Most animal tissues contain a lot of water, and water is known to transmit long wavelength light (red region light) better than short wavelength light. Therefore, a luciferase gene having a high emission ratio at a wavelength of 6 00 or longer is preferable. That is, a luciferase gene having a maximum emission wavelength of 600 nm or more, more preferably 620 nm or more is preferred. The upper limit of the maximum emission wavelength of luciferase is not particularly limited, but is usually about 650 nm, particularly about 640 nm.
  • luciferases have been confirmed to shift to shorter wavelengths with increasing pH.
  • Photinus pyralis reports that the maximum emission wavelength at pH 6 is 617 nm, whereas that at pH 8 is 565 nm. In other words, if the pH increases, the emission spectrum shifts to the short wavelength side, and the detection efficiency is expected to decrease.
  • This type of luminescent beetle luciferase is from the family Firefly, and luciferases that are not affected by pH are preferred, and more specifically luciferases from the family Firefly, Family, and Iriomotepoota. ! /
  • the luciferase having a maximum emission wavelength of 600 nm or more means a luciferase having a maximum emission wavelength of 600 nm or more in the whole physiological pH range (pH 59), The luciferase derived from Photinus pyralis is not included in the “luciferase whose maximum emission wavelength is 600 nm or more”.
  • “luciferase whose emission spectrum is substantially unaffected by pH near pH 59” means that the change in the maximum emission wavelength in this pH range is 10 nm or less, preferably 5 nm or less, more preferably 3 nm or less.
  • the most preferred V-luciferase includes a red-emitting luciferase derived from the firefly, particularly Phrixothrix hirtus, and mutants thereof.
  • the luciferase has a maximum emission wavelength around 630 nm (which may vary slightly depending on the measurement equipment), and the emission spectrum is stable in pH in the pH 59 region (non- (Patent Document 4)
  • Variants of red-emitting luciferase include base substitutions that do not involve alteration of amino acids such as codon usage, amino acids that retain pH-insensitive enzyme characteristics with a maximum emission wavelength of 620 nm or more and an emission spectrum. Power including substitutions, and additions of proteinaceous tag sequences such as myc tag, histidine tag, GST tag, etc. Not limited to this!
  • Non-Patent Document 4 Viviani V "Uchida, A” Suenaga, N "Ryuluku, M., and Ohmiya, Y .; Th r226 Is a Key Residue for Bioluminescence Spectra Determination in Beetle Lucifera se .; Biochemical and Biophysical Research Communications. 2001 ; 280, 1286-1291
  • mammals include humans, mice, rats, mice, horses, hidges, monkeys, pigs, mice, mussels, guinea pigs, rabbits, and nu, preferably mice and rats.
  • mammalian cells include human and monkey cells (particularly tumor cells) in addition to mice and rats.
  • HeLa S3 cells 1 X 10 5 cells were seeded on 12 well plates and cultured in Dulbecco's modified Eagle medium (Nissui Pharmaceutical) containing 10% FCS. The next day, pGL3-control (Promega, Photinus pyralis luciferase (ffLuc), maximum emission wavelength about 560 nm), pSLG-SV40 control (Toyobo, Ragophthalmus ohbai luciferase (Rol), maximum emission wavelength about 55 Onm), pSLO- SV40 control (Toyobo, Ragophthalmus ohbai-derived mutant luciferase (Rol T226N), maximum emission wavelength of about 580 nm), pSLR-SV40 control (Toyobo, Phrixo thrix hirtus-derived luciferase (PhRE), maximum emission wavelength of about 1 ⁇ g of each plasmid (630 nm) is diluted with 100 ⁇
  • Example 2 Detection of luciferase luminescence in a non-destructive system of a nursing street
  • COS cells 4.0 X 10 4 cells were seeded on 24 well plates and cultured. On the next day, 0.5 ⁇ g of each plasmid of pSLG-SV40 control, pSLO-SV40 control, and pSLR-SV40 control was transfected. At that time, 1 mM and 0.5 mM D-luciferin were added, and the next day, exposure was performed for 10 seconds with IVIS Imaging System (Xenogen).
  • Figure 2 shows the image and relative luminescence intensity values and graphs quantified for each well.
  • Each luciferase-expressing cell of Example 2 was recovered by scraping with a 2-well scraper and concentrated to 100 l (in a medium containing D-ludferin) by centrifugation. This cell solution was injected subcutaneously in the vicinity of the mouse limbs and exposed for 10 seconds with the IVIS Imaging System.
  • Figure 3 shows the image and relative luminescence intensity values and graphs quantified for each well.
  • FIG. 4 shows the ratio of the measurement value at the time of subcutaneous injection to the measurement value at the time of cell detection in Example 2 for each luciferase and a graph thereof.
  • the transcription factor GATA-1 expressed in erythrocytes is upstream of the blood cell-specific first exon IE 3.9 kb to the second exon (GIHRD; GATA-lHematopoietic Regulatory Domain) (Non-Patent Documents 5 and 6) downstream
  • the SLR gene (PhRE) of pSLR-test (Toyobo) was inserted.
  • the IE3.9int plasmid vector was digested with the restriction enzyme Notl (Toyobo) to open the IE3.9int plasmid vector.
  • the SLR gene (PhRE) was amplified using oligonucleotide 1 (SEQ ID NO: 1) and oligonucleotide 2 (SEQ ID NO: 2) in the form of a 5'-site addition of pSLR-tesU restriction enzyme Notl.
  • the PhRE gene fragment was obtained by digestion with I and inserted into the IE3.9int plasmid vector (GIHRD-PhRE).
  • Figure 5 shows the structure of the constructed GIHRD-PhRE transgene.
  • Non-Patent Document 5 Onodera, K., Takahashi, S., Nishimura, S., Ohta, J., Motohashi, H., Yomogida, K., Hayashi, N., Engel, JD, Yamamoto, M. GATA- 1 transcription is co ntrolled by distinct regulatory mechanisms during primitive and definitive erythropie sis .: Proceedings of the Natitonal Academy of Sciences of the United States of Ameri ca. 1997; 94, 4487-4492
  • Non-Patent Document 6 Nishimura, S., Takahashi, S., Kuroha, T., Suwabe, N., Nagasawa, T., Trainor, C, Yamamoto, M. A GATA Box in the Network of GATA Factors and Sites That Regulate This Gene .: Molecular and Cellular Biology. 2000; 20, 713-723
  • Non-Patent Document 7 Shimizu, R. Takahashi, S "Ohneda, K., Engel, JD, Yamamoto, M. In vivo requirements functional domains during primitive and definitive erythropoiesis .:
  • G1HRD-PhRE was digested with restriction enzyme Sal I (Toyobo), separated by agarose gel electrophoresis to remove the vector DNA, and the G1 HRD-PhRE transgene was purified.
  • the purified DNA fragment was injected into a mouse fertilized egg according to a standard method (Non-patent Document 8).
  • the prepared G1HRD-PhRE TG mice were administered D-luciferin, and then luminescence was observed with the IVIS system, and individuals with high luminescence intensity were selected.
  • Figure 6 shows the luminescence signal derived from PhRE in the spleen, a hematopoietic tissue of G1HRD-PhRE TG mice, compared to the negative control (GlHRD-PhRE non-introduced mice, left) after induction of anemia with PHZ (phenylhydrazine).
  • Non-special literature 8 Hogan, B., R. Beddington, F. Constantini, E. Lacy. Manipulating the mouse embryo. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, NY 199 4.
  • the noninvasive detection method in a mammalian animal using a luciferase having a wavelength of 600 nm or more in the present invention is a drug screening system as a system for more effectively monitoring a biological process in a mammalian animal. It can be used as an analysis system for tumors and infectious diseases, and as a transplant evaluation system, and contributes greatly to industries such as drug discovery and medical care.

Abstract

A method whereby a biological process in a mammalian subject is more effectively analyzed or measured with the use of noninvasive imaging. More specifically speaking, a method of conducting more effective optical noninvasive imaging by using a luminescent enzyme which exhibits a luminescent activity in the long wavelength side with a high tissue permeability and shows little change in the luminescent spectrum depending on pH.

