WO2006106226A1 - Method for purifying natural gas by mercaptan adsorption - Google Patents

Method for purifying natural gas by mercaptan adsorption Download PDF

Info

Publication number
WO2006106226A1
WO2006106226A1 PCT/FR2006/000744 FR2006000744W WO2006106226A1 WO 2006106226 A1 WO2006106226 A1 WO 2006106226A1 FR 2006000744 W FR2006000744 W FR 2006000744W WO 2006106226 A1 WO2006106226 A1 WO 2006106226A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
bar
mercaptans
adsorbent
adsorbent material
Prior art date
Application number
PCT/FR2006/000744
Other languages
French (fr)
Inventor
Michel Thomas
Eszter Toth
Fabrice Lecomte
Jean-Louis Ambrosino
Original Assignee
Institut Francais Du Petrole
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Francais Du Petrole filed Critical Institut Francais Du Petrole
Publication of WO2006106226A1 publication Critical patent/WO2006106226A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/104Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/306Surface area, e.g. BET-specific surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/306Organic sulfur compounds, e.g. mercaptans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40043Purging
    • B01D2259/4005Nature of purge gas
    • B01D2259/40052Recycled product or process gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
    • B01D2259/4009Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating using hot gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/403Further details for adsorption processes and devices using three beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/406Further details for adsorption processes and devices using more than four beds
    • B01D2259/4061Further details for adsorption processes and devices using more than four beds using five beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption

Definitions

  • the present invention relates to the purification of a natural gas. More particularly, the present invention provides a method of purification by adsorption of a natural gas to decrease the mercaptan content.
  • a raw natural gas contains in particular water, light hydrocarbons such as methane, ethane and propane, heavy hydrocarbons, acidic compounds such as carbon dioxide (CO 2 ) and hydrogen sulphide (H 2 S), and sulfur derivatives such as mercaptans.
  • This raw natural gas must be processed to meet the various specifications required, including specifications for acid gas content, total sulfur content, and water and hydrocarbon dew point.
  • the raw natural gas can be treated by the processes described by the documents FR 2 605 241 and FR 2 636 857. These processes use a physical solvent such as methanol to carry out the dehydration, degassing and removal of the acidic compounds and a part of the mercaptans. At the end of this treatment, the gas is to specification as to the content of GO 2 , typically less than 2 mol%, and H 2 S, typically less than 4 molar ppm.
  • a physical solvent such as methanol
  • Another gas treatment solution is to perform the deacidification by a method using an amine solvent.
  • the gas is to the specifications as to the content of CO 2 , typically less than 2 mol%, and to H 2 S, typically less than 4 molar ppm, ie a total sulfur content of the order of 6 mg S / Nm 3 .
  • Some of the Light mercaptans, including methyl mercaptan, are removed during this step.
  • the heavier mercaptans such as ethyl, propyl and butyl mercaptan, are not sufficiently acidic to react significantly with the amines and therefore remain largely in the gas. In some cases, the mercaptan content can reach 500 ppm molar.
  • the gas is dehydrated, for example, by a process using a solvent such as glycol, for example the process described in document FR 2 740 468.
  • Dehydration makes it possible to lower the water content of the gas to a similar value. 60 ppm molar.
  • an adsorption method of TSA type ("Thermal Swing
  • Adsorption on molecular sieve, for example of type 3 or 4A or 13X, or on alumina or silica gel, can be used.
  • the water content in the gas is typically less than 1 molar ppm.
  • An object of the present invention is to provide a method for purifying natural gas, so as to obtain a molar content of mercaptans of less than 20 ppm.
  • the conventional methods of adsorption in the gas phase are the methods commonly called TSA ("Thermal Swing Adsorption" in English), in which the adsorption step takes place at room temperature or moderate temperature typically between 20 0 C and 60 0 C, and the high temperature desorption (or regeneration) stage typically between 200 0 C and 350 0 C, under purge gas sweep (generally a part purified gas containing methane and / or ethane) whose flow rate is also between 5% and 20% of the feed gas flow.
  • TSA Thermal Swing Adsorption
  • the desorption gas containing a large quantity of mercaptans, must then be treated before being recycled, for example by bringing it into contact with a basic solution (sodium hydroxide or potassium hydroxide), or it can also be sent to the torch, which is neither economically nor ecologically very interesting.
  • the pressure is either kept substantially constant throughout the cycle, or lowered during the regeneration phase so as to promote regeneration.
  • the water content of the gas is less than 1 molar ppm, and the gas is at the total sulfur specifications.
  • adsorption of mercaptans by T.S.A. conventional, used in industry and in particular for purifying a natural gas has several disadvantages.
  • the present invention provides a method for purifying a natural gas by adsorption of mercaptans, avoiding the disadvantages of the processes of the prior art.
  • the object of the present invention is, therefore, to provide an adsorption process for the extensive removal of mercaptans from a natural gas.
  • the method proposes an adsorption step on a porous solid, under pressure and at ambient or moderate temperature, a step of desorbing the mercaptans adsorbed by a displacement agent, at ambient temperature, moderate or high and under low pressure, the agent of displacement consisting entirely or partly of heavy hydrocarbons in vapor form.
  • the method comprises a step of desorption and / or purge of the displacement agent, at ambient temperature, moderate or high, and under purge of purge gas under low pressure.
  • the present invention relates to a process for purifying a natural gas containing mercaptans.
  • the process comprises the following steps: a) contacting the natural gas with an adsorbent material so as to obtain a purified gas, the mercaptans being adsorbed by the adsorbent material, then b) contacting the adsorbent material loaded with mercaptans obtained in step a) with a flow comprising at least 80% by volume of heavy hydrocarbon vapor comprising at least five carbon atoms so as to obtain a mercaptan-loaded stream and an adsorbent material saturated with heavy hydrocarbons.
  • step a) can be carried out under a pressure of between 10 bar and 100 bar and at a temperature of between 0 ° C. and 150 ° C.
  • step b) can be carried out under a pressure comprised between between 1 bar and 40 bar and at a temperature between 0 0 C and 300 0 C.
  • step c) the heavy hydrocarbon-saturated adsorbent material obtained in step b) is brought into contact with a fraction of the purified gas obtained in step a) of in order to desorb the heavy hydrocarbons from the adsorbent material and to obtain a gas loaded with heavy hydrocarbons.
  • Step c) can be carried out under a pressure of between 1 bar and 40 bar and at a temperature of between 0 ° C. and 300 ° C.
  • the following steps can be performed: d) the natural gas is brought into contact with a second adsorbent material so as to adsorb the water contained in the natural gas, then e) the second adsorbent material is brought into contact with a fraction of the purified gas obtained in step a) to desorb the water contained in the second adsorbent material.
  • Step d) can be carried out under a pressure of between 10 bar and 100 bar and at a temperature of between 0 ° C. and 100 ° C.
  • step e) can be carried out under a pressure of between 10 bar and 100 ° C. bar and at a temperature between 100 0 C and 400 0 C.
  • step b) said stream may comprise at least a portion of the purified gas obtained after contacting in step c).
  • the heavy hydrocarbon vapor contained in the stream obtained in step b) can be condensed and the mercaptans can be separated from the hydrocarbons. condensed.
  • the non-condensed gas may be recycled in at least one of the following ways:
  • the uncondensed gas is mixed with the natural gas before step a),
  • the uncondensed gas is mixed with heavy hydrocarbon vapor to form at least a portion of said stream.
  • the purified gas obtained in step c) can be cooled to condense a portion of the water and / or hydrocarbons and the cooled gas can be recycled by mixing the cooled gas with the natural gas prior to step a).
  • said natural gas can be deacidified by absorption of the acidic compounds by an absorbent solution.
  • the heavy hydrocarbons may be chosen from the group of aromatic hydrocarbons comprising between 7 and 10 carbon atoms, the group being constituted by toluene, the isomers of xylenes, ethylbenzene, mesytilene and paradiethylbenzene.
  • the adsorbent materials can comprise at least one of the following materials: an activated carbon, a zeolite, a mesoporous adsorbent of activated alumina type, and a mesoporous adsorbent of silica gel type.
  • the adsorbent materials can comprise at least one of the following materials: an active carbon having a specific surface area of between 500 and 2500 m 2 / g, a type A zeolite, a type A zeolite, a faujasite type zeolite X a faujasite Y type zeolite, a zeolite of the MFI family, an activated alumina type mesoporous adsorbent having a BET specific surface area of between 150 m 2 / g and 800 m 2 / g, and a mesoporous silica gel type adsorbent having a BET specific surface area of between 150 m2 / g and 800 m2 / g.
  • the present invention makes it possible to avoid or limit losses in purified natural gas.
  • the step of displacement by heavy hydrocarbons mercaptans makes it easy to recover the mercaptans by simple liquid / liquid separation.
  • losses of heavy hydrocarbons are minimized.
  • FIG. 1 describes the process according to the invention
  • FIG. 2 represents a variant of the method according to the invention.
  • the natural gas to be treated arrives via line 1 and contains in particular water, CO 2 , H 2 S and mercaptans.
  • the gas can be a raw natural gas directly from an oil well or a gas field.
  • the gas may be at a pressure of between 10 bar and 100 bar.
  • the gas flowing in the duct 1 can be introduced into the DA deacidification unit.
  • the gas is deacidified by methods known to those skilled in the art.
  • the gas is treated by a process using chemical and / or physical solvents, for example based on amines and / or methanol, so as to produce a natural gas with specifications for the CO 2 content and in H 2 S.
  • Such processes are described in particular in documents FR 2 605 241, FR 2 636 857 and FR 2 734 083.
  • the acidic compounds H 2 S and CO 2 are discharged via line 2.
  • a portion of the mercaptans, especially methylmercaptan, is partially removed from the gas during this treatment. These mercaptans are also discharged through line 2.
  • the gas discharged via line 3 of unit DA has a content of H 2 S, for example of the order of 4 ppm molar and a lower CO 2 content, for example at 2 mol%.
  • the water content of this gas is generally between 1000 ppm and 5000 ppm molar.
  • the deacidified gas flowing in the duct 3 can then be sent to the dehydration unit DH.
  • the gas is treated by a process of dehydration, for example with a glycol solution.
  • the dehydration process is that described in document FR 2 740 468.
  • the glycol used may be triethylene glycol (TEG).
  • TEG triethylene glycol
  • a dehydrated gas is obtained, whose residual water content can be of the order of 60 molar ppm. This gas still contains mercaptans and heavy hydrocarbons.
  • the water is discharged through line 20.
  • the treated gas leaving the DH unit via line 4 is depleted of water and acidic compounds H 2 S and CO 2 , but still contains mercaptans, in a content that may be greater than 200 ppm molar equivalent sulfur.
  • the gas flowing in the duct 3 can directly be transferred into the duct 4.
  • the dehydrated and deacidified gas is then sent to an adsorption adsorption purification unit, for example on molecular sieves, in order to remove the mercaptans still present in this gas.
  • This unit comprises at least two Al and A3 enclosures, and possibly a third chamber A2, containing a suitable adsorbent material allowing in particular the adsorption of mercaptans, such as methyl-, ethyl-, propyl-mercaptan, and higher mercaptans. .
  • the adsorbent material contained in the enclosures A1 and A3 operates successively in adsorption, displacement and optionally regeneration mode:
  • the adsorbent material adsorbs the mercaptans contained in the gas, and optionally water and heavy hydrocarbons, at ambient or moderate temperature and under high pressure, and then, in displacement mode, the mercaptans are displaced; adsorbed in adsorption mode; the mercaptans are displaced by a heavy hydrocarbon vapor, that is to say desorbed and replaced by heavy hydrocarbons, the displacement being carried out by scanning a heavy hydrocarbon vapor or a gas rich in hydrocarbons; heavy hydrocarbon vapor, at moderate or high temperature and under moderate or low pressure, then in regeneration mode, after the displacement, the desorption and purge of the heavy hydrocarbons adsorbed by the adsorbent material can be carried out by scanning a dry gas at high temperature,
  • the adsorbent material contained in the enclosure Al operates in adsorption mode
  • the material contained in the enclosure A2 operates in regeneration mode
  • the material contained in the enclosure A3 operates in displacement mode.
  • the dehydrated and deacidified gas flowing in the duct 4 is introduced into the chamber Al.
  • the mercaptans contained in the gas are adsorbed by the adsorbent material contained in the enclosure Al.
  • the mercaptans, traces of water and possibly heavy hydrocarbons in particular the C 6 + are adsorbed by the adsorbent material in the Al chamber.
  • a purified gas is obtained which complies with the specifications for the contents of acid gases, total sulfur and water.
  • the purified gas is evacuated from the chamber Al via line 5.
  • the purified gas is obtained as long as the cycle time is less than the piercing time of the mercaptans, ie the adsorption is carried out in the enclosure Al, for example, until the material is saturated with mercaptans.
  • the operating mode of the material of the enclosure Al is reversed by that of another enclosure, for example by that of the enclosure A2 whose adsorbent material is regenerated, that is to say which does not contain or little mercaptans and water adsorbed.
  • the temperature inside the chamber Al operating in adsorption mode is generally between 0 0 C and 150 0 C, preferably between 10 0 C and 100 0 C, and preferably between 20 0 C and 70 0 C.
  • the pressure in the enclosure Al may be that of natural gas produced, typically between 10 bar and 100 bar, preferably between 30 bar and 80 bar.
  • the superficial gas velocity in the enclosure A1 is for example between 0.5 and 30 m / min.
  • the purified gas is, for example, sent via line 6 to a fractionation unit in order to valorize the various cuts, for example by distillation.
  • the purified gas can be separated to obtain methane, ethane, propane, butane and a heavy hydrocarbon fraction containing more than five carbon atoms.
  • the purified gas may also be sent via line 6 to a place of storage or use.
  • the adsorbent material is loaded with heavy hydrocarbons.
  • a part of the purified gas coming from the enclosure Al as a regeneration gas to regenerate the material contained in the enclosure A2, that is to say to evacuate the heavy hydrocarbons contained by the material in the A2 enclosure.
  • Regeneration is performed in TSA mode.
  • This regeneration step makes it possible to purge the adsorbent material which contains heavy hydrocarbons.
  • the regeneration step can be carried out under pressure conditions close to or equal to those used during the displacement step described below, and possibly under temperature conditions close to or equal to those used during this displacement step. .
  • another gas can be used to regenerate the adsorbent A2, for example nitrogen, CO 2 , or hydrogen.
  • the increase in temperature of the material in the chamber A2 can be achieved by closed loop circulation through A2 of a quantity of gas, for example from Al, or by another type of gas. This quantity of gas is heated via a heat exchanger.
  • Part of the purified gas from the enclosure Al is heated in the heat exchanger E1 at a temperature of between 20 ° C. and 350 ° C., preferably between 50 0 C and 25O 0 C.
  • the purified gas is expanded in the expansion element T, for example a turbine or a valve, to a pressure below 40 bar, preferably less than 20 bar and preferred way less than 10 bar.
  • the expansion in T1 can be carried out before heating in El.
  • the gas is introduced through line 7 into enclosure A2.
  • the flow rate of gas introduced into the chamber A2 can be between 1% and 50%, and preferably between 5% and 20%, of the total flow rate of the purified gas from Al.
  • the pressure is generally less than 40 bar, 20 bar or preferably less than 10 bar
  • the temperature may be between 20 0 C and 350 0 C, preferably between 50 0 C and 250 0 C.
  • the temperature in the chamber A2 is gradually lowered and the pressure is gradually raised to the temperature and pressure used to carry out the adsorption in the chamber Al
  • gas is sent from the enclosure A1 into the chamber A2 via the pipe 7, this gas not being heated by the exchanger E1 or expanded by the expansion member T1.
  • lowering the temperature and increasing the pressure, the gas obtained at the outlet of the enclosure A2 may be recycled upstream of the enclosure A1, for example by being mixed with the gas flowing in the duct 4.
  • This operation can also be carried out under a lower pressure, for example between 1 bar and 30 bar, preferably between 1 bar and 10 bar, so as to limit the amount of purge gas used.
  • the gas can be used as a gas oil, for example for the utilities of the process.
  • the temperature drop of the adsorbent material in the chamber A2 can also be achieved by closed-loop circulation of a quantity of gas, for example from Al, or by another type of gas.
  • the amount of gas is cooled in a heat exchanger.
  • the purified gas flowing in line 8 is loaded with heavy hydrocarbons from the desorption of these heavy hydrocarbons adsorbed in chamber A2.
  • the gas may be cooled in the heat exchanger E2 at a temperature of between 15 ° C. and 150 ° C., preferably between 25 ° C. and 80 ° C.
  • the cooling makes it possible to condense a portion of the heavy hydrocarbons contained in the gas .
  • the cooled gas is introduced into the gas / liquid separator B in order to recover a portion of the condensed heavy hydrocarbons by cooling.
  • the operating conditions of the separator B are a temperature of between 0 ° C. and 150 ° C., preferably between 10 ° C. and 80 ° C., and a pressure of between 1 bar and 100 bar, preferably between 1 bar and
  • Some or all of the gas discharged from B can be recycled.
  • this gas is compressed in K2, sent via the ducts 10 and 11 to be mixed with the gas flowing in the duct 4, and is then introduced into the chamber Al.
  • the gas can be used as a gas oil, for example for the utilities of the process.
  • the adsorbent material contained in the enclosure A3 is loaded with mercaptans.
