WO2006106589A1 - Receiver and interference compensation method - Google Patents

Receiver and interference compensation method Download PDF

Info

Publication number
WO2006106589A1
WO2006106589A1 PCT/JP2005/006611 JP2005006611W WO2006106589A1 WO 2006106589 A1 WO2006106589 A1 WO 2006106589A1 JP 2005006611 W JP2005006611 W JP 2005006611W WO 2006106589 A1 WO2006106589 A1 WO 2006106589A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbol
power
symbols
received
weighting factor
Prior art date
Application number
PCT/JP2005/006611
Other languages
French (fr)
Japanese (ja)
Inventor
Yew Soo Eng
Shane Cw Chew
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to PCT/JP2005/006611 priority Critical patent/WO2006106589A1/en
Publication of WO2006106589A1 publication Critical patent/WO2006106589A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only

Definitions

  • the present invention relates to a receiver and an interference compensation method for compensating for a symbol having a collision in a communication medium shared by a plurality of users.
  • a symbol is transmitted to other symbols that are transmitted at the same time by other users in the same frequency band! Transmitted in different time slots on different frequency subbands according to a set of frequency hopping sequences or codes that reduce the possibility of interference or collisions.
  • FHMA frequency hopping multiple access
  • the received signal may be a superposition of overlapping symbols and becomes illegible, so that the transmission information is in a state referred to as lost.
  • weights are applied to the received signals before the received signals are subjected to time Z frequency despreading to compensate for the received signals. This improvement can be achieved.
  • a weight factor of 1 helps to reduce the contribution of collision symbols to the overall quality of the final despread symbol and increase the contribution of good symbols.
  • the despread signal is obtained by averaging, and therefore, the despread signal is compared to the conventional method where the contribution of the collision symbol to the final despread signal and the contribution of the good symbol are equal U.
  • the method of combining the signals is important for reducing the contribution of interference.
  • Patent Document 1 uses the Walsh-Hadamard Transform (WHT) to spread data in the frequency domain and reduces the effects of interference.
  • WHT Walsh-Hadamard Transform
  • SIR estimated signal-to-interference ratio
  • Patent Document 1 U.S. Pat.No. 4,885,743
  • the prior art method estimates the SIR level by using null symbols periodically inserted in the spectrum of the desired signal during each frequency hopping slot at the transmitter side. That is what you need.
  • An object of the present invention is that it is simpler than the prior art because it does not require transmission of an extra null symbol in message communication that improves reception reliability by transmitting a message multiple times. It is an object of the present invention to provide a receiver and an interference compensation method capable of obtaining a better estimated value of transmission information and reducing the influence of interference.
  • the interference compensation method of the present invention includes (a) a step of receiving a plurality of symbols obtained by spreading one symbol at a communication partner, and (b) the received signal Measuring the power of each symbol; (c) the total power of the received symbol; Calculating a power ratio weighting factor that is a ratio of the power of each symbol to the power; (d) multiplying each received symbol by a power ratio weighting factor for the symbol; and (e) the power specific gravity. Adding a plurality of symbols multiplied by a coefficient.
  • the receiver of the present invention is a receiving means for receiving a plurality of symbols obtained by spreading one symbol to a communication partner, and measures the power of each received symbol.
  • Power measuring means weight coefficient calculating means for calculating a power ratio weighting factor that is a ratio of the power of each symbol to the total power of the received symbol, and a power ratio weighting factor for the symbol for each received symbol
  • despreading processing means for summing up a plurality of symbols multiplied by the power ratio weighting factor.
  • the power ratio weighting coefficient for each of the received signals is calculated using the power of each of the received signals, and each signal is weighted with the power ratio coefficient, so that the collision symbol is obtained. Because it receives more contributions from good symbols than power, the overall quality of the despread signal can be improved.
  • FIG. 3 is a block diagram showing a configuration of a receiver according to an embodiment of the present invention.
  • FIG. 4 is a flowchart showing an interference compensation method according to an embodiment of the present invention.
  • the present invention is directed to interference compensation for time spread shared media communication systems and is useful for many types of communication systems, particularly frequency hobbing multiple access and time spread communication systems.
  • time 'spread spectrum shared communication media assume that one signal is communicated by sending the signal N multiple times, which also means that the signal is time spread N times .
  • the principle of the present invention in multiband UWB using OFDM will be described. However, the scope of the present invention can be applied to many types of communication systems as well.
  • FIG. 1 shows time-frequency codes for different piconets to realize channelization for different piconets in a multi-band UWB system.
  • Multiple terminals (Devices) in the same piconet share the same time-frequency code, which is different from the time-frequency code of other terminals in another piconet. This allows multiple terminals in the same piconet to share a frequency band that does not interfere with other terminals in other piconets.
  • a piconet with channel number 1 transmits with a time-frequency code [123123]
  • a piconet with channel number 2 transmits with a time-frequency code [132132].
  • time domain spreading operation is performed on the time domain subcarrier after the inverse Fourier transform (IFFT) operation.
  • terminal A transmits an OFDM symbol message [Al, A2, A3 ⁇ ]!
  • the transmission message is [All, A12, A21, A22, A31, A32,...].
  • A12, A22, and A32 are replicas of All, A21, and A31.