Description

明 細 書  Specification
非侵襲性解析方法  Non-invasive analysis method
技術分野  Technical field
[0001] 本発明は、非侵襲性イメージングによって、哺乳類動物対象中での生物学的過程 の解析や測定をより効果的に行う方法に関する。さらに詳しくは、組織透過性の高い 長波長側の発光活性を示し、かつ pHによる発光スペクトルの変動が実質的にない発 光酵素を用いてより効果的な光学性非侵襲性イメージングを行う方法に関する。 背景技術  [0001] The present invention relates to a method for more effectively analyzing and measuring a biological process in a mammalian subject by noninvasive imaging. More specifically, the present invention relates to a method for performing more effective optical non-invasive imaging using a luminescent enzyme that exhibits luminescence activity on the long wavelength side with high tissue permeability and has substantially no fluctuation in emission spectrum due to pH. . Background art
[0002] 従来、生物学的諸過程を調べる in vivoアツセィ系として、培養細胞系が広く用いら れてきた。し力しながら、生体内とは異なる単純ィ匕された系では上手く調べる系を構 築できなかったり、あるいはそのような環境下で調べられた結果は、必ずしも生体内 の現象を反映したものでないことがある。そのため、生きた哺乳動物個体において観 察 (非侵襲性イメージング)することが望ましぐ近年種々の蛍光性プローブ、すなわ ちフルォレセインのような低分子の蛍光性ィ匕合物や緑色蛍光タンパク質 (非特許文 献: 1、 2)のような蛍光タンパク質、などの開発が進み、さまざまな研究領域で応用さ れつつある。し力しながら、蛍光タンパク質の検出には励起光を照射する必要がある ため、動物組織中の自家蛍光によるバックグラウンドシグナルが高い他、励起光自体 も個体内部へと糸且織透過しなければならず、個体深部における検出には向かない。 非特許文献 l : Chalfie, M., Tu, Y" Euskirchen, G" Ward, W.W., and Prasher, D.C. ; Green fluorescent protein as a marker for gene expression, Science. 1994, Feb丄丄; 263(5148):802-805.  Conventionally, cultured cell systems have been widely used as an in vivo assay system for examining various biological processes. However, it is not possible to construct a system that can be studied well with a simplified system that is different from that in the living body, or the results examined in such an environment do not necessarily reflect the phenomenon in the living body. Sometimes. Therefore, it is desirable to observe (non-invasive imaging) in a living mammal individual in recent years, that is, various fluorescent probes, that is, low-molecular fluorescent compounds such as fluorescein and green fluorescent protein ( Non-patent literature: Fluorescent proteins such as 1 and 2) have been developed and are being applied in various research fields. However, since it is necessary to irradiate the excitation light to detect the fluorescent protein, the background signal due to autofluorescence in the animal tissue is high, and the excitation light itself must pass through the inside of the individual. In other words, it is not suitable for detection in the deep part of an individual. Non-Patent Literature l: Chalfie, M., Tu, Y "Euskirchen, G" Ward, WW, and Prasher, DC; Green fluorescent protein as a marker for gene expression, Science. 1994, Feb 丄 丄; 263 (5148): 802-805.
特許文献 2 : Morin, J.G. and Hastings, J.W.;Biochemistry of the Dioluminescence o f colonial hydroids and other coelenterates, J. Cell. Physiol.1971 Jun;77(3):305-12.  Patent Document 2: Morin, J.G. and Hastings, J.W .; Biochemistry of the Dioluminescence of f colonial hydroids and other coelenterates, J. Cell.Physiol. 1971 Jun; 77 (3): 305-12.
[0003] 一方、生物発光分子は光を放射するための励起光の照射を必要とせず、蛍光検出 に比べバックグラウンドとなるシグナルはほとんど存在しな 、。このような生物発光分 子としてはルシフェラーゼファミリーが挙げられ、種々の原核生物、真核生物で同定 されてきた。原核生物型ルシフェラーゼ(lux)としては、 Vibrio属ゃ Photobacterium属 の海洋性細菌、 Xenorhabdus属の陸生細菌由来の酵素などが知られている。また、 真核生物型ノレシフェラーゼ (luc)として、甲虫の Photinus pyralis、 Pyrophorus plagioph thalamusなど、あるいは海洋生物の Renilla reniformis (Sea pansy)などに由来するル シフェラーゼなどが知られて 、る。 [0003] On the other hand, bioluminescent molecules do not require irradiation with excitation light to emit light, and there is almost no background signal compared to fluorescence detection. Such bioluminescent molecules include the luciferase family and have been identified in various prokaryotes and eukaryotes. Prokaryotic luciferases (lux) include Vibrio and Photobacterium Enzymes derived from marine bacteria, terrestrial bacteria belonging to the genus Xenorhabdus are known. Further, as eukaryotic type noluciferases (luc), luciferases derived from beetles such as Photinus pyralis and Pyrophorus plagioph thalamus or marine organisms such as Renilla reniformis (Sea pansy) are known.
[0004] 原核生物型ルシフェラーゼ(lux)はへテロ 2量体ルシフェラーゼカ なるため、取扱 いが煩雑となるのに対し、真核生物型ルシフェラーゼは 1つのタンパク質力もなるため 、より広く用いられている。真核生物型ルシフェラーゼのうち、 Photinus pyralis, Pyrop horus plagiophthalamusなどの発光性甲虫に由来するルシフェラーゼは甲虫ルシフエ リン(D-luciferin)を基質とし ATP依存的に oxyluciferinに変換する一方、 Renilla由来ル シフェラーゼ (Rluc)は coelenterazineを基質とし、 ATP非依存的に coelenteramideに変 換する。後者については不安定で自家発光性が高ぐそのためノ ックグラウンドシグ ナノレカ尚い。さりに、最近、 coelenterazine力 TP— binding cassette transporterファ リー、その中でも特に multidrug resistance MDRl P— glycoprotein (ABCA1; Pgp)の基 質として認識され、細胞内より排出されてしまうため、 Pgpが発現する細胞、組織では Rlucの発光を検出することができず、利用の範囲が制限されるとの報告がある (非特 許文献 3)。一方、 D-luciferinは Pgpに認識されないため細胞カゝら排出されない。  [0004] Prokaryotic luciferase (lux) is a heterodimeric luciferase, which is cumbersome to handle, whereas eukaryotic luciferase is more widely used because it also has the power of one protein. . Among eukaryotic luciferases, luciferases derived from luminescent beetles such as Photinus pyralis and Pyrop horus plagiophthalamus convert beetle luciferin (D-luciferin) into ATP-dependent oxyluciferin, while Renilla luciferase ( Rluc) uses coelenterazine as a substrate and converts to coelenteramide independent of ATP. The latter is unstable and has high self-luminous properties, so it is not a knock ground signal. Recently, coelenterazine force TP—binding cassette transporter family, especially multidrug resistance MDRl P—glycoprotein (ABCA1; Pgp) is recognized as a substrate and is excreted from the cell, so Pgp-expressing cells However, there is a report that the luminescence of Rluc cannot be detected in tissues and the range of use is limited (Non-Patent Document 3). On the other hand, since D-luciferin is not recognized by Pgp, it is not excreted from cells.
非特干文献 3 : Andrea P., June L.P., and David P.W,; Imaging reversal of multidrug r esistance in living mice with bioluminescence: MDRl P— glycoprotein transports coel enterazine, Proc. Natl. Acad. Sci. USA, 2004 Feb; 101(6):1702— 1707  Non-Patent Literature 3: Andrea P., June LP, and David PW ,; Imaging reversal of multidrug r esistance in living mice with bioluminescence: MDRl P—glycoprotein transports coel enterazine, Proc. Natl. Acad. Sci. USA, 2004 Feb; 101 (6): 1702— 1707
[0005] 一方、 D-luciferinを基質とするルシフヱラーゼとして、現在最も広く用いられる Photi nus pyralis由来のルシフェラーゼは 562 nmに発光波長ピークを持つといわれる力 p Hにより発光スペクトルが変動してしまうという特徴がある。検出感度としては、ルシフ エラーゼ発現細胞数 103個程度は必要で、より少ない細胞数の検出は難しい。 [0005] On the other hand, the most widely used luciferase derived from Photinus pyralis as a luciferase using D-luciferin as a substrate is characterized in that the emission spectrum fluctuates due to a force pH that is said to have an emission wavelength peak at 562 nm. There is. As detection sensitivity, about 10 3 luciferase-expressing cells are required, and detection of a smaller number of cells is difficult.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 本発明の目的は、非侵襲性イメージングによって、哺乳類動物中での生物学的過 程の解析や測定をより効果的に行う方法を提供することである。さらには、組織透過 性の高い長波長側の発光活性を示し、かつ pHによって、その発光スペクトルの影響 の実質的にない発光酵素を用いてより効果的に、精度の高い光学性非侵襲性ィメー ジングを行う方法に関する。 [0006] An object of the present invention is to provide a method for more effectively analyzing and measuring a biological process in a mammal by non-invasive imaging. Furthermore, it exhibits luminescence activity on the long wavelength side with high tissue permeability, and the influence of its luminescence spectrum by pH. The present invention relates to a method for performing optical non-invasive imaging with high accuracy and more effectively using a luminescent enzyme that is substantially free from luminescence.
