WO2006106732A1 - Crime prevention sensor with frost protection step difference - Google Patents

Crime prevention sensor with frost protection step difference Download PDF

Info

Publication number
WO2006106732A1
WO2006106732A1 PCT/JP2006/306461 JP2006306461W WO2006106732A1 WO 2006106732 A1 WO2006106732 A1 WO 2006106732A1 JP 2006306461 W JP2006306461 W JP 2006306461W WO 2006106732 A1 WO2006106732 A1 WO 2006106732A1
Authority
WO
WIPO (PCT)
Prior art keywords
cover
element unit
hood
sensor device
unit
Prior art date
Application number
PCT/JP2006/306461
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Ikeda
Original Assignee
Optex Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optex Co., Ltd. filed Critical Optex Co., Ltd.
Priority to JP2007512792A priority Critical patent/JP4748736B2/en
Priority to US11/909,483 priority patent/US7633067B2/en
Priority to EP06730409.7A priority patent/EP1868171B1/en
Publication of WO2006106732A1 publication Critical patent/WO2006106732A1/en

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/19Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/181Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using active radiation detection systems
    • G08B13/183Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using active radiation detection systems by interruption of a radiation beam or barrier

Definitions

  • the present invention relates to a security sensor device having a frost-proof step on a cover and a frost-proof hood attached to a portion near the step in the cover.
  • infrared beam projectors and receivers are installed at both ends of a linear security area, and infrared beams are projected and received between the projector and receiver.
  • the light projecting part and the light receiving part are united together and have substantially the same external shape (refer to Japanese Patent Laid-Open No. 10-039043).
  • the present invention has been made in view of the above-described conventional problems, and provides a security sensor device capable of obtaining an excellent defrosting effect without causing an increase in the overall outer shape. It is intended.
  • the security sensor device includes an element unit including a sensor element that transmits or receives a detection wave in a sensor body, and has a horizontal deflection angle and a vertical deflection angle.
  • a cover that is supported so as to be adjustable and covers the element unit is mounted on the sensor body, and the rotation center of the vertical deflection in the element unit is the element unit. It is set to be deviated downward or upward with respect to the central part in the vertical direction, and the part corresponding to the side where the rotation center of the element unit in the cover is decentered is arranged to be more than the other part via the step part.
  • a recessed portion that is recessed inward of the cover is formed, and a hood that blocks aerodynamic force at least a part of the detection wave passage region with respect to the sensor element is provided near the upper portion of the rotation center of the cover. It has been.
  • the rotation center of the vertical deflection of the element unit is provided eccentrically downward or upward with respect to the central portion of the vertical direction of the element unit, the vertical deflection angle of the element unit is maximized.
  • the rotation trajectory of the element unit is the minimum diameter in the horizontal plane of the outer end on the side where the rotation center is eccentric, and The rotation trajectory in the horizontal plane of the outer end on the opposite side becomes the maximum diameter, and a difference occurs between the diameters of the respective rotation trajectories between both ends in the vertical direction.
  • the cover that covers the element mute is designed so that the part corresponding to the side where the center of rotation is eccentric and the other part have the minimum rotation path diameter and maximum rotation path diameter in the element unit.
  • the detection wave passing area of the cover in this hood that is, the amount of protrusion from the recessed portion is larger than that of the conventional sensor device by the size of the stepped portion. Also grows.
  • the vertical width of the defrost effective area that is blocked from the sky by the hood is increased, the defrosting effect of the cover is improved, and the amount of detection wave passing through the cover is reduced. Can be suppressed.
  • the part of the cover opposite to the side where the pivot center of the vertical deflection of the element unit is eccentric must be set to a shape larger than the outer shape of the conventional cover corresponding to the maximum trajectory pivot diameter of the element unit.
  • the force element unit unit has a small vertical deflection angle range (usually 10 ° or less), so it can be kept slightly larger than the conventional force bar.
  • the frost-proof effect can be improved while using existing food. For this reason, there is no large size of the entire outer shape.
  • the hood is supported by a non-recessed portion on the upper side of the stepped portion of the cover.
  • the detection wave in the recessed portion of the cover is obtained by adding the dimension of the step to the protrusion length of the hood, so the vertical width of the defrosting effective area provided in the detection wave passage area of the cover is reliably set large. can do.
  • the element unit has a pair of upper and lower optical systems that project or receive infrared rays, and the hood is disposed on the optical system positioned on the eccentric side of the rotation center. Blocking can be performed. According to this configuration, for at least one of the upper and lower pair of light projecting system or light receiving system, the effective area for preventing frost formation is increased to effectively reduce the amount of detection wave passing through the cover. Can be suppressed.
  • an additional hood for performing the blocking with respect to the other optical system can be further provided on the cover.
  • This additional hood does not increase the overall external dimensions of the cover, so that the detection wave passage area force of the cover is higher than one of the hoods located on the side where the center of rotation of the element unit in the cover is eccentric. It is preferable to reduce the amount of protrusion of. Even if the protrusion amount is reduced in this way, the decrease in the amount of detection wave passing through the detection wave due to frosting of the cover in the other optical system can be suppressed to some extent, and the detection failure by one sensor element can be compensated.
  • FIG. 1 is a block diagram showing a security sensor device according to a first embodiment of the present invention.
  • FIG. 2 (a) to (c) are a right side view with a partially broken light receiving part in the security sensor device same as above and a right side view in two states with different vertical deflection angles of the element unit with respect to the sensor body.
  • FIG. 3 is a front view showing the security sensor device with the cover removed.
  • FIG. 4 is a longitudinal sectional view of an essential part showing the security sensor device according to the embodiment.
  • FIG. 5 (a) to (e) are a plan view, a front view, a bottom view, a right side view, and a main view showing the light receiving section of the above It is a longitudinal cross-sectional view of a part.
  • FIG. 6 is a plan view, a front view, a bottom view, and a right side view showing a light receiving section in a security sensor device of a modification of the first embodiment.
  • FIG. 7 (a) to (c) show a partially broken right side view of the light-receiving part and a vertical deflection angle of the element unit with respect to the sensor body in the security sensor device according to the second embodiment of the present invention. It is a right view of a state.
  • FIG. 1 is a block diagram showing a security sensor device according to a first embodiment of the present invention.
  • This security sensor device is an active type consisting of a light projecting unit 1 and a light receiving unit 2 that are installed so that their opposite optical axes coincide with each other on the walls or poles on both ends of a linear security area.
  • Infrared detector which transmits and receives infrared beam IR as a human body detection wave. The human body is detected by detecting by the light receiving unit 2 that the infrared beam projected from the light projecting unit 1 is blocked by the human body.
  • the light projecting unit 1 and the light receiving unit 2 are configured to be united together as described later.
  • the light projecting unit 1 includes a light projecting side element unit 11, a light projecting drive circuit 12, a light projecting suppression circuit 13, and a light projecting side cover open / close detection switch 14.
  • the element unit 11, the light projecting drive circuit 12, and the light projecting suppression circuit 13 are provided in plural, for example, a pair, but only one is shown in FIG.
  • the element unit 11 includes a light-emitting element 15 such as an infrared light-emitting diode and a light-transmitting lens 16 for forming an infrared beam IR such as a near-infrared ray or a transmission-side optical system 16 such as a reflection mirror. Has been.
  • the light projecting drive circuit 12 drives the light emitting element 15 to emit light at a predetermined frequency, and emits an infrared beam IR composed of a pulse modulated wave.
  • the light emission side cover opening / closing detection switch 14 is a contact type or proximity type switch that detects opening / closing of a cover, which will be described later, with respect to a sensor body.
  • the light emission suppression circuit 13 supplies the light emitting element 15 with driving power for reducing the infrared beam emitted from the light emitting element 15 by the amount of attenuation transmission by the cover.
  • the light projecting drive circuit 12 is controlled as follows.
  • the receiving side element unit 21 is like a light receiving lens or a condenser mirror.
  • a receiving optical system 22 and a light receiving element 23 such as a phototransistor are provided as a light receiver.
  • the receiving side element unit 21 receives the infrared beam IR from the light projecting unit 1 and outputs an electrical signal corresponding to the amount of received infrared light. This electric signal is amplified by the amplification circuit 24, and then the disturbance light is removed by the detection circuit 25 and converted into a signal corresponding to the level of the received light signal only by the pulse modulated wave. This signal level is detected by setting.
  • the signal discrimination circuit 26 determines whether the level is below the level.
  • the detection signal is output from the signal discrimination circuit 26 and the alarm circuit 27 is driven.
  • An alarm signal for notifying the existence of illegal intruders is output from the alarm circuit 27 to the security center, for example, not shown!
  • a level meter 29 such as a voltmeter connected to the detection circuit 25 displays a signal level proportional to the amount of infrared light received by the element unit 21. Further, the amplification circuit 24 is gain-controlled by the AGC circuit 30 in accordance with the signal level of the light reception signal from the element unit 21 and controlled so that the output is always below a certain signal level.
  • a plurality of element units 21, amplifying circuits 24, detecting circuits 25, signal discriminating circuits 26, and level meters 29 are provided, for example, a pair, but only one is shown in FIG.
  • the light receiving unit 2 further includes a light receiving side cover opening / closing detection switch 31 and a light receiving level suppressing circuit 32.
  • the light receiving side cover opening / closing detection switch 31 is a contact type or proximity type switch that detects opening / closing of a cover, which will be described later, with respect to the sensor body.
  • the light reception level suppression circuit 32 reduces the gain of the amplifier circuit 24 via the AGC circuit 30 when the cover open / close detection switch 31 detects the opening of the cover. Control is performed so that the signal level of the received light signal is reduced by the amount of attenuation transmission by the cover and amplified.
  • the light projecting unit 1 and the light receiving unit 2 have substantially the same external shape unitized together as described above. Therefore, the light receiving unit 2 shown in FIGS. 2A to 2C will be described as a representative.
  • This light receiving section 2 is detachably mounted on a resin sensor body 41 mounted on a mounting surface S such as a wall or a pole shown in FIG. 2 (a), and on a base 42 of the sensor body 41. It has a power bar 43 made of greaves.
  • the light receiving element unit 21 includes a pair of upper and lower receiving optical systems 22 each including a light receiving lens.