  • terminal A when terminal A performs transmission using a time-frequency code [123123], information of the first OFDM symbol (All and A12) Information on the second OFDM symbol (A21 and A22) is transmitted on subbands F3 and F1, and further information on the third OFDM symbol (A3 1 and A32) is Retransmitted on subbands F2 and F3.
  • Another terminal B in another piconet is also transmitting, and when these piconets are close to each other, as shown in Fig. 2, the symbol of terminal A and the symbol from terminal B A collision can occur between This collision causes the information in the symbols to overlap and damage this, eventually Affects the bit error rate.
  • the present invention is intended to compensate for the above problems of the prior art.
  • the object of the present invention is to weight multiple symbols prior to performing time despreading, and multiply the symbols by a power ratio weighting coefficient, thereby affecting the error effect on the final despread symbol by the collision symbol. It is to reduce.
  • FIG. 3 is a block diagram showing a configuration of a receiver according to an embodiment of the present invention.
  • the receiver 300 includes a demodulator 350 and an interference compensator 352 connected to the demodulator 350.
  • the reception filter 306 of the demodulation unit 350 generates a baseband signal by filtering the input signal that has also received the shared communication media (not shown) power. This filtering removes unwanted spectral components from the sequence.
  • Receive filter 306 may be a root 'raised' cosine filter.
  • the baseband signal output from the reception filter 306 is first sent to the interference compensation unit 352 before passing through the fast Fourier transform (FFT) unit 308.
  • FFT fast Fourier transform
  • the interference compensation unit 352 is connected between the reception filter 306 and the FFT unit 308.
  • the interference compensation unit 352 performs interference compensation processing on the baseband signal.
  • the interference compensation unit 352 includes a power measurement unit 320, a weight coefficient calculation unit 322, and a time despreading processing unit 324.
  • Power measurement section 320 measures the power of each OFDM symbol using technical means including squaring processing and summation processing or averaging processing, and outputs the power to weighting coefficient calculation section 322. Such technical means are well known to those skilled in the relevant art.
  • Weighting factor calculation section 322 calculates a power ratio weighting factor that is the ratio of the power of each symbol to the total power of the received symbol for each OFDM symbol! /
  • the power ratio weighting coefficient is output to the time despreading processing unit 324.
  • the power ratio weighting factor of the symbol A1 can be expressed as a ratio of the power of the symbol A12 to the total power of the symbols A1 and A12.
  • the power ratio weighting factor of the symbol A12 can be expressed as the ratio of the power of the symbol All to the total power of the symbols Al1 and A12.
  • the power ratio weighting coefficient of the symbol All can be expressed by the equation [P (A12) / ⁇ P (A11) + P (A12) ⁇ ]
  • the power ratio weighting coefficient for the symbol A12 is It can be expressed by the equation [P (A11) / ⁇ P (A11) + P (A12) ⁇ ].
  • Time despreading processing section 324 multiplies each symbol by a power ratio weighting factor for the symbol. Thereafter, the time despreading processing unit 324 performs symbol summation and outputs the summed value to the FFT unit 308. For example, when the time despreading processing unit 324 performs processing on the symbols All and A12, [ ⁇ 11 ⁇ ⁇ ( ⁇ 12) / ( ⁇ ( ⁇ 11) + P (A12)) ⁇ +
  • the FFT unit 308 performs FFT conversion processing on the output signal of the time despreading processing unit 324.
  • the output signal of FFT section 308 is an OFDM demodulated symbol sequence in the frequency domain.
  • the advantage of the present invention in which the power ratio weighting factor is multiplied to the symbols before summing the symbols is that the contribution of the collision symbols to the overall quality of the despread signal is reduced, and the good symbols This is useful in increasing the degree of contribution. This increases the overall quality of the despread signal because it receives more contributions from good symbols than collision symbol power. If the power ratio weighting factor is not used, the contribution from the collision symbol force will be the same as the contribution from the good symbol.
  • FIG. 4 is a flowchart showing an interference compensation method according to an embodiment of the present invention.
  • the method begins at step 400 where an OFDM demodulator power OFD M symbol is received via a shared communication medium such as a wireless channel.
  • step 402 power measurement is performed on the received OFDM symbols.
  • step 404! / If the number of received OFDM symbols is not equal to the time spreading factor N! / ⁇ , the process returns to step 400 to receive another OFDM symbol. It becomes. If the number of received OFDM symbols is equal to N! /, Processing proceeds to step 406.
  • step 406 a power ratio weighting factor is calculated. Then step 408 , Each OFDM symbol is multiplied by a power ratio weighting factor. Next, in step 410, the two OFDM symbols that have been multiplied by the power ratio weighting factor are added together.
  • the power ratio weighting coefficient for each of the plurality of received signals is calculated, and each signal is weighted with the power ratio coefficient.
  • the overall quality of the despread signal can be improved because more contribution is received from the good symbol than the collision symbol power.
  • the present invention is suitable for use in a receiver that compensates for a symbol having a collision in a communication medium shared among a plurality of users.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A receiver of communication system using shared communication media. In this receiver, a power measuring part (320) measures the power of each of OFDM symbols. A weighting coefficient calculating part (322) calculates a power ratio weighting coefficient, which is a ratio of the power of each symbol to the total power of the received symbols, for each OFDM symbol. A time despreading part (324) multiplies each symbol by the power ratio weighting coefficient for that symbol, and thereafter sums up the symbols.

