WO2006104193A1 - Method for adjusting astigmatism - Google Patents

Method for adjusting astigmatism Download PDF

Info

Publication number
WO2006104193A1
WO2006104193A1 PCT/JP2006/306464 JP2006306464W WO2006104193A1 WO 2006104193 A1 WO2006104193 A1 WO 2006104193A1 JP 2006306464 W JP2006306464 W JP 2006306464W WO 2006104193 A1 WO2006104193 A1 WO 2006104193A1
Authority
WO
WIPO (PCT)
Prior art keywords
astigmatism
partial
electrode
electrodes
group
Prior art date
Application number
PCT/JP2006/306464
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Hosoyamada
Shinichi Fujinoki
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to JP2007510558A priority Critical patent/JPWO2006104193A1/en
Publication of WO2006104193A1 publication Critical patent/WO2006104193A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13925Means for controlling the beam wavefront, e.g. for correction of aberration active, e.g. controlled by electrical or mechanical means

Definitions

  • the present invention relates to a technical field of an astigmatism adjustment method in a manufacturing process of an optical pickup device used for recording and reproducing information on an optical information recording medium, for example.
  • Non-Patent Document 1 One example of this type of adjustment method is disclosed in Non-Patent Document 1, for example (hereinafter referred to as “conventional technology”). According to the conventional technology, it is possible to adjust astigmatism within a desired range by adjusting the image height by adjusting the tilt angle of the rising mirror that guides the emitted light from the light source to the objective lens. Has been.
  • Non-Patent Document 1 Shinichi Nagahara, 4 others, "DVD—R / RW (R5) pickup development", [online], [searched on February 1, 2005], Internet URL: http: ⁇ www.pioneer.co.jp/crdl/rd /pdf/13-l-7.pdf>
  • the present invention has been made in view of the above-described problems, and provides an astigmatism adjustment method capable of efficiently adjusting astigmatism in an optical pickup device manufacturing process. Is an issue.
  • an astigmatism adjustment method of the present invention includes a light source, an objective lens for condensing the emitted light emitted from the light source force on a recording medium, and an optical path of the emitted light.
  • each of the plurality of partial electrodes is electrically independent of other partial electrodes adjacent to each other, and (iv) the liquid crystal layer includes And an astigmatism correction means for correcting astigmatism generated in the optical system including the objective lens by a phase difference applied to the emitted light according to an applied voltage between the pair of electrodes.
  • a method of adjusting the astigmatism in the manufacturing process of the optical pickup device, The specific step of identifying the astigmatism to be corrected based on the condensing state of the emitted light through the objective lens, and the astigmatism to be corrected are determined on the one electrode.
  • a second determining step for determining the applied voltage to the partial electrode associated with the two-direction group; and the first From Mukogun and applied voltage against the respective corresponding Tagged partial electrodes in the second direction group comprises a third determining extent E of determining the applied voltage of the plurality of partial electrodes, respectively.
  • the optical pickup device includes a light source, an objective lens, and astigmatism correction means.
  • the light source is a concept that includes means capable of emitting light according to the type of the recording medium.
  • the recording medium is a DVD
  • LD Laser Diode
  • this laser beam may be a laser beam having a wavelength of about 780 to 810 nm when the recording medium is a CD (Compact Disc).
  • a BRD Blue Ray Disc
  • a laser beam having a wavelength of about 400 to 410 nm may be used.
  • the emitted light emitted from the light source is condensed on the recording medium via the objective lens in actual use.
  • astigmatism occurs in an optical system including an objective lens. This astigmatism is corrected by astigmatism correction means.
  • the pair of electrodes in the astigmatism correction means is formed as a transparent conductive film made of, for example, ITO (Indium Tin Oxide) on a substrate made of, for example, a glass-based material. It has permeability.
  • a liquid crystal layer is sandwiched between the pair of electrodes, and the orientation of the liquid crystal molecules constituting the liquid crystal layer changes and the refractive index changes according to the voltage applied between the electrodes. As the refractive index changes, a phase difference is given to the transmitted light, so that astigmatism of the optical system can be corrected.
  • “sandwiched between a pair of electrodes” does not necessarily mean that each electrode and the liquid crystal layer are in direct contact with each other. For example, alignment that aligns liquid crystal molecules in a predetermined direction.
  • the liquid crystal layer may be sandwiched through a film or a protective film.
  • One of the pair of electrodes has a plurality of partial electrodes.
  • the partial electrode is an individual electrode pattern patterned by photolithography, for example.
  • the partial electrodes are arranged in the circumferential direction to form a ring zone shape.
  • the other electrode may be formed with a partial electrode other than the ring-shaped partial electrode.
  • partial electrodes relating to correction of other aberrations generated in the optical system such as coma and spherical aberration may be appropriately formed.
  • a partial electrode that defines the reference of potential in one of the electrodes may be formed.
  • the plurality of partial electrodes arranged 1J in the annular shape are electrically connected to other partial electrodes adjacent to each other. Independent. In addition, as long as the potential is independent of the partial electrodes adjacent in the circumferential direction, the partial electrodes may have a common potential.
  • the partial electrode having the annular shape functions as an electrode for correcting astigmatism as a whole (hereinafter, referred to as “astigmatism correction electrode” as appropriate).
  • the number and size of the partial electrodes in this astigmatism correction electrode may be freely determined as long astigmatism can be corrected. For example, these may be appropriately determined in advance experimentally, empirically, or by simulation.
  • the other electrode opposed to the one electrode is not affected by the function of the astigmatism correction electrode, for example, other aberrations caused by the optical system, for example, coma convergence.
  • a partial electrode for correcting spherical aberration may be appropriately formed.
  • coma and spherical aberration can be suitably corrected by the astigmatism correction means, which is preferable.
  • the astigmatism correction unit operates by applying a voltage between the pair of electrodes. At this time, if the applied voltage is uniform between the pair of electrodes, the liquid crystal molecules in the liquid crystal layer are simply aligned uniformly.
  • the applied voltages of the individual partial electrodes in the astigmatism correction electrode In the case of changing, in the liquid crystal layer, the refractive indexes of the respective portions corresponding to the individual partial electrodes change with each other according to the applied voltage of each of the partial electrodes. Therefore, the phase of the light transmitted through the liquid crystal layer is advanced or delayed depending on the voltage applied to each of the partial electrodes, and the wavefront of the light transmitted through the astigmatism correcting means is corrected. That is, depending on the voltage applied to this partial electrode, for example, astigmatism can be made zero or set to a predetermined value.
  • astigmatism correction means can be corrected without changing the image height by adjusting the tilt angle of the rising mirror as in the prior art. Therefore, the dependence on NA is small, which is advantageous in terms of improving the yield of the optical pickup device.
  • the tact time required for adjusting astigmatism can vary greatly depending on how the applied voltage of each of the partial electrodes constituting the astigmatism correction electrode is determined. That is, the applied voltage of each of the plurality of partial electrodes needs to be determined efficiently. Therefore, the present invention
  • the astigmatism adjustment method includes the following steps, whereby the applied voltage of each partial electrode can be determined efficiently and astigmatism can be adjusted efficiently.
  • astigmatism adjustment method of the present invention astigmatism to be corrected based on the state of light collected through the objective lens by the operation related to the specific process during the operation. Is identified.
  • astigmatism to be corrected refers to astigmatism that has been known or can be estimated astigmatism occurring in an optical system including an objective lens or astigmatism.
  • aberration for example, astigmatism in a state where no correction is made by the astigmatism correction means.
  • it may be astigmatism with some correction made by the astigmatism correction means.
  • Such astigmatism to be corrected is specified based on, for example, a beam profile file of outgoing light through the objective lens.
  • the beam profile is literally a profile (characteristic) of the emitted light, and represents, for example, a beam spot shape and a beam spot diameter.
  • the direction and magnitude of astigmatism to be corrected are specified from the change in the beam profile when the distance between the objective lens and the light source is changed by adjusting the position of the objective lens.
  • the specified astigmatism is converted into an aberration corresponding to each of the first direction group and the second direction group by an operation related to the aberration conversion step.
  • the first direction group is defined based on the control direction of astigmatism in one of the electrodes described above (that is, the electrode on which the astigmatism correction electrode is formed).
  • a group consisting of a first axis and a second axis that are orthogonal to each other.
  • the second direction group is a third direction orthogonal to each other obtained by rotating the first direction group, for example, by 45 degrees in the same plane.
  • astigmatism is an aberration caused by the difference in focal length between two orthogonal sections including the optical axis, for example, the first direction group, that is, the first axis and the second axis. If the directions match, it can be expressed simply as the aberration of the first direction group. However, astigmatism occurs at various angles depending on the optical system through which the light beam passes. It is difficult to express only by the aberration of the direction group. So, with this first direction group and 45 degree inclination A defined.
  • astigmatism can be expressed as a vector sum of these two direction groups.
  • the aberration conversion process refers to the astigmatism to be corrected by the components of the first direction group (that is, the astigmatism corresponding to the first direction group) and the component of the second direction group (that is, the second direction group). In other words, astigmatism corresponding to (1).
  • the first determination step and the second determination step are executed.
  • an applied voltage to a partial electrode associated with the first direction group among the plurality of partial electrodes is determined from astigmatism corresponding to the first direction group.
  • the partial electrode associated with the first direction group is at least one partial electrode set in advance as one that can suitably correct the astigmatism of the first direction group among the plurality of partial electrodes. Point to.
  • the partial electrodes associated with the first direction group are composed of at least a plurality of partial electrode groups, and each partial electrode group includes at least one partial electrode. Is preferred. Such partial electrodes may be appropriately set in advance experimentally, empirically, or by simulation.
  • the applied voltage to the partial electrode associated with the first direction group may be calculated each time according to some algorithm that associates the value of astigmatism with the applied voltage, for example, and the astigmatism is preliminarily determined.
  • the control amount associated with the aberration value may be referred to from some storage means.
  • an applied voltage to a partial electrode associated with the second direction group among the plurality of partial electrodes is determined from astigmatism corresponding to the second direction group.
  • the partial electrode associated with the second direction group refers to at least one partial electrode set in advance as one that can suitably correct the astigmatism of the second direction group among the plurality of partial electrodes. Point to.
  • the partial electrode associated with the second direction group is composed of at least a plurality of partial electrode groups, and each partial electrode group includes at least one partial electrode. Is preferred. Such partial electrodes may be appropriately set in advance experimentally, empirically, or by simulation.
  • the applied voltage to the partial electrodes associated with the second direction group may be calculated each time, for example, according to some algorithm that associates the value of astigmatism with the applied voltage, and is previously astigmatized.
  • the control amount associated with the aberration value may be referred to from some storage means.
  • each of the plurality of electrodes belongs to both the first direction group and the second direction group.
  • two types including values and positive / negative concepts
  • the voltage will be determined.
  • the applied voltages of the partial electrodes associated with the respective direction groups are determined in this manner, the applied voltages of the plurality of partial electrodes are determined by the third determining step.
  • the partial electrodes associated with the first direction group and also the partial electrodes associated with the second direction group are determined in the first determination step and the second determination step.
  • the final applied voltage is determined based on each applied voltage. For example, for a certain partial electrode, if the applied voltage is determined to be 3V in the first determination step and 5V in the second determination step, respectively, the average applied voltage of 4V may be the applied voltage of the partial electrode.
  • the applied voltage of each of the plurality of partial electrodes arranged in a ring shape is divided into two direction groups, a first direction group and a second direction group. Can be easily determined based on the voltages applied to the partial electrodes associated with the first direction group and the second direction group, respectively, determined according to the astigmatism corresponding to.
  • the process of converting astigmatism into astigmatism in each of the first direction group and the second direction group and the process of determining the applied voltage are numerical calculation processes, which are necessary in the manufacturing process of the optical pickup device.
  • the mechanical adjustment becomes only the position adjustment of the objective lens in a specific process for specifying astigmatism to be corrected based on the beam profile. Therefore, the tact time required for the adjustment to set the astigmatism to a desired value (for example, zero) is obviously shortened compared to the conventional technique. That is, it becomes possible to adjust astigmatism efficiently.
  • the astigmatism adjustment method is associated with the first direction group.
  • the partial electrode belongs to one of a first partial electrode group defined by the first axis and a second partial electrode group defined by the second axis, and the first determining step includes the first determining step.
  • the applied voltages to the partial electrodes belonging to the first and second partial electrode groups are determined as displacements having the same absolute value and different signs with respect to a predetermined reference voltage, respectively, and the partial electrodes associated with the second direction group Belongs to one of a third partial electrode group defined by the third axis and a fourth partial electrode group defined by the fourth axis, and the second determining step includes the third and fourth parts
  • the applied voltages to the partial electrodes belonging to the respective electrode groups are determined as displacements having the same absolute value and different signs with respect to the reference voltage, and the third determining step is the same as the first and second determining steps.
  • the partial electrode associated with the first direction group is either one of the first partial electrode group and the second partial electrode group defined by the first axis and the second axis, respectively. Belonging to. Note that these electrode groups may be defined in any manner by each axis.
  • the number of partial electrodes belonging to each electrode group is not limited at all, but preferably the same number.
  • all of the plurality of partial electrodes are partial electrodes associated with the first direction group. In this case, the plurality of partial electrodes provided in a ring shape belong to the first partial electrode group or the second partial electrode group.
  • the partial electrodes belonging to the first and second partial electrode groups are partial electrodes capable of correcting the astigmatism of the first direction group according to the applied voltage, It may have any correspondence with the axis. Such a correspondence relationship may be appropriately determined in advance, experimentally, empirically, or based on simulation, together with the quantity and arrangement of the partial electrodes. For example, if the boundary between the partial electrodes coincides with the first axis or the second axis, the partial electrodes belonging to the first and second partial electrode groups have the first axis and the second axis. Partial electrodes may be sandwiched between them.
  • the voltage applied to the partial electrodes belonging to each of these partial electrode groups is determined.
  • the applied voltage is determined as a displacement with respect to a predetermined reference voltage.
  • the displacement with respect to the reference voltage is defined by dividing the reference voltage into a plurality of equal parts, for example. It may be expressed in predetermined step units. For example, when the reference voltage is 5 V, a voltage of about 20 mV expressed in 8-bit 256 gradations may be set as the step.
  • the applied voltages of the partial electrodes belonging to the first and second partial electrode groups are determined as displacements relative to the reference voltage as described above. At this time, these displacements are mutually absolute values (displacement amounts). Are equal and have different signs (inverted). That is, when the applied voltage of the partial electrode belonging to the first partial electrode group is controlled to be larger than the reference voltage (corresponding to the positive displacement), the partial electrode belonging to the second partial electrode group The applied voltage is controlled to be smaller than the reference voltage (corresponding to negative displacement).
  • the absolute value of the displacement is a value determined based on the correlation between the magnitude of astigmatism and the phase difference given in the liquid crystal layer. Such correlation is given in advance experimentally, empirically, or by simulation.
  • the sign of the applied voltage of the partial electrode belonging to the first partial electrode group and the applied voltage of the partial electrode belonging to the second partial electrode group depends on the setting of the i-th axis and the second axis. In other words, the astigmatism of the first direction group and the partial electrodes belonging to the first partial electrode group and the second partial electrode group in advance, respectively, are not determined uniquely.
  • the correspondence with the sign of the applied voltage can be set freely.
  • the applied voltage determined here is typically a force that is an applied voltage for completely canceling astigmatism in the first direction group, that is, approximately zero, with a predetermined amount of aberration. It may be an applied voltage that gives a phase difference that remains, that is, the aberration has a predetermined value.
  • the partial electrodes corresponding to the second direction group belong to either the third partial electrode group or the fourth partial electrode group defined by the third axis and the fourth axis, respectively.
  • these electrode groups may be defined in any way by each axis.
  • the number of partial electrodes belonging to each electrode group is not limited at all, but preferably the same number.
  • all of the plurality of partial electrodes are partial electrodes associated with the second direction group.
  • the plurality of partial electrodes provided in a ring shape belong to the third partial electrode group or the fourth partial electrode group.
  • the partial electrodes belonging to the third and fourth partial electrode groups are partial electrodes capable of correcting the astigmatism of the second direction group according to the applied voltage, of It may have any correspondence with the axis.
  • Such a correspondence relationship may be appropriately determined in advance, experimentally, empirically, or based on simulation, together with the quantity and arrangement of the partial electrodes.
  • the partial electrodes belonging to the third and fourth partial electrode groups are the third and fourth axes. It may be a partial electrode that sandwiches each.
  • the applied voltage of the partial electrodes belonging to each of these partial electrode groups is determined.