  • the first circuit board 46 is held inside the unit case 45, and the light receiving element 23 is located behind each receiving-side optical system 22 and the first circuit board 46 is held in the unit case 45. It is mounted and arranged.
  • sensor circuits 21, 24-27, 29 to 32 having the configuration shown in FIG. 1 are mounted.
  • a U-shaped holding body 8 is rotated around a vertical axis 9 facing the vertical direction on the support member 7 fixed to the lower front side of the base 42.
  • the element unit 21 is rotatably supported around a pair of left and right horizontal shafts 10 in the horizontal direction shown in FIG. 2 (a).
  • the vertical axis 9 is, for example, a screw body (FIG. 4), and the horizontal axis 10 is a pin. Therefore, the horizontal deflection angle is variably adjusted by rotating the element unit 21 with the holding body 8 about the vertical axis 9 with respect to the base 42, and the element unit 21 is rotated relative to the holding body 8 about the horizontal axis 10.
  • the vertical deflection angle can be modulated and adjusted, so that the optical axis can be aligned with the element unit 11 of the light projecting unit 1 in FIG. This optical axis adjustment is performed using a sighting device 36 described later.
  • the element unit 21 forms a rotation center for horizontal deflection of the unit case 45 of Fig. 3.
  • the vertical axis 9 is provided at the center of the holding body 8 in the left-right direction.
  • the horizontal axis 10 in FIG. 2A which forms the turning center of deflection, is provided eccentrically downward with respect to the central portion of the unit case 45 in the vertical direction.
  • the conventional horizontal axis 10 was provided at the center of the unit case 45 in the vertical direction.
  • the holding body 8 is formed with a dial 35 for performing an operation of adjusting the horizontal deflection angle of the element unit 21 by rotating the holding body 8 about the vertical axis 9. Further, as shown in FIG. 4, an adjustment screw 19 is rotatably inserted into the front wall 8a of the holding body 8, and the adjustment screw 19 is formed to protrude downward at the rear end portion of the unit case 45. It is screwed into the protruding part 33. Between this protrusion 33 and the front wall 8a of the holding body 8, a coiled spring body 34 that presses the protrusion 33, that is, the unit case 45 backward (to the right in FIG. 4) is attached to the adjustment screw 19. Inserted and installed. Therefore, if the dial 35 is rotated, the horizontal deflection angle of the element unit 21 can be adjusted together with the holding body 8, and if the adjustment screw 19 is rotated, the vertical deflection angle of the element unit 21 can be adjusted. Can be adjusted.
  • the sighting device 36 includes a pair of left and right observation windows 38 provided on the sighting device case 37, a pair of sighting holes 39 provided on the left and right of the front side, and a pair of left and right sighting devices provided in the sighting device case 37. Reflection mirror (not shown).
  • the sighting device 36 adjusts the horizontal deflection angle or vertical deflection angle of the element unit 21 by manually operating the dial 35 or the adjustment screw 19 while looking through the observation window 38 with the cover 43 opened. By performing an operation so that the image of the element unit 11 of the light projecting unit 1 shown in FIG. 1 and the aiming hole 39 shown in FIG.
  • the light projecting unit 1 has the same configuration as the light receiving unit 2 described above.
  • the cover 43 shown in FIG. 2 (a) is provided with a stepped portion 44 at a portion facing the central portion in the vertical direction of the element unit 21, and a non-recessed portion 55 is provided below the stepped portion 44.
  • Recesses 56 Forces are formed respectively. That is, from the other non-recessed portion 55 through the stepped portion 44 to the portion corresponding to the lower side where the horizontal axis 10 which is the rotation center of the vertical deflection of the element unit 21 is eccentric with respect to the central portion of the element unit 21.
  • a recessed portion 56 is formed which is recessed inward of the cover 43.
  • a hood 17 is fitted on the outer peripheral surface of the non-recessed portion 55 and fixed with an adhesive at a location near the stepped portion 44 in the non-recessed portion 55 above the stepped portion 44. .
  • the step 44 and the hood 17 prevent the infrared beam IR from being blocked by frost formation on the light transmission surface of the cover 43 due to radiative cooling in which heat is emitted from the surface of the cover 43 toward the sky at low temperatures in winter. Therefore, a part of the light transmission surface of the cover 43 (passage area of the infrared beam IR that is the detection wave) is shielded from the sky at a low temperature to suppress radiation cooling.
  • the element unit 21 has a pair of upper and lower optical systems 22 and a light receiving element 23, but requires a cover passage amount of the infrared beam IR for at least one of the optical system 22 and the light receiving element 23. If the value is secured, there is no problem in the human body detection function. In other words, hippopotamus It is only necessary to prevent the infrared beam IR from being blocked by frost formation on a part of the light transmission surface corresponding to at least one of the two optical systems 22 in 43. Therefore, in the above-described embodiment, only the lower optical system 22 is provided with the defrosting means by the step portion 44 and the hood 17, and details of this defrosting means will be described later.
  • the light receiving section 2 has a horizontal deflection angle variable range of 180 ° about the vertical axis 9 as a rotation center, and also rotates the horizontal axis 10 shown in FIGS. 2 (b) and 2 (c).
  • the variable range of the vertical deflection angle 0 at the center is 5 °
  • Fig. 2 (b) shows a state in which the element unit 21 is rotated in the downward direction until the vertical deflection angle ⁇ is maximized.
  • Fig. 2 (c) shows the element unit 21
  • the diameters of the rotation trajectories of the upper end outline of the unit case 45 and the lower end outline are different. That is, when the horizontal deflection angle is changed by 180 ° with the element unit 21 in the above state, the diameter of the rotation locus of the upper end outer shape portion in the unit case 45 becomes the rotation locus maximum diameter D1 of the element unit 21, and The diameter of the rotation locus of the lower end outer shape portion of the unit case 45 is the rotation locus minimum diameter D2 of the element unit 21.
  • the maximum turning trajectory D1 of the turning trajectory of the upper end outer shape of the unit case 45 is a conventional one in which the horizontal axis 10 that is the center of rotation of the vertical deflection angle is set at the center in the vertical direction of the element unit 21.
  • the variable range of the vertical deflection angle ⁇ is less than 5 °.
  • the minimum turning trajectory diameter D2 of the lower end outline of the unit case 45 is such that the horizontal axis 10 that is the center of rotation of the vertical deflection angle ⁇ is unit case 4
  • the diameter is smaller than the diameter of the conventional rotation locus by the amount deviated downward from the central portion of 5 in the vertical direction.
  • FIGS. 5 (a) to 5 (e) are a plan view, a front view, a bottom view, a right side view, and a longitudinal sectional view of the main part showing the light receiving unit 2, in which the hood 17 in the cover 43 is shown.
  • the non-recessed portion 55 above the attachment site is set to have a shape that can include the maximum turning trajectory diameter D1 of the upper outer shape of the unit case 45. As described above, the maximum turning trajectory diameter D1 is Conventional sensor equipment
  • the outer shape of the non-recessed portion 55 can be set to substantially the same size as the cover of the conventional sensor device. Therefore, the hood 17 that is fitted and fixed to the outer surface of the non-recessed portion 55 of the cover 43 can be of the same size as the existing one.
  • the security sensor device does not cause an increase in the overall shape as compared with the conventional sensor device.
  • the hood 17 has an eaves portion 17a projecting outward from the cover 43 and a mounting portion 17b, and is slightly recessed into the outer surface of the non-recessed portion 55 of the cover 43 as shown in FIG.
  • the attachment portion 17b is fitted into the fitting portion 55a provided and fixed with, for example, an adhesive.
  • the recessed portion 56 below the mounting portion of the hood 17 in the cover 43 has a minimum turning trajectory diameter D2 of the lower end outer portion of the unit case 45 in FIG.
  • the outer shape is reduced by an amount smaller than the diameter of the locus. Therefore, the stepped portion 44 of the cover 43 in FIG. 2 (a) is a large one that matches the dimensional difference between the non-recessed portion 55 and the recessed portion 56.
  • the protrusion P1 of the eaves 17 1a of the hood 17 from the light transmission surface of the cover 43 shown in FIG. 5 (d) is the dimension of the step 44 when the hood 17 having substantially the same shape as the conventional one is used.
  • this security sensor device does not cause an increase in the overall outer shape as described above, but prevents frost formation on a part of the light transmission surface of the cover 43 and prevents a pair of upper and lower pairs. It is possible to suppress a decrease in the amount of infrared beam IR passing through the lower optical system 22.
  • FIG. 6 shows a modification of the first embodiment, in which the same or corresponding parts as in FIG. 5 are given the same reference numerals.
  • the hood 17 that shields the upper part of the light transmission surface of the infrared beam IR for the lower optical system 22 in the cover 43 from the sky is provided.
  • An additional hood 17A is provided to block the upper part of the light transmission surface of the infrared beam IR for the optical system 22 from the sky.
  • this additional hood 17A one having the same dimensions as the lower hood 17 is used.
  • the protruding amount P2 of the upper hood 17A from the cover 43 is equal to the conventional sensor device. Therefore, the vertical width A2 of the defrosting effective area formed on the light transmission surface of the infrared beam IR with respect to the upper optical system 22 in the cover 43 is also the same as that of the conventional sensor device. However, since the additional hood 17A can suppress a decrease in the amount of the infrared beam IR passing through the upper light receiving element 23, the detection failure can be further complemented.
  • FIG. 7 shows a second embodiment of the present invention, in which FIGS. (A) to (c) correspond to FIGS. 2 (a) to (c) and are the same as or correspond to FIG. Are denoted by the same reference numerals.
  • the horizontal axis 10 that is the rotation center of the vertical deflection angle ⁇ is set downward with respect to the central portion of the element unit 21.
  • a horizontal axis 10 is provided on the upper side with respect to the central portion of the element unit 21 at a position decentered by the same amount as in the first embodiment, and a part of the light transmission surface of the cover 43A corresponding to the upper optical system 22 is disposed in the hood. 17 also blocks the aerodynamics. Accordingly, the cover 43A has a shape in which the recessed portion 56 is provided at the central portion in the vertical direction corresponding to the upper optical system 22, and the non-recessed portion 55 is provided on both upper and lower sides of the recessed portion 56. It has become.
  • the same effect as in the first embodiment can be obtained except that the support form of the element unit 21 and the shape of the cover 43A are different from those in the first embodiment. Can do. That is, in the first embodiment, frost formation on the portion of the cover 43 corresponding to the lower optical system 22 is prevented, whereas in this embodiment, the cover 43 A corresponds to the upper optical system 22.
  • the configuration of the non-recessed part 55 can be set to approximately the same dimensions as the cover of a conventional sensor device, with the only difference in the configuration that prevents frost formation on the part, and the same dimensions as the existing hood 17 Therefore, it is possible to obtain the same defrosting effect as that of the first embodiment by providing the step portion 44 having the same size as that of the first embodiment, which does not cause the large shape of the entire shape. it can.
  • the present invention can be applied to the light projecting unit 1 in FIG. 1 in addition to the light receiving unit 2 exemplified in the above-described embodiment of the security sensor device, as well as passive infrared detection for detecting far infrared rays. It can also be applied to security devices that use security detection devices using these active and passive detection technologies.