Description

明 細 書  Specification
受信機及び干渉補償方法  Receiver and interference compensation method
技術分野  Technical field
[0001] 本発明は、複数のユーザ間で共有される通信メディアにおいて、衝突の生じたシン ボルを補償する受信機及び干渉補償方法に関する。  TECHNICAL FIELD [0001] The present invention relates to a receiver and an interference compensation method for compensating for a symbol having a collision in a communication medium shared by a plurality of users.
背景技術  Background art
[0002] 共有通信メディアを用いる通信システムでは、ある状態にぉ 、て、二人またはそれ 以上のユーザに対して、同時に情報を送信することが許される場合がある。例えば、 周波数ホッピング多重接続 (FHMA)を用いる通信システムにお 、ては、シンボルは 、送信されたシンボルが同一の周波数帯において他のユーザによりほぼ同じ時間に 送信されて!ヽる他のシンボルと干渉又は衝突してしまう可能性を低減するべぐ周波 数ホッピングシーケンス又はコードのセットに従って、異なる周波数サブバンド上で異 なるタイムスロットにおいて送信される。  [0002] In a communication system using a shared communication medium, there is a case where it is allowed to transmit information to two or more users at the same time in a certain state. For example, in a communication system using frequency hopping multiple access (FHMA), a symbol is transmitted to other symbols that are transmitted at the same time by other users in the same frequency band! Transmitted in different time slots on different frequency subbands according to a set of frequency hopping sequences or codes that reduce the possibility of interference or collisions.
[0003] これらの周波数ホッピングコードにより、チヤネライゼーシヨンが得られるものの、近 接する他のピコネットのシンボル間干渉又は衝突は、防げられるものではない。二つ の送信機がほぼ同時に同一の周波数サブバンドにおいて送信を行ってしまい、送信 全体にわたってお互いに干渉し合ってしまうということが起こり得る。受信機において は、そのようなオーバーラップした送信は、衝突と形容されるコンポジット信号を合成 することとなる。  [0003] Although channelization is obtained by these frequency hopping codes, inter-symbol interference or collision of other nearby piconets is not prevented. It is possible for two transmitters to transmit in the same frequency subband almost at the same time and interfere with each other throughout the transmission. At the receiver, such overlapping transmissions synthesize a composite signal that is described as a collision.
[0004] シンボル間の衝突が修復又は補償されな 、場合、複数シンボルがお互 、に干渉し 合って、当該シンボルの一部又は全部の情報の受信が妨げられることとなり得る。こ れゆえに、受信される信号は、オーバーラップするシンボルの重ね合わせとなってし まい、判読不能となるので、送信情報は、失われたと称される状態となる。  [0004] If collision between symbols is not repaired or compensated, multiple symbols may interfere with each other, preventing reception of some or all of the information of the symbols. Therefore, the received signal may be a superposition of overlapping symbols and becomes illegible, so that the transmission information is in a state referred to as lost.
[0005] 信頼性のある通信を実現するために、通信成功の可能性を高めるための技術が開 発されている。例えば、そのような技術の一つは、時間領域において、同一情報の送 信を複数回数繰り返すものである。この技術は、本文脈において、時間拡散と称する 。干渉が一又はそれ以上の情報の受信を妨げるような場合であっても、再送された情 報の全ての送信が衝突又は干渉してしまう可能性は、減じられる。従って、受信シン ボルの品質が、改善される。 [0005] In order to realize reliable communication, a technique for increasing the possibility of successful communication has been developed. For example, one such technique is to repeat the same information transmission multiple times in the time domain. This technique is referred to as time spreading in this context. Even if the interference prevents the reception of one or more information, the retransmitted information The likelihood that all transmissions of the report will collide or interfere is reduced. Therefore, the quality of the received symbol is improved.
[0006] 周波数,時間拡散通信システムの全体のリンク品質を向上させるために、受信信号 が時間 Z周波数逆拡散を受ける前にそれら受信信号に重みを適用して、それら受信 信号への補償を行うことで、この向上を図ることかできる。  [0006] In order to improve the overall link quality of the frequency / time spread communication system, weights are applied to the received signals before the received signals are subjected to time Z frequency despreading to compensate for the received signals. This improvement can be achieved.
[0007] 重みファクタ一は、最終的な逆拡散シンボルの全体の品質に対する衝突シンボル の寄与度を減じ、良シンボルの寄与度を増すことに役立つ。逆拡散信号が平均化に よって得られ、よって、最終的な逆拡散信号への衝突シンボルの寄与度と、良シンポ ルの寄与度とが等 U、ような従来の方法と比べて、逆拡散信号を合成する方法は、 干渉の寄与度を減じるのに重要である。  [0007] A weight factor of 1 helps to reduce the contribution of collision symbols to the overall quality of the final despread symbol and increase the contribution of good symbols. The despread signal is obtained by averaging, and therefore, the despread signal is compared to the conventional method where the contribution of the collision symbol to the final despread signal and the contribution of the good symbol are equal U. The method of combining the signals is important for reducing the contribution of interference.
