WO2006104162A1 - Musical composition data adjuster - Google Patents

Musical composition data adjuster Download PDF

Info

Publication number
WO2006104162A1
WO2006104162A1 PCT/JP2006/306342 JP2006306342W WO2006104162A1 WO 2006104162 A1 WO2006104162 A1 WO 2006104162A1 JP 2006306342 W JP2006306342 W JP 2006306342W WO 2006104162 A1 WO2006104162 A1 WO 2006104162A1
Authority
WO
WIPO (PCT)
Prior art keywords
music data
pitch
shift amount
key
pitch shift
Prior art date
Application number
PCT/JP2006/306342
Other languages
French (fr)
Japanese (ja)
Inventor
Shinya Koizumi
Yuuji Murai
Yoichi Yamada
Tatsuya Shiraishi
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Publication of WO2006104162A1 publication Critical patent/WO2006104162A1/en

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/36Accompaniment arrangements
    • G10H1/361Recording/reproducing of accompaniment for use with an external source, e.g. karaoke systems
    • G10H1/366Recording/reproducing of accompaniment for use with an external source, e.g. karaoke systems with means for modifying or correcting the external signal, e.g. pitch correction, reverberation, changing a singer's voice
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10GREPRESENTATION OF MUSIC; RECORDING MUSIC IN NOTATION FORM; ACCESSORIES FOR MUSIC OR MUSICAL INSTRUMENTS NOT OTHERWISE PROVIDED FOR, e.g. SUPPORTS
    • G10G3/00Recording music in notation form, e.g. recording the mechanical operation of a musical instrument
    • G10G3/04Recording music in notation form, e.g. recording the mechanical operation of a musical instrument using electrical means
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/36Accompaniment arrangements
    • G10H1/38Chord
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/44Tuning means
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2210/00Aspects or methods of musical processing having intrinsic musical character, i.e. involving musical theory or musical parameters or relying on musical knowledge, as applied in electrophonic musical tools or instruments
    • G10H2210/031Musical analysis, i.e. isolation, extraction or identification of musical elements or musical parameters from a raw acoustic signal or from an encoded audio signal
    • G10H2210/066Musical analysis, i.e. isolation, extraction or identification of musical elements or musical parameters from a raw acoustic signal or from an encoded audio signal for pitch analysis as part of wider processing for musical purposes, e.g. transcription, musical performance evaluation; Pitch recognition, e.g. in polyphonic sounds; Estimation or use of missing fundamental
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2210/00Aspects or methods of musical processing having intrinsic musical character, i.e. involving musical theory or musical parameters or relying on musical knowledge, as applied in electrophonic musical tools or instruments
    • G10H2210/031Musical analysis, i.e. isolation, extraction or identification of musical elements or musical parameters from a raw acoustic signal or from an encoded audio signal
    • G10H2210/081Musical analysis, i.e. isolation, extraction or identification of musical elements or musical parameters from a raw acoustic signal or from an encoded audio signal for automatic key or tonality recognition, e.g. using musical rules or a knowledge base