課題を解決するための手段  Means for solving the problem
[0007] 本発明者らは、現在までに見つかつているルシフェラーゼにおいて最も長波長側 に最大発光波長を有するルシフ ラーゼとして、鉄道虫由来の赤色発光ルシフェラ ーゼのクロー-ングに成功している(特許文献 1)。その後、鉄道虫発光タンパク質遺 伝子の構造を改変することで哺乳類細胞において発現させることを可能にした例もあ るが (特許文献 2)、生きた哺乳類動物対象を用いて非侵襲性イメージングを行うには いたっていない。本発明者らは、以前に、この鉄道虫赤色発光ルシフェラーゼ、イリ ォモテボタル由来の緑、橙色発光ルシフヱラーゼの哺乳類細胞における発現、さら にこれらを用いて 3つのプロモーター活性を同時に測定する方法を開示している(特 許文献 3)。本発明者らは、さらに鋭意研究を重ねた結果、鉄道虫赤色発光ルシフエ ラーゼなどの最大発光波長が 600 應以上であるルシフェラーゼを用いてより効率的 に生きた哺乳動物個体内のプローブを検出すること、すなわち生きた哺乳類動物を 対象としてより効率的な非侵襲性イメージング方法を見出し、本発明を完成するに到 つた o  [0007] The present inventors have succeeded in cloning a red luminescence luciferase derived from a railroad worm as a luciferase having a maximum emission wavelength on the longest wavelength side among the luciferases found so far. (Patent Document 1). After that, there was an example where it was possible to express it in mammalian cells by modifying the structure of the railworm photoprotein gene (Patent Document 2), but noninvasive imaging was performed using living mammalian subjects. I have not done it. The present inventors have previously disclosed a method for measuring the three promoter activities simultaneously using the expression of the red luciferase of the railway worm, the green and orange luciferases derived from Irimotobotaru in mammalian cells. (Patent Literature 3). As a result of further intensive research, the present inventors have detected a probe in a living mammal more efficiently using a luciferase having a maximum emission wavelength of 600 or more, such as a railroad worm red-emitting luciferase. In other words, we found a more efficient non-invasive imaging method for living mammals and completed the present invention.
特許文献 1: US2002/0119542-A1  Patent Document 1: US2002 / 0119542-A1
特許文献 2: WO2003-016839  Patent Document 2: WO2003-016839
特許文献 3: WO2004/099421  Patent Document 3: WO2004 / 099421
[0008] すなわち、本発明は以下のような構成力もなる。 [0008] That is, the present invention has the following constitutional power.
1. 発光の最大発光波長が 600 nm以上であるルシフェラーゼ及びルシフェリンを哺 乳類動物中に投与し、発光を検出することからなる、非侵襲的イメージング方法。 1. A noninvasive imaging method comprising administering a luciferase having a maximum emission wavelength of 600 nm or more and luciferin to a mammal and detecting the luminescence.
2. 発光の最大発光波長が 600 應以上であるルシフェラーゼ遺伝子を特定プロモ 一ター制御下で発現する哺乳類動物中において、前記ルシフェラーゼの発光を検 出することを特徴とする非侵襲的イメージング方法。 2. A noninvasive imaging method characterized by detecting luminescence of the luciferase in a mammal expressing a luciferase gene having a maximum emission wavelength of 600 or more under the control of a specific promoter.
3. 発光の最大発光波長が 600 應以上であるルシフェラーゼ遺伝子を特定プロモ 一ター制御下で発現する哺乳類細胞を哺乳類動物個体に移植し、哺乳類動物個体 中における前記ルシフェラーゼの発光を検出することを特徴とする非侵襲的イメージ ング方法。 3. It is characterized by transplanting a mammalian cell expressing a luciferase gene having a maximum emission wavelength of 600 or more under the control of a specific promoter to a mammal individual and detecting the luminescence of the luciferase in the mammal individual. Non-invasive image Method.
4. ルシフェラーゼの最大発光波長が 620 nm以上である、項 1 3のいずれかに記 載の方法。  4. The method according to any one of Items 13 to 13, wherein the maximum emission wavelength of luciferase is 620 nm or more.
5. 前記ルシフェラーゼ遺伝子が、最大発光波長が 620 以上であって、発光性 甲虫由来のルシフェラーゼ遺伝子である項 4に記載の方法。  5. The method according to Item 4, wherein the luciferase gene is a luciferase gene derived from a luminescent beetle having a maximum emission wavelength of 620 or more.
6. 前記ルシフェラーゼ遺伝子がコードするルシフェラーゼカ pH5 9付近で発光 スペクトルが pHに実質的に影響されな 、ルシフェラーゼである、項 5に記載の方法。 6. The method according to Item 5, wherein the luminescence spectrum of the luciferase gene encoded by the luciferase gene is luciferase in which the emission spectrum is not substantially affected by pH.
7. ルシフェラーゼがホタルモドキ科、ヒカリコメツキ科、コメツキ科またはイリォモテ ボタル科由来のルシフェラーゼである、項 6記載の方法。 7. The method according to item 6, wherein the luciferase is a luciferase derived from the firefly family, the mosquito family, the rice family, or the Iriomote family.
8. ルシフェラーゼが鉄道虫由来の赤色発光ルシフェラーゼである、項 7に記載の 方法。  8. The method according to item 7, wherein the luciferase is a red light-emitting luciferase derived from a railroad worm.
9. 特定組織における ATP濃度の変化を調べるためにルシフェラーゼの発光を検出 することを含む、項 1または 2に記載の方法。  9. The method according to item 1 or 2, which comprises detecting luciferase luminescence to examine changes in ATP concentration in a specific tissue.
10. 特定プロモーターが構成発現プロモーターであって、発光の検出によって移 植された細胞の数をモニターすることを特徴とする、項 3に記載の方法。  10. The method according to item 3, wherein the specific promoter is a constitutive expression promoter, and the number of transplanted cells is monitored by detecting luminescence.
11. 細胞が腫瘍細胞、正常細胞、 ES細胞及び幹細胞からなる群より選択される、 項 10に記載の方法。  11. The method according to item 10, wherein the cells are selected from the group consisting of tumor cells, normal cells, ES cells, and stem cells.
発明の効果  The invention's effect
[0009] 本発明の方法により、生きた動物個体内の特定の生物学的過程のレポーターであ るルシフェラーゼの発光が組織吸収される割合が減少するため、周囲の組織の種類 あるいは深さに影響を受けることなくより直接的、かつより効果的に検出することが可 能となった。さらに、本法は発光スペクトル力 ¾Hの影響を受けないルシフェラーゼを 用いることによって、発光の組織透過効率を一定に維持できるため、より精度の高い 検出が可能である。  [0009] The method of the present invention reduces the rate of tissue absorption of luciferase, which is a reporter of a specific biological process within a living animal individual, thus affecting the type or depth of surrounding tissue. It has become possible to detect more directly and more effectively without being affected. Furthermore, the present method can maintain the luminescence tissue permeation efficiency constant by using luciferase that is not affected by the emission spectrum strength H, so that detection with higher accuracy is possible.
図面の簡単な説明  Brief Description of Drawings
[0010] [図 l]Photinus pyralis由来ルシフェラーゼ(HLuc、最大発光波長約 560 nm) Ragopht halmus ohbai由来ルシフェラーゼ(Rol、最大発光波長約 550nm) Ragophthalmus oh bai由来変異型ルシフェラーゼ (Rol T226N、最大発光波長約 580 nm)、 Phrixothrix hi rtus由来ルシフ ラーゼ (PhRE、最大発光波長約 630 nm)を発現した HeLa S3細胞の 破砕液を用いて、種々ルシフェラーゼの発光の中で、特に Phrixothrix hirtus由来ル シフェラーゼ (PhRE)が組織透過性のょ 、長波長領域 (600 nm以上)の発光割合が高 V、ことを示すデータ及びグラフである。 [0010] [Fig.l] Lucinase from Photinus pyralis (HLuc, maximum emission wavelength of about 560 nm) Luciferase from Ragopht halmus ohbai (Rol, maximum emission wavelength of about 550 nm) Mutant luciferase from Ragophthalmus oh bai (Rol T226N, maximum emission wavelength of about 560 nm) 580 nm), Phrixothrix hi Among the luminescence of various luciferases using a lysate of HeLa S3 cells that expressed rtus luciferase (PhRE, maximum emission wavelength of about 630 nm), Phrixothrix hirtus luciferase (PhRE) is particularly suitable for tissue permeability. These are data and graphs showing that the emission ratio in the long wavelength region (600 nm or more) is high V.