[0008] 特許文献 1に開示された従来技術は、周波数領域にお!ヽてデータを拡散するため にウオルシュ ·アダマール変換 (WHT) (Walsh- Hadamard Transform)を用い、干渉 の効果を低減する目的で受信信号を推定された信号対干渉比 (SIR)により重み付 けする方法である。  [0008] The prior art disclosed in Patent Document 1 uses the Walsh-Hadamard Transform (WHT) to spread data in the frequency domain and reduces the effects of interference. In this method, the received signal is weighted by the estimated signal-to-interference ratio (SIR).
特許文献 1 :米国特許第 4,885,743号明細書  Patent Document 1: U.S. Pat.No. 4,885,743
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] し力しながら、従来技術の方法は、送信機側で各周波数ホッピングスロットの期間 に所望信号のスペクトルに周期的に挿入されるヌルシンボルを利用することによって 、 SIRレベルの推定を行うことを必要とするものである。  However, the prior art method estimates the SIR level by using null symbols periodically inserted in the spectrum of the desired signal during each frequency hopping slot at the transmitter side. That is what you need.
[0010] 本発明の目的は、メッセージを複数回送信することにより、受信信頼性を高めるよう なメッセージ通信において、余分なヌルシンボルの送信を必要とせず、従来技術に 比べてより簡易なもので送信情報のより良い推定値を得ることができ、干渉の影響を 低減することができる受信機及び干渉補償方法を提供することである。  [0010] An object of the present invention is that it is simpler than the prior art because it does not require transmission of an extra null symbol in message communication that improves reception reliability by transmitting a message multiple times. It is an object of the present invention to provide a receiver and an interference compensation method capable of obtaining a better estimated value of transmission information and reducing the influence of interference.
課題を解決するための手段  Means for solving the problem
[0011] 力かる課題を解決するため、本発明の干渉補償方法は、(a)通信相手において 1 のシンボルを拡散して得られた複数のシンボルを受信するステップと、 (b)前記受信 した各々のシンボルの電力を測定するステップと、(c)前記受信したシンボルの総電 力に対する各々のシンボルの電力の比率である電力比重み係数を算出するステップ と、 (d)前記受信した各々のシンボルに該シンボルに対する電力比重み係数を乗算 するステップと、 (e)前記電力比重み係数を乗算した複数のシンボルを合算するステ ップと、を具備する。 [0011] In order to solve the problem, the interference compensation method of the present invention includes (a) a step of receiving a plurality of symbols obtained by spreading one symbol at a communication partner, and (b) the received signal Measuring the power of each symbol; (c) the total power of the received symbol; Calculating a power ratio weighting factor that is a ratio of the power of each symbol to the power; (d) multiplying each received symbol by a power ratio weighting factor for the symbol; and (e) the power specific gravity. Adding a plurality of symbols multiplied by a coefficient.
[0012] また、本発明の受信機は、通信相手にお!、て 1のシンボルを拡散して得られた複数 のシンボルを受信する受信手段と、前記受信した各々のシンボルの電力を測定する 電力測定手段と、前記受信したシンボルの総電力に対する各々のシンボルの電力の 比率である電力比重み係数を算出する重み係数計算手段と、前記受信した各々の シンボルに、該シンボルに対する電力比重み係数を乗算し、前記電力比重み係数を 乗算した複数のシンボルを合算する逆拡散処理手段と、を具備する。  [0012] Also, the receiver of the present invention is a receiving means for receiving a plurality of symbols obtained by spreading one symbol to a communication partner, and measures the power of each received symbol. Power measuring means, weight coefficient calculating means for calculating a power ratio weighting factor that is a ratio of the power of each symbol to the total power of the received symbol, and a power ratio weighting factor for the symbol for each received symbol And despreading processing means for summing up a plurality of symbols multiplied by the power ratio weighting factor.
発明の効果  The invention's effect
[0013] 本発明によれば、受信された複数の信号の各々の電力を利用して各々に対する電 力比重み係数を算出し、各々の信号を電力比係数により重み付けすることにより、衝 突シンボル力 よりも良シンボルから多くの寄与を受けることとなるため、逆拡散信号 の全体的な品質を高めることができる。  [0013] According to the present invention, the power ratio weighting coefficient for each of the received signals is calculated using the power of each of the received signals, and each signal is weighted with the power ratio coefficient, so that the collision symbol is obtained. Because it receives more contributions from good symbols than power, the overall quality of the despread signal can be improved.
図面の簡単な説明  Brief Description of Drawings
[0014] [図 1]時間 周波数符号を示す図 [0014] [Fig.1] Diagram showing time-frequency code
[図 2]時間拡散率 2を用いた、三つの周波数帯上のシンボル送信についての時間 周波数マップを示す図  [Figure 2] Time-frequency map for symbol transmission on three frequency bands using time spreading factor of 2
[図 3]本発明の一実施の形態に係る受信機の構成を示すブロック図  FIG. 3 is a block diagram showing a configuration of a receiver according to an embodiment of the present invention.