Definitions

  • the present invention relates to a method for adjusting music data with respect to a reference scale or other music.
  • Pitch shifters are used to match music to certain standards such as an average scale.
  • a pitch shifter is a device that adjusts the pitch (tone level) of a musical sound by changing the frequency of the musical sound that composes the music. If the musical piece deviates from a standard scale such as the average temperament scale, a person operates the pitch shifter while listening to the musical piece, and adjusts the pitch (“tuning” t).
  • music data of a plurality of music sources are mixed and output using a mixer.
  • a disc jockey or the like uses a mixer to crossfade two songs when switching the song being played.
  • the music currently being played is called “one master song”, and the next music to be played is called “slave music”.
  • the disc jockey adjusts the speed of the slave song to match the rhythm of the master song and the slave song so that the rhythm does not change before and after switching songs, then operates the mixer to fade out the master song and simultaneously play the slave song. Fade in.
  • the master song and slave song keys are different, the disc jockey listens to both songs to determine the key, and operates the pitch shifter to match the slave song key to the master song key. Mix. In this way, by mixing not only the rhythm but also the key and mixing the master song and the slave song, it becomes possible to mix in a musically harmonious way. This kind of mixing that matches the harmonics is also called “Noichiichi Monic Mix”.
  • Patent Document 1 describes a technique for creating music data by detecting chords in an input audio signal.
  • Patent Document 2 describes a method for detecting a music structure by detecting a chord in a music and analyzing the progress of the chord.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-184510
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-184769
  • the problem to be solved by the present invention is exemplified as described above.
  • the present invention provides a music data adjustment device that can automatically match musical characteristics to a reference scale or other music data by analyzing music data musically. Let it be an issue.
  • the music data adjustment device configures the music data based on the frequency characteristics and a frequency analysis unit that frequency-synthesizes the music data and detects frequency characteristics. Based on the deviation amount, a deviation amount calculation unit for calculating a deviation amount of the reference scale force of the musical sound, and a pitch shift amount for shifting the pitch of the music data so that the musical tone matches the reference scale. And a pitch shift amount calculation unit for calculating.
  • the music data adjustment device described above is a device that adjusts musical characteristics of music data, and can be applied to, for example, a device that reproduces music data of a recording medium.
  • the music data is subjected to frequency analysis and frequency characteristics are detected. Based on the obtained frequency characteristics, a deviation amount indicating how much the musical sound constituting the music data is deviated from the reference scale force is calculated.
  • the reference scale is a scale used as a reference in the adjustment of music data, and examples thereof include an average scale. Further, based on the deviation amount, a pitch shift amount necessary for matching the musical tone with the reference scale is calculated. Therefore, the musical sound of the music data can be matched with the reference scale by pitch-shifting the music data according to the obtained pitch shift amount. In this way, by using frequency analysis, it is possible to detect a small shift in music with respect to the reference scale, and to automatically detect music data. Tuning is possible.
  • pitch shift means for shifting the pitch of the music data based on the pitch shift amount can be provided.
  • music data can be adjusted in one device.
  • the frequency analysis unit converts the music data into a frequency domain signal, and a plurality of amplitude peak values from the frequency domain signal.
  • a frequency characteristic calculator that calculates the frequency characteristics by calculating frequencies of a plurality of musical sounds constituting the music data based on the plurality of peak values.
  • music data is first converted into a frequency domain signal by a technique such as FFT.
  • a plurality of peak values, each corresponding to a musical tone, are detected from the frequency domain signal.
  • the frequency of the musical sound constituting the music data is calculated based on the plurality of peak values, and the frequency characteristic is calculated.
  • the music data adjustment device performs a frequency analysis on the first music data and detects a first frequency characteristic, and the first frequency analysis unit.
  • a first deviation amount calculating unit for calculating a first deviation amount from a reference scale of a musical sound constituting the first music data based on a frequency characteristic; the first frequency characteristic and the first frequency characteristic;
  • a key deriving unit for deriving a key of the first music data based on a deviation amount; a second frequency analyzing unit for analyzing a frequency of the second music data and detecting a second frequency characteristic; Based on the frequency characteristic of 2, a second deviation amount calculation unit for calculating a second deviation amount of the reference scale force of the musical sound constituting the second music data, the second frequency characteristic and the second
  • a key deriving unit for deriving a key of the second music data based on the amount of shift of Based on the first shift amount, the second shift amount, the first music data key, and the second music data key, the first music data key and the second music data
  • the music data adjusting device adjusts two music data.
  • the first music data is frequency-analyzed and the frequency characteristics are calculated, and the first music data is constructed based on the frequency characteristics.
  • a first shift amount indicating a shift in the reference scale force of the composed music is detected.
  • the key of the first music data is derived based on the frequency characteristics and the first shift amount.
  • the second music data is subjected to frequency analysis and frequency characteristics are calculated, and based on the frequency characteristic, a second quantity indicating a deviation from the reference scale of the music constituting the second music data is detected.
  • the key of the second music data is derived based on the frequency characteristics and the second shift amount.
  • the pitch shift amount is calculated so that the key of the first music data matches the key of the second music data. Therefore, the keys of the first music data and the second music data can be automatically matched by pitch-shifting at least the second music data.
  • the pitch shift amount calculation unit is based on the first shift amount! /, And thus the musical tone of the first music data matches the reference scale.
  • the second music data A second pitch shift amount calculating unit for calculating a second pitch shift amount for shifting the pitch of the second music data so that the musical tone of the second musical piece coincides with a reference scale, and the first music data And the second music data key to shift the pitch of the second music data so that the key of the first music data and the key of the second music data match.
  • Third pitch shift for calculating the third pitch shift amount A volume calculation unit.
  • the music data adjustment device includes a first pitch shift means that shifts a pitch of the first music data based on the first pitch shift amount, and the second pitch data. Based on the pitch shift amount, the second pitch shift means for shifting the pitch of the second music data, and the pitch of the second music data after being shifted by the second pitch shift means, A third pitch shift means for shifting based on the third pitch shift amount, the first music data after the shift by the first pitch shift means, and the shift by the third pitch shift means And a mixer that mixes and outputs the second music data later.
  • the pitch shift amount calculation unit may be configured such that the musical tone of the first music data matches a reference scale based on the first shift amount.
  • a first pitch shift amount calculating unit for calculating a first pitch shift amount for shifting the pitch of the first music data, the second shift amount, the key of the first music data, and Based on the key of the second music data, the musical tone of the second music data matches the reference scale, and the key of the first music data and the key of the second music data match.
  • a second pitch shift amount calculating unit for calculating a second pitch shift amount for shifting the pitch of the second music data.
  • scale correction is performed to match the first music data with the reference scale. Then, based on the second shift amount, the key of the first music data, and the key of the second music data, the tone of the second music data matches the reference scale, and the first music data The pitch of the second music data is shifted so that the key matches the key of the second music data. As a result, the scale correction of the second music data and the key shift can be performed simultaneously.
  • the music data adjustment device described above has the first pitch shift amount.
  • a first pitch shift means for shifting the pitch of the first music data based on the second pitch shift means for shifting the pitch of the second music data based on the second pitch shift amount;
  • a mixer that mixes and outputs the first music data after the shift by the first pitch shift means and the second music data after the shift by the second pitch shift means.
  • the pitch shift amount calculation unit includes the first shift amount, the second shift amount, the first music data key, and the first music data key.
  • the music of each of the first music data and the second music data matches a reference scale, and the key of the first music data and the second music data
  • the pitch of the second music data is shifted so that the music data keys match.
  • the first song data and the second song data based on the first shift amount, the second shift amount, the first song data key, and the second song data key, the first song data and the second song data
  • the pitch of the second music data is shifted so that each musical tone matches the reference scale, and the key of the first music data and the key of the second music data match. That is, the scale correction of the first music data and the second music data and the key shift of the second music data can be performed simultaneously.
  • the music data adjustment device includes a pitch shift means for shifting the pitch of the second music data based on the pitch shift amount, and the first music data. And a mixer that outputs the data and the second music data after the pitch shift by the pitch shift means.
  • each of the first and second frequency analysis units includes: a conversion unit that converts the music data into a frequency domain signal; and a frequency domain signal.
  • a peak detector for detecting a plurality of amplitude peak values; and calculating frequencies of a plurality of musical sounds constituting the music data based on the plurality of peak values.
  • a frequency characteristic calculator that calculates the frequency characteristic.
  • music data is first converted into a frequency domain signal by a technique such as FFT.
  • a plurality of peak values, each corresponding to a musical tone, are detected from the frequency domain signal.
  • the frequency of the musical sound constituting the music data is calculated based on the plurality of peak values, and the frequency characteristic is calculated.
  • each of the first and second key deriving units may perform a correction of the deviation amount based on the frequency characteristic and the deviation amount.
  • a key determination unit for determining a key of the music data.
  • a chord is detected based on the frequency characteristics and shift amount of the music data, and the key of the music data is determined based on the detected chord.
  • FIG. 1 is a block diagram showing a configuration of a music data adjustment apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a graph showing an example of frequency characteristics of music data.
  • FIG. 3 is a chart showing the frequency of the average temperament scale.
  • FIG. 4 is a block diagram showing a configuration of a music data adjustment apparatus according to a second embodiment of the present invention.
  • FIG. 7 is a block diagram showing a configuration of a music data adjustment apparatus according to a modification of the second embodiment.
  • FIG. 8 is a block diagram showing a configuration of a music data adjustment device according to another modification of the second embodiment.
  • FIG. 1 shows a schematic configuration of a music data adjusting apparatus according to the first embodiment of the present invention.
  • the music data adjustment device 10 of the first embodiment is used to adjust the input music data so as to match a certain reference scale (referred to as “reference scale”) such as an average temperament scale.
  • reference scale such as an average temperament scale.
  • the music data adjustment device 10 includes an FFT unit 11, a peak detection unit 12, a frequency characteristic calculation unit 13, a frequency shift amount calculation unit 14, and a pitch shift amount calculation unit 15. And.
  • the music data adjustment device 10 performs frequency analysis on the input music data Din to calculate a shift amount of the reference scale force of the input music data Din, and calculates a pitch shift amount D5 corresponding to the shift amount to calculate the pitch shifter. Supply to 20.
  • the pitch shifter 20 adjusts the pitch of the input music data Din based on the pitch shift amount D5, and matches the musical sound constituting the input music data Din with the reference scale. Then, the pitch shifter 20 outputs the corrected music data to the outside as output music data Dout.
  • the music data adjustment device 10 itself is configured not to have a pitch shift function, and the pitch is adjusted by an external pitch shifter 20. Instead, the music data adjustment device 10 is configured to include a pitch shifter. May be.
  • An FFT (Fast Fourier Transform) unit 11 converts the input music data Din, which is a time domain signal, into a frequency domain signal D1 in order to analyze the input music data Din in the frequency domain.
  • the frequency domain signal D 1 is sent to the peak detector 12.
  • the peak detection unit 12 detects a plurality of peak values of amplitude included in the frequency domain signal D1.
  • An example of the frequency domain signal D1 is shown in FIG. In Fig. 2, the horizontal axis represents frequency, and the vertical axis represents level.
  • the frequency domain signal D1 includes a plurality of amplitude peak points corresponding to a plurality of musical sounds constituting the input music data Din.
  • the peak detection unit 12 detects the plurality of peak points and supplies a signal D2 indicating each peak point to the frequency characteristic calculation unit 13.
  • the frequency characteristic calculation unit 13 acquires each frequency fl, f2, ... corresponding to a plurality of peak points included in the signal S2. These frequencies correspond to the frequencies of the multiple songs that make up the input song data Din. Further, the frequency characteristic calculation unit 13 calculates the scales (C, D, E, F, G, A, B) of one octave of the input music data Din based on the frequencies fl, f2,. Each frequency is calculated and supplied to the frequency shift amount calculation unit 14 as a signal D3.
  • the FFT unit 11, the peak detection unit 12, and the frequency characteristic calculation unit 13 constitute a frequency analysis unit in the present invention.
  • the frequency deviation calculation unit 14 calculates the deviation D4 of the octave of the input music data with respect to the reference scale.
  • Figure 3 shows the frequency of the average scale as an example of the reference scale.
  • Figure 3 shows the frequency of the average temperament scale for one octave including the reference “A” sound (440 Hz).
  • the frequency deviation calculation unit 14 compares the frequency of each scale constituting one octave of the input music data Din supplied from the frequency characteristic calculation unit 13 with the frequency of the average temperament scale shown in FIG. Is calculated as a frequency value. Further, the frequency shift amount calculation unit 14 converts the frequency value of the obtained shift amount into “cent”. Cent is a unit of pitch, and one octave is equivalent to 1200 cents. Thus, a semitone of the average scale corresponds to 100 cents. For example, if the corresponding musical tone in the input music data is shifted by the frequency “x” with respect to the frequency “f” of an average temperament scale, the amount of deviation D4 Is
  • the frequency shift amount calculation unit 14 calculates the shift amount D4 of the input music data Din from the reference average temperament scale in cents and supplies it to the pitch shift amount calculation unit 15.