  • the material may also be charged, in addition to mercaptans, with water and / or heavy hydrocarbons, in particular of the C 6 + type. This material must be at least partially freed of mercaptans in order to be re-engaged in an adsorption cycle.
  • the mercaptans are displaced by heavy hydrocarbon vapor, pure or diluted, for example by a portion of the drying gas from the enclosure A2.
  • the heavy hydrocarbon vapor arriving via line 12 is introduced via line 13 into chamber A3.
  • the heavy hydrocarbons used to move the mercaptans are liquid hydrocarbons under normal conditions, comprising at least five carbon atoms, and preferably at least seven carbon atoms.
  • the hydrocarbons may be paraffinic, isoparaffinic, naphthenic or aromatic.
  • the hydrocarbons may be aromatic compounds preferably containing from 7 to 10 carbon atoms, for example toluene, the isomers of xylenes, ethylbenzene, mesytilene, paradiethylbenzene.
  • the hydrocarbons may in particular be chosen from the hydrocarbons constituting the aromatic C8 cut, namely in particular the isomers of xylenes and ethylbenzene.
  • the adsorbent material of the enclosure A3 may be depressurized, for example at a pressure less than or equal to half the pressure during the adsorption step, that is to say typically less than 40 bar, and preferably less than 20 bar, and preferably less than 10 bar.
  • the gas recovered during this depressurization phase may advantageously be used to re-pressurize another adsorber after the phase of displacement of the mercaptans and / or preferentially after the desorption phase of the displacement agent.
  • the quantity of heavy hydrocarbons required for the step of displacement of the mercaptans adsorbed on the adsorbent in the enclosure A3 depends in particular on the degree of regeneration desired, that is to say in particular the dynamic capacity and the residual capacity.
  • the amount of heavy hydrocarbons required is all the lower as the temperature is high, the total pressure low, the degree of regeneration of the weak adsorbent and the residual capacity after high regeneration.
  • the quantity of heavy hydrocarbons sent via line 13 into chamber A3 is between 1 and 50 times the mass of mercaptans. that we want to move, preferably between 1 and 20 times, preferably between 1 and 10 times.
  • the heavy hydrocarbon vapor circulating in the conduit 13 may be diluted by gas coming from the enclosure A2 arriving via the conduit 17. If the heavy hydrocarbons are diluted with natural gas, the amount of heavy hydrocarbons is greater than 80 % by volume of the mixture, advantageously greater than 90% and preferably greater than 98%.
  • the operating conditions of the enclosure A3 are a temperature of between 0 ° C. and 300 ° C., and preferably between 20 ° C. and 200 ° C.
  • the pressure in the enclosure A3 may be chosen lower than the vapor pressure of the heavy hydrocarbons at the temperature in question (that is to say at the temperature in the enclosure A3), for example between 1 and 40 bar, preferably between 1 and 20 bar and preferably between 1 and 10 bar.
  • the pressure during the displacement step is preferably chosen so that it is between 0.2 and 0.8 times the vapor pressure, or the dew point, of the hydrocarbons. heavy at the temperature of the enclosure A3, and preferably between 0.3 and 0.6 times. If the heavy hydrocarbons are used diluted in a purge gas, the total pressure can be chosen such that the ratio between the partial pressure of the heavy hydrocarbons and the dew point pressure of these heavy hydrocarbons at the temperature of the enclosure A3, is between 0.2 and 0.8 and preferably between 0.4 and 0.6.
  • adsorbent containing mesopores which can give rise to the phenomenon of capillary condensation, such as activated carbons and activated aluminas or silica gels. If zeolites formed with a binder are used, the mesopore content is practically zero, and it is then possible to work with a high relative pressure ratio.
  • the intergrain volume of the adsorbent material of the enclosure A3 and the porous volumes of the adsorbent are filled with heavy hydrocarbons. These adsorbed hydrocarbons may optionally be removed by heating the adsorbent at high temperature under gas flushing as described with reference to the enclosure A2.
  • the rate of passage of the hydrocarbon vapor in the enclosure A3 is between 0.5 and 10 m / min, and preferably between 0.5 and 5 m / min.
  • the gaseous mixture at the outlet of the enclosure A3 essentially consisting of mercaptans mixed with the heavy hydrocarbon vapor, is cooled in the heat exchanger E3.
  • the gaseous mixture is cooled to a condensation temperature of the heavy hydrocarbons, for example at a temperature between -50 ° C. and 50 ° C., preferably between -40 ° C. and 0 ° C.
  • a gas / liquid separator S which makes it possible to recover a liquid hydrocarbon fraction, containing most of the dissolved mercaptans and possibly a gaseous phase, especially if the vapor has been diluted in a gas.
  • the operating conditions of the separator S are a temperature of between -50 ° C. and 50 ° C., and preferably between -40 ° C. and 0 ° C., a pressure of between 1 and 100 bar, preferably between 10 and 80 bar.
  • a liquid hydrocarbon fraction is recovered via the conduit 15, consisting in particular of the mercaptans, the heavy hydrocarbons, and possibly light hydrocarbons of the dissolved natural gas.
  • This liquid hydrocarbon fraction can be depressurized at a pressure close to atmospheric pressure, then the mercaptans can be removed for example by an absorption process with a solution comprising sodium hydroxide or potassium hydroxide.
  • This liquid fraction can also be desulfurized by a sulfrex process. The purified liquid hydrocarbon fraction thus obtained can then be recovered or recycled.
  • the heavy hydrocarbon vapor arriving via line 12 may be diluted with a fraction of natural gas, for example all or part of the gas recovered via line 17 at the outlet of chamber A2 during the regeneration phase of the adsorbent material.
  • This natural gas is not condensed by the cooling in exchanger E3.
  • This gas is discharged from the separator S via the conduit 18. It can advantageously be compressed by the compressor K1, and then recycled upstream of the enclosure Al through the conduits 19 and 11 so as to be mixed with the gas flowing in the conduit 4. can also be heated by the exchanger E4, then sent through the conduit 16 to be mixed with the heavy hydrocarbon vapor arriving through the conduit 12 to dilute this steam.
  • the dehydration of this gas can be carried out in the AS unit, for example by a glycol dehydration process (for example described with reference to the DH unit), or by an adsorption method of the TSA type on zeolite 3A or 4A. according to the rules known to those skilled in the art.
  • the cooling temperature in E3 and the operating temperature of the separator S can be between -50 ° C. and 10 ° C., preferably between -50 ° C. and -20 ° C.
  • These Operating temperatures make it possible to achieve greater condensation of desorbed mercaptans from the enclosure A3 which will be discharged from the separator via the conduit 15 with the liquid hydrocarbon phase.
  • A2 and A3 operate alternately in adsorption mode (adsorption of the mercaptans contained in the gas to be treated), then in displacement mode
  • the operating mode of the material of the enclosure A1 is changed by that of the enclosure A3, that of the enclosure A2 by that of the enclosure A1, and that of the enclosure A3 by that of the A2 speaker.
  • the change can be made when the material contained in the chamber operating in regeneration mode is sufficiently regenerated to operate in adsorption mode.
  • the change can also be made when the material contained in the chamber operating in adsorption mode is too charged to mercaptans to continue to ensure purification of the gas to be treated.
  • the method described in connection with Figure 1 can operate with two amounts of adsorbent material.
  • the duration of the different steps is typically between 1 and 24 hours, preferably between 2 and 18 hours, and preferably between 4 and 12 hours.
  • the process described in connection with FIG. 2 constitutes an improvement of the method described with reference to FIG. 1.
  • the references of FIG. 2 identical to those of FIG. 1 denote the same elements.
  • the raw natural gas arriving via line 1 is optionally de-acidified in the DA unit and then optionally dehydrated in the DH unit.
  • the deacidified and dehydrated natural gas is introduced into a purification unit.
  • This unit has five speakers Al, A2, A3, A4 and A5 which operate in parallel:
  • a first chamber operates in adsorption mode, in particular residual water present in the gas after deacidification and dehydration, the adsorption being carried out at ambient or moderate temperature;
  • a second chamber operates in adsorption mode, in particular mercaptans and heavy hydrocarbons; present in the gas from the first chamber, the adsorption being carried out at ambient or moderate temperature,
  • a third enclosure operates in regeneration mode, that is to say desorption of water by sweeping with a gas at high temperature
  • a fourth enclosure operates in regeneration mode, that is to say desorption of heavy hydrocarbons by scanning with a gas at high temperature
  • a fifth chamber operates in displacement mode, in particular mercaptans adsorbed by sweeping heavy hydrocarbon vapor, the gas being at room temperature bu moderate.
  • the material contained in the enclosure A4 operates in adsorption mode of the water
  • the material contained in the enclosure Al operates in adsorption mode of the mercaptans
  • the material contained in the enclosures A2 operates in regeneration mode (desorption heavy hydrocarbons)
  • the material contained in the enclosure A5 operates in regeneration mode (desorption of water)
  • the material contained in the enclosure A3 operates in displacement mode.
  • the enclosures A1 and A4 can be inverted.
  • the gas flowing in the duct 3 passes first through the enclosure A1 and the enclosure A4.
  • the treatment pressure in the Al and A4 enclosures is generally between 10 and 100 bar, preferably between 30 and 80 bar, and the temperature is between room temperature and 100 0 C, and preferably between 20 0 C and 70 0 C
  • the sizing of Al and A4 units can be achieved by considering the total amount of mercaptans to be adsorbed in the Al enclosure.
  • the residual water content in the gas can be adjusted so as to saturate the adsorber A4 during the same time. cycle that the adsorber Al.
  • An purified natural gas evacuated via the duct 6 is obtained at the outlet of the enclosure A1, to the specifications for acid gases, total sulfur, and dew point of water.
  • the purified gas is then optionally sent via line 6 to a fractionation unit in order to efficiently conserve the various cuts.
  • Part of the purified gas is used as a purge gas to regenerate, in TSA mode, the adsorbent materials of the enclosures A2 and A5. .
  • This portion of gas is heated in the exchanger E1 and then sent to the enclosures A2 and A5.
  • the heated gas is, furthermore, expanded in the turbine Tl.
  • the pressure in the enclosure A5 is generally between 1 and 100 bar, and preferably between 10 and 80 bar, and the temperature between 100 and 400 0 C, preferably between 200 and 350 0 C.
  • the pressure in the chamber A2 is generally between 1 and 20 bar, and preferably between 1 and 10 bar, and the temperature between 100 and 400 0 C, preferably between 200 and 350 0 C.
  • the purified gas is loaded with water coming from the desorption of the water adsorbed in this chamber. All or part of the wet gas coming from the enclosure A5 is cooled and a gas / liquid separator B1 makes it possible to recover a part of the condensed water.
  • the operating conditions of the separator B are a temperature between 10 and 15O 0 C, preferably between 15 and 8O 0 C, a pressure between 1 and 100 bar, and preferably between 2 and 70 bar. The operating conditions will be chosen so as to avoid any formation of natural gas hydrates in the separator.
  • this gas still charged with residual water, can be sent upstream of the enclosures A4 and A1 through conduits 10 and 11 after a possible recompression carried out in K2. All or part of the heavy hydrocarbon-laden gas coming from the enclosure A2 can be sent through the conduit 17 to be mixed with the heavy hydrocarbon vapor circulating in the conduit 13, this mixture being introduced into the enclosure A3.
  • All or part of the heavy hydrocarbon-loaded gas coming from the enclosure A2 can also be sent via the conduit 21 into the exchanger E3 and then into the separator S1.
  • the adsorbent material used for the removal of the mercaptans contained in the enclosure A3 is saturated, at the end of the adsorption cycle, with mercaptans and heavy hydrocarbons present in the gas, and must be at least partially regenerated in order to be again engaged in an adsorption cycle.
  • this regeneration is done by using as fluid in particular hydrocarbon vapor, pure or diluted, for example by all or part of the regeneration gas of the adsorbent contained in the chamber A2, at high temperature, for example typically between 0 and 300 ° C, and preferably between 50 and 200 ° C.
  • the pressure for this operation must be less than the vapor pressure of the heavy hydrocarbons at the temperature in question, it is typically between 1 and 40 bar, and preferably between 1 and 20 bar, and preferably between 1 and 10 bar.
  • a gas / liquid separator S 1 makes it possible to recover a liquid hydrocarbon fraction constituted in particular by heavy hydrocarbons and mercaptans.
  • the operating conditions of this separator Sl are a temperature of between -50 ° C. and 50 ° C., and preferably between -40 ° C. and 0 ° C., and a pressure of between 1 and 40 bar, and preferably between 1 and 20 ° C. bar, and preferably between 1 and 10 bar.
  • the intergrain volume of the adsorber, and the porous volumes of the adsorbent used for the removal of the mercaptans are filled with heavy hydrocarbon vapor.
  • These adsorbed hydrocarbons may optionally be removed by heating the adsorbent at high temperature under gas flushing. This is done as described previously in the step relating to the operation of the enclosure A2.
  • the gas / liquid separator S 1 also makes it possible to recover the condensed heavy hydrocarbons contained in the gas arriving directly from the enclosure A2 via the conduit 21.
  • the duration of each of these sequences is typically between 1 and 24 hours, preferably between 2 and 18 hours, and preferably between 4 and 12 hours.
  • the sizing of the adsorbers will be carried out according to the rules known to those skilled in the art.
  • the superficial velocity of the vapor in the adsorber is for example between 0.5 and 30 m / min.
  • the adsorbent materials used to carry out the adsorption of the mercaptans in the Al, A2 and A3 enclosures may be hydrophilic or hydrophobic nature.
  • the adsorbent materials used to dehydrate natural gas in enclosures A4 and A5 are hydrophilic in nature.
  • the hydrophobic adsorbent materials are preferably chosen from active carbons, of hydrophobic nature, and in particular those whose specific surface area is typically between 500 and 2500 Xn 2 Ig, as well as zeolites, or molecular sieves, in particular of type Y, of the family of faujasites, whose silicon / aluminum molar ratio is greater than 3, preferably greater than 5 and preferably greater than 10.
  • Y zeolites are commonly called ultrastable Y zeolites or USY. It is also possible to choose zeolites from the MFI family, and in particular ZSM-5 zeolites that are partially or totally dealuminated, such as silicalite.
  • the compensation cation is preferably sodium.
  • the hydrophilic adsorbent materials are known to those skilled in the art under the name NaY.
  • the hydrophilic adsorbent materials are preferably chosen from LTA type molecular sieves, also called zeolites, or mesoporous adsorbents of activated alumina type or silica gel.
  • the hydrophilic adsorbent materials used to remove the mercaptans from natural gas are preferably chosen from zeolites 5A and zeolites X or Y.
  • hydrophilic zeolites it is possible to choose among zeolites of type A (LTA family), and in particular water-selective zeolites, in particular zeolites of type 3A and 4A, whose pore diameter is less than 0.4 nm. It is also possible to use zeolites of type 5A, or of X or Y type, such as NaX or NaY zeolites (FAU family of faujasites), whose Si / Al molar ratio is preferably less than 3.
  • zeolites of type 5A, or of X or Y type such as NaX or NaY zeolites (FAU family of faujasites), whose Si / Al molar ratio is preferably less than 3.
  • the other adsorbents that can be used for this application can be selected from activated aluminas or silica gels, and preferably those having a BET specific surface area, conventionally determined by physisorption of nitrogen at 77 K, of between 150 and 800 m 2 / g.
  • the adsorbent materials are preferably used in a fixed bed, for example in the form of a ball or an extruded material. They can be used either alone or mixed, for example in multi-bed form. In the case of multi-beds, activated aluminas or gels. of silica are used upstream of the molecular sieves.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

A raw natural gas is dioxide in a units (DA, DH). The processed gas is subsequently purified by adsorbing mercaptans in the first chamber (AI). A part of the purified gas is heated in an EI, afterwards is introduced into a second chamber A2 in such a way that a water adsorbed by an adsorption material contained therein is removed. A stream rich in heavy hydrocarbon vapours is introduced into a third chamber (A3) containing a mercaptan-charged adsorption material. In the A3, the mercaptans are desorbed and substituted by the heavy hydrocarbons.

Description

PROCEDE DE PURIFICATION D'UN GAZ NATUREL PAR ADSORPTION DES MERCAPTANSPROCESS FOR PURIFYING NATURAL GAS BY ADSORPTING MERCAPTANS
La présente invention se rapporte à la purification d'un gaz naturel. Plus particulièrement, la présente invention propose un procédé de purification par adsorption d'un gaz naturel pour diminuer la teneur en mercaptans.The present invention relates to the purification of a natural gas. More particularly, the present invention provides a method of purification by adsorption of a natural gas to decrease the mercaptan content.
Un gaz naturel brut contient notamment de l'eau, des hydrocarbures légers tels le méthane, l'éthane et le propane, des hydrocarbures lourds, des composés acides tels que du dioxyde de carbone (CO2) et du sulfure d'hydrogène (H2S), et des dérivés soufrés tels que des mercaptans. Ce gaz naturel brut doit être traité afin qu'il puisse satisfaire aux diverses spécifications requises, notamment les spécifications sur la teneur en gaz acides, sur la teneur en soufre total, et sur les points de rosée eau et hydrocarbures.A raw natural gas contains in particular water, light hydrocarbons such as methane, ethane and propane, heavy hydrocarbons, acidic compounds such as carbon dioxide (CO 2 ) and hydrogen sulphide (H 2 S), and sulfur derivatives such as mercaptans. This raw natural gas must be processed to meet the various specifications required, including specifications for acid gas content, total sulfur content, and water and hydrocarbon dew point.
Le gaz naturel brut peut être traité par les procédés décrits par les documents FR 2 605 241 et FR 2 636 857. Ces procédés utilisent un solvant physique tel le méthanol pour réaliser la déshydratation, le dégazolinage et le retrait des composés acides et une partie des mercaptans. A l'issue de ce traitement, le gaz est aux spécifications quant à la teneur en GO2, typiquement inférieure à 2 % molaire, et en H2S, typiquement inférieure à 4 ppm molaire.The raw natural gas can be treated by the processes described by the documents FR 2 605 241 and FR 2 636 857. These processes use a physical solvent such as methanol to carry out the dehydration, degassing and removal of the acidic compounds and a part of the mercaptans. At the end of this treatment, the gas is to specification as to the content of GO 2 , typically less than 2 mol%, and H 2 S, typically less than 4 molar ppm.
Une autre solution de traitement du gaz consiste à réaliser la désacidification par un procédé utilisant un solvant aux aminés. A l'issue de ce traitement, le gaz est aux spécifications quant à la teneur en CO2, typiquement inférieure à 2 % molaire, et en H2S, typiquement inférieure à 4 ppm molaire, soit une teneur totale en soufre de l'ordre de 6 mg S/Nm3. Une partie des mercaptans légers, notamment le méthylmercaptan, est retirée lors de cette étape. Par contre, les mercaptans plus lourds, tels l'éthyl-, le propyl- et le butyl-mercaptan, ne sont pas suffisamment acides pour réagir significativement avec les aminés et, donc, restent largement dans le gaz. Dans certains cas, la teneur en mercaptans peut atteindre 500 ppm molaire.Another gas treatment solution is to perform the deacidification by a method using an amine solvent. At the end of this treatment, the gas is to the specifications as to the content of CO 2 , typically less than 2 mol%, and to H 2 S, typically less than 4 molar ppm, ie a total sulfur content of the order of 6 mg S / Nm 3 . Some of the Light mercaptans, including methyl mercaptan, are removed during this step. On the other hand, the heavier mercaptans, such as ethyl, propyl and butyl mercaptan, are not sufficiently acidic to react significantly with the amines and therefore remain largely in the gas. In some cases, the mercaptan content can reach 500 ppm molar.
Ensuite, le gaz est déshydraté, par exemple, par un procédé utilisant un solvant tel que le glycol, par exemple le procédé décrit par le document FR 2 740 468. La déshydratation permet d'abaisser la teneur en eau du gaz à une valeur proche de 60 ppm molaire. En outre, un procédé par adsorption de type TSA (« Thermal SwingThen, the gas is dehydrated, for example, by a process using a solvent such as glycol, for example the process described in document FR 2 740 468. Dehydration makes it possible to lower the water content of the gas to a similar value. 60 ppm molar. In addition, an adsorption method of TSA type ("Thermal Swing
Adsorption ») sur tamis moléculaire, par exemple de type 3 ou 4A ou encore 13X, ou sur alumine ou gel de silice, peut être utilisé. Dans ce cas, la teneur en eau dans le gaz est typiquement inférieure à 1 ppm molaire.Adsorption ") on molecular sieve, for example of type 3 or 4A or 13X, or on alumina or silica gel, can be used. In this case, the water content in the gas is typically less than 1 molar ppm.
Les procédés précédemment mentionnés permettent d'obtenir un gaz naturel dont les teneurs en eau, en composés acides et en hydrocarbures lourds sont conformes aux exigences commerciales. Cependant, les méthyl- et éthyl- mercaptans restent encore majoritairement dans le gaz, à des teneurs pouvant atteindre 200 ppm molaire, ou plus, en équivalent soufre. Pour certaines utilisations ces teneurs en mercaptans sont trop élevées.The aforementioned methods make it possible to obtain a natural gas whose contents of water, acid compounds and heavy hydrocarbons comply with commercial requirements. However, the methyl and ethyl mercaptans still predominantly remain in the gas at levels up to 200 ppm molar, or more, in sulfur equivalent. For some uses these levels of mercaptans are too high.
Un objet de la présente invention est de proposer un procédé de purification du gaz naturel, de manière à obtenir une teneur molaire en mercaptans inférieure à 20 ppm.An object of the present invention is to provide a method for purifying natural gas, so as to obtain a molar content of mercaptans of less than 20 ppm.
II est possible d'utiliser un procédé de retrait par adsorption des mercaptans. Les procédés classiques d'adsorption en phase gazeuse sont les procédés couramment nommés T.S.A. ("Thermal Swing Adsorption" en anglais), dans lesquels l'étape d'adsorption a lieu à température ambiante ou modérée typiquement comprise entre 200C et 60 0C, et l'étape de désorption (ou de régénération) à haute température typiquement comprise entre 2000C et 3500C, sous balayage d'un gaz de purge (en général une partie du gaz purifié contenant du méthane et/ou de l'éthane) dont le débit est également compris entre 5 % et 20 % du débit de gaz de charge. Le gaz de désorption, contenant une quantité importante de mercaptans, doit ensuite être traité avant d'être recyclé, par exemple par mise en contact avec une solution basique (soude ou potasse), ou peut également être envoyé à la torche, ce qui n'est ni économiquement, ni écologiquement très intéressant. La pression est soit maintenue sensiblement constante dans tout le cycle, soit abaissée pendant la phase de régénération de manière à favoriser la régénération. En sortie de cette étape de purification par adsorption, la teneur en eau du gaz est inférieure à 1 ppm molaire, et le gaz se trouve aux spécifications en soufre total.It is possible to use a method of adsorptive removal of mercaptans. The conventional methods of adsorption in the gas phase are the methods commonly called TSA ("Thermal Swing Adsorption" in English), in which the adsorption step takes place at room temperature or moderate temperature typically between 20 0 C and 60 0 C, and the high temperature desorption (or regeneration) stage typically between 200 0 C and 350 0 C, under purge gas sweep (generally a part purified gas containing methane and / or ethane) whose flow rate is also between 5% and 20% of the feed gas flow. The desorption gas, containing a large quantity of mercaptans, must then be treated before being recycled, for example by bringing it into contact with a basic solution (sodium hydroxide or potassium hydroxide), or it can also be sent to the torch, which is neither economically nor ecologically very interesting. The pressure is either kept substantially constant throughout the cycle, or lowered during the regeneration phase so as to promote regeneration. At the outlet of this adsorption purification step, the water content of the gas is less than 1 molar ppm, and the gas is at the total sulfur specifications.
Cependant, l'adsorption des mercaptans par procédé T.S.A. classique, utilisée dans l'industrie et notamment pour purifier un gaz naturel, présente plusieurs inconvénients. En particulier, on peut citer : nécessité de chauffer à température élevée ce qui entraîne un vieillissement prématuré du matériau adsorbant notamment lors de la désorption de produits thermiquement fragiles (sous l'effet des traitements thermiques imposés régulièrement lors de la phase de régénération du matériau adsorbant, les mercaptans peuvent former des composés réactifs et réagir avec les hydrocarbures co-adsorbés pour finalement conduire à un vieillissement prématuré du matériau adsorbant, qui peut imposer son renouvellement fréquent, et donc entraîner un surcoût),However, adsorption of mercaptans by T.S.A. conventional, used in industry and in particular for purifying a natural gas, has several disadvantages. In particular, mention may be made of: the need to heat at high temperature, which causes premature aging of the adsorbent material, in particular during the desorption of thermally fragile products (under the effect of heat treatments imposed regularly during the regeneration phase of the adsorbent material the mercaptans can form reactive compounds and react with the co-adsorbed hydrocarbons to finally lead to premature aging of the adsorbent material, which can impose its frequent renewal, and therefore lead to additional cost),
- utilisation d'une quantité importante de gaz de purge, généralement comprise entre 5% et 20% du débit de gaz à traiter, - nécessité de traiter le gaz de purge contenant les produits désorbés et de recycler le gaz de purge.use of a large quantity of purge gas, generally between 5% and 20% of the gas flow rate to be treated, the need to treat the purge gas containing the desorbed products and to recycle the purge gas.
La présente invention propose un procédé de purification d'un gaz naturel par adsorption des mercaptans, évitant les inconvénients des procédés de l'art antérieur.The present invention provides a method for purifying a natural gas by adsorption of mercaptans, avoiding the disadvantages of the processes of the prior art.
L'objet de la présente invention est, donc, de proposer un procédé par adsorption pour le retrait poussé des mercaptans d'un gaz naturel. Le procédé propose une étape d'adsorption sur un solide poreux, sous pression et à température ambiante ou modérée, une étape de désorption des mercaptans adsorbés par un agent de déplacement, à température ambiante, modérée ou élevée et sous faible pression, l'agent de déplacement étant constitué totalement ou en partie par des hydrocarbures lourds sous forme vapeur. Eventuellement, le procédé comporte une étape de désorption et/ou de purge de l'agent de déplacement, à température ambiante, modérée ou élevée, et sous balayage de gaz de purge sous faible pression.The object of the present invention is, therefore, to provide an adsorption process for the extensive removal of mercaptans from a natural gas. The method proposes an adsorption step on a porous solid, under pressure and at ambient or moderate temperature, a step of desorbing the mercaptans adsorbed by a displacement agent, at ambient temperature, moderate or high and under low pressure, the agent of displacement consisting entirely or partly of heavy hydrocarbons in vapor form. Optionally, the method comprises a step of desorption and / or purge of the displacement agent, at ambient temperature, moderate or high, and under purge of purge gas under low pressure.
De manière générale, la présente invention concerne un procédé de purification d'un gaz naturel contenant des mercaptans. Le procédé comporte les étapes suivantes : a) on met en contact le gaz naturel avec un matériau adsorbant de manière à obtenir un gaz purifié, les mercaptans étant adsorbés par le matériau adsorbant, puis b) on met en contact le matériau adsorbant chargé en mercaptans obtenu à l'étape a) avec un flux comportant au moins 80% en volume de vapeur d'hydrocarbures lourds comportant au moins cinq atomes de carbone de manière à obtenir un flux chargé en mercaptans et un matériau adsorbant saturé en hydrocarbures lourds. Selon l'invention, on peut effectuer l'étape a) sous une pression comprise entre 10 bar et 100 bar et à une température comprise entre O0C et 150°C, et on peut effectuer l'étape b) sous une pression comprise entre 1 bar et 40 bar et à une température comprise entre 00C et 3000C.In general, the present invention relates to a process for purifying a natural gas containing mercaptans. The process comprises the following steps: a) contacting the natural gas with an adsorbent material so as to obtain a purified gas, the mercaptans being adsorbed by the adsorbent material, then b) contacting the adsorbent material loaded with mercaptans obtained in step a) with a flow comprising at least 80% by volume of heavy hydrocarbon vapor comprising at least five carbon atoms so as to obtain a mercaptan-loaded stream and an adsorbent material saturated with heavy hydrocarbons. According to the invention, step a) can be carried out under a pressure of between 10 bar and 100 bar and at a temperature of between 0 ° C. and 150 ° C., and step b) can be carried out under a pressure comprised between between 1 bar and 40 bar and at a temperature between 0 0 C and 300 0 C.
Dans le procédé selon l'invention, on peut effectuer l'étape suivante : c) on met en contact le matériau adsorbant saturé en hydrocarbures lourds obtenu à l'étape b) avec une fraction du gaz purifié obtenu à l'étape a) de manière à désorber les hydrocarbures lourds du matériau adsorbant et à obtenir un gaz chargé en hydrocarbures lourds.In the process according to the invention, the following step can be carried out: c) the heavy hydrocarbon-saturated adsorbent material obtained in step b) is brought into contact with a fraction of the purified gas obtained in step a) of in order to desorb the heavy hydrocarbons from the adsorbent material and to obtain a gas loaded with heavy hydrocarbons.
On peut effectuer l'étape c) sous une pression comprise entre 1 bar et 40 bar, et à une température comprise entre 00C et 3000C.Step c) can be carried out under a pressure of between 1 bar and 40 bar and at a temperature of between 0 ° C. and 300 ° C.
En outre, on peut effectuer les étapes suivantes : d) on met en contact le gaz naturel avec un deuxième matériau adsorbant de manière à adsorber l'eau contenue dans le gaz naturel, puis e) on met en contact le deuxième matériau adsorbant avec une fraction du gaz purifié obtenu à l'étape a) pour désorber l'eau contenue dans le deuxième matériau adsorbant.In addition, the following steps can be performed: d) the natural gas is brought into contact with a second adsorbent material so as to adsorb the water contained in the natural gas, then e) the second adsorbent material is brought into contact with a fraction of the purified gas obtained in step a) to desorb the water contained in the second adsorbent material.
On peut effectuer l'étape d) sous une pression comprise entre 10 bar et 100 bar et à une température comprise entre 00C et 1000C, et on peut effectuer l'étape e) sous une pression comprise entre 10 bar et 100 bar et à une température comprise entre 1000C et 4000C.Step d) can be carried out under a pressure of between 10 bar and 100 bar and at a temperature of between 0 ° C. and 100 ° C., and step e) can be carried out under a pressure of between 10 bar and 100 ° C. bar and at a temperature between 100 0 C and 400 0 C.
Selon l'invention, à l'étape b) ledit flux peut comporter au moins une partie du gaz purifié obtenu après mise en contact lors de l'étape c).According to the invention, in step b) said stream may comprise at least a portion of the purified gas obtained after contacting in step c).
On peut condenser la vapeur d'hydrocarbures lourds contenue dans le flux obtenu à l'étape b) et on peut séparer les mercaptans des hydrocarbures condensés. Le gaz non condensé peut être recyclé selon au moins l'une des manières suivantes :The heavy hydrocarbon vapor contained in the stream obtained in step b) can be condensed and the mercaptans can be separated from the hydrocarbons. condensed. The non-condensed gas may be recycled in at least one of the following ways:
• on mélange le gaz non condensé avec le gaz naturel avant l'étape a),The uncondensed gas is mixed with the natural gas before step a),
• on mélange le gaz non condensé avec de la vapeur d'hydrocarbures lourds pour former au moins une partie dudit flux.The uncondensed gas is mixed with heavy hydrocarbon vapor to form at least a portion of said stream.
On peut refroidir le gaz purifié obtenu à l'étape c) pour condenser une partie de l'eau et/ou des hydrocarbures et on peut recycler le gaz refroidi en mélangeant le gaz refroidi avec le gaz naturel avant l'étape a).The purified gas obtained in step c) can be cooled to condense a portion of the water and / or hydrocarbons and the cooled gas can be recycled by mixing the cooled gas with the natural gas prior to step a).
Avant l'étape a), on peut désacidifier ledit gaz naturel par absorption des composés acides par une solution absorbante.Before step a), said natural gas can be deacidified by absorption of the acidic compounds by an absorbent solution.
Selon l'invention, les hydrocarbures lourds peuvent être choisis parmi le groupe des hydrocarbures aromatiques comportant entre 7 et 10 atomes de carbones, le groupe étant constitué par le toluène, les isomères des xylènes, l'éthylbenzène, le mésytilène et le paradiéthylbenzène. Selon l'invention, les matériaux adsorbants peuvent comporter au moins un des matériaux suivants : un charbon actif, une zéolithe, un adsorbant mésoporeux de type alumine activée, et un adsorbant mésoporeux de type gel de silice. Plus précisément, les matériaux adsorbants peuvent comporter au moins un des matériaux suivants : un charbon actif possédant une surface spécifique comprise entre 500 et 2500 m2/g, une zéolithe de type A, une zéolithe de type 5 A, une zéolithe de type faujasite X, une zéolithe de type faujasite Y, une zéolithe de la famille MFI, un adsorbant mésoporeux de type alumine activée possédant une surface spécifique BET comprise entre 150 m2/g et 800 m2/g, et un adsorbant mésoporeux de type gel de silice possédant une surface spécifique BET comprise entre 150 m2/g et 800 m2/g.According to the invention, the heavy hydrocarbons may be chosen from the group of aromatic hydrocarbons comprising between 7 and 10 carbon atoms, the group being constituted by toluene, the isomers of xylenes, ethylbenzene, mesytilene and paradiethylbenzene. According to the invention, the adsorbent materials can comprise at least one of the following materials: an activated carbon, a zeolite, a mesoporous adsorbent of activated alumina type, and a mesoporous adsorbent of silica gel type. More specifically, the adsorbent materials can comprise at least one of the following materials: an active carbon having a specific surface area of between 500 and 2500 m 2 / g, a type A zeolite, a type A zeolite, a faujasite type zeolite X a faujasite Y type zeolite, a zeolite of the MFI family, an activated alumina type mesoporous adsorbent having a BET specific surface area of between 150 m 2 / g and 800 m 2 / g, and a mesoporous silica gel type adsorbent having a BET specific surface area of between 150 m2 / g and 800 m2 / g.
La présente invention permet d'éviter ou de limiter les pertes en gaz naturel purifié. De plus, l'étape de déplacement par les hydrocarbures lourds des mercaptans, permet de récupérer facilement les mercaptans par simple séparation liquide/liquide. En outre, les pertes en hydrocarbures lourds sont minimisées.The present invention makes it possible to avoid or limit losses in purified natural gas. In addition, the step of displacement by heavy hydrocarbons mercaptans, makes it easy to recover the mercaptans by simple liquid / liquid separation. In addition, losses of heavy hydrocarbons are minimized.