[図 4]本発明の一実施の形態に係る干渉補償方法を示すフローチャート  FIG. 4 is a flowchart showing an interference compensation method according to an embodiment of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 本発明の実施の形態について詳細に述べる前に、本発明を用いることのできる例 示的環境について記載する。本発明は、時間拡散共有メディア通信システムに対す る干渉補償に向けられたものであり、多くのタイプの通信システム、特に、周波数ホッ ビング多重接続及び時間拡散通信システムに有用である。時間'周波数拡散共有通 信メディアにおいて、一の信号は、当該信号を N複数回送信することにより通信され るものと仮定し、これはまた、当該信号が N倍時間拡散されることを意味する。 [0016] 本発明についての説明を容易にするため、 OFDMを用いたマルチバンド UWBに おける本発明の原理について記載する。し力しながら、本発明の範囲は、多くのタイ プの通信システムにも同様に適用され得るものである。 Before describing embodiments of the present invention in detail, an exemplary environment in which the present invention can be used will be described. The present invention is directed to interference compensation for time spread shared media communication systems and is useful for many types of communication systems, particularly frequency hobbing multiple access and time spread communication systems. In time 'spread spectrum shared communication media, assume that one signal is communicated by sending the signal N multiple times, which also means that the signal is time spread N times . In order to facilitate the explanation of the present invention, the principle of the present invention in multiband UWB using OFDM will be described. However, the scope of the present invention can be applied to many types of communication systems as well.
[0017] 図 1は、マルチバンド UWBシステムにおいて、異なるピコネットに対するチヤネライ ゼーシヨンを実現するための異なるピコネットに対する時間 周波数符号を示す。同 一ピコネット内の複数端末 (Devices)は、他のピコネット内の他の端末の時間一周波 数符号とは別のものである、同一の時間 周波数符号を共有する。これにより、同一 ピコネット内の複数端末は、他のピコネット内の他の端末と干渉することなぐ周波数 帯域を共有することが可能となる。例えば、チャネル番号 1のピコネットは、時間—周 波数符号 [123123]で送信を行う一方、チャネル番号 2のピコネットは、時間—周波 数符号 [132132]で送信を行う。  [0017] FIG. 1 shows time-frequency codes for different piconets to realize channelization for different piconets in a multi-band UWB system. Multiple terminals (Devices) in the same piconet share the same time-frequency code, which is different from the time-frequency code of other terminals in another piconet. This allows multiple terminals in the same piconet to share a frequency band that does not interfere with other terminals in other piconets. For example, a piconet with channel number 1 transmits with a time-frequency code [123123], while a piconet with channel number 2 transmits with a time-frequency code [132132].
[0018] 時間領域拡散動作は、逆フーリエ変換 (IFFT)動作の後、時間ドメインサブキャリア 上で行われる。時間領域拡散処理は、拡散率 N = 2により行なわれる力 このことは、 時間領域拡散処理が同一情報を二つの OFDMシンボルで送信することからなること を意味する。これら二つの OFDMシンボルは、異なるサブバンド上で送信されて、時 間—周波数符号を用いた周波数ダイバーシチが得られる。  [0018] The time domain spreading operation is performed on the time domain subcarrier after the inverse Fourier transform (IFFT) operation. Time domain spreading processing is the power performed by spreading factor N = 2 This means that time domain spreading processing consists of transmitting the same information in two OFDM symbols. These two OFDM symbols are transmitted on different subbands to obtain frequency diversity using time-frequency codes.
[0019] 例えば、端末 Aが OFDMシンボルのメッセージ [Al、 A2、 A3 · · · ]を送信して!/、る 場合、拡散率 N= 2による時間拡散処理を行った後には、送信メッセージは、 [Al l, A12、 A21、 A22、 A31、 A32- · · ]なる。ここで、 A12、 A22、 A32は、 Al l, A21、 A31の複製である。  [0019] For example, terminal A transmits an OFDM symbol message [Al, A2, A3 ···]! In this case, after performing the time spreading process with the spreading factor N = 2, the transmission message is [All, A12, A21, A22, A31, A32,...]. Here, A12, A22, and A32 are replicas of All, A21, and A31.
[0020] 端末 Aが、図 1に記されているように、時間—周波数符号 [123123]を用いて送信 を行っている場合、一番目の OFDMシンボルの情報(Al l及び A12)は、サブバン ド F1及び F2上で送信され、二番目の OFDMシンボルの情報(A21及び A22)は、 サブバンド F3及び F1上で送信され、さらに、三番目の OFDMシンボルの情報(A3 1及び A32)は、サブバンド F2及び F3上で再送される。他のピコネット内の他の端末 Bもまた送信を行っており、これらのピコネット同士が近接している場合には、図 2に 示したように、端末 A力ものシンボルと、端末 Bからのシンボルとの間に衝突が生じ得 る。この衝突は、シンボル内の情報をオーバーラップさせ、これを損ない、最終的に は、ビット誤り率に影響を与えるものとなる。 [0020] As shown in Fig. 1, when terminal A performs transmission using a time-frequency code [123123], information of the first OFDM symbol (All and A12) Information on the second OFDM symbol (A21 and A22) is transmitted on subbands F3 and F1, and further information on the third OFDM symbol (A3 1 and A32) is Retransmitted on subbands F2 and F3. Another terminal B in another piconet is also transmitting, and when these piconets are close to each other, as shown in Fig. 2, the symbol of terminal A and the symbol from terminal B A collision can occur between This collision causes the information in the symbols to overlap and damage this, eventually Affects the bit error rate.
[0021] 本発明は、従来技術の上記の問題を補償解決することを意図している。本発明の 目的は、時間逆拡散を実行するに先立って、複数シンボルに対して重み付けを行い 、該シンボルに電力比重み係数を乗算することにより、衝突シンボルによる最終の逆 拡散シンボルへの誤り影響を低減することにある。  [0021] The present invention is intended to compensate for the above problems of the prior art. The object of the present invention is to weight multiple symbols prior to performing time despreading, and multiply the symbols by a power ratio weighting coefficient, thereby affecting the error effect on the final despread symbol by the collision symbol. It is to reduce.