  • the pitch shift amount calculation unit 15 should change the pitch (sound pitch) of the input music data Din in order to match the input music data Din with the average scale based on the deviation D4.
  • D5 is calculated and supplied to the pitch shifter 20. For example, when the shift amount D4 of the input music data Din is “ ⁇ 10 cents”, the pitch shift amount calculation unit 15 generates “+10 cents” as the pitch shift amount D5 and supplies it to the pitch shifter 20.
  • the pitch shift here is a pitch shift for matching the input music data to the reference scale, and this is also called “scale correction”.
  • the input music data Din is input to the pitch shifter 20. Therefore, the pitch shifter 120 shifts the pitch of the input music data Din based on the pitch shift amount D5, and generates and outputs the output music data Dout. In this way, the output music data Dout is adjusted to match the reference scale. This process is also called “tuning”.
  • the tuner is automatically matched with the reference scale. Can be performed. Therefore, accurate tuning is possible without relying on human hearing.
  • the average temperament scale is used as the reference scale, but the application of the present invention is not limited to this.
  • tuning is possible. In that case, if the frequency characteristic calculation unit 13 calculates the amount of frequency deviation based on the frequency table that constitutes the reference scale and the sound sequence instead of the frequency of the average scale shown in FIG. Good
  • the device matches each of the two input music data with a reference scale such as an average temperament scale, and matches the keys of the two input music data.
  • FIG. 4 shows a configuration of the music data adjusting device according to the second embodiment.
  • the music data adjustment device 500 roughly includes a first adjustment device 100, a second adjustment device 200, a pitch shift amount calculation unit 150, a pitch shifter 152, and a mixer 154.
  • the first adjustment device 100 receives the input music data D1, and outputs the music data D19 corrected to match the reference musical scale to the mixer 154.
  • the first adjustment device 100 determines the key of the input music data D1 and supplies it to the pitch shift amount calculation unit 150 as key data D18.
  • the first adjustment device functions as a master-side adjustment device.
  • the second adjustment device 200 has basically the same configuration as the first adjustment device.
  • the second adjusting device 200 receives the input music data D2, and outputs the music data D29 corrected to match the reference musical scale to the pitch shifter 152.
  • the second adjustment device 200 determines the key of the input music data D2 and supplies it to the pitch shift amount calculation unit 150 as key data D28.
  • the second adjustment device functions as a slave-side adjustment device.
  • the pitch shift amount calculation unit 150 matches the key of the input music data D2 with the key of the input music data D1 based on the key data D18 of the input music data D1 and the key data D28 of the input music data D2. Then, a pitch shift amount D50 to be performed on the input music data D2 is calculated and supplied to the pitch shifter 152.
  • This pitch shift is a shift for matching the keys of the two music data, and is also called “key shift”.
  • the pitch shifter 152 matches the input music data D1 with the key by performing a pitch shift on the music data D29 that has been corrected to match the reference scale based on the pitch shift amount D50.
  • the music data D52 is supplied to the mixer 154.
  • the mixer 154 mixes the music data D19 and the music data D52 and outputs the result as output music data Dout.
  • the music data D19 is music data obtained by correcting the input music data D1 so that it matches the reference scale.
  • the music data D52 is corrected so that the input music data D2 matches the reference scale, and the input music data D1 and the key This is music data obtained by shifting the pitch to match. Therefore, the mixer 154 mixes two music data that match the reference scale and have the same key, and outputs it as output music data Dout. Therefore, the music data D19 and D52 are harmonically mixed and output in a musically natural state.
  • the first adjustment device 100 includes an FFT unit 111, a peak detection unit 112, a frequency characteristic calculation unit 113, a frequency shift amount calculation unit 114, a pitch shift amount calculation unit 115, and a chord detection unit. 116, a chord progression pattern derivation unit 117, and a key determination unit 118.
  • the FFT unit 111, the peak detection unit 112, the frequency characteristic calculation unit 113, the frequency shift amount calculation unit 114, and the pitch shift amount calculation unit 1 15 are the FFT unit 11, the peak detection unit 12, The frequency characteristic calculation unit 13, the frequency shift amount calculation unit 14, and the pitch shift amount calculation unit 15 are the same, and have a role of pitch shifting so that the input music data D1 matches the reference scale. That is, the FFT unit 111 converts the input music data D1 into a frequency domain signal Dl 1, and the peak detection unit 112 detects a plurality of amplitude peak points.
  • the frequency characteristic calculator 113 calculates the octave frequency characteristic of the input music data D1 based on the peak point of the amplitude, and the frequency shift calculator 114 calculates the frequency shift based on the frequency characteristic and the frequency of the reference scale. Calculate the quantity. Then, the pitch shift amount calculation unit 115 calculates the pitch shift amount based on the frequency shift amount, and supplies it to the pitch shifter 120. The pitch shifter 120 changes the pitch of the input music data D1 according to the pitch shift amount calculated by the pitch shift amount calculation unit 115. Thus, music data D19 matching the reference scale is generated and supplied to the mixer 154.
  • chord detecting unit 116 the chord progression pattern deriving unit 117, and the key determining unit 118 have a role of deriving the key of the input music data D1.
  • the signal D13 indicating the frequency characteristic calculated by the frequency characteristic calculation unit 113 and the shift amount D14 generated by the frequency shift amount calculation unit 114 are input to the chord detection unit 116.
  • the chord detection unit 116 analyzes the frequency characteristics of the input music data D1 in consideration of the shift amount D14 for each predetermined time width, and detects a musical sound corresponding to the average temperament scale. Since the frequency of the average scale is known as shown in FIG. 3, the signal level corresponding to each frequency is detected as the level of each scale. Easily detected An example of the sound level is shown in Fig. 5.
  • a chord is a combination of a plurality of sounds, and the sound constituting each chord (hereinafter referred to as "component sound") is determined in music theory.
  • the chord detection unit 116 stores a chord table indicating correspondence between a plurality of chords and their constituent sounds.
  • An example of a chord table is shown in Fig. 6. As shown in the figure, each chord is associated with a constituent sound that constitutes the chord.
  • the chord detection unit 116 selects three musical tones in descending order based on the musical tone levels shown in FIG. 5, and the combinations thereof are stored in the chord table and correspond to any chord. It is determined whether or not the power to do. Thereby, the chord in the time width at that time can be detected.
  • three musical tones “C”, “E”, and “G” are selected as musical tones having a high level. Therefore, with reference to the chord table shown in FIG. 6, it is detected that the input music data D1 in the time width is composed of the chord “C”.
  • the chord detection unit 116 repeats the above processing every predetermined time width. This time width is determined in consideration of a period (time width) in which a chord changes in general music. A plurality of chords detected by repeatedly performing chord detection in units of time widths are input to the chord progression pattern deriving unit 117 as a signal D16.
  • the chord progression pattern deriving unit 117 derives a chord progression pattern based on a plurality of input chords.
  • a chord progression pattern is data indicating changes in chords over time in a song.For example, a plurality of chords detected by the chord detector 116 are arranged along the time axis in the song. be able to.
  • the derived chord progression pattern D17 is input to the key determination unit 118.
  • the key determination unit 118 determines the key (key) of the music based on the chord progression pattern D17. Specifically, the key determination unit 118 can determine the key of the music according to some determination criteria.
  • the key criteria are, for example, determining the chord that appears most frequently throughout the song as the key of the song, or determining the chord of the last measure of the song as the key of the song, etc. Can be considered.
  • the key judgment unit 118 uses one of these criteria or combines multiple criteria to judge the key of the song. To do. Key data D18 indicating the determined key is supplied to pitch shift amount calculation section 150.
  • chord detection unit 116 the chord progression pattern derivation unit 117, and the key determination unit 118 function as a key derivation unit that derives keys of input music data.
  • the second adjustment device 200 is configured in the same manner as the first adjustment device 100, and operates in the same manner. Therefore, the key determination unit 218 determines the key of the input music data D2, and supplies the key data D28 to the pitch shift amount calculation unit 150. Also in the second adjustment device 200, the pitch shifter 220 changes the pitch of the input music data D2 based on the pitch shift amount D25 calculated by the pitch shift amount calculation unit 215 to match the reference musical scale. The obtained music data D29 is supplied to the pitch shifter 152 that is not included in the mixer 154. In this respect, the second adjustment device 200 is different from the first adjustment device 100.
  • the pitch shift amount calculation unit 150 shifts the pitch of the input music data D2 so that the key of the input music data D1 and the key of the input music data D2 match (that is, the key shift amount). ) Calculate D50 and supply to Pitch Shifter 152.
  • the pitch shifter 152 shifts the pitch of the music data D29 that has been corrected to match the reference scale based on the pitch shift amount D50, and supplies the music data D52 to the mixer 154.
  • the mixer 154 mixes the music data D19 and D52, both of which match the reference scale and the keys of each other, and outputs it as output music data Dout.
  • the pitch shifters 120 and 220 perform pitch shift (ie, scale correction) for matching the input music data with the reference scale, and therefore, the pitch shifters 120 and 220 are high in units of several cents. Accurate pitch shift capability is required.
  • the pitch shifter 152 performs a pitch shift (that is, a key shift) for matching the keys of the input music data, and therefore the shift amount may be a semitone unit necessary for matching the keys.
  • the pitch shift amount calculation unit 150 calculates the pitch shift amount D50 so that the keys of the input music data D1 and the input music data D2 match.
  • the pitch shifter 152 since the pitch shifter 152 has the ability to shift the pitch in semitones, the key shift amount can be adjusted according to the user's operation. Then, as described above, the key of the input music data D2 is automatically matched with the key of the input music data D1. The key of the input music data D2 can be changed according to the user's preference, and music can be mixed according to the user's taste.
  • the keys of two music pieces can be automatically matched and mixed, so that the harmony is not disturbed and can be heard smoothly and comfortably.
  • FIG. 7 shows the configuration of a music data adjustment device 501 according to a modification of the second embodiment.
  • the pitch shifter 220 in the second adjustment device 200 performs a pitch shift (ie, scale correction) for matching the input music data D2 to the reference scale, and the pitch shifter 152 Pitch shift (ie key shift) is performed to match the key of input music data D2 with the key of input music data D1.
  • the pitch shifter 220 in the second adjustment device 200 is omitted, and the pitch shifter 151 performs pitch shift including scale correction and key shift.
  • the pitch shift amount calculation unit 215 in the second adjustment device 200 supplies the calculated pitch shift amount (scale correction amount) D25 to the pitch shift amount calculation unit 153.
  • the pitch shift amount calculation unit 153 is configured to match the key of the input music data D2 with the key of the input music data D1 (key shift amount). Is calculated.
  • the pitch shift amount D55 is calculated and supplied to the pitch shifter 151.
  • the pitch shifter 151 can match the input music data D2 with the reference scale and perform a pitch shift once to match the key of the input music data D1. Therefore, the pitch shifter 220 can be omitted.
  • the pitch shifter 151 is required to have a capability of performing a pitch shift in units of several cents in order to perform a pitch shift for matching the input music data D2 to the reference scale.
  • Fig. 8 shows another modification of the second embodiment.
  • the structure of the music data adjustment apparatus 502 which concerns on an example is shown.
  • the pitch shifter 120 performs a pitch shift so that the first input music data matches the reference musical scale.
  • the input music data D1 on the master side is not subjected to pitch shift, and the input music data remains as the target of mixing by the mixer 154.
  • the second variation corresponds to such a request.
  • the input music data D1 on the master side is input to the mixer 154 without being pitch-shifted.
  • the pitch shift amount D15 output from the pitch shift amount calculation unit 115 and the key data D18 output from the key determination unit 118 are input to the pitch shift amount calculation unit 155.
  • pitch shift amount D25 output from pitch shift amount calculation unit 215 and key data D28 output from key determination unit 218 are input to pitch shift amount calculation unit 155.
  • the pitch shift amount calculation unit 155 calculates a pitch shift amount (a scale correction amount) for matching the input music data D2 with the scale of the input music data D1 based on the pitch shift amounts D15 and D25. calculate. That is, in this modification, the scale of the input music data D1 corresponds to the reference scale. Also, the pitch shift amount calculation unit 155 calculates a pitch shift amount (key shift amount) for matching the key of the input music data D2 with the key of the input music data D1 based on the key data D18 and D28. Then, the pitch shift amount calculation unit 155 calculates the pitch shift amount D57 by adding them, and supplies the calculated pitch shift amount D57 to the pitch shifter 156.
  • a pitch shift amount a scale correction amount
  • the pitch shifter 156 matches the input music data D2 to the scale of the input music data D1, and performs a single pitch shift to match the key of the input music data D2 with the key of the input music data D1. .
  • the mixer 154 can mix and output the input music data D1 that is not pitch-shifted.
  • the pitch shifter 156 supplies the music data D58 that has been pitch-shifted so as to match the scale and key of the input music data D1 to the mixer 154, so the music data Dout output from the mixer 154 is the scale data. And the music data with the same key is mixed, and the music without any discomfort can be played.
  • the present invention can be used in a playback device that plays back music data, and can be used in a device used by a disc jockey in a so-called disco or club.
  • the present invention can be applied to a mixer that mixes and outputs a plurality of music pieces, or as an effector built in the mixer.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Electrophonic Musical Instruments (AREA)

Abstract

A musical composition data adjuster is for adjusting the musical feature of musical composition data and can be applied to, e.g., a device for reproducing musical composition data from a recording medium. Musical composition data is subjected to frequency analysis, and the frequency characteristic is detected. From the detected frequency characteristic, the variation of the musical tone constituting the musical composition data from the standard musical scale is computed. The standard musical scale is a musical scale used as standards for adjustment of musical composition data, for example, the equal temperament scale. According to the variation, a pitch shift value required to cause the musical tone to agree with the standard musical scale is computed. According to the computed pitch shift value, the musical composition data is pitch-shifted, and the musical tone of the musical composition data can be made to agree with the standard musical scale. By using frequency analysis, small variation of the musical composition from the standard musical scale can be detected, and automatic tuning of musical composition data is possible.