[図 2]Ragophthalmus ohbai由来ノレシフェラーゼ(Rol)、 Ragophthalmus ohbai由来変 異型ルシフェラーゼ (Rol T226N)、 Phrixothrix hirtus由来ルシフェラーゼ (PhRE)を発 現させた生細胞において、高感度 CCDカメラによる良好な発光検出が認められること を示すイメージ、計測値、グラフである。  [Fig.2] Good luminescence detection with a high-sensitivity CCD camera in living cells expressing Ragophthalmus ohbai-derived noreluciferase (Rol), Ragophthalmus ohbai-derived variant luciferase (Rol T226N), and Phrixothrix hirtus-derived luciferase (PhRE) It is an image, a measured value, and a graph showing that is recognized.
[図 3] Ragophthalmus ohbai由来ノレシフェラーゼ(Rol)、 Ragophthalmus ohbai由来変 異型ルシフェラーゼ (Rol T226N)、 Phrixothrix hirtus由来ルシフェラーゼ (PhRE)を発 現させた生細胞を D-luciferinと皮下注射し、 Phrixothrix hirtus由来ルシフェラーゼ (P hRE)の発光が非常に強く検出されることを示すイメージ、計測値、グラフである。  [Figure 3] Ragophthalmus ohbai-derived noreluciferase (Rol), Ragophthalmus ohbai-derived variant luciferase (Rol T226N), and Phrixothrix hirtus-derived luciferase (PhRE) were injected subcutaneously with D-luciferin, and Phrixothrix hirtus It is an image, a measured value, and a graph which show that the light emission of origin luciferase (PhRE) is detected very strongly.
[図 4]Phrixothrix hirtus由来ルシフェラーゼ (PhRE)の発光が他のルシフェラーゼに比 ベ、動物対象力 非常に高効率で検出されていることを示唆するグラフである。  [Fig. 4] A graph suggesting that the luminescence of Phrixothrix hirtus-derived luciferase (PhRE) is detected at a very high efficiency compared to other luciferases.
[図 5]実施例 4で構築した G1HRD- PhREトランスジーンの構造を示す。  FIG. 5 shows the structure of the G1HRD-PhRE transgene constructed in Example 4.
[図 6]PHZ(phenylhydrazine)で貧血を誘導後、ネガティブコントロール(G1HRD- PhRE 非導入マウス、左)に対して、 G1HRD- PhRE TGマウスの造血組織である脾臓におい て PhRE由来する発光シグナルが有意に観察されたことを示す画像イメージである。 発明を実施するための最良の形態  [Fig. 6] After anemia was induced with PHZ (phenylhydrazine), the luminescence signal derived from PhRE was significant in the spleen, the hematopoietic tissue of G1HRD-PhRE TG mice, compared to the negative control (G1HRD-PhRE non-introduced mice, left) It is an image showing that it was observed. BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 以下に本発明を詳細に説明する。 [0011] The present invention is described in detail below.
[0012] 本発明における「非侵襲的イメージング方法」とは、生きた哺乳類動物を用いて、当 該動物個体内における特定の生物学的過程のレポーターであるルシフェラーゼの発 光を検出、測定し、発光の位置、相対強度を調べ、当該動物個体内における当該生 物学的過程を解析、測定する方法である。当該方法は、転写制御、シグナル伝達経 路、タンパク質—タンパク質相互作用、細胞トラフィックのような基礎科学的な解析か ら、疾患の検出、治療のモニタリングなどの応用科学分野まで利用される。代表的な 検出(イメージング)方法としては、 Xenogen社 IVIS Imaging System, BERTHOL TEC HNOLOGIES社 NightOWL LB981システムなど、高感度 CCD (charge- coupled device )カメラを搭載したシステムを用いて撮像する方法が挙げられるが、これらに限定され るものではない。 CCDカメラはシリコンウェファ一に当たった光子を電子に変換し、投 射光子密度を空間的に電荷パターンに暗号化し、イメージを生成する。生物発光の イメージングに対しては、 CCDカメラを冷却することによって熱によるノイズを低減し、 さらに暗箱内に設置することによって、微弱光である生物発光を検出するカメラの感 度を高めることができる。非侵襲的方法としては、生物発光を用いた光学イメージン クの他、 PET (positoron emission tomography)や MRI (magnetic resonance imagingノ などの系が知られ、他系に比べイメージの三次元性に乏 U、と!、つた短所もあったが 、この点についても現在改善されつつあり、放射性ィ匕合物を用いる必要がないため、 より簡便な系として注目されている。特に、 PET系で必要な放射性ィ匕合物は安全性が 問われる他、この化合物の半減期が数分程度と短ぐサイクロトロンや標識ィ匕合物合 成のための自動合成装置を備えた施設内で標識ィ匕合物の合成を行い、すぐに検出 に用いる必要がある。一方、ルシフ ラーゼの発光反応は前記動物個体中にルシフ エラーゼの基質となる D-luciferinを静脈注射、腹腔内注射、あるいは標的部位への 注射、 D-luciferinを持続的に放出する徐放性製剤などによって投与することによって 検出することができる。甲虫ルシフェリン(D-luciferin)としては、ホタル由来の天然型 ルシフェリンの他、 Cytochrome P450あるいは Caspaseなどの生体内分子の基質とな るように修飾され、前記活性型分子によって D-luciferinに変換される D-luciferin誘導 体などが挙げられる。 [0012] The "noninvasive imaging method" in the present invention refers to the detection and measurement of luciferase emission, which is a reporter of a specific biological process, in a living mammal using a living mammal. In this method, the position and relative intensity of luminescence is examined, and the biological process in the animal is analyzed and measured. The method is used from basic scientific analysis such as transcription control, signal transduction pathway, protein-protein interaction, cell traffic, to applied science fields such as disease detection and treatment monitoring. Typical detection (imaging) methods include high-sensitivity CCD (charge-coupled device) such as Xenogen's IVIS Imaging System and BERTHOL TEC HNOLOGIES 'NightOWL LB981 system. ) Examples include, but are not limited to, methods of imaging using a system equipped with a camera. The CCD camera converts the photons that hit the silicon wafer into electrons, encrypts the projected photon density spatially into a charge pattern, and generates an image. For bioluminescence imaging, the CCD camera can be cooled to reduce noise caused by heat, and by installing it in a dark box, the sensitivity of the camera that detects bioluminescence, which is faint light, can be increased. . Non-invasive methods include bioimaging optical imaging, PET (positoron emission tomography) and MRI (magnetic resonance imaging) systems, which are less three-dimensional than other systems. However, this point is also being improved now, and it is not necessary to use radioactive compounds, so it is attracting attention as a simpler system, especially for PET systems. In addition to the safety of these radioactive compounds, the half-life of this compound is as short as a few minutes, and in the facility equipped with an automated synthesizer for synthesizing the compound On the other hand, the luciferase luminescence reaction requires intravenous injection, intraperitoneal injection, or target site injection of luciferase as a luciferase substrate in the individual animal. Injection, sustained release of D-luciferin It can be detected by administering it with a sustained-release preparation, etc. The beetle luciferin (D-luciferin) is a substrate for biomolecules such as Cytochrome P450 or Caspase, as well as natural luciferin derived from fireflies. And a D-luciferin derivative that is modified to D-luciferin by the active molecule.
[0013] D-luciferinは多数のメーカーから市販され、容易に入手可能である。また、急性毒 性などの危険性の報告もな ヽ。  [0013] D-luciferin is commercially available from a number of manufacturers and is readily available. Also, there are no reports of dangers such as acute toxicity.
[0014] 検出対象となるルシフェラーゼとしては、インジェクションにより標準品として哺乳類 動物に投与されたもの、トランスジ ニック哺乳類動物として当該動物 DNA内に組み 込まれ発現されたもの、哺乳類細胞に導入され発現されたものであって当該細胞が 哺乳類動物個体へ移植されたもの、などが挙げられる。ルシフェラーゼによるルシフ エリンの反応にぉ ヽては ATPが必要である。ルシフェラーゼの標準品のインジェクショ ンは、十分量のルシフェラーゼ標準品とルシフェリンを投与することによって発光は当 該部位に存在する ATP量に比例することになるから、投与領域の相対的な ATP濃度 の測定法として利用が可能である。なお、 ATP量は、ルシフェラーゼを発現する哺乳 類細胞や、例えば臓器ないし組織特異的に発現されるプロモーター、時期特異的あ るいは低温誘導性等の誘導性プロモーターに連結されたルシフェラーゼで形質転換 されたトランスジエニック哺乳動物でも検出可能である。 [0014] Luciferases to be detected include those administered to mammals as standard products by injection, those incorporated and expressed in the animal DNA as transgenic mammals, and introduced into mammalian cells and expressed. In which the cells are transplanted into a mammal individual. ATP is required for the reaction of luciferin by luciferase. The injection of a luciferase standard product gives the luminescence proportional to the amount of ATP present at the site when a sufficient amount of luciferase standard product and luciferin are administered. It can be used as a measurement method. The amount of ATP is transformed with a luciferase-expressing mammalian cell or a luciferase linked to an inducible promoter such as an organ or tissue-specific promoter, time-specific or cold-inducible promoter. It can also be detected in transgenic mammals.