  • the applied voltage is determined as a displacement with respect to a predetermined reference voltage.
  • the displacement with respect to the reference voltage may be expressed in a predetermined step unit defined by dividing the reference voltage into a plurality of equal parts, for example. For example, when the reference voltage is 5 V, a voltage of about 20 mV expressed in 8-bit 256 gradations may be set as the step.
  • the applied voltages of the partial electrodes belonging to the third and fourth partial electrode groups are determined as displacements relative to the reference voltage as described above. At this time, these displacements are mutually absolute values (displacement amounts). Are equal and have different signs (inverted). That is, when the applied voltage of the partial electrode belonging to the third partial electrode group is controlled so as to be larger than the reference voltage (corresponding to the positive displacement), the partial electrode belonging to the fourth partial electrode group The applied voltage is controlled to be smaller than the reference voltage (corresponding to negative displacement).
  • the absolute value of the displacement is a value determined based on the correlation between the magnitude of astigmatism and the phase difference given in the liquid crystal layer. Such correlation is given in advance experimentally, empirically, or by simulation.
  • the sign of the applied voltage of the partial electrode belonging to the third partial electrode group and the applied voltage of the partial electrode belonging to the fourth partial electrode group depends on how the third axis and the fourth axis are set. In other words, the astigmatism of the second direction group and the partial electrodes belonging to the third partial electrode group and the fourth partial electrode group in advance, respectively, are not determined uniquely. The correspondence with the sign of the applied voltage can be set freely.
  • the applied voltage determined here is typically a force that is an applied voltage for completely canceling astigmatism in the second direction group, that is, approximately zero, with a predetermined amount of aberration. It may be an applied voltage that gives a phase difference that remains, that is, the aberration has a predetermined value.
  • the applied voltage of the partial electrode belonging to each partial electrode group is determined as a displacement from the reference voltage in this way, this displacement is added to the reference voltage for each of the plurality of partial electrodes.
  • the final displacement from the reference voltage is determined for each of the plurality of partial electrodes.
  • the applied voltage of each of the plurality of partial electrodes is determined according to this final displacement.
  • the astigmatism is corrected to a desired value, typically zero, by setting the applied voltage of each of the plurality of partial electrodes to the value determined in the third determination step.
  • the applied voltage of each of the plurality of partial electrodes as described above is determined as a displacement with respect to the reference voltage, the applied voltage can be determined relatively easily. That is, it becomes possible to adjust astigmatism efficiently.
  • the plurality of partial electrodes have boundaries between the first, second, third, and third adjacent to the partial electrodes adjacent to each other. It consists of eight partial electrodes defined by four axes, and (i) the first and second partial electrode groups consist of four parts of the eight partial electrodes that sandwich the first and second axes, respectively. (Ii) The third and fourth partial electrode groups are composed of four partial electrodes that sandwich the third and fourth axes, respectively, among the eight partial electrodes.
  • the astigmatism correction electrode is divided into a total of eight partial electrodes along the first axis, the second axis, the third axis, and the fourth axis. All of these eight partial electrodes are partial electrodes associated with the first direction group and partial electrodes associated with the second direction group.
  • each partial electrode group is determined quickly and efficiently, and two of the four partial electrodes constituting each partial electrode group are arranged facing each other. Astigmatism can be finely corrected. In other words, astigmatism can be corrected accurately and efficiently.
  • each of the determined applied voltages is determined. Is further stored in a predetermined type of storage means mounted on the optical pickup device.
  • the storage means described here may have any form as long as it is mounted on the optical pickup device and can be read out during operation of the optical pickup device.
  • a non-volatile memory such as an EEPROM (Electrically Erasable Programmable Read Only Memory) may be used.
  • the information on the applied voltage may be stored together with the specific information of the optical pick-up device, component information, serial number, and the like.
  • the astigmatism correction method of the present invention includes the specifying step, the aberration converting step, the first determining step, the second determining step, and the third determining step, so that astigmatism is efficiently performed. It is possible to adjust the aberration.
  • FIG. 1 is a schematic configuration diagram of an optical pickup device according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an aberration correction element in the optical pickup device of FIG. 1.
  • FIG. 3 is a plan view of a first electrode and a second electrode in the aberration correction element of FIG. 2.
  • FIG. 4 is a conceptual diagram of a first direction group and a second direction group according to an embodiment of the present invention.
  • FIG. 5 is an exemplary diagram of component decomposition of astigmatism according to an example of the present invention.
  • FIG. 6 is a table showing a design example of an applied voltage of an electrode pattern according to an example of the present invention. Explanation of symbols
  • FIG. 1 is a schematic configuration diagram of the optical pickup device 100.
  • an optical pickup device 100 includes a light source 101, a light source 102, a dichroic mirror 103, a half mirror 104, a collimator lens 105, a rising mirror 106, an aberration correction element 107, a ⁇ / 4 plate 108,
  • the apparatus includes an objective lens 109, a multi-lens 110, and a detector 111, and condenses light emitted from the light source 101 or 102 on the recording medium 200 to record and reproduce information.
  • the light source 101 is an LD (Laser Diode) configured to be able to emit laser light having a wavelength of 650 nm, and is an example of a light source according to the present invention that functions as a light source for DVD.
  • the light source 102 is an LD configured to emit laser light having a wavelength of 780 nm, and is another example of the light source according to the present invention that functions as a light source for CD.
  • a grating that diffracts the emitted light and a ⁇ / 2 plate that converts the emitted light from p-polarized light to s-polarized light are disposed behind each light source, but the illustration is omitted.
  • the dichroic mirror 103 has a dichroic characteristic that reflects only light of a specific wavelength.
  • the dichroic mirror 103 is configured to reflect only the emitted light of the light source 102, that is, the laser beam for CD. Yes. Therefore, the optical path of the emitted light from the light sources 101 and 102 is made common through the dichroic mirror 103.
  • the half mirror 104 is a kind of PBS (Polarized Beam Splitter) and has a configuration in which the reflectance varies depending on the polarization direction of incident light. Light emitted from each light source is s-polarized light when it reaches the half mirror 104, is reflected by the half mirror 104, and enters the collimator lens 105.
  • the collimator lens 130 is a lens that converts diffused light into parallel light.
  • the light that has passed through the collimator lens 105 is reflected by the rising mirror 106 and reaches the aberration correction element 107.
  • the rising mirror 106 is a mirror disposed for converting the optical path of incident light.
  • the aberration correction element 107 is an element for correcting various aberrations generated in the optical pickup device 100.
  • the aberration correction element 107 is driven by a control unit (not shown) in FIG. It functions as an example of such “astigmatism correction means”. The details of the aberration correction element and the control unit will be described later.
  • the light that has passed through the aberration correction element 107 enters the ⁇ 4 plate 108, is converted into circularly polarized light, and then enters the objective lens 109.
  • the objective lens 140 is a lens that collects incident light on the recording medium 200.
  • Each laser beam condensed on the recording medium 200 is reflected and reflected at the condensing position, and is incident on the objective lens 109 again as return light (dotted line in FIG. 1).
  • the return light is further converted into ⁇ -polarized light by the ⁇ / 4 plate 108, and enters the half mirror 104 through the aberration correction element 107, the rising mirror 106 and the collimator lens 105 in order.
  • the return light since the return light is ⁇ -polarized light, it passes through the half mirror 104 without being reflected and enters the multi-lens 110.
  • astigmatism or the like for obtaining a focus error signal necessary for recording / reproducing information is given to the return light, and the return light is received by the detector 111.
  • FIG. 6 is a schematic diagram of an aberration correction element 107.
  • the same parts as those in FIG. 1 are denoted by the same reference numerals and the description thereof is omitted.
  • the aberration correction element 107 includes a first substrate 107a, a first electrode 107b, a liquid crystal layer 107c, a second electrode 107d, and a second substrate 107e.
  • the first substrate 107a is a plate-like member made of a glass-based material, and has a first electrode 10 on the surface.
  • the first electrode 107b is a transparent conductive film obtained by patterning ITO.
  • the second substrate 107e is a plate-like member made of a glass-based material like the first substrate 107a, and the second electrode 107d as an example of "one electrode" according to the present invention is formed on the surface. Yes. Similar to the first electrode 107b, the second electrode 107d is a transparent conductive film in which the patterning process is applied to ITO. Further, the first electrode 107b and the second electrode 107d are arranged to face each other so as to be orthogonal to the direction of the illustrated light beam.
  • the liquid crystal layer 107c is a layer containing liquid crystal molecules (not shown) sandwiched between the first electrode 107b and the second electrode 107d, and the alignment of the liquid crystal molecules according to the applied voltage between the two electrodes. As the refractive index changes, the refractive index changes.
  • the operation of the aberration correction element 107 is controlled by the control unit 112.
  • the control unit 112 is a control unit including a CPU (Central Processing Unit) (not shown) and the like, and can control the applied voltage of each electrode pattern described later in each of the first electrode 107b and the second electrode 107d. It is configured.
  • CPU Central Processing Unit
  • the EEPROM 113 is a rewritable nonvolatile semiconductor memory, and an optical pickup device
  • the EEPROM 113 stores voltage data to be applied to each of the electrode patterns described above.
  • the control unit 112 reads the information on the applied voltage from the EEPROM 113 and determines the voltage. Is applied.
  • FIG. 3 is a plan view of the first electrode 107b and the second electrode 107d.
  • the same parts as those in FIG. 2 are denoted by the same reference numerals and the description thereof is omitted.
  • FIG. 3 (a) represents the first electrode 107b
  • FIG. 3 (b) represents the second electrode 107d.
  • the first electrode 107b includes a plurality of electrode patterns 107bl, 107b2, 107b3, 107b4, and 107b5.
  • the configuration and arrangement of these patterns are set so that spherical aberration generated in the optical pickup device 100 is corrected, and among these, the electrode patterns 107b 1 and 107b3 are also used for correcting coma aberration.
  • the electrode pattern 107b2 is a pattern that serves as a reference for the potential of the first electrode 107b. Since the relevance of the astigmatism adjustment method according to the present invention and correction of the coma aberration and spherical aberration is small, detailed description is omitted for the sake of simplification.
  • the second electrode 107d has a plurality of electrode patterns 107dl (hereinafter referred to as pattern 1), 107d2 (hereinafter referred to as pattern 2), 107d3 (hereinafter referred to as pattern 3), 107d4 (hereinafter referred to as pattern 4), 107d5 (hereinafter referred to as pattern). 5), 107d6 (hereinafter referred to as pattern 6) and 107d7 (hereinafter referred to as pattern 7), and is an example of “one electrode” according to the present invention.
  • Pattern 2 and Pattern 6 are the previous ones. Together with the electrode patterns 107bl and 107b3 in the first electrode 107b described above, it is used to correct coma aberration.
  • Pattern 4 is a pattern that serves as a reference for the potential of the second electrode 107d.
  • Pattern 1, pattern 3, pattern 5 and pattern 7 are examples of “a plurality of partial electrodes having an annular shape” according to the present invention, and function as astigmatism correction electrodes. As shown in the figure, these patterns are evenly arranged in the circumferential direction, and are independent in potential from adjacent patterns.
  • a reference voltage V (for example, 5V) is applied between the pattern 4 (electrode pattern 107d4) and the electrode pattern 107b2. Do not correct any aberrations
  • the potentials of the entire electrode 107b and the entire electrode 107d are controlled to be equal to the potentials of the electrode patterns 107b2 and 4 respectively.
  • the applied voltage of pattern 1, pattern 3, pattern 5 and pattern 7 at electrode 10 7d is changed with respect to pattern 4, thereby changing the refractive index of the liquid crystal layer and transmitting light. Is given a phase difference.
  • the applied voltages of patterns 1, 3, 5 and 7 are stored in EEPROM 113, and this applied voltage is astigmatism described below in the manufacturing process of optical pickup device 100. This is determined by performing the adjustment method. ⁇ Astigmatism adjustment method>
  • astigmatism adjustment is performed, first, astigmatism to be corrected is specified. Astigmatism is specified, for example, by measuring the profile of the laser beam emitted from the light source 101 every time the position of the objective lens 109 is adjusted, and analyzing the profile using a known beam profile measurement technique or the like. . This process is an example of a specific process according to the present invention.
  • This step is an example of an aberration converting step according to the present invention.
  • FIG. 4 is a conceptual diagram of the first direction group and the second direction group.
  • FIG. 4 (a) shows the first direction group
  • FIG. 4 (b) shows the second direction group.
  • patterns 1, 3, 5 and 7 are simply represented as 1, 3, 5 and 7 in the respective drawings.
  • the first direction group is defined by two axes orthogonal to each other, ie, the first axis and the second axis shown in the figure.
  • the first axis defines the boundary between pattern 3 and pattern 5 in the second electrode 107d, and the second axis similarly defines the boundary between pattern 1 and pattern 7.
  • the second direction group is defined by two axes orthogonal to each other, ie, the third axis and the fourth axis shown in the figure.
  • the third axis defines the boundary between pattern 1 and pattern 3 in the second electrode 107d
  • the fourth axis similarly defines the boundary between pattern 5 and pattern 7.
  • the relationship between each of the first direction group and the second direction group and each electrode pattern is not limited to that shown in the figure, and may be set freely.
  • the identified astigmatism is decomposed into vectors in the first direction group and the second direction group.
  • FIG. 5 is an exemplary diagram of astigmatism component decomposition.
  • the astigmatism to be corrected generated in the optical pickup device 100 is 0 ⁇ 17 ⁇ ( ⁇ is the wavelength of the emitted light) in the direction of 30 degrees.
  • is the wavelength of the emitted light
  • 0.085 and 0.147 ⁇ are obtained.
  • a negative sign indicates that the phase is delayed.
  • the applied voltage of each pattern is determined for each direction group. At this time, the applied voltage is the displacement with respect to the reference voltage V.
  • the unit (step) of the displacement is about 20mV.
  • the applied voltage of each pattern for each direction group is determined as an increase / decrease value of the number of steps.
  • the refractive index change of the liquid crystal layer 107c when the applied voltage is increased (or decreased) by one step, that is, the correctable aberration is experimentally, empirically, or simulated in advance. Get it.
  • the four axes that define each direction group define the boundaries of eight electrode patterns (that is, patterns 1, 3, 5, and 7). These eight electrode patterns are all examples of the partial electrodes associated with the first direction group and the partial electrodes associated with the second direction group according to the present invention.
  • the pattern as an example of the first partial electrode group according to the present invention sandwiching the first axis (that is, defined by the first axis) 3 and 5, and patterns 1 and 7 as an example of the second partial electrode group according to the present invention sandwiching the second axis (that is, defined by the second axis) are treated as a pair, respectively.
  • the patterns 5 and 7 as an example of the fourth partial electrode group according to the present invention sandwiching the fourth axis (that is, defined by the fourth axis) are treated as a pair, and the seesaw control is executed. .
  • each axis coincide with the boundaries of the patterns 1, 3, 5, and 7, and each partial electrode group is relatively clear.
  • the positional relationship between each axis that defines each direction group and each pattern is not limited to this. That is, each pattern may rotate freely with respect to each axis.
  • FIG. 6 is a table showing a design example of the applied voltage.
  • the applied voltage of pattern 1 and pattern 7 is “V ⁇ 0.85 V”, and the applied voltage of pattern 3 and pattern 5 is “V. + 0.8
  • This process includes the first determination process and the second determination process according to the present invention.
  • the final applied voltage of each electrode pattern will be described.
  • the applied voltage of each pattern is easily determined by adding the displacements relative to the reference voltage determined for each of the first direction group and the second direction group.
  • the displacement force S “_0.85V” required to correct the astigmatism in the first direction group is the same as that required to correct the astigmatism in the second direction group. Since the displacement is “1.1.4 7V”, the displacement with respect to the final reference voltage V is “_2.32V”. Therefore
  • the applied voltage of pattern 1 is “V-2.32V”. The same applies to other electrode patterns
  • the applied voltage is determined.
  • the applied voltage determined for each of these electrode patterns is stored in the EEPROM 113 (that is, an example of the “storage process” according to the present invention).
  • the EEPROM 113 stores the voltage in hexadecimal.
  • astigmatism generated in the optical pick-up device 100 is included in the components of the first direction group and the second direction group.
  • the applied voltage of each pattern can be easily determined.
  • the mechanical adjustment only requires the adjustment of the position of the objective lens when specifying astigmatism, and these applied voltages are determined as numerical calculation processing when the astigmatism is specified. can do. Therefore, the tact time required for adjusting astigmatism in the manufacturing process of the optical pickup device is obviously shortened. In other words, astigmatism can be adjusted efficiently.
  • the number of electrode patterns on the second electrode 107d used for correcting astigmatism need not be eight as described above. For example, it may be divided into more patterns. In this case, the number of patterns corresponding to each axis in each direction group increases accordingly, and astigmatism can be corrected more finely finally.
  • the astigmatism adjustment method according to the present invention can be used for an astigmatism adjustment method in a manufacturing process of an optical pickup device used for recording and reproducing information on an optical information recording medium, for example.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)

Abstract

The second electrode (107d) of an abberation correcting element (107) is arranged with total eight electrode patterns of patterns (1, 3, 5, 7) in ring band shape. Astigmatism is corrected depending on a voltage being applied to each pattern. When astigmatism is adjusted, it is decomposed into astigmatism components in first direction group and second direction group. For each decomposed component, a voltage applied to each pattern is determined as a displacement with respect to a reference voltage. Two orthogonal axes defining respective direction groups are respectively associated with total four patterns of two types being bordered by them, and the applying voltage is determined such that respective displacements have an equal absolute value and different signs. Final voltage applied to each pattern is calculated by mutually adding, for each pattern, the displacements obtained for respective direction groups.