Abstract

In order to produce an excellent frost protection effect without increasing the size, a crime prevention sensor is so structured that an element unit (21) including sensor elements (15, 23) for transmitting or receiving a detection wave IR is supported on the sensor body (41) such that the horizontal deflection angle and the vertical deflection angle θV can be adjusted, a cover (43) covering the element unit (21) is attached to the sensor body (41), and the center of rotation (10) of vertical deflection of the element unit (21) is shifted downward or upward from the central portion of the element unit (21) in the vertical direction. A recessed portion (56) of the cover (43) recessed from the other portion toward the inside of the cover (43) is formed in a part of the cover (43) corresponding to the part to which the center of rotation (10) of the element unit (21) is shifted through a stepped portion (44). A hood (17) for isolating at least a part of the region where the detection wave IR passes for the sensor element (23) from the sky is provided above and near the center of rotation (10) of the cover (43).

Description

明 細 書  Specification
防霜用段差を有する防犯用センサ装置  Crime prevention sensor device having step for frost prevention
技術分野  Technical field
[0001] 本発明は、カバーに防霜用段差部を有し、かつ、カバーにおける段差部の近傍部 位に防霜用フードが取り付けられた防犯用センサ装置に関するものである。  TECHNICAL FIELD [0001] The present invention relates to a security sensor device having a frost-proof step on a cover and a frost-proof hood attached to a portion near the step in the cover.
背景技術  Background art
[0002] この種の防犯用センサ装置として、直線的な警戒区域の両端部に、赤外線ビーム の投光部と受光部とを設置して、投光器と受光器との間で赤外線ビームを投受光し、 赤外線ビームが人体に妨げられるのを検出することで人体を検知するものが知られ ている。この防犯用センサ装置では、投光部および受光部が、共にユニットィ匕された ほぼ同一の外観形状を有している(特開平 10— 039043号公報参照)。  [0002] As this type of security sensor device, infrared beam projectors and receivers are installed at both ends of a linear security area, and infrared beams are projected and received between the projector and receiver. However, it is known to detect a human body by detecting that an infrared beam is obstructed by the human body. In this security sensor device, the light projecting part and the light receiving part are united together and have substantially the same external shape (refer to Japanese Patent Laid-Open No. 10-039043).
[0003] このような防犯用センサ装置の投'受光器のカバーに、光学レンズが天空を覼かな いように、フードもしくは段差を設けたものがある。これにより、カバーにおける光学レ ンズへの光透過面の一部は、温度の低い天空カゝら遮られて放射冷却が抑制される 結果、冬季にお 、て放射冷却によりカバーの光透過面に着霜して赤外線ビームが遮 られるのが防止される。  [0003] There is a cover of a projection / reception device of such a security sensor device provided with a hood or a step so that the optical lens does not cover the sky. As a result, a part of the light transmission surface to the optical lens in the cover is blocked by the low-temperature sky cover and radiation cooling is suppressed. The infrared beam is prevented from being blocked by frost formation.
発明の開示  Disclosure of the invention
[0004] し力しながら、このような防霜効果を大きくするには、カバーからの突出量の大きい フード、または段差の大きいカバーを用いる必要があり、フードまたはカバーが大きく なって、防犯用センサ装置全体の大形ィ匕を招く。  [0004] In order to increase the defrosting effect, however, it is necessary to use a hood with a large protrusion from the cover or a cover with a large level difference. This leads to a large size of the entire sensor device.
[0005] 本発明は、前記従来の問題に鑑みてなされたもので、全体外形の大形化を招くこと なしに、優れた防霜効果を得ることができる防犯用センサ装置を提供することを目的 としている。 [0005] The present invention has been made in view of the above-described conventional problems, and provides a security sensor device capable of obtaining an excellent defrosting effect without causing an increase in the overall outer shape. It is intended.
[0006] 前記目的を達成するために、本発明に係る防犯用センサ装置は、検知波の送信ま たは受信を行うセンサ素子を含む素子ユニットがセンサ本体に、水平偏向角および 上下偏向角が調整可能に支持され、前記センサ本体に前記素子ユニットを覆うカバ 一が装着され、前記素子ユニットにおける上下偏向の回動中心が、前記素子ユニット の上下方向の中央部に対し下方または上方に偏心して設定され、前記カバーにお ける素子ユニットの前記回動中心が偏心した側に対応する部分に、段差部を介して 、他の部分よりも前記カバー内方へ凹入した凹入部が形成され、前記カバーにおけ る前記回動中心の上方近傍に、前記センサ素子に対する前記検知波の通過領域の 少なくとも一部を天空力 遮断するフードが設けられている。 [0006] In order to achieve the above object, the security sensor device according to the present invention includes an element unit including a sensor element that transmits or receives a detection wave in a sensor body, and has a horizontal deflection angle and a vertical deflection angle. A cover that is supported so as to be adjustable and covers the element unit is mounted on the sensor body, and the rotation center of the vertical deflection in the element unit is the element unit. It is set to be deviated downward or upward with respect to the central part in the vertical direction, and the part corresponding to the side where the rotation center of the element unit in the cover is decentered is arranged to be more than the other part via the step part. A recessed portion that is recessed inward of the cover is formed, and a hood that blocks aerodynamic force at least a part of the detection wave passage region with respect to the sensor element is provided near the upper portion of the rotation center of the cover. It has been.
[0007] この構成によれば、素子ユニットの上下偏向の回動中心が素子ユニットの上下方向 の中央部に対し下方または上方に偏心して設けられているから、素子ユニットを上下 偏向角が最大となる状態で水平偏向角を所定の角度範囲内で変更させたとき、素子 ユニットの回動軌跡が、回動中心が偏心した側の外端の水平面内での回動軌跡が 最小径となり、かつ、これと反対側の外端の水平面内での回動軌跡が最大径となり、 上下方向の両端部間の各々の回動軌跡径の間に差が生じる。したがって、素子ュ- ットを覆うカバーは、回動中心が偏心した側に対応する部分と、それ以外の他の部分 とを、素子ユニットにおける回動軌跡最小径と回動軌跡最大径をそれぞれ包含でき る、可及的に小さな形状に形成することで、両部分の間に素子ユニットの回動軌跡最 小径と回動軌跡最大径との差分に相当する大きな段差部を形成することができる。  [0007] According to this configuration, since the rotation center of the vertical deflection of the element unit is provided eccentrically downward or upward with respect to the central portion of the vertical direction of the element unit, the vertical deflection angle of the element unit is maximized. In this state, when the horizontal deflection angle is changed within a predetermined angle range, the rotation trajectory of the element unit is the minimum diameter in the horizontal plane of the outer end on the side where the rotation center is eccentric, and The rotation trajectory in the horizontal plane of the outer end on the opposite side becomes the maximum diameter, and a difference occurs between the diameters of the respective rotation trajectories between both ends in the vertical direction. Therefore, the cover that covers the element mute is designed so that the part corresponding to the side where the center of rotation is eccentric and the other part have the minimum rotation path diameter and maximum rotation path diameter in the element unit. By forming the smallest possible shape that can be included, it is possible to form a large step portion corresponding to the difference between the minimum rotation locus diameter and the maximum rotation locus diameter of the element unit between the two portions. .
[0008] これにより、フードとして、従来と同じものを用いても、このフードにおけるカバーの 検知波の通過領域、つまり凹入部からの突出量は、段差部の寸法分だけ従来のセン サ装置よりも大きくなる。これに伴い、カバーの検知波の通過領域における、フードに より天空から遮断される防霜有効エリアの上下幅が大きくなり、カバーの防霜効果が 向上して、検知波のカバー通過量の低下を抑制できる。また、カバーにおける素子 ユニットの上下偏向の回動中心が偏心した側と反対側の部分は、素子ユニットの最 大軌跡回動径に対応して従来のカバーの外形よりも大きな形状に設定する必要があ る力 素子ユニットの上下偏向の角度範囲は小さい (通常 10° 以下)ので、従来の力 バーに比較して僅かに大きな外形に止めることができる。また、フードとして、既存の ものを用いながらも、防霜効果の向上を図ることができる。そのため、全体外形の大 形ィ匕を招くことがない。  [0008] With this, even if the same hood as that used in the past is used, the detection wave passing area of the cover in this hood, that is, the amount of protrusion from the recessed portion is larger than that of the conventional sensor device by the size of the stepped portion. Also grows. Along with this, in the detection wave passage area of the cover, the vertical width of the defrost effective area that is blocked from the sky by the hood is increased, the defrosting effect of the cover is improved, and the amount of detection wave passing through the cover is reduced. Can be suppressed. In addition, the part of the cover opposite to the side where the pivot center of the vertical deflection of the element unit is eccentric must be set to a shape larger than the outer shape of the conventional cover corresponding to the maximum trajectory pivot diameter of the element unit. The force element unit unit has a small vertical deflection angle range (usually 10 ° or less), so it can be kept slightly larger than the conventional force bar. In addition, the frost-proof effect can be improved while using existing food. For this reason, there is no large size of the entire outer shape.
[0009] 本発明において、前記カバーにおける前記段差部の上側の非凹入部に前記フー ドを支持するのが好ましい。この構成によれば、カバーの凹入部における検知波の 通過領域力も見たフードの突出量が、フードの突出長に段差部の寸法を加算したも のとなるから、カバーの検知波の通過領域に設ける防霜有効エリアの上下幅を確実 に大きく設定することができる。 In the present invention, it is preferable that the hood is supported by a non-recessed portion on the upper side of the stepped portion of the cover. According to this configuration, the detection wave in the recessed portion of the cover The amount of protrusion of the hood in terms of the passage area force is obtained by adding the dimension of the step to the protrusion length of the hood, so the vertical width of the defrosting effective area provided in the detection wave passage area of the cover is reliably set large. can do.
[0010] 本発明にお 、て、前記素子ユニットが赤外線を投光または受光する上下一対の光 学系を有し、前記フードが、前記回動中心の偏心した側に位置する光学系に対する 前記遮断を行うようにすることができる。この構成によれば、上下一対の投光系または 受光系のうち少なくとも一方の光学系について、着霜が防止される防霜有効エリアを 大きくして、検知波のカバー通過量の低下を効果的に抑制することができる。  [0010] In the present invention, the element unit has a pair of upper and lower optical systems that project or receive infrared rays, and the hood is disposed on the optical system positioned on the eccentric side of the rotation center. Blocking can be performed. According to this configuration, for at least one of the upper and lower pair of light projecting system or light receiving system, the effective area for preventing frost formation is increased to effectively reduce the amount of detection wave passing through the cover. Can be suppressed.
[0011] この場合、さらに、他方の光学系に対する前記遮断を行う追加のフードを前記カバ 一に設けることができる。この追カ卩のフードは、カバー全体の外形寸法を大きくしない ために、カバーにおける素子ユニットの回動中心が偏心した側に位置する一方のフ ードよりも、カバーの検知波の通過領域力 の突出量は小さくするのが好ましい。この ように突出量を小さくしても、他方の光学系におけるカバーの着霜による検知波の力 バー通過量の低下をある程度抑制して、一方のセンサ素子による検出不良の補完を 行える。  In this case, an additional hood for performing the blocking with respect to the other optical system can be further provided on the cover. This additional hood does not increase the overall external dimensions of the cover, so that the detection wave passage area force of the cover is higher than one of the hoods located on the side where the center of rotation of the element unit in the cover is eccentric. It is preferable to reduce the amount of protrusion of. Even if the protrusion amount is reduced in this way, the decrease in the amount of detection wave passing through the detection wave due to frosting of the cover in the other optical system can be suppressed to some extent, and the detection failure by one sensor element can be compensated.
図面の簡単な説明  Brief Description of Drawings
[0012] 本発明は、添付の図面を参考にした以下の好適な実施形態の説明から一層明瞭 に理解されるであろう。しカゝしながら、実施形態および図面は単なる図示および説明 のためのものであり、本発明の範囲を定めるために利用されるべきものではない。本 発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面に おける同様な符号は、相当部分を示す。  The invention will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings, in which: However, the embodiments and drawings are for illustration and description only and should not be used to define the scope of the present invention. The scope of the present invention is defined by the appended claims. In the accompanying drawings, like reference numerals in a plurality of drawings indicate corresponding parts.
[図 1]本発明の第 1実施形態に係る防犯用センサ装置を示すブロック図である。  FIG. 1 is a block diagram showing a security sensor device according to a first embodiment of the present invention.
[図 2] (a)〜(c)は同上の防犯用センサ装置における受光部の一部破断した右側面 図およびセンサ本体に対する素子ユニットの上下偏向角が異なる 2状態の右側面図 である。  [FIG. 2] (a) to (c) are a right side view with a partially broken light receiving part in the security sensor device same as above and a right side view in two states with different vertical deflection angles of the element unit with respect to the sensor body.
[図 3]同上の防犯用センサ装置をカバーを外した状態で示す正面図である。  FIG. 3 is a front view showing the security sensor device with the cover removed.
[図 4]同上の防犯用センサ装置を示す要部の縦断面図である。  FIG. 4 is a longitudinal sectional view of an essential part showing the security sensor device according to the embodiment.
[図 5] (a)〜(e)は同上の受光部を示す平面図、正面図、底面図、右側面図および要 部の縦断面図である。 [Fig. 5] (a) to (e) are a plan view, a front view, a bottom view, a right side view, and a main view showing the light receiving section of the above It is a longitudinal cross-sectional view of a part.
[図 6]同上の第 1実施形態の変形例の防犯用センサ装置における受光部を示す平面 図、正面図、底面図および右側面図である。  FIG. 6 is a plan view, a front view, a bottom view, and a right side view showing a light receiving section in a security sensor device of a modification of the first embodiment.
[図 7] (a)〜 (c)は本発明の第 2実施形態に係る防犯用センサ装置における受光部の 一部破断した右側面図およびセンサ本体に対する素子ユニットの上下偏向角が異な る 2状態の右側面図である。  [FIG. 7] (a) to (c) show a partially broken right side view of the light-receiving part and a vertical deflection angle of the element unit with respect to the sensor body in the security sensor device according to the second embodiment of the present invention. It is a right view of a state.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 以下、本発明の好ましい実施形態について図面を参照しながら詳細に説明する。  Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
図 1は本発明の第 1実施形態に係る防犯用センサ装置を示すブロック図である。 この防犯用センサ装置は、直線的な警戒区域の両端側の壁面またはポールに互 ヽ の光軸を一致させて相対向する配置で設置される投光部 1と受光部 2とからなる能動 型の赤外線検知装置であり、赤外線ビーム IRを人体の検知波として送受信する。投 光部 1から投光された赤外線ビームが人体に妨げられるのを受光部 2により検出する ことで、人体を検知する。前記投光部 1および受光部 2は、後述するように、共にュニ ットイ匕された構成になっている。  FIG. 1 is a block diagram showing a security sensor device according to a first embodiment of the present invention. This security sensor device is an active type consisting of a light projecting unit 1 and a light receiving unit 2 that are installed so that their opposite optical axes coincide with each other on the walls or poles on both ends of a linear security area. Infrared detector, which transmits and receives infrared beam IR as a human body detection wave. The human body is detected by detecting by the light receiving unit 2 that the infrared beam projected from the light projecting unit 1 is blocked by the human body. The light projecting unit 1 and the light receiving unit 2 are configured to be united together as described later.
[0014] 投光部 1は、投光側素子ユニット 11、投光駆動回路 12、投光抑制回路 13および投 光側カバー開閉検知スィッチ 14を有している。前記素子ユニット 11、投光駆動回路 12および投光抑制回路 13はそれぞれ複数、例えば一対設けられているが、図 1で は一つのみを示している。素子ユニット 11は、赤外線発光ダイオードなどの発光素子 15と近赤外線のような赤外線ビーム IRを形成するための投光レンズまたは反射ミラ 一のような送信側光学系 16とを備えて、投光器として構成されている。投光駆動回路 12は、発光素子 15を所定の周波数で発光駆動してパルス変調波からなる赤外線ビ ーム IRを出射させる。投光側カバー開閉検知スィッチ 14は、後述のカバーのセンサ 本体に対する開閉を検出する接触型または近接型のスィッチである。投光抑制回路 13は、カバー開閉検知スィッチ 14がカバーの開放を検出したときに、発光素子 15か ら出射する赤外線ビームがカバーによる減衰透過分だけ低減する駆動電力を発光 素子 15に対し供給するように投光駆動回路 12を制御する。  The light projecting unit 1 includes a light projecting side element unit 11, a light projecting drive circuit 12, a light projecting suppression circuit 13, and a light projecting side cover open / close detection switch 14. The element unit 11, the light projecting drive circuit 12, and the light projecting suppression circuit 13 are provided in plural, for example, a pair, but only one is shown in FIG. The element unit 11 includes a light-emitting element 15 such as an infrared light-emitting diode and a light-transmitting lens 16 for forming an infrared beam IR such as a near-infrared ray or a transmission-side optical system 16 such as a reflection mirror. Has been. The light projecting drive circuit 12 drives the light emitting element 15 to emit light at a predetermined frequency, and emits an infrared beam IR composed of a pulse modulated wave. The light emission side cover opening / closing detection switch 14 is a contact type or proximity type switch that detects opening / closing of a cover, which will be described later, with respect to a sensor body. When the cover open / close detection switch 14 detects the opening of the cover, the light emission suppression circuit 13 supplies the light emitting element 15 with driving power for reducing the infrared beam emitted from the light emitting element 15 by the amount of attenuation transmission by the cover. The light projecting drive circuit 12 is controlled as follows.
[0015] 一方、受光部 2では、受信側素子ユニット 21が、受光レンズまたは集光ミラーのよう な受信側光学系 22とフォトトランジスタのような受光素子 23とを備えて、受光器として 構成されている。この受信側素子ユニット 21は、投光部 1からの赤外線ビーム IRを受 光して、その赤外線受光量に応じた電気信号を出力する。この電気信号は、増幅回 路 24で増幅されたのち、検波回路 25で外乱光が除去されてパルス変調波のみによ る受光信号のレベルに応じた信号に変換され、この信号レベルが設定検知レベル以 下であるか否かを信号判別回路 26で判別される。投光部 1からの赤外線ビーム が 不法侵入者により遮られて受光信号レベルが予め設定された検知レベル以下になつ たときには、信号判別回路 26から検知信号が出力されて警報回路 27が駆動され、 不法侵入者が存在することを報知するための警報信号が警報回路 27から、例えば 図示しな!、警備センターへ出力されるようになって!/、る。 On the other hand, in the light receiving unit 2, the receiving side element unit 21 is like a light receiving lens or a condenser mirror. A receiving optical system 22 and a light receiving element 23 such as a phototransistor are provided as a light receiver. The receiving side element unit 21 receives the infrared beam IR from the light projecting unit 1 and outputs an electrical signal corresponding to the amount of received infrared light. This electric signal is amplified by the amplification circuit 24, and then the disturbance light is removed by the detection circuit 25 and converted into a signal corresponding to the level of the received light signal only by the pulse modulated wave. This signal level is detected by setting. The signal discrimination circuit 26 determines whether the level is below the level. When the infrared beam from the projector 1 is blocked by an illegal intruder and the received light signal level falls below the preset detection level, the detection signal is output from the signal discrimination circuit 26 and the alarm circuit 27 is driven. An alarm signal for notifying the existence of illegal intruders is output from the alarm circuit 27 to the security center, for example, not shown!
[0016] また、検波回路 25に接続された電圧計などのレベルメータ 29には、素子ユニット 2 1の赤外線受光量に比例した信号レベルが表示される。さらに、増幅回路 24は、素 子ユニット 21からの受光信号の信号レベルに応じて AGC回路 30により利得制御さ れて、出力が常に一定の信号レベル以下になるように制御される。素子ユ ット 21、 増幅回路 24、検波回路 25、信号判別回路 26およびレベルメータ 29もそれぞれ複数 、例えば一対設けられているが、図 1では一つのみを示している。受光部 2は、さらに 、受光側カバー開閉検知スィッチ 31と受光レベル抑制回路 32とを有している。受光 側カバー開閉検知スィッチ 31は、後述のカバーのセンサ本体に対する開閉を検出 する接触型または近接型のスィッチである。受光レベル抑制回路 32は、カバー開閉 検知スィッチ 31がカバーの開放を検出したときに、 AGC回路 30を介して増幅回路 2 4の利得を下げさせることにより、増幅回路 24に対し、素子ユニット 21からの受光信 号の信号レベルをカバーによる減衰透過分だけ低減して増幅するように制御する。  A level meter 29 such as a voltmeter connected to the detection circuit 25 displays a signal level proportional to the amount of infrared light received by the element unit 21. Further, the amplification circuit 24 is gain-controlled by the AGC circuit 30 in accordance with the signal level of the light reception signal from the element unit 21 and controlled so that the output is always below a certain signal level. A plurality of element units 21, amplifying circuits 24, detecting circuits 25, signal discriminating circuits 26, and level meters 29 are provided, for example, a pair, but only one is shown in FIG. The light receiving unit 2 further includes a light receiving side cover opening / closing detection switch 31 and a light receiving level suppressing circuit 32. The light receiving side cover opening / closing detection switch 31 is a contact type or proximity type switch that detects opening / closing of a cover, which will be described later, with respect to the sensor body. The light reception level suppression circuit 32 reduces the gain of the amplifier circuit 24 via the AGC circuit 30 when the cover open / close detection switch 31 detects the opening of the cover. Control is performed so that the signal level of the received light signal is reduced by the amount of attenuation transmission by the cover and amplified.
[0017] 前記投光部 1および受光部 2は、上述したように共にユニットィ匕されたほぼ同様の外 観形状を有している。そこで、図 2 (a)〜(c)に示す受光部 2を代表として説明する。こ の受光部 2は、図 2 (a)に示す壁面やポールなどの設置面 Sに装着される榭脂製のセ ンサ本体 41と、このセンサ本体 41のベース 42に着脱自在に装着される榭脂製の力 バー 43とを有している。  [0017] The light projecting unit 1 and the light receiving unit 2 have substantially the same external shape unitized together as described above. Therefore, the light receiving unit 2 shown in FIGS. 2A to 2C will be described as a representative. This light receiving section 2 is detachably mounted on a resin sensor body 41 mounted on a mounting surface S such as a wall or a pole shown in FIG. 2 (a), and on a base 42 of the sensor body 41. It has a power bar 43 made of greaves.
[0018] 受光側の素子ユニット 21は、受光レンズからなる上下一対の受信側光学系 22がュ ニットケース 45に保持され、そのユニットケース 45の内部に、第 1の回路基板 46が装 着されており、各受信側光学系 22の後方に位置して受光素子 23が第 1の回路基板 46に実装して配置されている。ベース 42に装着された第 2の回路基板 47には、図 1 に示した構成のセンサ回路 21, 24-27, 29〜32が実装されている。 [0018] The light receiving element unit 21 includes a pair of upper and lower receiving optical systems 22 each including a light receiving lens. The first circuit board 46 is held inside the unit case 45, and the light receiving element 23 is located behind each receiving-side optical system 22 and the first circuit board 46 is held in the unit case 45. It is mounted and arranged. On the second circuit board 47 attached to the base 42, sensor circuits 21, 24-27, 29 to 32 having the configuration shown in FIG. 1 are mounted.
[0019] 前記ベース 42の前面側下部に固定された支持部材 7には、図 3の正面図に示すよ うに、 U字形状の保持体 8が、鉛直方向を向く縦軸 9の回りに回動自在に片持ち式に 支持され、その保持体 8に、素子ユニット 21が、図 2 (a)示す水平方向を向く左右一 対の横軸 10の回りに回動自在に取り付けられて 、る。前記縦軸 9は例えばねじ体( 図 4)であり、横軸 10はピンである。したがって、素子ユニット 21は、ベース 42に対し て縦軸 9回りに保持体 8と共に回動することによって水平偏向角が可変調整され、か つ、保持体 8に対して横軸 10回りに相対回動することによって上下偏向角が可変調 整され、それにより、図 1の投光部 1の素子ユニット 11に対する光軸合わせができるよ うになって!/、る。この光軸調整は後述の照準器 36を用いて行われる。  As shown in the front view of FIG. 3, a U-shaped holding body 8 is rotated around a vertical axis 9 facing the vertical direction on the support member 7 fixed to the lower front side of the base 42. The element unit 21 is rotatably supported around a pair of left and right horizontal shafts 10 in the horizontal direction shown in FIG. 2 (a). . The vertical axis 9 is, for example, a screw body (FIG. 4), and the horizontal axis 10 is a pin. Therefore, the horizontal deflection angle is variably adjusted by rotating the element unit 21 with the holding body 8 about the vertical axis 9 with respect to the base 42, and the element unit 21 is rotated relative to the holding body 8 about the horizontal axis 10. As a result, the vertical deflection angle can be modulated and adjusted, so that the optical axis can be aligned with the element unit 11 of the light projecting unit 1 in FIG. This optical axis adjustment is performed using a sighting device 36 described later.
[0020] 前記素子ユニット 21は、図 3のユニットケース 45の水平偏向の回動中心を形成する 縦軸 9が保持体 8の左右方向の中央部に設けられている力 ユニットケース 45の上 下偏向の回動中心を形成する図 2 (a)の横軸 10は、ユニットケース 45における上下 方向の中央部に対し下方に偏心して設けられている。従来の横軸 10は、ユニットケ ース 45の上下方向の中央部に設けられていた。  [0020] The element unit 21 forms a rotation center for horizontal deflection of the unit case 45 of Fig. 3. The vertical axis 9 is provided at the center of the holding body 8 in the left-right direction. The horizontal axis 10 in FIG. 2A, which forms the turning center of deflection, is provided eccentrically downward with respect to the central portion of the unit case 45 in the vertical direction. The conventional horizontal axis 10 was provided at the center of the unit case 45 in the vertical direction.
[0021] 前記保持体 8には、保持体 8を縦軸 9の回りに回転させて素子ユニット 21の水平偏 向角を調整する操作を行うためのダイヤル 35がー体形成されている。また、図 4に示 すように、保持体 8の前壁 8aには調整ねじ 19が回転自在に挿通され、その調整ねじ 19は、ユニットケース 45の後端部に下方へ向け突出して形成された突部 33にねじ 込まれている。この突部 33と保持体 8の前壁 8aとの間に、突部 33を、つまりユニット ケース 45を後方(図 4の右方)へ押圧するコイル状のばね体 34が、調整ねじ 19に挿 通されて装着されている。したがって、ダイヤル 35を回転操作すれば、保持体 8と共 に素子ユニット 21の水平偏向角を調整することができ、かつ、調整ねじ 19を回転操 作すれば、素子ユニット 21の上下偏向角を調整することができる。  The holding body 8 is formed with a dial 35 for performing an operation of adjusting the horizontal deflection angle of the element unit 21 by rotating the holding body 8 about the vertical axis 9. Further, as shown in FIG. 4, an adjustment screw 19 is rotatably inserted into the front wall 8a of the holding body 8, and the adjustment screw 19 is formed to protrude downward at the rear end portion of the unit case 45. It is screwed into the protruding part 33. Between this protrusion 33 and the front wall 8a of the holding body 8, a coiled spring body 34 that presses the protrusion 33, that is, the unit case 45 backward (to the right in FIG. 4) is attached to the adjustment screw 19. Inserted and installed. Therefore, if the dial 35 is rotated, the horizontal deflection angle of the element unit 21 can be adjusted together with the holding body 8, and if the adjustment screw 19 is rotated, the vertical deflection angle of the element unit 21 can be adjusted. Can be adjusted.
[0022] 図 3に示す素子ユニット 21のユニットケース 45における上下方向の中央部には、光 軸調整を行うための公知の照準器 36が設けられている。この照準器 36は、照準器ケ ース 37に設けられた左右一対ののぞき窓 38と、前側正面の左右に設けられた一対 の照準孔 39と、照準器ケース 37内に設けられた左右一対の反射ミラー(図示せず) とを備えている。この照準器 36は、カバー 43を開放した状態で、のぞき窓 38からの ぞきながらダイヤル 35または調整ねじ 19を手動操作して素子ユニット 21の水平偏向 角または上下偏向角を調整し、前記反射ミラーに映る図 1の投光部 1の素子ユニット 11の像と図 3の照準孔 39とが重なるように操作することにより、光軸の粗調整を行うよ うになつている。この粗調整につづいて、レベルメータ 29 (図 1)の表示を見ながら表 示レベルが最大値になるよう、図 3のダイヤル 35および調整ねじ 19を調整して光軸 の微調整を行い、図 1のレベルメータ 29の表示が所定レベル以上になるまで、つまり 受光部 2の光軸が投光部 1に正確に一致するまで、投光部 1および受光部 2の光軸 調整を必要に応じて複数回繰り返す。なお、投光部 1も上述した受光部 2と同様の構 成になっている。 [0022] In the unit case 45 of the element unit 21 shown in FIG. A known sight 36 for adjusting the axis is provided. The sighting device 36 includes a pair of left and right observation windows 38 provided on the sighting device case 37, a pair of sighting holes 39 provided on the left and right of the front side, and a pair of left and right sighting devices provided in the sighting device case 37. Reflection mirror (not shown). The sighting device 36 adjusts the horizontal deflection angle or vertical deflection angle of the element unit 21 by manually operating the dial 35 or the adjustment screw 19 while looking through the observation window 38 with the cover 43 opened. By performing an operation so that the image of the element unit 11 of the light projecting unit 1 shown in FIG. 1 and the aiming hole 39 shown in FIG. 3 overlap each other, the optical axis is roughly adjusted. Following this coarse adjustment, fine adjustment of the optical axis is performed by adjusting the dial 35 and adjustment screw 19 in Fig. 3 so that the display level reaches the maximum value while viewing the display on the level meter 29 (Fig. 1). It is necessary to adjust the optical axes of light projecting unit 1 and light receiving unit 2 until the display of level meter 29 in Fig. 1 reaches the specified level or higher, that is, until the optical axis of light receiving unit 2 exactly matches light projecting unit 1. Repeat several times accordingly. The light projecting unit 1 has the same configuration as the light receiving unit 2 described above.
[0023] 一方、図 2 (a)に示すカバー 43には、素子ユニット 21の上下方向の中央部に対向 する部分に段差部 44が設けられて、その上方に非凹入部 55が、下方に凹入部 56 力 それぞれ形成されている。つまり、素子ユニット 21の上下偏向の回動中心である 横軸 10が素子ユニット 21の中央部に対し偏心した下方側に対応する部分に、段差 部 44を介して、他の非凹入部 55よりもカバー 43内方へ凹入した凹入部 56が形成さ れている。また、カバー 43には、前記段差部 44よりも上方側の非凹入部 55における 段差部 44の近傍箇所に、フード 17が非凹入部 55の外周面に嵌め込まれて接着剤 で固定されている。この段差部 44とフード 17は、冬季においてカバー 43の表面から 気温の低い天空に向け熱が放出される放射冷却によりカバー 43の光透過面に着霜 して赤外線ビーム IRが遮られるのを防止するために、カバー 43の光透過面 (検知波 である赤外線ビーム IRの通過領域)の一部を温度の低 、天空から遮って放射冷却を 抑制する。  On the other hand, the cover 43 shown in FIG. 2 (a) is provided with a stepped portion 44 at a portion facing the central portion in the vertical direction of the element unit 21, and a non-recessed portion 55 is provided below the stepped portion 44. Recesses 56 Forces are formed respectively. That is, from the other non-recessed portion 55 through the stepped portion 44 to the portion corresponding to the lower side where the horizontal axis 10 which is the rotation center of the vertical deflection of the element unit 21 is eccentric with respect to the central portion of the element unit 21. In addition, a recessed portion 56 is formed which is recessed inward of the cover 43. Further, in the cover 43, a hood 17 is fitted on the outer peripheral surface of the non-recessed portion 55 and fixed with an adhesive at a location near the stepped portion 44 in the non-recessed portion 55 above the stepped portion 44. . The step 44 and the hood 17 prevent the infrared beam IR from being blocked by frost formation on the light transmission surface of the cover 43 due to radiative cooling in which heat is emitted from the surface of the cover 43 toward the sky at low temperatures in winter. Therefore, a part of the light transmission surface of the cover 43 (passage area of the infrared beam IR that is the detection wave) is shielded from the sky at a low temperature to suppress radiation cooling.
[0024] 前記素子ユニット 21は、上下一対ずつの光学系 22と受光素子 23とを有しているが 、少なくとも一方側の光学系 22と受光素子 23とに対する赤外線ビーム IRのカバー通 過量を所要値に確保すれば、人体検知の機能上、問題がない。換言すれば、カバ 一 43における 2つの光学系 22のうちの少なくとも一方に対応する光透過面の一部へ の着霜による赤外線ビーム IRの遮りを防止するようにすればよい。そこで、前記実施 形態では、下方の光学系 22に対してのみ段差部 44とフード 17とによる防霜手段を 設けてあり、この防霜手段の詳細につ 、ては後述する。 [0024] The element unit 21 has a pair of upper and lower optical systems 22 and a light receiving element 23, but requires a cover passage amount of the infrared beam IR for at least one of the optical system 22 and the light receiving element 23. If the value is secured, there is no problem in the human body detection function. In other words, hippopotamus It is only necessary to prevent the infrared beam IR from being blocked by frost formation on a part of the light transmission surface corresponding to at least one of the two optical systems 22 in 43. Therefore, in the above-described embodiment, only the lower optical system 22 is provided with the defrosting means by the step portion 44 and the hood 17, and details of this defrosting means will be described later.
[0025] 前記受光部 2は、縦軸 9を回動中心とする水平偏向角の可変範囲が 180° 〖こ、か つ、図 2 (b) , (c)に示す横軸 10を回動中心とする上下偏向角 0 の可変範囲が 5° [0025] The light receiving section 2 has a horizontal deflection angle variable range of 180 ° about the vertical axis 9 as a rotation center, and also rotates the horizontal axis 10 shown in FIGS. 2 (b) and 2 (c). The variable range of the vertical deflection angle 0 at the center is 5 °
V  V
以下にそれぞれ設定されている。図 2 (b)は、素子ユニット 21が下向きとなる方向に 上下偏向角 Θ が最大となるまで回動させた状態を示し、図 2 (c)は、素子ユニット 21  Each is set as follows. Fig. 2 (b) shows a state in which the element unit 21 is rotated in the downward direction until the vertical deflection angle Θ is maximized. Fig. 2 (c) shows the element unit 21
V  V
が上向きとなる方向に上下偏向角 Θ が最大となるまで回動させた状態を示している  Shows a state in which the vertical deflection angle Θ is turned to the maximum in the direction in which
V  V
。図 2 (b)または (c)の何れの状態で水平偏向角を 180° 変更させる場合にも、上下 偏向角 Θ の回動中心である横軸 10が下方に偏心していることから、縦軸 9を中心と  . Fig. 2 When the horizontal deflection angle is changed by 180 ° in either state (b) or (c), the horizontal axis 10 that is the center of rotation of the vertical deflection angle Θ is decentered downward. Centered on 9
V  V
するユニットケース 45の上端外形部の回動軌跡と下端外形部との各々の回動軌跡 の直径が異なる。すなわち、素子ユニット 21を前記状態で水平偏向角を 180° 変更 させた場合には、ユニットケース 45における上端外形部の回動軌跡の直径が素子ュ ニット 21の回動軌跡最大径 D1となり、かつ、ユニットケース 45における下端外形部 の回動軌跡の直径が素子ユニット 21の回動軌跡最小径 D2となる。  The diameters of the rotation trajectories of the upper end outline of the unit case 45 and the lower end outline are different. That is, when the horizontal deflection angle is changed by 180 ° with the element unit 21 in the above state, the diameter of the rotation locus of the upper end outer shape portion in the unit case 45 becomes the rotation locus maximum diameter D1 of the element unit 21, and The diameter of the rotation locus of the lower end outer shape portion of the unit case 45 is the rotation locus minimum diameter D2 of the element unit 21.
[0026] ユニットケース 45の上端外形部の回動軌跡の回動軌跡最大径 D1は、上下偏向角 の回動中心である横軸 10を素子ユニット 21の上下方向の中央部に設定した従来の 場合のユニットケース 45の上端外形部および下端外形部の回動軌跡の直径よりも大 きくなるが、上下偏向角 Θ の可変範囲が 5° 以下であることから、従来の回動軌跡 [0026] The maximum turning trajectory D1 of the turning trajectory of the upper end outer shape of the unit case 45 is a conventional one in which the horizontal axis 10 that is the center of rotation of the vertical deflection angle is set at the center in the vertical direction of the element unit 21. However, the variable range of the vertical deflection angle Θ is less than 5 °.
V  V
の直径に対し僅かに大きくなるだけである。一方、ユニットケース 45の下端外形部の 回動軌跡最小径 D2は、上下偏向角 Θ の回動中心である横軸 10がユニットケース 4  It is only slightly larger than the diameter. On the other hand, the minimum turning trajectory diameter D2 of the lower end outline of the unit case 45 is such that the horizontal axis 10 that is the center of rotation of the vertical deflection angle Θ is unit case 4
V  V
5の上下方向の中央部よりも下方に偏心した分だけ、従来の回動軌跡の直径よりも小 さくなる。  The diameter is smaller than the diameter of the conventional rotation locus by the amount deviated downward from the central portion of 5 in the vertical direction.
[0027] 図 5 (a)〜(e)は受光部 2を示す平面図、正面図、底面図、右側面図および要部の 縦断面図であり、同図において、カバー 43におけるフード 17の取付部位よりも上方 の非凹入部 55は、ユニットケース 45の上端外形部の回動軌跡最大径 D1を包含でき る形状に設定されており、上述のように、前記回動軌跡最大径 D1が従来のセンサ装 置の回動軌跡の直径よりも僅かに大きくなるだけであるから、前記非凹入部 55の外 形は従来のセンサ装置のカバーとほぼ同じ寸法に設定できる。したがって、カバー 4 3の非凹入部 55の外面に嵌め込み状態で固着されるフード 17は、既存のものとほぼ 同じ寸法のものを用いることができる。これにより、この防犯用センサ装置は、従来の センサ装置に比較して、全体形状の大型化を招くことがない。フード 17は、カバー 43 よりも外方に突出するひさし部 17aと取付部 17bとを有し、図 5 (e)に示すように、カバ 一 43の非凹入部 55の外面に若干凹入して設けた嵌合部 55aに取付部 17bが嵌め 込まれて、例えば接着剤で固定される。 FIGS. 5 (a) to 5 (e) are a plan view, a front view, a bottom view, a right side view, and a longitudinal sectional view of the main part showing the light receiving unit 2, in which the hood 17 in the cover 43 is shown. The non-recessed portion 55 above the attachment site is set to have a shape that can include the maximum turning trajectory diameter D1 of the upper outer shape of the unit case 45. As described above, the maximum turning trajectory diameter D1 is Conventional sensor equipment The outer shape of the non-recessed portion 55 can be set to substantially the same size as the cover of the conventional sensor device. Therefore, the hood 17 that is fitted and fixed to the outer surface of the non-recessed portion 55 of the cover 43 can be of the same size as the existing one. As a result, the security sensor device does not cause an increase in the overall shape as compared with the conventional sensor device. The hood 17 has an eaves portion 17a projecting outward from the cover 43 and a mounting portion 17b, and is slightly recessed into the outer surface of the non-recessed portion 55 of the cover 43 as shown in FIG. The attachment portion 17b is fitted into the fitting portion 55a provided and fixed with, for example, an adhesive.
[0028] 一方、カバー 43におけるフード 17の取付部位よりも下方の凹入部 56は、図 2 (b)の ユニットケース 45の下端外形部の回動軌跡最小径 D2が従来のセンサ装置の回動 軌跡の直径よりも小さくなつた分だけ外形を小さくしてある。そのため、図 2 (a)のカバ 一 43の段差部 44は、非凹入部 55と凹入部 56の寸法差に合致した大きなものとなつ ている。その結果、図 5 (d)に示すカバー 43の光透過面からのフード 17のひさし部 1 7aの突出量 P1は、従来とほぼ同形状のフード 17を用いた場合に、段差部 44の寸法 分だけ大きくなり、これに伴い、カバー 43の光透過面におけるフード 17のひさし部 1 7aによって天空に対し影となる防霜有効エリアの上下幅 Aが大きくなつて、防霜効果 が向上する。これにより、この防犯用センサ装置では、上述のように全体外形の大型 化を招くことがな 、構成としながらも、カバー 43の光透過面の一部への着霜を防止し て上下一対のうちの下方の光学系 22に対する赤外線ビーム IRのカバー通過量の低 下を抑制できる。 [0028] On the other hand, the recessed portion 56 below the mounting portion of the hood 17 in the cover 43 has a minimum turning trajectory diameter D2 of the lower end outer portion of the unit case 45 in FIG. The outer shape is reduced by an amount smaller than the diameter of the locus. Therefore, the stepped portion 44 of the cover 43 in FIG. 2 (a) is a large one that matches the dimensional difference between the non-recessed portion 55 and the recessed portion 56. As a result, the protrusion P1 of the eaves 17 1a of the hood 17 from the light transmission surface of the cover 43 shown in FIG. 5 (d) is the dimension of the step 44 when the hood 17 having substantially the same shape as the conventional one is used. Accordingly, the vertical width A of the defrosting effective area which is shaded against the sky is increased by the eaves portion 17a of the hood 17 on the light transmitting surface of the cover 43, and the defrosting effect is improved. As a result, this security sensor device does not cause an increase in the overall outer shape as described above, but prevents frost formation on a part of the light transmission surface of the cover 43 and prevents a pair of upper and lower pairs. It is possible to suppress a decrease in the amount of infrared beam IR passing through the lower optical system 22.
[0029] 図 6は前記第 1実施形態の変形例を示し、同図において、図 5と同一もしくは相当 するものに同一の符号を付してある。同図の例では、第 1実施形態においてカバー 4 3における下方の光学系 22に対する赤外線ビーム IRの光透過面の上部を天空から 遮断するフード 17を設けたのにカ卩えて、カバー 43における上方の光学系 22に対す る赤外線ビーム IRの光透過面の上部を天空カゝら遮断する追カ卩のフード 17Aを設け ている。この追加のフード 17Aとしては、下方のフード 17と同一寸法のものが用いら れる。  FIG. 6 shows a modification of the first embodiment, in which the same or corresponding parts as in FIG. 5 are given the same reference numerals. In the example of the figure, in the first embodiment, the hood 17 that shields the upper part of the light transmission surface of the infrared beam IR for the lower optical system 22 in the cover 43 from the sky is provided. An additional hood 17A is provided to block the upper part of the light transmission surface of the infrared beam IR for the optical system 22 from the sky. As this additional hood 17A, one having the same dimensions as the lower hood 17 is used.
[0030] 上記構成では、上方のフード 17Aのカバー 43からの突出量 P2は従来のセンサ装 置と同じであるから、カバー 43における上方の光学系 22に対する赤外線ビーム IRの 光透過面に形成される防霜有効エリアの上下幅 A2も、従来のセンサ装置と同じにな る。し力しながら、この追加のフード 17Aにより、上方の受光素子 23に対する赤外線 ビーム IRのカバー通過量の低下を抑制できるので、より一層検出不良の補完を行う ことができる。 [0030] In the above configuration, the protruding amount P2 of the upper hood 17A from the cover 43 is equal to the conventional sensor device. Therefore, the vertical width A2 of the defrosting effective area formed on the light transmission surface of the infrared beam IR with respect to the upper optical system 22 in the cover 43 is also the same as that of the conventional sensor device. However, since the additional hood 17A can suppress a decrease in the amount of the infrared beam IR passing through the upper light receiving element 23, the detection failure can be further complemented.
[0031] 図 7は本発明の第 2実施形態を示し、同図(a)〜 (c)は図 2 (a)〜 (c)に対応してお り、図 2と同一もしくは相当するものには同一の符号を付してある。第 1実施形態では 上下偏向角 Θ の回動中心である横軸 10を素子ユニット 21の中央部に対し下方に  FIG. 7 shows a second embodiment of the present invention, in which FIGS. (A) to (c) correspond to FIGS. 2 (a) to (c) and are the same as or correspond to FIG. Are denoted by the same reference numerals. In the first embodiment, the horizontal axis 10 that is the rotation center of the vertical deflection angle Θ is set downward with respect to the central portion of the element unit 21.
V  V
偏心した位置に設けたのに対し、この実施形態では、上下偏向角 Θ の回動中心で  In this embodiment, it is provided at an eccentric position, but at the center of rotation of the vertical deflection angle Θ.
V  V
ある横軸 10を素子ユニット 21の中央部に対し上方側に第 1実施形態と同じ量だけ偏 心した位置に設けて、上方の光学系 22に対応するカバー 43Aの光透過面の一部分 をフード 17により天空力も遮るようにしている。これに伴い、カバー 43Aは、凹入部 5 6が上方の光学系 22に対応して上下方向の中央部分に設けられ、かつ、この凹入部 56の上下両側に非凹入部 55が設けられた形状になっている。  A horizontal axis 10 is provided on the upper side with respect to the central portion of the element unit 21 at a position decentered by the same amount as in the first embodiment, and a part of the light transmission surface of the cover 43A corresponding to the upper optical system 22 is disposed in the hood. 17 also blocks the aerodynamics. Accordingly, the cover 43A has a shape in which the recessed portion 56 is provided at the central portion in the vertical direction corresponding to the upper optical system 22, and the non-recessed portion 55 is provided on both upper and lower sides of the recessed portion 56. It has become.
[0032] この防犯用センサ装置においても、第 1実施形態と比較して、素子ユニット 21の支 持形態およびカバー 43Aの形状が異なるだけであって、第 1実施形態と同様の効果 を得ることができる。すなわち、第 1実施形態では、カバー 43における下方の光学系 22に対応する部分への着霜を防止しているのに対し、この実施形態では、カバー 43 Aにおける上方の光学系 22に対応する部分への着霜を防止している構成が異なる のみで、非凹入部 55の外形を従来のセンサ装置のカバーとほぼ同じ寸法に設定で き、かつ、フード 17として、既存のものと同じ寸法のものを用いることができることから 、全体形状の大形ィ匕を招くことがなぐ第 1実施形態と同じ寸法の段差部 44を設けて 、第 1実施形態と同様の防霜効果を得ることができる。  [0032] Also in this security sensor device, the same effect as in the first embodiment can be obtained except that the support form of the element unit 21 and the shape of the cover 43A are different from those in the first embodiment. Can do. That is, in the first embodiment, frost formation on the portion of the cover 43 corresponding to the lower optical system 22 is prevented, whereas in this embodiment, the cover 43 A corresponds to the upper optical system 22. The configuration of the non-recessed part 55 can be set to approximately the same dimensions as the cover of a conventional sensor device, with the only difference in the configuration that prevents frost formation on the part, and the same dimensions as the existing hood 17 Therefore, it is possible to obtain the same defrosting effect as that of the first embodiment by providing the step portion 44 having the same size as that of the first embodiment, which does not cause the large shape of the entire shape. it can.
[0033] 本発明は、防犯用センサ装置における前記実施形態で例示した受光部 2以外に、 図 1の投光部 1にも適用することができるほか、遠赤外線を検知する受動型の赤外線 検知器、または、これら能動型と受動型の複合検知技術を使用した防犯用センサ装 置にも適用できる。  The present invention can be applied to the light projecting unit 1 in FIG. 1 in addition to the light receiving unit 2 exemplified in the above-described embodiment of the security sensor device, as well as passive infrared detection for detecting far infrared rays. It can also be applied to security devices that use security detection devices using these active and passive detection technologies.
[0034] 以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば 、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するで あろう。したがって、そのような変更および修正は、添付の請求の範囲から定まる本発 明の範囲内のものと解釈される。 [0034] As described above, the preferred embodiments have been described with reference to the drawings. From the present specification, various changes and modifications will be easily envisaged within the obvious range. Accordingly, such changes and modifications are to be construed as within the scope of the present invention as defined by the appended claims.

Claims

請求の範囲 The scope of the claims
[1] 検知波の送信または受信を行うセンサ素子を含む素子ユニットがセンサ本体に、水 平偏向角および上下偏向角が調整可能に支持され、  [1] An element unit including a sensor element that transmits or receives a detection wave is supported by the sensor body so that the horizontal deflection angle and the vertical deflection angle can be adjusted.
前記センサ本体に前記素子ユニットを覆うカバーが装着され、  A cover that covers the element unit is attached to the sensor body,
前記素子ユニットにおける上下偏向の回動中心が、前記素子ユニットの上下方向 の中央部に対し下方または上方に偏心して設定され、  The rotation center of the vertical deflection in the element unit is set eccentrically downward or upward with respect to the central part in the vertical direction of the element unit,
前記カバーにおける素子ユニットの前記回動中心が偏心した側に対応する部分に In the portion of the cover corresponding to the side where the rotation center of the element unit is eccentric
、段差部を介して、他の部分よりも前記カバー内方へ凹入した凹入部が形成され、 前記カバーにおける前記回動中心の上方近傍に、前記センサ素子に対する検知 波の通過領域の少なくとも一部を天空力 遮断するフードが設けられている防犯用 センサ装置。 A recessed portion that is recessed inward of the cover from the other portion is formed through the step portion, and at least one of the detection wave passing regions with respect to the sensor element is located near the upper portion of the rotation center of the cover. A sensor device for crime prevention with a hood that blocks the aerodynamic force of the part.
[2] 請求項 1において、前記カバーにおける前記段差部の上側の非凹入部に前記フー ドが支持されている防犯用センサ装置。  [2] The security sensor device according to claim 1, wherein the hood is supported by a non-recessed portion on the upper side of the stepped portion of the cover.
[3] 請求項 1または 2において、前記検知波は赤外線であり、前記素子ユニットが赤外 線を投光または受光する上下一対の光学系を有し、前記フードが、前記回動中心の 偏心した側に位置する光学系に対する前記遮断を行う防犯用センサ装置。 [3] The detection wave according to claim 1 or 2, wherein the detection wave is an infrared ray, the element unit has a pair of upper and lower optical systems that project or receive an infrared ray, and the hood is eccentric with respect to the rotation center. A sensor device for crime prevention that performs the above-described blocking with respect to the optical system located on the closed side.
[4] 請求項 3において、さらに、他方の光学系に対する前記遮断を行う追加のフードが 前記カバーに設けられている防犯用センサ装置。 4. The security sensor device according to claim 3, further comprising an additional hood provided on the cover for performing the blocking with respect to the other optical system.
PCT/JP2006/306461 2005-03-30 2006-03-29 Crime prevention sensor with frost protection step difference WO2006106732A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007512792A JP4748736B2 (en) 2005-03-30 2006-03-29 Crime prevention sensor device having step for frost prevention
US11/909,483 US7633067B2 (en) 2005-03-30 2006-03-29 Security sensor device having frost protective step
EP06730409.7A EP1868171B1 (en) 2005-03-30 2006-03-29 Crime prevention sensor with frost protection step difference

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-096899 2005-03-30
JP2005096899 2005-03-30

Publications (1)

Publication Number Publication Date
WO2006106732A1 true WO2006106732A1 (en) 2006-10-12

Family

ID=37073295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306461 WO2006106732A1 (en) 2005-03-30 2006-03-29 Crime prevention sensor with frost protection step difference

Country Status (6)

Country Link
US (1) US7633067B2 (en)
EP (1) EP1868171B1 (en)
JP (1) JP4748736B2 (en)
KR (1) KR100937122B1 (en)
CN (1) CN100527177C (en)
WO (1) WO2006106732A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2476292B (en) * 2009-12-18 2015-02-11 Applied Concepts Ltd Intruder deterrent systems
JP5824701B2 (en) * 2011-11-10 2015-11-25 オプテックス株式会社 Automatic angle adjustment unit used for object detection equipment
JP6574959B2 (en) * 2016-09-30 2019-09-18 株式会社リガク Wavelength dispersive X-ray fluorescence analyzer and fluorescent X-ray analysis method using the same
FR3087930B1 (en) * 2018-10-29 2020-12-25 Jesus Jimenez ELEMENT FOR INFRARED BARRIERS REDUCING THE FORMATION OF FROST
CN114387749A (en) * 2021-12-30 2022-04-22 杭州海康威视数字技术股份有限公司 Intrusion detector

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60134183U (en) * 1984-02-16 1985-09-06 オ−テツク電子株式会社 infrared warning device
JPS61201191U (en) * 1985-05-30 1986-12-17
JPS63313299A (en) * 1987-06-16 1988-12-21 Matsushita Electric Works Ltd Infrared crime prevention detector
JPH02122380U (en) * 1989-03-22 1990-10-05
JPH04161831A (en) * 1990-10-26 1992-06-05 Matsushita Electric Works Ltd Infrared-ray-beam type detector
JPH056338U (en) * 1991-07-11 1993-01-29 セルコ株式会社 Infrared transmitter / receiver
JPH08171679A (en) 1994-12-16 1996-07-02 Atsumi Electron Corp Ltd Infrared beam sensor
EP0821329A1 (en) 1996-07-23 1998-01-28 Optex Co. Ltd. Security sensor with built-in sight device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5931814B2 (en) * 1978-06-19 1984-08-04 オムロン株式会社 reflective photoelectric switch
US4347438A (en) * 1979-01-22 1982-08-31 Richard Spielman Light transceiver device
US4626683A (en) * 1982-11-12 1986-12-02 Eaton Corporation Through-beam optical detector system with alignment aid
US4650989A (en) * 1985-01-04 1987-03-17 Cerberus Ag Alignment apparatus for photoelectric intrusion detector system
JP4686699B2 (en) * 2001-09-26 2011-05-25 オプテックス株式会社 Security sensor device
JP3896406B2 (en) * 2002-04-11 2007-03-22 オプテックス株式会社 Security sensor device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60134183U (en) * 1984-02-16 1985-09-06 オ−テツク電子株式会社 infrared warning device
JPS61201191U (en) * 1985-05-30 1986-12-17
JPS63313299A (en) * 1987-06-16 1988-12-21 Matsushita Electric Works Ltd Infrared crime prevention detector
JPH02122380U (en) * 1989-03-22 1990-10-05
JPH04161831A (en) * 1990-10-26 1992-06-05 Matsushita Electric Works Ltd Infrared-ray-beam type detector
JPH056338U (en) * 1991-07-11 1993-01-29 セルコ株式会社 Infrared transmitter / receiver
JPH08171679A (en) 1994-12-16 1996-07-02 Atsumi Electron Corp Ltd Infrared beam sensor
EP0821329A1 (en) 1996-07-23 1998-01-28 Optex Co. Ltd. Security sensor with built-in sight device
JPH1039043A (en) 1996-07-23 1998-02-13 Opt Kk Crime prevention sensor provided with sighting device

Also Published As

Publication number Publication date
CN100527177C (en) 2009-08-12
KR20070118671A (en) 2007-12-17
JPWO2006106732A1 (en) 2008-09-11
CN1942908A (en) 2007-04-04
JP4748736B2 (en) 2011-08-17
KR100937122B1 (en) 2010-01-18
EP1868171A4 (en) 2011-09-07
EP1868171A1 (en) 2007-12-19
US20090059483A1 (en) 2009-03-05
US7633067B2 (en) 2009-12-15
EP1868171B1 (en) 2019-01-02

Similar Documents

Publication Publication Date Title
US7271722B2 (en) Security sensor device having optical axis adjustment capability
WO2006106732A1 (en) Crime prevention sensor with frost protection step difference
US6087938A (en) Outdoor intrusion detector
ES2349259T3 (en) SENSOR DEVICE FOR AN AUTOMATIC INSTALLATION OF ROTATING DOOR.
JP4686699B2 (en) Security sensor device
JP4761340B2 (en) Security sensor device
JP5017525B2 (en) Security sensor device with variable infrared beam output
US9046624B2 (en) Infrared security sensor
KR20140117275A (en) Solar battery-driven object detection system
US6696946B2 (en) Anti-thief security sensor assembly
US6998982B2 (en) Anti-thief security sensor assembly with variable amount of emitted infrared beam
JP6089166B2 (en) Infrared security sensor
KR200385668Y1 (en) Duplex infrared sensor
JP2005172377A (en) Air conditioner having human body detecting sensor, and human body detecting method for air conditioner having human body detecting sensor
JP2006039984A (en) Crime preventing sensor device
JP4737578B2 (en) Sighting device for security sensor device
JP6755450B2 (en) Opposed radio sensor sighting device
JP2021118037A (en) Light type detector
KR200298227Y1 (en) Discernment device for far distance fire confirmation
JPH03161895A (en) Method for transmitting/receiving optical transmission signal in fire alarm equipment
KR20050005989A (en) wireless sensor
WO2008128906A1 (en) Anti-wind device for motorised external blinds.
JP2006146453A (en) Crime prevention sensing device
JPH03246700A (en) Fire detector

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680000051.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007512792

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11909483

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006730409

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077024968

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

ENP Entry into the national phase

Ref document number: 2007140797

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006730409

Country of ref document: EP