[0022] (一実施の形態)  [0022] (One Embodiment)
図 3は、本発明の一実施の形態に係る受信機の構成を示すブロック図である。受信 機 300は、復調部 350及びこの復調部 350に接続された干渉補償部 352を含んで いる。  FIG. 3 is a block diagram showing a configuration of a receiver according to an embodiment of the present invention. The receiver 300 includes a demodulator 350 and an interference compensator 352 connected to the demodulator 350.
[0023] 復調部 350の受信フィルタ 306は、共有通信メディア(図示せず)力も受信した入力 信号をフィルタ処理してベースバンド信号を生成する。このフィルタ処理は、シーケン スから不要スペクトル成分を取り除く。受信フィルタ 306は、ルート'レイズド 'コサイン フィルタであって良い。  [0023] The reception filter 306 of the demodulation unit 350 generates a baseband signal by filtering the input signal that has also received the shared communication media (not shown) power. This filtering removes unwanted spectral components from the sequence. Receive filter 306 may be a root 'raised' cosine filter.
[0024] 受信フィルタ 306から出力されたベースバンド信号は、高速フーリエ変換 (FFT)部 308を通る前に、まず、干渉補償部 352に送られる。  The baseband signal output from the reception filter 306 is first sent to the interference compensation unit 352 before passing through the fast Fourier transform (FFT) unit 308.
[0025] 干渉補償部 352は、受信フィルタ 306と FFT部 308との間に接続されている。この 干渉補償部 352は、ベースバンド信号に対して干渉補償処理を行う。図 3に示すよう に、干渉補償部 352は、電力測定部 320、重み係数計算部 322及び時間逆拡散処 理部 324を含んでいる。  The interference compensation unit 352 is connected between the reception filter 306 and the FFT unit 308. The interference compensation unit 352 performs interference compensation processing on the baseband signal. As shown in FIG. 3, the interference compensation unit 352 includes a power measurement unit 320, a weight coefficient calculation unit 322, and a time despreading processing unit 324.
[0026] 電力測定部 320は、二乗処理及び合計処理又は平均化処理を含む技術手段を用 いて、各々の OFDMシンボルの電力を測定し、電力を重み係数計算部 322に出力 する。そのような技術手段は、関係する技術分野の当業者にとって、周知のものであ る。電力測定部 320は、さらに、 OFDMシンボルの数を計数するカウンタを含んでい る。例示として、 N= 2の複数 OFDMシンボル (Al l、 A12)を入力した場合、電力測 定部 320は、各々の OFDMシンボルにつ!/、て電力 P (Al 1)及び P (A12)を測定す る。  [0026] Power measurement section 320 measures the power of each OFDM symbol using technical means including squaring processing and summation processing or averaging processing, and outputs the power to weighting coefficient calculation section 322. Such technical means are well known to those skilled in the relevant art. The power measuring unit 320 further includes a counter that counts the number of OFDM symbols. As an example, when multiple OFDM symbols (Al l, A12) with N = 2 are input, the power measurement unit 320 uses the power P (Al 1) and P (A12) for each OFDM symbol! taking measurement.
[0027] 重み係数計算部 322は、 OFDMシンボルの各々につ!/、て、受信したシンボルの総 電力に対する各々のシンボルの電力の比率である電力比重み係数の算出を行い、 電力比重み係数を時間逆拡散処理部 324に出力する。例示として、シンボル Al l及 び A12を入力した場合、シンボル Al lの電力比重み係数は、シンボル Al l及び A1 2の総電力に対するシンボル A12の電力の比率として表すことができる。一方、シン ボル A12の電力比重み係数は、シンボル Al 1及び A12の総電力に対するシンボル Al lの電力の比率として表すことができる。すなわち、シンボル Al lの電力比重み 係数は、 [P(A12)/{P(A11)+P(A12)}]の等式により表すことができ、シンボル A12に対 する電力比重み係数は、 [P(A11)/{P(A11)+P(A12)}]の等式により表すことができる。 [0027] Weighting factor calculation section 322 calculates a power ratio weighting factor that is the ratio of the power of each symbol to the total power of the received symbol for each OFDM symbol! / The power ratio weighting coefficient is output to the time despreading processing unit 324. As an example, when symbols A1 and A12 are input, the power ratio weighting factor of the symbol A1 can be expressed as a ratio of the power of the symbol A12 to the total power of the symbols A1 and A12. On the other hand, the power ratio weighting factor of the symbol A12 can be expressed as the ratio of the power of the symbol All to the total power of the symbols Al1 and A12. That is, the power ratio weighting coefficient of the symbol All can be expressed by the equation [P (A12) / {P (A11) + P (A12)}], and the power ratio weighting coefficient for the symbol A12 is It can be expressed by the equation [P (A11) / {P (A11) + P (A12)}].
[0028] 時間逆拡散処理部 324は、各々のシンボルに、該シンボルに対する電力比重み係 数を乗算する。その後、時間逆拡散処理部 324は、シンボルの合算を行い、合算値 を FFT部 308に出力する。例示として、時間逆拡散処理部 324がシンボル Al l及び A12について処理を行う場合、 [Α11χ{Ρ(Α12)/(Ρ(Α11) +P(A12))} +  [0028] Time despreading processing section 324 multiplies each symbol by a power ratio weighting factor for the symbol. Thereafter, the time despreading processing unit 324 performs symbol summation and outputs the summed value to the FFT unit 308. For example, when the time despreading processing unit 324 performs processing on the symbols All and A12, [Α11χ {Ρ (Α12) / (Ρ (Α11) + P (A12))} +