Description

明 細 書  Specification
非点収差の調整方法  Astigmatism adjustment method
技術分野  Technical field
[0001] 本発明は、例えば光情報記録媒体などにおける情報の記録及び再生などに使用 される光ピックアップ装置の製造工程における非点収差の調整方法の技術分野に関 する。  The present invention relates to a technical field of an astigmatism adjustment method in a manufacturing process of an optical pickup device used for recording and reproducing information on an optical information recording medium, for example.
背景技術  Background art
[0002] この種の調整方法の一つに、例えば非特許文献 1に開示されたものがある(以下、 「従来の技術」と称する)。従来の技術によれば、光源からの出射光を対物レンズに 導く立ち上げミラーの傾斜角を調整して像高を調整することにより、非点収差を所望 の範囲に収めることが可能であるとされている。  One example of this type of adjustment method is disclosed in Non-Patent Document 1, for example (hereinafter referred to as “conventional technology”). According to the conventional technology, it is possible to adjust astigmatism within a desired range by adjusting the image height by adjusting the tilt angle of the rising mirror that guides the emitted light from the light source to the objective lens. Has been.
[0003] 非特許文献 1 :永原信一、外 4名、 "DVD— R/RW (R5)ピックアップ開発"、 [online] 、 [平成 17年 2月 1日検索]、インターネットく URL:http:〃 www.pioneer.co.jp/crdl/rd /pdf/13-l-7.pdf>  [0003] Non-Patent Document 1: Shinichi Nagahara, 4 others, "DVD—R / RW (R5) pickup development", [online], [searched on February 1, 2005], Internet URL: http: 〃 www.pioneer.co.jp/crdl/rd /pdf/13-l-7.pdf>
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 非点収差を調整する場合、立ち上げミラーの傾斜角を調整する毎に対物レンズの 位置調整が必要となり、最適な像高を決定するのに要する時間が比較的長くなつて 、光ピックアップ装置の製造工程が非効率となり易い。また、記録倍速を向上させる 要請から、光学系の NA (Numerical Aperture:開口数)は総じて大きくなる傾向であり 、それに伴って、立ち上げミラーの傾斜角として許容される範囲は縮小される傾向で ある。この場合、許容される範囲で非点収差を調整する必要があるため、調整に要す るタクトタイムは一層悪化し易い。即ち、従来の技術には、光ピックアップ装置の製造 工程で効率的に非点収差の調整を行うことが困難であるという技術的な問題点があ る。 [0004] When adjusting astigmatism, it is necessary to adjust the position of the objective lens each time the tilt angle of the rising mirror is adjusted, and the time required to determine the optimum image height is relatively long. The manufacturing process of the pickup device tends to be inefficient. In addition, due to the demand for improving the recording speed, the NA (Numerical Aperture) of the optical system tends to increase as a whole, and the allowable range of the tilt angle of the rising mirror tends to be reduced accordingly. is there. In this case, since it is necessary to adjust the astigmatism within an allowable range, the tact time required for the adjustment is likely to be further deteriorated. In other words, the conventional technique has a technical problem that it is difficult to efficiently adjust astigmatism in the manufacturing process of the optical pickup device.
[0005] 本発明は上述した問題点に鑑みてなされたものであり、光ピックアップ装置の製造 工程において効率的に非点収差を調整し得る非点収差の調整方法を提供すること を課題とする。 The present invention has been made in view of the above-described problems, and provides an astigmatism adjustment method capable of efficiently adjusting astigmatism in an optical pickup device manufacturing process. Is an issue.
課題を解決するための手段  Means for solving the problem
[0006] ぐ非点収差の調整方法 >  [0006] Adjustment method for astigmatism>
本発明の非点収差の調整方法は上記課題を解決するために、光源と、前記光源 力 出射される出射光を記録媒体上に集光するための対物レンズと、前記出射光の 光路上に配置され、 G)相互に対向する一対の電極、及び該一対の電極間に挟持さ れた液晶層を備え、(ii)前記一対の電極のうち一方の電極は、周方向に配列するこ とにより輪帯形状をなす複数の部分電極を含み、 (iii)前記複数の部分電極各々は、 相互に隣接する他の部分電極に対し電位的に独立しており、 (iv)前記液晶層にお いて、前記一対の電極間の印加電圧に応じて前記出射光に付与される位相差によ つて、前記対物レンズを含む光学系で生じる非点収差を補正する非点収差補正手 段とを備える光ピックアップ装置の製造工程における前記非点収差の調整方法であ つて、前記対物レンズを介した前記出射光の集光状態に基づいて、補正すべき前記 非点収差を特定する特定工程と、前記補正すべき非点収差を、前記一方の電極に おいて前記非点収差の制御方向に基づいて規定される(i)相互に直交する第 1軸及 び第 2軸からなる第 1方向群及び (Π)該第 1方向群を 45度回転させた相互に直交す る第 3軸及び第 4軸からなる第 2方向群各々に対応する非点収差に変換する収差変 換工程と、前記第 1方向群に対応する非点収差から、前記複数の部分電極のうち前 記第 1方向群に対応付けられた部分電極に対する前記印加電圧を決定する第 1決 定工程と、前記第 2方向群に対応する非点収差から、前記複数の部分電極のうち前 記第 2方向群に対応付けられた部分電極に対する前記印加電圧を決定する第 2決 定工程と、前記第 1方向群及び前記第 2方向群に夫々対応付けられた部分電極に 対する印加電圧から、前記複数の部分電極各々の印加電圧を決定する第 3決定ェ 程とを具備する。  In order to solve the above problems, an astigmatism adjustment method of the present invention includes a light source, an objective lens for condensing the emitted light emitted from the light source force on a recording medium, and an optical path of the emitted light. G) a pair of electrodes facing each other and a liquid crystal layer sandwiched between the pair of electrodes, and (ii) one of the pair of electrodes is arranged in a circumferential direction. (Iii) each of the plurality of partial electrodes is electrically independent of other partial electrodes adjacent to each other, and (iv) the liquid crystal layer includes And an astigmatism correction means for correcting astigmatism generated in the optical system including the objective lens by a phase difference applied to the emitted light according to an applied voltage between the pair of electrodes. A method of adjusting the astigmatism in the manufacturing process of the optical pickup device, The specific step of identifying the astigmatism to be corrected based on the condensing state of the emitted light through the objective lens, and the astigmatism to be corrected are determined on the one electrode. (I) a first direction group consisting of a first axis and a second axis orthogonal to each other, and (i) a first direction group rotated by 45 degrees and orthogonal to each other. An astigmatism conversion step corresponding to each of the second direction group consisting of the third axis and the fourth axis, and an astigmatism corresponding to the first direction group. From the first determination step of determining the applied voltage to the partial electrode associated with the first direction group and the astigmatism corresponding to the second direction group, the first of the plurality of partial electrodes. A second determining step for determining the applied voltage to the partial electrode associated with the two-direction group; and the first From Mukogun and applied voltage against the respective corresponding Tagged partial electrodes in the second direction group comprises a third determining extent E of determining the applied voltage of the plurality of partial electrodes, respectively.
[0007] 本発明の非点収差の調整方法において、光ピックアップ装置は、光源、対物レンズ 及び非点収差補正手段を備える。  In the astigmatism adjustment method of the present invention, the optical pickup device includes a light source, an objective lens, and astigmatism correction means.
[0008] 光源とは、記録媒体の種類に応じた光を出射することが可能な手段を包括する概 念であり、例えば、記録媒体が DVDであれば、波長 635〜670nm程度のレーザ光 を出射する LD (Laser Diode)であってもよい。またこのレーザ光は、記録媒体が CD ( Compact Disc)である場合には、波長 780〜810nm程度のレーザ光であってもよい 。或いは、記録媒体が BRD (Blue Ray Disc)である場合には、波長 400〜410nm程 度のレーザ光であってもよい。光源から出射された出射光は、例えば、実使用時には 対物レンズを介して記録媒体上に集光される。 [0008] The light source is a concept that includes means capable of emitting light according to the type of the recording medium. For example, if the recording medium is a DVD, a laser beam having a wavelength of about 635 to 670 nm. LD (Laser Diode) that emits light may be used. Further, this laser beam may be a laser beam having a wavelength of about 780 to 810 nm when the recording medium is a CD (Compact Disc). Alternatively, when the recording medium is a BRD (Blue Ray Disc), a laser beam having a wavelength of about 400 to 410 nm may be used. For example, the emitted light emitted from the light source is condensed on the recording medium via the objective lens in actual use.
[0009] 尚、出射光の光路上には、出射光が対物レンズを介して最終的に記録媒体上に集 光される限りにおいて、光ピックアップ装置の構成、用途、又は要求性能などに応じ て、例えば、グレーティングゃコリメータレンズ等の各種光学素子又は各種レンズ等 力 なる光学系が介在してもよレ、。  [0009] It should be noted that, on the optical path of the outgoing light, as long as the outgoing light is finally collected on the recording medium via the objective lens, it depends on the configuration, application, or required performance of the optical pickup device. For example, various optical elements such as a grating collimator lens or various optical systems such as a lens may be interposed.
[0010] 一方、対物レンズを含む光学系では非点収差が発生する。この非点収差は、非点 収差補正手段によって補正される。  On the other hand, astigmatism occurs in an optical system including an objective lens. This astigmatism is corrected by astigmatism correction means.
[0011] 非点収差補正手段における一対の電極は、例えば、ガラス系材料などで構成され る基板上に、例えば ITO (Indium Tin Oxide)などを材料とする透明導電膜として形成 されており、光透過性を有している。この一対の電極間には液晶層が挟持されており 、電極間の印加電圧によって、液晶層を構成する液晶分子の配向が変化し、屈折率 が変化する構成となっている。この屈折率の変化に伴って透過光に位相差が付与さ れるため、光学系の非点収差を補正することが可能となっている。  [0011] The pair of electrodes in the astigmatism correction means is formed as a transparent conductive film made of, for example, ITO (Indium Tin Oxide) on a substrate made of, for example, a glass-based material. It has permeability. A liquid crystal layer is sandwiched between the pair of electrodes, and the orientation of the liquid crystal molecules constituting the liquid crystal layer changes and the refractive index changes according to the voltage applied between the electrodes. As the refractive index changes, a phase difference is given to the transmitted light, so that astigmatism of the optical system can be corrected.
[0012] 尚、「一対の電極間に挟持される」とは、必ずしも電極各々と液晶層とが直接接触し ておらずともよい趣旨であり、例えば、液晶分子を所定の方向に配向させる配向膜や 保護膜などを介して液晶層が挟持されていてもよい。  [0012] Note that “sandwiched between a pair of electrodes” does not necessarily mean that each electrode and the liquid crystal layer are in direct contact with each other. For example, alignment that aligns liquid crystal molecules in a predetermined direction. The liquid crystal layer may be sandwiched through a film or a protective film.
[0013] 一対の電極のうち一方の電極は、複数の部分電極を有している。ここで、部分電極 は、例えば、フォトリソグラフィなどによってパターユングされた個々の電極パターンで ある。この部分電極は、周方向に配列して輪帯形状をなしている。但し、係る一方の 電極にぉレ、て、この輪帯形状の部分電極以外の部分電極が形成されてレ、てもよレ、。 例えば、コマ収差や球面収差など光学系で発生する他の収差の補正に関する部分 電極が適宜形成されていてもよい。或いは、係る一方の電極内における電位の基準 を規定する部分電極が形成されてレ、てもよレ、。  [0013] One of the pair of electrodes has a plurality of partial electrodes. Here, the partial electrode is an individual electrode pattern patterned by photolithography, for example. The partial electrodes are arranged in the circumferential direction to form a ring zone shape. However, the other electrode may be formed with a partial electrode other than the ring-shaped partial electrode. For example, partial electrodes relating to correction of other aberrations generated in the optical system such as coma and spherical aberration may be appropriately formed. Alternatively, a partial electrode that defines the reference of potential in one of the electrodes may be formed.
[0014] この輪帯形状に配歹 1Jした複数の部分電極は、相互に隣接する他の部分電極とは電 位的に独立している。尚、周方向に隣接する部分電極と電位的に独立している限り において、部分電極の一部は相互に電位が共通化されていてもよい。この輪帯形状 をなす部分電極は、全体として非点収差を補正するための電極(以降、適宜「非点収 差補正用電極」と称する)として機能する。尚、この非点収差補正用電極における部 分電極の数や大きさは、非点収差の補正を可能とする限りにおいて自由に決定され てよい。例えば、これらは、予め実験的に、経験的に、或いはシミュレーションなどに よって適切に決定されていてもよい。 [0014] The plurality of partial electrodes arranged 1J in the annular shape are electrically connected to other partial electrodes adjacent to each other. Independent. In addition, as long as the potential is independent of the partial electrodes adjacent in the circumferential direction, the partial electrodes may have a common potential. The partial electrode having the annular shape functions as an electrode for correcting astigmatism as a whole (hereinafter, referred to as “astigmatism correction electrode” as appropriate). The number and size of the partial electrodes in this astigmatism correction electrode may be freely determined as long as astigmatism can be corrected. For example, these may be appropriately determined in advance experimentally, empirically, or by simulation.
[0015] 尚、係る一方の電極と相対する他方の電極には、非点収差補正用電極の機能を阻 害しない限りにおいて、例えば光学系に起因して発生する他の収差、例えばコマ収 差や球面収差を補正するための部分電極が適宜形成されていてもよい。この場合に は、非点収差補正手段によってコマ収差や球面収差をも好適に補正することが可能 となって好適である。  [0015] It should be noted that the other electrode opposed to the one electrode is not affected by the function of the astigmatism correction electrode, for example, other aberrations caused by the optical system, for example, coma convergence. In addition, a partial electrode for correcting spherical aberration may be appropriately formed. In this case, coma and spherical aberration can be suitably corrected by the astigmatism correction means, which is preferable.
[0016] 非点収差補正手段は、一対の電極間に電圧が印加されることにより動作する。この 際、印加電圧が一対の電極間で一様であれば、単に液晶層における液晶分子が一 様に配向するだけである力 非点収差補正用電極における個々の部分電極の印加 電圧を相互に変化させた場合には、液晶層において、この部分電極各々の印加電 圧に応じて、個々の部分電極に対応する夫々の部分の屈折率が相互に変化する。 従って、液晶層を透過する光は、部分電極夫々の印加電圧に応じて位相が進むか 或いは遅れることとなり、非点収差補正手段を透過する光の波面が補正される。即ち 、この部分電極の印加電圧次第で、例えば、非点収差をゼロにすることも、所定値に 設定することも可能となる。  [0016] The astigmatism correction unit operates by applying a voltage between the pair of electrodes. At this time, if the applied voltage is uniform between the pair of electrodes, the liquid crystal molecules in the liquid crystal layer are simply aligned uniformly. The applied voltages of the individual partial electrodes in the astigmatism correction electrode In the case of changing, in the liquid crystal layer, the refractive indexes of the respective portions corresponding to the individual partial electrodes change with each other according to the applied voltage of each of the partial electrodes. Therefore, the phase of the light transmitted through the liquid crystal layer is advanced or delayed depending on the voltage applied to each of the partial electrodes, and the wavefront of the light transmitted through the astigmatism correcting means is corrected. That is, depending on the voltage applied to this partial electrode, for example, astigmatism can be made zero or set to a predetermined value.
[0017] ここで特に、このような非点収差補正手段の作用によれば、従来の技術の如く立ち 上げミラーの傾斜角調整によって像高を振ることなく非点収差を補正することができ るため、 NAに対する依存性は少なぐ光ピックアップ装置の歩留まり改善という点に おいては有利である。  [0017] In particular, according to the action of such astigmatism correction means, astigmatism can be corrected without changing the image height by adjusting the tilt angle of the rising mirror as in the prior art. Therefore, the dependence on NA is small, which is advantageous in terms of improving the yield of the optical pickup device.
[0018] 然るに、非点収差補正用電極を構成する部分電極各々の印加電圧をいかに決定 するかによつて、非点収差の調整に要するタクトタイムは大幅に変化し得る。即ち、複 数の部分電極各々の印加電圧は効率的に決定される必要がある。そこで、本発明の 非点収差の調整方法は、以下の如き工程を有することによって、部分電極各々の印 加電圧を効率的に決定し、非点収差の調整を効率的に行うことが可能となっている。 [0018] However, the tact time required for adjusting astigmatism can vary greatly depending on how the applied voltage of each of the partial electrodes constituting the astigmatism correction electrode is determined. That is, the applied voltage of each of the plurality of partial electrodes needs to be determined efficiently. Therefore, the present invention The astigmatism adjustment method includes the following steps, whereby the applied voltage of each partial electrode can be determined efficiently and astigmatism can be adjusted efficiently.