[0015] ATP濃度をモニターすることによって、当該部位の活動状態のモニターが可能であ る。例えば、アルツハイマーにより活動が低下した脳において、改善薬を ATP濃度を モニターすることによってスクリーニングすることが可能である。また、心筋'脳神経細 胞では虚血時の細胞内 ATP濃度によって ATP感受性 Kチャネルが開口して自己防 御する働きを持っており、 ATP濃度と並行した ATP感受性 Kチャネルの開口薬のスク リー-ングは、虚血性心疾患'脳血管障害への応用が期待できる。また、細胞内の A[0015] By monitoring the ATP concentration, the activity state of the site can be monitored. For example, it is possible to screen improvers by monitoring ATP levels in brains whose activity has been reduced by Alzheimer. In addition, the myocardial cerebral nerve cell has a function of opening and self-protecting the ATP-sensitive K channel depending on the intracellular ATP concentration during ischemia. -Ng can be expected to be applied to ischemic heart disease Also, intracellular A
TP濃度については、脾臓 j8細胞ではインスリン分泌調節に働き、糖尿病薬のスクリ 一二ング時に有効な指標である。 As for TP concentration, spleen j8 cells work to regulate insulin secretion, and are an effective index when screening diabetes drugs.
[0016] 一方、ルシフェラーゼ遺伝子が当該動物 DNA内に組み込まれた場合、その上流域 の転写制御配列が、ある糸且織内において、どのような転写制御を与えているかを解 析することが可能である。このような当該動物を用いて生体における薬理効果の評価 官 で ¾>る。 f列 ば、 Peroxisome proliferators— activated receptor y (PPAR y lucose Transporter 4 (GLUT4)、 lipoprotein lipaseゝアディポネクチン、 TNF- など、 肥満に連動して発現変動する遺伝子のプロモーターに連結されたルシフェラーゼ遺 伝子を、正常動物、さらには肥満モデルや糖尿病モデル動物と組み合わせることに よって、発現したルシフェラーゼの発光を指標に糖尿病や肥満の改善薬の評価が可 能である。あるいは炎症性サイト力イン(例えば、 IL- 1、 IL- 6、 IL- 11や TNF- αなど)の 遺伝子プロモーターとルシフェラーゼ遺伝子を連結することによって、抗炎症剤の評 価が可能である。その他、 PCNA、 cdc2 kinase, c-myc, c-mybなどの細胞周期調節 遺伝子プロモーターをルシフェラーゼ遺伝子に連結し、細胞増殖抑制の阻害効果を 評価することによって、心筋治療の障害となっている血管再狭窄の抑制剤、抗がん 剤評価系としての利用が可能である力 これらに限られるものではない。一方、ルシ フェラーゼ遺伝子が導入された哺乳類細胞を哺乳類動物個体へ移植させた場合、 単に培養細胞系によるアツセィと比較し、より生体内の現象を反映した解析が可能と なる。さらに構成発現型プロモーター制御下のルシフェラーゼ遺伝子を導入された 哺乳類細胞を同一または異なる種類の哺乳類動物個体へ移植させた場合には、そ の発光は主として細胞の増殖状態を反映するものとなるから、例えばルシフェラーゼ 遺伝子を導入された腫瘍細胞を用いれば腫瘍細胞の増殖、転移等をモニターする 系として有効である。また、ルシフェラーゼ遺伝子を導入された正常細胞、 ES細胞、 幹細胞(間葉系幹細胞、造血幹細胞、脂肪幹細胞など)の増殖をモニターすれば、 移植の評価系としても十分利用することが可能である。 [0016] On the other hand, when the luciferase gene is incorporated into the animal DNA, it is possible to analyze what transcription control is given by the transcription control sequence in the upstream region within a certain yarn and tissue. It is. An evaluator of pharmacological effects in a living body using such an animal. The column f shows luciferase genes linked to the promoters of genes that change expression in association with obesity, such as Peroxisome proliferators—activated receptor y (PPAR lucose Transporter 4 (GLUT4), lipoprotein lipase ゝ adiponectin, TNF- Combining with normal animals, as well as obesity models and diabetes model animals, it is possible to evaluate drugs that improve diabetes and obesity using the luminescence of the expressed luciferase as an index, or inflammatory site strength (eg, IL- 1, IL-6, IL-11, TNF-α, etc.) and the luciferase gene can be linked to evaluate anti-inflammatory agents, as well as PCNA, cdc2 kinase, c-myc, c Cell cycle regulation gene promoters such as -myb are linked to the luciferase gene to evaluate the inhibitory effect on cell growth inhibition, thereby inhibiting myocardial treatment The ability to be used as a vascular restenosis inhibitor and anti-cancer agent evaluation system is not limited to these, but transplantation of mammalian cells into which a luciferase gene has been introduced into a mammal individual Compared with the assembly by the cultured cell system, analysis that reflects the phenomenon in the living body is possible. Become. Furthermore, when mammalian cells into which a luciferase gene under the control of a constitutive expression promoter is introduced are transplanted into the same or different types of mammalian animals, the luminescence mainly reflects the growth state of the cells. For example, using tumor cells into which a luciferase gene has been introduced is effective as a system for monitoring the growth, metastasis, etc. of tumor cells. In addition, if the growth of normal cells, ES cells, and stem cells (mesenchymal stem cells, hematopoietic stem cells, adipose stem cells, etc.) into which the luciferase gene has been introduced is monitored, it can be used as an evaluation system for transplantation.
[0017] ルシフェラーゼ(タンパク質)を哺乳類動物に投与する場合、 100〜1000(^§/体重1^ g程度の量を投与すればよい。また、ルシフェラーゼを発現する哺乳類細胞を動物に 移植する場合、 102〜10ω個程度の細胞を移植することができる。本発明では、最大 発光波長が 600 nm以上であるルシフェラーゼを使用しているので、ルシフェラーゼ量 が非常に少なくてもイメージングが可能である。例えばルシフェラーゼを発現する腫 瘍細胞では、 1 X 103個程度の細胞でも十分にイメージングによる検出が可能である 。従って、従来のように動物を犠牲にし、組織切片を作成する作業は必要ない。また 、肉眼では認識できない程度の少数の腫瘍細胞 (例えば 1000個以下、好ましくは 1 00個以下)でもイメージング可能であり、候補ィヒ合物のスクリーニングに非常に適し ている。 [0017] When luciferase (protein) is administered to a mammal, it may be administered in an amount of about 100 to 1000 (^ § / body weight 1 ^ g. In addition, when a mammalian cell expressing luciferase is transplanted into an animal, the 10 2 to 10 omega pieces about the cell can be transplanted. the present invention, because it uses luciferase maximum emission wavelength of above 600 nm, are possible imaging even amount luciferase is very small For example, in the case of tumor cells expressing luciferase, even about 1 X 10 3 cells can be detected by imaging sufficiently, so it is not necessary to sacrifice animals and make tissue sections as in the past. It is also possible to image a small number of tumor cells (eg 1000 or less, preferably 100 or less) that cannot be recognized by the naked eye. It is very suitable for grayed.
[0018] なお、ルシフェリンは、 10〜1000mg/体重 kg程度の量を哺乳動物に投与してィメー ジングすることができる。  [0018] Luciferin can be imaged by administering to a mammal an amount of about 10 to 1000 mg / kg body weight.
[0019] 用いられるルシフェラーゼの検出性として重要な特性は、発光強度、発光部位の体 表面からの深さ、波長、発光スペクトルの安定性が挙げられる。発光強度としてはル シフェラーゼの存在量が寄与する割合が高ぐ導入遺伝子の発現の検出の際には 哺乳類細胞で発現が高いものが好ましい。この例としては、哺乳類細胞で利用の高 V、コドンユーセージを持つように改良されたルシフェラーゼ遺伝子、翻訳効率を上げ るために Kozak配列などの配列が付加されたルシフェラーゼ遺伝子、構成発現型プ 口モーターとして CAGプロモーター、 CMVプロモーターなどの高!、発現活性を有す るプロモーターに連結されたルシフェラーゼ遺伝子などが挙げられる力 これに限ら れるものではない。 [0020] 波長は、光の組織透過性と関係する。ほとんどの動物組織には多くの水が含まれ、 水が長波長光 (赤色領域光)を短波長光よりよく透過することが知られる。そのため、 6 00 以上の波長の発光割合の高いルシフェラーゼ遺伝子が好ましい。すなわち、 好ましくは最大発光波長が 600 nm以上、さらに好ましくは 620 nm以上のルシフェラー ゼ遺伝子が好ま U、。ルシフェラーゼの最大発光波長の上限は特に限定されな 、が 、通常 650nm程度、特に 640nm程度である。 [0019] Important characteristics as the detectability of the luciferase used include luminescence intensity, depth of the luminescent site from the body surface, wavelength, and stability of the emission spectrum. The luminescence intensity is preferably high in mammalian cells when detecting the expression of a transgene in which the abundance ratio of luciferase is high. Examples of this include luciferase genes modified to have high V and codon usage in mammalian cells, luciferase genes with sequences such as Kozak sequences added to increase translation efficiency, and constitutive expression profiles. Motors include, but are not limited to, luciferase genes linked to promoters with high expression and expression activity such as CAG promoter and CMV promoter. [0020] The wavelength is related to the tissue permeability of light. Most animal tissues contain a lot of water, and water is known to transmit long wavelength light (red region light) better than short wavelength light. Therefore, a luciferase gene having a high emission ratio at a wavelength of 6 00 or longer is preferable. That is, a luciferase gene having a maximum emission wavelength of 600 nm or more, more preferably 620 nm or more is preferred. The upper limit of the maximum emission wavelength of luciferase is not particularly limited, but is usually about 650 nm, particularly about 640 nm.