D'autres caractéristiques et avantages de l'invention seront mieux compris et apparaîtront clairement à la lecture de la description faite ci-après à titre d'exemple en se référant aux dessins parmi lesquels :Other features and advantages of the invention will be better understood and will become clear from reading the description given below by way of example with reference to the drawings among which:
- la figure 1 décrit le procédé selon l'invention,FIG. 1 describes the process according to the invention,
- la figure 2 représente une variante du procédé selon l'invention.FIG. 2 represents a variant of the method according to the invention.
Sur la figure 1, le gaz naturel à traiter arrive par le conduit 1 et contient notamment de l'eau, du CO2, de l'H2S et des mercaptans. Le gaz peut être un gaz naturel brut directement issu d'un puits de pétrole ou d'un champ de gaz. Le gaz peut être à une pression comprise entre 10 bar et 100 bar.In FIG. 1, the natural gas to be treated arrives via line 1 and contains in particular water, CO 2 , H 2 S and mercaptans. The gas can be a raw natural gas directly from an oil well or a gas field. The gas may be at a pressure of between 10 bar and 100 bar.
Le gaz circulant dans le conduit 1 peut être introduit dans l'unité DA de désacidification. Le gaz est désacidifié par des procédés connus de l'homme du métier. Par exemple le gaz est traité par un procédé mettant en œuvre des solvants chimiques et/ou physiques, par exemple à base d'aminés et/ou de méthanol, de manière à produire un gaz naturel aux spécifications quant à la teneur en CO2 et en H2S. De tels procédés sont notamment décrits par les documents FR 2 605 241, FR 2 636 857, FR 2 734 083. Les composés acides H2S et CO2 sont évacués par le conduit 2. Une partie des mercaptans, notamment le méthylmercaptan, est partiellement retirée du gaz lors de ce traitement. Ces mercaptans sont également évacués par le conduit 2. Le gaz évacué par le conduit 3 de l'unité DA possède une teneur en H2S, par exemple de l'ordre de 4 ppm molaire et une teneur en CO2 inférieure, par exemple à 2 % molaire. Selon les conditions de température et de pression, la teneur en eau de ce gaz est généralement comprise entre 1000 ppm et 5000 ppm molaire.The gas flowing in the duct 1 can be introduced into the DA deacidification unit. The gas is deacidified by methods known to those skilled in the art. For example, the gas is treated by a process using chemical and / or physical solvents, for example based on amines and / or methanol, so as to produce a natural gas with specifications for the CO 2 content and in H 2 S. Such processes are described in particular in documents FR 2 605 241, FR 2 636 857 and FR 2 734 083. The acidic compounds H 2 S and CO 2 are discharged via line 2. A portion of the mercaptans, especially methylmercaptan, is partially removed from the gas during this treatment. These mercaptans are also discharged through line 2. The gas discharged via line 3 of unit DA has a content of H 2 S, for example of the order of 4 ppm molar and a lower CO 2 content, for example at 2 mol%. Depending on the temperature and pressure conditions, the water content of this gas is generally between 1000 ppm and 5000 ppm molar.
Le gaz désacidifié circulant dans le conduit 3 peut ensuite être envoyé dans l'unité de déshydratation DH. Le gaz est traité par un procédé de déshydratation, par exemple avec une solution de glycol. Par exemple, le procédé de déshydratation est celui décrit par le document FR 2 740 468. Le glycol utilisé peut être le triéthylène glycol (TEG). En sortie de cette unité DH, on obtient un gaz déshydraté, dont la teneur en eau résiduelle peut être de l'ordre de 60 ppm molaire. Ce gaz contient encore des mercaptans et des hydrocarbures lourds. L'eau est évacuée par le conduit 20.The deacidified gas flowing in the duct 3 can then be sent to the dehydration unit DH. The gas is treated by a process of dehydration, for example with a glycol solution. For example, the dehydration process is that described in document FR 2 740 468. The glycol used may be triethylene glycol (TEG). At the outlet of this DH unit, a dehydrated gas is obtained, whose residual water content can be of the order of 60 molar ppm. This gas still contains mercaptans and heavy hydrocarbons. The water is discharged through line 20.
Le gaz traité sortant de l'unité DH par le conduit 4 est appauvri en eau et en composés acides H2S et CO2, mais contient encore des mercaptans, en teneur pouvant être supérieure à 200 ppm molaire en équivalent soufre. Le gaz circulant dans le conduit 3 peut directement être transféré dans le conduit 4.The treated gas leaving the DH unit via line 4 is depleted of water and acidic compounds H 2 S and CO 2 , but still contains mercaptans, in a content that may be greater than 200 ppm molar equivalent sulfur. The gas flowing in the duct 3 can directly be transferred into the duct 4.
Le gaz déshydraté et désacidifié est alors envoyé dans une unité de purification par adsorption sur matériau adsorbant, par exemple sur des tamis moléculaires, afin de retirer les mercaptans encore présents dans ce gaz. Cette unité comporte au moins deux enceintes Al et A3, et éventuellement une troisième enceinte A2, contenant un matériau adsorbant adéquat permettant notamment l'adsorption des mercaptans, tels le méthyl-, l'éthyl-, le propyl- mercaptan, et les mercaptans supérieurs. Le matériau adsorbant contenu dans les enceintes Al et A3 fonctionne successivement en mode d'adsorption, de déplacement et éventuellement de régénération :The dehydrated and deacidified gas is then sent to an adsorption adsorption purification unit, for example on molecular sieves, in order to remove the mercaptans still present in this gas. This unit comprises at least two Al and A3 enclosures, and possibly a third chamber A2, containing a suitable adsorbent material allowing in particular the adsorption of mercaptans, such as methyl-, ethyl-, propyl-mercaptan, and higher mercaptans. . The adsorbent material contained in the enclosures A1 and A3 operates successively in adsorption, displacement and optionally regeneration mode:
- en mode d'adsorption, le matériau adsorbant adsorbe les mercaptans contenus dans le gaz, et éventuellement l'eau et les hydrocarbures lourds, à température ambiante ou modérée et sous pression élevée, puis - en mode déplacement, on réalise le déplacement des mercaptans adsorbés en mode adsorption ; les mercaptans sont déplacés par une vapeur d'hydrocarbures lourds, c'est-à-dire désorbés et remplacés par des hydrocarbures lourds, le déplacement étant réalisé par balayage d'une vapeur d'hydrocarbures lourds ou d'un gaz riche en vapeur d'hydrocarbures lourds, à température modérée ou élevée et sous pression modérée ou faible, puis en mode régénération, après le déplacement, on peut réaliser la désorption et la purge des hydrocarbures lourds adsorbés par le matériau adsorbant par balayage d'un gaz sec à haute température,in the adsorption mode, the adsorbent material adsorbs the mercaptans contained in the gas, and optionally water and heavy hydrocarbons, at ambient or moderate temperature and under high pressure, and then, in displacement mode, the mercaptans are displaced; adsorbed in adsorption mode; the mercaptans are displaced by a heavy hydrocarbon vapor, that is to say desorbed and replaced by heavy hydrocarbons, the displacement being carried out by scanning a heavy hydrocarbon vapor or a gas rich in hydrocarbons; heavy hydrocarbon vapor, at moderate or high temperature and under moderate or low pressure, then in regeneration mode, after the displacement, the desorption and purge of the heavy hydrocarbons adsorbed by the adsorbent material can be carried out by scanning a dry gas at high temperature,
- puis on recommence le cycle en mode d'adsorption des mercaptans.then the cycle is restarted in adsorption mode of the mercaptans.
Sur la figure 1, le matériau adsorbant contenu dans l'enceinte Al fonctionne en mode d'adsorption, le matériau contenu dans l'enceinte A2 fonctionne en mode régénération et le matériau contenu dans l'enceinte A3 fonctionne en mode déplacement.In FIG. 1, the adsorbent material contained in the enclosure Al operates in adsorption mode, the material contained in the enclosure A2 operates in regeneration mode and the material contained in the enclosure A3 operates in displacement mode.
Le gaz déshydraté et désacidifié circulant dans le conduit 4 est introduit dans l'enceinte Al. Les mercaptans contenus dans le gaz sont adsorbés par le matériau adsorbant contenu dans l'enceinte Al. Les mercaptans, les traces d'eau et éventuellement les hydrocarbures lourds notamment les C6 +, sont adsorbés par le matériau adsorbant dans l'enceinte Al. On obtient en sortie de l'enceinte Al un gaz purifié, respectant les spécifications quant aux teneurs en gaz acides, en soufre total, et en eau. Le gaz purifié est évacué de l'enceinte Al par le conduit 5. Le gaz purifié est obtenu tant que le temps de cycle est inférieur au temps de perçage des mercaptans, c'est-à-dire qu'on réalise l'adsorption dans l'enceinte Al, par exemple, jusqu'au moment où le matériau est saturé en mercaptans. Après, on intervertit le mode de fonctionnement du matériau de l'enceinte Al par celui d'une autre enceinte, par exemple par celui de l'enceinte A2 dont le matériau adsorbant est régénéré, c'est-à-dire qui ne comporte pas ou peu de mercaptans et d'eau adsorbés.The dehydrated and deacidified gas flowing in the duct 4 is introduced into the chamber Al. The mercaptans contained in the gas are adsorbed by the adsorbent material contained in the enclosure Al. The mercaptans, traces of water and possibly heavy hydrocarbons in particular the C 6 + , are adsorbed by the adsorbent material in the Al chamber. At the outlet of the chamber A1, a purified gas is obtained which complies with the specifications for the contents of acid gases, total sulfur and water. The purified gas is evacuated from the chamber Al via line 5. The purified gas is obtained as long as the cycle time is less than the piercing time of the mercaptans, ie the adsorption is carried out in the enclosure Al, for example, until the material is saturated with mercaptans. Afterwards, the operating mode of the material of the enclosure Al is reversed by that of another enclosure, for example by that of the enclosure A2 whose adsorbent material is regenerated, that is to say which does not contain or little mercaptans and water adsorbed.
La température à l'intérieur de l'enceinte Al fonctionnant en mode adsorption est généralement comprise entre 00C et 1500C, avantageusement entre 100C et 1000C, et préférentiellement entre 200C et 700C. La pression dans l'enceinte Al peut être celle du gaz naturel produit, typiquement comprise entre 10 bar et 100 bar , de préférence entre 30 bar et 80 bar.The temperature inside the chamber Al operating in adsorption mode is generally between 0 0 C and 150 0 C, preferably between 10 0 C and 100 0 C, and preferably between 20 0 C and 70 0 C. The pressure in the enclosure Al may be that of natural gas produced, typically between 10 bar and 100 bar, preferably between 30 bar and 80 bar.
La vitesse superficielle du gaz dans l'enceinte Al est par exemple comprise entre 0,5 et 30 m/min. Le gaz purifié est, par exemple, envoyé par le conduit 6 dans une unité de fractionnement afin de valoriser les différentes coupes, par exemple par distillation. On peut séparer le gaz purifié pour obtenir du méthane, de l'éthane, du propane, du butane et une coupe d'hydrocarbures lourds contenant plus de cinq atomes de carbone. Le gaz purifié peut également être envoyé par le conduit 6 vers un lieu de stockage ou d'utilisation.The superficial gas velocity in the enclosure A1 is for example between 0.5 and 30 m / min. The purified gas is, for example, sent via line 6 to a fractionation unit in order to valorize the various cuts, for example by distillation. The purified gas can be separated to obtain methane, ethane, propane, butane and a heavy hydrocarbon fraction containing more than five carbon atoms. The purified gas may also be sent via line 6 to a place of storage or use.
Dans l'enceinte A2, le matériau adsorbant est chargé en hydrocarbures lourds. Selon l'invention, on peut utiliser une partie du gaz purifié issu de l'enceinte Al comme gaz de régénération pour régénérer le matériau contenu dans l'enceinte A2, c'est-à-dire pour évacuer les hydrocarbures lourds contenus par le matériau dans l'enceinte A2. La régénération est effectuée en mode T.S.A. . Cette étape de régénération permet de purger le matériau adsorbant qui contient des hydrocarbures lourds. L'étape de régénération peut être réalisée dans des conditions de pression proches ou égales de celles utilisées lors de l'étape de déplacement décrite ci-après, et éventuellement dans des conditions de températures proches ou égales de celles utilisées lors de cette étape de déplacement. Alternativement, on peut utiliser un autre gaz pour régénérer l'adsorbant A2, par exemple de l'azote, du CO2, ou de l'hydrogène.In the chamber A2, the adsorbent material is loaded with heavy hydrocarbons. According to the invention, it is possible to use a part of the purified gas coming from the enclosure Al as a regeneration gas to regenerate the material contained in the enclosure A2, that is to say to evacuate the heavy hydrocarbons contained by the material in the A2 enclosure. Regeneration is performed in TSA mode. This regeneration step makes it possible to purge the adsorbent material which contains heavy hydrocarbons. The regeneration step can be carried out under pressure conditions close to or equal to those used during the displacement step described below, and possibly under temperature conditions close to or equal to those used during this displacement step. . Alternatively, another gas can be used to regenerate the adsorbent A2, for example nitrogen, CO 2 , or hydrogen.
L'augmentation de température du matériau dans l'enceinte A2 peut être réalisée par circulation en boucle fermée à travers A2 d'une quantité de gaz, par exemple issu de Al, ou par un autre type de gaz. Cette quantité de gaz est chauffée via un échangeur de chaleur.The increase in temperature of the material in the chamber A2 can be achieved by closed loop circulation through A2 of a quantity of gas, for example from Al, or by another type of gas. This quantity of gas is heated via a heat exchanger.
Une partie du gaz purifié issu de l'enceinte Al est chauffée dans l'échangeur de chaleur El à une température comprise entre 200C et 3500C, de préférence entre 500C et 25O0C. De plus, le gaz purifié est détendu dans l'organe de détente Tl, par exemple une turbine ou une vanne, à une pression inférieure à 40 bar, de préférence inférieure à 20 bar et de manière préférée inférieure à 10 bar. Alternativement la détente dans Tl peut être réalisée avant le chauffage dans El. Ensuite, le gaz est introduit par le conduit 7 dans l'enceinte A2. Le débit de gaz introduit dans l'enceinte A2 peut être compris entre 1% et 50%, et préférentiellement entre 5% et 20%, du débit total du gaz purifié issu de Al. Pendant l'étape de régénération, dans l'enceinte A2, la pression est généralement inférieure à 40 bar, 20 bar ou préférentiellement inférieure à 10 bar, la température peut être comprise entre 200C et 3500C, de préférence ..entre 500C et 2500C.Part of the purified gas from the enclosure Al is heated in the heat exchanger E1 at a temperature of between 20 ° C. and 350 ° C., preferably between 50 0 C and 25O 0 C. In addition, the purified gas is expanded in the expansion element T, for example a turbine or a valve, to a pressure below 40 bar, preferably less than 20 bar and preferred way less than 10 bar. Alternatively, the expansion in T1 can be carried out before heating in El. Next, the gas is introduced through line 7 into enclosure A2. The flow rate of gas introduced into the chamber A2 can be between 1% and 50%, and preferably between 5% and 20%, of the total flow rate of the purified gas from Al. During the regeneration stage, in the enclosure A2, the pressure is generally less than 40 bar, 20 bar or preferably less than 10 bar, the temperature may be between 20 0 C and 350 0 C, preferably between 50 0 C and 250 0 C.
Une fois les hydrocarbures lourds évacués du matériau adsorbant de l'enceinte A2, la température dans l'enceinte A2 est progressivement descendue et la pression est progressivement élevée jusqu'à la température et la pression utilisées pour réaliser l'adsorption dans l'enceinte Al. Par exemple, on envoie du gaz provenant de l'enceinte Al dans l'enceinte A2 par le conduit 7, ce gaz n'étant pas chauffé par l'échangeur El, ni détendu par l'organe de détente Tl. Lors de cette descente en température et montée en pression, le gaz obtenu en sortie de l'enceinte A2 peut être recyclé en amont de l'enceinte Al, par exemple en étant mélangé avec le gaz circulant dans le conduit 4. Cette opération peut également être effectuée sous une pression plus faible, par exemple comprise entre 1 bar et 30 bar, préférentiellement entre 1 bar et 10 bar, de manière à limiter la quantité de gaz de purge utilisée. Dans ce cas, le gaz peut être utilisé comme fioul gaz, par exemple pour les utilités du procédé. La descente en température du matériau adsorbant dans l'enceinte A2 peut également être réalisée par circulation en boucle fermée d'une quantité de gaz, par exemple issu de Al, ou par un autre type de gaz. La quantité de gaz est refroidie dans un échangeur de chaleur. En sortie de l'enceinte A2, le gaz purifié circulant dans le conduit 8 est chargé en hydrocarbures lourds provenant de la désorption de ces hydrocarbures lourds adsorbés dans l'enceinte A2. Le gaz peut être refroidi dans l'échangeur de chaleur E2 à une température comprise entre 15°C et 15O0C, de préférence entre 25°C et 800C. Le refroidissement permet de condenser une partie des hydrocarbures lourds contenus dans le gaz. Le gaz refroidi est introduit dans le séparateur gaz/liquide B afin de récupérer une partie des hydrocarbures lourds condensés par refroidissement.Once the heavy hydrocarbons are removed from the adsorbent material of the chamber A2, the temperature in the chamber A2 is gradually lowered and the pressure is gradually raised to the temperature and pressure used to carry out the adsorption in the chamber Al For example, gas is sent from the enclosure A1 into the chamber A2 via the pipe 7, this gas not being heated by the exchanger E1 or expanded by the expansion member T1. lowering the temperature and increasing the pressure, the gas obtained at the outlet of the enclosure A2 may be recycled upstream of the enclosure A1, for example by being mixed with the gas flowing in the duct 4. This operation can also be carried out under a lower pressure, for example between 1 bar and 30 bar, preferably between 1 bar and 10 bar, so as to limit the amount of purge gas used. In this case, the gas can be used as a gas oil, for example for the utilities of the process. The temperature drop of the adsorbent material in the chamber A2 can also be achieved by closed-loop circulation of a quantity of gas, for example from Al, or by another type of gas. The amount of gas is cooled in a heat exchanger. At the outlet of enclosure A2, the purified gas flowing in line 8 is loaded with heavy hydrocarbons from the desorption of these heavy hydrocarbons adsorbed in chamber A2. The gas may be cooled in the heat exchanger E2 at a temperature of between 15 ° C. and 150 ° C., preferably between 25 ° C. and 80 ° C. The cooling makes it possible to condense a portion of the heavy hydrocarbons contained in the gas . The cooled gas is introduced into the gas / liquid separator B in order to recover a portion of the condensed heavy hydrocarbons by cooling.
Les conditions de fonctionnement du séparateur B sont une température comprise entre 00C et 1500C, de préférence entre 100C et 800C, et une pression comprise entre 1 bar et 100 bar, de préférence entre 1 bar etThe operating conditions of the separator B are a temperature of between 0 ° C. and 150 ° C., preferably between 10 ° C. and 80 ° C., and a pressure of between 1 bar and 100 bar, preferably between 1 bar and
30 bar. Les hydrocarbures condensés sont évacués de B par le conduit 9, le gaz est évacué de B par le conduit 10.30 bar. The condensed hydrocarbons are discharged from B via line 9, the gas is discharged from B via line 10.
Une partie ou la totalité du gaz évacué de B peut être recyclée. Par exemple, ce gaz est comprimé dans K2, envoyé par les conduits 10 et 11 pour être mélangé avec le gaz circulant dans le conduit 4, puis est introduit dans l'enceinte Al.Some or all of the gas discharged from B can be recycled. For example, this gas is compressed in K2, sent via the ducts 10 and 11 to be mixed with the gas flowing in the duct 4, and is then introduced into the chamber Al.
Si le séparateur B fonctionne à basse pression, le gaz peut être utilisé comme fioul gaz, par exemple pour les utilités du procédé.If the separator B operates at low pressure, the gas can be used as a gas oil, for example for the utilities of the process.
Le matériau adsorbant contenu dans l'enceinte A3 est chargé en mercaptans. Le matériau peut également être chargé, en plus des mercaptans, en eau et/ou en hydrocarbures lourds notamment du type C6 + . Ce matériau doit être au moins partiellement débarrassé des mercaptans afin d'être à nouveau engagé dans un cycle d'adsorption. Selon l'invention, les mercaptans sont déplacés par de la vapeur d'hydrocarbures lourds, pure ou diluée, par exemple par une partie du gaz de séchage issu de l'enceinte A2. La vapeur d'hydrocarbures lourds arrivant par le conduit 12 est introduite par le conduit 13 dans l'enceinte A3. Les hydrocarbures lourds utilisés pour déplacer les mercaptans sont des hydrocarbures liquides dans les conditions normales, comprenant au moins cinq atomes de carbone, et préférentiellement au moins sept atomes de carbone. Les hydrocarbures peuvent être de nature paraffinique, isoparaffinique, naphténique ou aromatique. Préférentiellement, les hydrocarbures peuvent être des composés aromatiques comptant préférentiellement de 7 à 10 atomes de carbone, comme par exemple le toluène, les isomères des xylènes, l'éthylbenzène, le mésytilène, le paradiéthylbenzène. Les hydrocarbures peuvent en particulier être choisis parmi les hydrocarbures constituants la coupe C8 aromatique, à savoir notamment les isomères des xylènes et l'éthylbenzène.The adsorbent material contained in the enclosure A3 is loaded with mercaptans. The material may also be charged, in addition to mercaptans, with water and / or heavy hydrocarbons, in particular of the C 6 + type. This material must be at least partially freed of mercaptans in order to be re-engaged in an adsorption cycle. According to the invention, the mercaptans are displaced by heavy hydrocarbon vapor, pure or diluted, for example by a portion of the drying gas from the enclosure A2. The heavy hydrocarbon vapor arriving via line 12 is introduced via line 13 into chamber A3. The heavy hydrocarbons used to move the mercaptans are liquid hydrocarbons under normal conditions, comprising at least five carbon atoms, and preferably at least seven carbon atoms. The hydrocarbons may be paraffinic, isoparaffinic, naphthenic or aromatic. Preferably, the hydrocarbons may be aromatic compounds preferably containing from 7 to 10 carbon atoms, for example toluene, the isomers of xylenes, ethylbenzene, mesytilene, paradiethylbenzene. The hydrocarbons may in particular be chosen from the hydrocarbons constituting the aromatic C8 cut, namely in particular the isomers of xylenes and ethylbenzene.
Préalablement à cette étape de déplacement, le matériau adsorbant de l'enceinte A3 peut être dépressurisé, par exemple à une pression inférieure ou égale à la moitié de la pression lors de l'étape d'adsorption, c'est-à-dire typiquement inférieure à 40 bar, et préférentiellement inférieure à 20 bar, et préférentiellement inférieure à 10 bar. Le gaz récupéré pendant cette phase de dépressurisation peut être avantageusement utilisé pour re-pressuriser un autre adsorbeur après la phase de déplacement des mercaptans et/ou préférentiellement après la phase de désorption de l'agent de déplacement. La quantité d'hydrocarbures lourds nécessaire pour l'étape de déplacement des mercaptans adsorbés sur l'adsorbant dans l'enceinte A3 dépend notamment du degré de régénération souhaité, c'est-à-dire notamment de la capacité dynamique et de la capacité résiduelle après régénération de l'adsorbant vis-à-vis des mercaptans, de la température et de la pression de cette étape de déplacement. La quantité d'hydrocarbures lourds nécessaire est d'autant plus faible que la température est élevée, la pression totale faible, le degré de régénération de l'adsorbant faible et la capacité résiduelle après régénération élevée. La quantité d'hydrocarbures lourds envoyée par le conduit 13 dans l'enceinte A3 est comprise entre 1 et 50 fois la masse de mercaptans que l'on veut déplacer, préférentiellement entre 1 et 20 fois, de préférence entre 1 et 10 fois.Prior to this displacement step, the adsorbent material of the enclosure A3 may be depressurized, for example at a pressure less than or equal to half the pressure during the adsorption step, that is to say typically less than 40 bar, and preferably less than 20 bar, and preferably less than 10 bar. The gas recovered during this depressurization phase may advantageously be used to re-pressurize another adsorber after the phase of displacement of the mercaptans and / or preferentially after the desorption phase of the displacement agent. The quantity of heavy hydrocarbons required for the step of displacement of the mercaptans adsorbed on the adsorbent in the enclosure A3 depends in particular on the degree of regeneration desired, that is to say in particular the dynamic capacity and the residual capacity. after regeneration of the adsorbent vis-à-vis the mercaptans, the temperature and pressure of this step of displacement. The amount of heavy hydrocarbons required is all the lower as the temperature is high, the total pressure low, the degree of regeneration of the weak adsorbent and the residual capacity after high regeneration. The quantity of heavy hydrocarbons sent via line 13 into chamber A3 is between 1 and 50 times the mass of mercaptans. that we want to move, preferably between 1 and 20 times, preferably between 1 and 10 times.
La vapeur d'hydrocarbures lourds circulant dans le conduit 13 peut être diluée par du gaz issu de l'enceinte A2 arrivant par le conduit 17. Si les hydrocarbures lourds sont dilués avec du gaz naturel, la quantité d'hydrocarbures lourds est supérieure à 80 % en volume du mélange, avantageusement supérieure à 90 % et préférentiellement supérieure à 98 %.The heavy hydrocarbon vapor circulating in the conduit 13 may be diluted by gas coming from the enclosure A2 arriving via the conduit 17. If the heavy hydrocarbons are diluted with natural gas, the amount of heavy hydrocarbons is greater than 80 % by volume of the mixture, advantageously greater than 90% and preferably greater than 98%.
Les conditions de fonctionnement de l'enceinte A3 sont une température comprise entre 00C et 3000C, et préférentiellement entre 200C et 200°C. Le pression dans l'enceinte A3 peut être choisie inférieure à la tension de vapeur des hydrocarbures lourds à la température considérée (c'est-à-dire à la température dans l'enceinte A3), par exemple comprise entre 1 et 40 bar, préférentiellement entre 1 et 20 bar et préférentiellement entre 1 et 10 bar.The operating conditions of the enclosure A3 are a temperature of between 0 ° C. and 300 ° C., and preferably between 20 ° C. and 200 ° C. The pressure in the enclosure A3 may be chosen lower than the vapor pressure of the heavy hydrocarbons at the temperature in question (that is to say at the temperature in the enclosure A3), for example between 1 and 40 bar, preferably between 1 and 20 bar and preferably between 1 and 10 bar.
Si les hydrocarbures lourds ne sont pas dilués, la pression durant l'étape de déplacement est choisie préférentiellement de telle manière qu'elle soit comprise entre 0,2 et 0,8 fois la tension de vapeur, ou le point de rosée, des hydrocarbures lourds à la température de l'enceinte A3, et préférentiellement entre 0,3 et 0,6 fois. Si les hydrocarbures lourds sont utilisés dilués dans un gaz de purge, la pression totale peut être choisie de telle manière que le rapport entre la pression partielle des hydrocarbures lourds et la pression de rosée de ces hydrocarbures lourds à la température de l'enceinte A3, soit compris entre 0,2 et 0,8 et préférentiellement entre 0,4 et 0,6. Ce choix est particulièrement important lorsque l'on utilise un adsorbant contenant des mésopores, qui peuvent donner lieu au phénomène de condensation capillaire, comme les charbons actifs et les alumines activées ou gels de silice. Si l'on utilise des zéolithes mises en forme à l'aide d'un liant, la teneur en mésopores est pratiquement nulle, et il est alors possible de travailler avec un rapport de pression relative élevé. A la fin de cette étape de déplacement, le volume intergrain du matériau adsorbant de l'enceinte A3 et les volumes poreux de l'adsorbant sont remplis d'hydrocarbures lourds. Ces hydrocarbures adsorbés peuvent éventuellement être éliminés par chauffage de l'adsorbant à haute température sous balayage de gaz tel que décrit en référence à l'enceinte A2.If the heavy hydrocarbons are not diluted, the pressure during the displacement step is preferably chosen so that it is between 0.2 and 0.8 times the vapor pressure, or the dew point, of the hydrocarbons. heavy at the temperature of the enclosure A3, and preferably between 0.3 and 0.6 times. If the heavy hydrocarbons are used diluted in a purge gas, the total pressure can be chosen such that the ratio between the partial pressure of the heavy hydrocarbons and the dew point pressure of these heavy hydrocarbons at the temperature of the enclosure A3, is between 0.2 and 0.8 and preferably between 0.4 and 0.6. This choice is particularly important when using an adsorbent containing mesopores, which can give rise to the phenomenon of capillary condensation, such as activated carbons and activated aluminas or silica gels. If zeolites formed with a binder are used, the mesopore content is practically zero, and it is then possible to work with a high relative pressure ratio. At the end of this displacement step, the intergrain volume of the adsorbent material of the enclosure A3 and the porous volumes of the adsorbent are filled with heavy hydrocarbons. These adsorbed hydrocarbons may optionally be removed by heating the adsorbent at high temperature under gas flushing as described with reference to the enclosure A2.
La vitesse de passage de la vapeur d'hydrocarbures dans l'enceinte A3, est comprise entre 0,5 et 10 m/min, et préférentiellement entre 0,5 et 5 m/min.The rate of passage of the hydrocarbon vapor in the enclosure A3 is between 0.5 and 10 m / min, and preferably between 0.5 and 5 m / min.
Le mélange gazeux, en sortie de l'enceinte A3 constitué essentiellement des mercaptans mélangés à la vapeur d'hydrocarbures lourds, est refroidi dans l'échangeur de chaleur E3. Dans l'échangeur E3, on refroidit le mélange gazeux jusqu'à une température de condensation des hydrocarbures lourds, par exemple à une température comprise entre -500C et 500C, de préférence entre -400C et 00C. Ensuite, il est envoyé vers un séparateur gaz/liquide S, qui permet de récupérer une fraction hydrocarbure liquide, contenant la majorité des mercaptans dissous et éventuellement une phase gazeuse, notamment si la vapeur a été diluée dans un gaz.The gaseous mixture, at the outlet of the enclosure A3 essentially consisting of mercaptans mixed with the heavy hydrocarbon vapor, is cooled in the heat exchanger E3. In the exchanger E3, the gaseous mixture is cooled to a condensation temperature of the heavy hydrocarbons, for example at a temperature between -50 ° C. and 50 ° C., preferably between -40 ° C. and 0 ° C. Then, it is sent to a gas / liquid separator S, which makes it possible to recover a liquid hydrocarbon fraction, containing most of the dissolved mercaptans and possibly a gaseous phase, especially if the vapor has been diluted in a gas.
Les conditions de fonctionnement du séparateur S sont une température comprise entre -500C et 5O0C, et préférentiellement entre -400C et 00C, une pression comprise entre 1 et 100 bar, préférentiellement entre 10 et 80 bar.The operating conditions of the separator S are a temperature of between -50 ° C. and 50 ° C., and preferably between -40 ° C. and 0 ° C., a pressure of between 1 and 100 bar, preferably between 10 and 80 bar.
En sortie du séparateur S, on récupère par le conduit 15 une fraction hydrocarbure liquide constituée notamment par les mercaptans, les hydrocarbures lourds, et éventuellement des hydrocarbures légers du gaz naturel, dissous. Cette fraction hydrocarbure liquide peut être détendue à une pression voisine de la pression atmosphérique, puis les mercaptans peuvent être retirés par exemple par un procédé d'absorption avec une solution comportant de la soude ou de la potasse. Cette fraction liquide peut également être désulfurée par un procédé de type Sulfrex. La fraction hydrocarbure liquide purifiée ainsi obtenue peut alors être valorisée ou recyclée. La vapeur d'hydrocarbures lourds arrivant par le conduit 12 peut être diluée par une fraction du gaz naturel, par exemple, tout ou partie du gaz récupéré par le conduit 17 en sortie de l'enceinte A2 en phase de régénération du matériau adsorbant. Ce gaz naturel n'est pas condensé par le refroidissement dans l'échangeur E3. Ce gaz est évacué du séparateur S par le conduit 18. Il peut avantageusement être comprimé par le compresseur Kl, puis recyclé en amont de l'enceinte Al par les conduits 19 et 11 pour être mélangé avec le gaz circulant dans le conduit 4. Il peut également être chauffé par l'échangeur E4, puis envoyé par le conduit 16 pour être mélangé avec la vapeur d'hydrocarbures lourds arrivant par le conduit 12 pour diluer cette vapeur.At the outlet of the separator S, a liquid hydrocarbon fraction is recovered via the conduit 15, consisting in particular of the mercaptans, the heavy hydrocarbons, and possibly light hydrocarbons of the dissolved natural gas. This liquid hydrocarbon fraction can be depressurized at a pressure close to atmospheric pressure, then the mercaptans can be removed for example by an absorption process with a solution comprising sodium hydroxide or potassium hydroxide. This liquid fraction can also be desulfurized by a sulfrex process. The purified liquid hydrocarbon fraction thus obtained can then be recovered or recycled. The heavy hydrocarbon vapor arriving via line 12 may be diluted with a fraction of natural gas, for example all or part of the gas recovered via line 17 at the outlet of chamber A2 during the regeneration phase of the adsorbent material. This natural gas is not condensed by the cooling in exchanger E3. This gas is discharged from the separator S via the conduit 18. It can advantageously be compressed by the compressor K1, and then recycled upstream of the enclosure Al through the conduits 19 and 11 so as to be mixed with the gas flowing in the conduit 4. can also be heated by the exchanger E4, then sent through the conduit 16 to be mixed with the heavy hydrocarbon vapor arriving through the conduit 12 to dilute this steam.
Afin d'augmenter le taux de condensation des mercaptans dans le séparateur S, et donc de diminuer la quantité de mercaptans contenus dans le gaz recyclé par le conduit 18, on peut réaliser entre la sortie de l'enceinte A3 et l'entrée du séparateur S une étape de déshydratation du gaz sortant de l'enceinte A3 de manière à permettre un fonctionnement de ce séparateur S à plus basse température sans risque de formation d'hydrates de gaz. La déshydratation de ce gaz peut être réalisée dans l'unité AS, par exemple par un procédé de déshydratation au glycol (par exemple décrit en référence à l'unité DH), ou par un procédé par adsorption de type T.S.A. sur zéolithe 3A ou 4A selon les règles connues de l'homme du métier. Ainsi, selon l'invention, la température de refroidissement dans E3 et la température de fonctionnement du séparateur S. peuvent être comprises entre -500C et 100C, de manière préférée entre -500C et -200C. Ces températures de fonctionnement permettent de réaliser une condensation plus importante des mercaptans désorbés, issus de l'enceinte A3 qui seront évacués du séparateur par le conduit 15 avec la phase hydrocarbure liquide. Selon le procédé décrit en relation avec la figure 1, les enceintes, Al,In order to increase the degree of condensation of the mercaptans in the separator S, and therefore to reduce the amount of mercaptans contained in the gas recirculated via the duct 18, it is possible to produce between the outlet of the enclosure A3 and the inlet of the separator S a dehydration step of the gas leaving the enclosure A3 so as to allow operation of this separator S at lower temperature without the risk of gas hydrate formation. The dehydration of this gas can be carried out in the AS unit, for example by a glycol dehydration process (for example described with reference to the DH unit), or by an adsorption method of the TSA type on zeolite 3A or 4A. according to the rules known to those skilled in the art. Thus, according to the invention, the cooling temperature in E3 and the operating temperature of the separator S can be between -50 ° C. and 10 ° C., preferably between -50 ° C. and -20 ° C. These Operating temperatures make it possible to achieve greater condensation of desorbed mercaptans from the enclosure A3 which will be discharged from the separator via the conduit 15 with the liquid hydrocarbon phase. According to the method described in connection with FIG. 1, the enclosures, Al,
A2 et A3 fonctionnent alternativement en mode adsorption (adsorption des mercaptans contenus dans le gaz à traiter), puis en mode déplacementA2 and A3 operate alternately in adsorption mode (adsorption of the mercaptans contained in the gas to be treated), then in displacement mode
(déplacement des mercaptans adsorbés, par des hydrocarbures lourds), puis en mode régénération (désorption des hydrocarbures lourds).(displacement of mercaptans adsorbed by heavy hydrocarbons), then in regeneration mode (desorption of heavy hydrocarbons).
Après un temps déterminé, on change le mode de fonctionnement du matériau de l'enceinte Al par celui de l'enceinte A3, celui de l'enceinte A2 par celui de l'enceinte Al, et celui de l'enceinte A3 par celui de l'enceinte A2. Le changement peut être effectué lorsque le matériau contenu dans l'enceinte fonctionnant en mode régénération est suffisamment régénéré pour pouvoir fonctionner en mode adsorption. Le changement peut également être effectué lorsque le matériau contenu dans l'enceinte fonctionnant en mode adsorption est trop chargé en mercaptans pour pouvoir continuer à assurer la purification du gaz à traiter. Alternativement, le procédé décrit en relation avec la figure 1 peut fonctionner avec deux quantités de matériau adsorbant. Pendant qu'une quantité de matériau adsorbant subit l'étape d'adsorption dans l'enceinte Al, l'autre quantité de matériau adsorbant subit successivement l'étape de déplacement à la vapeur d'hydrocarbures lourds dans l'enceinte A3, puis l'étape de régénération ou séchage dans l'enceinte A2. Puis les rôles des deux adsorbants sont inversés.After a determined time, the operating mode of the material of the enclosure A1 is changed by that of the enclosure A3, that of the enclosure A2 by that of the enclosure A1, and that of the enclosure A3 by that of the A2 speaker. The change can be made when the material contained in the chamber operating in regeneration mode is sufficiently regenerated to operate in adsorption mode. The change can also be made when the material contained in the chamber operating in adsorption mode is too charged to mercaptans to continue to ensure purification of the gas to be treated. Alternatively, the method described in connection with Figure 1 can operate with two amounts of adsorbent material. While a quantity of adsorbent material undergoes the adsorption step in the chamber A1, the other quantity of adsorbent material successively undergoes the stage of displacement with the vapor of heavy hydrocarbons in the enclosure A3, then the regeneration stage or drying in the enclosure A2. Then the roles of the two adsorbents are reversed.
La durée des différentes étapes est typiquement comprise entre 1 et 24 heures, préférentiellement entre 2 et 18 heures, et préférentiellement entre 4 et 12 heures.The duration of the different steps is typically between 1 and 24 hours, preferably between 2 and 18 hours, and preferably between 4 and 12 hours.
Le procédé décrit en relation avec la figure 2 constitue un perfectionnement du procédé décrit en relation avec la figure 1. Les références de la figure 2 identiques à celles de la figure 1 désignent les mêmes éléments. Le gaz naturel brut arrivant par le conduit 1 est éventuellement désacidiflé dans l'unité DA, puis éventuellement déshydraté dans l'unité DH.The process described in connection with FIG. 2 constitutes an improvement of the method described with reference to FIG. 1. The references of FIG. 2 identical to those of FIG. 1 denote the same elements. The raw natural gas arriving via line 1 is optionally de-acidified in the DA unit and then optionally dehydrated in the DH unit.
Le gaz naturel désacidifié et déshydraté est introduit dans une unité de purification. Cette unité comporte cinq enceintes Al, A2, A3, A4 et A5 qui fonctionnent en parallèle :The deacidified and dehydrated natural gas is introduced into a purification unit. This unit has five speakers Al, A2, A3, A4 and A5 which operate in parallel:
- une première enceinte fonctionne en mode adsorption, notamment de l'eau résiduelle présente dans le gaz après désacidification et déshydratation, l'adsorption étant effectuée à température ambiante ou modérée - une deuxième enceinte fonctionne en mode adsorption, notamment des mercaptans et des hydrocarbures lourds présents dans le gaz issu de la première enceinte, l'adsorption étant effectuée à température ambiante ou modérée,a first chamber operates in adsorption mode, in particular residual water present in the gas after deacidification and dehydration, the adsorption being carried out at ambient or moderate temperature; a second chamber operates in adsorption mode, in particular mercaptans and heavy hydrocarbons; present in the gas from the first chamber, the adsorption being carried out at ambient or moderate temperature,
- une troisième enceinte fonctionne en mode régénération, c'est-à-dire désorption de l'eau par balayage avec un gaz à haute température,a third enclosure operates in regeneration mode, that is to say desorption of water by sweeping with a gas at high temperature,
- une quatrième enceinte fonctionne en mode régénération, c'est-à- dire désorption des hydrocarbures lourds par balayage avec un gaz à haute température,a fourth enclosure operates in regeneration mode, that is to say desorption of heavy hydrocarbons by scanning with a gas at high temperature,
- une cinquième enceinte fonctionne en mode déplacement, notamment des mercaptans adsorbés par balayage de vapeur d'hydrocarbures lourds, le gaz étant à température ambiante bu modérée.- A fifth chamber operates in displacement mode, in particular mercaptans adsorbed by sweeping heavy hydrocarbon vapor, the gas being at room temperature bu moderate.
Sur la figure 2, le matériau contenu dans l'enceinte A4 fonctionne en mode adsorption de l'eau, le matériau contenu dans l'enceinte Al fonctionne en mode adsorption des mercaptans, le matériau contenu dans les enceintes A2 fonctionne en mode régénération (désorption des hydrocarbures lourds), le matériau contenu dans l'enceinte A5 fonctionne en mode régénération (désorption de l'eau), et le matériau contenu dans l'enceinte A3 fonctionne en mode déplacement. Dans le cas où le matériau adsorbant utilisé pour le retrait des mercaptans dans l'enceinte Al est hydrophobe, on peut intervertir les enceintes Al et A4. Le gaz circulant dans le conduit 3 traverse d'abord l'enceinte Al puis l'enceinte A4. La pression de traitement dans les enceintes Al et A4 est généralement comprise entre 10 et 100 bar, préférentiellement entre 30 et 80 bar, et la température est comprise entre la température ambiante et 1000C, et préférentiellement entre 200C et 700C. Le dimensionnement des unités Al et A4 peut être réalisé en considérant la quantité totale de mercaptans à adsorber dans l'enceinte Al. La teneur en eau résiduelle dans le gaz peut être ajustée de manière à saturer l'adsorbeur A4 durant le même temps de cycle que l'adsorbeur Al.In FIG. 2, the material contained in the enclosure A4 operates in adsorption mode of the water, the material contained in the enclosure Al operates in adsorption mode of the mercaptans, the material contained in the enclosures A2 operates in regeneration mode (desorption heavy hydrocarbons), the material contained in the enclosure A5 operates in regeneration mode (desorption of water), and the material contained in the enclosure A3 operates in displacement mode. In the case where the adsorbent material used for the removal of mercaptans in the enclosure A1 is hydrophobic, the enclosures A1 and A4 can be inverted. The gas flowing in the duct 3 passes first through the enclosure A1 and the enclosure A4. The treatment pressure in the Al and A4 enclosures is generally between 10 and 100 bar, preferably between 30 and 80 bar, and the temperature is between room temperature and 100 0 C, and preferably between 20 0 C and 70 0 C The sizing of Al and A4 units can be achieved by considering the total amount of mercaptans to be adsorbed in the Al enclosure. The residual water content in the gas can be adjusted so as to saturate the adsorber A4 during the same time. cycle that the adsorber Al.
On obtient en sortie de l'enceinte Al un gaz naturel purifié évacué par le conduit 6, aux spécifications en gaz acides, en soufre total, en point de rosée eau.An purified natural gas evacuated via the duct 6 is obtained at the outlet of the enclosure A1, to the specifications for acid gases, total sulfur, and dew point of water.
Le gaz purifié est ensuite éventuellement envoyé par le conduit 6 dans une unité de fractionnement afin de valoriser les différentes coupes.The purified gas is then optionally sent via line 6 to a fractionation unit in order to valorize the various cuts.
Une partie du gaz purifié, généralement comprise entre 1 et 50 % en volume par rapport au gaz total, et préférentiellement entre 2 et 30 % en volume, est utilisée comme gaz de purge pour régénérer en mode TSA les matériaux adsorbants des enceintes A2 et A5. Cette partie de gaz est chauffée dans l'échangeur El, puis envoyée dans les enceintes A2 et A5. Avant d'entrer dans l'enceinte A2, le gaz chauffé est, en outre, détendu dans la turbine Tl. La pression dans l'enceinte A5 est généralement comprise entre 1 et 100 bar, et préférentiellement entre 10 et 80 bar, et la température entre 100 et 4000C, préférentiellement entre 200 et 3500C. La pression dans l'enceinte A2 est généralement comprise entre 1 et 20 bar, et préférentiellement entre 1 et 10 bar, et la température entre 100 et 4000C, préférentiellement entre 200 et 3500C.Part of the purified gas, generally between 1 and 50% by volume relative to the total gas, and preferably between 2 and 30% by volume, is used as a purge gas to regenerate, in TSA mode, the adsorbent materials of the enclosures A2 and A5. . This portion of gas is heated in the exchanger E1 and then sent to the enclosures A2 and A5. Before entering the enclosure A2, the heated gas is, furthermore, expanded in the turbine Tl. The pressure in the enclosure A5 is generally between 1 and 100 bar, and preferably between 10 and 80 bar, and the temperature between 100 and 400 0 C, preferably between 200 and 350 0 C. The pressure in the chamber A2 is generally between 1 and 20 bar, and preferably between 1 and 10 bar, and the temperature between 100 and 400 0 C, preferably between 200 and 350 0 C.
En sortie de l'enceinte A5, le gaz purifié se trouve chargé en eau provenant de la désorption de l'eau adsorbée dans cette enceinte. Tout ou partie du gaz humide provenant de l'enceinte A5 est refroidi et un séparateur gaz/liquide Bl permet de récupérer une partie de l'eau condensée. Les conditions de fonctionnement de ce séparateur B sont une température comprise entre 10 et 15O0C, et préférentiellement entre 15 et 8O0C, une pression comprise entre 1 et 100 bar, et préférentiellement comprise entre 2 et 70 bar. Les conditions de fonctionnement seront choisies de manière à éviter toute formation d'hydrates de gaz naturel dans le séparateur. En sortie de ce séparateur Bl, ce gaz encore chargé en eau résiduelle peut être envoyé en amont des enceintes A4 et Al par les conduits 10 et 11 après une recompression éventuelle réalisée dans K2. Tout ou partie du gaz chargé en hydrocarbures lourds provenant de l'enceinte A2 peut être envoyée par le conduit 17 pour être mélangé avec la vapeur d'hydrocarbures lourds circulant dans le conduit 13, ce mélange étant introduit dans l'enceinte A3.At the outlet of the enclosure A5, the purified gas is loaded with water coming from the desorption of the water adsorbed in this chamber. All or part of the wet gas coming from the enclosure A5 is cooled and a gas / liquid separator B1 makes it possible to recover a part of the condensed water. The operating conditions of the separator B are a temperature between 10 and 15O 0 C, preferably between 15 and 8O 0 C, a pressure between 1 and 100 bar, and preferably between 2 and 70 bar. The operating conditions will be chosen so as to avoid any formation of natural gas hydrates in the separator. At the outlet of this separator B1, this gas, still charged with residual water, can be sent upstream of the enclosures A4 and A1 through conduits 10 and 11 after a possible recompression carried out in K2. All or part of the heavy hydrocarbon-laden gas coming from the enclosure A2 can be sent through the conduit 17 to be mixed with the heavy hydrocarbon vapor circulating in the conduit 13, this mixture being introduced into the enclosure A3.
Tout ou partie du gaz chargé en hydrocarbures lourds provenant de l'enceinte A2 peut également être envoyé par le conduit 21 dans l'échangeur E3 puis dans le séparateur Sl.All or part of the heavy hydrocarbon-loaded gas coming from the enclosure A2 can also be sent via the conduit 21 into the exchanger E3 and then into the separator S1.
Le matériau adsorbant utilisé pour le retrait des mercaptans contenus dans l'enceinte A3 est saturé, à la fin du cycle d'adsorption, par les mercaptans et les hydrocarbures lourds présents dans le gaz, et doit être au moins partiellement régénéré afin d'être à nouveau engagé dans un cycle d'adsorption. Selon l'invention, cette régénération se fait en utilisant comme fluide notamment de la vapeur d'hydrocarbure, pure ou diluée, par exemple par tout ou partie du gaz de régénération de l'adsorbant contenu dans l'enceinte A2, à haute température, par exemple typiquement comprise entre 0 et 300°C, et préférentiellement entre 50 et 2000C. La pression pour cette opération doit être inférieure à la tension de vapeur des hydrocarbures lourds à la température considérée, elle est typiquement comprise entre 1 et 40 bar, et préférentiellement comprise entre 1 et 20 bar, et préférentiellement entre 1 et 10 bar.The adsorbent material used for the removal of the mercaptans contained in the enclosure A3 is saturated, at the end of the adsorption cycle, with mercaptans and heavy hydrocarbons present in the gas, and must be at least partially regenerated in order to be again engaged in an adsorption cycle. According to the invention, this regeneration is done by using as fluid in particular hydrocarbon vapor, pure or diluted, for example by all or part of the regeneration gas of the adsorbent contained in the chamber A2, at high temperature, for example typically between 0 and 300 ° C, and preferably between 50 and 200 ° C. The pressure for this operation must be less than the vapor pressure of the heavy hydrocarbons at the temperature in question, it is typically between 1 and 40 bar, and preferably between 1 and 20 bar, and preferably between 1 and 10 bar.
En sortie de l'enceinte A3, la vapeur d'hydrocarbures lourds contient les mercaptans désorbés. Un séparateur gaz/liquide Sl permet de récupérer une fraction hydrocarbure liquide constituée notamment par les hydrocarbures lourds et les mercaptans. Les conditions de fonctionnement de ce séparateur Sl sont une température comprise entre -500C et 500C, et préférentiellement entre -400C et 00C, et une pression comprise entre 1 et 40 bar, et préférentiellement entre 1 et 20 bar, et préférentiellement entre 1 et 10 bar. A la fin de cette étape de déplacement, le volume intergrain de l'adsorbeur, et les volumes poreux de l'adsorbant utilisé pour le retrait des mercaptans, sont remplis de vapeur d'hydrocarbures lourds. Ces hydrocarbures adsorbés peuvent éventuellement être éliminés par chauffage de l'adsorbant à haute température sous balayage de gaz. Ceci est réalisé comme décrit précédemment dans l'étape relative au fonctionnement de l'enceinte A2.At the outlet of enclosure A3, the heavy hydrocarbon vapor contains desorbed mercaptans. A gas / liquid separator S 1 makes it possible to recover a liquid hydrocarbon fraction constituted in particular by heavy hydrocarbons and mercaptans. The operating conditions of this separator Sl are a temperature of between -50 ° C. and 50 ° C., and preferably between -40 ° C. and 0 ° C., and a pressure of between 1 and 40 bar, and preferably between 1 and 20 ° C. bar, and preferably between 1 and 10 bar. At the end of this displacement step, the intergrain volume of the adsorber, and the porous volumes of the adsorbent used for the removal of the mercaptans, are filled with heavy hydrocarbon vapor. These adsorbed hydrocarbons may optionally be removed by heating the adsorbent at high temperature under gas flushing. This is done as described previously in the step relating to the operation of the enclosure A2.
Le séparateur gaz/liquide Sl permet également de récupérer les hydrocarbures lourds condensés contenu dans le gaz arrivant directement de l'enceinte A2 par le conduit 21.The gas / liquid separator S 1 also makes it possible to recover the condensed heavy hydrocarbons contained in the gas arriving directly from the enclosure A2 via the conduit 21.
La durée de chacune de ces séquences est typiquement comprise entre 1 et 24 heures, préférentiellement entre 2 et 18 heures, et préférentiellement entre 4 et 12 heures. Le dimensionnement des adsorbeurs sera effectué selon les règles connues de l'homme du métier. La vitesse superficielle de la vapeur dans l'adsorbeur est par exemple comprise entre 0,5 et 30 m/min.The duration of each of these sequences is typically between 1 and 24 hours, preferably between 2 and 18 hours, and preferably between 4 and 12 hours. The sizing of the adsorbers will be carried out according to the rules known to those skilled in the art. The superficial velocity of the vapor in the adsorber is for example between 0.5 and 30 m / min.
Selon l'invention, les matériaux adsorbants utilisés pour réaliser l'adsorption des mercaptans dans les enceintes Al, A2 et A3 peuvent être de nature hydrophile ou hydrophobe. Les matériaux adsorbants utilisés pour réaliser la déshydratation du gaz naturel dans les enceintes A4 et A5 sont de nature hydrophile.According to the invention, the adsorbent materials used to carry out the adsorption of the mercaptans in the Al, A2 and A3 enclosures may be hydrophilic or hydrophobic nature. The adsorbent materials used to dehydrate natural gas in enclosures A4 and A5 are hydrophilic in nature.
Les matériaux adsorbants hydrophobes sont préférentiellement choisis parmi les charbons actifs, de nature hydrophobe, et notamment ceux dont la surface spécifique est typiquement comprise entre 500 et 2500 Xn2Ig, ainsi que les zéolithes, ou tamis moléculaires, notamment de type Y, de la famille des faujasites, dont le rapport molaire silicium/aluminium est supérieur à 3, préférentiellement supérieur à 5 et de manière préférée supérieure à 10. Ces zéolithes Y sont couramment nommées zéolithes Y ultrastables ou USY. On peut également choisir des zéolithes de la famille MFI, et notamment des zéolithes ZSM-5 partiellement ou totalement désaluminées comme la silicalite. Le cation de compensation est préférentiellement le sodium. Ces adsorbants sont connus de l'homme de métier sous l'appellation NaY. Les matériaux adsorbants hydrophiles, éventuellement utilisés pour retirer les mercaptans du gaz naturel dans les enceintes A4 et A5, sont préférentiellement choisis parmi les tamis moléculaires de type LTA, encore appelés zéolithes, ou les adsorbants mésoporeux de type alumines activées ou gel de silice. Les matériaux adsorbants hydrophiles utilisés pour retirer les mercaptans du gaz naturel sont préférentiellement choisis parmi les zéolithes 5A et les zéolithes X ou Y.The hydrophobic adsorbent materials are preferably chosen from active carbons, of hydrophobic nature, and in particular those whose specific surface area is typically between 500 and 2500 Xn 2 Ig, as well as zeolites, or molecular sieves, in particular of type Y, of the family of faujasites, whose silicon / aluminum molar ratio is greater than 3, preferably greater than 5 and preferably greater than 10. These Y zeolites are commonly called ultrastable Y zeolites or USY. It is also possible to choose zeolites from the MFI family, and in particular ZSM-5 zeolites that are partially or totally dealuminated, such as silicalite. The compensation cation is preferably sodium. These adsorbents are known to those skilled in the art under the name NaY. The hydrophilic adsorbent materials, optionally used to remove the mercaptans from natural gas in the enclosures A4 and A5, are preferably chosen from LTA type molecular sieves, also called zeolites, or mesoporous adsorbents of activated alumina type or silica gel. The hydrophilic adsorbent materials used to remove the mercaptans from natural gas are preferably chosen from zeolites 5A and zeolites X or Y.
Parmi les zéolithes hydrophiles, on peut choisir parmi les zéolithes de type A (famille des LTA), et notamment les zéolithes sélectives vis-à-vis de l'eau, notamment les zéolithes de type 3A et 4A, dont le diamètre des pores est inférieur à 0,4 nm. On peut également utiliser des zéolithes de type 5A, ou de type X ou Y, comme les zéolithes NaX ou NaY (famille des faujasites FAU), dont le rapport molaire Si/Ai est préférentiellement inférieur à 3. Les autres adsorbants utilisables pour cette application peuvent être choisis parmi les alumines activées ou les gels de silice, et de préférence celles ou ceux possédant une surface spécifique BET, déterminée classiquement par physisorption de l'azote à 77 K, comprise entre 150 et 800 m2/g.Among the hydrophilic zeolites, it is possible to choose among zeolites of type A (LTA family), and in particular water-selective zeolites, in particular zeolites of type 3A and 4A, whose pore diameter is less than 0.4 nm. It is also possible to use zeolites of type 5A, or of X or Y type, such as NaX or NaY zeolites (FAU family of faujasites), whose Si / Al molar ratio is preferably less than 3. The other adsorbents that can be used for this application can be selected from activated aluminas or silica gels, and preferably those having a BET specific surface area, conventionally determined by physisorption of nitrogen at 77 K, of between 150 and 800 m 2 / g.
Les matériaux adsorbants sont préférentiellement utilisés en lit fixe, par exemple sous forme de bille ou de matériau extrudé. Ils peuvent être utilisés soit seuls soit en mélange, par exemple sous forme multi-lits. Dans le cas de multi-lits, les alumines activées ou les gels . de silice sont utilisés en amont des tamis moléculaires. The adsorbent materials are preferably used in a fixed bed, for example in the form of a ball or an extruded material. They can be used either alone or mixed, for example in multi-bed form. In the case of multi-beds, activated aluminas or gels. of silica are used upstream of the molecular sieves.

Claims

REVENDICATIONS
1) Procédé de purification d'un gaz naturel contenant des mercaptans, dans lequel : a) on met en contact le gaz naturel avec un matériau adsorbant de manière à obtenir un gaz purifié, les mercaptans étant adsorbés par le matériau adsorbant, puis b) on met en contact le matériau adsorbant chargé en mercaptans obtenu à l'étape a) avec un flux comportant au moins 80% en volume de vapeur d'hydrocarbures lourds comportant au moins cinq atomes de carbone de manière à obtenir un flux chargé en mercaptans et un matériau adsorbant saturé en hydrocarbures lourds.1) Process for purifying a natural gas containing mercaptans, in which: a) the natural gas is brought into contact with an adsorbent material so as to obtain a purified gas, the mercaptans being adsorbed by the adsorbent material, then b) the adsorbent material loaded with mercaptans obtained in step a) is brought into contact with a stream comprising at least 80% by volume of heavy hydrocarbon vapor containing at least five carbon atoms so as to obtain a stream loaded with mercaptans and an adsorbent material saturated with heavy hydrocarbons.
2) Procédé selon la revendication 1, dans lequel :2) Method according to claim 1, wherein:
• on effectue l'étape a) sous une pression comprise entre 10 bar et 100 bar et à une température comprise entre O0C et 1500C,Step a) is carried out under a pressure of between 10 bar and 100 bar and at a temperature between 0 ° C. and 150 ° C.,
• on effectue l'étape b) sous une pression comprise entre 1 bar et 40 bar et à une température comprise entre 00C et 3000C.Step b) is carried out under a pressure of between 1 bar and 40 bar and at a temperature of between 0 ° C. and 300 ° C.
3) Procédé selon l'une des revendications 1 et 2, dans lequel : c) on met en contact le matériau adsorbant saturé en hydrocarbures lourds obtenu à l'étape b) avec une fraction du gaz purifié obtenu à l'étape a) de manière à désorber les hydrocarbures lourds du matériau adsorbant et à obtenir un gaz chargé en hydrocarbures lourds.3) Process according to one of claims 1 and 2, wherein: c) the saturated heavy hydrocarbon adsorbent material obtained in step b) is brought into contact with a fraction of the purified gas obtained in step a) of in order to desorb the heavy hydrocarbons from the adsorbent material and to obtain a gas loaded with heavy hydrocarbons.
4) Procédé selon la revendication 3, dans lequel : • on effectue l'étape c) sous une pression comprise entre 1 bar et 40 bar, et à une température comprise entre 00C et 3000C.4) Method according to claim 3, wherein: Step c) is carried out under a pressure of between 1 bar and 40 bar, and at a temperature of between 0 ° C. and 300 ° C.
5) Procédé selon l'une des revendications 1 à 4, dans lequel : d) on met en contact le gaz naturel avec un deuxième matériau adsorbant de manière à adsorber l'eau contenue dans le gaz naturel, puis e) on met en contact le deuxième matériau adsorbant avec une fraction du gaz purifié obtenu à l'étape a) pour désorber l'eau contenue dans le deuxième matériau adsorbant.5) Method according to one of claims 1 to 4, wherein: d) the natural gas is contacted with a second adsorbent material so as to adsorb the water contained in the natural gas, and e) is put in contact with the second adsorbent material with a fraction of the purified gas obtained in step a) to desorb the water contained in the second adsorbent material.
6) Procédé selon la revendication 5, dans lequel :The process according to claim 5, wherein:
• on effectue l'étape d) sous une pression comprise entre 10 bar et 100 bar et à une température comprise entre 00C et 1000C,Step d) is carried out under a pressure of between 10 bar and 100 bar and at a temperature of between 0 ° C. and 100 ° C.,
• on effectue l'étape e) sous une pression comprise entre 10 bar et 100 bar et à une température comprise entre 1000C et 4000C.Step e) is carried out under a pressure of between 10 bar and 100 bar and at a temperature of between 100 ° C. and 400 ° C.
7) Procédé selon l'une des revendications 1 à 6, dans lequel à l'étape b) ledit flux comporte au moins une partie du gaz purifié obtenu après mise en contact lors de l'étape c).7) Method according to one of claims 1 to 6, wherein in step b) said stream comprises at least a portion of the purified gas obtained after contacting in step c).
8) Procédé selon l'une des revendications 1 à 7, dans lequel on condense la vapeur d'hydrocarbures lourds contenue dans le flux obtenu à l'étape b) et on sépare les mercaptans des hydrocarbures condensés.8) Process according to one of claims 1 to 7, wherein the heavy hydrocarbon vapor contained in the stream obtained in step b) is condensed and the mercaptans are separated from the condensed hydrocarbons.
9) Procédé selon la revendication 8, dans lequel le gaz non condensé est recyclé selon au moins l'une des manières suivantes :The process of claim 8, wherein the uncondensed gas is recycled in at least one of the following ways:
• on mélange le gaz non condensé avec le gaz naturel avant l'étape a),The uncondensed gas is mixed with the natural gas before step a),
• on mélange le gaz non condensé avec de la vapeur d'hydrocarbures lourds pour former au moins une partie dudit flux. 10) Procédé selon l'une des revendications 1 à 9, dans lequel on refroidit le gaz purifié obtenu à l'étape c) pour condenser une partie de l'eau et/ou des hydrocarbures et on recycle le gaz refroidi en mélangeant le gaz refroidi avec le gaz naturel avant l'étape a).The uncondensed gas is mixed with heavy hydrocarbon vapor to form at least a portion of said stream. 10) Method according to one of claims 1 to 9, wherein the purified gas obtained in step c) is cooled to condense a portion of the water and / or hydrocarbons and the cooled gas is recycled by mixing the gas cooled with the natural gas before step a).
11) Procédé selon l'une des revendications 1 à 10, dans lequel, avant l'étape a), on désacidifie ledit gaz naturel par absorption des composés acides par une solution absorbante.11) Method according to one of claims 1 to 10, wherein before step a), said natural gas is deacidified by absorption of acidic compounds by an absorbent solution.
12) Procédé selon l'une des revendications 1 à 11, dans lequel les hydrocarbures lourds sont choisis parmi le groupe des hydrocarbures aromatiques comportant entre 7 et 10 atomes de carbones, le groupe étant constitué par le toluène, les isomères des xylènes, l'éthylbenzène, le mésytilène et le paradiéthylbenzène.12) Method according to one of claims 1 to 11, wherein the heavy hydrocarbons are selected from the group of aromatic hydrocarbons comprising between 7 and 10 carbon atoms, the group consisting of toluene, the isomers of xylenes, the ethylbenzene, mesytilene and paradiethylbenzene.
13) Procédé selon l'une des revendications 1 à 12, dans lequel lesdits matériaux adsorbants comportent au moins un des matériaux suivants : un charbon actif, une zéolithe, un adsorbant mésoporeux de type alumine activée, et un adsorbant mésoporeux de type gel de silice.13) Method according to one of claims 1 to 12, wherein said adsorbent materials comprise at least one of the following materials: an activated carbon, a zeolite, a mesoporous adsorbent activated alumina type, and a mesoporous adsorbent silica gel type .
14) Procédé selon l'une des revendications 1 à 13, dans lequel lesdits matériaux adsorbants comportent au moins un des matériaux suivants : un charbon actif possédant une surface spécifique comprise entre 500 et 2500 m2/g, une zéolithe de type A, une zéolithe de type 5A, une zéolithe de type faujasite X, une zéolithe de type faujasite Y, une zéolithe de la famille MFI, un adsorbant mésoporeux de type alumine activée possédant une surface spécifique BET comprise entre 150 mVg et 800 mVg, et un adsorbant mésoporeux de type gel de silice possédant une surface spécifique BET comprise entre 150 m2/g et 800 mVg. 14) Method according to one of claims 1 to 13, wherein said adsorbent materials comprise at least one of the following materials: an activated carbon having a specific surface area of between 500 and 2500 m 2 / g, a zeolite of type A, a type 5A zeolite, a faujasite type X zeolite, a Y type faujasite zeolite, a MFI family zeolite, an activated alumina type mesoporous adsorbent having a BET specific surface area of between 150 mVg and 800 mVg, and an adsorbent mesoporous silica gel type having a BET specific surface area of between 150 m 2 / g and 800 mVg.
PCT/FR2006/000744 2005-04-07 2006-03-31 Method for purifying natural gas by mercaptan adsorption WO2006106226A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0503503 2005-04-07
FR0503503A FR2884154B1 (en) 2005-04-07 2005-04-07 PROCESS FOR PURIFYING NATURAL GAS BY ADSORPTING MERCAPTANS

Publications (1)

Publication Number Publication Date
WO2006106226A1 true WO2006106226A1 (en) 2006-10-12

Family

ID=35169891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/000744 WO2006106226A1 (en) 2005-04-07 2006-03-31 Method for purifying natural gas by mercaptan adsorption

Country Status (2)

Country Link
FR (1) FR2884154B1 (en)
WO (1) WO2006106226A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2923838A1 (en) * 2007-11-21 2009-05-22 Inst Francais Du Petrole Purifying a natural gas by reducing carbon dioxide, hydrogen sulfide and water present in the gas, adsorbing light mercaptans and contacting with an adsorbent material, and mixing a gaseous effluent with a hydrocarbon displacement agent
FR2971043A1 (en) * 2011-01-31 2012-08-03 IFP Energies Nouvelles Dry natural gas liquefying method for transporting liquefied gas via seaway, involves bringing cooled gas phase into contact with adsorbent solid to obtain purified gas phase, and cooling and liquefying purified gas phase by heat exchange
WO2016191259A1 (en) * 2015-05-26 2016-12-01 Dow Global Technologies Llc Method to regenerate adsorbent in a pressure swing adsorption process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3660967A (en) * 1970-09-08 1972-05-09 Union Carbide Corp Purification of fluid streams by selective adsorption
US4957715A (en) * 1988-04-15 1990-09-18 Uop Gas treatment process
WO2003062177A1 (en) * 2002-01-17 2003-07-31 Johnson Matthey Plc Removal of sulphur compounds from low molecular weight hydrocarbons

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2605241B1 (en) 1986-10-16 1989-10-27 Inst Francais Du Petrole INTEGRATED PROCESS FOR TREATING METHANE-CONTAINING WET GAS FOR THE PURPOSE OF REMOVING WATER
FR2636857B1 (en) 1988-09-26 1990-12-14 Inst Francais Du Petrole PROCESS FOR DEHYDRATION, DEACIDIFICATION AND SEPARATION OF CONDENSATE FROM NATURAL GAS
JP3828179B2 (en) 1995-05-12 2006-10-04 富士通株式会社 Semiconductor photodetection device and manufacturing method thereof
FR2740468B1 (en) 1995-10-27 1997-12-12 Inst Francais Du Petrole PROCESS FOR DRYING GAS WITH GLYCOL INCLUDING PURIFICATION OF GASEOUS DISCHARGES

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3660967A (en) * 1970-09-08 1972-05-09 Union Carbide Corp Purification of fluid streams by selective adsorption
US4957715A (en) * 1988-04-15 1990-09-18 Uop Gas treatment process
WO2003062177A1 (en) * 2002-01-17 2003-07-31 Johnson Matthey Plc Removal of sulphur compounds from low molecular weight hydrocarbons

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2923838A1 (en) * 2007-11-21 2009-05-22 Inst Francais Du Petrole Purifying a natural gas by reducing carbon dioxide, hydrogen sulfide and water present in the gas, adsorbing light mercaptans and contacting with an adsorbent material, and mixing a gaseous effluent with a hydrocarbon displacement agent
WO2009098389A2 (en) * 2007-11-21 2009-08-13 Ceca S.A. Method for purifying natural gas by adsorption and displacement of mercaptans
WO2009098389A3 (en) * 2007-11-21 2009-10-01 Ceca S.A. Method for purifying natural gas by adsorption and displacement of mercaptans
FR2971043A1 (en) * 2011-01-31 2012-08-03 IFP Energies Nouvelles Dry natural gas liquefying method for transporting liquefied gas via seaway, involves bringing cooled gas phase into contact with adsorbent solid to obtain purified gas phase, and cooling and liquefying purified gas phase by heat exchange
WO2016191259A1 (en) * 2015-05-26 2016-12-01 Dow Global Technologies Llc Method to regenerate adsorbent in a pressure swing adsorption process

Also Published As

Publication number Publication date
FR2884154A1 (en) 2006-10-13
FR2884154B1 (en) 2007-12-21

Similar Documents

Publication Publication Date Title
FR2882941A1 (en) PROCESS FOR PURIFYING NATURAL GAS BY ADSORPTING MERCAPTANS
FR2861403A1 (en) Purifying natural gas containing mercaptans comprises placing it in contact with several quantities of adsorbent material and separating out hydrocarbons with more than five carbon atoms
EP1312406B1 (en) Process for purifying synthesis gas
CA2560668C (en) Blends of chabazites or of synthetic zeolites with clinoptilolites for adsorbing h20, c02 and/or h2s
US8557026B2 (en) Process for producing purified natural gas from natural gas comprising water and carbon dioxide
WO2003068366A1 (en) Method for treatment of a gaseous mixture comprising hydrogen and hydrogen sulphide
FR2921470A1 (en) Dry natural gas liquefying method for transporting gas through ship, involves liquefying hydrocarbon depleted gas at pressure to obtain pressurized gas, and relaxing gas until atmospheric pressure to obtain liquid natural gas and fraction
EP1120149A1 (en) Process for purifying a gas by adsorption on several activated carbons
FR2863909A1 (en) Purifying a gas stream containing carbon dioxide and impurities comprises using an adsorbent comprising a sodium LSX zeolite or a mixture of a sodium X zeolite and a sodium LSX zeolite
WO2003078029A1 (en) Heavy hydrocarbon recovery from pressure swing adsorption unit tail gas
EP2106284A2 (en) Hydrogen adsorption purification method with co-generation of a pressurised co<sb>2</sb>flow
EP2272581A1 (en) Process for the separation of CO2 by pressure swing adsorption on a carbon solid prepared by nanomoulding
EP1446223B1 (en) A procedure for purifying air with a barium and calcium zeolite adsorbent
FR2784599A1 (en) PROCESS FOR PURIFYING A GAS STREAM IN ITS N2O IMPURITIES
US7311758B2 (en) Method of purifying a natural gas by mercaptan adsorption
US20030029315A1 (en) Layered adsorption zone for hydrogen production swing adsorption
WO2006106226A1 (en) Method for purifying natural gas by mercaptan adsorption
WO2014191640A1 (en) Purification unit with multi-bed adsorber
FR2781693A1 (en) Gas treatment process, especially for removing carbon dioxide and/or nitrogen from natural gas, comprises use of streams produced during adsorption stages to purge adsorption zones during desorption stages
EP0691393B1 (en) Process for drying a gaseous or liquid mixture by an adsorber composed of alumina and molecular sieve
FR2836058A1 (en) Process for separating gaseous mixture, e.g. refinery feed flow, involves simultaneous use of permeation treatment unit and adsorption unit
WO2009098389A2 (en) Method for purifying natural gas by adsorption and displacement of mercaptans
FR2779069A1 (en) Recovery of solvent from fluid emerging from treatment process
WO2019186013A1 (en) Method of decarbonating gaseous flows
FR2921277A1 (en) Mercaptan eliminating method for natural gas liquefaction plant, involves traversing purge gas through acid adsorbent solid in order to evacuate effluent containing portion of liquid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06726183

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6726183

Country of ref document: EP