[0019] 即ち、本発明の非点収差の調整方法によれば、その動作時には、特定工程に係る 動作によって、対物レンズを介した出射光の集光状態に基づいて、補正すべき非点 収差が特定される。  In other words, according to the astigmatism adjustment method of the present invention, astigmatism to be corrected based on the state of light collected through the objective lens by the operation related to the specific process during the operation. Is identified.
[0020] ここで、「補正すべき非点収差」とは、対物レンズを含む光学系で生じる非点収差或 いは係る非点収差との相関関係が判明している或いは推定し得る非点収差を指し、 例えば、非点収差補正手段によって何らの補正もなされていない状態における非点 収差である。或いは、非点収差補正手段によって何らかの補正がなされた状態での 非点収差であってもよい。  [0020] Here, "astigmatism to be corrected" refers to astigmatism that has been known or can be estimated astigmatism occurring in an optical system including an objective lens or astigmatism. Refers to aberration, for example, astigmatism in a state where no correction is made by the astigmatism correction means. Alternatively, it may be astigmatism with some correction made by the astigmatism correction means.
[0021] このような補正すべき非点収差は、例えば、対物レンズを介した出射光のビームプ 口ファイルに基づいて特定される。ビームプロファイルとは、文字通り出射光のプロフ アイル (特性)であり、例えば、ビームスポット形状及びビームスポット径などを表す。 例えば、対物レンズと光源との距離を、対物レンズの位置調整によって変化させた場 合のビームプロファイルの変化から、補正すべき非点収差の方向及び大きさが特定 される。  [0021] Such astigmatism to be corrected is specified based on, for example, a beam profile file of outgoing light through the objective lens. The beam profile is literally a profile (characteristic) of the emitted light, and represents, for example, a beam spot shape and a beam spot diameter. For example, the direction and magnitude of astigmatism to be corrected are specified from the change in the beam profile when the distance between the objective lens and the light source is changed by adjusting the position of the objective lens.
[0022] 補正すべき非点収差が特定されると、収差変換工程に係る動作により、この特定さ れた非点収差が第 1方向群及び第 2方向群各々に対応する収差に変換される。  [0022] When the astigmatism to be corrected is specified, the specified astigmatism is converted into an aberration corresponding to each of the first direction group and the second direction group by an operation related to the aberration conversion step. .
[0023] ここで、第 1方向群とは、前述した一方の電極(即ち、非点収差補正用電極が形成 される方の電極)において、非点収差の制御方向に基づいて規定される、相互に直 交する第 1軸及び第 2軸からなるグループであり、第 2方向群とは、この第 1方向群を 例えば同一平面内で 45度回転させて得られる、相互に直交する第 3軸及び第 4軸か らなるグループである。  Here, the first direction group is defined based on the control direction of astigmatism in one of the electrodes described above (that is, the electrode on which the astigmatism correction electrode is formed). A group consisting of a first axis and a second axis that are orthogonal to each other. The second direction group is a third direction orthogonal to each other obtained by rotating the first direction group, for example, by 45 degrees in the same plane. A group consisting of an axis and a fourth axis.
[0024] 非点収差は、光軸を含む直交する二つの断面で焦点距離が相互に異なることによ つて生じる収差であるから、例えば、第 1方向群、即ち第 1軸及び第 2軸とその方向が 一致していれば、単に第 1方向群の収差として表すことが可能であるが、非点収差は 、光束が通過する光学系によって様々な角度で発生するため、通常、単に第 1方向 群の収差だけでは表すことが難しい。そこで、この第 1方向群と 45度の傾きをもって 規定される第 2方向群が規定される。 [0024] Since astigmatism is an aberration caused by the difference in focal length between two orthogonal sections including the optical axis, for example, the first direction group, that is, the first axis and the second axis. If the directions match, it can be expressed simply as the aberration of the first direction group. However, astigmatism occurs at various angles depending on the optical system through which the light beam passes. It is difficult to express only by the aberration of the direction group. So, with this first direction group and 45 degree inclination A defined second direction group is defined.
[0025] 第 1方向群及び第 2方向群の 2種類の方向群が規定された場合、非点収差は、こ れら 2方向群のベクトル和として表すことが可能となる。即ち、収差変換工程とは、補 正すべき非点収差を、第 1方向群の成分 (即ち、第 1方向群に対応する非点収差)と 第 2方向群の成分 (即ち、第 2方向群に対応する非点収差)とに成分分解する工程と 換言することちできる。 [0025] When two types of direction groups, the first direction group and the second direction group, are defined, astigmatism can be expressed as a vector sum of these two direction groups. In other words, the aberration conversion process refers to the astigmatism to be corrected by the components of the first direction group (that is, the astigmatism corresponding to the first direction group) and the component of the second direction group (that is, the second direction group). In other words, astigmatism corresponding to (1).
[0026] 補正されるべき非点収差が第 1及び第 2方向群に夫々対応する非点収差に変換さ れると、第 1決定工程及び第 2決定工程が実行される。  [0026] When the astigmatism to be corrected is converted into astigmatism corresponding to the first and second direction groups, the first determination step and the second determination step are executed.
[0027] 第 1決定工程では、第 1方向群に対応する非点収差から、複数の部分電極のうち 第 1方向群に対応付けられた部分電極に対する印加電圧が決定される。ここで、第 1 方向群に対応付けられた部分電極とは、複数の部分電極のうち、第 1方向群の非点 収差を好適に補正し得るものとして予め設定された少なくとも一つの部分電極を指す 。尚、非点収差の性質に鑑みれば、第 1方向群に対応付けられた部分電極は少なく とも複数の部分電極群から構成され、各部分電極群に夫々少なくとも一つの部分電 極が含まれるのが好ましい。尚、このような部分電極は、予め実験的に、経験的に、 或いはシミュレーションなどによって適切に設定されていてもよい。  [0027] In the first determination step, an applied voltage to a partial electrode associated with the first direction group among the plurality of partial electrodes is determined from astigmatism corresponding to the first direction group. Here, the partial electrode associated with the first direction group is at least one partial electrode set in advance as one that can suitably correct the astigmatism of the first direction group among the plurality of partial electrodes. Point to. In view of the nature of astigmatism, the partial electrodes associated with the first direction group are composed of at least a plurality of partial electrode groups, and each partial electrode group includes at least one partial electrode. Is preferred. Such partial electrodes may be appropriately set in advance experimentally, empirically, or by simulation.
[0028] これら第 1方向群に対応付けられた部分電極に対する印加電圧は、例えば、非点 収差の値と印加電圧とを対応付ける何らかのアルゴリズムに従ってその都度算出して もよレ、し、予め非点収差の値と対応付けられた制御量として、何らかの記憶手段から 参照されてもよい。  [0028] The applied voltage to the partial electrode associated with the first direction group may be calculated each time according to some algorithm that associates the value of astigmatism with the applied voltage, for example, and the astigmatism is preliminarily determined. The control amount associated with the aberration value may be referred to from some storage means.
[0029] 第 2決定工程では、第 2方向群に対応する非点収差から、複数の部分電極のうち 第 2方向群に対応付けられた部分電極に対する印加電圧が決定される。ここで、第 2 方向群に対応付けられた部分電極とは、複数の部分電極のうち、第 2方向群の非点 収差を好適に補正し得るものとして予め設定された少なくとも一つの部分電極を指す 。尚、非点収差の性質に鑑みれば、第 2方向群に対応付けられた部分電極は少なく とも複数の部分電極群から構成され、各部分電極群に夫々少なくとも一つの部分電 極が含まれるのが好ましい。尚、このような部分電極は、予め実験的に、経験的に、 或いはシミュレーションなどによって適切に設定されていてもよい。 [0030] これら第 2方向群に対応付けられた部分電極に対する印加電圧は、例えば、非点 収差の値と印加電圧とを対応付ける何らかのアルゴリズムに従ってその都度算出して もよレ、し、予め非点収差の値と対応付けられた制御量として、何らかの記憶手段から 参照されてもよい。 [0029] In the second determination step, an applied voltage to a partial electrode associated with the second direction group among the plurality of partial electrodes is determined from astigmatism corresponding to the second direction group. Here, the partial electrode associated with the second direction group refers to at least one partial electrode set in advance as one that can suitably correct the astigmatism of the second direction group among the plurality of partial electrodes. Point to. In view of the nature of astigmatism, the partial electrode associated with the second direction group is composed of at least a plurality of partial electrode groups, and each partial electrode group includes at least one partial electrode. Is preferred. Such partial electrodes may be appropriately set in advance experimentally, empirically, or by simulation. [0030] The applied voltage to the partial electrodes associated with the second direction group may be calculated each time, for example, according to some algorithm that associates the value of astigmatism with the applied voltage, and is previously astigmatized. The control amount associated with the aberration value may be referred to from some storage means.
[0031] 尚、複数の電極は、夫々が第 1方向群と第 2方向群のいずれにも属するのが好まし レ、。但し、第 1方向群と第 2方向群とは、対応する非点収差が異なるから、この場合、 好適には、複数の部分電極各々について、 2種類 (値や正負の概念を含む)の印加 電圧が決定されることとなる。  [0031] Preferably, each of the plurality of electrodes belongs to both the first direction group and the second direction group. However, since the corresponding astigmatism differs between the first direction group and the second direction group, in this case, preferably, two types (including values and positive / negative concepts) are applied to each of the partial electrodes. The voltage will be determined.
[0032] このようにして夫々の方向群に対応付けられた部分電極の印加電圧が決定される と、第 3決定工程によって、複数の部分電極各々の印加電圧が決定される。この際、 第 1方向群に対応付けられた部分電極であって、且つ第 2方向群に対応付けられた 部分電極でもある部分電極については、第 1決定工程及び第 2決定工程において決 定された印加電圧各々に基づいて最終的な印加電圧が決定される。例えば、ある部 分電極について、印加電圧が、夫々第 1決定工程において 3V、第 2決定工程にお いて 5Vと決定された場合には、平均した 4Vが係る部分電極の印加電圧とされてもよ レ、。  When the applied voltages of the partial electrodes associated with the respective direction groups are determined in this manner, the applied voltages of the plurality of partial electrodes are determined by the third determining step. At this time, the partial electrodes associated with the first direction group and also the partial electrodes associated with the second direction group are determined in the first determination step and the second determination step. The final applied voltage is determined based on each applied voltage. For example, for a certain partial electrode, if the applied voltage is determined to be 3V in the first determination step and 5V in the second determination step, respectively, the average applied voltage of 4V may be the applied voltage of the partial electrode. Yo!
[0033] このように、本発明の非点収差の調整方法によれば、輪帯形状に配列した複数の 部分電極各々の印加電圧を、第 1方向群及び第 2方向群の 2つの方向群に対応す る非点収差に応じて夫々決定された第 1方向群及び第 2方向群各々に対応付けられ た部分電極に対する印加電圧に基づいて簡便に決定することができる。この際、非 点収差を第 1方向群及び第 2方向群夫々の非点収差に変換する処理、及び印加電 圧を決定する処理は数値演算処理であり、光ピックアップ装置の製造工程において 必要となる機械的な調整は、ビームプロファイルに基づレ、て補正されるべき非点収差 を特定する特定工程における対物レンズの位置調整のみとなる。従って、非点収差 を所望の値に設定する(例えば、ゼロとする)ための調整に要するタクトタイムは、従 来の技術に対し明らかに短縮される。即ち、効率的に非点収差を調整することが可 能となるのである。  [0033] Thus, according to the astigmatism adjustment method of the present invention, the applied voltage of each of the plurality of partial electrodes arranged in a ring shape is divided into two direction groups, a first direction group and a second direction group. Can be easily determined based on the voltages applied to the partial electrodes associated with the first direction group and the second direction group, respectively, determined according to the astigmatism corresponding to. At this time, the process of converting astigmatism into astigmatism in each of the first direction group and the second direction group and the process of determining the applied voltage are numerical calculation processes, which are necessary in the manufacturing process of the optical pickup device. The mechanical adjustment becomes only the position adjustment of the objective lens in a specific process for specifying astigmatism to be corrected based on the beam profile. Therefore, the tact time required for the adjustment to set the astigmatism to a desired value (for example, zero) is obviously shortened compared to the conventional technique. That is, it becomes possible to adjust astigmatism efficiently.
[0034] 本発明の非点収差の調整方法の一の態様では、前記第 1方向群に対応付けられ た部分電極は、前記第 1軸によって規定される第 1部分電極群及び前記第 2軸によ つて規定される第 2部分電極群のいずれか一方に属し、前記第 1決定工程は、前記 第 1及び第 2部分電極群に夫々属する部分電極に対する印加電圧を、夫々所定の 基準電圧に対する相互に絶対値が等しく且つ符号が異なる変位として決定し、前記 第 2方向群に対応付けられた部分電極は、前記第 3軸によって規定される第 3部分 電極群及び前記第 4軸によって規定される第 4部分電極群のいずれか一方に属し、 前記第 2決定工程は、前記第 3及び第 4部分電極群に夫々属する部分電極に対す る印加電圧を、夫々前記基準電圧に対する相互に絶対値が等しく且つ符号が異な る変位として決定し、第 3決定工程は、前記第 1及び第 2決定工程において夫々決定 された前記変位を前記複数の部分電極各々について夫々前記基準電圧に加算す る。 In one aspect of the astigmatism adjustment method of the present invention, the astigmatism adjustment method is associated with the first direction group. The partial electrode belongs to one of a first partial electrode group defined by the first axis and a second partial electrode group defined by the second axis, and the first determining step includes the first determining step. The applied voltages to the partial electrodes belonging to the first and second partial electrode groups are determined as displacements having the same absolute value and different signs with respect to a predetermined reference voltage, respectively, and the partial electrodes associated with the second direction group Belongs to one of a third partial electrode group defined by the third axis and a fourth partial electrode group defined by the fourth axis, and the second determining step includes the third and fourth parts The applied voltages to the partial electrodes belonging to the respective electrode groups are determined as displacements having the same absolute value and different signs with respect to the reference voltage, and the third determining step is the same as the first and second determining steps. Each of the above determined Position you added to each said reference voltage for the plurality of partial electrodes respectively.
[0035] この態様によれば、第 1方向群に対応付けられた部分電極は、第 1軸及び第 2軸に よって夫々規定される第 1部分電極群及び第 2部分電極群のいずれか一方に属する 。尚、これら電極群は、各軸によってどのように規定されていてもよい。尚、各電極群 に属する部分電極の数は何ら限定されなレ、が、好ましくは同数である。また、好適に は、複数の部分電極全てが、第 1方向群に対応付けられた部分電極である。この場 合、輪帯状に設けられた複数の部分電極は、第 1部分電極群又は第 2部分電極群に 属することとなる。  [0035] According to this aspect, the partial electrode associated with the first direction group is either one of the first partial electrode group and the second partial electrode group defined by the first axis and the second axis, respectively. Belonging to. Note that these electrode groups may be defined in any manner by each axis. The number of partial electrodes belonging to each electrode group is not limited at all, but preferably the same number. Preferably, all of the plurality of partial electrodes are partial electrodes associated with the first direction group. In this case, the plurality of partial electrodes provided in a ring shape belong to the first partial electrode group or the second partial electrode group.
[0036] ここで、第 1及び第 2部分電極群に夫々属する部分電極とは、印加電圧に応じて第 1方向群の非点収差を補正することが可能な部分電極である限りにおいて、これら軸 とどのような対応関係を有していてもよい。このような対応関係は、部分電極の数量及 び配置などと共に、予め実験的に、経験的に、或いはシミュレーションなどに基づい て適切に定められていてもよい。尚、例えば、部分電極同士の境界が、第 1軸又は第 2軸と相互に一致するならば、第 1及び第 2部分電極群に属する部分電極とは、この 第 1軸及び第 2軸を夫々挟む部分電極であってもよい。  [0036] Here, as long as the partial electrodes belonging to the first and second partial electrode groups are partial electrodes capable of correcting the astigmatism of the first direction group according to the applied voltage, It may have any correspondence with the axis. Such a correspondence relationship may be appropriately determined in advance, experimentally, empirically, or based on simulation, together with the quantity and arrangement of the partial electrodes. For example, if the boundary between the partial electrodes coincides with the first axis or the second axis, the partial electrodes belonging to the first and second partial electrode groups have the first axis and the second axis. Partial electrodes may be sandwiched between them.