Α12χ{Ρ(Α12)/(Ρ(Α11)+Ρ(Α12》 ]がシンボルの合算値として計算される。  Α12χ {Ρ (Α12) / (Ρ (Α11) + Ρ (Α12 >>)] is calculated as the sum of symbols.
[0029] FFT部 308は、時間逆拡散処理部 324の出力信号に対して FFT変換処理を行う。  [0029] The FFT unit 308 performs FFT conversion processing on the output signal of the time despreading processing unit 324.
FFT部 308の出力信号は、周波数領域における OFDM復調シンボル列である。  The output signal of FFT section 308 is an OFDM demodulated symbol sequence in the frequency domain.
[0030] シンボルの合算前にそれらのシンボルに対して電力比重み係数が乗算されるところ の本発明の利点は、逆拡散信号の全体的な品質に対する衝突シンボルの寄与度を 低減し、良シンボルの寄与度を増大させるのに役立つ点にある。これによつて、衝突 シンボル力 よりも良シンボルから多くの寄与を受けることとなるため、逆拡散信号の 全体的な品質が高まる。なお、電力比重み係数を用いない場合には、衝突シンボル 力もの寄与分と、良シンボルからの寄与分とが同じになるであろう。  [0030] The advantage of the present invention in which the power ratio weighting factor is multiplied to the symbols before summing the symbols is that the contribution of the collision symbols to the overall quality of the despread signal is reduced, and the good symbols This is useful in increasing the degree of contribution. This increases the overall quality of the despread signal because it receives more contributions from good symbols than collision symbol power. If the power ratio weighting factor is not used, the contribution from the collision symbol force will be the same as the contribution from the good symbol.
[0031] 図 4は、本発明の一実施の形態に係る干渉補償方法を示すフローチャートである。  FIG. 4 is a flowchart showing an interference compensation method according to an embodiment of the present invention.
本方法は、無線チャネルなどの共有通信メディアを介して、 OFDM復調器力 OFD Mシンボルが受信されるステップ 400に始まる。  The method begins at step 400 where an OFDM demodulator power OFD M symbol is received via a shared communication medium such as a wireless channel.
[0032] ステップ 402にお!/、て、受信 OFDMシンボルに対して電力測定が実行される。ステ ップ 404にお!/、て、受信 OFDMシンボルの数が時間拡散率である Nに等しくな!/ヽ場 合には、処理はステップ 400へと戻り、他の OFDMシンボルを受信することとなる。受 信 OFDMシンボルの数が Nに等し!/、場合には、処理はステップ 406へと進む。  [0032] In step 402, power measurement is performed on the received OFDM symbols. In step 404! /, If the number of received OFDM symbols is not equal to the time spreading factor N! / ヽ, the process returns to step 400 to receive another OFDM symbol. It becomes. If the number of received OFDM symbols is equal to N! /, Processing proceeds to step 406.
[0033] 次に、ステップ 406において、電力比重み係数が算出される。次に、ステップ 408 において、電力比重み係数がそれぞれの OFDMシンボルに対して乗算される。次 に、ステップ 410では、電力比重み係数の乗算処理を施された二つの OFDMシンポ ルが合算される。 [0033] Next, in step 406, a power ratio weighting factor is calculated. Then step 408 , Each OFDM symbol is multiplied by a power ratio weighting factor. Next, in step 410, the two OFDM symbols that have been multiplied by the power ratio weighting factor are added together.
[0034] このように、本実施の形態によれば、受信された複数の信号の各々の電力を利用し て各々に対する電力比重み係数を算出し、各々の信号を電力比係数により重み付 けすることにより、衝突シンボル力 よりも良シンボルから多くの寄与を受けることとな るため、逆拡散信号の全体的な品質が高めることができる。  [0034] Thus, according to the present embodiment, the power ratio weighting coefficient for each of the plurality of received signals is calculated, and each signal is weighted with the power ratio coefficient. As a result, the overall quality of the despread signal can be improved because more contribution is received from the good symbol than the collision symbol power.
[0035] 当業者は、本発明が、その発明の構想の範囲においての、多くの変更例について 開示するものであることを認識するであろう。前述の記載は、本発明の好適な実施の 形態と考えられるが、これに対しては、様々な変更がなし得ること、また本発明が様々 な形、実施形態において実施され得ることが理解されよう。よって、本発明の範囲は、 ここに開示された実施形態に何ら限定されるものではなぐ以下に提示される請求項 の記載参照により、さらにそれらの均等物により、定められるところのものである。 産業上の利用可能性  [0035] Those skilled in the art will recognize that the present invention discloses numerous modifications within the scope of the inventive concept. Although the foregoing description is considered to be a preferred embodiment of the present invention, it will be understood that various modifications can be made thereto and that the present invention can be implemented in various forms and embodiments. Like. Therefore, the scope of the present invention is not limited to the embodiments disclosed herein, but is defined by the description of the claims presented below and further by their equivalents. Industrial applicability
[0036] 本発明は、複数のユーザ間で共有される通信メディアにおいて、衝突の生じたシン ボルを補償する受信機に用いるに好適である。 [0036] The present invention is suitable for use in a receiver that compensates for a symbol having a collision in a communication medium shared among a plurality of users.

Claims

請求の範囲 The scope of the claims
[1] 干渉補償方法は、  [1] The interference compensation method is
(a)通信相手にぉ 、て 1のシンボルを拡散して得られた複数のシンボルを受信する ステップと、  (a) receiving a plurality of symbols obtained by spreading one symbol to a communication partner; and
(b)前記受信した各々のシンボルの電力を測定するステップと、  (b) measuring the power of each received symbol;
(c)前記受信したシンボルの総電力に対する各々のシンボルの電力の比率である 電力比重み係数を算出するステップと、  (c) calculating a power ratio weighting factor that is a ratio of the power of each symbol to the total power of the received symbols;
(d)前記受信した各々のシンボルに該シンボルに対する電力比重み係数を乗算す るステップと、  (d) multiplying each received symbol by a power ratio weighting factor for the symbol;
(e)前記電力比重み係数を乗算した複数のシンボルを合算するステップと、を具備 する。  (e) adding a plurality of symbols multiplied by the power ratio weighting factor.
[2] 受信機は、  [2] The receiver
通信相手において 1のシンボルを拡散して得られた複数のシンボルを受信する受 信手段と、  Receiving means for receiving a plurality of symbols obtained by spreading one symbol at a communication partner;
前記受信した各々のシンボルの電力を測定する電力測定手段と、  Power measuring means for measuring the power of each received symbol;
前記受信したシンボルの総電力に対する各々のシンボルの電力の比率である電力 比重み係数を算出する重み係数計算手段と、  Weighting factor calculation means for calculating a power ratio weighting factor that is a ratio of the power of each symbol to the total power of the received symbol;
前記受信した各々のシンボルに、該シンボルに対する電力比重み係数を乗算し、 前記電力比重み係数を乗算した複数のシンボルを合算する逆拡散処理手段と、を 具備する。  Despreading processing means for multiplying each received symbol by a power ratio weighting coefficient for the symbol and adding together a plurality of symbols multiplied by the power ratio weighting coefficient.
PCT/JP2005/006611 2005-04-04 2005-04-04 Receiver and interference compensation method WO2006106589A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/006611 WO2006106589A1 (en) 2005-04-04 2005-04-04 Receiver and interference compensation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/006611 WO2006106589A1 (en) 2005-04-04 2005-04-04 Receiver and interference compensation method

Publications (1)

Publication Number Publication Date
WO2006106589A1 true WO2006106589A1 (en) 2006-10-12

Family

ID=37073157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006611 WO2006106589A1 (en) 2005-04-04 2005-04-04 Receiver and interference compensation method

Country Status (1)

Country Link
WO (1) WO2006106589A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000358016A (en) * 1999-06-15 2000-12-26 Mitsubishi Electric Corp Demodulator and communication system
JP2003087343A (en) * 2001-09-17 2003-03-20 Communication Research Laboratory Wireless communication method, reception state estimate method, transmitter and receiver
JP2005065070A (en) * 2003-08-19 2005-03-10 Sony Corp Propagation path property estimation system and propagation path property estimation method, as well as communication apparatus and communication method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000358016A (en) * 1999-06-15 2000-12-26 Mitsubishi Electric Corp Demodulator and communication system
JP2003087343A (en) * 2001-09-17 2003-03-20 Communication Research Laboratory Wireless communication method, reception state estimate method, transmitter and receiver
JP2005065070A (en) * 2003-08-19 2005-03-10 Sony Corp Propagation path property estimation system and propagation path property estimation method, as well as communication apparatus and communication method

Similar Documents

Publication Publication Date Title
US11665041B2 (en) Modulation and equalization in an orthonormal time-frequency shifting communications system
US10637697B2 (en) Modulation and equalization in an orthonormal time-frequency shifting communications system
US9900048B2 (en) Modulation and equalization in an orthonormal time-frequency shifting communications system
US9660851B2 (en) Modulation and equalization in an orthonormal time-frequency shifting communications system
US9729281B2 (en) Modulation and equalization in an orthonormal time-frequency shifting communications system
CN108028669B (en) Method and device for communicating data in digital chaotic cooperative network
CN101366254B (en) Dual carrier modulator for a multiband OFDM transceiver
KR100383208B1 (en) Method and System for Demodulation of Downlink CDMA Signals
US20140169406A1 (en) Modulation and equalization in an orthonormal time-frequency shifting communications system
US20140169385A1 (en) Modulation and equalization in an orthonormal time-frequency shifting communications system
US20020181388A1 (en) Communication system using orthogonal wavelet division multiplexing (OWDM) and OWDM-spread spectrum (OWSS) signaling
US10277438B2 (en) Method and apparatus for communicating data in a digital chaos communication system
JP2004500725A (en) Spread Spectrum Transceiver with Multipath Mitigation for Wireless Local Area Networks
JP2003520456A (en) Method for performing spread spectrum antenna diversity in a wireless local area network
JP2005341592A (en) Method for suppressing interference in time-frequency hopped, ultra wide bandwidth system
JP2003503875A (en) Communication system and method for multi-carrier orthogonal coding
US11943089B2 (en) Modulation and equalization in an orthonormal time-shifting communications system
Yoon et al. Contrabass: Concurrent transmissions without coordination for ad hoc networks
WO2006106589A1 (en) Receiver and interference compensation method
KR20090058037A (en) Uwb apparatus and method
CN1645845B (en) Multi-band single-carrier modulation
Carrick Cyclostationary Methods for Communication and Signal Detection Under Interference

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05728859

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5728859

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP