WO2006106676A1 - Transmitting apparatus and receiving apparatus - Google Patents

Transmitting apparatus and receiving apparatus Download PDF

Info

Publication number
WO2006106676A1
WO2006106676A1 PCT/JP2006/306302 JP2006306302W WO2006106676A1 WO 2006106676 A1 WO2006106676 A1 WO 2006106676A1 JP 2006306302 W JP2006306302 W JP 2006306302W WO 2006106676 A1 WO2006106676 A1 WO 2006106676A1
Authority
WO
WIPO (PCT)
Prior art keywords
packet
signal
single carrier
unit
transmitted
Prior art date
Application number
PCT/JP2006/306302
Other languages
French (fr)
Japanese (ja)
Inventor
Mamoru Sawahashi
Kenichi Higuchi
Hiroyuki Atarashi
Original Assignee
Ntt Docomo, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntt Docomo, Inc. filed Critical Ntt Docomo, Inc.
Publication of WO2006106676A1 publication Critical patent/WO2006106676A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0008Modulated-carrier systems arrangements for allowing a transmitter or receiver to use more than one type of modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • H04L5/0017Time-frequency-code in which a distinct code is applied, as a temporal sequence, to each frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0028Variable division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0087Timing of allocation when data requirements change
    • H04L5/0089Timing of allocation when data requirements change due to addition or removal of users or terminals

Definitions

  • the present invention relates to a technical field of wireless communication, and more particularly to a transmission device and a reception device that enable coexistence of a single carrier system and a multicarrier system.
  • IMT-2000 International Mobile Telecommunications-2000
  • IMT-2000 International Mobile Telecommunications-2000
  • W-CDMA Wideb and CDMA
  • HSDPA high speed downlink packet access
  • HSDP A employs an adaptive modulation and channel coding (AMC) method, an automatic repeat request (ARQ) method for packets in the MAC layer, and the like, thereby enabling a high transmission rate.
  • Nya is aiming for high quality.
  • OFCDM Orthogonal Frequency and Code Division Multiplexing
  • Patent Document 1 A publicly known example relating to a communication system in which single carrier terminals and multicarrier terminals can be mixed is described in Patent Document 1, for example.
  • Patent Document 1 2004-72455
  • the present invention has been made in view of the above problems, and the problem is that at least a part of the first communication system of the single carrier system and the second communication system of the multicarrier system are used.
  • the present invention provides a transmission device and a reception device that can coexist while sharing a frequency band.
  • a transmission apparatus that can be used in the first communication system of the single carrier scheme and the second communication system of the multicarrier scheme is used.
  • This apparatus transmits a single carrier packet on a downlink channel, and after the first retransmission waiting period has elapsed, a first retransmission means for resending the single carrier packet on demand, and a multicarrier packet on the downlink channel Transmit and after the second retransmission waiting period elapses Second retransmitting means for retransmitting the packet.
  • the second retransmission means transmits one or more multi-carrier packets during the first retransmission waiting period.
  • the first communication system of the single carrier system and the second communication system of the multi carrier system can share at least some frequency bands in the same region.
  • FIG. 1A is a diagram showing an example of a frequency band.
  • FIG. 1B is a diagram showing an example of a frequency band.
  • FIG. 2 shows an overall view of a transmitter according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing details of first and second baseband processing units according to an embodiment of the present invention.
  • FIG. 4 is a diagram showing frequency spectra of signals used in the first and second communication systems.
  • FIG. 5 shows a conceptual diagram of a packet transmitted by the transmitter of FIGS.
  • FIG. 6 is a diagram showing another mode of transmitting a packet.
  • FIG. 7 is a diagram showing details of first and second baseband processing units according to an embodiment of the present invention.
  • FIG. 8 shows a conceptual diagram of a packet transmitted from the transmitter according to the present embodiment.
  • FIG. 9 is a diagram showing details of a baseband processing unit according to an embodiment of the present invention.
  • FIG. 10 shows a transmitter in which the processing elements are made more common than the baseband processing unit shown in FIG.
  • FIG. 11 is an overall view of a receiver according to an embodiment of the present invention.
  • FIG. 12 shows details of the first baseband processing unit in FIG. 11.
  • FIG. 13 shows details of the second baseband processing section in FIG. 11.
  • FIG. 14 shows a baseband processing unit of a receiver according to an embodiment of the present invention.
  • FIG. 15 A block diagram of a spreading unit used in a VSCRF—CDMA transmitter.
  • FIG. 16 shows a block diagram of a despreading unit used in a VSCRC-CDMA receiver.
  • FIG. 17 is an explanatory diagram relating to main operations in the VSCRF-CDMA system. Explanation of symbols
  • 201, 202 First and second baseband processing units; 204 multiplexing unit; 206 RF transmission unit; 2 10 digital-to-analog conversion unit; 212 quadrature modulator; 214 local oscillator; 216 band-pass filter; 218 mixer; 222 bandpass filter; 2 24 power amplifier;
  • 302 convolutional encoder 304 data modulation unit; 306, 308 spreading unit; 310 multiplexing unit; 312 band-limiting filter; 322 turbo encoder; 324 data modulator; 326 spreading unit; 330 multiplexing unit; 334 transmission TTI control unit; 34 2 turbo encoder; 344 data modulator; 345 interleaver; 347 serial-parallel conversion unit; 349 spreading unit; 350 fast inverse Fourier transform unit; 352 guard interval insertion unit; 354 transmission TTI control unit ;
  • 902 interleaver 904 fast Fourier transform unit; 906 band limiting filter;
  • 1102 RF receiver 1111, 1112 1st and 2nd base node processor; 1103 Low noise amplifier; 1104 Mixer; 1105 Local oscillator; 1106 Bandpass filter; 1 107 Automatic gain controller; 1108 Quadrature detector; 1109 Local Oscillator; 1110 Analog to digital converter;
  • 1402 Demultiplexer; 1403 Band-limiting filter; 1404 Fast inverse Fourier transform unit;
  • a single carrier packet is retransmitted in response to a request after the first retransmission waiting period has elapsed.
  • Multi-carrier packets are also retransmitted upon request after the second retransmission wait period.
  • One or more multicarrier packets are transmitted during the first retransmission wait period. Since single carrier packets and multicarrier packets are transmitted in different time slots, both signals are transmitted without interfering with each other. Coexistence of both systems can be realized by transmitting other system packets in addition to the same system packets within the first retransmission waiting period. Therefore, for example, even if there is no unallocated band as shown in Fig.
  • the OFCDM system can coexist in the same region using the existing W-CDMA band. wear.
  • the packet since the packet is not retransmitted later than the first retransmission waiting period for the first communication system, even if the new second communication system coexists, the old first communication
  • the system can be operated as before.
  • the transmission time interval of a single carrier packet is equal to the transmission time intervals of a plurality of multicarrier packets.
  • One single-carrier packet and multiple multi-carrier packets are sent alternately.
  • control channel power of the first communication system is shared by the first and second communication systems.
  • the control channel is transmitted continuously in time. Thereby, resources can be saved.
  • the first control channel for the first communication system and the second control channel for the second communication system are transmitted separately.
  • the first control channel is transmitted together with the single carrier packet
  • the second control channel is transmitted together with the multicarrier packet.
  • inter-system interference can be greatly reduced.
  • means for Fourier transforming a signal representing a single carrier packet filter means for band-limiting the signal after Fourier transformation, a signal after band limitation, and a multicarrier signal
  • the transmission apparatus further includes means for time-multiplexing a signal representing a packet and means for performing inverse Fourier transform on the time-multiplexed signal.
  • the transmission apparatus further includes an encoding unit that selects and encodes one of signals representing single carrier or multicarrier packets.
  • the encoding means can be shared by both systems.
  • a transmitter usable in a first communication system using a single carrier scheme and a second communication system using a multicarrier scheme performs Fourier transform on a signal representing a single carrier packet. Then, when the bandwidth is limited, time-multiplexed with a signal representing a multi-carrier packet, and the multiplexed signal is transmitted after inverse Fourier transform, the receiving device that receives the transmitted signal receives the received signal. Is then temporally separated into a signal representing a single carrier packet and a signal representing a multicarrier packet, and a signal representing a single carrier packet is inverse Fourier transformed.
  • FIG. 2 shows an overall view of a transmitter according to one embodiment of the present invention.
  • the transmitter is typically provided in a base station and transmits a downlink channel, but may be provided in a mobile station.
  • the transmitter transmits a W-CDMA packet and an OFCDM packet. More generally, the transmitter transmits a single carrier packet and a multicarrier packet. It is extensible.
  • the transmitter includes a first baseband processing unit 201, a second baseband processing unit 202, a multiplexing unit 204, and an RF transmission unit 206.
  • the RF transmitter 206 includes a digital-analog converter 210, a quadrature modulator 212, a local oscillator 214, a bandpass filter 216, a mixer 218, a local oscillator 220, a bandpass filter 222, and a power amplifier 224.
  • the first baseband processing unit 201 is based on the W-CDMA scheme.
  • a high-band signal processing unit that performs signal processing related to the HSDPA system. For example, necessary parameters are determined by AMC and ARQ. Also, mapping in the Internet Protocol (IP) and signal processing related to the MAC layer and physical layer are performed.
  • IP Internet Protocol
  • the second baseband processing unit 202 is a baseband signal processing unit related to the OFCDM system, as will be described later. In this signal processing unit, for example, determination of parameters necessary for AMC and ARQ, mapping in the Internet protocol, signal processing for the MAC layer and the physical layer, and the like are performed.
  • the multiplexing unit 204 selects and outputs one of the signals output from the first and second baseband processing units 201 and 202, thereby time-multiplexing those signals.
  • the RF transmission unit 206 performs processing for transmitting a baseband signal to be transmitted as a radio signal.
  • the digital-analog converter (DZA) converts digital signals into analog signals.
  • the quadrature modulator 210 generates an in-phase component (I) and a quadrature component (Q) having an intermediate frequency from the signal input thereto.
  • the band pass filter 212 removes excess frequency components for the intermediate frequency band.
  • the mixer 218 uses the local oscillator 220 to convert (up-convert) the intermediate frequency signal into a high frequency signal.
  • the bandpass filter 222 removes excess frequency components.
  • the power amplifier 224 amplifies signal power in order to perform radio transmission from the antenna 226.
  • FIG. 3 shows details of the first and second baseband processing units 201 and 202 according to an embodiment of the present invention. In this example, it is also used for the control channel power OFCDM system for W-CDMA system (the first communication system).
  • the first baseband processing unit 201 includes a convolutional encoder 302, a data modulation unit 304, spreading units 306 and 308, a multiplexing unit 310, and a band limiting filter 312.
  • the first baseband processing unit 201 includes a turbo encoder 322, a data modulator 324, a spreading unit 326, a multiplexing unit 330, a band limiting filter 332, and a transmission TTI control unit 334.
  • the second baseband processing unit 202 includes a turbo encoder 342, a data modulator 344, an interleaver 345, a serial-parallel conversion unit 347, a spreading unit 349, a fast inverse Fourier transform unit 350, a guard interval It has an insertion unit 3 52 and a transmission TTI control unit 354.
  • the convolutional encoder 302 increases the error resilience of data transmitted on the control channel. Is encoded.
  • the data modulator 304 modulates the control channel using, for example, a QPSK modulation method. Any suitable modulation scheme may be adopted, but since the amount of information of the control channel is relatively small, in this embodiment, the QPSK modulation scheme with a small number of modulation multi-values is adopted.
  • the spreading unit 306 performs code spreading by multiplying the control channel by a predetermined spreading code.
  • spreading section 308 performs code spreading by multiplying a pilot channel by a predetermined spreading code.
  • Multiplexer 310 multiplexes the spread control channel and the spread pilot channel. Multiplexing may be performed using one or more of time multiplexing, frequency multiplexing, and code multiplexing.
  • the band limiting filter 312 is composed of, for example, a root Nyquist filter, and performs band limiting.
  • the turbo encoder 322 of the first baseband processing unit 201 performs code encoding for improving error resilience of data transmitted through the data channel.
  • the data modulator 324 modulates the transmission data with an appropriate modulation method.
  • the modulation scheme may be, for example, QPSK, 16QAM, 64 QAM, or any other suitable modulation scheme.
  • the spreading unit 326 code spreads the data channel.
  • Multiplexer 330 multiplexes the code-spread pilot channel and data channel as necessary. For example, when the transmission channels of the control channel and the data channel are different and the propagation paths of the two are significantly different, a pilot channel for the data channel may be transmitted in addition to the pilot channel for the control channel.
  • the band limiting filter 332 is also configured with a root Nyquist filter force, for example, and performs band limiting.
  • the transmission TTI control unit 334 gives the data channel to the multiplexing unit 204 on the basis of the transmission time interval (TTI: Transmission Time Interval) in the first W-CDMA system.
  • the TTI of the first communication system may be 2 ms, for example. Details of the operation of the transmission TTI control unit will be described later.
  • turbo encoder 342 of the second baseband processing unit improves error tolerance of data transmitted on the data channel of the OFCDM system (referred to as the second communication system).
  • the sign y for The data modulator 344 modulates the transmission data with an appropriate modulation method.
  • the modulation method may be any suitable modulation method such as QPSK, 16QAM, 64QAM, and the like.
  • Interleaver 345 determines the data channel to be transmitted. Change the order of signals to be displayed.
  • the serial-parallel converter (SZP) 347 converts a serial signal sequence (stream) into a plurality of parallel signal sequences.
  • the spreading unit 349 code spreads the data channel.
  • the fast inverse Fourier transform unit 350 performs fast inverse Fourier transform on the input signal and performs OFDM modulation.
  • the guard interval insertion unit 352 creates a symbol in the OFDM scheme by adding a guard interval to the signal to be transmitted. As is well known, the guard interval is obtained by duplicating the beginning or end of the symbol to be transmitted.
  • control channel input to first baseband processing section 201 is convolutionally encoded, QPSK modulated, code spread, and multiplexed by multiplexing section 310 together with the spread pilot channel.
  • the multiplexed signal is band-limited and provided to the multiplexing unit 204.
  • the data channel input to first baseband processing section 201 is encoded by turbo encoder 322, modulated, spread, band-limited, and input to transmission TTI control section 334.
  • the transmission TTI control unit 334 provides a data channel from various users to the multiplexing unit 204 for each packet, or provides a retransmission target packet to the multiplexing unit 204 in order to retransmit a transmitted packet in response to a request.
  • the data channel input to second baseband processing section 202 is encoded by turbo encoder 342, modulated, rearranged by interleaver 345, parallelized by serial-parallel conversion section 347, and subcarriers. Diffused for each component.
  • the spread data channel is modulated by the fast inverse Fourier transform unit 350 using the OFDM method, and a guard interval is added to the modulated signal, which is input to the transmission TTI control unit 354.
  • the transmission TTI control unit 354 provides a data channel having various user capabilities to the multiplexing unit 204 for each packet, or supplies a retransmission target packet to the multiplexing unit 204 in order to retransmit the transmitted packet in response to a request. .
  • a data channel to be transmitted is a single carrier packet.
  • the data channel on which the second communication system is also transmitted is a multi-carrier packet. Therefore, the frequency spectrum waveforms of the input signal of the transmission TTI control unit 334 and the input signal of the transmission TTI control unit 354 are significantly different (FIG. 4). Therefore, if these signals are transmitted simultaneously in the same frequency band, it is expected that the interference between the systems will become very large.
  • a W-CDMA 3G communication system such as IMT2000
  • an automatic repeat request (ARQ) control method is adopted, and a certain packet is transmitted. If necessary, the same packet is retransmitted after a predetermined period.
  • This predetermined period or the time waiting for retransmission is defined by the standard to be a period of 5TT 1 (5 packets) (in other words, the DSCH round trip time (RTT) is 6 ⁇ ).
  • RTT DSCH round trip time
  • FIG. 5 shows a conceptual diagram of a packet transmitted by the transmitter of FIGS.
  • FIG. 5 shows a packet related to the control channel and a packet for the data channel used in the first and second communication systems.
  • the horizontal direction (left-right direction) represents the time direction.
  • the control channel is shared by both the first and second communication systems and is transmitted continuously in time.
  • Packets related to the data channel are time-multiplexed and transmitted between the first and second communication systems.
  • a state in which a packet (single carrier packet) of the first communication system and a packet (multicarrier packet) of the second communication system are alternately transmitted is shown.
  • single carrier packets are transmitted in the time slots indicated by Al, A2,..., And multicarrier packets are transmitted in the time slots indicated by Bl, B2,.
  • the TTI of a single carrier packet is 2 ms
  • the TTI of a multicarrier packet is 0.25 ms.
  • the specific value of the transmission time interval TTI for each communication system is just an example, and various other values may be adopted.
  • the first communication system can satisfactorily receive the control channel and the data channel.
  • the data channel of the second communication system is subject to some intersystem interference.
  • the amount of information in the control channel is small, such interference will be negligible in many cases.
  • a single carrier packet is retransmitted in the same single carrier packet after 5 TTIs have elapsed since the transmission.
  • a single carrier packet transmitted in time slot A1 is retransmitted in time slot A4. Therefore, the existing specifications regarding the first communication system need not be changed.
  • the multi-carrier packet is also retransmitted after 5 days (after the second communication system). In this case, as shown in the enlarged view of FIG. 5, the packet transmitted in B in time slot B2 immediately after time slot A2 is retransmitted in time slot B. Similarly, times
  • the packet sent in time slot B is sent to B in time slot B3 immediately after time slot A3.
  • Retransmission of packets transmitted in the base stations B to B is delayed by about 2 ms (8 packets).
  • FIG. 5 is a diagram showing another aspect of the transmission method.
  • any suitable transmission method may be used. More generally, one or more single carrier packets and one or more multicarrier packets may be transmitted during the retransmission waiting period for single carrier packets.
  • FIG. 7 shows the first and second baseband processing units 201 and 202 according to an embodiment of the present invention. Elements already described with respect to Figure 3 are given similar reference numerals and redundant description is omitted.
  • a control channel is prepared separately for each of the first and second communication systems, and these are transmitted while being time-multiplexed with the data channel.
  • the multiplexing units 310 and 330 in FIG. 3 are depicted integrally as the multiplexing unit 310 in FIG. Therefore, in FIG. 7, the convolutional encoder 362, the data modulator 364, the interleaver 365, the serial / parallel converter 367, the spreading unit 369, and the multiplexing unit 348 are related to the second control channel. Is drawn. Since these elements are the same as those already described, redundant description is omitted.
  • FIG. 8 shows a conceptual diagram of a packet transmitted from the transmitter according to the present embodiment.
  • the data channel is transmitted alternately between the first and second communication systems, as in FIG.
  • the control channel is also transmitted alternately according to the switching. That is, the single carrier packet and the control channel are multiplexed by the multiplexing unit 310, and transmission is started simultaneously and transmission is stopped simultaneously. Similarly, the multicarrier packet and the control channel are multiplexed by the multiplexing unit 348, and transmission is started simultaneously and transmission is stopped simultaneously.
  • inter-system interference caused by the control channel can be suppressed.
  • FIG. 9 shows details of a baseband processing unit according to an embodiment of the present invention.
  • Elements that have already been described are given similar reference numbers, and redundant descriptions are omitted. It should be noted that in Fig. 9, the elements related to the control channel are not drawn for simplicity.
  • an interleaver 902, a fast Fourier transform unit 904, and a band limiting filter 906 are depicted on the first baseband processing unit 201 side.
  • Interleaver 902 changes the arrangement of data channel signals according to a predetermined pattern.
  • the fast Fourier transform unit 904 performs fast Fourier transform on the spread data channel.
  • the time domain input signal is converted into a frequency domain signal and output.
  • the band limiting filter 906 performs band limiting in the same manner as the band limiting filters 312 and 332 of FIGS. 3 and 7, but the band limiting filter 906 performs band limiting in the frequency domain. This is different from the band limiting filter 312 and the like shown in FIG.
  • the processing power relating to the multiplexing unit 204, the fast inverse Fourier transform unit 350, and the guard-inner insertion unit 352 is performed in common to the first and second baseband processing units 201 and 202. Therefore, it should be noted that the transmission TTI control units 334 and 354 are drawn on the input side.
  • the processing power after the multiplexing unit 204 is performed in common to the first and second baseband processing units 201 and 202, and a fast Fourier transform unit 904 is provided between the spreading unit 326 and the band limiting filter 906. ing.
  • the multi-carrier packet is the same as that already described, and therefore a redundant description is omitted.
  • the single carrier packet is processed by the fast Fourier transform unit 904 and the fast inverse Fourier transform unit 350, so that modulation by the OFDM method is not performed. In this way, a part of signal processing is shared, and the band limiting process of the single carrier packet is performed in the frequency domain by the band limiting filter 906. Special attention should be paid to the fact that the calculation load of the band limiting filter 906 is much lighter than that of the band limiting filter 312 in FIG. In the bandwidth limitation processing in the time domain, in order to obtain the value after bandwidth limitation at each time point, it is necessary to weight and add a plurality of samples before and after that time point.
  • FIG. 10 shows a transmitter in which elements are further shared as compared with the baseband processing unit shown in FIG. Duplicate explanations for already described elements are omitted.
  • a buffer 1002 and a separation unit 1004 are newly drawn.
  • Buffer 1002 receives and temporarily stores data channels for single carrier packets and multicarrier packets. These are selectively input to the turbo encoder in accordance with each transmission time interval TTI.
  • Separating section 1004 time-divides the data channel related to the single carrier packet and the data channel related to the multi-carrier packet in accordance with each time.
  • FIG. 11 shows an overall view of a receiver according to an embodiment of the present invention.
  • a receiver may be provided in a power base station typically provided in a mobile station.
  • the receiver according to the present embodiment receives signals transmitted from the transmitters of FIGS.
  • this receiver is provided in a mobile station, and antenna diversity using two antennas is performed in order to improve signal quality. Since signals received for each antenna are similarly processed by similar processing elements, the signal processing elements and functions related to one antenna will be described on behalf of them.
  • the mobile station includes an RF receiving unit 1102 connected to one of the antennas, a first baseband processing unit 1111, and a second baseband processing unit 1112.
  • the RF receiver 1102 includes a low noise amplifier (LNA) 1103, a mixer 1104, a local oscillator 1105, a band pass filter 1106, an automatic gain controller 1107, a quadrature detector 1108, a local oscillator 1109, an analog digital A conversion unit 1110.
  • LNA low noise amplifier
  • mixer 1104 a local oscillator 1105
  • band pass filter 1106 an automatic gain controller 1107
  • quadrature detector 1108 a local oscillator 1109
  • the RF receiver 1002 performs processing such as power amplification, frequency conversion, and band limitation on the high-frequency signal received by the antenna.
  • the low noise amplifier 1103 appropriately amplifies the signal received by the antenna.
  • the amplified signal is converted to an intermediate frequency by the mixer 1104 and the local oscillator 1105 (down-conversion).
  • the band pass filter 1106 removes unnecessary frequency components.
  • the automatic gain controller (AGC) 1107 ensures that the signal level is maintained properly. As such, the gain of the amplifier is controlled.
  • the quadrature detector 1108 uses the local oscillator 1109 to perform quadrature demodulation based on the in-phase component (I) and the quadrature component (Q) of the received signal.
  • the analog-digital converter (AZD) 1110 converts an analog signal into a digital signal.
  • the first baseband processing unit 1111 performs baseband processing of signals related to a single carrier communication system (for example, a W-CDMA system) which is the first communication system.
  • a single carrier communication system for example, a W-CDMA system
  • IP connection and protocol processing related to the MAC layer and physical layer are also performed.
  • Baseband processing includes, for example, determining necessary parameters using AMC and ARQ.
  • the second baseband processing unit 1112 performs baseband processing of signals related to a multicarrier communication system (for example, OFCDM system) that is the second communication system.
  • a multicarrier communication system for example, OFCDM system
  • IP connection and protocol processing related to the MAC layer and physical layer are also performed.
  • Baseband processing includes, for example, determining the parameters necessary for AMC and ARQ.
  • the mobile station may be a terminal dedicated to the first or second communication system, or may be a terminal that can be shared by both systems.
  • the dedicated terminal includes only one of the first and second baseband processing units.
  • a sharable terminal has both the first and second baseband processing units.
  • FIG. 12 shows details of the first baseband processing unit 1111 shown in FIG. In FIG. 12, a band limiting filter 1202, a no searcher 1204, a despreading unit 1206, a channel estimation unit 1208, a rake combining unit 1210, a combining unit 1212, and a turbo decoder 1214 are depicted.
  • the band limiting filter 1202 is also configured with a root Nyquist filter force, for example, and performs band limiting.
  • the path searcher 1204 searches for a path in the multipath propagation path. The path search is performed, for example, by examining a delay profile.
  • the despreading unit 1206 despreads the signal in accordance with the pass timing.
  • the channel estimation unit 1208 performs channel estimation using path timing. The channel estimator 1208 controls the amplitude and phase so as to compensate for fading generated in the propagation path according to the estimation result. Output control signal.
  • the rake combiner 1210 combines and outputs the despread signal while compensating for each path.
  • Combining section 1212 combines received signals obtained for each antenna. Any suitable synthesis method may be employed.
  • the synthesis method may include, for example, a selection method, an equal gain synthesis method, a maximum ratio synthesis method, and the like.
  • the turbo decoder 1214 decodes the received signal and demodulates the data.
  • a signal received by each antenna is processed for each antenna as described above.
  • the received signal is converted into a digital signal through processing such as amplification, frequency conversion and band limitation in the RF receiver.
  • the digital signal is band-limited for each subcarrier, despread, and rake-combined for each path.
  • a signal for each subcarrier after rake combining is obtained for each antenna, and they are combined and decoded by the combining unit 1212, and the transmitted signal is restored.
  • FIG. 13 shows details of the second baseband processing unit 1112 of FIG.
  • FIG. 13 shows a symbol timing detection unit 1302, a guard interval removal unit 1304, a fast Fourier transform unit 1306, a demultiplexer or separation unit 1308, a channel estimation unit 1310, a despreading unit 1312, and a parallel-serial conversion.
  • Portion (PZS) 1314, despreading unit 1316, combining units 1318 and 1319, Dintalino 1320, turbo encoder 1322 and Viterbi decoder 1324 are depicted.
  • the symbol timing detection unit 1302 detects the timing of symbols (symbol boundaries) based on the digital signal!
  • the guard inverter removing unit 1304 removes a portion of the received signal power corresponding to the guard interval.
  • the fast Fourier transform section 1306 performs fast Fourier transform on the input signal, and performs demodulation of the OFDM scheme. As a result, the received signal is converted into a signal in the frequency domain.
  • the demultiplexer 1308 separates the pilot channel, control channel, and data channel multiplexed in the received signal. This separation method is performed corresponding to multiplexing on the transmission side (contents of processing in the multiplexing unit 310 and the like in FIG. 3).
  • Channel estimation section 1310 estimates the state of the propagation path using the pilot channel, and A control signal for adjusting the amplitude and the phase is output so as to compensate for the channel fluctuation. This control signal is output for each subcarrier.
  • Receiveding section 1312 despreads the channel channel after channel compensation for each subcarrier.
  • the code multiplex number is assumed to be C.
  • Parallel-serial converter (P / S) 1314 converts a parallel signal sequence into a serial signal sequence.
  • Despreading section 1316 despreads the channel compensated control channel for each subcarrier.
  • the combining units 1318 and 1319 combine the signals processed for each antenna by an appropriate combining method such as a selection method, an equal gain combining method, or a maximum ratio combining method.
  • Dinthaler 1320 changes the order in which signals are arranged according to a predetermined pattern.
  • the predetermined pattern corresponds to the reverse pattern of reordering performed by the transmitting interleaver (eg 345 in Fig. 3).
  • the turbo encoder 1322 and the Viterbi decoder 1324 decode the traffic information data and the control information data, respectively.
  • the signal received by the antenna is converted into a digital signal through processing such as amplification, frequency conversion, band limitation, quadrature demodulation, and the like in the RF receiver.
  • the signal from which the guard interval is removed is demodulated by the OFDM method by the fast Fourier transform unit 1306.
  • the demodulated signal is separated into a pilot channel, a control channel, and a data channel by a separation unit 1308.
  • the pilot channel is input to the channel estimation unit, and a control signal that compensates for fluctuations in the transmission path is output for each subcarrier.
  • the data channel is compensated using the control signal, despread for each subcarrier, and converted to a serial signal.
  • the converted signal is rearranged in a dinary bar 1320 by a reverse pattern to the rearrangement performed by the interleaver, and decoded by the turbo decoder 1322.
  • channel fluctuation is compensated by the control signal, despread, and decoded by the Viterbi decoder 1324. Thereafter, signal processing using the restored data and the control channel is performed.
  • FIG. 14 shows a baseband processing unit of a receiver according to an embodiment of the present invention. Elements already described in Figs. 12, 13 are given the same reference numbers, and redundant explanations are omitted.
  • the receiver according to the present embodiment receives signals from the transmitter shown in FIGS. Therefore, the signal transmitted from the transmitter and received by the receiver is a signal obtained by time-multiplexing a single carrier packet and a multicarrier packet and then inversely transforming the Fourier transform.
  • a demultiplexer 1402, a band limiting filter 1403, a high-speed inverse-field conversion unit 1404, and a dintariba 1406 are newly drawn. Elements related to the control channel are not drawn for the sake of simplicity.
  • the demultiplexer 1402 separates the pilot channel, the control channel, and the data channel that are multiplexed into the received signal! /. Further, the demultiplexer 1402 also temporally separates and outputs the single carrier packet that has been time multiplexed.
  • the band limiting filter 1403 performs band limiting processing on a signal (time-separated signal) input thereto in the frequency domain. Similar to the band limiting filter 906 in FIG. 9, the band limiting process performed here can be performed very easily.
  • Fast inverse Fourier transform section 1404 performs fast Fourier inverse transform on the signal related to the single carrier packet after the band limitation. As a result, the signal related to the single carrier packet is converted into a signal in the time domain.
  • the dintariba 1406 changes the order in which the signals are arranged according to a predetermined pattern.
  • the predetermined pattern corresponds to the reverse pattern of reordering performed by the transmitting interleaver (such as 902 in Fig. 9).
  • a signal received by the antenna is converted into a digital signal through processing such as amplification, frequency conversion, band limitation, orthogonal demodulation, and the like in the RF reception unit.
  • the fast Fourier transform unit 1306 converts the signal from which the guard interval has been removed into a frequency domain signal.
  • OFDM demodulation is performed.
  • the signal converted into the frequency domain signal is temporally separated into a multicarrier bucket (including pilot channel, control channel, and data channel) and a single carrier packet by a separation unit 1308.
  • Multi-carrier packets are described in Figure 13. Since the same processing is performed, redundant explanation is saved.
  • the separated single carrier packet is subjected to band limitation in the frequency domain by the band limiting filter 1202, and then subjected to inverse Fourier transform. By this conversion, the single carrier packet is converted into a time domain signal. The converted signal is despread, channel-compensated, deinterleaved and then decoded.
  • Embodiments 1 to 5 described above are intended for coexistence of a plurality of systems on the downlink.
  • the sixth embodiment described below typically aims at coexistence of multiple systems in the uplink.
  • the uplink apart from high-speed and high-quality channel, there is a strong demand for lower power consumption of mobile stations.
  • VSCRF-CDMA variable spreading factor chip repetition factor CDMA
  • the configuration and operation of the transmitter and receiver used for this uplink are almost the same as those of direct sequence CDMA (DS-CDMA) transmitters and receivers.
  • DS-CDMA direct sequence CDMA
  • FIG. 15 shows a block diagram of a spreading unit used in a VSCRF—CDMA transmitter. Accordingly, the operation of the spreading unit described below is typically performed at the mobile station.
  • the spreading unit includes a code multiplication unit 1602, an iterative synthesis unit 1604, and a phase shift unit 1606.
  • Code multiplication section 1602 multiplies the transmission signal by a spreading code.
  • a multiplier 1612 multiplies the transmission signal by a channelization code determined under a given code spreading factor SF.
  • a multiplier 1614 multiplies the transmission signal by a scramble code.
  • the code spreading factor SF in this embodiment is appropriately set according to the communication environment. More specifically, the code spreading factor SF may be set based on one or more of the propagation path state, cell configuration, traffic volume, and radio parameter. The code spreading factor SF may be set by the base station or the mobile station. However, when using information managed on the base station side such as traffic volume, it is preferable to determine the code spreading factor at the base station.
  • Iterative combining section 1604 compresses the spread transmission signal in terms of time and repeats it a predetermined number of times (CRF times).
  • Phase shift section 1606 shifts (shifts) the phase of the transmission signal by a predetermined frequency.
  • the phase amount to be shifted is set uniquely for each mobile station.
  • FIG. 16 shows a block diagram of a despreading unit used in a VSCRC-CDMA receiver.
  • This despreading unit typically operates in a base station.
  • the despreading unit includes a phase shift unit 1702, an iterative combining unit 1704, and a code despreading unit 1706.
  • Phase shift section 1702 multiplies the received signal by the phase amount set for each mobile station, and separates the received signal into a signal for each mobile station.
  • the iterative synthesis unit 1704 expands the repeated data in terms of time (uncompressed).
  • Code despreading section 1706 performs despreading by multiplying the received signal by the spreading code for each mobile station.
  • FIG. 17 is a diagram for explaining the main operation in the VSCRF-CDMA system.
  • one data group with a signal sequence after code spreading is represented by d 1, d 2, d 1
  • This group of signal sequences has a period corresponding to T X Q as a whole. This signal
  • a sequence 1802 corresponds to an input signal to the iterative synthesis unit 1604. This signal sequence is compressed to 1ZCRF over time, and the compressed signal is repeated over a period of T X Q.
  • the converted signal sequence is represented by 1804 in FIG. Figure 17 also shows the guard interval period.
  • Temporal compression can be performed, for example, using a frequency that is CRF times higher than the clock frequency used for the input signal. As a result, the period of individual data d is compressed to T ZCRF (however, CR i S
  • the compressed and repeated signal sequence 1804 is output from the iterative combining unit 1604, input to the phase shifting unit 1606, shifted by a predetermined phase amount, and output.
  • the phase amount is set for each mobile station, and is set so that uplink signals for each mobile station are orthogonal to each other on the frequency axis. Thereby, in the received signal of the uplink or base station
  • the frequency spectrum generally looks like that shown at 1806 in FIG. In the figure, the band indicated as the spreading bandwidth indicates the band that will be occupied if the signal sequence 1802 after spreading is transmitted as it is.
  • the spectrum at the stage of time compression and repetition (the spectrum of the output signal of the repetition synthesis unit 1604) occupies a narrow band, but the band is common to all mobile stations.
  • these bands can be prevented from overlapping each other.
  • the frequency band related to each mobile station can be narrowed, and the frequency spectrum related to each mobile station can be arranged in a comb-like shape. Orthogonalization can be realized.
  • phase shifter 1702 On the receiving side, an operation opposite to that on the transmitting side is performed. That is, in accordance with the phase amount for each mobile station, the phase is added to the received signal by the phase shifter 1702 in FIG.
  • the input signal is uncompressed in terms of time, converted into a spread signal sequence, and output from the iterative synthesis unit 1704.
  • Despreading is performed by multiplying this signal by a predetermined spreading code by the despreading section 1706. Thereafter, further processing is performed by the elements already described.
  • the radio frequency waveform and chip rate of the signal transmitted by the VSCRF-CDMA system employed in the uplink are the same as those of the W-CDMA system. This is because the repeated processing performed in the VSCRF—CDMA system does not change the power chip rate that rearranges the data order. Therefore, for the uplink, the first and second communication systems can be easily coexisted by adopting the VSCRF-CDMA system for the second communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Radio Relay Systems (AREA)

Abstract

A transmitting apparatus can be used in a first communication system of single-carrier format and a second communication system of multicarrier format. This apparatus comprises a first retransmitting means that transmits a single-carrier packet via a downstream channel and retransmits the single-carrier packet in response to a request after the lapse of a first retransmission standby interval; and a second retransmitting means that transmits a multicarrier packet via the downstream channel and retransmits the multicarrier packet in response to a request after the lapse of a second retransmission standby interval. The second retransmitting means transmits at least one multicarrier packet during the first retransmission standby interval.

Description

明 細 書  Specification
送信装置及び受信装置  Transmitting apparatus and receiving apparatus
技術分野  Technical field
[0001] 本発明は、無線通信の技術分野に関し、特にシングルキャリア方式及びマルチキヤ リア方式のシステムの併存を可能にする送信装置及び受信装置に関する。  TECHNICAL FIELD [0001] The present invention relates to a technical field of wireless communication, and more particularly to a transmission device and a reception device that enable coexistence of a single carrier system and a multicarrier system.
背景技術  Background art
[0002] IMT-2000(International Mobile Telecommunications- 2000)に代表されるような第 3世代の通信方式では特に下りリンクの高速大容量ィ匕が求められ、一例として 5MHz の周波数帯域を用いて 2Mbps以上の情報伝送レートが実現されて 、る。 IMT— 20 00では、シングルキャリア方式の広帯域の符号分割多重アクセス(W-CDMA:Wideb and- CDMA)方式が採用されている。また、高速ダウンリンクパケットアクセス(HSDPA : High Speed Downlink Packet Access)と呼ばれる方式も採用されている。 HSDP Aは、適応変復調及び符号化(AMC: Adaptive Modulation and channel Coding )方式や、 MACレイヤでのパケットの自動再送(ARQ: Automatic Repeat Request )方式等を採用することで、伝送レートの高速ィ匕ゃ高品質ィ匕を図っている。  [0002] Third-generation communication systems represented by IMT-2000 (International Mobile Telecommunications-2000), in particular, require a high-speed and large-capacity downlink, and as an example, using a frequency band of 5MHz, 2Mbps or more The information transmission rate is realized. In IMT-2000, a single-carrier wideband code division multiple access (W-CDMA: Wideb and CDMA) system is adopted. Also, a method called high speed downlink packet access (HSDPA) is adopted. HSDP A employs an adaptive modulation and channel coding (AMC) method, an automatic repeat request (ARQ) method for packets in the MAC layer, and the like, thereby enabling a high transmission rate. Nya is aiming for high quality.
[0003] 一方、複数のサブキャリアを使用するマルチキャリア方式のシステムに関する研究 も現在行われている。特に、直交周波数符号分割多重化(OFCDM: Orthogonal Fr equency and Code Division Multiplexing)方式は将来の通信システムに有望視さ れている。 OFCDM方式は、多数の低速のサブキャリアでデータを並列的に伝送し、 周波数及び時間領域の 2次元拡散を行うことで、更なる高速化及び高品質化を図る  [0003] On the other hand, research on multi-carrier systems using a plurality of subcarriers is also currently underway. In particular, the Orthogonal Frequency and Code Division Multiplexing (OFCDM) scheme is promising for future communication systems. The OFCDM method transmits data in parallel on a number of low-speed subcarriers and performs two-dimensional spreading in the frequency and time domains to further increase the speed and quality.
[0004] シングルキャリア端末とマルチキャリア端末が混在可能な通信システムに関する公 知例については、例えば、特許文献 1に記載されている。 [0004] A publicly known example relating to a communication system in which single carrier terminals and multicarrier terminals can be mixed is described in Patent Document 1, for example.
特許文献 1 : 2004— 72455号公報  Patent Document 1: 2004-72455
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 従って、 W— CDMA方式のシステム(便宜上、旧システムと呼ぶ)に代えて又はそ れに加えて OFCDM方式のシステム(便宜上、新システムと呼ぶ)のサービスを提供 することが考えられる。この場合において、新旧複数のシステムの併存する地域が出 現することが予想される。新システムが旧システムに変更されるとしても、少なくとも過 渡期には両システムの併存する期間が生じるであろう。新旧 2つのシステムを併存さ せる 1つの手法は、図 1Aに示されるように、旧システム及び新システムにそれぞれ別 々の周波数帯域を割り当てることである。図 1Aでは、 5MHzの帯域が 4つ用意され、 2つが旧システムの事業者 (キャリア)に、他の 2つが新システムの事業者に割り当て られる様子が示されている。周波数帯域に新たに割当可能な帯域が残っていれば、 このような手法が好都合である。上記特許文献でもそのような好都合な帯域の存在が 前提とされている。 Therefore, instead of or in place of a W-CDMA system (referred to as an old system for convenience). In addition, it is conceivable to provide OFCDM system services (referred to as a new system for convenience). In this case, it is expected that multiple areas will exist in which the old and new systems coexist. Even if the new system is changed to the old system, there will be a period of coexistence of both systems, at least in the transition period. One approach to coexisting the old and new systems is to assign separate frequency bands to the old and new systems, as shown in Figure 1A. In Figure 1A, four 5 MHz bands are prepared, two are allocated to the old system operator (carrier), and the other two are allocated to the new system operator. Such a technique is advantageous if there remains a newly assignable band in the frequency band. The above patent document also presupposes such a convenient band.
[0006] し力しながら、地域、時期又は国によっては、そのような周波数帯域を別途割り当て ることができないかもしれない。例えば、図 1Bに示されるように、周波数帯域が旧シス テムに総て使用されている場合である。図 1Bでは、 5MHzの帯域が 2つ用意され、 2 つとも旧システムの事業者に割当済みである様子が示されて 、る。図 1Bのような状 況では、 2つの帯域のうち一方を開放し、新システムの事業者に割り当てることも技術 的には考えられる。しかしながら、それも常に可能であるとは言えず、例えば 5MHz の帯域しかないリソース力 Si事業者によって既に使用されている場合には、そのような 周波数帯域の割り振りは困難である。  [0006] However, depending on the region, time, or country, it may not be possible to allocate such a frequency band separately. For example, as shown in Figure 1B, the frequency band is entirely used by the old system. Figure 1B shows two 5MHz bands, both of which have been allocated to the old system operator. In the situation shown in Fig. 1B, it is technically possible to open one of the two bands and assign it to the operator of the new system. However, this is not always possible. For example, if the resource power Si provider has only a 5 MHz band, it is difficult to allocate such a frequency band.
[0007] 本発明は、上記の問題点に鑑みてなされたものであり、その課題は、シングルキヤリ ァ方式の第 1の通信システム及びマルチキャリア方式の第 2の通信システムが少なく とも一部の周波数帯域を共用しながら併存することを可能にする送信装置及び受信 装置を提供することである。  [0007] The present invention has been made in view of the above problems, and the problem is that at least a part of the first communication system of the single carrier system and the second communication system of the multicarrier system are used. The present invention provides a transmission device and a reception device that can coexist while sharing a frequency band.
課題を解決するための手段  Means for solving the problem
[0008] 本発明では、シングルキャリア方式の第 1の通信システム及びマルチキャリア方式 の第 2の通信システムで使用可能な送信装置が使用される。本装置は、シングルキヤ リアのパケットを下りチャネルで送信し、第 1の再送待機期間経過後に、要求に応じ てシングルキャリアのパケットを再送する第 1再送手段と、マルチキャリアのパケットを 下りチャネルで送信し、第 2の再送待機期間経過後に、要求に応じてマルチキャリア のパケットを再送する第 2再送手段とを備える。前記第 2再送手段は、前記第 1の再 送待機期間の間に、マルチキャリアのパケットを 1つ以上送信する。 [0008] In the present invention, a transmission apparatus that can be used in the first communication system of the single carrier scheme and the second communication system of the multicarrier scheme is used. This apparatus transmits a single carrier packet on a downlink channel, and after the first retransmission waiting period has elapsed, a first retransmission means for resending the single carrier packet on demand, and a multicarrier packet on the downlink channel Transmit and after the second retransmission waiting period elapses Second retransmitting means for retransmitting the packet. The second retransmission means transmits one or more multi-carrier packets during the first retransmission waiting period.
発明の効果  The invention's effect
[0009] 本発明によれば、シングルキャリア方式の第 1の通信システム及びマルチキャリア方 式の第 2の通信システムが、同一地域で少なくとも一部の周波数帯域を共用できる。 図面の簡単な説明  [0009] According to the present invention, the first communication system of the single carrier system and the second communication system of the multi carrier system can share at least some frequency bands in the same region. Brief Description of Drawings
[0010] [図 1A]周波数帯域の一例を示す図である。 FIG. 1A is a diagram showing an example of a frequency band.
[図 1B]周波数帯域の一例を示す図である。  FIG. 1B is a diagram showing an example of a frequency band.
[図 2]本発明の一実施例による送信機の全体図を示す。  FIG. 2 shows an overall view of a transmitter according to an embodiment of the present invention.
[図 3]本発明の一実施例による第 1及び第 2のベースバンド処理部の詳細を示す図で ある。  FIG. 3 is a diagram showing details of first and second baseband processing units according to an embodiment of the present invention.
[図 4]第 1,第 2の通信システムで使用される信号の周波数スペクトルを示す図である  FIG. 4 is a diagram showing frequency spectra of signals used in the first and second communication systems.
[図 5]図 2, 3の送信機によって送信されるパケットの概念図を示す。 FIG. 5 shows a conceptual diagram of a packet transmitted by the transmitter of FIGS.
[図 6]パケットを送信する別の態様を示す図である。  FIG. 6 is a diagram showing another mode of transmitting a packet.
[図 7]本発明の一実施例による第 1及び第 2のベースバンド処理部の詳細を示す図で ある。  FIG. 7 is a diagram showing details of first and second baseband processing units according to an embodiment of the present invention.
[図 8]本実施例による送信機から送信されるパケットの概念図を示す。  FIG. 8 shows a conceptual diagram of a packet transmitted from the transmitter according to the present embodiment.
[図 9]本発明の一実施例によるベースバンド処理部の詳細を示す図である。  FIG. 9 is a diagram showing details of a baseband processing unit according to an embodiment of the present invention.
[図 10]図 9に示されるベースバンド処理部よりも更に処理要素の共通化を図った送信 機を示す。  FIG. 10 shows a transmitter in which the processing elements are made more common than the baseband processing unit shown in FIG.
[図 11]本発明の一実施例による受信機の全体図を示す。  FIG. 11 is an overall view of a receiver according to an embodiment of the present invention.
[図 12]図 11の第 1のベースバンド処理部の詳細を示す。  FIG. 12 shows details of the first baseband processing unit in FIG. 11.
[図 13]図 11の第 2のベースバンド処理部の詳細を示す。  FIG. 13 shows details of the second baseband processing section in FIG. 11.
[図 14]本発明の一実施例による受信機のベースバンド処理部を示す。  FIG. 14 shows a baseband processing unit of a receiver according to an embodiment of the present invention.
[図 15]VSCRF— CDMA方式の送信機に使用される拡散部のブロック図を示す。  [FIG. 15] A block diagram of a spreading unit used in a VSCRF—CDMA transmitter.
[図 16] VSCRC— CDMA方式の受信機に使用される逆拡散部のブロック図を示す。  FIG. 16 shows a block diagram of a despreading unit used in a VSCRC-CDMA receiver.
[図 17]VSCRF— CDMA方式での主要な動作に関する説明図である。 符号の説明 FIG. 17 is an explanatory diagram relating to main operations in the VSCRF-CDMA system. Explanation of symbols
201, 202 第 1, 2のベースバンド処理部; 204 多重部; 206 RF送信部; 2 10 ディジタルアナログ変換部; 212 直交変調器; 214 局部発振器; 216 バ ンドパスフィルタ; 218 ミキサ; 220 局部発振器; 222 バンドパスフィルタ; 2 24 電力増幅器;  201, 202 First and second baseband processing units; 204 multiplexing unit; 206 RF transmission unit; 2 10 digital-to-analog conversion unit; 212 quadrature modulator; 214 local oscillator; 216 band-pass filter; 218 mixer; 222 bandpass filter; 2 24 power amplifier;
302 畳込み符号器; 304 データ変調部; 306, 308 拡散部; 310 多重部 ; 312 帯域制限フィルタ; 322 ターボ符号器; 324 データ変調器; 326 拡 散部; 330 多重部; 332 帯域制限フィルタ 332 ; 334 送信 TTI制御部; 34 2 ターボ符号器; 344 データ変調器; 345 インターリーバ; 347 直並列変換 部; 349 拡散部; 350 高速逆フーリエ変換部; 352 ガードインターバル挿入 部; 354 送信 TTI制御部;  302 convolutional encoder; 304 data modulation unit; 306, 308 spreading unit; 310 multiplexing unit; 312 band-limiting filter; 322 turbo encoder; 324 data modulator; 326 spreading unit; 330 multiplexing unit; 334 transmission TTI control unit; 34 2 turbo encoder; 344 data modulator; 345 interleaver; 347 serial-parallel conversion unit; 349 spreading unit; 350 fast inverse Fourier transform unit; 352 guard interval insertion unit; 354 transmission TTI control unit ;
362 畳込み符号器 364 データ変調器 365 インターリーバ 365 ; 367 直並 列変換部; 369 拡散部 多重部 348 ;  362 convolutional encoder 364 data modulator 365 interleaver 365; 367 series-parallel conversion unit; 369 spreading unit multiplexing unit 348;
902 インターリーバ; 904 高速フーリエ変換部; 906 帯域制限フィルタ; 902 interleaver; 904 fast Fourier transform unit; 906 band limiting filter;
1102 RF受信部; 1111, 1112 第 1,第 2のベースノ ンド処理部; 1103 低 雑音増幅器; 1104 ミキサ; 1105 局部発振器; 1106 帯域通過フィルタ; 1 107 自動利得制御部; 1108 直交検波器; 1109 局部発振器; 1110 アナ ログディジタル変換部; 1102 RF receiver; 1111, 1112 1st and 2nd base node processor; 1103 Low noise amplifier; 1104 Mixer; 1105 Local oscillator; 1106 Bandpass filter; 1 107 Automatic gain controller; 1108 Quadrature detector; 1109 Local Oscillator; 1110 Analog to digital converter;
1202 帯域制限フィルタ; 1204 ノ スサーチャ; 1206 逆拡散部; 1208 チ ャネル推定部; 1210 レーク合成部 1210 ; 1212 合成部; 1214 ターボデコ ーダ;  1202 Band-limiting filter; 1204 Nosser; 1206 Despreading unit; 1208 Channel estimation unit; 1210 Lake synthesis unit 1210; 1212 synthesis unit; 1214 Turbo decoder;
1302 シンボルタイミング検出部; 1304 ガードインターノ ル除去部; 1306 高速フーリエ変換部; 1308 デマルチプレクサ; 1310 チャネル推定部; 1312 逆拡散部; 1314 並直列変換部; 1316 逆拡散部; 1318, 1319 合成部; 1320 ディンタリーノ ; 1322 ターボ符号器; 1324 ビタビデコーダ;  1302 Symbol timing detection unit; 1304 Guard internal removal unit; 1306 Fast Fourier transform unit; 1308 Demultiplexer; 1310 Channel estimation unit; 1312 Despreading unit; 1314 Parallel-serial conversion unit; 1316 Despreading unit; 1318, 1319 Combining unit 1320 Dintarino 1322 Turbo encoder 1324 Viterbi decoder
1402 デマルチプレクサ; 1403 帯域制限フィルタ; 1404 高速逆フーリエ変 換部; 1406 ディンタリーバ;  1402 Demultiplexer; 1403 Band-limiting filter; 1404 Fast inverse Fourier transform unit;
1602 拡散部; 1612, 1614 乗算部; 1604 繰り返し合成部; 1606 移相 部; 1602 Spreading unit; 1612, 1614 Multiplying unit; 1604 Iterative synthesis unit; 1606 Phase shift Part;
1702 移相部; 1704 繰り返し合成部; 1706 逆拡散部;  1702 Phase shift part; 1704 Iterative synthesis part; 1706 Despreading part;
1802 圧縮前のデータシーケンス; 1804 圧縮及び繰り返されたデータシーケ ンス; 1806 全移動局に関する上りリンクの周波数スペクトル  1802 Data sequence before compression; 1804 Compressed and repeated data sequence; 1806 Uplink frequency spectrum for all mobile stations
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 本発明の一態様によれば、シングルキャリアのパケットは、第 1の再送待機期間経 過後に、要求に応じて再送される。マルチキャリアのパケットも、第 2の再送待機期間 経過後に、要求に応じて再送される。第 1の再送待機期間の間に、マルチキャリアの パケットが 1つ以上送信される。シングルキャリアのパケットとマルチキャリアのパケット は、時間的に異なるタイムスロットで送信されるので、両者の信号は互いに干渉せず に送信される。第 1の再送待機期間内に、同一システムのパケットだけでなぐ他シス テムのパケットをも送信することで、両システムの併存を実現することができる。従って 、例えば、図 1 (B)にしめされるように未割当の帯域が無くても、既存の W— CDMA 方式の帯域を利用して、同一地域に OFCDM方式のシステムを併存させることがで きる。また、第 1の通信システムに関し、第 1の再送待機期間より遅れてパケットが再 送されることはないので、新式の第 2の通信システムが併存していたとしても、旧式の 第 1の通信システムは従来と同様に運用できる。  [0012] According to one aspect of the present invention, a single carrier packet is retransmitted in response to a request after the first retransmission waiting period has elapsed. Multi-carrier packets are also retransmitted upon request after the second retransmission wait period. One or more multicarrier packets are transmitted during the first retransmission wait period. Since single carrier packets and multicarrier packets are transmitted in different time slots, both signals are transmitted without interfering with each other. Coexistence of both systems can be realized by transmitting other system packets in addition to the same system packets within the first retransmission waiting period. Therefore, for example, even if there is no unallocated band as shown in Fig. 1 (B), the OFCDM system can coexist in the same region using the existing W-CDMA band. wear. In addition, since the packet is not retransmitted later than the first retransmission waiting period for the first communication system, even if the new second communication system coexists, the old first communication The system can be operated as before.
[0013] 本発明の一態様によれば、シングルキャリアのパケット 1つの送信時間間隔が、マ ルチキャリアのパケット複数個の送信時間間隔に等しい。また、シングルキャリアのパ ケット 1つとマルチキャリアのパケット複数個が交互に送信される。  [0013] According to one aspect of the present invention, the transmission time interval of a single carrier packet is equal to the transmission time intervals of a plurality of multicarrier packets. One single-carrier packet and multiple multi-carrier packets are sent alternately.
[0014] 本発明の一態様によれば、第 1の通信システムの制御チャネル力 第 1及び第 2の 通信システムで共用される。また、前記制御チャネルが、時間的に連続的に送信され る。これにより、リソースを節約することができる。  [0014] According to one aspect of the present invention, the control channel power of the first communication system is shared by the first and second communication systems. The control channel is transmitted continuously in time. Thereby, resources can be saved.