[0021] また、本発明者らは。ある種のルシフェラーゼは pHの上昇により短波長側へシフト することを確認している。例えば、 Photinus pyralisでは pH 6では最大発光波長が 617 nmであるのに対し、 pH 8では 565 nmとなるとの報告がある。つまり pHが上昇すると短 波長側へ発光スペクトルがシフトし、検出効率が低下することが予想される。この種の 発光性甲虫ルシフェラーゼとしてはホタル科のものがあり、 pHに影響を受けないルシ フェラーゼ、より具体的にはホタルモドキ科、ヒカリコメツキ科、イリォモテポオタル科 由来のルシフェラーゼが好まし!/、。  [0021] Also, the present inventors. Certain luciferases have been confirmed to shift to shorter wavelengths with increasing pH. For example, Photinus pyralis reports that the maximum emission wavelength at pH 6 is 617 nm, whereas that at pH 8 is 565 nm. In other words, if the pH increases, the emission spectrum shifts to the short wavelength side, and the detection efficiency is expected to decrease. This type of luminescent beetle luciferase is from the family Firefly, and luciferases that are not affected by pH are preferred, and more specifically luciferases from the family Firefly, Family, and Iriomotepoota. ! /
[0022] なお、本明細書において、最大発光波長が 600 nm以上であるルシフェラーゼとは、 生理的 pHの全範囲 (pH5 9)において最大発光波長が 600 nm以上であるルシフェラ ーゼを意味し、 Photinus pyralis由来のルシフェラーゼは、「最大発光波長が 600 nm 以上であるルシフェラーゼ」には含まれない。また、「pH5 9付近で発光スペクトル が pHに実質的に影響されないルシフェラーゼ」とは、この pH範囲における最大発光 波長の変化が 10nm以下、好ましくは 5nm以下、より好ましくは 3nm以下である。  [0022] In the present specification, the luciferase having a maximum emission wavelength of 600 nm or more means a luciferase having a maximum emission wavelength of 600 nm or more in the whole physiological pH range (pH 59), The luciferase derived from Photinus pyralis is not included in the “luciferase whose maximum emission wavelength is 600 nm or more”. In addition, “luciferase whose emission spectrum is substantially unaffected by pH near pH 59” means that the change in the maximum emission wavelength in this pH range is 10 nm or less, preferably 5 nm or less, more preferably 3 nm or less.
[0023] このような波長、発光スペクトルの安定性の特性から、最も好まし Vレシフェラーゼ としてはホタルモドキ科鉄道虫、とりわけ Phrixothrix hirtus由来の赤色発光ルシフェラ ーゼ及びその変異体が挙げられる。前記ルシフェラーゼは 630 nm付近 (測定設備に より若干相違が出る可能性がある)に最大発光波長を有し、また発光スペクトルは pH 5 9の領域にぉ 、て pHに対して安定である(非特許文献 4)  [0023] From the characteristics of the stability of the wavelength and emission spectrum, the most preferred V-luciferase includes a red-emitting luciferase derived from the firefly, particularly Phrixothrix hirtus, and mutants thereof. The luciferase has a maximum emission wavelength around 630 nm (which may vary slightly depending on the measurement equipment), and the emission spectrum is stable in pH in the pH 59 region (non- (Patent Document 4)
[0024] 赤色発光ルシフェラーゼの変異体としては、コドンユーセージなどのアミノ酸の変更 を伴わない塩基置換体、 620 nm以上の最大発光波長及び発光スペクトルの pH非感 受性の酵素特性を保持したアミノ酸置換体、さらには mycタグ、 histidineタグ、 GSTタ グなどのタンパク質性タグ配列の付加体等を含む力 これに限られるものではな!/、。 非特許文献 4 :Viviani V" Uchida, A" Suenaga, N" Ryuluku, M., and Ohmiya, Y.;Th r226 Is a Key Residue for Bioluminescence Spectra Determination in Beetle Lucifera se.; Biochemical and Biophysical Research Communications. 2001; 280, 1286 - 1291 哺乳類としては、ヒト、マウス、ラット、ゥシ、ゥマ、ヒッジ、サル、ブタ、ノ、ムスター、モ ルモット、ゥサギ、ィヌが挙げられ、好ましくはマウス、ラットである。マウス、ラットにお いてはヌード系、白毛系が好ましぐ有色毛系においては所望の検出部位に当たる 部分の毛を剃ることが好ましい。なお、哺乳類動物に導入されるルシフェラーゼを発 現する哺乳類細胞としては、マウス、ラットの他にヒト、サル等の細胞 (特に腫瘍細胞) が挙げられる。 [0024] Variants of red-emitting luciferase include base substitutions that do not involve alteration of amino acids such as codon usage, amino acids that retain pH-insensitive enzyme characteristics with a maximum emission wavelength of 620 nm or more and an emission spectrum. Power including substitutions, and additions of proteinaceous tag sequences such as myc tag, histidine tag, GST tag, etc. Not limited to this! Non-Patent Document 4: Viviani V "Uchida, A" Suenaga, N "Ryuluku, M., and Ohmiya, Y .; Th r226 Is a Key Residue for Bioluminescence Spectra Determination in Beetle Lucifera se .; Biochemical and Biophysical Research Communications. 2001 ; 280, 1286-1291 Examples of mammals include humans, mice, rats, mice, horses, hidges, monkeys, pigs, mice, mussels, guinea pigs, rabbits, and nu, preferably mice and rats. It is preferable to shave the hair that corresponds to the desired detection site in the case of colored hair, in which nude and white hair are preferred in mice and rats, and express luciferase that is introduced into mammals. Examples of mammalian cells include human and monkey cells (particularly tumor cells) in addition to mice and rats.
実施例  Example
[0025] 以下、本発明の実施例を例示することによって、本発明の効果をより一層明確なも のとする。  [0025] Hereinafter, the effects of the present invention will be made clearer by illustrating examples of the present invention.
[0026] 実施例 1 哺乳街細朐破爐系における糠々ルシフェラーゼ発光の測定  [0026] Example 1 Measurement of luciferase luminescence frequently in a nursing street shattering system
HeLa S3細胞 1 X 105 cellsずつを 12ゥエルプレートへ播種し、 10% FCSを含むダルべ ッコ変法イーグル培地(日水製薬)中で培養した。翌日、 pGL3-control (プロメガ、 Pho tinus pyralis由来ルシフェラーゼ(ffLuc)、最大発光波長約 560 nm)、 pSLG- SV40 con trol (東洋紡績、 Ragophthalmus ohbai由来ルシフェラーゼ(Rol)、最大発光波長約 55 Onm)、 pSLO- SV40 control (東洋紡績、 Ragophthalmus ohbai由来変異型ルシフェラ ーゼ (Rol T226N)、最大発光波長約 580 nm)、 pSLR-SV40 control (東洋紡績、 Phrixo thrix hirtus由来ルシフェラーゼ (PhRE)、最大発光波長約 630 nm)の各プラスミド 1 μ g を 100 μ 1 Opti- MEM(GIBCO)で希釈し、 100 μ 1 Opti- MEM(GIBCO)で希釈した 2.5 μ 1 Lipofectamine 2000 (インビトロジェン)と混合し、 HeLa S3細胞へトランスフエクシヨン した。 24時間後に、細胞を PBS (-)でリンスし、ピツカジーン細胞溶解剤 Lc |8 (東洋イン キ)で細胞を溶解し、発光基質 (東洋インキ)を加え、緑色、橙色、赤色発光ルシフエ ラーゼの相対発光量を光分離機能付きルミノメーター、 AB-2250型ルミネッセンサー MCA (アト一社)を用いて、全光量(フィルターなし)、 600 nm LPフィルター透過光量 、 540 nm LPフィルター透過光量を 20秒間の積算値として計測した。図 1に各条件に おける計測値と、全光計測値に対する 600 nm LPフィルター透過光計測値の割合を 示す。 HeLa S3 cells 1 X 10 5 cells were seeded on 12 well plates and cultured in Dulbecco's modified Eagle medium (Nissui Pharmaceutical) containing 10% FCS. The next day, pGL3-control (Promega, Photinus pyralis luciferase (ffLuc), maximum emission wavelength about 560 nm), pSLG-SV40 control (Toyobo, Ragophthalmus ohbai luciferase (Rol), maximum emission wavelength about 55 Onm), pSLO- SV40 control (Toyobo, Ragophthalmus ohbai-derived mutant luciferase (Rol T226N), maximum emission wavelength of about 580 nm), pSLR-SV40 control (Toyobo, Phrixo thrix hirtus-derived luciferase (PhRE), maximum emission wavelength of about 1 μg of each plasmid (630 nm) is diluted with 100 μ 1 Opti-MEM (GIBCO), mixed with 2.5 μ 1 Lipofectamine 2000 (Invitrogen) diluted with 100 μ 1 Opti-MEM (GIBCO), and HeLa S3 cells I made a transfer. After 24 hours, the cells are rinsed with PBS (-), lysed with Pitscagene cell lysing agent Lc | 8 (Toyo Ink), luminescent substrate (Toyo Ink) is added, and green, orange and red luminescent luciferases are added. Using a luminometer with light separation function and AB-2250 luminescence sensor MCA (Atoichi), the total light intensity (without filter), 600 nm LP filter transmitted light, and 540 nm LP filter transmitted light 20 It was measured as an integrated value per second. Figure 1 shows the measured value under each condition and the ratio of the 600 nm LP filter transmitted light measurement value to the total light measurement value. Show.
[0027] 実施例 2 哺乳街細朐非破爐系における糠々ルシフェラーゼ発光の枪出  [0027] Example 2 Detection of luciferase luminescence in a non-destructive system of a nursing street
COS細胞 4.0 X 104 cellsずつを 24ゥエルプレートへ播種し培養した。翌日、 pSLG- SV 40 control, pSLO- SV40 control, pSLR- SV40 controlの各プラスミド 0.5 μ gをトランス フエクシヨンした。その際、 D- luciferinを 1 mM、 0.5 mM加え、翌日 IVIS Imaging Syste m (Xenogen)で 10秒間露光した。図 2に画像イメージと、各ゥエルについて定量され た相対的発光強度値及びグラフを示す。 COS cells 4.0 X 10 4 cells were seeded on 24 well plates and cultured. On the next day, 0.5 μg of each plasmid of pSLG-SV40 control, pSLO-SV40 control, and pSLR-SV40 control was transfected. At that time, 1 mM and 0.5 mM D-luciferin were added, and the next day, exposure was performed for 10 seconds with IVIS Imaging System (Xenogen). Figure 2 shows the image and relative luminescence intensity values and graphs quantified for each well.
[0028] 実施例 3 ルシフェラーゼ発現細胞の皮下注射による発光の検出  Example 3 Detection of luminescence by subcutaneous injection of luciferase-expressing cells
実施例 2の各ルシフェラーゼ発現細胞を 2ゥエル分スクレーパーではがして回収し、 遠心分離により 100 l (D-ludferinを含む培地中)に濃縮した。この細胞液をマウス四 肢付近に皮下注射し、 IVIS Imaging Systemで 10秒間露光した。図 3に画像イメージと 、各ゥエルについて定量された相対的発光強度値及びグラフを示す。図 4に各ルシフ エラーゼについて実施例 2における細胞検出時の計測値に対する皮下注射時検出 の計測値の割合及びそのグラフを示す。  Each luciferase-expressing cell of Example 2 was recovered by scraping with a 2-well scraper and concentrated to 100 l (in a medium containing D-ludferin) by centrifugation. This cell solution was injected subcutaneously in the vicinity of the mouse limbs and exposed for 10 seconds with the IVIS Imaging System. Figure 3 shows the image and relative luminescence intensity values and graphs quantified for each well. FIG. 4 shows the ratio of the measurement value at the time of subcutaneous injection to the measurement value at the time of cell detection in Example 2 for each luciferase and a graph thereof.
[0029] ¾施例 4 トランスジエニックマウス作製用ベクターの調製  [0029] Example 4 Preparation of a vector for producing a transgenic mouse
赤血球に発現する転写因子 GATA-1の、血球特異的第 1ェクソン IEの上流 3.9 kbか ら第 2ェクソンまでの制御領域 (GIHRD; GATA-lHematopoietic Regulatory Domain)( 非特許文献 5、 6)下流に、 pSLR- test (東洋紡績)の SLR遺伝子 (PhRE)を挿入した。方 法は、非特許文献 7に記載のように、 IE3.9int plasmid vectorを制限酵素 Notl (東洋紡 績)で消化して IE3.9int plasmid vectorを開列した。また、オリゴヌクレオチド 1 (配列番 号 1)、オリゴヌクレオチド 2 (配列番号 2)を用いて pSLR-tesUり制限酵素 Notlを 5 'サイ トを付加した形で SLR遺伝子 (PhRE)を増幅し、 Not Iで消化して PhRE遺伝子断片を取 得し、 IE3.9int plasmid vectorに挿入した(GIHRD- PhRE)。図 5に、構築した GIHRD- PhREトランスジーンの構造を示す。  The transcription factor GATA-1 expressed in erythrocytes is upstream of the blood cell-specific first exon IE 3.9 kb to the second exon (GIHRD; GATA-lHematopoietic Regulatory Domain) (Non-Patent Documents 5 and 6) downstream The SLR gene (PhRE) of pSLR-test (Toyobo) was inserted. As described in Non-Patent Document 7, the IE3.9int plasmid vector was digested with the restriction enzyme Notl (Toyobo) to open the IE3.9int plasmid vector. In addition, the SLR gene (PhRE) was amplified using oligonucleotide 1 (SEQ ID NO: 1) and oligonucleotide 2 (SEQ ID NO: 2) in the form of a 5'-site addition of pSLR-tesU restriction enzyme Notl. The PhRE gene fragment was obtained by digestion with I and inserted into the IE3.9int plasmid vector (GIHRD-PhRE). Figure 5 shows the structure of the constructed GIHRD-PhRE transgene.
非特許文献 5: Onodera, K., Takahashi, S., Nishimura, S., Ohta, J., Motohashi, H., Yomogida, K., Hayashi, N., Engel, J.D., Yamamoto, M. GATA-1 transcription is co ntrolled by distinct regulatory mechanisms during primitive and definitive erythropie sis.: Proceedings of the Natitonal Academy of Sciences of the United States of Ameri ca. 1997; 94, 4487-4492 Non-Patent Document 5: Onodera, K., Takahashi, S., Nishimura, S., Ohta, J., Motohashi, H., Yomogida, K., Hayashi, N., Engel, JD, Yamamoto, M. GATA- 1 transcription is co ntrolled by distinct regulatory mechanisms during primitive and definitive erythropie sis .: Proceedings of the Natitonal Academy of Sciences of the United States of Ameri ca. 1997; 94, 4487-4492
非特許文献 6 : Nishimura, S., Takahashi, S., Kuroha, T., Suwabe, N., Nagasawa, T., Trainor, C, Yamamoto, M. A GATA Box in the Network of GATA Factors and Site s That Regulate This Gene.: Molecular and Cellular Biology. 2000; 20, 713—723 非特許文献 7 : Shimizu, R. Takahashi, S" Ohneda, K., Engel, J.D., Yamamoto, M. In vivo requirements functional domains during primitive and definitive erythropoiesis.: Non-Patent Document 6: Nishimura, S., Takahashi, S., Kuroha, T., Suwabe, N., Nagasawa, T., Trainor, C, Yamamoto, M. A GATA Box in the Network of GATA Factors and Sites That Regulate This Gene .: Molecular and Cellular Biology. 2000; 20, 713-723 Non-Patent Document 7: Shimizu, R. Takahashi, S "Ohneda, K., Engel, JD, Yamamoto, M. In vivo requirements functional domains during primitive and definitive erythropoiesis .:
The EMBO Journal. 2001; 20, 5250-5260 The EMBO Journal. 2001; 20, 5250-5260
[0030] 実施例 5 トランスジエニックマウスの作成 [0030] Example 5 Creation of Transgenic Mouse
トランスジェニックマウス作成のための DNAは、 G1HRD- PhREを制限酵素 Sal I (東洋 紡績)で消化し、ァガロースゲル電気泳動によって分離しベクター DNAを除去し、 G1 HRD- PhREトランスジーンを精製した。精製した DNA断片を、マウス受精卵に標準的 手法(非特許文献 8)に従って注入した。作成した G1HRD- PhRE TGマウスは、 D-ル シフェリンを投与後、発光を IVIS systemで観察し、発光強度の高い個体を選択した。 図 6は、 PHZ(phenylhydrazine)で貧血を誘導後、ネガティブコントロール(GlHRD-PhR E非導入マウス、左)に対して、 G1HRD- PhRE TGマウスの造血組織である脾臓にお いて PhRE由来する発光シグナルが有意に観察されたことを示す画像イメージである 非特干文献 8: Hogan, B., R. Beddington, F. Constantini, E. Lacy. Manipulating the mouse embryo. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, N.Y. 199 4.  For the DNA for producing a transgenic mouse, G1HRD-PhRE was digested with restriction enzyme Sal I (Toyobo), separated by agarose gel electrophoresis to remove the vector DNA, and the G1 HRD-PhRE transgene was purified. The purified DNA fragment was injected into a mouse fertilized egg according to a standard method (Non-patent Document 8). The prepared G1HRD-PhRE TG mice were administered D-luciferin, and then luminescence was observed with the IVIS system, and individuals with high luminescence intensity were selected. Figure 6 shows the luminescence signal derived from PhRE in the spleen, a hematopoietic tissue of G1HRD-PhRE TG mice, compared to the negative control (GlHRD-PhRE non-introduced mice, left) after induction of anemia with PHZ (phenylhydrazine). Non-special literature 8: Hogan, B., R. Beddington, F. Constantini, E. Lacy. Manipulating the mouse embryo. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, NY 199 4.
産業上の利用可能性  Industrial applicability
[0031] 本発明における 600 nm以上であるルシフヱラーゼを用いた哺乳類動物個体におけ る非侵襲性検出方法は、より効果的に哺乳類動物個体中における生物学的過程を モニターする系として、薬剤スクリーニング系、腫瘍や感染症の解析系、移植評価系 として利用することができ、創薬 ·医療などの産業界に寄与することが大である。 [0031] The noninvasive detection method in a mammalian animal using a luciferase having a wavelength of 600 nm or more in the present invention is a drug screening system as a system for more effectively monitoring a biological process in a mammalian animal. It can be used as an analysis system for tumors and infectious diseases, and as a transplant evaluation system, and contributes greatly to industries such as drug discovery and medical care.

Claims

請求の範囲  The scope of the claims
[I] 発光の最大発光波長が 600 應以上であるルシフェラーゼ及びルシフェリンを哺乳類 動物中に投与し、発光を検出することからなる、非侵襲的イメージング方法。  [I] A noninvasive imaging method comprising administering luciferase and luciferin having a maximum emission wavelength of luminescence of 600 or more to a mammal and detecting the luminescence.
[2] 発光の最大発光波長が 600 應以上であるルシフェラーゼ遺伝子を特定プロモータ 一制御下で発現する哺乳類動物中において、前記ルシフ ラーゼの発光を検出す ることを特徴とする非侵襲的イメージング方法。  [2] A noninvasive imaging method characterized by detecting the luminescence of the luciferase in a mammal expressing the luciferase gene having a maximum emission wavelength of 600 or more under the control of a specific promoter.
[3] 発光の最大発光波長が 600 應以上であるルシフェラーゼ遺伝子を特定プロモータ 一制御下で発現する哺乳類細胞を哺乳類動物個体に移植し、哺乳類動物個体中に おける前記ルシフェラーゼの発光を検出することを特徴とする非侵襲的イメージング 方法。  [3] A luciferase gene with a maximum emission wavelength of 600 or more is identified as a specific promoter. Mammalian cells expressing under the control of a specific promoter are transplanted into a mammal individual, and the luciferase luminescence in the individual mammal is detected. A non-invasive imaging method characterized.
[4] ルシフェラーゼの最大発光波長が 620 nm以上である、請求項 1〜3のいずれかに記 載の方法。  [4] The method according to any one of claims 1 to 3, wherein the maximum emission wavelength of luciferase is 620 nm or more.
[5] 前記ルシフ ラーゼ遺伝子力 最大発光波長が 620 應以上であって、発光性甲虫 由来のルシフェラーゼ遺伝子である請求項 4に記載の方法。  [5] The method according to claim 4, wherein the luciferase gene force is a luciferase gene derived from a luminescent beetle having a maximum emission wavelength of 620 or more.
[6] 前記ルシフェラーゼ遺伝子がコードするルシフェラーゼカ pH5〜9付近で発光スぺ タトルが pHに実質的に影響されな 、ルシフェラーゼである、請求項 5に記載の方法。 [6] The method according to claim 5, wherein the luminescence spectrum is a luciferase that is substantially unaffected by pH near the luciferase pH 5-9 encoded by the luciferase gene.
[7] ルシフェラーゼがホタルモドキ科、ヒカリコメツキ科、コメツキ科またはイリォモテボタル 科由来のルシフェラーゼである、請求項 6記載の方法。 [7] The method according to claim 6, wherein the luciferase is a luciferase derived from the firefly family, the mosquito family, the rice family, or the Iriomote family.
[8] ルシフェラーゼが鉄道虫由来の赤色発光ルシフェラーゼである、請求項 7に記載の 方法。 [8] The method according to claim 7, wherein the luciferase is a red light-emitting luciferase derived from a railroad worm.
[9] 特定組織における ATP濃度の変化を調べるためにルシフェラーゼの発光を検出する ことを含む、請求項 1または 2に記載の方法。  [9] The method according to claim 1 or 2, comprising detecting luciferase luminescence in order to examine a change in ATP concentration in a specific tissue.
[10] 特定プロモーターが構成発現プロモーターであって、発光の検出によって移植され た細胞の数をモニターすることを特徴とする、請求項 3に記載の方法。 [10] The method according to claim 3, wherein the specific promoter is a constitutive expression promoter, and the number of transplanted cells is monitored by detection of luminescence.
[II] 細胞が腫瘍細胞、正常細胞、 ES細胞及び幹細胞からなる群より選択される、請求項 10に記載の方法。  [II] The method according to claim 10, wherein the cells are selected from the group consisting of tumor cells, normal cells, ES cells and stem cells.
PCT/JP2006/306506 2005-03-30 2006-03-29 Noninvasive analysis method WO2006106752A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007512802A JPWO2006106752A1 (en) 2005-03-30 2006-03-29 Non-invasive analysis method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-097619 2005-03-30
JP2005097619 2005-03-30

Publications (1)

Publication Number Publication Date
WO2006106752A1 true WO2006106752A1 (en) 2006-10-12

Family

ID=37073315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306506 WO2006106752A1 (en) 2005-03-30 2006-03-29 Noninvasive analysis method

Country Status (2)

Country Link
JP (1) JPWO2006106752A1 (en)
WO (1) WO2006106752A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044964A (en) * 2007-08-14 2009-03-05 National Institute Of Advanced Industrial & Technology Visible-near infrared light probe using energy transfer between luciferase and organic fluorescent dye through sugar chain

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020119542A1 (en) * 1998-09-02 2002-08-29 Viviani Vadim R. Nucleic acid molecules encoding red and green emitting luciferases
WO2003016839A2 (en) * 2001-08-15 2003-02-27 Xenogen Corporation Modified railroad worm red luciferase coding sequences

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020119542A1 (en) * 1998-09-02 2002-08-29 Viviani Vadim R. Nucleic acid molecules encoding red and green emitting luciferases
WO2003016839A2 (en) * 2001-08-15 2003-02-27 Xenogen Corporation Modified railroad worm red luciferase coding sequences

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
AINSCOW E.K.: "Dynamic imaging of free cytosolic ATP concentration during fuel sensing by rat hypothalamic neurones: evidence for ATP-independent control of ATP-sensitive K(+) channels", THE JOURNAL OF PHYSIOLOGY, vol. 544, 2002, pages 429 - 445, XP003002808 *
BUTTIGIEG J. ET AL.: "Detection of hypoxia-evoked ATP release from chemoreceptor cells of the rat carotid body", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 322, no. 1, 2004, pages 82 - 87, XP004526703 *
KIM D.E. ET AL.: "Imaging of stem cell recruitment to ischemic infarcts in a murine model", STROKE, vol. 35, no. 4, 2004, pages 952 - 957, XP003002806 *
MALSTROM S.E. ET AL.: "The characterization and hormonal regulation of kidney androgen-regulated protein (Kap)-luciferase transgenic mice", TOXICOLOGICAL SCIENCES, vol. 79, no. 2, 2004, pages 266 - 277, XP003002805 *
NAKAJIMA Y. ET AL.: "Improved expression of novel red- and green-emitting luciferase of Phrixothrix railroad worms in mammalian cells", BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, vol. 68, no. 4, 2004, pages 948 - 951, XP003002802 *
RICE B.W. ET AL.: "In vivo imaging of light-emitting probes", JOURNAL OF BIOMEDICAL OPTICS, vol. 6, no. 4, 2001, pages 432 - 440, XP003002803 *
TROY T. ET AL.: "Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models", MOLECULAR IMAGING, vol. 3, no. 1, 2004, pages 9 - 23, XP009049182 *
WANG X. ET AL.: "Dynamic tracking of human hematopoietic stem cell engraftment using in vivo bioluminescence imaging", BLOOD, vol. 102, no. 10, 2003, pages 3478 - 3482, XP003002807 *
ZHANG W. ET AL.: "A transgenic mouse model with a luciferase reporter for studying in vivo transcriptional regulation of the human CYP3A4 gene", DRUG METABOLISM AND DISPOSITION, vol. 31, no. 8, 2003, pages 1054 - 1064, XP003002804 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044964A (en) * 2007-08-14 2009-03-05 National Institute Of Advanced Industrial & Technology Visible-near infrared light probe using energy transfer between luciferase and organic fluorescent dye through sugar chain
US8143013B2 (en) 2007-08-14 2012-03-27 National Institute Of Advanced Industrial Science And Technology Visible to near-infrared light probe using energy transfer between luciferase and an organic dye via a sugar chain

Also Published As

Publication number Publication date
JPWO2006106752A1 (en) 2008-09-11

Similar Documents

Publication Publication Date Title
Badr Bioluminescence imaging: basics and practical limitations
US6908605B2 (en) Non-invasive localization of a light-emitting conjugate in a mammal
EP1016419B1 (en) Non-invasive localization of a light-emitting conjugate in a mammal
Spergel et al. Using reporter genes to label selected neuronal populations in transgenic mice for gene promoter, anatomical, and physiological studies
US7198774B2 (en) Non-invasive localization of a light-emitting conjugate in a mammal
Wehrman et al. Luminescent imaging of β-galactosidase activity in living subjects using sequential reporter-enzyme luminescence
JP2007531514A (en) Bioluminescence imaging of local Ca2 + dynamics in living organisms in non-invasive real time in vivo
Scott The Gal4/UAS toolbox in zebrafish: new approaches for defining behavioral circuits
Lyons et al. Imaging mouse cancer models in vivo using reporter transgenes
US8182987B2 (en) Probe for visualizing cell-cycle
Kuchmiy et al. Methods for in vivo molecular imaging
Igarashi et al. Targeted expression of step-function opsins in transgenic rats for optogenetic studies
JP5164085B2 (en) Luciferase gene optimized for intracellular luminescence imaging
US20080282362A1 (en) Non-invasive real-time in vivo bioluminescence imaging of local Ca2+ dynamics in living organisms
JP5083750B2 (en) Luciferase gene optimized for intracellular luminescence imaging
WO2006106752A1 (en) Noninvasive analysis method
Rathod et al. Reporter-based BRET sensors for measuring biological functions in vivo
Webb et al. Aequorin-based genetic approaches to visualize Ca2+ signaling in developing animal systems
Citrin et al. Optical imaging of mice in oncologic research
Nakashiba et al. Development of two mouse strains conditionally expressing bright luciferases with distinct emission spectra as new tools for in vivo imaging
JP2013118831A (en) Firefly-derived luciferase variant
Li et al. Applications of the green fluorescent protein and its variants in tumor angiogenesis and physiology studies
Dhadve et al. Dual modality imaging of promoter activity as a surrogate for gene expression and function
Rasko Reporters of gene expression: autofluorescent proteins
Fedrizzi et al. Bioluminescent Ca 2+ Indicators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007512802

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06730454

Country of ref document: EP

Kind code of ref document: A1