[0037] 第 1決定工程においては、これら各部分電極群に属する部分電極の印加電圧が決 定される。この際、印加電圧は、所定の基準電圧に対する変位として決定される。こ の基準電圧に対する変位とは、例えば、基準電圧を複数等分することによって規定さ れる所定のステップ単位で表されてもよい。例えば、基準電圧が 5Vである場合に、 8 ビット 256階調で表現される約 20mV程度の電圧が係るステップとして設定されてい てもよい。 [0037] In the first determination step, the voltage applied to the partial electrodes belonging to each of these partial electrode groups is determined. At this time, the applied voltage is determined as a displacement with respect to a predetermined reference voltage. The displacement with respect to the reference voltage is defined by dividing the reference voltage into a plurality of equal parts, for example. It may be expressed in predetermined step units. For example, when the reference voltage is 5 V, a voltage of about 20 mV expressed in 8-bit 256 gradations may be set as the step.
[0038] 第 1及び第 2部分電極群に夫々属する部分電極の印加電圧は、前述の通り基準電 圧に対する変位として決定されるが、この際、これら変位は、相互に絶対値 (変位量) が等しく符号が異なる(反転した)値として決定される。即ち、第 1部分電極群に属す る部分電極の印加電圧が基準電圧に対して大きくなるように制御される場合 (正の変 位量に対応する)、第 2部分電極群に属する部分電極の印加電圧は基準電圧に対し て小さくなるように制御される(負の変位量に対応する)。  [0038] The applied voltages of the partial electrodes belonging to the first and second partial electrode groups are determined as displacements relative to the reference voltage as described above. At this time, these displacements are mutually absolute values (displacement amounts). Are equal and have different signs (inverted). That is, when the applied voltage of the partial electrode belonging to the first partial electrode group is controlled to be larger than the reference voltage (corresponding to the positive displacement), the partial electrode belonging to the second partial electrode group The applied voltage is controlled to be smaller than the reference voltage (corresponding to negative displacement).
[0039] 尚、係る変位の絶対値は、非点収差の大きさと液晶層において与えられる位相差と の相関関係に基づいて決定される値である。係る相関関係は、予め実験的に、経験 的に、或いはシミュレーションなどによって与えられている。  Note that the absolute value of the displacement is a value determined based on the correlation between the magnitude of astigmatism and the phase difference given in the liquid crystal layer. Such correlation is given in advance experimentally, empirically, or by simulation.
[0040] 一方、第 1部分電極群に属する部分電極の印加電圧と第 2部分電極群に属する部 分電極の印加電圧との符号の正負は、第 i軸及び第 2軸の設定の態様に応じて変化 する性質のものであり、一意には決定されないが、別言すれば、予め第 1方向群の非 点収差と、第 1部分電極群及び第 2部分電極群に夫々属する部分電極における印 加電圧の符号との対応関係は自由に設定しておくことが可能である。  [0040] On the other hand, the sign of the applied voltage of the partial electrode belonging to the first partial electrode group and the applied voltage of the partial electrode belonging to the second partial electrode group depends on the setting of the i-th axis and the second axis. In other words, the astigmatism of the first direction group and the partial electrodes belonging to the first partial electrode group and the second partial electrode group in advance, respectively, are not determined uniquely. The correspondence with the sign of the applied voltage can be set freely.
[0041] 尚、ここで決定される印加電圧は、典型的には第 1方向群の非点収差を完全に相 殺する、即ちほぼゼロとするための印加電圧である力 所定量の収差が残るような、 即ち、収差が所定値となるような位相差を与える印加電圧であってもよい。  It should be noted that the applied voltage determined here is typically a force that is an applied voltage for completely canceling astigmatism in the first direction group, that is, approximately zero, with a predetermined amount of aberration. It may be an applied voltage that gives a phase difference that remains, that is, the aberration has a predetermined value.
[0042] 一方、第 2方向群に対応する部分電極は、第 3軸及び第 4軸によって夫々規定され る第 3部分電極群及び第 4部分電極群のいずれか一方に属する。尚、これら電極群 は、各軸によってどのように規定されていてもよい。尚、各電極群に属する部分電極 の数は何ら限定されないが、好ましくは同数である。また、好適には、複数の部分電 極全てが、第 2方向群に対応付けられた部分電極である。この場合、輪帯状に設けら れた複数の部分電極は、第 3部分電極群又は第 4部分電極群に属することとなる。  On the other hand, the partial electrodes corresponding to the second direction group belong to either the third partial electrode group or the fourth partial electrode group defined by the third axis and the fourth axis, respectively. Note that these electrode groups may be defined in any way by each axis. The number of partial electrodes belonging to each electrode group is not limited at all, but preferably the same number. Preferably, all of the plurality of partial electrodes are partial electrodes associated with the second direction group. In this case, the plurality of partial electrodes provided in a ring shape belong to the third partial electrode group or the fourth partial electrode group.
[0043] ここで、第 3及び第 4部分電極群に夫々属する部分電極とは、印加電圧に応じて第 2方向群の非点収差を補正することが可能な部分電極である限りにおいて、これらの 軸とどのような対応関係を有していてもよい。このような対応関係は、部分電極の数量 及び配置などと共に、予め実験的に、経験的に、或いはシミュレーションなどに基づ いて適切に定められていてもよい。尚、例えば、部分電極同士の境界が、第 3軸又は 第 4軸と相互に一致するならば、第 3及び第 4部分電極群に属する部分電極とは、こ の第 3軸及び第 4軸を夫々挟む部分電極であってもよレ、。 [0043] Here, as long as the partial electrodes belonging to the third and fourth partial electrode groups are partial electrodes capable of correcting the astigmatism of the second direction group according to the applied voltage, of It may have any correspondence with the axis. Such a correspondence relationship may be appropriately determined in advance, experimentally, empirically, or based on simulation, together with the quantity and arrangement of the partial electrodes. For example, if the boundary between the partial electrodes coincides with the third axis or the fourth axis, the partial electrodes belonging to the third and fourth partial electrode groups are the third and fourth axes. It may be a partial electrode that sandwiches each.
[0044] 第 2決定工程においては、これら各部分電極群に属する部分電極の印加電圧が決 定される。この際、印加電圧は、所定の基準電圧に対する変位として決定される。こ の基準電圧に対する変位とは、例えば、基準電圧を複数等分することによって規定さ れる所定のステップ単位で表されてもよい。例えば、基準電圧が 5Vである場合に、 8 ビット 256階調で表現される約 20mV程度の電圧が係るステップとして設定されてい てもよい。 In the second determination step, the applied voltage of the partial electrodes belonging to each of these partial electrode groups is determined. At this time, the applied voltage is determined as a displacement with respect to a predetermined reference voltage. The displacement with respect to the reference voltage may be expressed in a predetermined step unit defined by dividing the reference voltage into a plurality of equal parts, for example. For example, when the reference voltage is 5 V, a voltage of about 20 mV expressed in 8-bit 256 gradations may be set as the step.
[0045] 第 3及び第 4部分電極群に夫々属する部分電極の印加電圧は、前述の通り基準電 圧に対する変位として決定されるが、この際、これら変位は、相互に絶対値 (変位量) が等しく符号が異なる(反転した)値として決定される。即ち、第 3部分電極群に属す る部分電極の印加電圧が基準電圧に対して大きくなるように制御される場合 (正の変 位量に対応する)、第 4部分電極群に属する部分電極の印加電圧は基準電圧に対し て小さくなるように制御される(負の変位量に対応する)。  [0045] The applied voltages of the partial electrodes belonging to the third and fourth partial electrode groups are determined as displacements relative to the reference voltage as described above. At this time, these displacements are mutually absolute values (displacement amounts). Are equal and have different signs (inverted). That is, when the applied voltage of the partial electrode belonging to the third partial electrode group is controlled so as to be larger than the reference voltage (corresponding to the positive displacement), the partial electrode belonging to the fourth partial electrode group The applied voltage is controlled to be smaller than the reference voltage (corresponding to negative displacement).
[0046] 尚、係る変位の絶対値は、非点収差の大きさと液晶層において与えられる位相差と の相関関係に基づいて決定される値である。係る相関関係は、予め実験的に、経験 的に、或いはシミュレーションなどによって与えられている。  Note that the absolute value of the displacement is a value determined based on the correlation between the magnitude of astigmatism and the phase difference given in the liquid crystal layer. Such correlation is given in advance experimentally, empirically, or by simulation.
[0047] 一方、第 3部分電極群に属する部分電極の印加電圧と第 4部分電極群に属する部 分電極の印加電圧との符号の正負は、第 3軸及び第 4軸の設定の態様に応じて変化 する性質のものであり、一意には決定されないが、別言すれば、予め第 2方向群の非 点収差と、第 3部分電極群及び第 4部分電極群に夫々属する部分電極における印 加電圧の符号との対応関係は自由に設定しておくことが可能である。  [0047] On the other hand, the sign of the applied voltage of the partial electrode belonging to the third partial electrode group and the applied voltage of the partial electrode belonging to the fourth partial electrode group depends on how the third axis and the fourth axis are set. In other words, the astigmatism of the second direction group and the partial electrodes belonging to the third partial electrode group and the fourth partial electrode group in advance, respectively, are not determined uniquely. The correspondence with the sign of the applied voltage can be set freely.
[0048] 尚、ここで決定される印加電圧は、典型的には第 2方向群の非点収差を完全に相 殺する、即ちほぼゼロとするための印加電圧である力 所定量の収差が残るような、 即ち、収差が所定値となるような位相差を与える印加電圧であってもよい。 [0049] このようにして各部分電極群に属する部分電極の印加電圧が基準電圧からの変位 として決定されると、複数の部分電極各々についてこの変位が基準電圧に加算され る。この結果、複数の部分電極各々について基準電圧からの最終的な変位が決定さ れる。この最終的な変位に応じて複数の部分電極各々の印加電圧が決定される。光 ピックアップ装置の実使用時には、複数の部分電極各々の印加電圧をこの第 3決定 工程において決定された値に設定することにより、非点収差は所望の値に、典型的 にはゼロに補正される。 It should be noted that the applied voltage determined here is typically a force that is an applied voltage for completely canceling astigmatism in the second direction group, that is, approximately zero, with a predetermined amount of aberration. It may be an applied voltage that gives a phase difference that remains, that is, the aberration has a predetermined value. When the applied voltage of the partial electrode belonging to each partial electrode group is determined as a displacement from the reference voltage in this way, this displacement is added to the reference voltage for each of the plurality of partial electrodes. As a result, the final displacement from the reference voltage is determined for each of the plurality of partial electrodes. The applied voltage of each of the plurality of partial electrodes is determined according to this final displacement. In actual use of the optical pickup device, the astigmatism is corrected to a desired value, typically zero, by setting the applied voltage of each of the plurality of partial electrodes to the value determined in the third determination step. The
[0050] この態様によれば、以上説明した如ぐ複数の部分電極各々の印加電圧が基準電 圧に対する変位として決定されるから、比較的簡便に印加電圧を決定することが可 能となる。即ち、効率的に非点収差を調整することが可能となるのである。  [0050] According to this aspect, since the applied voltage of each of the plurality of partial electrodes as described above is determined as a displacement with respect to the reference voltage, the applied voltage can be determined relatively easily. That is, it becomes possible to adjust astigmatism efficiently.
[0051] 本発明の非点収差の調整方法の他の態様では、前記複数の部分電極は、前記相 互に隣接する他の部分電極との境界が前記第 1、第 2、第 3及び第 4軸によって規定 された 8個の部分電極からなり、(i)前記第 1及び第 2部分電極群は、前記 8個の部分 電極のうち前記第 1及び第 2軸を夫々挟む 4個の部分電極からなり、(ii)前記第 3及 び第 4部分電極群は、前記 8個の部分電極のうち前記第 3及び第 4軸を夫々挟む 4 個の部分電極からなる。  [0051] In another aspect of the astigmatism adjustment method of the present invention, the plurality of partial electrodes have boundaries between the first, second, third, and third adjacent to the partial electrodes adjacent to each other. It consists of eight partial electrodes defined by four axes, and (i) the first and second partial electrode groups consist of four parts of the eight partial electrodes that sandwich the first and second axes, respectively. (Ii) The third and fourth partial electrode groups are composed of four partial electrodes that sandwich the third and fourth axes, respectively, among the eight partial electrodes.
[0052] この態様によれば、非点収差補正用電極は、第 1軸、第 2軸、第 3軸及び第 4軸によ つて合計 8個の部分電極に分割される。そして、これら 8個の部分電極全てが、第 1方 向群に対応付けられた部分電極であり且つ第 2方向群に対応付けられた部分電極 である。  According to this aspect, the astigmatism correction electrode is divided into a total of eight partial electrodes along the first axis, the second axis, the third axis, and the fourth axis. All of these eight partial electrodes are partial electrodes associated with the first direction group and partial electrodes associated with the second direction group.
[0053] これら 8個の部分電極のうち、第 1軸を挟む 4個の部分電極が第 1部分電極群であり 、第 2軸を挟む 4個の部分電極が第 2部分電極となる。また、第 3軸を挟む 4個の部分 電極が第 3部分電極群であり、第 4軸を挟む 4個の部分電極が第 4部分電極群となる 。この場合、各部分電極群が迅速且つ効率的に決定される上、各部分電極群を構 成する 4個の部分電極は、夫々 2個ずつが対面配置されることとなるため、比較的精 細に非点収差を補正することが可能となる。即ち、正確且つ効率的に非点収差の補 正を行うことが可能となる。  Of these eight partial electrodes, four partial electrodes sandwiching the first axis are the first partial electrode group, and four partial electrodes sandwiching the second axis are the second partial electrodes. The four partial electrodes sandwiching the third axis are the third partial electrode group, and the four partial electrodes sandwiching the fourth axis are the fourth partial electrode group. In this case, each partial electrode group is determined quickly and efficiently, and two of the four partial electrodes constituting each partial electrode group are arranged facing each other. Astigmatism can be finely corrected. In other words, astigmatism can be corrected accurately and efficiently.
[0054] 本発明の非点収差の調整方法の他の態様では、前記決定された各々の印加電圧 を、前記光ピックアップ装置に搭載される所定種類の記憶手段に記憶させる記憶ェ 程を更に具備する。 [0054] In another aspect of the astigmatism adjustment method of the present invention, each of the determined applied voltages is determined. Is further stored in a predetermined type of storage means mounted on the optical pickup device.
[0055] この態様によれば、決定された部分電極各々の印加電圧が記憶手段に記憶される ため、製造工程において調整を行うのみで、光ピックアップ装置の実使用時には何ら の調整の必要もなくなる。従って、一層効率良く非点収差を調整することが可能とな る。  [0055] According to this aspect, since the determined applied voltage of each partial electrode is stored in the storage means, only adjustment is performed in the manufacturing process, and no adjustment is necessary during actual use of the optical pickup device. . Therefore, it is possible to adjust astigmatism more efficiently.
[0056] 尚、ここで述べられる記憶手段は、光ピックアップ装置に搭載され、光ピックアップ 装置の動作時において読み出し可能である限りにおいて如何なる態様を有していて もよレヽ。 ί列; 、 EEPROM (Electrically Erasable Programmable Read Only Memory )などの不揮発性メモリであってもよい。この場合、印加電圧の情報は、光ピックアツ プ装置の固有情報、部品情報及びシリアルナンパなどと共に記憶されていてもよい。  It should be noted that the storage means described here may have any form as long as it is mounted on the optical pickup device and can be read out during operation of the optical pickup device. A non-volatile memory such as an EEPROM (Electrically Erasable Programmable Read Only Memory) may be used. In this case, the information on the applied voltage may be stored together with the specific information of the optical pick-up device, component information, serial number, and the like.
[0057] 以上説明したように、本発明の非点収差の補正方法は、特定工程、収差変換工程 、第 1決定工程、第 2決定工程及び第 3決定工程を備えるので、効率的に非点収差 を調整することが可能となるのである。  [0057] As described above, the astigmatism correction method of the present invention includes the specifying step, the aberration converting step, the first determining step, the second determining step, and the third determining step, so that astigmatism is efficiently performed. It is possible to adjust the aberration.
[0058] 本発明のこのような作用及び他の利得は次に説明する実施例から明らかにされる。  [0058] These effects and other advantages of the present invention will become apparent from the embodiments described below.
図面の簡単な説明  Brief Description of Drawings
[0059] [図 1]本発明の実施例に係る光ピックアップ装置の模式構成図である。  FIG. 1 is a schematic configuration diagram of an optical pickup device according to an embodiment of the present invention.
[図 2]図 1の光ピックアップ装置における収差補正素子の模式図である。  2 is a schematic diagram of an aberration correction element in the optical pickup device of FIG. 1.
[図 3]図 2の収差補正素子における第 1電極及び第 2電極の平面図である。  FIG. 3 is a plan view of a first electrode and a second electrode in the aberration correction element of FIG. 2.
[図 4]本発明の実施例に係る第 1方向群及び第 2方向群の概念図である。  FIG. 4 is a conceptual diagram of a first direction group and a second direction group according to an embodiment of the present invention.
[図 5]本発明の実施例に係る非点収差の成分分解の例示図である。  FIG. 5 is an exemplary diagram of component decomposition of astigmatism according to an example of the present invention.
[図 6]本発明の実施例に係る電極パターンの印加電圧の設計例を示す表である。 符号の説明  FIG. 6 is a table showing a design example of an applied voltage of an electrode pattern according to an example of the present invention. Explanation of symbols
[0060] 100…光ピックアップ装置、 107…収差補正素子、 107d…第 2電極、 113- - -EEP ROM。  [0060] 100: Optical pickup device, 107: Aberration correction element, 107d: Second electrode, 113---EEPROM.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0061] 以下、本発明を実施するための最良の形態について実施例毎に順に図面に基づ いて説明する。 <光ピックアップ装置の構成及び動作 > Hereinafter, the best mode for carrying out the present invention will be described in each embodiment in order with reference to the drawings. <Configuration and operation of optical pickup device>
始めに、図 1を参照して、本発明の実施例に係る光ピックアップ装置の構成をその 動作を交えて説明する。ここに、図 1は、光ピックアップ装置 100の模式構成図である  First, the configuration of the optical pickup device according to the embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic configuration diagram of the optical pickup device 100.
[0062] 図 1において、光ピックアップ装置 100は、光源 101、光源 102、ダイクロイツクミラ 一 103、ハーフミラー 104、コリメータレンズ 105、立ち上げミラー 106、収差補正素 子 107、 λ /4板 108、対物レンズ 109、マルチレンズ 110及びディテクタ 111を備え 、光源 101又は 102から出射される光を記録媒体 200上に集光させ、情報の記録及 び再生を行うための装置である。 In FIG. 1, an optical pickup device 100 includes a light source 101, a light source 102, a dichroic mirror 103, a half mirror 104, a collimator lens 105, a rising mirror 106, an aberration correction element 107, a λ / 4 plate 108, The apparatus includes an objective lens 109, a multi-lens 110, and a detector 111, and condenses light emitted from the light source 101 or 102 on the recording medium 200 to record and reproduce information.
[0063] 光源 101は、波長 650nmのレーザ光を出射することが可能に構成された LD (Lase r Diode)であり、 DVD用の光源として機能する、本発明に係る光源の一例である。ま た、光源 102は、波長 780nmのレーザ光を出射することが可能に構成された LDで あり、 CD用の光源として機能する、本発明に係る光源の他の一例である。尚、各光 源の後段には、出射光を回折させるグレーティング、及び出射光を p偏光から s偏光 に変換する λ /2板等が配設されるが、図示は省略されている。  The light source 101 is an LD (Laser Diode) configured to be able to emit laser light having a wavelength of 650 nm, and is an example of a light source according to the present invention that functions as a light source for DVD. The light source 102 is an LD configured to emit laser light having a wavelength of 780 nm, and is another example of the light source according to the present invention that functions as a light source for CD. In addition, a grating that diffracts the emitted light and a λ / 2 plate that converts the emitted light from p-polarized light to s-polarized light are disposed behind each light source, but the illustration is omitted.
[0064] 光源 101及び 102から出射されたレーザ光(図 1中実線)は、ダイクロイツクミラー 10 3に入射する。ダイクロイツクミラー 103は、特定波長の光についてのみ反射させるダ ィクロイツク特性を有しており、本実施例では、光源 102の出射光、即ち CD用のレー ザ光のみを反射させるように構成されている。従って、光源 101及び 102からの出射 光の光路は、ダイクロイツクミラー 103を介することによって共通化される。  Laser light emitted from the light sources 101 and 102 (solid line in FIG. 1) is incident on the dichroic mirror 103. The dichroic mirror 103 has a dichroic characteristic that reflects only light of a specific wavelength. In this embodiment, the dichroic mirror 103 is configured to reflect only the emitted light of the light source 102, that is, the laser beam for CD. Yes. Therefore, the optical path of the emitted light from the light sources 101 and 102 is made common through the dichroic mirror 103.
[0065] ハーフミラー 104は、一種の PBS (Polarized Beam Splitter:偏向ビームスプリッタ) であり、入射する光の偏光方向に応じて反射率が異なる構成となっている。各光源か らの出射光は、ハーフミラー 104に到達する時点で s偏光であり、ハーフミラー 104で 反射してコリメータレンズ 105へ入射する。コリメータレンズ 130は、拡散光を平行光 に変換するレンズである。  The half mirror 104 is a kind of PBS (Polarized Beam Splitter) and has a configuration in which the reflectance varies depending on the polarization direction of incident light. Light emitted from each light source is s-polarized light when it reaches the half mirror 104, is reflected by the half mirror 104, and enters the collimator lens 105. The collimator lens 130 is a lens that converts diffused light into parallel light.
[0066] コリメータレンズ 105を通過した光は立ち上げミラー 106で反射し、収差補正素子 1 07に到達する。尚、立ち上げミラー 106は、入射光の光路を変換するために配設さ れたミラーである。 [0067] 収差補正素子 107は、光ピックアップ装置 100で発生する各種収差を補正するた めの素子であり、図 1においては不図示の制御部によって駆動され、係る制御部と共 に本発明に係る「非点収差補正手段」の一例として機能する。尚、収差補正素子及 びの制御部の詳細については後述する。 The light that has passed through the collimator lens 105 is reflected by the rising mirror 106 and reaches the aberration correction element 107. The rising mirror 106 is a mirror disposed for converting the optical path of incident light. [0067] The aberration correction element 107 is an element for correcting various aberrations generated in the optical pickup device 100. The aberration correction element 107 is driven by a control unit (not shown) in FIG. It functions as an example of such “astigmatism correction means”. The details of the aberration correction element and the control unit will be described later.
[0068] 収差補正素子 107を通過した光は、 λ Ζ4板 108に入射し、円偏光に変換された 後、対物レンズ 109に入射する。対物レンズ 140は、入射光を記録媒体 200上に集 光させるレンズである。  The light that has passed through the aberration correction element 107 enters the λ 4 plate 108, is converted into circularly polarized light, and then enters the objective lens 109. The objective lens 140 is a lens that collects incident light on the recording medium 200.
[0069] 記録媒体 200上に集光した各レーザ光は、集光位置にぉレ、て反射し、戻り光として 再び対物レンズ 109に入射する(図 1中点線)。戻り光は更に λ /4板 108で ρ偏光 に変換され、収差補正素子 107、立ち上げミラー 106及びコリメータレンズ 105を順 次介してハーフミラー 104に入射する。ここで、この戻り光は ρ偏光であるからハーフミ ラー 104を反射することなく透過し、マルチレンズ 1 10へ入射する。  [0069] Each laser beam condensed on the recording medium 200 is reflected and reflected at the condensing position, and is incident on the objective lens 109 again as return light (dotted line in FIG. 1). The return light is further converted into ρ-polarized light by the λ / 4 plate 108, and enters the half mirror 104 through the aberration correction element 107, the rising mirror 106 and the collimator lens 105 in order. Here, since the return light is ρ-polarized light, it passes through the half mirror 104 without being reflected and enters the multi-lens 110.
[0070] マルチレンズ 110では、戻り光に対し、情報の記録再生に必要なフォーカスエラー 信号を得るための非点収差などが与えられ、戻り光はディテクタ 1 11によって受光さ れる。  In the multi-lens 110, astigmatism or the like for obtaining a focus error signal necessary for recording / reproducing information is given to the return light, and the return light is received by the detector 111.
[0071] 次に、図 2を参照して、収差補正素子 107の詳細について説明する。ここに、図 2は Next, details of the aberration correction element 107 will be described with reference to FIG. Where Figure 2
、収差補正素子 107の模式図である。尚、同図において、図 1と重複する箇所には同 一の符号を付してその説明を省略することとする。 FIG. 6 is a schematic diagram of an aberration correction element 107. In the figure, the same parts as those in FIG. 1 are denoted by the same reference numerals and the description thereof is omitted.
[0072] 図 2において、収差補正素子 107は、第 1基板 107a、第 1電極 107b、液晶層 107 c、第 2電極 107d及び第 2基板 107eを備える。 In FIG. 2, the aberration correction element 107 includes a first substrate 107a, a first electrode 107b, a liquid crystal layer 107c, a second electrode 107d, and a second substrate 107e.
[0073] 第 1基板 107aは、ガラス系材料で構成された板状部材であり、表面に第 1電極 10[0073] The first substrate 107a is a plate-like member made of a glass-based material, and has a first electrode 10 on the surface.
7bが形成されている。第 1電極 107bは、 ITOにパターユング処理が施された透明導 電膜である。 7b is formed. The first electrode 107b is a transparent conductive film obtained by patterning ITO.
[0074] 第 2基板 107eは、第 1基板 107aと同様ガラス系材料で構成された板状部材であり 、表面に本発明に係る「一方の電極」の一例たる第 2電極 107dが形成されている。 第 2電極 107dは、第 1電極 107bと同様、 IT〇にパターユング処理が施された透明 導電膜である。また、第 1電極 107b及び第 2電極 107dは、図示する光束の方向に 直交するように、相互に対向して配置されている。 [0075] 液晶層 107cは、第 1電極 107bと第 2電極 107dとの間に挟持された、図示せぬ液 晶分子を含む層であり、両電極間の印加電圧に応じて液晶分子の配向が変化する ことによって、屈折率が変化するように構成されてレ、る。 [0074] The second substrate 107e is a plate-like member made of a glass-based material like the first substrate 107a, and the second electrode 107d as an example of "one electrode" according to the present invention is formed on the surface. Yes. Similar to the first electrode 107b, the second electrode 107d is a transparent conductive film in which the patterning process is applied to ITO. Further, the first electrode 107b and the second electrode 107d are arranged to face each other so as to be orthogonal to the direction of the illustrated light beam. [0075] The liquid crystal layer 107c is a layer containing liquid crystal molecules (not shown) sandwiched between the first electrode 107b and the second electrode 107d, and the alignment of the liquid crystal molecules according to the applied voltage between the two electrodes. As the refractive index changes, the refractive index changes.
[0076] 収差補正素子 107は、制御部 112によって動作が制御されている。制御部 112は 、図示せぬ CPU (Central Processing Unit)などを備えた制御ユニットであり、第 1電 極 107b及び第 2電極 107d各々における後述する各電極パターンの印加電圧を制 御することが可能に構成されている。  The operation of the aberration correction element 107 is controlled by the control unit 112. The control unit 112 is a control unit including a CPU (Central Processing Unit) (not shown) and the like, and can control the applied voltage of each electrode pattern described later in each of the first electrode 107b and the second electrode 107d. It is configured.
[0077] EEPROM113は、書換え可能な不揮発性半導体メモリであり、光ピックアップ装置  The EEPROM 113 is a rewritable nonvolatile semiconductor memory, and an optical pickup device
100のシリアルナンパ及び部品情報などが記憶されている。また、 EEPROM113に は、前述した各電極パターンに印加すべき電圧のデータが格納されており、収差補 正素子 107を動作させる際、制御部 112はこの EEPROM113から印加電圧の情報 を読み出して、電圧の印加を行う。  100 serial numbers and parts information are stored. The EEPROM 113 stores voltage data to be applied to each of the electrode patterns described above. When the aberration correction element 107 is operated, the control unit 112 reads the information on the applied voltage from the EEPROM 113 and determines the voltage. Is applied.
[0078] 次に、図 3を参照して、各電極の詳細について説明する。ここに、図 3は、第 1電極 1 07b及び第 2電極 107dの平面図である。尚、同図において、図 2と重複する箇所に は同一の符号を付してその説明を省略することとする。  Next, details of each electrode will be described with reference to FIG. FIG. 3 is a plan view of the first electrode 107b and the second electrode 107d. In the figure, the same parts as those in FIG. 2 are denoted by the same reference numerals and the description thereof is omitted.
[0079] 図 3において、図 3 (a)は第 1電極 107bを表しており、図 3 (b)は、第 2電極 107dを 表している。  In FIG. 3, FIG. 3 (a) represents the first electrode 107b, and FIG. 3 (b) represents the second electrode 107d.
[0080] 第 1電極 107bは、複数の電極パターン 107bl、 107b2、 107b3、 107b4及び 10 7b5からなる。これら各パターンの構成及び配置は、光ピックアップ装置 100で発生 する球面収差が補正されるように設定されており、更にこのうち、電極パターン 107b 1及び 107b3は、コマ収差の補正にも使用される。また電極パターン 107b2は、第 1 電極 107bの電位の基準となるパターンである。尚、本発明に係る非点収差の調整 方法と、これらコマ収差及び球面収差の補正との関連性は小さいため、説明の簡略 化のため詳細な説明は省略する。  [0080] The first electrode 107b includes a plurality of electrode patterns 107bl, 107b2, 107b3, 107b4, and 107b5. The configuration and arrangement of these patterns are set so that spherical aberration generated in the optical pickup device 100 is corrected, and among these, the electrode patterns 107b 1 and 107b3 are also used for correcting coma aberration. . The electrode pattern 107b2 is a pattern that serves as a reference for the potential of the first electrode 107b. Since the relevance of the astigmatism adjustment method according to the present invention and correction of the coma aberration and spherical aberration is small, detailed description is omitted for the sake of simplification.
[0081] 第 2電極 107dは、複数の電極パターン 107dl (以下、パターン 1)、 107d2 (以下、 パターン 2)、 107d3 (以下、パターン 3)、 107d4 (以下、パターン 4)、 107d5 (以下、 パターン 5)、 107d6 (以下、パターン 6)及び 107d7 (以下、パターン 7)からなり、本 発明に係る「一方の電極」の一例をなす。このうち、パターン 2及びパターン 6は、前 述した第 1電極 107bにおける電極パターン 107bl及び 107b3と共に、コマ収差の 補正に使用される。また、パターン 4は、第 2電極 107dの電位の基準となるパターン である。 [0081] The second electrode 107d has a plurality of electrode patterns 107dl (hereinafter referred to as pattern 1), 107d2 (hereinafter referred to as pattern 2), 107d3 (hereinafter referred to as pattern 3), 107d4 (hereinafter referred to as pattern 4), 107d5 (hereinafter referred to as pattern). 5), 107d6 (hereinafter referred to as pattern 6) and 107d7 (hereinafter referred to as pattern 7), and is an example of “one electrode” according to the present invention. Of these, Pattern 2 and Pattern 6 are the previous ones. Together with the electrode patterns 107bl and 107b3 in the first electrode 107b described above, it is used to correct coma aberration. Pattern 4 is a pattern that serves as a reference for the potential of the second electrode 107d.
[0082] パターン 1、パターン 3、パターン 5及びパターン 7は、本発明に係る「輪帯形状をな す複数の部分電極」の一例であり、非点収差補正用電極として機能する。図示するよ うに、これらパターンは、周方向に均等に配列しており、相互に隣接するパターンとは 電位的に独立している。  Pattern 1, pattern 3, pattern 5 and pattern 7 are examples of “a plurality of partial electrodes having an annular shape” according to the present invention, and function as astigmatism correction electrodes. As shown in the figure, these patterns are evenly arranged in the circumferential direction, and are independent in potential from adjacent patterns.
[0083] 収差補正素子 107における、パターン 4 (電極パターン 107d4)と電極パターン 10 7b2との間には、基準電圧 V (例えば、 5V)が印加される。何らの収差補正も行わな  In the aberration correction element 107, a reference voltage V (for example, 5V) is applied between the pattern 4 (electrode pattern 107d4) and the electrode pattern 107b2. Do not correct any aberrations
0  0
い場合には、電極 107b全体及び電極 107d全体の電位が夫々電極パターン 107b 2及びパターン 4の電位と等しく制御される。非点収差を補正する場合には、電極 10 7dにおけるパターン 1、パターン 3、パターン 5及びパターン 7の印加電圧をパターン 4に対して変化させることによって、液晶層の屈折率を変化させ、透過光に位相差が 付与される。パターン 1、 3、 5及び 7の印加電圧は、既に述べたように、 EEPROM1 13に記憶されているが、この印加電圧は、光ピックアップ装置 100の製造工程にお いて、以下に述べる非点収差の調整方法が行われることにより決定されている。 <非点収差の調整方法 >  In this case, the potentials of the entire electrode 107b and the entire electrode 107d are controlled to be equal to the potentials of the electrode patterns 107b2 and 4 respectively. When correcting astigmatism, the applied voltage of pattern 1, pattern 3, pattern 5 and pattern 7 at electrode 10 7d is changed with respect to pattern 4, thereby changing the refractive index of the liquid crystal layer and transmitting light. Is given a phase difference. As described above, the applied voltages of patterns 1, 3, 5 and 7 are stored in EEPROM 113, and this applied voltage is astigmatism described below in the manufacturing process of optical pickup device 100. This is determined by performing the adjustment method. <Astigmatism adjustment method>
非点収差の調整が行われる場合、最初に、補正すべき非点収差が特定される。非 点収差は、例えば、光源 101から出射されたレーザ光のプロファイルを、対物レンズ 109の位置調整を行う毎に測定し、公知であるビームプロファイル測定技術などによ つて解析することにより特定される。尚、この工程は、本発明に係る特定工程の一例 である。  When astigmatism adjustment is performed, first, astigmatism to be corrected is specified. Astigmatism is specified, for example, by measuring the profile of the laser beam emitted from the light source 101 every time the position of the objective lens 109 is adjusted, and analyzing the profile using a known beam profile measurement technique or the like. . This process is an example of a specific process according to the present invention.
[0084] 非点収差が特定されると、この非点収差は、第 2電極 107d上で規定される所定の 方向群の成分に成分分解される。この工程は、本発明に係る収差変換工程の一例 である。  When astigmatism is specified, this astigmatism is decomposed into components of a predetermined direction group defined on the second electrode 107d. This step is an example of an aberration converting step according to the present invention.
[0085] ここで、図 4を参照して、係る方向群の概念について説明する。ここに、図 4は、第 1 方向群及び第 2方向群の概念図である。  [0085] Here, the concept of the direction group will be described with reference to FIG. FIG. 4 is a conceptual diagram of the first direction group and the second direction group.
[0086] 図 4におレヽて、図 4 (a)は第 1方向群を、図 4 (b)は第 2方向群を夫々表してレ、る。尚 、図面の煩雑化を防ぐ目的から、これら各図においてパターン 1、 3、 5及び 7は、夫 々単に 1、 3、 5及び 7と表されている。 As shown in FIG. 4, FIG. 4 (a) shows the first direction group, and FIG. 4 (b) shows the second direction group. still In order to prevent complication of the drawings, patterns 1, 3, 5 and 7 are simply represented as 1, 3, 5 and 7 in the respective drawings.
[0087] 図 4 (a)において、第 1方向群は、相互に直交する 2軸、即ち図示する第 1軸及び第 2軸によって規定される。第 1軸は、第 2電極 107dにおいて、パターン 3とパターン 5 との境界を規定しており、第 2軸は、同じくパターン 1とパターン 7との境界を規定して いる。 In FIG. 4 (a), the first direction group is defined by two axes orthogonal to each other, ie, the first axis and the second axis shown in the figure. The first axis defines the boundary between pattern 3 and pattern 5 in the second electrode 107d, and the second axis similarly defines the boundary between pattern 1 and pattern 7.
[0088] 図 4 (b)において、第 2方向群は、相互に直交する 2軸、即ち図示する第 3軸及び第 4軸によって規定される。第 3軸は、第 2電極 107dにおいて、パターン 1とパターン 3 との境界を規定しており、第 4軸は、同じくパターン 5とパターン 7との境界を規定して いる。尚、第 1方向群及び第 2方向群各々と各電極パターンとの関係は、図示のもの に限らず自由に設定されてよい。特定された非点収差は、この第 1方向群及び第 2方 向群の成分にベクトル的に分解される。  In FIG. 4B, the second direction group is defined by two axes orthogonal to each other, ie, the third axis and the fourth axis shown in the figure. The third axis defines the boundary between pattern 1 and pattern 3 in the second electrode 107d, and the fourth axis similarly defines the boundary between pattern 5 and pattern 7. It should be noted that the relationship between each of the first direction group and the second direction group and each electrode pattern is not limited to that shown in the figure, and may be set freely. The identified astigmatism is decomposed into vectors in the first direction group and the second direction group.
[0089] ここで、図 5を参照して、特定された非点収差と各方向群の成分について説明する 。ここに、図 5は、非点収差の成分分解の例示図である。  Here, with reference to FIG. 5, the identified astigmatism and the components of each direction group will be described. FIG. 5 is an exemplary diagram of astigmatism component decomposition.
[0090] 図 5において、光ピックアップ装置 100において発生する補正すべき非点収差は、 30度の方向に 0· 17 λ ( λは出射光の波長)である。それを第 1及び第 2方向群の成 分に夫々分解すると、夫々 0. 085え及び 0. 147 λとなる。ここで、負の符号は位 相が遅れることを表している。  In FIG. 5, the astigmatism to be corrected generated in the optical pickup device 100 is 0 · 17 λ (λ is the wavelength of the emitted light) in the direction of 30 degrees. When it is decomposed into components of the first and second direction groups, respectively, 0.085 and 0.147 λ are obtained. Here, a negative sign indicates that the phase is delayed.
[0091] このように非点収差が各方向群の成分に分解されると、各方向群について、各パタ ーンの印加電圧が決定される。この際、印加電圧は、基準電圧 Vに対する変位とし  When the astigmatism is decomposed into components of each direction group in this way, the applied voltage of each pattern is determined for each direction group. At this time, the applied voltage is the displacement with respect to the reference voltage V.
0  0
て決定される。例えば、基準電圧 V力 Vであり、変位が 8ビットで階調制御される場  Determined. For example, when the reference voltage is V force V and the displacement is controlled by gradation with 8 bits.
0  0
合には、係る変位の一単位 (ステップ)は 20mV程度となる。各方向群についての各 パターンの印加電圧は、このステップ数の増減値として決定される。尚、例えば、印 加電圧を 1ステップ増加(或いは減少)させた場合の液晶層 107cの屈折率変化、即 ち、補正可能な収差については、予め実験的に、経験的に、或いはシミュレーション などによって取得されてレ、る。  In this case, the unit (step) of the displacement is about 20mV. The applied voltage of each pattern for each direction group is determined as an increase / decrease value of the number of steps. For example, the refractive index change of the liquid crystal layer 107c when the applied voltage is increased (or decreased) by one step, that is, the correctable aberration, is experimentally, empirically, or simulated in advance. Get it.
[0092] 各方向群の非点収差を補正する場合、非点収差の性質上、各方向群を規定する 2 軸のうち一方に対応する波面の位相が進み方向に補正されるならば、必ず他方に対 応する波面の位相は遅れ方向に補正される必要がある。このような補正を実現する 制御は、シーソー制御と呼ばれる。 [0092] When correcting astigmatism in each direction group, due to the nature of astigmatism, if the phase of the wavefront corresponding to one of the two axes that define each direction group is corrected in the advance direction, be sure to Versus the other The corresponding wavefront phase needs to be corrected in the lag direction. Control that realizes such correction is called seesaw control.
[0093] 本実施例では、各方向群を規定する 4軸は、 8個の電極パターン (即ち、パターン 1 、 3、 5及び 7)の境界を規定している。また、これら 8個の電極パターンは全て、本発 明に係る第 1方向群に対応付けられた部分電極の一例且つ第 2方向群に対応付け られた部分電極の一例である。  In this embodiment, the four axes that define each direction group define the boundaries of eight electrode patterns (that is, patterns 1, 3, 5, and 7). These eight electrode patterns are all examples of the partial electrodes associated with the first direction group and the partial electrodes associated with the second direction group according to the present invention.
[0094] 第 1方向群に対応する非点収差を補正する場合、第 1軸を挟む (即ち、第 1軸によ つて規定される)、本発明に係る第 1部分電極群の一例たるパターン 3及び 5と、第 2 軸を挟む(即ち、第 2軸によって規定される)、本発明に係る第 2部分電極群の一例た るパターン 1及び 7とが夫々一対として扱われ、シーソー制御が実行される。また、第 2方向群に対応する非点収差を補正する場合、第 3軸を挟む (即ち、第 3軸によって 規定される)、本発明に係る第 3部分電極群の一例たるパターン 1及び 3と、第 4軸を 挟む(即ち、第 4軸によって規定される)、本発明に係る第 4部分電極群の一例たるパ ターン 5及び 7とが夫々一対として扱われ、シーソー制御が実行される。  [0094] When correcting astigmatism corresponding to the first direction group, the pattern as an example of the first partial electrode group according to the present invention sandwiching the first axis (that is, defined by the first axis) 3 and 5, and patterns 1 and 7 as an example of the second partial electrode group according to the present invention sandwiching the second axis (that is, defined by the second axis) are treated as a pair, respectively. Executed. Further, when correcting astigmatism corresponding to the second direction group, patterns 1 and 3 as an example of the third partial electrode group according to the present invention sandwiching the third axis (that is, defined by the third axis). And the patterns 5 and 7 as an example of the fourth partial electrode group according to the present invention sandwiching the fourth axis (that is, defined by the fourth axis) are treated as a pair, and the seesaw control is executed. .
[0095] 尚、図 4では、各方向群を規定する矢線 (即ち、各軸)が、パターン 1、 3、 5及び 7の 夫々境界と合致しており、各部分電極群が比較的明確に規定されるが、各方向群を 規定する各軸と、各パターンの位置関係はこれに限定されなレ、。即ち、各パターンは 各軸に対して自由に回転してもよい。  [0095] In FIG. 4, the arrow lines (that is, each axis) defining each direction group coincide with the boundaries of the patterns 1, 3, 5, and 7, and each partial electrode group is relatively clear. However, the positional relationship between each axis that defines each direction group and each pattern is not limited to this. That is, each pattern may rotate freely with respect to each axis.
[0096] ここで、図 6を参照して、各方向群について決定される各パターンの印加電圧の例 を示す。ここに、図 6は、印加電圧の設計例を示す表である。  Here, with reference to FIG. 6, an example of the applied voltage of each pattern determined for each direction group is shown. FIG. 6 is a table showing a design example of the applied voltage.
[0097] 図 6において、第 1方向群の非点収差を補正するために、パターン 1及びパターン 7 の印加電圧は、「V - 0. 85V」、パターン 3及びパターン 5の印加電圧は「V + 0. 8  In FIG. 6, in order to correct astigmatism in the first direction group, the applied voltage of pattern 1 and pattern 7 is “V−0.85 V”, and the applied voltage of pattern 3 and pattern 5 is “V. + 0.8
0 0 0 0
5V」と決定される。また、第 2方向群の非点収差を補正するために、パターン 1及び パターン 3の印加電圧は「V - 1. 47V」、パターン 5及びパターン 7の印加電圧は「V 5V "is determined. In addition, in order to correct astigmatism in the second direction group, the applied voltage of pattern 1 and pattern 3 is `` V-1.47V '', and the applied voltage of pattern 5 and pattern 7 is `` V
0  0
+ 1. 47V」と決定される。尚、この工程は、本発明に係る第 1決定工程及び第 2決 + 1. 47V ". This process includes the first determination process and the second determination process according to the present invention.
0 0
定工程の夫々一例である。  It is an example of each fixed process.
[0098] このようにして各方向群の非点収差を補正するための各電極パターンの印加電圧 が決定されると、最終的に各パターンの印加電圧が決定される。尚、この工程は、本 発明に係る第 3決定工程の一例である。 When the applied voltage of each electrode pattern for correcting astigmatism in each direction group is determined in this manner, the applied voltage of each pattern is finally determined. In addition, this process It is an example of the 3rd determination process which concerns on invention.
[0099] ここで、引き続き図 6を参照して、各電極パターンの最終的な印加電圧について説 明する。各パターンの印加電圧は、第 1方向群及び第 2方向群各々について決定さ れた基準電圧に対する変位を相互に加算することによって簡単に決定される。例え ば、パターン 1について言えば、第 1方向群の非点収差を補正するのに必要な変位 力 S「_0. 85V」であり、第 2方向群の非点収差を補正するのに必要な変位が「一 1. 4 7V」であるから、最終的な基準電圧 Vに対する変位は、「_ 2. 32V」となる。従って [0099] Here, referring to FIG. 6, the final applied voltage of each electrode pattern will be described. The applied voltage of each pattern is easily determined by adding the displacements relative to the reference voltage determined for each of the first direction group and the second direction group. For example, for pattern 1, the displacement force S “_0.85V” required to correct the astigmatism in the first direction group is the same as that required to correct the astigmatism in the second direction group. Since the displacement is “1.1.4 7V”, the displacement with respect to the final reference voltage V is “_2.32V”. Therefore
0  0
、パターン 1の印加電圧は「V - 2. 32V」となる。他の電極パターンに対しても同様  The applied voltage of pattern 1 is “V-2.32V”. The same applies to other electrode patterns
0  0
に印加電圧が決定される。これら各電極パターンに対して決定された印加電圧は、 E EPROM113に記憶される(即ち、本発明に係る「記憶工程」の一例)。例えば、この 際、 EEPROM113には係る電圧が 16進数で記憶される。  The applied voltage is determined. The applied voltage determined for each of these electrode patterns is stored in the EEPROM 113 (that is, an example of the “storage process” according to the present invention). For example, at this time, the EEPROM 113 stores the voltage in hexadecimal.
[0100] 以上、説明したように、本実施例に係る非点収差の調整方法によれば、光ピックァ ップ装置 100で発生する非点収差を第 1方向群及び第 2方向群の成分に夫々分解 すると共に、方向群毎に各電極パターンに印加すべき電圧を基準電圧に対する変 位として決定することにより、最終的に各パターンの印加電圧を簡便に決定すること ができる。この際、機械的な調整としては、非点収差を特定する際の対物レンズの位 置調整が必要となるのみであり、非点収差が特定された時点で数値演算処理として これら印加電圧を決定することができる。従って、光ピックアップ装置の製造工程にお ける非点収差の調整に要するタクトタイムは明らかに短縮化される。即ち、効率的に 非点収差の調整を行うことができるのである。  [0100] As described above, according to the astigmatism adjustment method according to the present embodiment, astigmatism generated in the optical pick-up device 100 is included in the components of the first direction group and the second direction group. By decomposing each, and determining the voltage to be applied to each electrode pattern for each direction group as a displacement with respect to the reference voltage, finally, the applied voltage of each pattern can be easily determined. At this time, the mechanical adjustment only requires the adjustment of the position of the objective lens when specifying astigmatism, and these applied voltages are determined as numerical calculation processing when the astigmatism is specified. can do. Therefore, the tact time required for adjusting astigmatism in the manufacturing process of the optical pickup device is obviously shortened. In other words, astigmatism can be adjusted efficiently.
[0101] 尚、非点収差の補正に使用される第 2電極 107d上の電極パターンの数は、上述し た 8個でなくともよい。例えば、更に多くのパターンに分割されていてもよい。この場合 、各方向群における各軸に対応するパターンの数もそれに応じて増え、最終的に、 非点収差をより精細に補正することも可能となる。  [0101] Note that the number of electrode patterns on the second electrode 107d used for correcting astigmatism need not be eight as described above. For example, it may be divided into more patterns. In this case, the number of patterns corresponding to each axis in each direction group increases accordingly, and astigmatism can be corrected more finely finally.
[0102] 本発明は、上述した実施例に限られるものではなぐ請求の範囲及び明細書全体 力 読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、その ような変更を伴う非点収差の調整方法もまた本発明の技術的範囲に含まれるもので ある。 産業上の利用可能性 [0102] The present invention is not limited to the above-described embodiments, but can be modified as appropriate without departing from the gist or concept of the invention which can be read, and is not accompanied by such changes. Aberration adjustment methods are also included in the technical scope of the present invention. Industrial applicability
本発明に係る非点収差の調整方法は、例えば光情報記録媒体などにおける情報 の記録及び再生などに使用される光ピックアップ装置の製造工程における非点収差 の調整方法に利用可能である。  The astigmatism adjustment method according to the present invention can be used for an astigmatism adjustment method in a manufacturing process of an optical pickup device used for recording and reproducing information on an optical information recording medium, for example.

Claims

請求の範囲 The scope of the claims
[1] 光源と、  [1] a light source;
前記光源から出射される出射光を記録媒体上に集光するための対物レンズと、 前記出射光の光路上に配置され、(i)相互に対向する一対の電極、及び該一対の 電極間に挟持された液晶層を備え、(ii)前記一対の電極のうち一方の電極は、周方 向に配列することにより輪帯形状をなす複数の部分電極を含み、(m)前記複数の部 分電極各々は、相互に隣接する他の部分電極に対し電位的に独立しており、 (iv)前 記液晶層において、前記一対の電極間の印加電圧に応じて前記出射光に付与され る位相差によって、前記対物レンズを含む光学系で生じる非点収差を補正する非点 収差補正手段と  An objective lens for condensing the emitted light emitted from the light source on a recording medium; and (i) a pair of electrodes disposed on the optical path of the emitted light and facing each other, and between the pair of electrodes And (ii) one electrode of the pair of electrodes includes a plurality of partial electrodes that form a ring shape by being arranged in a circumferential direction, and (m) the plurality of the partial portions. Each of the electrodes is independent in potential with respect to other partial electrodes adjacent to each other. (Iv) In the liquid crystal layer, the position applied to the emitted light according to the applied voltage between the pair of electrodes. Astigmatism correction means for correcting astigmatism generated in the optical system including the objective lens due to the phase difference;
を備える光ピックアップ装置の製造工程における前記非点収差の調整方法であつ て、  A method for adjusting the astigmatism in a manufacturing process of an optical pickup device comprising:
前記対物レンズを介した前記出射光の集光状態に基づいて、補正すべき前記非 点収差を特定する特定工程と、  A specifying step of specifying the astigmatism to be corrected based on a state of convergence of the emitted light through the objective lens;
前記補正すべき非点収差を、前記一方の電極にぉレ、て前記非点収差の制御方向 に基づいて規定される ω相互に直交する第 1軸及び第 2軸からなる第 1方向群及び The astigmatism to be corrected is defined on the basis of the control direction of the astigmatism across the one electrode, and a first direction group consisting of a first axis and a second axis orthogonal to each other, and
(ii)該第 1方向群を 45度回転させた相互に直交する第 3軸及び第 4軸からなる第 2方 向群各々に対応する非点収差に変換する収差変換工程と、 (ii) an aberration conversion step of converting the first direction group into astigmatism corresponding to each of the second direction group consisting of the third axis and the fourth axis orthogonal to each other rotated by 45 degrees;
前記第 1方向群に対応する非点収差から、前記複数の部分電極のうち前記第 1方 向群に対応付けられた部分電極に対する前記印加電圧を決定する第 1決定工程と、 前記第 2方向群に対応する非点収差から、前記複数の部分電極のうち前記第 2方 向群に対応付けられた部分電極に対する前記印加電圧を決定する第 2決定工程と、 前記第 1方向群及び前記第 2方向群に夫々対応付けられた部分電極に対する印 加電圧から、前記複数の部分電極各々の印加電圧を決定する第 3決定工程と を具備することを特徴とする非点収差の調整方法。  A first determination step of determining the applied voltage to a partial electrode associated with the first direction group among the plurality of partial electrodes from astigmatism corresponding to the first direction group; and the second direction. A second determination step of determining the applied voltage to a partial electrode associated with the second direction group among the plurality of partial electrodes from astigmatism corresponding to the group; the first direction group and the first direction group; And a third determination step of determining an applied voltage of each of the plurality of partial electrodes from an applied voltage to each of the partial electrodes respectively associated with the two direction groups.
[2] 前記第 1方向群に対応付けられた部分電極は、前記第 1軸によって規定される第 1 部分電極群及び前記第 2軸によって規定される第 2部分電極群のいずれか一方に 属し、 前記第 1決定工程は、前記第 1及び第 2部分電極群に夫々属する部分電極に対す る印加電圧を、夫々所定の基準電圧に対する相互に絶対値が等しく且つ符号が異 なる変位として決定し、 [2] The partial electrode associated with the first direction group belongs to one of the first partial electrode group defined by the first axis and the second partial electrode group defined by the second axis. , In the first determining step, applied voltages to the partial electrodes belonging to the first and second partial electrode groups are determined as displacements having mutually equal absolute values and different signs with respect to a predetermined reference voltage,
前記第 2方向群に対応付けられた部分電極は、前記第 3軸によって規定される第 3 部分電極群及び前記第 4軸によって規定される第 4部分電極群のいずれか一方に 属し、  The partial electrode associated with the second direction group belongs to one of a third partial electrode group defined by the third axis and a fourth partial electrode group defined by the fourth axis,
前記第 2決定工程は、前記第 3及び第 4部分電極群に夫々属する部分電極に対す る印加電圧を、夫々前記基準電圧に対する相互に絶対値が等しく且つ符号が異な る変位として決定し、  In the second determining step, the applied voltages to the partial electrodes belonging to the third and fourth partial electrode groups are determined as displacements having the same absolute value and different signs with respect to the reference voltage,
第 3決定工程は、前記第 1及び第 2決定工程において夫々決定された前記変位を 前記複数の部分電極各々について夫々前記基準電圧に加算する  In the third determination step, the displacement determined in each of the first and second determination steps is added to the reference voltage for each of the plurality of partial electrodes.
ことを特徴とする請求の範囲第 1項に記載の非点収差の調整方法。  The method for adjusting astigmatism according to claim 1, wherein:
[3] 前記複数の部分電極は、前記相互に隣接する他の部分電極との境界が前記第 1、 第 2、第 3及び第 4軸によって規定された 8個の部分電極からなり、(i)前記第 1及び 第 2部分電極群は、前記 8個の部分電極のうち前記第 1及び第 2軸を夫々挟む 4個の 部分電極からなり、(ii)前記第 3及び第 4部分電極群は、前記 8個の部分電極のうち 前記第 3及び第 4軸を夫々挟む 4個の部分電極からなる [3] The plurality of partial electrodes include eight partial electrodes whose boundaries with the other partial electrodes adjacent to each other are defined by the first, second, third, and fourth axes. The first and second partial electrode groups consist of four partial electrodes that sandwich the first and second axes, respectively, of the eight partial electrodes, and (ii) the third and fourth partial electrode groups Is composed of four partial electrodes that sandwich the third and fourth axes, respectively, of the eight partial electrodes.
ことを特徴とする請求の範囲第 1項に記載の非点収差の調整方法。  The method for adjusting astigmatism according to claim 1, wherein:
[4] 前記決定された各々の印加電圧を、前記光ピックアップ装置に搭載される所定種 類の記憶手段に記憶させる記憶工程を更に具備する [4] The method further includes a storing step of storing each determined applied voltage in a predetermined type of storing means mounted on the optical pickup device.
ことを特徴とする請求の範囲第 1項に記載の非点収差の調整方法。  The method for adjusting astigmatism according to claim 1, wherein:
PCT/JP2006/306464 2005-03-29 2006-03-29 Method for adjusting astigmatism WO2006104193A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007510558A JPWO2006104193A1 (en) 2005-03-29 2006-03-29 Astigmatism adjustment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-094576 2005-03-29
JP2005094576 2005-03-29

Publications (1)

Publication Number Publication Date
WO2006104193A1 true WO2006104193A1 (en) 2006-10-05

Family

ID=37053447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306464 WO2006104193A1 (en) 2005-03-29 2006-03-29 Method for adjusting astigmatism

Country Status (2)

Country Link
JP (1) JPWO2006104193A1 (en)
WO (1) WO2006104193A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009301648A (en) * 2008-06-13 2009-12-24 Pioneer Electronic Corp Aberration correction device and optical pickup

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08212611A (en) * 1995-02-01 1996-08-20 Asahi Optical Co Ltd Wave front aberration correcting device and optical information recording and reproducing device
JP2000040249A (en) * 1998-07-17 2000-02-08 Pioneer Electronic Corp Aberration correcting device, astigmatism measuring method, and optical pickup
JP2002342975A (en) * 2000-12-28 2002-11-29 Sony Corp Optical disk recording and/or reproducing device, and aberration adjusting method
JP2005032296A (en) * 2003-07-08 2005-02-03 Sec:Kk Aberration generating device and optical pickup

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556784A (en) * 1979-03-28 1980-01-18 Jeol Ltd Method and device for astrigmatism correction in scanning electron microscope
JPS612251A (en) * 1984-06-15 1986-01-08 Hitachi Ltd Charged particle beam device
JPH07301724A (en) * 1994-05-09 1995-11-14 Nippon Sheet Glass Co Ltd Light beam incident device with incident position adjusting mechanism
JP2000028806A (en) * 1998-07-09 2000-01-28 Sony Corp Lens and its production
JP3600027B2 (en) * 1998-08-19 2004-12-08 パイオニア株式会社 Aberration correction device and optical pickup
JP2004040249A (en) * 2002-06-28 2004-02-05 Matsushita Electric Ind Co Ltd Multi-source surround audio apparatus
JP2005079132A (en) * 2003-08-28 2005-03-24 Nikon Corp Method for measuring astigmatism blur generation sensitivity in charged particle beam optical lithographic system and optical lithographic method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08212611A (en) * 1995-02-01 1996-08-20 Asahi Optical Co Ltd Wave front aberration correcting device and optical information recording and reproducing device
JP2000040249A (en) * 1998-07-17 2000-02-08 Pioneer Electronic Corp Aberration correcting device, astigmatism measuring method, and optical pickup
JP2002342975A (en) * 2000-12-28 2002-11-29 Sony Corp Optical disk recording and/or reproducing device, and aberration adjusting method
JP2005032296A (en) * 2003-07-08 2005-02-03 Sec:Kk Aberration generating device and optical pickup

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009301648A (en) * 2008-06-13 2009-12-24 Pioneer Electronic Corp Aberration correction device and optical pickup

Also Published As

Publication number Publication date
JPWO2006104193A1 (en) 2008-09-11

Similar Documents

Publication Publication Date Title
US7352664B2 (en) Optical element, optical head, optical recording reproducing apparatus and optical recording/reproducing method
US8036089B2 (en) Optical pick-up, method of generating aberration for compensation and optical information processing apparatus using the same
KR20060126668A (en) Liquid crystal lens element and optical head device
JP2000131603A (en) Optical head and recording and reproducing device
JP4712796B2 (en) Liquid crystal optical element
JP4621964B2 (en) Optical pickup device, recording / reproducing device, and correction method of spherical aberration fluctuation in optical pickup device
WO2005106865A1 (en) Aberration corrector, aberration correcting method, optical pickup
US7898926B2 (en) Optical pickup
JP2007115299A (en) Liquid crystal device for optical pickup and optical pickup
JP2009015935A (en) Optical pickup, and aberration correction system for optical pickup
JP2002251774A (en) Optical pickup and its wave front aberration correcting device
US6992966B2 (en) Optical pickup device
JP2005332435A (en) Optical head device and optical information recording and reproducing apparatus
WO2006104193A1 (en) Method for adjusting astigmatism
US20050058052A1 (en) Optical head and optical recording and reproducing apparatus
US20070177482A1 (en) Optical pickup device and optical disc apparatus having the same
US8165002B2 (en) Optical pickup apparatus and objective lens
US20060007835A1 (en) Optical head device, method of manufacturing the same, and optical information recording and/or playback apparatus
JP4484814B2 (en) Aberration correction apparatus and optical pickup including the same
US7724633B2 (en) Aberration correcting apparatus, optical pickup, and aberration correcting method
JPWO2008108138A1 (en) Optical head device, optical information recording / reproducing apparatus, and optical information recording / reproducing method
JPH10199004A (en) Liquid crystal phase control element, optical head device and optical disk device
JP4787632B2 (en) Optical pickup device and liquid crystal optical element
JP4255886B2 (en) Optical pickup and optical information processing apparatus
JP2006331531A (en) Optical pickup device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007510558

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06730412

Country of ref document: EP

Kind code of ref document: A1