Description

明 細 書  Specification
楽曲データ調整装置  Music data adjustment device
技術分野  Technical field
[0001] 本発明は、楽曲データを、基準となる音階や他の楽曲に対して調整する方法に関 する。  The present invention relates to a method for adjusting music data with respect to a reference scale or other music.
背景技術  Background art
[0002] 楽曲を平均律音階などのある基準に合わせるためには、ピッチシフターが使用され る。ピッチシフタ一は、楽曲を構成する楽音の周波数を変更することにより、楽音のピ ツチ (音の高低)を調整する装置である。楽曲が平均律音階などの基準となる音階か らずれている場合には、人間がその楽曲を聞きながらピッチシフターを操作し、ピッ チの調整(「チューニング」 t 、う。 )を行う。  [0002] Pitch shifters are used to match music to certain standards such as an average scale. A pitch shifter is a device that adjusts the pitch (tone level) of a musical sound by changing the frequency of the musical sound that composes the music. If the musical piece deviates from a standard scale such as the average temperament scale, a person operates the pitch shifter while listening to the musical piece, and adjusts the pitch (“tuning” t).
[0003] また、ミキサーを使用して複数の音楽ソース力 の楽曲データをミックスして出力す ることが行われている。例えばディスクジョッキーなどは、再生中の曲を切り換える際、 ミキサーを操作して 2つの曲をクロスフェードする。いま、現在再生中の楽曲を「マスタ 一曲」、次に再生する楽曲を「スレーブ曲」と呼ぶものとする。ディスクジョッキーは曲 の切り換え前後でリズムが狂わないように、スレーブ曲の速度を調整してマスター曲と スレーブ曲のリズムを一致させた後、ミキサーを操作してマスター曲をフェードアウト すると同時にスレーブ曲をフェードインする。この際、マスター曲とスレーブ曲のキー が異なる場合、ディスクジョッキーは両曲を聞いてキーを判定し、ピッチシフターなど を操作してスレーブ曲のキーをマスター曲のキーに合わせてから 2つの曲をミックス する。こうして、リズムのみならずキーも合わせた上でマスター曲とスレーブ曲をミック スすることにより、音楽的に調和がとれたミキシングが可能となる。このようにハーモ- 一が合ったミキシングを「ノヽ一モニックミックス」とも呼ぶ。  [0003] In addition, music data of a plurality of music sources are mixed and output using a mixer. For example, a disc jockey or the like uses a mixer to crossfade two songs when switching the song being played. The music currently being played is called “one master song”, and the next music to be played is called “slave music”. The disc jockey adjusts the speed of the slave song to match the rhythm of the master song and the slave song so that the rhythm does not change before and after switching songs, then operates the mixer to fade out the master song and simultaneously play the slave song. Fade in. In this case, if the master song and slave song keys are different, the disc jockey listens to both songs to determine the key, and operates the pitch shifter to match the slave song key to the master song key. Mix. In this way, by mixing not only the rhythm but also the key and mixing the master song and the slave song, it becomes possible to mix in a musically harmonious way. This kind of mixing that matches the harmonics is also called “Noichiichi Monic Mix”.
[0004] なお、入力されたオーディオ信号中の和音を検出して楽曲データを作成する手法 が特許文献 1に記載されている。また、楽曲中の和音を検出し、和音進行を分析する ことにより楽曲構造を検出する手法が特許文献 2に記載されている。  [0004] Patent Document 1 describes a technique for creating music data by detecting chords in an input audio signal. Patent Document 2 describes a method for detecting a music structure by detecting a chord in a music and analyzing the progress of the chord.
[0005] 特許文献 1 :特開 2004— 184510号公報 特許文献 2 :特開 2004— 184769号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 2004-184510 Patent Document 2: Japanese Patent Application Laid-Open No. 2004-184769
[0006] しかし、人間が楽曲を聴いて基準となる音階とのずれを検出できる精度は、人間の 能力上限界がある。また、ディスクジョッキーなどが 2つの曲を聞き、キーを合わせるよ うにスレーブ曲のキーをシフトしてミックスするという作業は高度な音楽的感覚と機器 の操作技術とを必要とする。 [0006] However, the accuracy with which humans can listen to music and detect deviations from the standard scale is limited in terms of human ability. Also, the task of listening to two songs by a disc jockey, etc., and shifting and mixing the keys of the slave songs to match the keys requires a high degree of musical sense and device operation skills.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 本発明が解決しょうとする課題は上記のようなものが例として挙げられる。本発明は 、楽曲データを音楽的に分析することにより、基準となる音階や他の楽曲データに対 して自動的に音楽的特徴を合わせることが可能な楽曲データ調整装置を提供するこ とを課題とする。 [0007] The problem to be solved by the present invention is exemplified as described above. The present invention provides a music data adjustment device that can automatically match musical characteristics to a reference scale or other music data by analyzing music data musically. Let it be an issue.
課題を解決するための手段  Means for solving the problem
[0008] 本発明の好適な実施形態では、楽曲データ調整装置は、楽曲データを周波数分 祈し、周波数特性を検出する周波数分析部と、前記周波数特性に基づいて、前記楽 曲データを構成する楽音の基準音階力 のずれ量を算出するずれ量算出部と、前 記ずれ量に基づいて、前記楽音が基準音階と一致するように前記楽曲データのピッ チをシフトするためのピッチシフト量を算出するピッチシフト量算出部と、を備えること を特徴とする。 [0008] In a preferred embodiment of the present invention, the music data adjustment device configures the music data based on the frequency characteristics and a frequency analysis unit that frequency-synthesizes the music data and detects frequency characteristics. Based on the deviation amount, a deviation amount calculation unit for calculating a deviation amount of the reference scale force of the musical sound, and a pitch shift amount for shifting the pitch of the music data so that the musical tone matches the reference scale. And a pitch shift amount calculation unit for calculating.
[0009] 上記の楽曲データ調整装置は、楽曲データの音楽的特徴を調整する装置であり、 例えば記録媒体力 楽曲データを再生する装置などに適用することができる。楽曲 データは周波数分析され、周波数特性が検出される。得られた周波数特性に基づい て、当該楽曲データを構成する楽音が、基準音階力 どの程度ずれているかを示す ずれ量が算出される。基準音階とは、楽曲データの調整において基準として用いら れる音階であり、例えば平均律音階などが挙げられる。さらに、ずれ量に基づいて、 楽音を基準音階と一致させるために必要なピッチシフト量が算出される。よって、得ら れたピッチシフト量に従って楽曲データをピッチシフトすることにより、楽曲データの 楽音を基準音階と一致させることができる。このように、周波数分析を利用することに より、基準音階に対する楽曲の小さなずれを検出することができ、楽曲データの自動 調律が可能となる。 [0009] The music data adjustment device described above is a device that adjusts musical characteristics of music data, and can be applied to, for example, a device that reproduces music data of a recording medium. The music data is subjected to frequency analysis and frequency characteristics are detected. Based on the obtained frequency characteristics, a deviation amount indicating how much the musical sound constituting the music data is deviated from the reference scale force is calculated. The reference scale is a scale used as a reference in the adjustment of music data, and examples thereof include an average scale. Further, based on the deviation amount, a pitch shift amount necessary for matching the musical tone with the reference scale is calculated. Therefore, the musical sound of the music data can be matched with the reference scale by pitch-shifting the music data according to the obtained pitch shift amount. In this way, by using frequency analysis, it is possible to detect a small shift in music with respect to the reference scale, and to automatically detect music data. Tuning is possible.
[0010] 上記の楽曲データ調整装置の一態様では、前記ピッチシフト量に基づいて、前記 楽曲データのピッチをシフトするピッチシフト手段を備えることができる。これにより、 楽曲データの調整までを 1つの装置内で行うことができる。  [0010] In one aspect of the music data adjusting apparatus, pitch shift means for shifting the pitch of the music data based on the pitch shift amount can be provided. As a result, music data can be adjusted in one device.
[0011] 上記の楽曲データ調整装置の好適な例では、前記周波数分析部は、前記楽曲デ ータを周波数領域の信号に変換する変換部と、前記周波数領域の信号から、複数 の振幅ピーク値を検出するピーク検出部と、前記複数のピーク値に基づいて、前記 楽曲データを構成する複数の楽音の周波数を算出して前記周波数特性を算出する 周波数特性算出部と、を備える。 [0011] In a preferred example of the music data adjustment device, the frequency analysis unit converts the music data into a frequency domain signal, and a plurality of amplitude peak values from the frequency domain signal. And a frequency characteristic calculator that calculates the frequency characteristics by calculating frequencies of a plurality of musical sounds constituting the music data based on the plurality of peak values.
[0012] この例では、楽曲データは、まず FFTなどの手法により周波数領域の信号に変換 される。周波数領域の信号から、各々が楽音に対応する複数のピーク値が検出され る。そして、複数のピーク値に基づいて楽曲データを構成する楽音の周波数が算出 され、周波数特性が算出される。  In this example, music data is first converted into a frequency domain signal by a technique such as FFT. A plurality of peak values, each corresponding to a musical tone, are detected from the frequency domain signal. Then, the frequency of the musical sound constituting the music data is calculated based on the plurality of peak values, and the frequency characteristic is calculated.
[0013] 本発明の他の好適な実施形態では、楽曲データ調整装置は、第 1の楽曲データを 周波数分析し、第 1の周波数特性を検出する第 1の周波数分析部と、前記第 1の周 波数特性に基づいて、前記第 1の楽曲データを構成する楽音の基準音階からの第 1 のずれ量を算出する第 1のずれ量算出部と、前記第 1の周波数特性及び前記第 1の ずれ量に基づいて、前記第 1の楽曲データのキーを導出するキー導出部と、第 2の 楽曲データを周波数分析し、第 2の周波数特性を検出する第 2の周波数分析部と、 前記第 2の周波数特性に基づいて、前記第 2の楽曲データを構成する楽音の基準 音階力 の第 2のずれ量を算出する第 2のずれ量算出部と、前記第 2の周波数特性 及び前記第 2のずれ量に基づいて、前記第 2の楽曲データのキーを導出するキー導 出部と、前記第 1のずれ量、前記第 2のずれ量、前記第 1の楽曲データのキー及び 前記第 2の楽曲データのキーに基づいて、前記第 1の楽曲データのキーと前記第 2 の楽曲データのキーが一致するように、少なくとも前記第 2の楽曲データのピッチをシ フトするためのピッチシフト量を算出するピッチシフト量算出部と、を備える。  [0013] In another preferred embodiment of the present invention, the music data adjustment device performs a frequency analysis on the first music data and detects a first frequency characteristic, and the first frequency analysis unit. A first deviation amount calculating unit for calculating a first deviation amount from a reference scale of a musical sound constituting the first music data based on a frequency characteristic; the first frequency characteristic and the first frequency characteristic; A key deriving unit for deriving a key of the first music data based on a deviation amount; a second frequency analyzing unit for analyzing a frequency of the second music data and detecting a second frequency characteristic; Based on the frequency characteristic of 2, a second deviation amount calculation unit for calculating a second deviation amount of the reference scale force of the musical sound constituting the second music data, the second frequency characteristic and the second A key deriving unit for deriving a key of the second music data based on the amount of shift of Based on the first shift amount, the second shift amount, the first music data key, and the second music data key, the first music data key and the second music data And a pitch shift amount calculation unit for calculating a pitch shift amount for shifting the pitch of the second music data so that the keys coincide with each other.
[0014] 上記の楽曲データ調整装置は、 2つの楽曲データの調整を行う。第 1の楽曲データ は周波数分析されて周波数特性が算出され、それに基づいて第 1の楽曲データを構 成する楽曲の、基準音階力 のずれを示す第 1のずれ量が検出される。また、周波 数特性及び第 1のずれ量に基づいて、第 1の楽曲データのキーが導出される。同様 に、第 2の楽曲データは周波数分析されて周波数特性が算出され、それに基づいて 第 2の楽曲データを構成する楽曲の、基準音階からのずれを示す第 2の量が検出さ れる。また、周波数特性及び第 2のずれ量に基づいて、第 2の楽曲データのキーが 導出される。 [0014] The music data adjusting device adjusts two music data. The first music data is frequency-analyzed and the frequency characteristics are calculated, and the first music data is constructed based on the frequency characteristics. A first shift amount indicating a shift in the reference scale force of the composed music is detected. Also, the key of the first music data is derived based on the frequency characteristics and the first shift amount. Similarly, the second music data is subjected to frequency analysis and frequency characteristics are calculated, and based on the frequency characteristic, a second quantity indicating a deviation from the reference scale of the music constituting the second music data is detected. In addition, the key of the second music data is derived based on the frequency characteristics and the second shift amount.
[0015] そして、前記第 1のずれ量、前記第 2のずれ量、前記第 1の楽曲データのキー及び 前記第 2の楽曲データのキーに基づいて、少なくとも前記第 2の楽曲データのピッチ をシフトするためのピッチシフト量が算出される。このピッチシフト量は、前記第 1の楽 曲データのキーと前記第 2の楽曲データのキーが一致するように算出される。よって 、少なくとも第 2の楽曲データをピッチシフトすることにより、第 1の楽曲データと第 2の 楽曲データのキーを自動的に合わせることができる。  [0015] Then, based on the first shift amount, the second shift amount, the first music data key, and the second music data key, at least the pitch of the second music data is determined. A pitch shift amount for shifting is calculated. The pitch shift amount is calculated so that the key of the first music data matches the key of the second music data. Therefore, the keys of the first music data and the second music data can be automatically matched by pitch-shifting at least the second music data.
[0016] これにより、例えば上記の楽曲データ調整装置をディスクジョッキーが使用する楽 曲再生装置やミキサーなどに適用すれば、楽曲の切り換え時に自動的に 2つの曲の キーを合わせることができ、スムーズな曲の移行が可能となる。  [0016] Thus, for example, if the music data adjustment device described above is applied to a music playback device or mixer used by a disc jockey, the keys of the two songs can be automatically matched when switching music. Transition of a simple song becomes possible.
[0017] 上記の楽曲データ調整装置の一態様では、前記ピッチシフト量算出部は、前記第 1のずれ量に基づ!/、て、前記第 1の楽曲データの楽音が基準音階と一致するように 前記第 1の楽曲データのピッチをシフトするための第 1のピッチシフト量を算出する第 1のピッチシフト量算出部と、前記第 2のずれ量に基づいて、前記第 2の楽曲データ の楽音が基準音階と一致するように前記第 2の楽曲データのピッチをシフトするため の第 2のピッチシフト量を算出する第 2のピッチシフト量算出部と、前記第 1の楽曲デ ータのキー及び前記第 2の楽曲データのキーに基づいて、前記第 1の楽曲データの キーと前記第 2の楽曲データのキーが一致するように前記第 2の楽曲データのピッチ をシフトするための第 3のピッチシフト量を算出する第 3のピッチシフト量算出部と、を 備える。  [0017] In one aspect of the music data adjustment apparatus, the pitch shift amount calculation unit is based on the first shift amount! /, And thus the musical tone of the first music data matches the reference scale. Based on the first pitch shift amount calculation unit for calculating the first pitch shift amount for shifting the pitch of the first music data and the second shift amount, the second music data A second pitch shift amount calculating unit for calculating a second pitch shift amount for shifting the pitch of the second music data so that the musical tone of the second musical piece coincides with a reference scale, and the first music data And the second music data key to shift the pitch of the second music data so that the key of the first music data and the key of the second music data match. Third pitch shift for calculating the third pitch shift amount A volume calculation unit.
[0018] この態様では、まず、第 1のピッチシフト量に基づいて、第 1の楽曲データを基準音 階と一致させる音階補正がなされる。同様に、第 2のピッチシフト量に基づいて、第 2 の楽曲データを基準音階と一致させる音階補正がなされる。そして、第 3のピッチシ フト量に基づいて、第 1及び第 2の楽曲データのキーを合わせるためのピッチシフト、 即ちキーシフトがなされる。こうして、第 1の楽曲データ及び第 2の楽曲データは、そ れぞれが基準音階に一致した状態で、さらに相互にキーを一致させることができる。 [0018] In this aspect, first, based on the first pitch shift amount, scale correction is performed to match the first music data with the reference scale. Similarly, based on the second pitch shift amount, scale correction is performed to match the second music data with the reference scale. And the third pitch Based on the amount of music, a pitch shift, that is, a key shift, for matching the keys of the first and second music data is performed. In this way, the first music data and the second music data can further match the keys with each other in a state where they match the reference scale.