[0015] 本発明の一態様によれば、第 1の通信システム用の第 1の制御チャネルと、第 2の 通信システム用の第 2の制御チャネルとが別個に送信される。また、シングルキャリア のパケットと共に第 1の制御チャネルが送信され、マルチキャリアのパケットと共に第 2 の制御チャネルが送信される。これにより、システム間干渉を非常に低減することがで きる。 [0016] 本発明の一態様によれば、シングルキャリアのパケットを表す信号をフーリエ変換 する手段と、フーリエ変換後の信号を帯域制限するフィルタ手段と、帯域制限後の信 号と、マルチキャリアのパケットを表す信号とを時間多重する手段と、時間多重された 信号を逆フーリエ変換する手段とが、送信装置に更に備えられる。これにより、第 1及 び第 2の通信システムの送信に関連する要素を共用化することができる。また、シン ダルキャリアパケットに関する帯域制限を、周波数領域で行うことで、帯域制限処理 に要する演算負担を軽減できる。 [0015] According to an aspect of the present invention, the first control channel for the first communication system and the second control channel for the second communication system are transmitted separately. In addition, the first control channel is transmitted together with the single carrier packet, and the second control channel is transmitted together with the multicarrier packet. As a result, inter-system interference can be greatly reduced. According to one aspect of the present invention, means for Fourier transforming a signal representing a single carrier packet, filter means for band-limiting the signal after Fourier transformation, a signal after band limitation, and a multicarrier signal The transmission apparatus further includes means for time-multiplexing a signal representing a packet and means for performing inverse Fourier transform on the time-multiplexed signal. As a result, elements related to transmission of the first and second communication systems can be shared. In addition, by performing bandwidth limitation on cinder carrier packets in the frequency domain, the computational burden required for bandwidth limitation processing can be reduced.
[0017] 本発明の一態様によれば、シングルキャリア又はマルチキャリアのパケットを表す信 号の一方を選択し、符号化するエンコード手段が、送信装置に更に備えられる。これ により、エンコード手段を双方のシステムで共用することができる。  [0017] According to an aspect of the present invention, the transmission apparatus further includes an encoding unit that selects and encodes one of signals representing single carrier or multicarrier packets. As a result, the encoding means can be shared by both systems.
[0018] 本発明の一態様によれば、シングルキャリア方式の第 1の通信システム及びマルチ キャリア方式の第 2の通信システムで使用可能な送信装置が、シングルキャリアのパ ケットを表す信号をフーリエ変換し、帯域制限し、マルチキャリアのパケットを表す信 号と時間多重し、多重化された信号を逆フーリエ変換した後に送信する場合に、該 送信された信号を受信する受信装置は、受信した信号をフーリエ変換し、シングルキ ャリアのパケットを表す信号とマルチキャリアのパケットを表す信号とに時間的に分離 し、シングルキャリアのパケットを表す信号を逆フーリエ変換する。  [0018] According to one aspect of the present invention, a transmitter usable in a first communication system using a single carrier scheme and a second communication system using a multicarrier scheme performs Fourier transform on a signal representing a single carrier packet. Then, when the bandwidth is limited, time-multiplexed with a signal representing a multi-carrier packet, and the multiplexed signal is transmitted after inverse Fourier transform, the receiving device that receives the transmitted signal receives the received signal. Is then temporally separated into a signal representing a single carrier packet and a signal representing a multicarrier packet, and a signal representing a single carrier packet is inverse Fourier transformed.
実施例 1  Example 1
[0019] 図 2は、本発明の一実施例による送信機の全体図を示す。送信機は、典型的には 基地局に設けられ、下りチャネルを送信するが、移動局に設けられてもよい。本実施 例では、送信機は、 W— CDMA方式のパケットと、 OFCDM方式のパケットとを送信 するが、より一般的には、シングルキャリアのパケットと、マルチキャリアのパケットとを 送信する送信機として拡張可能である。  [0019] FIG. 2 shows an overall view of a transmitter according to one embodiment of the present invention. The transmitter is typically provided in a base station and transmits a downlink channel, but may be provided in a mobile station. In this embodiment, the transmitter transmits a W-CDMA packet and an OFCDM packet. More generally, the transmitter transmits a single carrier packet and a multicarrier packet. It is extensible.
[0020] 送信機は、第 1のベースバンド処理部 201と、第 2のベースバンド処理部 202と、多 重部 204と、 RF送信部 206とを有する。 RF送信部 206は、ディジタルアナログ変換 部 210と、直交変調器 212と、局部発振器 214と、バンドパスフィルタ 216と、ミキサ 2 18と、局部発振器 220と、バンドパスフィルタ 222と、電力増幅器 224とを有する。  [0020] The transmitter includes a first baseband processing unit 201, a second baseband processing unit 202, a multiplexing unit 204, and an RF transmission unit 206. The RF transmitter 206 includes a digital-analog converter 210, a quadrature modulator 212, a local oscillator 214, a bandpass filter 216, a mixer 218, a local oscillator 220, a bandpass filter 222, and a power amplifier 224. Have
[0021] 第 1のベースバンド処理部 201は、後述されるように、 W— CDMA方式に関するべ ースバンドの信号処理部であり、 HSDPA方式に関する信号処理を行う。例えば、 A MCや ARQで必要なパラメータが決定される。また、インターネットプロトコル (IP)に おけるマッピングや、 MACレイヤ及び物理レイヤに関する信号処理も行われる。 [0021] The first baseband processing unit 201, as will be described later, is based on the W-CDMA scheme. A high-band signal processing unit that performs signal processing related to the HSDPA system. For example, necessary parameters are determined by AMC and ARQ. Also, mapping in the Internet Protocol (IP) and signal processing related to the MAC layer and physical layer are performed.
[0022] 第 2のベースバンド処理部 202は、後述されるように、 OFCDM方式に関するベー スバンドの信号処理部である。この信号処理部でも、例えば、 AMCや ARQで必要 なパラメータの決定、インターネットプロトコルにおけるマッピング、 MACレイヤ及び 物理レイヤに関する信号処理等が行われる。  [0022] The second baseband processing unit 202 is a baseband signal processing unit related to the OFCDM system, as will be described later. In this signal processing unit, for example, determination of parameters necessary for AMC and ARQ, mapping in the Internet protocol, signal processing for the MAC layer and the physical layer, and the like are performed.
[0023] 多重部 204は、第 1及び第 2のベースバンド処理部 201, 202から出力される信号 の一方を選択し、出力することで、それらの信号を時間多重する。  The multiplexing unit 204 selects and outputs one of the signals output from the first and second baseband processing units 201 and 202, thereby time-multiplexing those signals.
[0024] RF送信部 206は、送信対象のベースバンドの信号を無線信号として送信するため の処理を行う。ディジタルアナログ変換部(DZA)は、ディジタル信号をアナログ信号 に変換する。直交変調器 210は、そこに入力された信号から、中間周波数の同相成 分 (I)及び直交成分 (Q)を生成する。バンドパスフィルタ 212は、中間周波数帯域に 対する余分な周波数成分を除去する。ミキサ 218は、局部発振器 220を用いて、中 間波数の信号を高周波数の信号に変換 (アップコンバート)する。バンドパスフィルタ 222は余分な周波数成分を除去する。電力増幅器 224は、アンテナ 226から無線送 信を行うために、信号の電力を増幅する。  [0024] The RF transmission unit 206 performs processing for transmitting a baseband signal to be transmitted as a radio signal. The digital-analog converter (DZA) converts digital signals into analog signals. The quadrature modulator 210 generates an in-phase component (I) and a quadrature component (Q) having an intermediate frequency from the signal input thereto. The band pass filter 212 removes excess frequency components for the intermediate frequency band. The mixer 218 uses the local oscillator 220 to convert (up-convert) the intermediate frequency signal into a high frequency signal. The bandpass filter 222 removes excess frequency components. The power amplifier 224 amplifies signal power in order to perform radio transmission from the antenna 226.
[0025] 図 3は、本発明の一実施例による第 1及び第 2のベースバンド処理部 201, 202の 詳細を示す。この例では、 W— CDMA方式のシステム(第 1の通信システムとする) 用の制御チャネル力 OFCDM方式のシステムにも共用される。第 1のベースバンド 処理部 201は、畳込み符号器 302と、データ変調部 304と、拡散部 306, 308と、多 重部 310と、帯域制限フィルタ 312とを有する。また、第 1のベースバンド処理部 201 は、ターボ符号器 322と、データ変調器 324と、拡散部 326と、多重部 330と、帯域 制限フィルタ 332と、送信 TTI制御部 334とを有する。第 2のベースバンド処理部 20 2は、ターボ符号器 342と、データ変調器 344と、インターリーバ 345と、直並列変換 部 347と、拡散部 349と、高速逆フーリエ変換部 350と、ガードインターバル挿入部 3 52と、送信 TTI制御部 354とを有する。  FIG. 3 shows details of the first and second baseband processing units 201 and 202 according to an embodiment of the present invention. In this example, it is also used for the control channel power OFCDM system for W-CDMA system (the first communication system). The first baseband processing unit 201 includes a convolutional encoder 302, a data modulation unit 304, spreading units 306 and 308, a multiplexing unit 310, and a band limiting filter 312. The first baseband processing unit 201 includes a turbo encoder 322, a data modulator 324, a spreading unit 326, a multiplexing unit 330, a band limiting filter 332, and a transmission TTI control unit 334. The second baseband processing unit 202 includes a turbo encoder 342, a data modulator 344, an interleaver 345, a serial-parallel conversion unit 347, a spreading unit 349, a fast inverse Fourier transform unit 350, a guard interval It has an insertion unit 3 52 and a transmission TTI control unit 354.
[0026] 畳込み符号器 302は、制御チャネルで伝送されるデータの誤り耐性を高めるため の符号化を行う。データ変調器 304は、制御チャネルを例えば QPSK変調方式で変 調する。適切ないかなる変調方式が採用されてもよいが、制御チャネルの情報量は 比較的少ないので、本実施例では、変調多値数の少ない QPSK変調方式が採用さ れている。拡散部 306は、制御チャネルに所定の拡散符号を乗算することで、符号 拡散を行う。同様に、拡散部 308は、パイロットチャネルに所定の拡散符号を乗算す ることで、符号拡散を行う。多重部 310は、拡散済みの制御チャネル及び拡散済み のパイロットチャネルを多重化する。多重化は、時間多重、周波数多重及び符号多 重の 1以上を用いて行われてもよい。帯域制限フィルタ 312は、例えばルートナイキ ストフィルタ(Root Nyquist Filter)から構成され、帯域制限を行う。 [0026] The convolutional encoder 302 increases the error resilience of data transmitted on the control channel. Is encoded. The data modulator 304 modulates the control channel using, for example, a QPSK modulation method. Any suitable modulation scheme may be adopted, but since the amount of information of the control channel is relatively small, in this embodiment, the QPSK modulation scheme with a small number of modulation multi-values is adopted. The spreading unit 306 performs code spreading by multiplying the control channel by a predetermined spreading code. Similarly, spreading section 308 performs code spreading by multiplying a pilot channel by a predetermined spreading code. Multiplexer 310 multiplexes the spread control channel and the spread pilot channel. Multiplexing may be performed using one or more of time multiplexing, frequency multiplexing, and code multiplexing. The band limiting filter 312 is composed of, for example, a root Nyquist filter, and performs band limiting.
[0027] 第 1のベースバンド処理部 201のターボ符号器 322は、データチャネルで伝送され るデータの誤り耐性等を向上させるための符号ィ匕を行う。データ変調器 324は、送信 データを適切な変調方式で変調する。変調方式は、例えば、 QPSK, 16QAM、 64 QAMその他の適切ないかなる変調方式でもよい。拡散部 326は、データチャネルを 符号拡散する。多重部 330は、必要に応じて、符号拡散されたパイロットチャネル及 びデータチャネルを多重化する。例えば、制御チャネルとデータチャネルの送信ビー ムが異なり、両者の伝搬経路が著しく異なる場合には、制御チャネル用のノ ィロット チャネルに加えて、データチャネル用のパイロットチャネルが送信されてもよい。帯域 制限フィルタ 332は、例えばルートナイキストフィルタ力も構成され、帯域制限を行う。 送信 TTI制御部 334は、 W— CDMA方式の第 1のシステムでの送信時間間隔 (TTI : Transmission Time Interval)を基準に、データチャネルを多重部 204に与え る。 TTIは、パケット 1つの持続時間を定める(典型的には、 1つの TTI= 1つのバケツ トの持続時間 である。 ) ο第 1の通信システムの TTIは、例えば 2msとしてもよい。送 信 TTI制御部の動作の詳細については、後述される。  [0027] The turbo encoder 322 of the first baseband processing unit 201 performs code encoding for improving error resilience of data transmitted through the data channel. The data modulator 324 modulates the transmission data with an appropriate modulation method. The modulation scheme may be, for example, QPSK, 16QAM, 64 QAM, or any other suitable modulation scheme. The spreading unit 326 code spreads the data channel. Multiplexer 330 multiplexes the code-spread pilot channel and data channel as necessary. For example, when the transmission channels of the control channel and the data channel are different and the propagation paths of the two are significantly different, a pilot channel for the data channel may be transmitted in addition to the pilot channel for the control channel. The band limiting filter 332 is also configured with a root Nyquist filter force, for example, and performs band limiting. The transmission TTI control unit 334 gives the data channel to the multiplexing unit 204 on the basis of the transmission time interval (TTI: Transmission Time Interval) in the first W-CDMA system. TTI defines the duration of one packet (typically one TTI = the duration of one bucket). Ο The TTI of the first communication system may be 2 ms, for example. Details of the operation of the transmission TTI control unit will be described later.
[0028] 同様に、第 2のベースバンド処理部のターボ符号器 342は、 OFCDM方式のシス テム(第 2の通信システムとする。 )のデータチャネルで伝送されるデータの誤り耐性 等を向上させるための符号ィ匕を行う。データ変調器 344は、送信データを適切な変 調方式で変調する。変調方式は、例えば、 QPSK, 16QAM、 64QAMその他の適 切ないかなる変調方式でもよい。インターリーバ 345は、送信するデータチャネルを 表す信号の並ぶ順序を変更する。直並列変換部 (SZP) 347は、直列的な信号系 列 (ストリーム)を並列的な複数の信号系列に変換する。拡散部 349は、データチヤネ ルを符号拡散する。高速逆フーリエ変換部 350は、入力された信号を高速逆フーリ ェ変換し、 OFDM方式の変調を行う。ガードインターバル挿入部 352は、送信する 信号にガードインターバルを付加することで、 OFDM方式におけるシンボルを作成 する。周知のように、ガードインターバルは、伝送するシンボルの先頭又は末尾の一 部を複製することによって得られる。送信 ΤΠ制御部 354は、第 2の通信システムで の送信時間間隔 (TTI)を基準に、データチャネルを多重部 204に与える。第 1の通 信システムの場合と同様に、 TTIは、パケット 1つの持続時間を定める(典型的には、 1つの TTI= 1つのパケットの持続時間 である。 ) ο第 2の通信システムの TTIは、例 えば 0. 25msとしてもよい。送信 TTI制御部の動作の詳細についても、後述される。 [0028] Similarly, turbo encoder 342 of the second baseband processing unit improves error tolerance of data transmitted on the data channel of the OFCDM system (referred to as the second communication system). The sign y for The data modulator 344 modulates the transmission data with an appropriate modulation method. The modulation method may be any suitable modulation method such as QPSK, 16QAM, 64QAM, and the like. Interleaver 345 determines the data channel to be transmitted. Change the order of signals to be displayed. The serial-parallel converter (SZP) 347 converts a serial signal sequence (stream) into a plurality of parallel signal sequences. The spreading unit 349 code spreads the data channel. The fast inverse Fourier transform unit 350 performs fast inverse Fourier transform on the input signal and performs OFDM modulation. The guard interval insertion unit 352 creates a symbol in the OFDM scheme by adding a guard interval to the signal to be transmitted. As is well known, the guard interval is obtained by duplicating the beginning or end of the symbol to be transmitted. The transmission / reception control unit 354 provides the data channel to the multiplexing unit 204 based on the transmission time interval (TTI) in the second communication system. As with the first communication system, the TTI defines the duration of one packet (typically one TTI = the duration of one packet). Ο The TTI of the second communication system For example, it may be 0.25 ms. Details of the operation of the transmission TTI control unit will also be described later.
[0029] 第 1のベースバンド処理部 201に入力された制御チャネルは、畳込み符号化され、 QPSK変調され、符号拡散され、拡散済みのパイロットチャネルと共に多重部 310で 多重化される。多重化された信号は帯域制限され、多重部 204に与えられる。  [0029] The control channel input to first baseband processing section 201 is convolutionally encoded, QPSK modulated, code spread, and multiplexed by multiplexing section 310 together with the spread pilot channel. The multiplexed signal is band-limited and provided to the multiplexing unit 204.
[0030] 第 1のベースバンド処理部 201に入力されたデータチャネルは、ターボ符号器 322 で符号化され、変調され、拡散され、帯域制限され、送信 TTI制御部 334に入力され る。送信 TTI制御部 334は、様々なユーザからのデータチャネルをパケット毎に多重 部 204に与える、或いは送信済みのパケットを要求に応じて再送するために再送対 象のパケットを多重部 204に与える。  [0030] The data channel input to first baseband processing section 201 is encoded by turbo encoder 322, modulated, spread, band-limited, and input to transmission TTI control section 334. The transmission TTI control unit 334 provides a data channel from various users to the multiplexing unit 204 for each packet, or provides a retransmission target packet to the multiplexing unit 204 in order to retransmit a transmitted packet in response to a request.
[0031] 第 2のベースバンド処理部 202に入力されたデータチャネルは、ターボ符号器 342 で符号化され、変調され、インターリーバ 345で並べ換えられ、直並列変換部 347で 並列化され、サブキャリア成分毎に拡散される。拡散後のデータチャネルは、高速逆 フーリエ変換部 350により OFDM方式で変調され、変調後の信号にガードインター バルが付加され、送信 TTI制御部 354に入力される。送信 TTI制御部 354は、様々 なユーザ力ものデータチャネルをパケット毎に多重部 204に与える、或いは送信済 みのパケットを要求に応じて再送するために再送対象のパケットを多重部 204に与え る。  [0031] The data channel input to second baseband processing section 202 is encoded by turbo encoder 342, modulated, rearranged by interleaver 345, parallelized by serial-parallel conversion section 347, and subcarriers. Diffused for each component. The spread data channel is modulated by the fast inverse Fourier transform unit 350 using the OFDM method, and a guard interval is added to the modulated signal, which is input to the transmission TTI control unit 354. The transmission TTI control unit 354 provides a data channel having various user capabilities to the multiplexing unit 204 for each packet, or supplies a retransmission target packet to the multiplexing unit 204 in order to retransmit the transmitted packet in response to a request. .
[0032] このようにしてベースバンドの処理がそれぞれなされ、多重部 204で多重化され、 図 2の RF送信部 206を経てアンテナ 226から無線送信される。 [0032] In this way, baseband processing is performed, multiplexed by the multiplexing unit 204, Radio transmission is performed from the antenna 226 via the RF transmission unit 206 in FIG.
[0033] 第 1の通信システム力 送信されるデータチャネルは、シングルキャリアのパケットで ある。第 2の通信システム力も送信されるデータチャネルは、マルチキャリアのパケット である。従って、送信 TTI制御部 334の入力信号と、送信 TTI制御部 354の入力信 号の周波数スペクトル波形は著しく相違する(図 4)。従って、これらの信号が、仮に 同時に同一周波数帯域で送信されたならば、システム間の干渉は非常に大きくなつ てしまうことが予想される。 First Communication System Power A data channel to be transmitted is a single carrier packet. The data channel on which the second communication system is also transmitted is a multi-carrier packet. Therefore, the frequency spectrum waveforms of the input signal of the transmission TTI control unit 334 and the input signal of the transmission TTI control unit 354 are significantly different (FIG. 4). Therefore, if these signals are transmitted simultaneously in the same frequency band, it is expected that the interference between the systems will become very large.
[0034] ところで、 IMT2000のような W—CDMA方式の 3G通信システム(第 1の通信シス テム)では、自動再送要求(ARQ : Automatic Repeat Request)制御方式が採 用され、あるパケットを送信した後に、必要に応じて、所定期間経過後に同一パケット が再送される。この所定期間又は再送を待機している時間 (再送待機期間)は、 5TT 1 (5パケット分)の期間になるよう規格で定められている(言い換えれば、 DSCHのラ ゥンドトリップ時間 (RTT)が 6ΤΠであることを要する。 ) 0この再送待機期間内では、 同一又は異なるユーザに関する別のパケットが送信される。本発明の発明者等は、こ の点に着目し、再送待機期間内に、同一システムのパケットだけでなぐ他システム のパケットをも送信することで、両システムの併存を実現できることを見出した。 [0034] By the way, in a W-CDMA 3G communication system (first communication system) such as IMT2000, an automatic repeat request (ARQ) control method is adopted, and a certain packet is transmitted. If necessary, the same packet is retransmitted after a predetermined period. This predetermined period or the time waiting for retransmission (retransmission waiting period) is defined by the standard to be a period of 5TT 1 (5 packets) (in other words, the DSCH round trip time (RTT) is 6ΤΠ). ) 0 Within this retransmission waiting period, another packet for the same or different user is transmitted. The inventors of the present invention, paying attention to this point, have found that the coexistence of both systems can be realized by transmitting not only the packet of the same system but also the packet of another system within the retransmission waiting period.
[0035] 図 5は、図 2, 3の送信機によって送信されるパケットの概念図を示す。図 5には、制 御チャネルに関するパケットと、第 1及び第 2の通信システムに使用されるデータチヤ ネル用のパケットとが描かれている。図中、水平方向(左右方向)は時間方向を表す 。上述したように、制御チャネルは、第 1及び第 2の通信システムの双方に共用され、 時間的に連続的に送信される。データチャネルに関するパケットは、第 1及び第 2の 通信システムの間で時間多重されて送信される。図示の例では、第 1の通信システム のパケット (シングルキャリアパケット)と、第 2の通信システムのパケット (マルチキヤリ ァパケット)とが交互に送信される様子が示されている。図中 Al, A2,…で示される タイムスロットではシングルキャリアパケットが送信され、 Bl, B2,…で示されるタイム スロットではマルチキャリアパケットが送信される。本実施例では、シングルキャリアパ ケットの TTIは 2msであり、マルチキャリアパケットの TTIは 0. 25msである。拡大図 に示されるように、マルチキャリアパケット用のタイムスロット B (i= l, 2,…;)の各々に は、 8つのタイムスロット B , B , ..., B が含まれている。従って、シングルキャリアパ il i2 i8 [0035] FIG. 5 shows a conceptual diagram of a packet transmitted by the transmitter of FIGS. FIG. 5 shows a packet related to the control channel and a packet for the data channel used in the first and second communication systems. In the figure, the horizontal direction (left-right direction) represents the time direction. As described above, the control channel is shared by both the first and second communication systems and is transmitted continuously in time. Packets related to the data channel are time-multiplexed and transmitted between the first and second communication systems. In the example shown in the figure, a state in which a packet (single carrier packet) of the first communication system and a packet (multicarrier packet) of the second communication system are alternately transmitted is shown. In the figure, single carrier packets are transmitted in the time slots indicated by Al, A2,..., And multicarrier packets are transmitted in the time slots indicated by Bl, B2,. In this embodiment, the TTI of a single carrier packet is 2 ms, and the TTI of a multicarrier packet is 0.25 ms. As shown in the enlarged view, each time slot B (i = l, 2, ...;) for multicarrier packets Contains eight time slots B, B, ..., B. Therefore, single carrier par il i2 i8
ケットを 1つ送信した後に、 8つのマルチキャリアパケットが送信され、その後にシング ルキャリアパケットが再び送信され、以後同様にパケットが送信されるように、送信 TT I制御部 334, 336及び多重部 204が動作する。なお、各通信システムに関する送信 時間間隔 TTIの具体的な数値は、単なる一例に過ぎず、他の様々な値が採用されて ちょい。  After transmitting one packet, eight multi-carrier packets are transmitted, then a single carrier packet is transmitted again, and then the transmission TT I control units 334 and 336 and the multiplexing unit are transmitted in the same manner. 204 works. The specific value of the transmission time interval TTI for each communication system is just an example, and various other values may be adopted.
[0036] このような信号伝送が行われる場合に、第 1の通信システムでは制御チャネル及び データチャネルを良好に受信できる。しかし、この制御チャネルに起因して、第 2の通 信システムのデータチャネルは、ある程度のシステム間干渉を受ける。しかし、制御 チャネルの情報量は少ないので、そのような干渉は、多くの場合に無視できる程度で あろう。  [0036] When such signal transmission is performed, the first communication system can satisfactorily receive the control channel and the data channel. However, due to this control channel, the data channel of the second communication system is subject to some intersystem interference. However, because the amount of information in the control channel is small, such interference will be negligible in many cases.
[0037] パケットの再送については、図示されているように、シングルキャリアパケットは、そ の送信後 5TTI経過後に同一のシングルキャリアパケットが再送される。例えば、タイ ムスロット A1で送信されたシングルキャリアパケットは、タイムスロット A4で再送される 。従って、第 1の通信システムに関する既存の仕様は変更しなくてもよい。マルチキヤ リアパケットも 5ΤΠ後に(第 2の通信システムでの ΤΠ後に)再送されるものとする。こ の場合に、図 5の拡大図に示されているように、タイムスロット A2直後のタイムスロット B2内の B で送信されたパケットは、タイムスロット B で再送される。同様に、タイムス  [0037] Regarding retransmission of a packet, as shown in the figure, a single carrier packet is retransmitted in the same single carrier packet after 5 TTIs have elapsed since the transmission. For example, a single carrier packet transmitted in time slot A1 is retransmitted in time slot A4. Therefore, the existing specifications regarding the first communication system need not be changed. The multi-carrier packet is also retransmitted after 5 days (after the second communication system). In this case, as shown in the enlarged view of FIG. 5, the packet transmitted in B in time slot B2 immediately after time slot A2 is retransmitted in time slot B. Similarly, times
21 27  21 27
ロット B で送信されたパケットは、タイムスロット B で再送される。しかしながら、タイ Packets sent in lot B are retransmitted in time slot B. However, Thailand
22 28 22 28
ムスロット B で送信されたパケットは、タイムスロット A3直後のタイムスロット B3内の B  The packet sent in time slot B is sent to B in time slot B3 immediately after time slot A3.
23  twenty three
で再送される。同様に、タイムスロット B , B , B , B , B で送信されたパケット Will be resent at Similarly, packets sent in time slots B, B, B, B, B
31 24 25 26 27 28 31 24 25 26 27 28
も、タイムスロット A3の後のタイムスロット B , B , B , B , B で再送される。従つ  Are also retransmitted in time slots B, B, B, B, B after time slot A3. Follow
32 33 34 35 36  32 33 34 35 36
て、タイムスロット B , B で送信されたパケットは、遅滞なく再送されるが、タイムス口  Packets sent in time slots B and B are retransmitted without delay, but
21 22  21 22
ット B 〜B で送信されたパケットの再送は、 2ms (8パケット分)程度遅延してしまう。  Retransmission of packets transmitted in the base stations B to B is delayed by about 2 ms (8 packets).
23 28  23 28
しかしながら、この遅延は、第 1の通信システムの再送帯域期間(5TTI= 10ms)より はるかに短ぐこの程度の遅延を許容することで、システムオーバーレイ(overlay)を 実現することができる点に留意を要する。  However, it should be noted that this delay can achieve a system overlay (overlay) by allowing this delay to be much shorter than the retransmission bandwidth period of the first communication system (5 TTI = 10 ms). Cost.
[0038] 図 5では、第 1及び第 2の通信システムのパケットが、 2ms毎に交互に送信されてい たが、本発明はそのような態様に限定されない。図 6は、別の送信方法の態様を示す 図である。図 6では、第 1及び第 2の通信システムのパケットが、 6ms毎に交互に送信 されている。即ち、シングルキャリアパケットがタイムスロット Al, A2, A3にわたつて 3 個送信された後に、マルチキャリアパケットがタイムスロット Bl, B2, B3にわたつて 8 X 3 = 24個送信され、以下同様に送信される。図示の他にも、適切ないかなる送信 方法が使用されてもよい。より一般的には、シングルキャリアパケットに関する再送待 機期間の間に、 1以上のシングルキャリアパケット及び 1以上のマルチキャリアパケット が送信されてもよい。 [0038] In FIG. 5, packets of the first and second communication systems are alternately transmitted every 2 ms. However, the present invention is not limited to such an embodiment. FIG. 6 is a diagram showing another aspect of the transmission method. In FIG. 6, the packets of the first and second communication systems are transmitted alternately every 6 ms. That is, after three single carrier packets are transmitted over time slots Al, A2, A3, 8 x 3 = 24 multicarrier packets are transmitted over time slots Bl, B2, B3, and so on. Is done. In addition to the illustration, any suitable transmission method may be used. More generally, one or more single carrier packets and one or more multicarrier packets may be transmitted during the retransmission waiting period for single carrier packets.
実施例 2  Example 2
[0039] 図 7は、本発明の一実施例による第 1及び第 2のベースバンド処理部 201, 202を 示す。図 3に関して説明済みの要素については、同様の参照番号が付され、重複的 な説明は省略される。本実施例では、第 1及び第 2の通信システムの各々に制御チ ャネルが別々に用意され、それらは、データチャネルと共に時間多重されながら送信 される。尚、図 3の多重部 310, 330は、図 7では多重部 310として一体的に描かれ ている。このため、図 7には、第 2の制御チャネルに関し、畳込み符号器 362と、デー タ変調器 364と、インターリーバ 365と、直並列変換部 367と、拡散部 369と、多重部 348とが描かれている。これらの要素についても、説明済みの要素と同様であるため 、重複的な説明は省略される。  FIG. 7 shows the first and second baseband processing units 201 and 202 according to an embodiment of the present invention. Elements already described with respect to Figure 3 are given similar reference numerals and redundant description is omitted. In this embodiment, a control channel is prepared separately for each of the first and second communication systems, and these are transmitted while being time-multiplexed with the data channel. Note that the multiplexing units 310 and 330 in FIG. 3 are depicted integrally as the multiplexing unit 310 in FIG. Therefore, in FIG. 7, the convolutional encoder 362, the data modulator 364, the interleaver 365, the serial / parallel converter 367, the spreading unit 369, and the multiplexing unit 348 are related to the second control channel. Is drawn. Since these elements are the same as those already described, redundant description is omitted.
[0040] 図 8は、本実施例による送信機から送信されるパケットの概念図を示す。図示される ように、データチャネルは図 5と同様に、第 1及び第 2の通信システムの間で交互に切 り換えて送信されている。本実施例では、制御チャネルもその切換に合わせて交互 に送信される。即ち、シングルキャリアパケットと制御チャネルが多重部 310で多重化 され、同時に送信開始され、同時に送信停止される。同様に、マルチキャリアパケット と制御チャネルが多重部 348で多重化され、同時に送信開始され、同時に送信停止 される。このような送信方法を採用することで、制御チャネルに起因するシステム間干 渉を抑制することができる。  FIG. 8 shows a conceptual diagram of a packet transmitted from the transmitter according to the present embodiment. As shown in the figure, the data channel is transmitted alternately between the first and second communication systems, as in FIG. In this embodiment, the control channel is also transmitted alternately according to the switching. That is, the single carrier packet and the control channel are multiplexed by the multiplexing unit 310, and transmission is started simultaneously and transmission is stopped simultaneously. Similarly, the multicarrier packet and the control channel are multiplexed by the multiplexing unit 348, and transmission is started simultaneously and transmission is stopped simultaneously. By adopting such a transmission method, inter-system interference caused by the control channel can be suppressed.
実施例 3  Example 3
[0041] 図 9は、本発明の一実施例によるベースバンド処理部の詳細を示す。図 3に関して 説明済みの要素については、同様の参照番号が付され、重複的な説明は省略され る。図 9では、簡単のため、制御チャネルに関する要素は描かれていない点に留意を 要する。図 9には、第 1のベースバンド処理部 201側に、インターリーバ 902と、高速 フーリエ変換部 904と、帯域制限フィルタ 906とが描かれている。 FIG. 9 shows details of a baseband processing unit according to an embodiment of the present invention. Regarding Figure 3 Elements that have already been described are given similar reference numbers, and redundant descriptions are omitted. It should be noted that in Fig. 9, the elements related to the control channel are not drawn for simplicity. In FIG. 9, an interleaver 902, a fast Fourier transform unit 904, and a band limiting filter 906 are depicted on the first baseband processing unit 201 side.
[0042] インターリーバ 902は、データチャネルの信号の並び方を所定のパターンに従って 変更する。 [0042] Interleaver 902 changes the arrangement of data channel signals according to a predetermined pattern.
[0043] 高速フーリエ変換部 904は、拡散後のデータチャネルを、高速フーリエ変換ずる。  [0043] The fast Fourier transform unit 904 performs fast Fourier transform on the spread data channel.
これにより、時間領域の入力信号が、周波数領域の信号に変換され、出力される。  As a result, the time domain input signal is converted into a frequency domain signal and output.
[0044] 帯域制限フィルタ 906は、図 3, 7の帯域制限フィルタ 312, 332と同様に帯域制限 を行うが、帯域制限フィルタ 906は、周波数領域で帯域制限を行う点で、それを時間 領域で行う図 3の帯域制限フィルタ 312等と相違する。  [0044] The band limiting filter 906 performs band limiting in the same manner as the band limiting filters 312 and 332 of FIGS. 3 and 7, but the band limiting filter 906 performs band limiting in the frequency domain. This is different from the band limiting filter 312 and the like shown in FIG.
[0045] 本実施例では、多重部 204、高速逆フーリエ変換部 350及びガードインターノ レ 挿入部 352に関する処理力 第 1及び第 2のベースバンド処理部 201, 202に共通 に行われている。このため、送信 TTI制御部 334, 354が入力側に描かれている点 に留意を要する。本実施例では、多重部 204以降の処理力 第 1及び第 2のベース バンド処理部 201, 202に共通に行われ、拡散部 326と帯域制限フィルタ 906の間 に高速フーリエ変換部 904が設けられている。本実施例では、マルチキャリアパケット については説明済みのものと同様であるため、重複的な説明は省略される。シングル キャリアのパケットに関しては、高速フーリエ変換部 904と高速逆フーリエ変換部 350 による処理が行われるので、 OFDM方式による変調はなされないことになる。このよう にすることで、一部の信号処理が共通化され、シングルキャリアパケットの帯域制限 処理は、帯域制限フィルタ 906により、周波数領域で行われる。帯域制限フィルタ 90 6の演算負担は、図 3の帯域制限フィルタ 312等の演算負担よりも非常に軽くなること に特に留意を要する。時間領域での帯域制限処理では、各時点での帯域制限後の 値を求めるために、その時点前後の複数のサンプルを重み付け加算する必要がある 。これに対して、周波数領域での帯域制限処理では、各周波数での帯域制限後の 値は、処理対象の 1つの周波数のサンプルに 1つの重み係数を乗算することで直ち に求めることができる。 [0046] 図 10は、図 9に示されるベースバンド処理部よりも更に、要素の共通化を図った送 信機を示す。説明済みの要素に関する重複的な説明は省略される。図 10では、バッ ファ 1002と、分離部 1004とが新たに描かれている。 In the present embodiment, the processing power relating to the multiplexing unit 204, the fast inverse Fourier transform unit 350, and the guard-inner insertion unit 352 is performed in common to the first and second baseband processing units 201 and 202. Therefore, it should be noted that the transmission TTI control units 334 and 354 are drawn on the input side. In this embodiment, the processing power after the multiplexing unit 204 is performed in common to the first and second baseband processing units 201 and 202, and a fast Fourier transform unit 904 is provided between the spreading unit 326 and the band limiting filter 906. ing. In the present embodiment, the multi-carrier packet is the same as that already described, and therefore a redundant description is omitted. The single carrier packet is processed by the fast Fourier transform unit 904 and the fast inverse Fourier transform unit 350, so that modulation by the OFDM method is not performed. In this way, a part of signal processing is shared, and the band limiting process of the single carrier packet is performed in the frequency domain by the band limiting filter 906. Special attention should be paid to the fact that the calculation load of the band limiting filter 906 is much lighter than that of the band limiting filter 312 in FIG. In the bandwidth limitation processing in the time domain, in order to obtain the value after bandwidth limitation at each time point, it is necessary to weight and add a plurality of samples before and after that time point. On the other hand, in band-limiting processing in the frequency domain, the value after band limitation at each frequency can be obtained immediately by multiplying one sample of one frequency to be processed by one weighting factor. . FIG. 10 shows a transmitter in which elements are further shared as compared with the baseband processing unit shown in FIG. Duplicate explanations for already described elements are omitted. In FIG. 10, a buffer 1002 and a separation unit 1004 are newly drawn.
[0047] バッファ 1002は、シングルキャリアパケット及びマルチキャリアパケットに関するデ ータチャネルを受信し、一時的に格納する。これらは、それぞれの送信時間間隔 TTI に合わせてターボ符号器に選択的に入力される。 [0047] Buffer 1002 receives and temporarily stores data channels for single carrier packets and multicarrier packets. These are selectively input to the turbo encoder in accordance with each transmission time interval TTI.
[0048] 分離部 1004は、シングルキャリアパケットに関するデータチャネルと、マルチキヤリ ァパケットに関するデータチャネルとをそれぞれの時間に合わせて時分割する。 [0048] Separating section 1004 time-divides the data channel related to the single carrier packet and the data channel related to the multi-carrier packet in accordance with each time.
[0049] 図示されるような処理要素の大幅な共通化が実現できるのは、主に、第 1及び第 2 のベースバンド処理部 201, 202からの出力信号力 時間多重されることに基づいて いる。即ち、同時に処理することを要しない処理要素が多いことに起因する。 [0049] Significant sharing of the processing elements as shown in the figure can be realized mainly based on the time-multiplexed output signal power from the first and second baseband processing units 201 and 202. Yes. That is, there are many processing elements that do not require simultaneous processing.
実施例 4  Example 4
[0050] 図 11は、本発明の一実施例による受信機の全体図を示す。このような受信機は、 典型的には移動局に設けられる力 基地局に備えられてもよい。本実施例による受 信機は、図 2, 3, 7の送信機から送信された信号を受信する。本実施例では、この受 信機は移動局に設けられ、信号品質を向上させるために、 2つのアンテナを用いたァ ンテナダイバーシチが行われる。アンテナ毎に受信された信号は、同様な処理要素 で同様に処理されるので、 1つのアンテナに関する信号処理の要素及び機能がそれ らを代表して説明される。移動局は、アンテナの 1つに接続された RF受信部 1102と 、第 1のベースバンド処理部 1111と、第 2のベースバンド処理部 1112とを有する。 R F受信部 1102は、低雑音増幅器 (LNA) 1103と、ミキサ 1104と、局部発振器 1105 と、帯域通過フィルタ 1106と、自動利得制御部 1107と、直交検波器 1108と、局部 発振器 1109と、アナログディジタル変換部 1110とを有する。  [0050] FIG. 11 shows an overall view of a receiver according to an embodiment of the present invention. Such a receiver may be provided in a power base station typically provided in a mobile station. The receiver according to the present embodiment receives signals transmitted from the transmitters of FIGS. In this embodiment, this receiver is provided in a mobile station, and antenna diversity using two antennas is performed in order to improve signal quality. Since signals received for each antenna are similarly processed by similar processing elements, the signal processing elements and functions related to one antenna will be described on behalf of them. The mobile station includes an RF receiving unit 1102 connected to one of the antennas, a first baseband processing unit 1111, and a second baseband processing unit 1112. The RF receiver 1102 includes a low noise amplifier (LNA) 1103, a mixer 1104, a local oscillator 1105, a band pass filter 1106, an automatic gain controller 1107, a quadrature detector 1108, a local oscillator 1109, an analog digital A conversion unit 1110.
[0051] RF受信部 1002は、アンテナで受信した高周波信号に対して、電力増幅、周波数 変換及び帯域制限等の処理を行う。低雑音増幅器 1103は、アンテナで受信した信 号を適切に増幅する。増幅後の信号は、ミキサ 1104及び局部発振器 1105により中 間周波数に変換される (ダウンコンバート)。帯域通過フィルタ 1106は、不要な周波 数成分を除去する。自動利得制御部 (AGC) 1107は、信号レベルが適切に維持さ れるように、増幅器の利得が制御される。直交検波器 1108は、局部発振器 1109を 用いて、受信した信号の同相成分 (I)及び直交成分 (Q)に基づいて、直交復調する 。アナログディジタル変換部 (AZD) 1110は、アナログ信号をディジタル信号に変換 する。 [0051] The RF receiver 1002 performs processing such as power amplification, frequency conversion, and band limitation on the high-frequency signal received by the antenna. The low noise amplifier 1103 appropriately amplifies the signal received by the antenna. The amplified signal is converted to an intermediate frequency by the mixer 1104 and the local oscillator 1105 (down-conversion). The band pass filter 1106 removes unnecessary frequency components. The automatic gain controller (AGC) 1107 ensures that the signal level is maintained properly. As such, the gain of the amplifier is controlled. The quadrature detector 1108 uses the local oscillator 1109 to perform quadrature demodulation based on the in-phase component (I) and the quadrature component (Q) of the received signal. The analog-digital converter (AZD) 1110 converts an analog signal into a digital signal.
[0052] 第 1のベースバンド処理部 1111は、第 1の通信システムであるシングルキャリア方 式の通信システム(例えば、 W— CDMA方式のシステム)に関する信号のベースバ ンドの処理を行う。また、 IP接続や、 MACレイヤ及び物理レイヤに関するプロトコル 処理も行われる。ベースバンドの処理には、例えば、 AMCや ARQで必要なパラメ一 タを判別することも含まれる。  [0052] The first baseband processing unit 1111 performs baseband processing of signals related to a single carrier communication system (for example, a W-CDMA system) which is the first communication system. In addition, IP connection and protocol processing related to the MAC layer and physical layer are also performed. Baseband processing includes, for example, determining necessary parameters using AMC and ARQ.
[0053] 第 2のベースバンド処理部 1112は、第 2の通信システムであるマルチキャリア方式 の通信システム(例えば、 OFCDM方式のシステム)に関する信号のベースバンドの 処理を行う。また、 IP接続や、 MACレイヤ及び物理レイヤに関するプロトコル処理も 行われる。ベースバンドの処理には、例えば、 AMCや ARQで必要なパラメータを判 另 Uすることも含まれる。  [0053] The second baseband processing unit 1112 performs baseband processing of signals related to a multicarrier communication system (for example, OFCDM system) that is the second communication system. In addition, IP connection and protocol processing related to the MAC layer and physical layer are also performed. Baseband processing includes, for example, determining the parameters necessary for AMC and ARQ.
[0054] 移動局は、第 1又は第 2の通信システムに専用の端末であってもよいし、双方のシ ステムに共用可能な端末でもよい。専用の端末は、第 1及び第 2のベースバンド処理 部の何れか一方のみを備える。共用可能な端末は、第 1及び第 2のベースバンド処 理部の双方を備える。  [0054] The mobile station may be a terminal dedicated to the first or second communication system, or may be a terminal that can be shared by both systems. The dedicated terminal includes only one of the first and second baseband processing units. A sharable terminal has both the first and second baseband processing units.
[0055] 図 12は、図 11に示される第 1のベースバンド処理部 1111の詳細を示す。図 12に は、帯域制限フィルタ 1202と、ノ スサーチャ 1204と、逆拡散部 1206と、チャネル推 定部 1208と、レーク合成部 1210と、合成部 1212と、ターボデコーダ 1214とが描か れている。  FIG. 12 shows details of the first baseband processing unit 1111 shown in FIG. In FIG. 12, a band limiting filter 1202, a no searcher 1204, a despreading unit 1206, a channel estimation unit 1208, a rake combining unit 1210, a combining unit 1212, and a turbo decoder 1214 are depicted.
[0056] 帯域制限フィルタ 1202は、例えばルートナイキストフィルタ力も構成され、帯域制限 を行う。パスサーチャ 1204は、マルチパス伝搬路におけるパスを探索する。パスの探 索は、例えば遅延プロファイルを調べることによって行われる。逆拡散部 1206は、パ スのタイミングに合わせて信号を逆拡散する。チャネル推定部 1208は、パスのタイミ ングを利用して、チャネル推定を行う。チャネル推定部 1208は、推定結果に応じて、 伝搬路で生じたフェージングが補償されるように、振幅及び位相を調整するための制 御信号を出力する。レーク合成部 1210は、逆拡散後の信号をパス毎に補償しながら 合成し、出力する。 [0056] The band limiting filter 1202 is also configured with a root Nyquist filter force, for example, and performs band limiting. The path searcher 1204 searches for a path in the multipath propagation path. The path search is performed, for example, by examining a delay profile. The despreading unit 1206 despreads the signal in accordance with the pass timing. The channel estimation unit 1208 performs channel estimation using path timing. The channel estimator 1208 controls the amplitude and phase so as to compensate for fading generated in the propagation path according to the estimation result. Output control signal. The rake combiner 1210 combines and outputs the despread signal while compensating for each path.
[0057] 合成部 1212は、アンテナ毎に得られる受信信号を合成する。適切ないかなる合成 法が採用されてもよい。合成法には、例えば選択法、等利得合成法及び最大比合成 法等が含まれてもよい。  [0057] Combining section 1212 combines received signals obtained for each antenna. Any suitable synthesis method may be employed. The synthesis method may include, for example, a selection method, an equal gain synthesis method, a maximum ratio synthesis method, and the like.
[0058] ターボデコーダ 1214は、受信信号を復号化し、データを復調する。  [0058] The turbo decoder 1214 decodes the received signal and demodulates the data.
[0059] 各アンテナで受信された信号は、上述したようにアンテナ毎に処理される。受信さ れた信号は、 RF受信部で増幅、周波数変換及び帯域制限等の処理を経てディジタ ル信号に変換される。ディジタル信号は、サブキャリア毎に、帯域制限され、逆拡散さ れ、パス毎にレーク合成される。レーク合成後のサブキャリア毎の信号は、各アンテ ナに関して得られ、それらは合成部 1212で合成され、復号され、そして、送信された 信号が復元される。 [0059] A signal received by each antenna is processed for each antenna as described above. The received signal is converted into a digital signal through processing such as amplification, frequency conversion and band limitation in the RF receiver. The digital signal is band-limited for each subcarrier, despread, and rake-combined for each path. A signal for each subcarrier after rake combining is obtained for each antenna, and they are combined and decoded by the combining unit 1212, and the transmitted signal is restored.
[0060] 図 13は、図 11の第 2のベースバンド処理部 1112の詳細を示す。図 13には、シン ボルタイミング検出部 1302と、ガードインターバル除去部 1304と、高速フーリエ変換 部 1306と、デマルチプレクサ又は分離部 1308と、チャネル推定部 1310と、逆拡散 部 1312と、並直列変換部(PZS) 1314と、逆拡散部 1316と、合成部 1318, 1319 と、ディンタリーノ 1320と、ターボ符号器 1322と、ビタビデコーダ 1324とが描かれて いる。  FIG. 13 shows details of the second baseband processing unit 1112 of FIG. FIG. 13 shows a symbol timing detection unit 1302, a guard interval removal unit 1304, a fast Fourier transform unit 1306, a demultiplexer or separation unit 1308, a channel estimation unit 1310, a despreading unit 1312, and a parallel-serial conversion. Portion (PZS) 1314, despreading unit 1316, combining units 1318 and 1319, Dintalino 1320, turbo encoder 1322 and Viterbi decoder 1324 are depicted.
[0061] シンボルタイミング検出部 1302は、ディジタル信号に基づ!/、て、シンボル(シンポ ル境界)のタイミングを検出する。  The symbol timing detection unit 1302 detects the timing of symbols (symbol boundaries) based on the digital signal!
[0062] ガードインターノ レ除去部 1304は、受信した信号力もガードインターバルに相当 する部分を除去する。 [0062] The guard inverter removing unit 1304 removes a portion of the received signal power corresponding to the guard interval.
[0063] 高速フーリエ変換部 1306は、入力された信号を高速フーリエ変換し、 OFDM方式 の復調を行う。これにより、受信信号は、周波数領域の信号に変換される。  [0063] The fast Fourier transform section 1306 performs fast Fourier transform on the input signal, and performs demodulation of the OFDM scheme. As a result, the received signal is converted into a signal in the frequency domain.
[0064] デマルチプレクサ 1308は、受信した信号に多重化されているパイロットチャネル、 制御チャネル及びデータチャネルを分離する。この分離方法は、送信側の多重化( 図 3の多重部 310等での処理内容)に対応して行われる。  [0064] The demultiplexer 1308 separates the pilot channel, control channel, and data channel multiplexed in the received signal. This separation method is performed corresponding to multiplexing on the transmission side (contents of processing in the multiplexing unit 310 and the like in FIG. 3).
[0065] チャネル推定部 1310は、パイロットチャネルを用いて伝搬路の状況を推定し、チヤ ネル変動を補償するように、振幅及び位相を調整するための制御信号を出力する。 この制御信号は、サブキャリア毎に出力される。 [0065] Channel estimation section 1310 estimates the state of the propagation path using the pilot channel, and A control signal for adjusting the amplitude and the phase is output so as to compensate for the channel fluctuation. This control signal is output for each subcarrier.
[0066] 逆拡散部 1312は、チャネル補償済みのデータチャネルをサブキャリア毎に逆拡散 する。コード多重数は C であるとする。  [0066] Despreading section 1312 despreads the channel channel after channel compensation for each subcarrier. The code multiplex number is assumed to be C.
mux  mux
[0067] 並直列変換部 (P/S) 1314は、並列的な信号系列を直列の信号系列に変換する  [0067] Parallel-serial converter (P / S) 1314 converts a parallel signal sequence into a serial signal sequence.
[0068] 逆拡散部 1316は、チャネル補償済みの制御チャネルをサブキャリア毎に逆拡散す る。 [0068] Despreading section 1316 despreads the channel compensated control channel for each subcarrier.
[0069] 合成部 1318, 1319は、アンテナ毎に処理された信号を、選択法、等利得合成法 又は最大比合成法等のような適切な合成法で合成する。  The combining units 1318 and 1319 combine the signals processed for each antenna by an appropriate combining method such as a selection method, an equal gain combining method, or a maximum ratio combining method.
[0070] ディンタリーバ 1320は、信号の並ぶ順序を所定のパターンに従って変更する。所 定のパターンは、送信側のインターリーバ(図 3の 345等)で行われる並べ換えの逆 パターンに相当する。 [0070] Dinthaler 1320 changes the order in which signals are arranged according to a predetermined pattern. The predetermined pattern corresponds to the reverse pattern of reordering performed by the transmitting interleaver (eg 345 in Fig. 3).
[0071] ターボ符号器 1322及びビタビデコーダ 1324は、トラフィック情報データ及び制御 情報データをそれぞれ復号する。  The turbo encoder 1322 and the Viterbi decoder 1324 decode the traffic information data and the control information data, respectively.
[0072] アンテナで受信された信号は、 RF受信部内で増幅、周波数変換、帯域制限、直交 復調等の処理を経てディジタル信号に変換される。ガードインターバルの除去された 信号に対して、高速フーリエ変換部 1306によって OFDM方式の復調が行われる。 復調後の信号は、分離部 1308でパイロットチャネル、制御チャネル及びデータチヤ ネルにそれぞれ分離される。パイロットチャネルは、チャネル推定部に入力され、伝 搬路の変動を補償する制御信号がそこ力 サブキャリア毎に出力される。データチヤ ネルは制御信号を用いて補償され、サブキャリア毎に逆拡散され、直列的な信号に 変換される。変換後の信号は、ディンタリーバ 1320で、インターリーバで施された並 ベ換えと逆パターンで並べ換えられ、ターボ復号器 1322で復号される。制御チヤネ ルも同様に、制御信号によりチャネル変動が補償され、逆拡散され、ビタビデコーダ 1 324で復号される。以後、復元されたデータ及び制御チャネルを利用する信号処理 が行われる。  [0072] The signal received by the antenna is converted into a digital signal through processing such as amplification, frequency conversion, band limitation, quadrature demodulation, and the like in the RF receiver. The signal from which the guard interval is removed is demodulated by the OFDM method by the fast Fourier transform unit 1306. The demodulated signal is separated into a pilot channel, a control channel, and a data channel by a separation unit 1308. The pilot channel is input to the channel estimation unit, and a control signal that compensates for fluctuations in the transmission path is output for each subcarrier. The data channel is compensated using the control signal, despread for each subcarrier, and converted to a serial signal. The converted signal is rearranged in a dinary bar 1320 by a reverse pattern to the rearrangement performed by the interleaver, and decoded by the turbo decoder 1322. Similarly, in the control channel, channel fluctuation is compensated by the control signal, despread, and decoded by the Viterbi decoder 1324. Thereafter, signal processing using the restored data and the control channel is performed.
実施例 5 [0073] 図 14は、本発明の一実施例による受信機のベースバンド処理部を示す。図 12, 1 3で説明済み要素には同様な参照番後が付され、それらに関する重複的な説明は 省略される。本実施例による受信機は、図 9, 10に示される送信機からの信号を受信 する。従って、送信機から送信され、受信機で受信される信号は、シングルキャリアパ ケットとマルチキャリアパケットが時間多重され、その後にフーリエ逆変換された信号 である。図 14には、デマルチプレクサ 1402と、帯域制限フィルタ 1403と、高速逆フ 一リエ変換部 1404と、ディンタリーバ 1406とが新たに描かれている。制御チャネル に関する要素は、図示の簡明化のため描かれていない。 Example 5 FIG. 14 shows a baseband processing unit of a receiver according to an embodiment of the present invention. Elements already described in Figs. 12, 13 are given the same reference numbers, and redundant explanations are omitted. The receiver according to the present embodiment receives signals from the transmitter shown in FIGS. Therefore, the signal transmitted from the transmitter and received by the receiver is a signal obtained by time-multiplexing a single carrier packet and a multicarrier packet and then inversely transforming the Fourier transform. In FIG. 14, a demultiplexer 1402, a band limiting filter 1403, a high-speed inverse-field conversion unit 1404, and a dintariba 1406 are newly drawn. Elements related to the control channel are not drawn for the sake of simplicity.
[0074] デマルチプレクサ 1402は、図 13で説明済みのデマルチプレクサ 1308と同様に、 受信した信号に多重化されて!/、るパイロットチャネル、制御チャネル及びデータチヤ ネルを分離する。更に、デマルチプレクサ 1402は、時間多重されているシングルキ ャリアパケットをも時間的に分離し、出力する。  [0074] Similar to the demultiplexer 1308 described in FIG. 13, the demultiplexer 1402 separates the pilot channel, the control channel, and the data channel that are multiplexed into the received signal! /. Further, the demultiplexer 1402 also temporally separates and outputs the single carrier packet that has been time multiplexed.
[0075] 帯域制限フィルタ 1403は、そこに入力された信号 (時間分離された信号)を周波数 領域で帯域制限の処理を行う。図 9の帯域制限フィルタ 906と同様に、ここで行われ る帯域制限処理も、非常に簡易に行うことができる。  [0075] The band limiting filter 1403 performs band limiting processing on a signal (time-separated signal) input thereto in the frequency domain. Similar to the band limiting filter 906 in FIG. 9, the band limiting process performed here can be performed very easily.
[0076] 高速逆フーリエ変換部 1404は、帯域制限後のシングルキャリアパケットに関する信 号を高速フーリエ逆変換する。これにより、シングルキャリアパケットに関する信号は、 時間領域の信号に変換される。  [0076] Fast inverse Fourier transform section 1404 performs fast Fourier inverse transform on the signal related to the single carrier packet after the band limitation. As a result, the signal related to the single carrier packet is converted into a signal in the time domain.
[0077] ディンタリーバ 1406は、信号の並ぶ順序を所定のパターンに従って変更する。所 定のパターンは、送信側のインターリーバ(図 9の 902等)で行われる並べ換えの逆 パターンに相当する。  [0077] The dintariba 1406 changes the order in which the signals are arranged according to a predetermined pattern. The predetermined pattern corresponds to the reverse pattern of reordering performed by the transmitting interleaver (such as 902 in Fig. 9).
[0078] アンテナで受信された信号は、 RF受信部内で増幅、周波数変換、帯域制限、直交 復調等の処理を経てディジタル信号に変換される。ガードインターバルの除去された 信号に対して、高速フーリエ変換部 1306によって、信号が周波数領域の信号に変 換される。マルチキャリアパケットに関しては、 OFDM方式の復調が行われたことに なる。周波数領域の信号に変換された信号は、分離部 1308でマルチキャリアバケツ ト(パイロットチャネル、制御チャネル及びデータチャネルを含む)及びシングルキヤリ ァパケットにそれぞれ時間的に分離される。マルチキャリアパケットは、図 13で説明し たものと同じ処理がなされるので、重複的な説明は省力される。 A signal received by the antenna is converted into a digital signal through processing such as amplification, frequency conversion, band limitation, orthogonal demodulation, and the like in the RF reception unit. The fast Fourier transform unit 1306 converts the signal from which the guard interval has been removed into a frequency domain signal. For multi-carrier packets, OFDM demodulation is performed. The signal converted into the frequency domain signal is temporally separated into a multicarrier bucket (including pilot channel, control channel, and data channel) and a single carrier packet by a separation unit 1308. Multi-carrier packets are described in Figure 13. Since the same processing is performed, redundant explanation is saved.
[0079] 分離されたシングルキャリアパケットは、帯域制限フィルタ 1202で周波数領域での 帯域制限が行われ、その後に逆フーリエ変換される。この変換により、シングルキヤリ ァパケットは、時間領域の信号に変換される。変換後の信号は、逆拡散され、チヤネ ル補償され、ディンタリーブされた後にデコードされる。  [0079] The separated single carrier packet is subjected to band limitation in the frequency domain by the band limiting filter 1202, and then subjected to inverse Fourier transform. By this conversion, the single carrier packet is converted into a time domain signal. The converted signal is despread, channel-compensated, deinterleaved and then decoded.
実施例 6  Example 6
[0080] 上記の実施例 1〜5は、典型的には下りリンクでの複数システムの共存を図るもので ある。以下に説明される実施例 6は、典型的には上りリンクでの複数システムの共存 を図るのである。上りリンクでは、チャネルの高速高品質化とは別に、移動局の低消 費電力化を図る要請も強い。本実施例では、シングルキャリア方式で周波数領域で の直交化を実現できる可変拡散率チップ繰り返しファクタ CDMA (VSCRF-CDMA: Variable Spreading and Chip Repetition Factors- CDMA)方式力 上りリンクに採 用される。この上りリンクに使用される送信機及び受信機の構成及び動作は、直接シ 一ケンス CDMA (DS- CDMA: Direct Sequence- CDMA)方式の送信機及び受信機 と概ね同様であるが、拡散及び逆拡散に関する処理内容は大きく異なる。  [0080] Embodiments 1 to 5 described above are intended for coexistence of a plurality of systems on the downlink. The sixth embodiment described below typically aims at coexistence of multiple systems in the uplink. In the uplink, apart from high-speed and high-quality channel, there is a strong demand for lower power consumption of mobile stations. In this embodiment, the variable spreading factor chip repetition factor CDMA (VSCRF-CDMA) system power that can be orthogonalized in the frequency domain by the single carrier method is adopted for uplink. The configuration and operation of the transmitter and receiver used for this uplink are almost the same as those of direct sequence CDMA (DS-CDMA) transmitters and receivers. The processing content related to diffusion is greatly different.
[0081] 図 15は、 VSCRF— CDMA方式の送信機に使用される拡散部のブロック図を示 す。従って、以下に説明される拡散部の動作は、典型的には移動局で行われる。拡 散部は、符号乗算部 1602と、繰り返し合成部 1604と、移相部 1606とを有する。  [0081] FIG. 15 shows a block diagram of a spreading unit used in a VSCRF—CDMA transmitter. Accordingly, the operation of the spreading unit described below is typically performed at the mobile station. The spreading unit includes a code multiplication unit 1602, an iterative synthesis unit 1604, and a phase shift unit 1606.
[0082] 符号乗算部 1602は、送信信号に拡散符号を乗算する。図 15では、乗算器 1612 により、所与の符号拡散率 SFの下で定められたチヤネリゼーシヨンコードが送信信号 に乗算される。更に、乗算器 1614によりスクランブルコードが送信信号に乗算される 。本実施例における符号拡散率 SFは、通信環境に応じて適切に設定される。より具 体的には、伝搬路状態、セル構成、トラフィック量及び無線パラメータの 1以上に基づ いて符号拡散率 SFが設定されてもよい。符号拡散率 SFの設定は、基地局で行って もよいし、移動局で行ってもよい。但し、トラフィック量のような基地局側で管理する情 報を利用する場合には、基地局で符号拡散率を決定した方が好まし ヽ。  [0082] Code multiplication section 1602 multiplies the transmission signal by a spreading code. In FIG. 15, a multiplier 1612 multiplies the transmission signal by a channelization code determined under a given code spreading factor SF. Further, a multiplier 1614 multiplies the transmission signal by a scramble code. The code spreading factor SF in this embodiment is appropriately set according to the communication environment. More specifically, the code spreading factor SF may be set based on one or more of the propagation path state, cell configuration, traffic volume, and radio parameter. The code spreading factor SF may be set by the base station or the mobile station. However, when using information managed on the base station side such as traffic volume, it is preferable to determine the code spreading factor at the base station.
[0083] 繰り返し合成部 1604は、拡散後の送信信号を、時間的に圧縮し、所定数回(CRF 回)反復する。繰り返し数 CRFが 1に等しい場合の構成及び動作は、通常の DS— C DMA方式の場合に等しくなる(但し、 CRF= 1の場合は、移相部での位相シフトは 不要である。 ) o [0083] Iterative combining section 1604 compresses the spread transmission signal in terms of time and repeats it a predetermined number of times (CRF times). The configuration and operation when the number of repetitions CRF is equal to 1 is normal DS—C. It is equal to the case of DMA method (however, when CRF = 1, the phase shift in the phase shift unit is unnecessary). O
[0084] 移相部 1606は、所定の周波数分だけ送信信号の位相をずらす (シフトさせる)。ず らす位相量は、移動局毎に固有に設定される。  [0084] Phase shift section 1606 shifts (shifts) the phase of the transmission signal by a predetermined frequency. The phase amount to be shifted is set uniquely for each mobile station.
[0085] 図 16は、 VSCRC— CDMA方式の受信機に使用される逆拡散部のブロック図を 示す。この逆拡散部は、典型的には基地局で動作する。逆拡散部は、移相部 1702 と、繰り返し合成部 1704と、符号逆拡散部 1706とを有する。 [0085] FIG. 16 shows a block diagram of a despreading unit used in a VSCRC-CDMA receiver. This despreading unit typically operates in a base station. The despreading unit includes a phase shift unit 1702, an iterative combining unit 1704, and a code despreading unit 1706.
[0086] 移相部 1702は、移動局毎に設定されている位相量を受信信号に乗算し、受信信 号を移動局毎の信号に分離する。 [0086] Phase shift section 1702 multiplies the received signal by the phase amount set for each mobile station, and separates the received signal into a signal for each mobile station.
[0087] 繰り返し合成部 1704は、繰り返されているデータを時間的に拡張し (非圧縮ィ匕し)[0087] The iterative synthesis unit 1704 expands the repeated data in terms of time (uncompressed).
、圧縮されていないデータを復元する。 Restore uncompressed data.
[0088] 符号逆拡散部 1706は、移動局毎の拡散符号を受信信号に乗算することで、逆拡 散を行う。 [0088] Code despreading section 1706 performs despreading by multiplying the received signal by the spreading code for each mobile station.
[0089] 図 17は、 VSCRF— CDMA方式での主要な動作を説明するための図である。説 明の便宜上、符号拡散後の信号系列のある 1つのデータ群が、 d , d , d  FIG. 17 is a diagram for explaining the main operation in the VSCRF-CDMA system. For convenience of explanation, one data group with a signal sequence after code spreading is represented by d 1, d 2, d 1
1 2 Qで表現 され、個々のデータ d (i= l, Q)の期間が Τであるものとする。 1つのデータ dは i S i 1 2 It is expressed by Q, and the period of each data d (i = l, Q) is Τ. One data d is i S i
1つのシンボルに対応させてもよいし、適切な他のいかなる情報単位に対応させても よい。この一群の信号系列は、全体で T X Q に相当する期間を有する。この信号 It may correspond to one symbol or any other appropriate information unit. This group of signal sequences has a period corresponding to T X Q as a whole. This signal
S  S
系列 1802は、繰り返し合成部 1604への入力信号に対応する。この信号系列は、時 間的に 1ZCRFに圧縮され、その圧縮後の信号が T X Q の期間にわたって繰り返  A sequence 1802 corresponds to an input signal to the iterative synthesis unit 1604. This signal sequence is compressed to 1ZCRF over time, and the compressed signal is repeated over a period of T X Q.
S  S
されるように変換される。変換後の信号系列は、図 17で 1804により表現されている。 図 17には、ガードインターノ レの期間も図示されている。時間的な圧縮は、例えば、 入力信号に使用されているクロック周波数よりも CRF倍高い周波数を利用して行うこ とができる。これにより、個々のデータ dの期間は、 T ZCRFに圧縮される(但し、 CR i S  To be converted. The converted signal sequence is represented by 1804 in FIG. Figure 17 also shows the guard interval period. Temporal compression can be performed, for example, using a frequency that is CRF times higher than the clock frequency used for the input signal. As a result, the period of individual data d is compressed to T ZCRF (however, CR i S
F回反復される)。圧縮及び繰り返された信号系列 1804は、繰り返し合成部 1604か ら出力され、移相部 1606に入力され、所定の位相量だけシフトさせられ、出力される 。位相量は、移動局毎に設定され、各移動局に関する上り信号が互いに周波数軸上 で直交するように設定される。これにより、上りリンク又は基地局の受信信号における 周波数スペクトルは、概して図 17の 1806に示されるような様子になる。図中、拡散帯 域幅として示されている帯域は、拡散後の信号系列 1802がそのまま送信されたなら ば占めるであろう帯域を示す。時間圧縮及び繰り返しがなされた段階でのスペクトル (繰り返し合成部 1604の出力信号のスペクトル)は、狭帯域を占めるが、その帯域は 総ての移動局に共通する。その狭帯域のスペクトルを移動局に固有の位相量だけシ フトさせることで、それらの帯域が互いに重複しないようにすることができる。即ち、時 間圧縮、繰り返し及び位相シフトを行うことで、個々の移動局に関する周波数帯域を 狭帯域化させ、各移動局に関する周波数スペクトルを櫛歯状に並べることができ、周 波数軸上での直交化を実現することができる。 Repeated F times). The compressed and repeated signal sequence 1804 is output from the iterative combining unit 1604, input to the phase shifting unit 1606, shifted by a predetermined phase amount, and output. The phase amount is set for each mobile station, and is set so that uplink signals for each mobile station are orthogonal to each other on the frequency axis. Thereby, in the received signal of the uplink or base station The frequency spectrum generally looks like that shown at 1806 in FIG. In the figure, the band indicated as the spreading bandwidth indicates the band that will be occupied if the signal sequence 1802 after spreading is transmitted as it is. The spectrum at the stage of time compression and repetition (the spectrum of the output signal of the repetition synthesis unit 1604) occupies a narrow band, but the band is common to all mobile stations. By shifting the narrow-band spectrum by the phase amount specific to the mobile station, these bands can be prevented from overlapping each other. In other words, by performing time compression, repetition, and phase shift, the frequency band related to each mobile station can be narrowed, and the frequency spectrum related to each mobile station can be arranged in a comb-like shape. Orthogonalization can be realized.
[0090] 受信側では送信側と逆の動作が行われる。即ち、移動局毎の位相量に合わせて、 図 17の移相部 1702にて受信信号に位相が付与され、繰り返し合成部 1704に入力 される。入力された信号は、時間的に非圧縮化され、拡散されている信号系列に変 換され、繰り返し合成部 1704から出力される。この信号に、逆拡散部 1706で所定の 拡散符号を乗算することで、逆拡散が行われる。以後、説明済みの要素によって更 なる処理が行われる。 [0090] On the receiving side, an operation opposite to that on the transmitting side is performed. That is, in accordance with the phase amount for each mobile station, the phase is added to the received signal by the phase shifter 1702 in FIG. The input signal is uncompressed in terms of time, converted into a spread signal sequence, and output from the iterative synthesis unit 1704. Despreading is performed by multiplying this signal by a predetermined spreading code by the despreading section 1706. Thereafter, further processing is performed by the elements already described.
[0091] 上りリンクで採用される VSCRF— CDMA方式で送信される信号の無線周波数の 波形及びチップレートは、 W— CDMA方式のものと同様である。 VSCRF— CDMA 方式で行われる繰り返しの処理は、データの順序を並べ換える力 チップレートを変 更するものではないからである。従って、上りリンクに関しては、第 2の通信システムに VSCRF— CDMA方式を採用することで、第 1及び第 2の通信システムを簡易に併 存させることができる。  [0091] The radio frequency waveform and chip rate of the signal transmitted by the VSCRF-CDMA system employed in the uplink are the same as those of the W-CDMA system. This is because the repeated processing performed in the VSCRF—CDMA system does not change the power chip rate that rearranges the data order. Therefore, for the uplink, the first and second communication systems can be easily coexisted by adopting the VSCRF-CDMA system for the second communication system.
[0092] 以上、本発明の好ましい実施例を説明したが、本発明はこれに限定されるわけでは なぐ本発明の要旨の範囲内で種々の変形及び変更が可能である。説明の便宜上、 本発明が幾つかの実施例に分けて説明されてきたが、各実施例の区分けは本発明 に本質的ではなぐ 1以上の実施例が必要に応じて使用されてよい。  Although the preferred embodiments of the present invention have been described above, the present invention is not limited thereto, and various modifications and changes can be made within the scope of the present invention. For convenience of explanation, the present invention has been described in several embodiments, but one or more embodiments may be used as needed, as the division of each embodiment is not essential to the present invention.
[0093] 本国際出願は 2005年 4月 1日に出願した日本国特許出願第 2005-106913号に基づ く優先権を主張するものであり、その全内容を本国際出願に援用する。  [0093] This international application claims priority based on Japanese Patent Application No. 2005-106913 filed on April 1, 2005, the entire contents of which are incorporated herein by reference.

Claims

請求の範囲 The scope of the claims
[1] シングルキャリア方式の第 1の通信システム及びマルチキャリア方式の第 2の通信シ ステムで使用可能な送信装置であって、  [1] A transmitter that can be used in a first communication system of a single carrier system and a second communication system of a multicarrier system,
シングルキャリアのパケットを下りチャネルで送信し、第 1の再送待機期間経過後に 、要求に応じてシングルキャリアのパケットを再送する第 1再送手段と、  A first retransmission means for transmitting a single carrier packet on a downlink channel and retransmitting the single carrier packet in response to a request after the first retransmission waiting period has elapsed;
マルチキャリアのパケットを下りチャネルで送信し、第 2の再送待機期間経過後に、 要求に応じてマルチキャリアのパケットを再送する第 2再送手段と、  A second retransmission means for transmitting a multicarrier packet on a downlink channel and retransmitting the multicarrier packet in response to a request after the second retransmission waiting period has elapsed;
を備え、前記第 2再送手段は、前記第 1の再送待機期間の間に、マルチキャリアの パケットを 1つ以上送信する  The second retransmission means transmits one or more multi-carrier packets during the first retransmission waiting period.
ことを特徴とする送信装置。  A transmission device characterized by the above.
[2] シングルキャリアのパケット 1つの送信時間間隔力 マルチキャリアのパケット複数個 の送信時間間隔に等しい [2] Single carrier packet transmission time interval equal to the transmission time interval of multiple multicarrier packets
ことを特徴とする請求項 1記載の送信装置。  The transmission device according to claim 1, wherein:
[3] シングルキャリアのパケット 1つとマルチキャリアのパケット複数個が交互に送信され る [3] One single carrier packet and multiple multicarrier packets are sent alternately
ことを特徴とする請求項 2記載の送信装置。  The transmission device according to claim 2, wherein:
[4] 第 1の通信システムの制御チャネルが、第 1及び第 2の通信システムで共用される ことを特徴とする請求項 1記載の送信装置。 4. The transmission device according to claim 1, wherein the control channel of the first communication system is shared by the first and second communication systems.
[5] 前記制御チャネルが、時間的に連続的に送信される [5] The control channel is transmitted continuously in time
ことを特徴とする請求項 4記載の送信装置。  The transmitter according to claim 4, wherein:
[6] 第 1の通信システム用の第 1の制御チャネルと、第 2の通信システム用の第 2の制御 チャネルとが別個に送信される [6] The first control channel for the first communication system and the second control channel for the second communication system are transmitted separately.
ことを特徴とする請求項 1記載の送信装置。  The transmission device according to claim 1, wherein:
[7] シングルキャリアのパケットと共に第 1の制御チャネルが送信され、マルチキャリアの パケットと共に第 2の制御チャネルが送信される [7] The first control channel is transmitted with a single carrier packet, and the second control channel is transmitted with a multicarrier packet
ことを特徴とする請求項 6記載の送信装置。  The transmitting device according to claim 6, wherein:
[8] シングルキャリアのパケットを表す信号をフーリエ変換する手段と、  [8] means for Fourier transforming a signal representing a single carrier packet;
フーリエ変換後の信号を帯域制限するフィルタ手段と、 帯域制限後の信号と、マルチキャリアのパケットを表す信号とを時間多重する手段 と、 Filter means for band limiting the signal after Fourier transform; Means for time-multiplexing the band-limited signal and the signal representing the multi-carrier packet;
時間多重された信号を逆フーリエ変換する手段と、  Means for inverse Fourier transforming the time multiplexed signal;
を備えることを特徴とする請求項 1記載の送信装置。  The transmission device according to claim 1, further comprising:
[9] シングルキャリア又はマルチキャリアのパケットを表す信号の一方を選択し、符号ィ匕 するエンコード手段を更に備える [9] It further comprises an encoding means for selecting and encoding one of the signals representing a single carrier or multicarrier packet.
ことを特徴とする請求項 8記載の送信装置。  9. The transmission device according to claim 8, wherein
[10] シングルキャリア方式の第 1の通信システム及びマルチキャリア方式の第 2の通信シ ステムで使用可能な送信装置が、 [10] A transmitter that can be used in the first communication system of the single carrier system and the second communication system of the multi-carrier system is
シングルキャリアのパケットを送信し、第 1の再送待機期間経過後に、要求に応じて シングルキャリアのパケットを再送し、  Send a single carrier packet, and after the first retransmission wait period, retransmit the single carrier packet on demand,
マルチキャリアのパケットを送信し、第 2の再送待機期間経過後に、要求に応じてマ ルチキャリアのパケットを再送し且つ前記第 1の再送待機期間の間に、マルチキヤリ ァのパケットを 1つ以上送信する場合に、  Multi-carrier packets are transmitted, and after the second retransmission waiting period, the multi-carrier packets are retransmitted upon request, and one or more multi-carrier packets are transmitted during the first retransmission waiting period. If you want to
該送信された信号を受信する受信装置であって、  A receiving device for receiving the transmitted signal,
受信した信号をフーリエ変換する手段と、  Means for Fourier transforming the received signal;
フーリエ変換後の信号を、シングルキャリアのパケットを表す信号と、マルチキャリア のパケットを表す信号とに時間的に分離する手段と、  Means for temporally separating the signal after the Fourier transform into a signal representing a single carrier packet and a signal representing a multicarrier packet;
シングルキャリアのパケットを表す信号を逆フーリエ変換する手段と、  Means for inverse Fourier transforming a signal representing a single carrier packet;
を備えることを特徴とする受信装置。  A receiving apparatus comprising:
PCT/JP2006/306302 2005-04-01 2006-03-28 Transmitting apparatus and receiving apparatus WO2006106676A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-106913 2005-04-01
JP2005106913A JP4531614B2 (en) 2005-04-01 2005-04-01 Transmitting apparatus and receiving apparatus

Publications (1)

Publication Number Publication Date
WO2006106676A1 true WO2006106676A1 (en) 2006-10-12

Family

ID=37073242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306302 WO2006106676A1 (en) 2005-04-01 2006-03-28 Transmitting apparatus and receiving apparatus

Country Status (3)

Country Link
JP (1) JP4531614B2 (en)
TW (1) TW200703991A (en)
WO (1) WO2006106676A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009142025A1 (en) * 2008-05-23 2009-11-26 パナソニック株式会社 Wireless communication mobile station device and distribution and placement method for resource elements
JP2009284140A (en) * 2008-05-21 2009-12-03 Nippon Telegr & Teleph Corp <Ntt> Communication network and ip multiplexing device
JP2011517234A (en) * 2008-04-07 2011-05-26 クゥアルコム・インコーポレイテッド System and method for defining a control channel using reserved resource blocks
US8675537B2 (en) 2008-04-07 2014-03-18 Qualcomm Incorporated Method and apparatus for using MBSFN subframes to send unicast information
US8761032B2 (en) 2007-11-16 2014-06-24 Qualcomm Incorporated Random reuse based control channels
US8798665B2 (en) 2007-11-15 2014-08-05 Qualcomm Incorporated Beacon-based control channels
US9009573B2 (en) 2008-02-01 2015-04-14 Qualcomm Incorporated Method and apparatus for facilitating concatenated codes for beacon channels
US9326253B2 (en) 2007-11-15 2016-04-26 Qualcomm Incorporated Wireless communication channel blanking

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8031807B2 (en) * 2006-11-10 2011-10-04 Qualcomm, Incorporated Systems and methods for detecting the presence of a transmission signal in a wireless channel
KR101236624B1 (en) * 2007-02-01 2013-02-22 삼성전자주식회사 Smethod, apparatus and system for service interworking between heterogeneous communication systems
JP5185945B2 (en) * 2007-10-18 2013-04-17 株式会社日立製作所 Radio communication system and radio resource allocation method
JP2012019425A (en) * 2010-07-09 2012-01-26 Mitsubishi Electric Corp Radio communication system, and transmission device and reception device
JP2013090012A (en) * 2011-10-13 2013-05-13 Toyota Infotechnology Center Co Ltd Radio communication system and radio communication device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09214583A (en) * 1995-10-31 1997-08-15 Nokia Mobile Phones Ltd Method for setting data transfer link and device for transferring data
JPH11513871A (en) * 1995-10-26 1999-11-24 オムニポイント・コーポレイション Coexisting communication systems
JP2004072457A (en) * 2002-08-07 2004-03-04 Kyocera Corp Radio communication system
JP2004072456A (en) * 2002-08-07 2004-03-04 Kyocera Corp Radio communication system
JP2004297481A (en) * 2003-03-27 2004-10-21 Kyocera Corp Radio communication system, radio base station and radio communication terminal

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000134173A (en) * 1998-10-22 2000-05-12 Victor Co Of Japan Ltd Ofdm receiver
US7161987B2 (en) * 2001-09-26 2007-01-09 Conexant, Inc. Single-carrier to multi-carrier wireless architecture
JP2005286508A (en) * 2004-03-29 2005-10-13 Toshiba Corp Wireless communication system, and transmitter, receiver and transmitter-receiver used in this system
JP4592523B2 (en) * 2004-07-29 2010-12-01 パナソニック株式会社 Wireless transmission device and wireless reception device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11513871A (en) * 1995-10-26 1999-11-24 オムニポイント・コーポレイション Coexisting communication systems
JPH09214583A (en) * 1995-10-31 1997-08-15 Nokia Mobile Phones Ltd Method for setting data transfer link and device for transferring data
JP2004072457A (en) * 2002-08-07 2004-03-04 Kyocera Corp Radio communication system
JP2004072456A (en) * 2002-08-07 2004-03-04 Kyocera Corp Radio communication system
JP2004297481A (en) * 2003-03-27 2004-10-21 Kyocera Corp Radio communication system, radio base station and radio communication terminal

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8798665B2 (en) 2007-11-15 2014-08-05 Qualcomm Incorporated Beacon-based control channels
US9326253B2 (en) 2007-11-15 2016-04-26 Qualcomm Incorporated Wireless communication channel blanking
US8761032B2 (en) 2007-11-16 2014-06-24 Qualcomm Incorporated Random reuse based control channels
US9009573B2 (en) 2008-02-01 2015-04-14 Qualcomm Incorporated Method and apparatus for facilitating concatenated codes for beacon channels
JP2011517234A (en) * 2008-04-07 2011-05-26 クゥアルコム・インコーポレイテッド System and method for defining a control channel using reserved resource blocks
US8675537B2 (en) 2008-04-07 2014-03-18 Qualcomm Incorporated Method and apparatus for using MBSFN subframes to send unicast information
US9107239B2 (en) 2008-04-07 2015-08-11 Qualcomm Incorporated Systems and methods to define control channels using reserved resource blocks
US10420078B2 (en) 2008-04-07 2019-09-17 Qualcomm Incorporated Systems and methods to define control channels using reserved resource blocks
US10939416B2 (en) 2008-04-07 2021-03-02 Qualcomm Incorporated Systems and methods to define control channels using reserved resource blocks
JP2009284140A (en) * 2008-05-21 2009-12-03 Nippon Telegr & Teleph Corp <Ntt> Communication network and ip multiplexing device
WO2009142025A1 (en) * 2008-05-23 2009-11-26 パナソニック株式会社 Wireless communication mobile station device and distribution and placement method for resource elements

Also Published As

Publication number Publication date
JP2006287759A (en) 2006-10-19
TWI301364B (en) 2008-09-21
TW200703991A (en) 2007-01-16
JP4531614B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
JP4531614B2 (en) Transmitting apparatus and receiving apparatus
US8005063B2 (en) Uplink channel receiving and transmitting apparatuses and methods
US8009748B2 (en) Downlink channel transmission device and method thereof
KR101242592B1 (en) Radio parameter group generating apparatus, transmitter and receiver
CA2605772C (en) Apparatus for generating a set of radio parameters, transmitter and receiver
US8526400B2 (en) Radio access system and method using OFDM and CDMA for broadband data transmission
EP1492280B1 (en) Quality driven adaptive channel assignment in an OFDMA radio communication system
US7729433B2 (en) Method and apparatus for hybrid CDM OFDMA wireless transmission
KR100966672B1 (en) Multiple-access hybrid ofdm-cdma system with frequency-domain spreading
US7391715B2 (en) Transmitter device and transmitting method using OFDM and MC-CDMA
US8477706B2 (en) Transmission apparatus, transmission method, reception apparatus and reception method
US20060002451A1 (en) Frequency-hopped IFDMA communication system
KR20040110870A (en) Apparatus and method of transmission in a mobile communication system based on ofdm scheme
EP1408642A2 (en) Adaptive allocation for multicarrier spread spectrum transmission
WO2004093360A1 (en) Radio receiving apparatus, mobile station apparatus, base station apparatus, and radio receiving method
JP4733200B2 (en) Receiver
WO2003103201A1 (en) Method and apparatus for receiving signal based on mimo cdma

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06730250

Country of ref document: EP

Kind code of ref document: A1