[0019] また、この態様では、上記の楽曲データ調整装置は、前記第 1のピッチシフト量に 基づいて前記第 1の楽曲データのピッチをシフトする第 1のピッチシフト手段と、前記 第 2のピッチシフト量に基づいて、前記第 2の楽曲データのピッチをシフトする第 2の ピッチシフト手段と、前記第 2のピッチシフト手段によるシフト後の前記第 2の楽曲デ ータのピッチを、前記第 3のピッチシフト量に基づ 、てシフトする第 3のピッチシフト手 段と、前記第 1のピッチシフト手段によるシフト後の前記第 1の楽曲データと、前記第 3のピッチシフト手段によるシフト後の前記第 2の楽曲データをミックスして出力するミ キサ一と、を備えることができる。これにより、第 1の楽曲データと第 2の楽曲データを 同時に再生した場合、あるいは、切り換えて再生した場合でも、違和感のない再生が 可能となる。 [0019] Also, in this aspect, the music data adjustment device includes a first pitch shift means that shifts a pitch of the first music data based on the first pitch shift amount, and the second pitch data. Based on the pitch shift amount, the second pitch shift means for shifting the pitch of the second music data, and the pitch of the second music data after being shifted by the second pitch shift means, A third pitch shift means for shifting based on the third pitch shift amount, the first music data after the shift by the first pitch shift means, and the shift by the third pitch shift means And a mixer that mixes and outputs the second music data later. As a result, even when the first music data and the second music data are played back simultaneously or when switched and played back, it is possible to play without feeling uncomfortable.
[0020] 上記の楽曲データ調整装置の他の一態様では、前記ピッチシフト量算出部は、前 記第 1のずれ量に基づいて、前記第 1の楽曲データの楽音が基準音階と一致するよ うに前記第 1の楽曲データのピッチをシフトするための第 1のピッチシフト量を算出す る第 1のピッチシフト量算出部と、前記第 2のずれ量、前記第 1の楽曲データのキー 及び前記第 2の楽曲データのキーに基づいて、前記第 2の楽曲データの楽音が基準 音階と一致し、かつ、前記第 1の楽曲データのキーと前記第 2の楽曲データのキーが 一致するように前記第 2の楽曲データのピッチをシフトするための第 2のピッチシフト 量を算出する第 2のピッチシフト量算出部と、を備える。  [0020] In another aspect of the music data adjustment device, the pitch shift amount calculation unit may be configured such that the musical tone of the first music data matches a reference scale based on the first shift amount. A first pitch shift amount calculating unit for calculating a first pitch shift amount for shifting the pitch of the first music data, the second shift amount, the key of the first music data, and Based on the key of the second music data, the musical tone of the second music data matches the reference scale, and the key of the first music data and the key of the second music data match. And a second pitch shift amount calculating unit for calculating a second pitch shift amount for shifting the pitch of the second music data.
[0021] この態様では、まず、第 1のピッチシフト量に基づいて、第 1の楽曲データを基準音 階と一致させる音階補正がなされる。そして、第 2のずれ量、第 1の楽曲データのキ 一及び第 2の楽曲データのキーに基づいて、第 2の楽曲データの楽音が基準音階と 一致し、かつ、第 1の楽曲データのキーと前記第 2の楽曲データのキーが一致するよ うに第 2の楽曲データのピッチがシフトされる。これにより、第 2の楽曲データの音階 補正と、キーシフトとを同時に行うことができる。  In this aspect, first, based on the first pitch shift amount, scale correction is performed to match the first music data with the reference scale. Then, based on the second shift amount, the key of the first music data, and the key of the second music data, the tone of the second music data matches the reference scale, and the first music data The pitch of the second music data is shifted so that the key matches the key of the second music data. As a result, the scale correction of the second music data and the key shift can be performed simultaneously.
[0022] また、この態様では、上記の楽曲データ調整装置は、前記第 1のピッチシフト量に 基づいて前記第 1の楽曲データのピッチをシフトする第 1のピッチシフト手段と、前記 第 2のピッチシフト量に基づいて、前記第 2の楽曲データのピッチをシフトする第 2の ピッチシフト手段と、前記第 1のピッチシフト手段によるシフト後の前記第 1の楽曲デ ータと、前記第 2のピッチシフト手段によるシフト後の前記第 2の楽曲データをミックス して出力するミキサーと、を備えることができる。これにより、第 1の楽曲データと第 2の 楽曲データを同時に再生した場合、あるいは、切り換えて再生した場合でも、違和感 のない再生が可能となる。 [0022] Further, in this aspect, the music data adjustment device described above has the first pitch shift amount. A first pitch shift means for shifting the pitch of the first music data based on the second pitch shift means for shifting the pitch of the second music data based on the second pitch shift amount; A mixer that mixes and outputs the first music data after the shift by the first pitch shift means and the second music data after the shift by the second pitch shift means. be able to. As a result, even when the first music data and the second music data are played back at the same time, or when the music data are switched and played back, it is possible to play without any sense of incongruity.
[0023] 上記の楽曲データ調整装置の他の一態様では、前記ピッチシフト量算出部は、前 記第 1のずれ量、前記第 2のずれ量、前記第 1の楽曲データのキー及び前記第 2の 楽曲データのキーに基づ 、て、前記第 1の楽曲データ及び前記第 2の楽曲データの 各々の楽音が基準音階と一致し、かつ、前記第 1の楽曲データのキーと前記第 2の 楽曲データのキーが一致するように前記第 2の楽曲データのピッチをシフトする。  [0023] In another aspect of the music data adjustment apparatus, the pitch shift amount calculation unit includes the first shift amount, the second shift amount, the first music data key, and the first music data key. On the basis of the music data key of 2, the music of each of the first music data and the second music data matches a reference scale, and the key of the first music data and the second music data The pitch of the second music data is shifted so that the music data keys match.
[0024] この態様では、第 1のずれ量、第 2のずれ量、第 1の楽曲データのキー及び第 2の 楽曲データのキーに基づいて、第 1の楽曲データ及び第 2の楽曲データの各々の楽 音が基準音階と一致し、かつ、第 1の楽曲データのキーと第 2の楽曲データのキーが 一致するように第 2の楽曲データのピッチがシフトされる。即ち、第 1の楽曲データ及 び第 2の楽曲データの音階補正と、第 2の楽曲データのキーシフトとを同時に行うこと ができる。  [0024] In this aspect, based on the first shift amount, the second shift amount, the first song data key, and the second song data key, the first song data and the second song data The pitch of the second music data is shifted so that each musical tone matches the reference scale, and the key of the first music data and the key of the second music data match. That is, the scale correction of the first music data and the second music data and the key shift of the second music data can be performed simultaneously.
[0025] また、この態様では、上記の楽曲データ調整装置は、前記ピッチシフト量に基づ!/ヽ て、前記第 2の楽曲データのピッチをシフトするピッチシフト手段と、前記第 1の楽曲 データと、前記ピッチシフト手段によるピッチシフト後の前記第 2の楽曲データとをミツ タスして出力するミキサーと、を備えることができる。これにより、第 1の楽曲データと第 2の楽曲データを同時に再生した場合、あるいは、切り換えて再生した場合でも、違 和感のな!/、再生が可能となる。  [0025] Also, in this aspect, the music data adjustment device includes a pitch shift means for shifting the pitch of the second music data based on the pitch shift amount, and the first music data. And a mixer that outputs the data and the second music data after the pitch shift by the pitch shift means. As a result, even when the first music data and the second music data are played back at the same time, or when the music data is switched and played back, it becomes possible to play with no sense of incongruity.
[0026] 上記の楽曲データ調整装置の好適な例では、前記第 1及び第 2の周波数分析部 の各々は、前記楽曲データを周波数領域の信号に変換する変換部と、前記周波数 領域の信号から、複数の振幅ピーク値を検出するピーク検出部と、前記複数のピー ク値に基づいて、前記楽曲データを構成する複数の楽音の周波数を算出して前記 周波数特性を算出する周波数特性算出部と、を備える。 [0026] In a preferred example of the music data adjustment device, each of the first and second frequency analysis units includes: a conversion unit that converts the music data into a frequency domain signal; and a frequency domain signal. A peak detector for detecting a plurality of amplitude peak values; and calculating frequencies of a plurality of musical sounds constituting the music data based on the plurality of peak values. A frequency characteristic calculator that calculates the frequency characteristic.
[0027] この例では、楽曲データは、まず FFTなどの手法により周波数領域の信号に変換 される。周波数領域の信号から、各々が楽音に対応する複数のピーク値が検出され る。そして、複数のピーク値に基づいて楽曲データを構成する楽音の周波数が算出 され、周波数特性が算出される。 In this example, music data is first converted into a frequency domain signal by a technique such as FFT. A plurality of peak values, each corresponding to a musical tone, are detected from the frequency domain signal. Then, the frequency of the musical sound constituting the music data is calculated based on the plurality of peak values, and the frequency characteristic is calculated.
[0028] 上記の楽曲データ調整装置の他の好適な例では、前記第 1及び第 2のキー導出部 の各々は、前記周波数特性及び前記ずれ量に基づいて、前記ずれ量の補正後の複 数の楽音力 構成される和音を検出する和音検出部と、検出された和音に基づいて[0028] In another preferable example of the music data adjusting device, each of the first and second key deriving units may perform a correction of the deviation amount based on the frequency characteristic and the deviation amount. A number of musical tones, a chord detector that detects the composed chords, and based on the detected chords
、前記楽曲データのキーを判定するキー判定部と、を備える。 And a key determination unit for determining a key of the music data.
[0029] この例では、楽曲データの周波数特性及びずれ量に基づいて和音が検出され、検 出された和音に基づいて楽曲データのキーが判定される。 [0029] In this example, a chord is detected based on the frequency characteristics and shift amount of the music data, and the key of the music data is determined based on the detected chord.
図面の簡単な説明  Brief Description of Drawings
[0030] [図 1]本発明の第 1実施例に係る楽曲データ調整装置の構成を示すブロック図である  FIG. 1 is a block diagram showing a configuration of a music data adjustment apparatus according to a first embodiment of the present invention.
[図 2]楽曲データの周波数特性の例を示すグラフである。 FIG. 2 is a graph showing an example of frequency characteristics of music data.
[図 3]平均律音階の周波数を示す図表である。  FIG. 3 is a chart showing the frequency of the average temperament scale.
[図 4]本発明の第 2実施例に係る楽曲データ調整装置の構成を示すブロック図である  FIG. 4 is a block diagram showing a configuration of a music data adjustment apparatus according to a second embodiment of the present invention.
[図 5]和音検出に使用される楽曲データのレベルの例を示す。 [Figure 5] Shows an example of music data level used for chord detection.
[図 6]和音テーブルの例を示す。  [Figure 6] Shows an example of a chord table.
[図 7]第 2の実施例の変形例に係る楽曲データ調整装置の構成を示すブロック図で ある。  FIG. 7 is a block diagram showing a configuration of a music data adjustment apparatus according to a modification of the second embodiment.
[図 8]第 2の実施例の他の変形例に係る楽曲データ調整装置の構成を示すブロック 図である。  FIG. 8 is a block diagram showing a configuration of a music data adjustment device according to another modification of the second embodiment.
符号の説明  Explanation of symbols
[0031] 10、 500、 501、 502 楽曲データ調整装置 [0031] 10, 500, 501, 502 Music data adjustment device
11、 111、 211 FFT部  11, 111, 211 FFT section
12、 112、 212 ピーク検出部 13、 113、 213 周波数特性算出部 12, 112, 212 Peak detector 13, 113, 213 Frequency characteristics calculator
14、 114、 214 周波数ずれ量算出部  14, 114, 214 Frequency deviation calculation section
15、 115、 215 ピッチシフト量算出部  15, 115, 215 Pitch shift amount calculation unit
20、 120、 152、 151、 156、 220 ピッチシフタ  20, 120, 152, 151, 156, 220 Pitch shifter
10、 110、 210 調整装置  10, 110, 210 Adjustment device
116、 216 和音検出部  116, 216 Chord detector
117、 217 和音進行パターン導出部  117, 217 Chord progression pattern deriving section
118、 218 キー判定部  118, 218 Key judgment part
150、 153、 155 ピッチシフト量算出部  150, 153, 155 Pitch shift amount calculation unit
154 ミキサー  154 mixer
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0032] 以下、図面を参照して本発明の好適な実施例について説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
[0033] [第 1実施例] [0033] [First embodiment]
図 1に、本発明の第 1実施例に係る楽曲データ調整装置の概略構成を示す。第 1 実施例の楽曲データ調整装置 10は、入力楽曲データを、例えば平均律音階など、 ある基準となる音階(「基準音階」と呼ぶ。 )に合わせるように調整するために使用され る。  FIG. 1 shows a schematic configuration of a music data adjusting apparatus according to the first embodiment of the present invention. The music data adjustment device 10 of the first embodiment is used to adjust the input music data so as to match a certain reference scale (referred to as “reference scale”) such as an average temperament scale.
[0034] 図 1に示すように、楽曲データ調整装置 10は、 FFT部 11と、ピーク検出部 12と、周 波数特性算出部 13と、周波数ずれ量算出部 14と、ピッチシフト量算出部 15とを備え る。楽曲データ調整装置 10は、入力楽曲データ Dinを周波数分析することにより、入 力楽曲データ Dinの基準音階力 のずれ量を算出し、そのずれ量に応じたピッチシ フト量 D5を算出してピッチシフター 20へ供給する。ピッチシフター 20は、ピッチシフ ト量 D5に基づいて入力楽曲データ Dinのピッチを調整し、入力楽曲データ Dinを構 成する楽音を基準音階と一致させる。そして、ピッチシフター 20は、補正後の楽曲デ ータを出力楽曲データ Doutとして外部へ出力する。  As shown in FIG. 1, the music data adjustment device 10 includes an FFT unit 11, a peak detection unit 12, a frequency characteristic calculation unit 13, a frequency shift amount calculation unit 14, and a pitch shift amount calculation unit 15. And. The music data adjustment device 10 performs frequency analysis on the input music data Din to calculate a shift amount of the reference scale force of the input music data Din, and calculates a pitch shift amount D5 corresponding to the shift amount to calculate the pitch shifter. Supply to 20. The pitch shifter 20 adjusts the pitch of the input music data Din based on the pitch shift amount D5, and matches the musical sound constituting the input music data Din with the reference scale. Then, the pitch shifter 20 outputs the corrected music data to the outside as output music data Dout.
[0035] なお、図 1の例では、楽曲データ調整装置 10自体はピッチシフト機能を有しないよ うに構成され、外部のピッチシフター 20によりピッチの調整を行っている。その代わり に、楽曲データ調整装置 10の内部にピッチシフターを備えるように構成することとし てもよい。 In the example of FIG. 1, the music data adjustment device 10 itself is configured not to have a pitch shift function, and the pitch is adjusted by an external pitch shifter 20. Instead, the music data adjustment device 10 is configured to include a pitch shifter. May be.
[0036] 以下、楽曲データ調整装置 10の内部構成について詳しく説明する。 FFT(Fast Fo urier Transform)部 11は、入力楽曲データ Dinを周波数領域で分析するため、時間 領域の信号である入力楽曲データ Dinを、周波数領域の信号 D1に変換する。周波 数領域の信号 D 1はピーク検出部 12へ送られる。  Hereinafter, the internal configuration of the music data adjustment device 10 will be described in detail. An FFT (Fast Fourier Transform) unit 11 converts the input music data Din, which is a time domain signal, into a frequency domain signal D1 in order to analyze the input music data Din in the frequency domain. The frequency domain signal D 1 is sent to the peak detector 12.
[0037] ピーク検出部 12は、周波数領域の信号 D1に含まれる振幅のピーク値を複数検出 する。周波数領域の信号 D1の一例を図 2に示す。図 2の横軸は周波数、縦軸はレべ ルを示す。図示のように、周波数領域の信号 D1には、入力楽曲データ Dinを構成す る複数の楽音に対応する振幅のピーク点が複数含まれている。ピーク検出部 12は、 これら複数のピーク点を検出し、各ピーク点を示す信号 D2を周波数特性算出部 13 へ供給する。  [0037] The peak detection unit 12 detects a plurality of peak values of amplitude included in the frequency domain signal D1. An example of the frequency domain signal D1 is shown in FIG. In Fig. 2, the horizontal axis represents frequency, and the vertical axis represents level. As shown in the figure, the frequency domain signal D1 includes a plurality of amplitude peak points corresponding to a plurality of musical sounds constituting the input music data Din. The peak detection unit 12 detects the plurality of peak points and supplies a signal D2 indicating each peak point to the frequency characteristic calculation unit 13.
[0038] 周波数特性算出部 13は、信号 S2に含まれる複数のピーク点に対応する各周波数 fl、 f2、…を取得する。これらの周波数は、入力楽曲データ Dinを構成する複数の楽 曲の周波数に対応する。さらに、周波数特性算出部 13は、各周波数 fl、 f2、 ..に基 づいて、当該入力楽曲データ Dinの 1オクターブを構成する音階 (C、 D、 E、 F、 G、 A 、 B)の各周波数を算出し、信号 D3として周波数ずれ量算出部 14へ供給する。この ように、 FFT部 11、ピーク検出部 12及び周波数特性算出部 13は、本発明における 周波数分析部を構成する。  [0038] The frequency characteristic calculation unit 13 acquires each frequency fl, f2, ... corresponding to a plurality of peak points included in the signal S2. These frequencies correspond to the frequencies of the multiple songs that make up the input song data Din. Further, the frequency characteristic calculation unit 13 calculates the scales (C, D, E, F, G, A, B) of one octave of the input music data Din based on the frequencies fl, f2,. Each frequency is calculated and supplied to the frequency shift amount calculation unit 14 as a signal D3. Thus, the FFT unit 11, the peak detection unit 12, and the frequency characteristic calculation unit 13 constitute a frequency analysis unit in the present invention.
[0039] 周波数ずれ量算出部 14は、入力楽曲データの 1オクターブの、基準音階に対する ずれ量 D4を算出する。基準音階の一例として、平均律音階の周波数を図 3に示す。 なお、図 3は、基準となる「A」の音 (440Hz)を含む 1オクターブ分の平均律音階の 周波数を示している。周波数ずれ量算出部 14は、周波数特性算出部 13から供給さ れた、入力楽曲データ Dinの 1オクターブを構成する各音階の周波数を、図 3に示す 平均律音階の周波数と比較し、ずれ量を周波数値として算出する。さらに、周波数ず れ量算出部 14は、得られたずれ量の周波数値を「セント(cent)」に換算する。セント は、音程を示す単位であり、 1オクターブは 1200セントに相当する。よって、平均律 音階の半音は 100セントに相当する。例えば、ある平均律音階の周波数「f」に対し、 入力楽曲データ中の対応する楽音が周波数「x」だけずれて!/、るとすると、ずれ量 D4 は、 [0039] The frequency deviation calculation unit 14 calculates the deviation D4 of the octave of the input music data with respect to the reference scale. Figure 3 shows the frequency of the average scale as an example of the reference scale. Figure 3 shows the frequency of the average temperament scale for one octave including the reference “A” sound (440 Hz). The frequency deviation calculation unit 14 compares the frequency of each scale constituting one octave of the input music data Din supplied from the frequency characteristic calculation unit 13 with the frequency of the average temperament scale shown in FIG. Is calculated as a frequency value. Further, the frequency shift amount calculation unit 14 converts the frequency value of the obtained shift amount into “cent”. Cent is a unit of pitch, and one octave is equivalent to 1200 cents. Thus, a semitone of the average scale corresponds to 100 cents. For example, if the corresponding musical tone in the input music data is shifted by the frequency “x” with respect to the frequency “f” of an average temperament scale, the amount of deviation D4 Is
D4 = 12001og { (f+x) /f} [セント] (式 1)  D4 = 12001og {(f + x) / f} [cent] (Formula 1)
2  2
として算出される。こうして、周波数ずれ量算出部 14は、入力楽曲データ Dinの、基 準となる平均律音階からのずれ量 D4をセント単位で算出し、ピッチシフト量算出部 1 5へ供給する。  Is calculated as Thus, the frequency shift amount calculation unit 14 calculates the shift amount D4 of the input music data Din from the reference average temperament scale in cents and supplies it to the pitch shift amount calculation unit 15.
[0040] ピッチシフト量算出部 15は、ずれ量 D4に基づいて、入力楽曲データ Dinを平均律 音階と一致させるために、入力楽曲データ Dinのピッチ (音の高低)を変化させるべき ピッチシフト量 D5を算出し、ピッチシフター 20へ供給する。例えば入力楽曲データ D inのずれ量 D4が「— 10セント」である場合には、ピッチシフト量算出部 15はピッチシ フト量 D5として「 + 10セント」を生成し、ピッチシフター 20へ供給する。なお、ここでの ピッチシフトは、入力楽曲データを基準音階に一致させるためのピッチシフトであり、 これを「音階補正」とも呼ぶ。  [0040] The pitch shift amount calculation unit 15 should change the pitch (sound pitch) of the input music data Din in order to match the input music data Din with the average scale based on the deviation D4. D5 is calculated and supplied to the pitch shifter 20. For example, when the shift amount D4 of the input music data Din is “−10 cents”, the pitch shift amount calculation unit 15 generates “+10 cents” as the pitch shift amount D5 and supplies it to the pitch shifter 20. The pitch shift here is a pitch shift for matching the input music data to the reference scale, and this is also called “scale correction”.
[0041] ピッチシフター 20には入力楽曲データ Dinが入力されている。よって、ピッチシフタ 一 20は、ピッチシフト量 D5に基づいて入力楽曲データ Dinのピッチをシフトし、出力 楽曲データ Doutを生成して出力する。こうして、出力楽曲データ Doutは、基準音階と 一致するように調整がなされる。この処理は、「チューニング」とも呼ばれる。  [0041] The input music data Din is input to the pitch shifter 20. Therefore, the pitch shifter 120 shifts the pitch of the input music data Din based on the pitch shift amount D5, and generates and outputs the output music data Dout. In this way, the output music data Dout is adjusted to match the reference scale. This process is also called “tuning”.
[0042] 以上のように、本発明の第 1実施例によれば、入力楽曲データが、平均律音階など の基準音階力 ずれている場合でも、自動的に基準音階と一致するようにチュー- ングを行うことができる。よって、人間の聴覚に頼ることなぐ正確なチューニングが可 能となる。  [0042] As described above, according to the first embodiment of the present invention, even if the input musical composition data is shifted in the reference scale force such as the average temperament scale, the tuner is automatically matched with the reference scale. Can be performed. Therefore, accurate tuning is possible without relying on human hearing.
[0043] なお、上記の実施例では、基準音階として平均律音階を挙げているが、本発明の 適用はこれには限定されない。平均律音階の以外に基準となる音階や音の系列など があれば、それに対してチューニングを行うことも可能である。その場合には、周波数 特性算出部 13が、図 3に示した平均律音階の周波数の代わりに、基準となる音階や 音の系列を構成する周波数テーブルに基づいて周波数のずれ量を算出すればよい  [0043] In the above embodiment, the average temperament scale is used as the reference scale, but the application of the present invention is not limited to this. In addition to the average temperament scale, if there is a standard scale or sound sequence, tuning is possible. In that case, if the frequency characteristic calculation unit 13 calculates the amount of frequency deviation based on the frequency table that constitutes the reference scale and the sound sequence instead of the frequency of the average scale shown in FIG. Good
[0044] [第 2実施例] [0044] [Second embodiment]
次に、本発明の第 2実施例について説明する。第 2実施例に係る楽曲データ調整 装置は、 2つの入力楽曲データの各々を平均律音階などの基準音階に一致させると ともに、 2つの入力楽曲データのキーを一致させるものである。 Next, a second embodiment of the present invention will be described. Music data adjustment according to the second embodiment The device matches each of the two input music data with a reference scale such as an average temperament scale, and matches the keys of the two input music data.
[0045] 図 4は、第 2実施例に係る楽曲データ調整装置の構成を示す。図示のように、楽曲 データ調整装置 500は、大別して第 1の調整装置 100と、第 2の調整装置 200と、ピ ツチシフト量算出部 150と、ピッチシフター 152と、ミキサー 154とを備える。  FIG. 4 shows a configuration of the music data adjusting device according to the second embodiment. As shown in the figure, the music data adjustment device 500 roughly includes a first adjustment device 100, a second adjustment device 200, a pitch shift amount calculation unit 150, a pitch shifter 152, and a mixer 154.
[0046] 第 1の調整装置 100は、入力楽曲データ D1が入力され、入力楽曲データ D1を基 準音階に一致するように補正した楽曲データ D19をミキサー 154へ出力する。また、 第 1の調整装置 100は、入力楽曲データ D1のキーを判定し、キーデータ D18として ピッチシフト量算出部 150へ供給する。なお、第 1の調整装置は、マスター側の調整 装置として機能する。  [0046] The first adjustment device 100 receives the input music data D1, and outputs the music data D19 corrected to match the reference musical scale to the mixer 154. The first adjustment device 100 determines the key of the input music data D1 and supplies it to the pitch shift amount calculation unit 150 as key data D18. The first adjustment device functions as a master-side adjustment device.
[0047] 第 2の調整装置 200は基本的に第 1の調整装置と同様の構成を有する。第 2の調 整装置 200は、入力楽曲データ D2が入力され、入力楽曲データ D2を基準音階に 一致するように補正した楽曲データ D29をピッチシフター 152へ出力する。また、第 2 の調整装置 200は、入力楽曲データ D2のキーを判定し、キーデータ D28としてピッ チシフト量算出部 150へ供給する。なお、第 2の調整装置はスレーブ側の調整装置 として機能する。  [0047] The second adjustment device 200 has basically the same configuration as the first adjustment device. The second adjusting device 200 receives the input music data D2, and outputs the music data D29 corrected to match the reference musical scale to the pitch shifter 152. The second adjustment device 200 determines the key of the input music data D2 and supplies it to the pitch shift amount calculation unit 150 as key data D28. The second adjustment device functions as a slave-side adjustment device.
[0048] ピッチシフト量算出部 150は、入力楽曲データ D1のキーデータ D18と、入力楽曲 データ D2のキーデータ D28とに基づいて、入力楽曲データ D2のキーを入力楽曲 データ D1のキーに合わせるために入力楽曲データ D2に対して行うべきピッチシフト 量 D50を算出し、ピッチシフター 152へ供給する。なお、このピッチシフトは、 2つの 楽曲データのキーを合わせるためのシフトであり、「キーシフト」とも呼ぶ。  [0048] The pitch shift amount calculation unit 150 matches the key of the input music data D2 with the key of the input music data D1 based on the key data D18 of the input music data D1 and the key data D28 of the input music data D2. Then, a pitch shift amount D50 to be performed on the input music data D2 is calculated and supplied to the pitch shifter 152. This pitch shift is a shift for matching the keys of the two music data, and is also called “key shift”.
[0049] ピッチシフター 152は、ピッチシフト量 D50に基づいて、基準音階と一致するように 補正がなされた楽曲データ D29に対し、ピッチシフトを行うことにより、入力楽曲デー タ D1とキーが一致した楽曲データ D52をミキサー 154へ供給する。ミキサー 154は、 楽曲データ D19と、楽曲データ D52とをミックスして出力楽曲データ Doutとして出力 する。前述のように、楽曲データ D19は、入力楽曲データ D1を基準音階と一致する ように補正することにより得られた楽曲データである。また、楽曲データ D52は、入力 楽曲データ D2を基準音階と一致するように補正し、さらに入力楽曲データ D1とキー がー致するようにピッチをシフトして得られた楽曲データである。従って、ミキサー 154 は、基準音階と一致するとともに、相互にキーが一致した 2つの楽曲データをミックス し、出力楽曲データ Doutとして出力することとなる。よって、楽曲データ D19と D52は ハーモニックミックスされ、音楽的に自然な状態で出力される。 [0049] The pitch shifter 152 matches the input music data D1 with the key by performing a pitch shift on the music data D29 that has been corrected to match the reference scale based on the pitch shift amount D50. The music data D52 is supplied to the mixer 154. The mixer 154 mixes the music data D19 and the music data D52 and outputs the result as output music data Dout. As described above, the music data D19 is music data obtained by correcting the input music data D1 so that it matches the reference scale. In addition, the music data D52 is corrected so that the input music data D2 matches the reference scale, and the input music data D1 and the key This is music data obtained by shifting the pitch to match. Therefore, the mixer 154 mixes two music data that match the reference scale and have the same key, and outputs it as output music data Dout. Therefore, the music data D19 and D52 are harmonically mixed and output in a musically natural state.
[0050] 次に、第 1の調整装置 100について詳しく説明する。図示のように、第 1の調整装置 100は、 FFT部 111と、ピーク検出部 112と、周波数特性算出部 113と、周波数ずれ 量算出部 114と、ピッチシフト量算出部 115と、和音検出部 116と、和音進行パター ン導出部 117と、キー判定部 118とを備える。このうち、 FFT部 111、ピーク検出部 1 12、周波数特性算出部 113、周波数ずれ量算出部 114及びピッチシフト量算出部 1 15は、第 1の実施例における FFT部 11、ピーク検出部 12、周波数特性算出部 13、 周波数ずれ量算出部 14及びピッチシフト量算出部 15とそれぞれ同一であり、入力 楽曲データ D1を基準音階と一致させるようにピッチシフトする役割を有する。即ち、 F FT部 111が入力楽曲データ D1を周波数領域の信号 Dl 1に変換し、ピーク検出部 1 12が振幅のピーク点を複数検出する。周波数特性算出部 113は、振幅のピーク点 に基づいて入力楽曲データ D1のオクターブの周波数特性を算出し、周波数ずれ量 算出部 114はその周波数特性と、基準音階の周波数とに基づいて周波数のずれ量 を算出する。そして、ピッチシフト量算出部 115は、周波数のずれ量に基づいてピッ チシフト量を算出し、ピッチシフター 120へ供給する。ピッチシフター 120は、ピッチ シフト量算出部 115が算出したピッチシフト量に従って入力楽曲データ D1のピッチ を変更する。こうして、基準音階に一致した楽曲データ D19が生成され、ミキサー 15 4へ供給される。 [0050] Next, the first adjusting device 100 will be described in detail. As illustrated, the first adjustment device 100 includes an FFT unit 111, a peak detection unit 112, a frequency characteristic calculation unit 113, a frequency shift amount calculation unit 114, a pitch shift amount calculation unit 115, and a chord detection unit. 116, a chord progression pattern derivation unit 117, and a key determination unit 118. Among these, the FFT unit 111, the peak detection unit 112, the frequency characteristic calculation unit 113, the frequency shift amount calculation unit 114, and the pitch shift amount calculation unit 1 15 are the FFT unit 11, the peak detection unit 12, The frequency characteristic calculation unit 13, the frequency shift amount calculation unit 14, and the pitch shift amount calculation unit 15 are the same, and have a role of pitch shifting so that the input music data D1 matches the reference scale. That is, the FFT unit 111 converts the input music data D1 into a frequency domain signal Dl 1, and the peak detection unit 112 detects a plurality of amplitude peak points. The frequency characteristic calculator 113 calculates the octave frequency characteristic of the input music data D1 based on the peak point of the amplitude, and the frequency shift calculator 114 calculates the frequency shift based on the frequency characteristic and the frequency of the reference scale. Calculate the quantity. Then, the pitch shift amount calculation unit 115 calculates the pitch shift amount based on the frequency shift amount, and supplies it to the pitch shifter 120. The pitch shifter 120 changes the pitch of the input music data D1 according to the pitch shift amount calculated by the pitch shift amount calculation unit 115. Thus, music data D19 matching the reference scale is generated and supplied to the mixer 154.
[0051] 一方、和音検出部 116、和音進行パターン導出部 117及びキー判定部 118は、入 力楽曲データ D1のキーを導出する役割を有する。周波数特性算出部 113が算出し た周波数特性を示す信号 D13、及び、周波数ずれ量算出部 114が生成したずれ量 D14は、和音検出部 116へ入力される。和音検出部 116は、所定の時間幅毎に、ず れ量 D14を考慮して入力楽曲データ D1の周波数特性を分析し、平均律音階に相 当する楽音を検出する。平均律音階の周波数は図 3に示すように既知であるので、 各周波数に対応する信号レベルが各音階のレベルとして検出される。検出された楽 音のレベルの一例を図 5に示す。 On the other hand, the chord detecting unit 116, the chord progression pattern deriving unit 117, and the key determining unit 118 have a role of deriving the key of the input music data D1. The signal D13 indicating the frequency characteristic calculated by the frequency characteristic calculation unit 113 and the shift amount D14 generated by the frequency shift amount calculation unit 114 are input to the chord detection unit 116. The chord detection unit 116 analyzes the frequency characteristics of the input music data D1 in consideration of the shift amount D14 for each predetermined time width, and detects a musical sound corresponding to the average temperament scale. Since the frequency of the average scale is known as shown in FIG. 3, the signal level corresponding to each frequency is detected as the level of each scale. Easily detected An example of the sound level is shown in Fig. 5.
[0052] 和音は複数の音の組み合わせであり、各和音を構成する音 (以下、「構成音」と呼 ぶ。)は音楽理論上決まっている。和音検出部 116は、複数の和音とその構成音との 対応を示す和音テーブルを記憶している。和音テーブルの一例を図 6に示す。図示 のように、和音毎に、その和音を構成する構成音が対応付けられている。  [0052] A chord is a combination of a plurality of sounds, and the sound constituting each chord (hereinafter referred to as "component sound") is determined in music theory. The chord detection unit 116 stores a chord table indicating correspondence between a plurality of chords and their constituent sounds. An example of a chord table is shown in Fig. 6. As shown in the figure, each chord is associated with a constituent sound that constitutes the chord.
[0053] 和音検出部 116は、図 5に示す楽音のレベルに基づいて、レベルが大きい順に 3 つの楽音を選択し、それらの組み合わせが和音テーブルに記憶されて 、る 、ずれか の和音に該当する力否かを判定する。これにより、そのときの時間幅における和音を 検出することができる。図 5の例では、レベルが大きい楽音として、 3つの楽音「C」、「 E」、「G」が選択される。よって、図 6に示す和音テーブルを参照し、その時間幅にお ける入力楽曲データ D1は和音「C」により構成されていることが検出される。なお、こ こでは 3和音についてのみ説明した力 レベルの大きい順に選択する楽曲の数を変 更するなどして、同様に 4和音、 7和音なども検出することができる。  [0053] The chord detection unit 116 selects three musical tones in descending order based on the musical tone levels shown in FIG. 5, and the combinations thereof are stored in the chord table and correspond to any chord. It is determined whether or not the power to do. Thereby, the chord in the time width at that time can be detected. In the example of FIG. 5, three musical tones “C”, “E”, and “G” are selected as musical tones having a high level. Therefore, with reference to the chord table shown in FIG. 6, it is detected that the input music data D1 in the time width is composed of the chord “C”. In addition, here we can detect 4 chords and 7 chords in the same way by changing the number of songs to be selected in descending order of the power level described only for 3 chords.
[0054] 和音検出部 116は、上記の処理を所定の時間幅毎に繰り返し行う。なお、この時間 幅は、一般的な楽曲にぉ 、て和音が変化する周期(時間幅)を考慮して決定される。 和音検出を時間幅単位で繰り返し行うことにより検出された複数の和音は、信号 D16 として和音進行パターン導出部 117に入力される。  The chord detection unit 116 repeats the above processing every predetermined time width. This time width is determined in consideration of a period (time width) in which a chord changes in general music. A plurality of chords detected by repeatedly performing chord detection in units of time widths are input to the chord progression pattern deriving unit 117 as a signal D16.
[0055] 和音進行パターン導出部 117は、入力された複数の和音に基づいて、和音進行パ ターンを導出する。和音進行パターンとは、楽曲中の時間の経過に伴う和音の変化 を示すデータであり、例えば和音検出部 116が検出した複数の和音を、楽曲中の時 間軸に沿って配列したデータとすることができる。導出された和音進行パターン D17 はキー判定部 118へ入力される。  The chord progression pattern deriving unit 117 derives a chord progression pattern based on a plurality of input chords. A chord progression pattern is data indicating changes in chords over time in a song.For example, a plurality of chords detected by the chord detector 116 are arranged along the time axis in the song. be able to. The derived chord progression pattern D17 is input to the key determination unit 118.
[0056] キー判定部 118は、和音進行パターン D17に基づいて、その楽曲のキー (調)を判 定する。具体的に、キー判定部 118は、いくつかの判定基準に従って、その楽曲の キーを判定することができる。キーの判定基準としては、例えば、その楽曲全体を通 じて最も多く登場した和音をその曲のキーと判定する、又は、その楽曲の最後の小節 の和音をその楽曲のキーと判定する、などが考えられる。キー判定部 118はこれらの 基準のいずれかを使用し、又は、複数の基準を組み合わせて、その曲のキーを判定 する。判定されたキーを示すキーデータ D18はピッチシフト量算出部 150へ供給さ れる。 The key determination unit 118 determines the key (key) of the music based on the chord progression pattern D17. Specifically, the key determination unit 118 can determine the key of the music according to some determination criteria. The key criteria are, for example, determining the chord that appears most frequently throughout the song as the key of the song, or determining the chord of the last measure of the song as the key of the song, etc. Can be considered. The key judgment unit 118 uses one of these criteria or combines multiple criteria to judge the key of the song. To do. Key data D18 indicating the determined key is supplied to pitch shift amount calculation section 150.
[0057] 以上のように、和音検出部 116、和音進行パターン導出部 117及びキー判定部 11 8は、入力楽曲データのキーを導出するキー導出部として機能する。  As described above, the chord detection unit 116, the chord progression pattern derivation unit 117, and the key determination unit 118 function as a key derivation unit that derives keys of input music data.
[0058] 第 2の調整装置 200は、第 1の調整装置 100と同様に構成されており、同様に動作 する。よって、キー判定部 218は、入力楽曲データ D2のキーを判定し、キーデータ D 28をピッチシフト量算出部 150へ供給する。なお、第 2調整装置 200においても、ピ ツチシフト量算出部 215が算出したピッチシフト量 D25に基づいてピッチシフター 22 0が入力楽曲データ D2のピッチを変更して基準音階と一致させるが、その結果得ら れた楽曲データ D29は、ミキサー 154ではなぐピッチシフター 152へ供給される。こ の点は、第 2の調整装置 200は第 1の調整装置 100と異なっている。  [0058] The second adjustment device 200 is configured in the same manner as the first adjustment device 100, and operates in the same manner. Therefore, the key determination unit 218 determines the key of the input music data D2, and supplies the key data D28 to the pitch shift amount calculation unit 150. Also in the second adjustment device 200, the pitch shifter 220 changes the pitch of the input music data D2 based on the pitch shift amount D25 calculated by the pitch shift amount calculation unit 215 to match the reference musical scale. The obtained music data D29 is supplied to the pitch shifter 152 that is not included in the mixer 154. In this respect, the second adjustment device 200 is different from the first adjustment device 100.
[0059] こうして、ピッチシフト量算出部 150は、入力楽曲データ D1のキーと入力楽曲デー タ D2のキーが一致するように、入力楽曲データ D2のピッチをシフトするピッチシフト 量 (即ち、キーシフト量) D50を算出し、ピッチシフター 152へ供給する。ピッチシフタ 一 152は、ピッチシフト量 D50に基づいて、基準音階に一致させる補正がなされた楽 曲データ D29のピッチをシフトし、楽曲データ D52をミキサー 154へ供給する。こうし て、ミキサー 154は、いずれも基準音階と一致し、かつ、相互にキーが一致している 楽曲データ D19と D52をミックスし、出力楽曲データ Doutとして出力する。  [0059] In this way, the pitch shift amount calculation unit 150 shifts the pitch of the input music data D2 so that the key of the input music data D1 and the key of the input music data D2 match (that is, the key shift amount). ) Calculate D50 and supply to Pitch Shifter 152. The pitch shifter 152 shifts the pitch of the music data D29 that has been corrected to match the reference scale based on the pitch shift amount D50, and supplies the music data D52 to the mixer 154. In this way, the mixer 154 mixes the music data D19 and D52, both of which match the reference scale and the keys of each other, and outputs it as output music data Dout.
[0060] なお、上記の実施例では、ピッチシフター 120及び 220は、入力楽曲データを基準 音階と一致させるためのピッチシフト (即ち、音階補正)を行うものであるため、数セン ト単位の高精度のピッチシフト能力が要求される。これに対し、ピッチシフター 152は 、入力楽曲データのキーを一致させるためのピッチシフト(即ち、キーシフト)を行うも のであるため、そのシフト量はキーを合わせるために必要な半音単位で良い。  [0060] In the above embodiment, the pitch shifters 120 and 220 perform pitch shift (ie, scale correction) for matching the input music data with the reference scale, and therefore, the pitch shifters 120 and 220 are high in units of several cents. Accurate pitch shift capability is required. On the other hand, the pitch shifter 152 performs a pitch shift (that is, a key shift) for matching the keys of the input music data, and therefore the shift amount may be a semitone unit necessary for matching the keys.
[0061] また、上記の実施例では、ピッチシフト量算出部 150は、入力楽曲データ D1と入力 楽曲データ D2のキーが一致するようにピッチシフト量 D50を算出している。しかし、 ピッチシフター 152は半音単位でピッチをシフトさせる能力を有するので、ユーザの 操作に応じてキーシフト量を調整可能に構成することもできる。そうすれば、上述のよ うに入力楽曲データ D2のキーを自動で入力楽曲データ D1のキーと一致させるので はなぐユーザの好みに応じて入力楽曲データ D2のキーを変えることができ、ユーザ の趣向に合った楽曲のミキシングが可能となる。 In the above embodiment, the pitch shift amount calculation unit 150 calculates the pitch shift amount D50 so that the keys of the input music data D1 and the input music data D2 match. However, since the pitch shifter 152 has the ability to shift the pitch in semitones, the key shift amount can be adjusted according to the user's operation. Then, as described above, the key of the input music data D2 is automatically matched with the key of the input music data D1. The key of the input music data D2 can be changed according to the user's preference, and music can be mixed according to the user's taste.
[0062] 以上のように、本実施例によれば、 2つの楽曲のキーを自動的に合わせてミックス することができるので、ハーモニーが乱れることがなぐスムーズに心地よく聴こえる。 また、ディスクジョッキーなどにとっても技術的なサポートが得られ、プレイの幅も広が るという利点がある。  [0062] As described above, according to the present embodiment, the keys of two music pieces can be automatically matched and mixed, so that the harmony is not disturbed and can be heard smoothly and comfortably. In addition, there is an advantage that technical support is obtained for disc jockeys and the range of play is widened.
[0063] (第 1の変形例)  [0063] (First modification)
次に、第 2実施例の変形例について説明する。図 7に、第 2実施例の変形例に係る 楽曲データ調整装置 501の構成を示す。図 4に示す第 2実施例では、第 2の調整装 置 200内のピッチシフター 220が入力楽曲データ D2を基準音階に一致させるため のピッチシフト(即ち、音階補正)を行い、ピッチシフター 152が入力楽曲データ D2の キーを入力楽曲データ D1のキーと合わせるためのピッチシフト(即ち、キーシフト)を 行う。これに対し、図 7に示す変形例では、第 2調整装置 200内のピッチシフター 220 を省略し、ピッチシフター 151が音階補正とキーシフトを含めたピッチシフトを行う。  Next, a modification of the second embodiment will be described. FIG. 7 shows the configuration of a music data adjustment device 501 according to a modification of the second embodiment. In the second embodiment shown in FIG. 4, the pitch shifter 220 in the second adjustment device 200 performs a pitch shift (ie, scale correction) for matching the input music data D2 to the reference scale, and the pitch shifter 152 Pitch shift (ie key shift) is performed to match the key of input music data D2 with the key of input music data D1. On the other hand, in the modification shown in FIG. 7, the pitch shifter 220 in the second adjustment device 200 is omitted, and the pitch shifter 151 performs pitch shift including scale correction and key shift.
[0064] 具体的には、第 2の調整装置 200内のピッチシフト量算出部 215は、算出したピッ チシフト量 (音階補正量) D25をピッチシフト量算出部 153へ供給する。ピッチシフト 量算出部 153は、キー判定部 118及び 218からのデータ D 18及び D28に基づいて 、入力楽曲データ D2のキーを入力楽曲データ D 1のキーに合わせるためのピッチシ フト量 (キーシフト量)を算出する。そして、そのピッチシフト量と、ピッチシフト量算出 部 215から供給されたピッチシフト量 (音階補正量)に基づいて、ピッチシフト量 D55 を算出し、ピッチシフター 151へ供給する。これにより、ピッチシフター 151は、入力 楽曲データ D2を基準音階に一致させ、かつ、入力楽曲データ D1のキーと合わせる ためのピッチシフトを 1回で行うことができる。よって、ピッチシフター 220を省略するこ とができる。なお、ピッチシフター 151は、入力楽曲データ D2を基準音階に一致させ るためのピッチシフトを行うため、数セント単位でのピッチシフトを行う能力が要求され る。  Specifically, the pitch shift amount calculation unit 215 in the second adjustment device 200 supplies the calculated pitch shift amount (scale correction amount) D25 to the pitch shift amount calculation unit 153. Based on the data D18 and D28 from the key determination units 118 and 218, the pitch shift amount calculation unit 153 is configured to match the key of the input music data D2 with the key of the input music data D1 (key shift amount). Is calculated. Then, based on the pitch shift amount and the pitch shift amount (scale correction amount) supplied from the pitch shift amount calculation unit 215, the pitch shift amount D55 is calculated and supplied to the pitch shifter 151. As a result, the pitch shifter 151 can match the input music data D2 with the reference scale and perform a pitch shift once to match the key of the input music data D1. Therefore, the pitch shifter 220 can be omitted. Note that the pitch shifter 151 is required to have a capability of performing a pitch shift in units of several cents in order to perform a pitch shift for matching the input music data D2 to the reference scale.
[0065] (第 2の変形例)  [0065] (Second modification)
次に、第 2実施例の他の変形例について説明する。図 8に、第 2実施例の他の変形 例に係る楽曲データ調整装置 502の構成を示す。図 4に示す第 2実施例では、マス ター側に相当する第 1の調整装置 100において、ピッチシフター 120が第 1の入力楽 曲データを基準音階に一致させるためのピッチシフトを行っている。しかし、状況によ つては、マスター側の入力楽曲データ D1に対してはピッチシフトをせず、入力楽曲 データのままでミキサー 154によるミキシングの対象としたい場合が考えられる。第 2 の変形例はそのような要望に対応するものである。 Next, another modification of the second embodiment will be described. Fig. 8 shows another modification of the second embodiment. The structure of the music data adjustment apparatus 502 which concerns on an example is shown. In the second embodiment shown in FIG. 4, in the first adjusting device 100 corresponding to the master side, the pitch shifter 120 performs a pitch shift so that the first input music data matches the reference musical scale. However, depending on the situation, there may be a case where the input music data D1 on the master side is not subjected to pitch shift, and the input music data remains as the target of mixing by the mixer 154. The second variation corresponds to such a request.
[0066] 具体的には、図 8に示すように、マスター側の入力楽曲データ D1はピッチシフトさ れずにミキサー 154へ入力される。また、第 1の調整装置 100において、ピッチシフト 量算出部 115が出力するピッチシフト量 D15と、キー判定部 118が出力するキーデ ータ D18がピッチシフト量算出部 155へ入力される。同様に、第 2の調整装置 200に おいては、ピッチシフト量算出部 215が出力するピッチシフト量 D25と、キー判定部 2 18が出力するキーデータ D28がピッチシフト量算出部 155へ入力される。  Specifically, as shown in FIG. 8, the input music data D1 on the master side is input to the mixer 154 without being pitch-shifted. In the first adjustment device 100, the pitch shift amount D15 output from the pitch shift amount calculation unit 115 and the key data D18 output from the key determination unit 118 are input to the pitch shift amount calculation unit 155. Similarly, in second adjustment device 200, pitch shift amount D25 output from pitch shift amount calculation unit 215 and key data D28 output from key determination unit 218 are input to pitch shift amount calculation unit 155. The
[0067] そして、ピッチシフト量算出部 155は、ピッチシフト量 D15及び D25に基づいて、入 力楽曲データ D2を入力楽曲データ D1の音階に一致させるためのピッチシフト量 (音 階補正量)を算出する。即ち、この変形例では、入力楽曲データ D1の音階が基準音 階に相当する。また、ピッチシフト量算出部 155は、キーデータ D18及び D28に基づ いて、入力楽曲データ D2のキーを、入力楽曲データ D1のキーと合わせるためのピ ツチシフト量 (キーシフト量)を算出する。そして、ピッチシフト量算出部 155は、それら を合計してピッチシフト量 D57を算出し、ピッチシフター 156へ供給する。  [0067] Then, the pitch shift amount calculation unit 155 calculates a pitch shift amount (a scale correction amount) for matching the input music data D2 with the scale of the input music data D1 based on the pitch shift amounts D15 and D25. calculate. That is, in this modification, the scale of the input music data D1 corresponds to the reference scale. Also, the pitch shift amount calculation unit 155 calculates a pitch shift amount (key shift amount) for matching the key of the input music data D2 with the key of the input music data D1 based on the key data D18 and D28. Then, the pitch shift amount calculation unit 155 calculates the pitch shift amount D57 by adding them, and supplies the calculated pitch shift amount D57 to the pitch shifter 156.
[0068] ピッチシフター 156は、入力楽曲データ D2を入力楽曲データ D1の音階に一致さ せ、かつ、入力楽曲データ D2のキーを入力楽曲データ D1のキーと合わせるための ピッチシフトを 1回で行う。これにより、ミキサー 154は、ピッチシフトされていない入力 楽曲データ D1をミックスして出力することができる。また、ピッチシフター 156は、入 力楽曲データ D1の音階及びキーと一致するようにピッチシフトがなされた楽曲デー タ D58をミキサー 154へ供給するので、ミキサー 154から出力される楽曲データ Dout は、音階及びキーが一致した楽曲データをミキシングしたものとなり、違和感のない 楽曲を再生することができる。  [0068] The pitch shifter 156 matches the input music data D2 to the scale of the input music data D1, and performs a single pitch shift to match the key of the input music data D2 with the key of the input music data D1. . As a result, the mixer 154 can mix and output the input music data D1 that is not pitch-shifted. Also, the pitch shifter 156 supplies the music data D58 that has been pitch-shifted so as to match the scale and key of the input music data D1 to the mixer 154, so the music data Dout output from the mixer 154 is the scale data. And the music data with the same key is mixed, and the music without any discomfort can be played.
産業上の利用可能性 本発明は、楽曲データを再生する再生装置に使用することができ、いわゆるデイス コ、クラブなどでディスクジョッキーが使用する装置に使用することができる。例えば、 複数の楽曲をミキシングして出力するミキサーや、そのミキサーに内蔵するェフエクタ 一として本発明を適用することができる。 Industrial applicability The present invention can be used in a playback device that plays back music data, and can be used in a device used by a disc jockey in a so-called disco or club. For example, the present invention can be applied to a mixer that mixes and outputs a plurality of music pieces, or as an effector built in the mixer.

Claims

請求の範囲 The scope of the claims
[1] 楽曲データを周波数分析し、周波数特性を検出する周波数分析部と、  [1] A frequency analysis unit that performs frequency analysis of music data and detects frequency characteristics;
前記周波数特性に基づいて、前記楽曲データを構成する楽音の基準音階からの ずれ量を算出するずれ量算出部と、  A deviation amount calculation unit for calculating a deviation amount of a musical sound constituting the music data from a reference scale based on the frequency characteristics;
前記ずれ量に基づいて、前記楽音が基準音階と一致するように前記楽曲データの ピッチをシフトするためのピッチシフト量を算出するピッチシフト量算出部と、を備える ことを特徴とする楽曲データ調整装置。  A music data adjustment comprising: a pitch shift amount calculation unit that calculates a pitch shift amount for shifting the pitch of the music data so that the musical sound matches a reference scale based on the shift amount. apparatus.
[2] 前記ピッチシフト量に基づいて、前記楽曲データのピッチをシフトするピッチシフト 手段を備えることを特徴とする請求の範囲第 1項に記載の楽曲データ調整装置。  [2] The music data adjustment device according to claim 1, further comprising pitch shift means for shifting the pitch of the music data based on the pitch shift amount.
[3] 前記周波数分析部は、 [3] The frequency analysis unit includes:
前記楽曲データを周波数領域の信号に変換する変換部と、  A converter for converting the music data into a frequency domain signal;
前記周波数領域の信号から、複数の振幅ピーク値を検出するピーク検出部と、 前記複数のピーク値に基づいて、前記楽曲データを構成する複数の楽音の周波 数を算出して前記周波数特性を算出する周波数特性算出部と、を備えることを特徴 とする請求の範囲第 1項に記載の楽曲データ調整装置。  A peak detector that detects a plurality of amplitude peak values from the signal in the frequency domain, and calculates the frequency characteristics by calculating the frequencies of a plurality of musical sounds constituting the music data based on the plurality of peak values. The music data adjustment device according to claim 1, further comprising: a frequency characteristic calculation unit that performs the operation.
[4] 第 1の楽曲データを周波数分析し、第 1の周波数特性を検出する第 1の周波数分 析部と、 [4] A first frequency analysis unit that performs frequency analysis on the first music data and detects a first frequency characteristic;
前記第 1の周波数特性に基づいて、前記第 1の楽曲データを構成する楽音の基準 音階力 の第 1のずれ量を算出する第 1のずれ量算出部と、  A first deviation amount calculation unit for calculating a first deviation amount of a reference musical scale force of the musical sound constituting the first music data based on the first frequency characteristic;
前記第 1の周波数特性及び前記第 1のずれ量に基づいて、前記第 1の楽曲データ のキーを導出するキー導出部と、  A key deriving unit for deriving a key of the first music data based on the first frequency characteristic and the first shift amount;
第 2の楽曲データを周波数分析し、第 2の周波数特性を検出する第 2の周波数分 析部と、  A second frequency analysis unit for analyzing the frequency of the second music data and detecting a second frequency characteristic;
前記第 2の周波数特性に基づいて、前記第 2の楽曲データを構成する楽音の基準 音階力 の第 2のずれ量を算出する第 2のずれ量算出部と、  A second deviation amount calculation unit for calculating a second deviation amount of the reference scale force of the musical sound constituting the second music data based on the second frequency characteristic;
前記第 2の周波数特性及び前記第 2のずれ量に基づいて、前記第 2の楽曲データ のキーを導出するキー導出部と、  A key deriving unit for deriving a key of the second music data based on the second frequency characteristic and the second shift amount;
前記第 1のずれ量、前記第 2のずれ量、前記第 1の楽曲データのキー及び前記第 2 の楽曲データのキーに基づいて、前記第 1の楽曲データのキーと前記第 2の楽曲デ ータのキーが一致するように、少なくとも前記第 2の楽曲データのピッチをシフトする ためのピッチシフト量を算出するピッチシフト量算出部と、を備えることを特徴とする楽 曲データ調整装置。 The first shift amount, the second shift amount, the key of the first music data, and the second A pitch shift for shifting at least the pitch of the second music data so that the key of the first music data matches the key of the second music data based on the key of the music data of A music data adjustment apparatus comprising: a pitch shift amount calculation unit that calculates the amount.
[5] 前記ピッチシフト量算出部は、 [5] The pitch shift amount calculation unit includes:
前記第 1のずれ量に基づいて、前記第 1の楽曲データの楽音が基準音階と一致す るように前記第 1の楽曲データのピッチをシフトするための第 1のピッチシフト量を算 出する第 1のピッチシフト量算出部と、  Based on the first shift amount, a first pitch shift amount for shifting the pitch of the first song data is calculated so that the musical tone of the first song data matches the reference scale. A first pitch shift amount calculation unit;
前記第 2のずれ量に基づいて、前記第 2の楽曲データの楽音が基準音階と一致す るように前記第 2の楽曲データのピッチをシフトするための第 2のピッチシフト量を算 出する第 2のピッチシフト量算出部と、  Based on the second shift amount, a second pitch shift amount for shifting the pitch of the second song data is calculated so that the musical tone of the second song data matches the reference scale. A second pitch shift amount calculation unit;
前記第 1の楽曲データのキー及び前記第 2の楽曲データのキーに基づいて、前記 第 1の楽曲データのキーと前記第 2の楽曲データのキーが一致するように前記第 2の 楽曲データのピッチをシフトするための第 3のピッチシフト量を算出する第 3のピッチ シフト量算出部と、を備えることを特徴とする請求の範囲第 4項に記載の楽曲データ 調整装置。  Based on the key of the first music data and the key of the second music data, the key of the second music data is matched with the key of the first music data and the key of the second music data. 5. The music data adjusting device according to claim 4, further comprising a third pitch shift amount calculation unit that calculates a third pitch shift amount for shifting the pitch.
[6] 前記第 1のピッチシフト量に基づいて前記第 1の楽曲データのピッチをシフトする第 1のピッチシフト手段と、  [6] First pitch shift means for shifting the pitch of the first music data based on the first pitch shift amount;
前記第 2のピッチシフト量に基づいて、前記第 2の楽曲データのピッチをシフトする 第 2のピッチシフト手段と、  Second pitch shift means for shifting the pitch of the second music data based on the second pitch shift amount;
前記第 2のピッチシフト手段によるシフト後の前記第 2の楽曲データのピッチを、前 記第 3のピッチシフト量に基づいてシフトする第 3のピッチシフト手段と、  Third pitch shift means for shifting the pitch of the second music data after the shift by the second pitch shift means based on the third pitch shift amount;
前記第 1のピッチシフト手段によるシフト後の前記第 1の楽曲データと、前記第 3の ピッチシフト手段によるシフト後の前記第 2の楽曲データをミックスして出力するミキサ 一と、を備えることを特徴とする請求の範囲第 5項に記載の楽曲データ調整装置。  A mixer that mixes and outputs the first music data after the shift by the first pitch shift means and the second music data after the shift by the third pitch shift means. The music data adjusting device according to claim 5, characterized in that it is characterized in that
[7] 前記ピッチシフト量算出部は、 [7] The pitch shift amount calculation unit includes:
前記第 1のずれ量に基づいて、前記第 1の楽曲データの楽音が基準音階と一致す るように前記第 1の楽曲データのピッチをシフトするための第 1のピッチシフト量を算 出する第 1のピッチシフト量算出部と、 Based on the first shift amount, a first pitch shift amount is calculated for shifting the pitch of the first song data so that the musical tone of the first song data matches the reference scale. A first pitch shift amount calculation unit to be output;
前記第 2のずれ量、前記第 1の楽曲データのキー及び前記第 2の楽曲データのキ 一に基づいて、前記第 2の楽曲データの楽音が基準音階と一致し、かつ、前記第 1 の楽曲データのキーと前記第 2の楽曲データのキーが一致するように前記第 2の楽 曲データのピッチをシフトするための第 2のピッチシフト量を算出する第 2のピッチシ フト量算出部と、を備えることを特徴とする請求の範囲第 4項に記載の楽曲データ調 整装置。  Based on the second shift amount, the key of the first music data, and the key of the second music data, the tone of the second music data matches a reference scale, and the first music data A second pitch shift amount calculation unit for calculating a second pitch shift amount for shifting the pitch of the second music data so that the key of the music data matches the key of the second music data; 5. The music data adjusting device according to claim 4, wherein the music data adjusting device is provided.
[8] 前記第 1のピッチシフト量に基づいて前記第 1の楽曲データのピッチをシフトする第 1のピッチシフト手段と、  [8] First pitch shift means for shifting the pitch of the first music data based on the first pitch shift amount;
前記第 2のピッチシフト量に基づいて、前記第 2の楽曲データのピッチをシフトする 第 2のピッチシフト手段と、  Second pitch shift means for shifting the pitch of the second music data based on the second pitch shift amount;
前記第 1のピッチシフト手段によるシフト後の前記第 1の楽曲データと、前記第 2の ピッチシフト手段によるシフト後の前記第 2の楽曲データをミックスして出力するミキサ 一と、を備えることを特徴とする請求の範囲第 7項に記載の楽曲データ調整装置。  A mixer that mixes and outputs the first music data after the shift by the first pitch shift means and the second music data after the shift by the second pitch shift means. The music data adjusting device according to claim 7, characterized in that it is characterized in that
[9] 前記ピッチシフト量算出部は、前記第 1のずれ量、前記第 2のずれ量、前記第 1の 楽曲データのキー及び前記第 2の楽曲データのキーに基づいて、前記第 1の楽曲デ ータ及び前記第 2の楽曲データの各々の楽音が基準音階と一致し、かつ、前記第 1 の楽曲データのキーと前記第 2の楽曲データのキーが一致するように前記第 2の楽 曲データのピッチをシフトするためのピッチシフト量を算出することを特徴とする請求 の範囲第 4項に記載の楽曲データ調整装置。  [9] The pitch shift amount calculation unit is configured to determine the first shift amount, the second shift amount, the first music data key, and the second music data key based on the first music data key and the second music data key. The second music data and the second music data have the same musical tone corresponding to the reference scale, and the first music data key and the second music data key match the second musical data. 5. The music data adjusting device according to claim 4, wherein a pitch shift amount for shifting the pitch of the music data is calculated.
[10] 前記ピッチシフト量に基づいて、前記第 2の楽曲データのピッチをシフトするピッチ シフト手段と、  [10] Pitch shifting means for shifting the pitch of the second music data based on the pitch shift amount;
前記第 1の楽曲データと、前記ピッチシフト手段によるピッチシフト後の前記第 2の 楽曲データとをミックスして出力するミキサーと、を備えることを特徴とする請求の範囲 第 9項に記載の楽曲データ調整装置。  The music according to claim 9, further comprising: a mixer that mixes and outputs the first music data and the second music data after the pitch shift by the pitch shift means. Data adjustment device.
[11] 前記第 1及び第 2の周波数分析部の各々は、 [11] Each of the first and second frequency analysis units includes:
前記楽曲データを周波数領域の信号に変換する変換部と、  A converter for converting the music data into a frequency domain signal;
前記周波数領域の信号から、複数の振幅ピーク値を検出するピーク検出部と、 前記複数のピーク値に基づいて、前記楽曲データを構成する複数の楽音の周波 数を算出して前記周波数特性を算出する周波数特性算出部と、を備えることを特徴 とする請求の範囲第 4項に記載の楽曲データ調整装置。 A peak detector for detecting a plurality of amplitude peak values from the frequency domain signal; 5. A frequency characteristic calculating unit that calculates a frequency characteristic by calculating frequencies of a plurality of musical sounds constituting the music data based on the plurality of peak values. The music data adjustment apparatus described in 1.
前記第 1及び第 2のキー導出部の各々は、  Each of the first and second key derivation units includes:
前記周波数特性及び前記ずれ量に基づ!、て、前記ずれ量の補正後の複数の楽音 から構成される和音を検出する和音検出部と、  A chord detector for detecting a chord composed of a plurality of musical tones after the correction of the shift amount based on the frequency characteristic and the shift amount;
検出された和音に基づいて、前記楽曲データのキーを判定するキー判定部と、を 備えることを特徴とする請求の範囲第 4項に記載の楽曲データ調整装置。  5. The music data adjustment device according to claim 4, further comprising: a key determination unit that determines a key of the music data based on the detected chord.
PCT/JP2006/306342 2005-03-28 2006-03-28 Musical composition data adjuster WO2006104162A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-091895 2005-03-28
JP2005091895 2005-03-28

Publications (1)

Publication Number Publication Date
WO2006104162A1 true WO2006104162A1 (en) 2006-10-05

Family

ID=37053418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306342 WO2006104162A1 (en) 2005-03-28 2006-03-28 Musical composition data adjuster

Country Status (1)

Country Link
WO (1) WO2006104162A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528335A (en) * 2007-05-22 2010-08-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Device and method for processing audio data
EP3876226A1 (en) * 2020-03-06 2021-09-08 Tech & Life Solutions GmbH Method and device for automated harmonization of digital audio signals

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0561465A (en) * 1990-04-09 1993-03-12 Casio Comput Co Ltd Tonality discrimination device and automatic player
JPH08115084A (en) * 1994-10-13 1996-05-07 Roland Corp Automatic playing device
JP2000099043A (en) * 1998-09-24 2000-04-07 Yamaha Corp Karaoke device
JP2000298475A (en) * 1999-03-30 2000-10-24 Yamaha Corp Device and method for deciding chord and recording medium
JP2003208170A (en) * 2002-01-16 2003-07-25 Yamaha Corp Musical performance controller, program for performance control and recording medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0561465A (en) * 1990-04-09 1993-03-12 Casio Comput Co Ltd Tonality discrimination device and automatic player
JPH08115084A (en) * 1994-10-13 1996-05-07 Roland Corp Automatic playing device
JP2000099043A (en) * 1998-09-24 2000-04-07 Yamaha Corp Karaoke device
JP2000298475A (en) * 1999-03-30 2000-10-24 Yamaha Corp Device and method for deciding chord and recording medium
JP2003208170A (en) * 2002-01-16 2003-07-25 Yamaha Corp Musical performance controller, program for performance control and recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528335A (en) * 2007-05-22 2010-08-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Device and method for processing audio data
EP3876226A1 (en) * 2020-03-06 2021-09-08 Tech & Life Solutions GmbH Method and device for automated harmonization of digital audio signals
WO2021175999A1 (en) * 2020-03-06 2021-09-10 Tech & Life Solutions Gmbh Method and device for automated harmonization of digital audio signals

Similar Documents

Publication Publication Date Title
JP3879357B2 (en) Audio signal or musical tone signal processing apparatus and recording medium on which the processing program is recorded
US8735709B2 (en) Generation of harmony tone
KR100319478B1 (en) Effect adder
JP2006251375A (en) Voice processor and program
US8791350B2 (en) Accompaniment data generating apparatus
EP4115629A1 (en) Method, device and software for applying an audio effect to an audio signal separated from a mixed audio signal
JPH03269492A (en) Electronic musical instrument
JP5879996B2 (en) Sound signal generating apparatus and program
WO2006104162A1 (en) Musical composition data adjuster
JP3576109B2 (en) MIDI data conversion method, MIDI data conversion device, MIDI data conversion program
US8362348B2 (en) Electronic musical apparatus for generating a harmony note
JP4962592B2 (en) Electronic musical instruments and computer programs applied to electronic musical instruments
JP5382361B2 (en) Music performance device
WO2021175461A1 (en) Method, device and software for applying an audio effect to an audio signal separated from a mixed audio signal
JP3427409B2 (en) Electronic musical instrument
JP5088179B2 (en) Sound processing apparatus and program
JP3719219B2 (en) Electronic musical sound generating apparatus and method
US9542923B1 (en) Music synthesizer
JP2011197564A (en) Electronic music device and program
JP6415341B2 (en) Karaoke system with pitch shift function for harmony singing
JP3834963B2 (en) Voice input device and method, and storage medium
JP6036800B2 (en) Sound signal generating apparatus and program
JP5589767B2 (en) Audio processing device
JP2004226589A (en) Music reproducing apparatus
JP3428596B2 (en) Audio processing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06730290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP