WO2006104048A1 - Method for arranging fine particles - Google Patents

Method for arranging fine particles Download PDF

Info

Publication number
WO2006104048A1
WO2006104048A1 PCT/JP2006/305993 JP2006305993W WO2006104048A1 WO 2006104048 A1 WO2006104048 A1 WO 2006104048A1 JP 2006305993 W JP2006305993 W JP 2006305993W WO 2006104048 A1 WO2006104048 A1 WO 2006104048A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
microparticles
laser
fine particles
arranging
Prior art date
Application number
PCT/JP2006/305993
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Masuhara
Yoichiroh Hosokawa
Yuji Hiraki
Chisa Shukunami
Original Assignee
Hamano Life Science Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamano Life Science Research Foundation filed Critical Hamano Life Science Research Foundation
Priority to JP2007510456A priority Critical patent/JPWO2006104048A1/en
Publication of WO2006104048A1 publication Critical patent/WO2006104048A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00436Maskless processes
    • B01J2219/00441Maskless processes using lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00457Dispensing or evacuation of the solid phase support
    • B01J2219/00459Beads
    • B01J2219/00468Beads by manipulation of individual beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00646Making arrays on substantially continuous surfaces the compounds being bound to beads immobilised on the solid supports
    • B01J2219/00648Making arrays on substantially continuous surfaces the compounds being bound to beads immobilised on the solid supports by the use of solid beads

Definitions

  • the present invention relates to a method for arranging fine particles.
  • biodevices also referred to as biodevices or biochips
  • Biomolecules such as DNA, proteins, sugar chains (also called biomolecules) or biodevices in which cells are immobilized on a support (substrate) are the above-mentioned immobilized biomolecules and other biomolecules or other It is possible to detect specific interactions with other compounds in large quantities simultaneously.
  • a protein chip in which an arbitrary antigen protein is placed on a substrate can be a new tool for early detection of diseases and allergies.
  • a biological device in which a physiologically active protein that controls cells is arranged on a substrate can be used as a cell culture substrate (see, for example, Patent Document 1). Application is expected.
  • biomolecules such as those described above may be arranged on a substrate by photolithography (Non-patent Document 1), inkjet printing (Patent Document 1, Non-Patent Document 2, and Technologies such as 3), micro contact printing (Non-patent document 4), laser direct writing (Non-patent document 5), and laser trapping (Patent document 2, Non-patent document 6) have been proposed.
  • a method for arranging proteins and cells using optical lithography is a method capable of patterning proteins with a high accuracy of 1 ⁇ m (Non-patent Document 1).
  • a protein placement method using ink jet printing is a method in which a fine droplet 132 of a protein solution is applied to a substrate 133 from an inkjet nozzle 131 to perform patterning.
  • a plurality of types of proteins can be patterned with an accuracy of several hundred / zm (Patent Document 1, Non-Patent Documents 2 and 3).
  • Patent Document 1 Non-Patent Documents 2 and 3
  • a protein placement method using microcontact printing is performed by attaching a microdroplet 132 of a protein solution to a needle tip or a fine structure (microstamp) 134 and attaching it to a substrate 133.
  • This is a transfer method (Non-patent Document 4).
  • Laser direct light For example, as shown in FIG. 13C, the protein is placed on the substrate 133 by directly irradiating the protein sample 135 with the laser 136 as shown in FIG. 13C.
  • multiple types of proteins can be panned with an accuracy of about 50 / zm (Non-patent Document 5).
  • the protein arrangement method using laser trapping is, for example, a method in which a polyhedron derived from an insect virus containing a protein in a crystalline state is arranged by a single laser trapping technique (Patent Document 2, Non-Patent Document 6).
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-355026
  • Patent Document 2 JP 2003-155300 A
  • Non-Patent Literature 1 A. b. Blawas and W. M. Reichert, "Protein patterning. Biomatenals 19, 595-609 (1998)
  • Non-Patent Document 2 A. Roda et al., Protein microdeposition using a conventional ink-jet printer "BioTechniques 28, 492—496 (2000)
  • Non-Patent Document 3 B. T. Houseman et al., Peptide chips for the quantitative evaluation of protein kinase activity "Nat. Biotechnol. 20, 270 (2002)
  • Non-Patent Document 4 A. Bernard et al., "Microcontact printing of proteins” Adv. Mater. 12 1067-1070 (2000)
  • Patent Document 5 P. Serra et al., Laser direct writing of biomolecule microarrays, App 1. Phys. A 79, 949-952 (2004)
  • Non-Patent Document 6 Y. Hosokawa et al. "Protein Microarrays by Laser Patterning and Fixation of Single Protein Microcrystals: Implication for Highly Integrated Protein Chip” J. Appl. Phys. 96, 2945-2948 (2004)
  • the above technique also has a disadvantage when a biological device is manufactured by arranging biological microparticles (biomolecular microparticles) on a substrate.
  • biological microparticles such as biomolecule-immobilized carriers, biomolecule crystals, biomolecule aggregates, virus particles, and cells can be regarded as devices with biomolecule functions.
  • Establishment of a technique for manufacturing a biological device in which such biological microparticles are arranged and arranged non-destructively with high accuracy, high density, and high speed on a substrate is desired.
  • the inkjet printing technology is applied to fine particles, there is a risk that the fine particles will be clogged in the nozzles of the ink jet when trying to arrange with high accuracy.
  • an object of the present invention is to provide a technique for arranging fine particles, which is a technique for arranging fine particles, and which can be arranged with high accuracy, high density, and high speed.
  • a method for arranging microparticles includes a source substrate having a microparticle fixing surface, wherein the microparticles are immobilized on the microparticle fixing surface, and A substrate preparation step of preparing two substrates, a target substrate having a microparticle arrangement surface to be arranged with microparticles, and the source substrate and the target substrate, the microparticle fixing surface and the microparticle arrangement surface facing each other
  • the substrate placement step that faces the substrate through the liquid layer, the fine particle separation step that separates the fine particles from the fine particle fixing surface, and the source substrate force acting on the fine particles are also caused by the force toward the target substrate. Separating the separated microparticles from the fixed surface in the microparticle separation step. Is the induced physical Chikara ⁇ Byi ⁇ specific at least one by the arrangement method of the particulates carried out of power in the irradiation.
  • the inventors of the present invention have made extensive studies on the arrangement technology of fine particles such as protein-immobilized carriers, and if the physical force or chemical force induced by laser irradiation is utilized, the fine particles If the substrate can be separated without causing significant photochemical / photothermal damage to the carrier, and if the separated microparticles can be placed directly on another substrate, for example, a single unit of several tens of meters or less The present inventors have found that the microparticles can be patterned on a cell scale.
  • the arrangement method of the microparticles of the present invention for example, by adjusting the position and size of the condensing portion of the laser to be used, it is possible to arrange the microparticles with high density, high accuracy, and high speed. Become. In addition, separation using a physical force or an ionic force induced by laser irradiation has little damage, so that, for example, fine particles can be arranged non-destructively. Furthermore, for example, when the microparticles to be arranged are biological microparticles, according to the method for arranging microparticles of the present invention, for example, the microparticles can be arranged in an aqueous solution, so that the physiological activity of biomolecules such as proteins can be maintained. It is.
  • microparticles containing multiple types of factors that control cell functions such as proliferation, differentiation, and death can be arranged with a single cell level accuracy.
  • a cell culture substrate capable of signal transmission to each cell to be cultured can be produced. If such a cell culture substrate is used, it will be possible to reproduce the minimum unit of the cell arrangement that forms the basis of tissue formation and to induce tissue induction.
  • the fine particle arrangement substrate produced by the fine particle arrangement method of the present invention can be used for applications such as protein chips, bioreactors, biosensors and bioassay test pieces.
  • FIGS. 1A to 1C are schematic views showing an example of a method for arranging fine particles of the present invention.
  • FIGS. 2A to 2E are schematic views showing an example of manufacturing a source substrate of the present invention.
  • FIG. 3 is a schematic diagram showing a configuration example of the arrangement of the source substrate and the target substrate in the present invention.
  • FIG. 4 is a schematic diagram showing a configuration example of a placement device according to the present invention.
  • FIG. 5 is a schematic diagram showing a configuration of an electric stage according to the present invention.
  • 6A to 6E are schematic views showing other examples of the arrangement method of the present invention.
  • FIG. 7A and FIG. 7B are examples of micrographs of polygons arranged on a substrate by the method for arranging microparticles of the present invention (Example 1).
  • FIGS. 8A and 8B are other examples of micrographs of polygons arranged on a substrate by the method for arranging fine particles of the present invention (Example 2).
  • FIGS. 9A to 9C are examples of micrographs of cells cultured on the cell culture substrate of the present invention (Example 3).
  • FIG. 10 is still another example of a photomicrograph of a polyhedron arranged on a substrate by the method for arranging fine particles of the present invention (Example 4).
  • FIG. 11 is a schematic diagram of an example of a mechanical force based on laser abrasion when a pulsed laser is focused in water.
  • FIG. 12A is a schematic diagram of the arrangement of two types of polygons arranged by the method for arranging microparticles of the present invention
  • FIG. FIG. 12C is an example of a transmission image of a micrograph of a polyhedron of a kind
  • FIG. 12C is an example of the fluorescence image thereof.
  • FIGS. 13A to 13C are schematic diagrams for explaining a conventional technique.
  • FIG. 13A is a schematic diagram of ink jet printing technology
  • FIG. 13B is a schematic diagram of micro contact printing technology
  • FIG. 13C is a schematic diagram of laser direct writing technology.
  • Pulsed laser irradiation device Pulsed laser irradiation device
  • the physical force or chemical force induced by laser irradiation is induced by condensing the laser by an optical system including a lens. It is preferably a physical force or a chemical force.
  • the position of the condensing part of the laser is preferably the fine particles to be separated, or the liquid layer or the source substrate in the vicinity of the fine particles to be separated.
  • the physical force induced by laser concentration is a mechanical force based on laser abrasion.
  • the source substrate force also separates the fine particles.
  • the laser ablation preferably includes at least one generation of shock waves, bubbles, and convection.
  • the chemical force induced by laser irradiation causes modification of the source substrate and modification of the portion of the fine particles in contact with Z or the source substrate.
  • the microparticles are arranged on the arrangement surface as at least one of arbitrary points and lines by repeating the microparticle separation step and the microparticle arrangement step. be able to. Further, in the substrate preparation step of the arrangement method of the present invention, by preparing source substrates on which different types of microparticles are immobilized, different types of microparticles are arranged on the same microparticle arrangement surface. be able to.
  • the force applied to the fine particles may be a force selected from the group consisting of gravity, magnetic force, electrostatic force, light force, and buoyancy. preferable.
  • the method for arranging fine particles of the present invention includes the substrate arranging step!
  • the fine particles are arranged on the fine particle arrangement surface by gravity in the fine particle arrangement step by arranging the source substrate force so as to be positioned on the target substrate. .
  • the laser light is preferably light selected from the group consisting of infrared light, visible light, and ultraviolet light.
  • the laser may be a nanosecond laser, a picosecond laser, and a femtosecond laser power, a group power selected by a pulse laser, or
  • a continuous wave laser is preferable.
  • the microparticles are preferably selected from the group consisting of a carrier on which a biomolecule is immobilized, a crystal of biomolecule, an aggregate of biomolecules, virus particles, and cells.
  • the carrier on which the biomolecule is immobilized may be a polyhedron derived from an insect virus, or a polymer, a metal, a semiconductor, an aggregate of biomolecules, a crystal thereof, or a combination force thereof. Fine particles for which a group force is also selected may be used.
  • the method for producing a microparticle-arranged substrate of the present invention is a production method including a step of arranging microparticles on the substrate by the method for arranging microparticles of the present invention.
  • the fine particle arrangement device of the present invention is a fine particle arrangement device used in the fine particle arrangement method of the present invention or the production method of the present invention, wherein the source substrate installation unit, the target substrate It is a device for arranging fine particles including an installation section, laser irradiation means, and laser focusing means.
  • the cell or tissue culturing method of the present invention comprises a cell or tissue on a cell culture substrate produced by placing microparticles containing biomolecules exhibiting physiological activity by the microparticle placement method of the present invention.
  • the culture method of the present invention includes culturing cells on the microparticles arranged on the cell culture substrate, and the biomolecules exhibiting the physiological activity are selected as a group force of proliferation, differentiation, migration and death force. It is preferable that the culture method transmits the above signal to the cells.
  • the method for producing a cell or tissue of the present invention is a production method including culturing a cell or tissue by the culture method of the present invention.
  • the arrangement of microparticles includes an arrangement of microparticles.
  • microparticles can be arranged by continuously arranging 1 dot of microparticles by laser irradiation.
  • the fine particles arranged by the fine particle arrangement method of the present invention can be immobilized on a substrate and separated by physical force or chemical force induced by laser irradiation.
  • a carrier on which a biomolecule is immobilized a crystal of biomolecule, an aggregate of biomolecules, virus particles, a cell, and the like can be mentioned.
  • the biomolecule is not particularly limited, and examples thereof include proteins, peptides, DNA, RNA, sugars, lipids, organic compounds, complexes thereof, and derivatives thereof.
  • An aggregate of biomolecules is, for example, a protein or DNA that is agglutinated.
  • One or more kinds of fine particles can be appropriately selected according to the use of the fine particle arrangement substrate of the present invention produced by the arrangement method of the present invention.
  • the size of the microparticles is not particularly limited, and for example, in the case of a spherical shape, the diameter is 10 nm to 100 m, Preferably, lOOnm ⁇ : LO ⁇ m, and more preferably 100 nm ⁇ l ⁇ m. Further, the shape of the fine particles is not particularly limited.
  • the carrier is not particularly limited, but a carrier that can immobilize the biomolecule and can be immobilized on a substrate is preferable.
  • a conventionally known carrier can be used according to the biomolecule to be immobilized. Insect virus-derived polyhedrons, macromolecules, metals, semiconductors, aggregates of biomolecules, crystals of these, and the combined force of these, fine particles selected.
  • a carrier for immobilizing proteins a polyhedron derived from a conventionally known insect virus described later is preferable. This is because the polyhedron has an effect of maintaining the physiological activity of the protein.
  • a polyhedron is a polyhedral structure of 100 nm to 10 ⁇ m on one side formed by an insect virus, which is the original meaning, in an infected cell, and the polyhedrin is associated in a crystalline form.
  • V and so-called crystalline protein inclusion bodies in which any protein is incorporated into the polyhedron while maintaining its biological function using known genetic engineering techniques (for example, patents) (Ref. Literature 2, Japanese Patent Laid-Open No. 2003-319778, WO2002Z036785, Bumplets IV).
  • the physical force induced by laser irradiation includes, for example, the physical force induced by laser focusing by an optical system including a lens, and is not particularly limited. Preferably, it is a mechanical force based on laser abrasion.
  • the laser ablation is an explosive erosion phenomenon that occurs when a high-intensity laser is irradiated and condensed. For example, when a pulse laser is focused in water, This is a phenomenon in which shock waves, bubbles, convection, and the like are generated by multiphoton absorption of water in the water. The generation of the bubbles includes the generation of so-called air bubbles (cavitation bubbles).
  • the mechanical force based on laser ablation includes, for example, the mechanical force due to the generation of the shock wave, bubble, convection, etc., but is not limited thereto, and generally the explosive erosion phenomenon.
  • the shock wave is a pressure wave generated at the condensing part of the pulse laser.
  • Figure 11 shows a schematic diagram of an example of the mechanical force based on laser abrasion when a pulsed laser is focused in water. As shown in the figure, for example, when the femtosecond pulse laser 100 is irradiated toward the substrate 103 and condensed, multi-photon absorption of water and laser ablation occur at the condensing unit 101, and this occurs.
  • Laser ablation may use a molecule having one-photon absorption in visible light or ultraviolet light in addition to the multiphoton absorption of water. For example, visible light or A molecule having one-photon absorption with ultraviolet light is added, and laser ablation is induced on the substrate by irradiating a laser that emits visible light or ultraviolet light.
  • the chemical force induced by laser irradiation includes, for example, modification of the source substrate and modification of Z or the portion of the microparticles in contact with the source substrate.
  • the modification of the source substrate and part of the Z or microparticle is a change in the chemical state of the source substrate and part of the Z or microparticle that is observed when the source substrate is irradiated with a laser, for example,
  • the material of the source substrate and part of Z or microparticles or modified products contain photoreactive or photodegradable molecules, and the chemical state of the molecules changes by laser irradiation.
  • Such chemical forces are preferably induced by laser focusing by an optical system including a lens.
  • the laser used in the method for arranging fine particles of the present invention is not particularly limited as long as it can induce the physical force and the ionic force, and the laser light is, for example, Infrared light, visible light or ultraviolet light can be used.
  • a continuous wave laser or a pulse laser can be used as the laser to be used.
  • a pulse laser for example, a conventionally known laser such as a nanosecond laser, a picosecond laser, or a femtosecond laser is used. it can.
  • femtosecond titanium sapphire lasers femto fiber lasers, femtoseconds, ittribium lasers, femtoseconds, excimer lasers, and picosecond YAG lasers.
  • the fine particle arrangement method of the present invention includes a substrate preparation step, a substrate arrangement step, a fine particle separation step, and a fine particle arrangement step. Next, each step will be described.
  • the source substrate has a fine particle fixing surface on which fine particles are fixed.
  • the microparticles to be immobilized are as described above.
  • the fine particle fixing surface may be one side or both sides of the source substrate.
  • the material of the source substrate is not particularly limited, and glass, plastic, rubber and the like can be used, and can be appropriately selected according to the fine particles to be fixed.
  • the source substrate may be a laminate including two or more layers. For example, a layer suitable for fixing microparticles may be stacked as the microparticle fixing surface.
  • the fine particle fixing surface of the source substrate may be modified to fix the fine particles. . Examples of the modification include modification using an antigen-antibody reaction such as avidin modification, and modification using a chemical reaction such as alkanethiol modification.
  • a fine particle arrangement surface utilizing chemical force can be obtained.
  • the thickness and size of the source substrate are not particularly limited.
  • the source substrate is preferably optically transparent when it is necessary to view fine particles through the source substrate.
  • a molecule having one-photon absorption may be included in the irradiated laser light.
  • the fixation between the fine particles and the source substrate can be appropriately selected from conventionally known techniques such as a method using a chemical bond and a method using physical adsorption.
  • a method using a chemical bond In the case where the source substrate and the fine particles are separated by a physical force, it is preferable to use a fixed layer method in which the coupling is released by a physical impact of a mechanical force based on laser abrasion.
  • separation of the source substrate and microparticles is performed by chemical force, for example, the source substrate and microparticles are immobilized via photoreactive or photodegradable molecules, and laser irradiation is performed.
  • the fixing method is such that the bond is released by modification of the source substrate and modification of the portion of the fine particles in contact with Z or the source substrate.
  • the plurality of fine particles may be divided and fixed on the source substrate.
  • the target substrate has a fine particle arrangement surface on which fine particles are to be arranged.
  • the material of the target substrate is not particularly limited, and glass, plastic, rubber or the like can be used, and can be appropriately selected according to the fine particles to be placed and fixed.
  • the target substrate may be a laminate including two or more layers.
  • the microparticle placement surface may be used to fix the microparticles.
  • a layer suitable for the above may be laminated.
  • the fine particle arrangement surface of the target substrate may be modified to fix the fine particles.
  • the thickness and size of the target substrate are not particularly limited.
  • the target substrate is preferably optically transparent when it is necessary to visually recognize fine particles on the target substrate through the target substrate.
  • the glass substrate is made of polydimethylsiloxane (P DMS) coated can be used.
  • Coating with PDMS can be performed by coating with dimertyl siloxane (DMS) and polymerizing by appropriate heating (for example, about 80 ° C. for 1 minute).
  • DMS dimertyl siloxane
  • the substrate placement step in the fine particle placement method of the present invention includes a source substrate and a target substrate, with a fine particle fixed surface of the source substrate and a fine particle placement surface of the target substrate facing each other via a liquid layer. It is the process of arranging.
  • the distance between the source substrate and the target substrate is not particularly limited, but is preferably a distance that allows fine particles separated by the source substrate to be accurately arranged on the target substrate.
  • the distance is, for example, lOOnm to lmm, preferably 100 ⁇ to 100 / ⁇ ⁇ , more preferably 100 nm to 10 ⁇ m.
  • a liquid layer is disposed between the source substrate and the target substrate. This makes it possible to use liquid laser ablation.
  • the liquid layer include an aqueous solution layer.
  • the aqueous solution is not particularly limited, and for example, water, physiological saline, various buffers, and the like can be used as appropriate.
  • conventional technologies such as inkjet printing, micro contact printing, and laser direct writing (see Fig. 13) may cause the biomolecules to dry when they are injected and fixed. Is thought to be lost.
  • the advantage of the present invention is very large if the fine particles of biomolecules that are vulnerable to drying can be disposed in an aqueous solution layer.
  • the liquid in the liquid layer is not limited to an aqueous solution, and may be, for example, an organic solvent or oil.
  • the fine particle separation step in the fine particle arrangement method of the present invention there is a step of separating the fine particle fixing surface force and fine particles by a physical force induced by laser irradiation. It is done.
  • the physical force includes, for example, a mechanical force based on laser abrasion.
  • Laser ablation is the source group Although it may be induced by focusing on a plate, it is preferable to use laser ablation of a liquid layer disposed between the source substrate and the target substrate.
  • the laser condensing part is not particularly limited as long as the target fine particles can be separated by a mechanical force based on laser abrasion. For example, the laser condensing part may be directly focused on the fine particles. .
  • the damage caused can be further reduced by separating the microparticles by contacting only mechanical forces such as shock waves, bubbles, and convection generated in the light collecting portion.
  • shock waves generated by laser ablation propagate as pulses, but the pulse shape of the shock waves relaxes as the distance of the focusing force increases.
  • the force such as shock wave decreases in proportion to the function of the square or more of the distance from the condensing part. Therefore, the mechanical force effect based on laser ablation decreases rapidly as the distance from the condensing part increases.
  • the size of the condensing part of the pulse laser, the condensing position, the laser If the intensity and laser light density are appropriately selected, a small range of fine particles can be separated with high accuracy. For example, when the size of the condensing part is 1 ⁇ m, the mechanical perturbation due to shock waves, bubbles, convection collisions, etc. (See Fig. 11).
  • the second aspect of the fine particle separation step in the fine particle arrangement method of the present invention is a chemical force induced by laser irradiation, such as chemical modification of the source substrate and Z or source substrate.
  • Modification of the source substrate and part of the Z or microparticle is performed by laser irradiation when the microparticle is immobilized on the source substrate via a photoreactive or photodegradable molecule. This includes changing the chemical state and weakening or neutralizing the fixing force.
  • Modification of the source substrate and part of the Z or microparticles can be induced, for example, by focusing a laser on the interface between the source substrate and the microparticles.
  • the laser condensing part is not particularly limited as long as the target microparticle can be separated by modification of the source substrate and Z or a part of the microparticle.
  • the laser condensing part is directly focused on the microparticle.
  • it may be a source substrate in the vicinity of the fine particles to be separated.
  • the condensing part is in contact with the microparticles. Preferably not.
  • the fine particle separation step in the fine particle arrangement method of the present invention uses, as a third aspect, both physical force and chemical force induced by laser irradiation,
  • the fine particle fixing surface force may be a step of separating the fine particles.
  • the position of the fine particles to be separated on the source substrate corresponds to the position on the target substrate where the fine particles are arranged.
  • the microparticles when the microparticles are arranged at any specific position on the surface of the target substrate where the microparticles are arranged, the microparticles fixed at the position of the fixed surface of the source substrate facing the specific position of the arrangement surface are arranged.
  • the particles may be separated by laser irradiation. Therefore, when the relative position between the source substrate and the target substrate is fixed, the pattern of laser irradiation to the source substrate can be transferred to the target substrate as it is as an arrangement of fine particles.
  • the means for condensing the laser, adjusting the size of the condensing part, and adjusting the condensing position are not particularly limited in the fine particle separation step, but for example, a lens or a diaphragm.
  • the optical system can be adjusted, and a microscope can be preferably used.
  • the concentrating part of the nozzle is the shape of a dot, a circle with a certain area, or a sphere with a certain volume. If the condensing part is circular or spherical, its radius Is, for example, more than 0 and not more than 100 ⁇ m, preferably more than 0 and not more than 10 ⁇ m, and more preferably more than 0 and not more than 1 ⁇ m.
  • the condensing position for condensing the pulse laser is, as described above, the range of the fine particles that the source substrate or liquid in the vicinity of the fine particles to be separated is preferably separated. It can be adjusted appropriately according to The distance between the focused position of the pulse laser and the fine particles is, for example, more than 0 and less than 1 mm, more preferably more than 0 and less than 100 m, and more preferably more than 0 and less than 1 ⁇ m.
  • the light density (photon flux) of the pulse laser when used for the placement of fine particles in a radius region within 50 m by laser abrasion is: For example, 5 x 10 5 to 1 x 10 12 (watt), preferably 5 x 10 5 to 1 x 10 9 (watt), more preferably 5 x 10 5 to 1 x 10 7 (watt) It is. [0046] Here, the optical density for the arrangement of microparticles in the radius region within 50 ⁇ m is shown.
  • the region affected by the pulse laser is proportional to the square of the region radius, for example, within 10 / zm
  • the optical density of the pulsed laser when placing fine particles in the radius region is 1/25 of the above, and the optical density of the pulse laser when placing fine particles in the radius region within 100 m is 400 times the case.
  • the pulse width of the pulse laser is ⁇ t
  • the relationship between the pulse laser intensity (I) and the light density (D) of the pulse laser is expressed by the following equation.
  • the intensity of the pulse laser used in this way is a force that can be adjusted appropriately according to the distance between the microparticles and the focusing position, the range of the microparticles to be separated, etc.
  • the intensity of the pulse laser when separating the fine small particles by chemical modification of the source substrate for example, 1 X 10- 9 ⁇ : LO a CiZpu lse), preferably, a 1 X 10- 6 ⁇ 1 (jZpulse) , more preferably 1 X 10- 6 ⁇ 1 X 10- 3 CFZpulse).
  • the laser intensity is, for example, 1 X 10- 6 ⁇ 10 (watt ), preferably a 1 X 10- 4 ⁇ 1 (watt) , more preferably, a 1 X 10- 4 ⁇ 1 X 10- 2 (watt).
  • the wavelength of the pulse laser can be, for example, a laser having a wavelength of 190 nm to 20 ⁇ m.
  • the wavelength of the pulse laser when condensing in a liquid layer, is higher than that of ultraviolet light having a strong absorption directly. Because infrared light can generate a shock wave at the laser concentrator regardless of the substrate material used, the wavelength is 400 ⁇ ! More preferably, l lOOnm is more preferable, and 600 l: L lOOnm.
  • Irradiation times of pulsed laser for separating the fine particles of one dot with the fixed surface force The number is not particularly limited, and is, for example, 1 shot (single shot) to 10 million shots, preferably 1 shot to 1000 shots, more preferably 1 shot to 10 shots, and even more preferably a single shot.
  • one dot refers to a region of fine particles that are separated from the fixed surface of the source substrate by laser irradiation to a single condensing point and are disposed on the surface of the target substrate.
  • the repetition frequency of the laser in the case of repeated irradiation is, for example, 1 Hz to: L00 MHz, preferably 1 Hz to: LMHz, more preferably 1 Hz to: LkHz, and more preferably, 1 ⁇ to 20 ⁇ .
  • the fine particle arrangement step in the fine particle arrangement method of the present invention is such that the fine particles separated in the separation step are arranged on the arrangement surface of the target substrate by the source substrate force applied to the fine particles in the direction of the target substrate. It is a process. Examples of the force that moves the microparticles from the source substrate to the target substrate include gravity, magnetic force, electrostatic force, and buoyancy. As another embodiment, there is a step of capturing the fine particles separated in the separation step using a laser trapping method using light power (radiation pressure of light) by a laser and moving the particles to a target substrate. It is done.
  • a preferred embodiment of this step is to drop the microparticles from the source substrate onto the target substrate by gravity.
  • An example of this embodiment will be specifically described with reference to FIGS. 1A to 1C, the same portions are denoted by the same reference numerals.
  • a source substrate 1 on which fine particles 3 are fixed is placed on a target substrate 2 via a liquid layer 4.
  • the laser ablation is induced by collecting the laser 5 and a mechanical force 6 based on the laser ablation is generated, thereby causing the microparticle 3 to Separate from source substrate 1.
  • the separated fine particles 3 fall and are arranged on the target substrate 2.
  • the pattern of laser irradiation to the source substrate can be transferred as it is as an array of the fine particles on the target substrate.
  • a method of moving the microparticles from the source substrate to the target substrate by giving magnetism or electric charge for example, can be mentioned. It is. Furthermore, as another aspect, for example, a method in which a source substrate is disposed under a target substrate via a liquid layer and the buoyancy of fine particles in the liquid is used. The movement method of these aspects can be appropriately implemented by a conventionally known technique.
  • the method for fixing the arranged fine particles to the target substrate is not particularly limited, and may be performed using a conventionally known method using chemical bonds, a method using physical adsorption, or the like, if necessary. it can.
  • the polygon is fixed as it is, but after placing the polygon, for example, at 37 ° C. It can be hardened by heating for 6 hours.
  • the arrangement surface has arbitrary points and / or lines.
  • the microparticles can be arranged. If a source substrate on which different types of microparticles are immobilized is used, a plurality of types of microparticles can be arranged on the same target substrate, as will be described in the following example.
  • the method for arranging a polyhedron of the present invention using an insect virus-derived polyhedron as an example of microparticles will be specifically described.
  • the insect virus-derived polyhedron is a crystalline substance formed by the outer shell protein of the virus called polyhedrin as described above, and the desired protein is incorporated into the protein while maintaining its activity.
  • the fine particles of the present invention are not limited to the polygon.
  • FIG. 2A An example of a source substrate preparation process in the polygon arrangement method of the present invention will be described with reference to FIGS. In the figure, the same portions are denoted by the same reference numerals.
  • a polyhedron dispersion liquid 7 in which a polyhedron is dispersed in water, physiological saline, or various buffers is used to fix fine particles on the glass substrate 9 using a micropipette 8. Drop on a fixed surface and leave at room temperature for several hours. Then, as shown in the schematic diagram of FIG. 2B, the polygon 10 is adsorbed to the fixed surface of the glass substrate 9 by natural drying.
  • the polygon 10 and the substrate 9 are bonded to each other by electrostatic force, and then the water Does not peel off when dripping.
  • a weak alkaline aqueous solution 11 is dropped using a micropipette on the polygon 10 adsorbed on the fixed surface of the glass substrate 9, and left for several minutes. Treat with alkali.
  • the polyhedrin crystalline polyhedron is dissolved in an alkaline solution, and this treatment activates the protein on the polyhedron surface that has lost its activity upon drying.
  • the weak alkaline aqueous solution is removed with a micropipette, and a source substrate is prepared in which the polygon 10 is fixed on the fixed surface of the substrate 9 as shown in the schematic diagram of FIG. 2D.
  • the weakly alkaline aqueous solution include ⁇ .3 canolesulfonate buffer.
  • the activity due to alkali treatment of the polyhedron surface can be determined by, for example, antigen-antibody reaction and light emission of green fluorescent protein from the polyhedron surface.
  • the size of the region to be fixed is not particularly limited, and for example, the diameter is 1 mm or less. In this case, the number of droplets dropped on the substrate is not particularly limited. For example, as shown in FIG.
  • a plurality of types of polygons 10 to: LO ′′ ′ are fixed on the fixed surface of the glass substrate 9. Therefore, for example, when a 1 cm square substrate is used and the size of one fixed area is about 1 mm in diameter, a polygon containing about 100 different proteins on one substrate. The body can be placed.
  • FIG. 3 shows a schematic diagram of an example of the arrangement form.
  • the arrangement form 20 of the source substrate and the target substrate is that the polygon 10 prepared in the preparation step is formed on the target substrate 12 via the liquid layer 16 formed by the spacer 15.
  • the fixed source substrate 9 is arranged.
  • a target substrate 12 shown in FIG. 3 is an example of a target substrate in which a silicon rubber sheet 14 is laminated on a glass substrate 13 as a fine particle arrangement surface.
  • the silicon rubber sheet 14 is preferable because the operation of fixing the polygon 10 placed after the separation to the target substrate 12 can be omitted.
  • the material of the spacer 15 is not particularly limited.
  • silicon rubber, a plastic sheet, a metal thin plate, or the like can be used, and the thickness is not particularly limited, and is 100 m, for example.
  • the thickness of the silicon rubber sheet 14 is not particularly limited, and is 100 m, for example.
  • the polygon separation process and the arrangement process are performed by, for example, irradiating the source substrate and the target substrate configured as in the arrangement form 20 with a laser using the arrangement apparatus of the present invention using a microscope. it can.
  • FIG. 4 shows an example of an arrangement device of the present invention that can be used in the polygon arrangement method of the present invention.
  • the arrangement device 40 of the present invention includes an upright microscope 21 and a pulse laser irradiation device 27 as main components.
  • the upright microscope 21 includes a stage 22, a condenser lens 23, an objective lens 24, a light source lamp 25, a CCD camera 26, and a dichroic mirror 31.
  • a source substrate and a target substrate are arranged as in the arrangement form 20.
  • a condenser lens 23 is disposed below the stage 22 of the upright microscope 21.
  • a light source lamp 25 is disposed below the condenser lens 23.
  • a CCD camera 26 for detecting this light is disposed above the microscope 21. .
  • a pulse laser irradiation device 27 is arranged outside the upright microscope 21, and an optical system is arranged between the upright microscope 21 and the pulse laser irradiation device 27.
  • the optical system includes a ⁇ 2 plate 28, a polarizer 29, and a collimator lens 30, and the emitted pulse laser 32 passes in this order.
  • the pulse laser 32 introduced into the upright microscope 21 is reflected by the dichroic mirror 31, and is irradiated to the source substrate and the target substrate configured as in the arrangement form 20 through the objective lens 24.
  • the intensity of the pulse laser 32 can be adjusted by the ⁇ 2 plate 28 and the polarizer 29, and the pulse laser 32 can be adjusted by the collimator lens 30 so as to be focused on the image plane of the microscope.
  • the focusing position of the pulse laser 32 can be adjusted by the stage 22.
  • an example of an apparatus that irradiates the upper force laser of the source substrate using an upright microscope is taken up. However, even if an inverted microscope is used to irradiate a laser from below the target substrate. Yo! /
  • the source substrate and the target substrate are arranged on the stage 22 of the upright microscope 21 as shown in the arrangement form 20 shown in FIG.
  • the CCD camera 26 observes the state of the source substrate and the target substrate, and determines the polygon to be separated.
  • the stage 22 is adjusted so that the focused position of the pulse laser becomes an appropriate position.
  • pulse train A pulse laser 32 is irradiated by the laser irradiation device 27, the intensity is adjusted by the optical system, and the source substrate and the target substrate are irradiated with the laser. Laser ablation is induced in the condensing part of the pulse laser. This state will be described with reference to FIG.
  • the pulsed laser 5 is focused in the liquid layer 4 between the source substrate 1 and the target substrate 3, laser ablation is induced, and a mechanical force 6 based on laser abrasion is applied.
  • fine particles (polyhedrons) 3 in the vicinity of the light condensing part are separated from the source substrate 1 and fall onto the target substrate 2 due to gravity.
  • the dropped microparticles (polyhedrons) 3 land on the target substrate 2 and are arranged as shown in FIG. 1C.
  • the silicon rubber is used as the fine particle arrangement surface on the target substrate 2, the landed polygon and the silicon rubber are bonded to each other by electrostatic force, and the subsequent fixing work is omitted. Is preferable.
  • the width of the writing line is not particularly limited, and as described above, a force that can be adjusted by the intensity of the pulse laser, for example, in the range of 1 ⁇ m to 50 cm, preferably in the range of 1 ⁇ m to lcm. More preferably, it can be in the range of 10 / ⁇ ⁇ to 1 ⁇ .
  • the writing speed is not particularly limited, but is, for example, in the range of: mZsec to 10 cmZsec, preferably in the range of 1 ⁇ mZsec to: LmmZsec, and more preferably in the range of 10 mZsec lOO / z mZsec. It can be a range.
  • the placement device of the present invention is not limited to the above example as long as the placement device includes a source substrate placement portion, a target substrate placement portion, laser irradiation means, and laser focusing means.
  • the polyhedron can carry various proteins by a conventionally known genetic manipulation. Therefore, as shown in Fig. 2E, multiple types of polyhedrons are arbitrarily arranged on the target substrate using a source substrate on which polygons 10 ⁇ : LO '"carrying different types of proteins are arranged.
  • An arrangement method according to the present invention will be described in accordance with an arrangement form of the source substrate and the target substrate shown in the developed schematic diagram of FIG. This can be done by using 0.
  • the arrangement form 50 has two electric stages 41 and 42 as main components, and the electric substrate 41 can fix the source substrate 44 via the fixing support 43 on the electric stage 41 that can fix the target substrate 45. Stage 42 is placed. In the arrangement form 50, when the electric stage 41 is moved, the electric stage 42 is also moved without changing its relative position, and when the electric stage 42 is moved, only the electric stage 42 is moved. To do.
  • the polygons are separated and arranged using the source substrate and the target substrate arranged as in the arrangement form 50, for example, as shown in FIGS.
  • the placement device on which the electric stage is placed can be selected as appropriate, for example, an upright microscope as shown in FIG. 4 or an inverted microscope.
  • FIG. 6 the same parts as those in FIG. 6A to 6E are schematic views showing a process of arranging the polygon 48, the region 47, and the polygon 49 in the liquid layer 51 in the region 46 of the target substrate 45, respectively.
  • the target substrate 45 is fixed to the electric stage 41 in FIG. 5, and the source substrate 44 and the fixing support 43 are fixed to the electric stage 42 in FIG.
  • the broken line 60 indicates the irradiation position of the laser, that is, the normal line of the objective lens of the microscope that is the placement device.
  • the immobilization region of each type of polygon is less than lmm
  • a polyhedron carrying about 100 kinds of proteins can be fixed in a 1 cm 2 region of the source substrate 44.
  • the electric stage can be controlled with an accuracy of a few zm.
  • polygons carrying different proteins can be arranged on the same target substrate at arbitrary positions with high accuracy, high density, and high speed. is there.
  • the force described above as an example of the polygon arrangement method of the present invention is not limited to polygons, It can also be used in the method for arranging microparticles of the present invention for microparticles.
  • the fine particle arrangement substrate of the present invention is such that the fine particles are arranged on the substrate using the fine particle arrangement method of the present invention, and the production method uses the fine particle arrangement method of the present invention.
  • Others are not particularly limited.
  • the microparticle-arranged substrate of the present invention uses, for example, a cell culture substrate, a protein chip, a DNA chip, a protein, peptide, DNA, RNA, sugar, lipid, organic compound, etc.
  • the present invention can be used without being particularly limited to various conventionally known applications such as bioreactors, biosensors, and bioassay test pieces.
  • the cell culture substrate of the present invention is a cell culture substrate in which physiologically active substances are arranged on a substrate, and microparticles containing a physiologically active substance or a physiologically active substance-immobilized carrier are arranged on the substrate by the arrangement method of the present invention.
  • the physiologically active substance include conventionally known proteins that control functions such as proliferation, differentiation, and death. By arranging multiple types of these, various proteinaceous intercellular signaling substances can act at the individual cell level.
  • the physiologically active substance include, but are not limited to, site force-in, hormones, growth factors and the like. It should be noted that the cell culture substrate of the present invention may additionally have no physiological activity! / Microparticles may be arranged.
  • the cell or tissue culture method of the present invention is a method of culturing cells or tissues using the cell culture substrate of the present invention, and the method of producing a cell or tissue of the present invention is a cell or tissue of the present invention.
  • cells or tissues are obtained by culturing according to a tissue culture method.
  • Cells to be cultured in the method for culturing and producing cells or tissues of the present invention are not particularly limited. According to the cell / tissue culture and production method of the present invention, it is possible to arrange and control a high level of cells that induce organization, which has been difficult with the conventional method, and the minimum cell sequence that forms the basis of tissue formation. The unit can be reproduced.
  • a protein-immobilized carrier supporting only a polyhedron which is a crystalline medium formed by an insect virus-derived protein (polyhedrin) was prepared as follows. First, the recombinant virus vector AcCP -H (Mori et al. (1993) J. Gen. Virol. 74, 99—102) was infected with IPLB—Sf21—AE (Sf21) cells derived from Spodoptera Fru giperda. Next, a cubic polyhedron was collected from the infected cells on the 4th day, and PBS (20 mM NaH PO, 20 mM Na HPO) was collected.
  • the polyhedron is dispersed in water and dropped onto a glass substrate (thickness: 100 m) using a micropipette so as to form a droplet of about 1 mm, left at 24 ° C for several hours, and then naturally dried. . Thereafter, a weakly alkaline aqueous solution ( ⁇ .3) is dropped on the surface of the polyhedron and allowed to stand for about several minutes to dissolve the surface of the polyhedron, and the alkaline aqueous solution is removed using a pipette. A substrate was prepared.
  • a silicon rubber sheet (thickness 100 ⁇ m) was laminated on the glass substrate as the target substrate. A thing was used. A spacer made of a silicon rubber sheet (thickness: 100 m) is placed on the target substrate, and the hollowed portion is filled with water. The source substrate was placed so as to be sealed and sealed to prepare an array plate. This was placed on a stage 22 of an upright microscope 21 as shown in FIG. 4, and the process of arranging the polygonal bodies and the state after the arrangement were observed with a CCD camera 26. A high-power femtosecond laser irradiation device (120 fs, 800 nm, 20 Hz, 10 mW) was used as the laser irradiation device 27.
  • FIG. 7 shows an example of the result of arranging the polygons.
  • 7A and B are photomicrographs of the target substrate on which polygons are arranged
  • FIG. 7B is an enlarged view of the portion surrounded by the square in FIG. 7A.
  • the portions that appear to be linear are polygons arranged
  • each that appears as a square is a polygon.
  • FIGS. 8A and B are photomicrographs of the target substrate on which polygons are arranged
  • FIG. 8B is an enlarged view of the portion surrounded by the square in FIG. 8A.
  • the time required for the arrangement of the three characters “JST” was about 1 minute, and the polyhedron could be arranged at a speed of about 10 / z mZsec.
  • the line width is almost the same as the size of animal cells. Therefore, by culturing animal cells on this polyhedron array, the polyhedron can act on specific individual cells.
  • the cell culture substrate prepared in Example 2 was used as a culture solution (medium: Dulbecco's modification of Eagl e's medium (DMEM) containing 5% fetal bovine serum), and NIH3T3 strain was added thereto. After a few minutes, the added cells are deposited on the cell culture substrate, and the CO incubator
  • FIGS. 9A to C are photomicrographs of the cell culture substrate
  • FIG. 9B is an enlarged view of the portion enclosed by the lower square in FIG. 9A
  • FIG. 9C is the portion enclosed by the upper square in FIG. Is an enlargement of
  • the droplet-shaped pattern is a proliferated cell, and the cell proliferated remarkably on the polyhedron as compared with the cell culture substrate. This is considered to be because the environment on the polyhedron composed of proteins is more prone to cell growth than on the cell culture substrate (target substrate).
  • it can be said that cell proliferation can be controlled.
  • VP3ZEGFP and a set that expresses the polyhedron protein used in Example 1.
  • the crystalline polyhedrin inclusion body in which the EGFP protein was embedded was recovered in the same manner as in Example 1 except that Sf21 cells were double-infected with the replacement virus vector AcCP-H.
  • FIG. 6 shows an arrangement apparatus according to the present invention including the source substrate and the target substrate that are arranged as shown in the arrangement form 50 of FIG.
  • the results are shown in Fig. 10.
  • This figure is a fluorescence micrograph of the target substrate.
  • the circled part is the place where the polyhedron with EGFP introduced is placed, and the partial force EGFP enclosed by the square is introduced. Place a strong polyhedron It is a place. Since luminescence caused by EGFP was observed from the polyhedron into which EGFP was introduced, it was shown that according to the arrangement method of the present invention, the protein-immobilized carrier can be arranged while maintaining the protein activity.
  • a source substrate in which a polyhedron containing EGFP and a polyhedron containing no EGFP were immobilized on the same fine particle fixing surface was prepared.
  • a target substrate was prepared by coating a glass substrate with dimethyl siloxane (DMS) and then heating at 80 ° C. for 1 minute to form a polydimethylsiloxane (PDMS) coat having a thickness of about 20 ⁇ m.
  • DMS dimethyl siloxane
  • the arrangement device of the present invention is used to form a pine pattern by the same manner as in Example 4. Patter jung. That is, 40 m ⁇ 40 m blocks were placed using EGPF-containing polyhedra and EGFP-free polyhedra alternately. Each block was placed by laser scanning with straight lines spaced 5 m. The interval between each block was 5 m.
  • FIG. 12A A schematic diagram of this arrangement is shown in FIG. 12A, and an example of a transmission image of the target substrate actually arranged is shown in FIG. 12B. The arrangement shown in Figure 12B could be done in about 30 minutes. When this target substrate was observed with a fluorescence microscope, a checkered fluorescent image was obtained as shown in FIG. 12C.
  • the method for arranging fine particles of the present invention is an arrangement method using laser abrasion.
  • a sequencing technique capable of maintaining a physiological activity of a carrier to which a physiologically active factor is immobilized at high accuracy, high density, and high speed, and further, for example, a protein to be sequenced. It is useful in fields that use various biochips.
  • the present invention is useful, for example, in the field of regenerative medicine. That is, by using the cell culture substrate produced by the arrangement method of the present invention, it becomes possible to cause various immobilized cell signal transduction factors to act at the single cell level, and to induce organization and induction. Advanced cell arrangement and control becomes possible.
  • the present invention provides tissue formation It is intended to contribute to tissue and organ regeneration technology by reproducing the minimum unit of cell arrangement that is the basis of the above and by inducing tissue guidance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

This invention provides a method for arranging fine particles that can arrange various types of fine particles in a liquid with high accuracy at high density and high speed. The arranging method comprises the step of providing two substrates, that is, a source substrate (1), which has a fine particle fixation face and to which the above fine particles (3) have been fixed, and a target substrate (2) having a fine particle arranging face on which the fine particles (3) are to be arranged (substrate provision step), the step of disposing the source substrate (1) and the target substrate (2) so that the fine particle fixation faces the fine particle disposition face through a liquid layer (4) (substrate disposition step), the step of separating the fine particles (3) from the fine particle fixation face (fine particle separation step), and the step of arranging the separated fine particles (3) on the fine particle disposition face by force in a direction from the source substrate to the target substrate applied to the fine particles (3) (fine particle disposition step). In the fine particle separation step, the separation of the fine particles (3) from the fixation face is carried out by physical force (6) or chemical force induced by laser irradiation (5).

Description

明 細 書  Specification
微小粒子の配置方法  How to arrange fine particles
技術分野  Technical field
[0001] 本発明は、微小粒子の配置方法に関する。  The present invention relates to a method for arranging fine particles.
[0002] 近年、バイオテクノロジーと他の分野の技術との融合により、生体機能を部分的に 模した生体デバイス (バイオデバイス、バイオチップともいう)が注目されつつある。 D NA、タンパク質、糖鎖などの生体分子 (バイオ分子ともいう)あるいは細胞を支持体( 基板)上に固定ィ匕した生体デバイスは、固定化された前記生体分子とその他の生体 分子あるいはそれ以外の化合物との特異的な相互作用の検出を大量かつ同時並行 的に行うことを可能とする。例えば、基板上に任意の抗原タンパク質を配置したプロ ティンチップは、病気やアレルギーの早期発見のための新しいツールとなりうる。また 、細胞を制御する生理活性タンパク質が基板上に配置された生体デバイスは、細胞 培養基板として使用することができ (例えば、特許文献 1参照)、例えば、再生医療分 野の細胞培養技術への応用が期待されて 、る。  [0002] In recent years, biodevices (also referred to as biodevices or biochips) that partially mimic biofunctions have been attracting attention by fusing biotechnology with technologies in other fields. Biomolecules such as DNA, proteins, sugar chains (also called biomolecules) or biodevices in which cells are immobilized on a support (substrate) are the above-mentioned immobilized biomolecules and other biomolecules or other It is possible to detect specific interactions with other compounds in large quantities simultaneously. For example, a protein chip in which an arbitrary antigen protein is placed on a substrate can be a new tool for early detection of diseases and allergies. In addition, a biological device in which a physiologically active protein that controls cells is arranged on a substrate can be used as a cell culture substrate (see, for example, Patent Document 1). Application is expected.
[0003] これらの生体デバイスの製造のために前述のような生体分子を基板上に配置する 方法としては、光リソグラフィー(非特許文献 1)、インクジェットプリンティング (特許文 献 1、非特許文献 2及び 3)、マイクロコンタクトプリンティング (非特許文献 4)、レーザ 一ダイレクトライティング (非特許文献 5)、レーザートラッピング (特許文献 2、非特許 文献 6)などの技術が提案されて 、る。  [0003] For the production of these biodevices, biomolecules such as those described above may be arranged on a substrate by photolithography (Non-patent Document 1), inkjet printing (Patent Document 1, Non-Patent Document 2, and Technologies such as 3), micro contact printing (Non-patent document 4), laser direct writing (Non-patent document 5), and laser trapping (Patent document 2, Non-patent document 6) have been proposed.
[0004] 光リソグラフィーを応用したタンパク質及び細胞の配置方法は、 1 μ mという高精度 でタンパク質をパターユングできる方法である(非特許文献 1)。インクジェットプリンテ イングを利用したタンパク質の配置方法は、例えば、図 13Aに示すとおり、インクジェ ットノズル 131からタンパク質溶液の微小液滴 132を基板 133に塗布してパターニン グを行う方法である。この方法では、一般に、複数種類のタンパク質を数 100 /z mの 精度でパター-ングできる(特許文献 1、非特許文献 2及び 3)。マイクロコンタクトプリ ンティングを利用したタンパク質の配置方法は、例えば、図 13Bに示すとおり、針先 や微細構造物(マイクロスタンプ) 134にタンパク質溶液の微小液滴 132を付着させ てそれを基板 133に転写する方法である(非特許文献 4)。レーザーダイレクトライティ ングを利用したタンパク質の配置方法は、例えば、図 13Cに示すとおり、タンパク質 試料 135に直接レーザー 136を照射してタンパク質溶液 132を基板 133に転写する 方法である。この方法では、複数種類のタンパク質を 50 /z m程度の精度でパンター ユングできる(非特許文献 5)。レーザートラッピングを利用したタンパク質の配置方法 は、例えば、タンパク質が結晶状態で含まれる昆虫ウィルス由来の多角体をレーザ 一トラッピング技術により配置する方法である(特許文献 2、非特許文献 6)。 [0004] A method for arranging proteins and cells using optical lithography is a method capable of patterning proteins with a high accuracy of 1 μm (Non-patent Document 1). For example, as shown in FIG. 13A, a protein placement method using ink jet printing is a method in which a fine droplet 132 of a protein solution is applied to a substrate 133 from an inkjet nozzle 131 to perform patterning. In this method, generally, a plurality of types of proteins can be patterned with an accuracy of several hundred / zm (Patent Document 1, Non-Patent Documents 2 and 3). For example, as shown in FIG. 13B, a protein placement method using microcontact printing is performed by attaching a microdroplet 132 of a protein solution to a needle tip or a fine structure (microstamp) 134 and attaching it to a substrate 133. This is a transfer method (Non-patent Document 4). Laser direct light For example, as shown in FIG. 13C, the protein is placed on the substrate 133 by directly irradiating the protein sample 135 with the laser 136 as shown in FIG. 13C. In this method, multiple types of proteins can be panned with an accuracy of about 50 / zm (Non-patent Document 5). The protein arrangement method using laser trapping is, for example, a method in which a polyhedron derived from an insect virus containing a protein in a crystalline state is arranged by a single laser trapping technique (Patent Document 2, Non-Patent Document 6).
特許文献 1:特開 2002— 355026号公報 Patent Document 1: Japanese Patent Laid-Open No. 2002-355026
特許文献 2 :特開 2003— 155300号公報 Patent Document 2: JP 2003-155300 A
非特干文献 1 :A. b. Blawas and W. M. Reichert, "Protein patterning. Biomatenals 19, 595-609 (1998) Non-Patent Literature 1: A. b. Blawas and W. M. Reichert, "Protein patterning. Biomatenals 19, 595-609 (1998)
非特許文献 2 : A. Roda et al., Protein microdeposition using a conventional ink-jet printer" BioTechniques 28, 492—496 (2000) Non-Patent Document 2: A. Roda et al., Protein microdeposition using a conventional ink-jet printer "BioTechniques 28, 492—496 (2000)
非特許文献 3 : B. T. Houseman et al., Peptide chips for the quantitative evaluation of protein kinase activity" Nat. Biotechnol. 20, 270 (2002) Non-Patent Document 3: B. T. Houseman et al., Peptide chips for the quantitative evaluation of protein kinase activity "Nat. Biotechnol. 20, 270 (2002)
非特許文献 4 :A. Bernard et al., "Microcontact printing of proteins" Adv. Mater. 12 1067-1070 (2000) Non-Patent Document 4: A. Bernard et al., "Microcontact printing of proteins" Adv. Mater. 12 1067-1070 (2000)
特許文献 5 : P. Serra et al., Laser direct writing of biomolecule microarrays, App 1. Phys. A 79, 949-952 (2004)  Patent Document 5: P. Serra et al., Laser direct writing of biomolecule microarrays, App 1. Phys. A 79, 949-952 (2004)
非特許文献 6 : Y. Hosokawa et al. "Protein Microarrays by Laser Patterning and Fix ation of Single Protein Microcrystals: Implication for Highly Integrated Protein Chip " J. Appl. Phys. 96, 2945-2948 (2004) Non-Patent Document 6: Y. Hosokawa et al. "Protein Microarrays by Laser Patterning and Fixation of Single Protein Microcrystals: Implication for Highly Integrated Protein Chip" J. Appl. Phys. 96, 2945-2948 (2004)
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
し力しながら、上記技術はいずれも、多種類の生体分子を高精度、高密度、高速で 配置するには不利な点がある。光リソグラフィーを利用した方法では、多くの種類の 生体分子を配置することは難しい。インクジェットプリンティング、マイクロコンタクトプリ ンティング、レーザーダイレクトライティングなどの技術を利用した方法では、多種類 の生体分子を配置できるが、生体分子を含む微量な液滴 132が空気中に射出され た際、及び基板 133に転写された際に、前記液滴 132に含まれる生体分子が乾燥に より失活してしまうおそれがある。 However, all of the above techniques have disadvantages for arranging many types of biomolecules with high accuracy, high density, and high speed. It is difficult to arrange many kinds of biomolecules by the method using optical lithography. Methods using technologies such as inkjet printing, microcontact printing, and laser direct writing can place many types of biomolecules, but a small amount of droplets 132 containing biomolecules are ejected into the air. In this case, when transferred to the substrate 133, the biomolecules contained in the droplet 132 may be deactivated by drying.
[0006] さらに、上記技術はまた、生体微小粒子 (生体分子の微小粒子)を基板上に配置し て生体デバイスを製造する場合にも不利な点がある。例えば、生体分子が固定化さ れた担体、生体分子の結晶、生体分子の集合体、ウィルス粒子、細胞などの生体微 小粒子は、生体分子の機能^^積した素子としてみなすことができ、このような生体 微小粒子が基板上に非破壊的に高精度、高密度、高速で配置 *配列された生体デ バイスを製造する技術の確立が望まれている。しかしながら、例えば、インクジェットプ リンティング技術を微小粒子に適用した場合、高精度に配置しょうとするとインクジェ ットのノズルに微小粒子が詰まるおそれがある。また、マイクロコンタクトプリンティング 技術を微小粒子の配置に適用することは、マイクロスタンプ及び基板と微小粒子との 吸着特性の高度な制御が必要となるため極めて困難である。一方、前記レーザート ラッピング技術を用いると、微小粒子の高精度な配置が可能である。しかしながら、配 置速度が極めて遅ぐ高集積度の生体デバイスを製造するには不利である。  [0006] Furthermore, the above technique also has a disadvantage when a biological device is manufactured by arranging biological microparticles (biomolecular microparticles) on a substrate. For example, biological microparticles such as biomolecule-immobilized carriers, biomolecule crystals, biomolecule aggregates, virus particles, and cells can be regarded as devices with biomolecule functions. Establishment of a technique for manufacturing a biological device in which such biological microparticles are arranged and arranged non-destructively with high accuracy, high density, and high speed on a substrate is desired. However, for example, when the inkjet printing technology is applied to fine particles, there is a risk that the fine particles will be clogged in the nozzles of the ink jet when trying to arrange with high accuracy. Moreover, it is extremely difficult to apply the micro contact printing technique to the arrangement of fine particles because it requires a high degree of control of the adsorption characteristics between the micro stamp and the substrate and the fine particles. On the other hand, if the laser trapping technique is used, it is possible to arrange fine particles with high accuracy. However, it is disadvantageous for manufacturing highly integrated biological devices with extremely slow deployment speeds.
[0007] そこで、本発明は、微小粒子の配置技術であって、高精度、高密度、高速の配置 が可能な微小粒子の配置技術の提供を目的とする。  [0007] Accordingly, an object of the present invention is to provide a technique for arranging fine particles, which is a technique for arranging fine particles, and which can be arranged with high accuracy, high density, and high speed.
課題を解決するための手段  Means for solving the problem
[0008] 前記目的を達成するために、本発明の微小粒子の配置方法は、微小粒子固定面 を有するソース基板であって前記微小粒子固定面に前記微小粒子が固定化された ソース基板及び前記微小粒子の配置対象となる微小粒子配置面を有するターゲット 基板の 2つの基板を準備する基板準備工程と、前記ソース基板と前記ターゲット基板 とを前記微小粒子固定面と前記微小粒子配置面とが対面する状態で液層を介して 対置する基板配置工程と、前記微小粒子を前記微小粒子固定面から分離させる微 小粒子分離工程と、微小粒子に力かるソース基板力もターゲット基板方向への力に より分離した前記微小粒子を前記微小粒子配置面に配置する微小粒子配置工程と を含み、前記微小粒子分離工程において、微小粒子の固定面からの分離が、レー ザ一照射で誘起される物理的な力及びィ匕学的な力の少なくとも一方により行われる 微小粒子の配置方法である。 発明の効果 [0008] In order to achieve the above object, a method for arranging microparticles according to the present invention includes a source substrate having a microparticle fixing surface, wherein the microparticles are immobilized on the microparticle fixing surface, and A substrate preparation step of preparing two substrates, a target substrate having a microparticle arrangement surface to be arranged with microparticles, and the source substrate and the target substrate, the microparticle fixing surface and the microparticle arrangement surface facing each other The substrate placement step that faces the substrate through the liquid layer, the fine particle separation step that separates the fine particles from the fine particle fixing surface, and the source substrate force acting on the fine particles are also caused by the force toward the target substrate. Separating the separated microparticles from the fixed surface in the microparticle separation step. Is the induced physical Chikara及 Byi 匕学 specific at least one by the arrangement method of the particulates carried out of power in the irradiation. The invention's effect
[0009] 本発明者らは、タンパク質の固定ィ匕担体などの微小粒子の配置技術について鋭意 研究を重ね、レーザー照射により誘起される物理的な力や化学的な力を利用すれば 、微小粒子が固定化された基板力 前記担体に大きな光化学的 ·光熱的なダメージ を与えることなく分離できること、さらに、分離された微小粒子をそのまま他の基板に 配置できれば、例えば、数 10 m以下の単一細胞スケールで前記微小粒子のパタ 一二ングが可能であることを見出し本発明に到達した。  [0009] The inventors of the present invention have made extensive studies on the arrangement technology of fine particles such as protein-immobilized carriers, and if the physical force or chemical force induced by laser irradiation is utilized, the fine particles If the substrate can be separated without causing significant photochemical / photothermal damage to the carrier, and if the separated microparticles can be placed directly on another substrate, for example, a single unit of several tens of meters or less The present inventors have found that the microparticles can be patterned on a cell scale.
[0010] 本発明の微小粒子の配置方法によれば、例えば、使用するレーザーの集光部の 位置や大きさを調節することで、微小粒子の高密度、高精度、高速の配列が可能と なる。また、レーザー照射により誘起される物理的な力やィ匕学的な力を利用した分離 は、ダメージが少ないため、例えば、微小粒子を非破壊的に配置することができる。さ らに、例えば、配置する微小粒子が生体微小粒子である場合、本発明の微小粒子の 配置方法によれば、例えば、水溶液中で配置できるから、タンパク質など生体分子の 生理活性の維持が可能である。  [0010] According to the arrangement method of the microparticles of the present invention, for example, by adjusting the position and size of the condensing portion of the laser to be used, it is possible to arrange the microparticles with high density, high accuracy, and high speed. Become. In addition, separation using a physical force or an ionic force induced by laser irradiation has little damage, so that, for example, fine particles can be arranged non-destructively. Furthermore, for example, when the microparticles to be arranged are biological microparticles, according to the method for arranging microparticles of the present invention, for example, the microparticles can be arranged in an aqueous solution, so that the physiological activity of biomolecules such as proteins can be maintained. It is.
[0011] さらにまた、本発明の微小粒子の配置方法により、例えば、増殖、分化、死などの 細胞機能を制御する複数種類を因子含む微小粒子を単一細胞レベルの精度で配 置することで、培養する各細胞へのシグナル伝達が可能な細胞培養基板を製造でき る。このような細胞培養基板を用いれば、組織形成の基礎をなす細胞配列の最低ュ ニットを再現し、組織誘導を図ることも可能となると考えられる。その他、本発明の微 小粒子の配置方法により製造される微小粒子配置基板は、例えば、プロテインチッ プ、バイオリアクター、バイオセンサー及びバイオアツセィ用試験片などの用途に使 用できる。  [0011] Furthermore, according to the method for arranging microparticles of the present invention, for example, microparticles containing multiple types of factors that control cell functions such as proliferation, differentiation, and death can be arranged with a single cell level accuracy. In addition, a cell culture substrate capable of signal transmission to each cell to be cultured can be produced. If such a cell culture substrate is used, it will be possible to reproduce the minimum unit of the cell arrangement that forms the basis of tissue formation and to induce tissue induction. In addition, the fine particle arrangement substrate produced by the fine particle arrangement method of the present invention can be used for applications such as protein chips, bioreactors, biosensors and bioassay test pieces.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]図 1A〜Cは、本発明の微小粒子の配置方法の一例を示す模式図である。  [0012] FIGS. 1A to 1C are schematic views showing an example of a method for arranging fine particles of the present invention.
[図 2]図 2A〜Eは、本発明のソース基板の作製例を示す模式図である。  [FIG. 2] FIGS. 2A to 2E are schematic views showing an example of manufacturing a source substrate of the present invention.
[図 3]図 3は、本発明におけるソース基板及びターゲット基板の配置の構成例を示す 模試図である。  FIG. 3 is a schematic diagram showing a configuration example of the arrangement of the source substrate and the target substrate in the present invention.
[図 4]図 4は、本発明における配置装置の構成例を示す模式図である。 [図 5]図 5は、本発明における電動ステージの構成を示す模式図である。 FIG. 4 is a schematic diagram showing a configuration example of a placement device according to the present invention. FIG. 5 is a schematic diagram showing a configuration of an electric stage according to the present invention.
[図 6]図 6A〜Eは、本発明の配置方法のその他の例を示す模式図である。  6A to 6E are schematic views showing other examples of the arrangement method of the present invention.
[図 7]図 7A及び Bは、本発明の微小粒子の配置方法により基板上に配列された多角 体の顕微鏡写真の一例である(実施例 1)。  FIG. 7A and FIG. 7B are examples of micrographs of polygons arranged on a substrate by the method for arranging microparticles of the present invention (Example 1).
[図 8]図 8A及び Bは、本発明の微小粒子の配置方法により基板上に配列された多角 体の顕微鏡写真のその他の例である(実施例 2)。  [FIG. 8] FIGS. 8A and 8B are other examples of micrographs of polygons arranged on a substrate by the method for arranging fine particles of the present invention (Example 2).
[図 9]図 9A〜Cは、本発明の細胞培養基板上で培養された細胞の顕微鏡写真の一 例である(実施例 3)。  [FIG. 9] FIGS. 9A to 9C are examples of micrographs of cells cultured on the cell culture substrate of the present invention (Example 3).
[図 10]図 10は、本発明の微小粒子の配置方法により基板上に配列された多角体の 顕微鏡写真のさらにその他の例である(実施例 4)。  FIG. 10 is still another example of a photomicrograph of a polyhedron arranged on a substrate by the method for arranging fine particles of the present invention (Example 4).
[図 11]図 11は、パルスレーザーを水中で集光させた場合のレーザーアブレーシヨン に基づく力学的な力の一例の模式図である。  [FIG. 11] FIG. 11 is a schematic diagram of an example of a mechanical force based on laser abrasion when a pulsed laser is focused in water.
[図 12]図 12Aは、本発明の微小粒子の配置方法により配置される 2種類の多角体の 配置の模式図であり、図 12Bは、本発明の微小粒子の配置方法により配置された 2 種類の多角体の顕微鏡写真の透過像の一例であり、図 12Cは、その蛍光像の一例 である。  [FIG. 12] FIG. 12A is a schematic diagram of the arrangement of two types of polygons arranged by the method for arranging microparticles of the present invention, and FIG. FIG. 12C is an example of a transmission image of a micrograph of a polyhedron of a kind, and FIG. 12C is an example of the fluorescence image thereof.
[図 13]図 13A〜Cは、従来の技術を説明する模式図である。図 13Aは、インクジエツ トプリンティング技術の模式図、図 13Bは、マイクロコンタクトプリンティング技術の模 式図、図 13Cは、レーザーダイレクトライティング技術の模式図である。  FIGS. 13A to 13C are schematic diagrams for explaining a conventional technique. FIG. 13A is a schematic diagram of ink jet printing technology, FIG. 13B is a schematic diagram of micro contact printing technology, and FIG. 13C is a schematic diagram of laser direct writing technology.
符号の説明 Explanation of symbols
1 ソース基板  1 Source board
2 ターゲット基板  2 Target board
3 微小粒子  3 Fine particles
4 液層  4 liquid layers
5 ノ レスレーザー  5 North Laser
6 レーザーアブレーシヨンに基づく力学的な力  6 Mechanical force based on laser abrasion
7 分散液  7 Dispersion
8 マイクロピペット ソース基板 8 Micropipette Source board
〜: LO'" 多角体 ~: LO '"Polyhedron
弱アルカリ液  Weak alkaline solution
ターゲット基板  Target board
ガラス基板  Glass substrate
シリコンゴム基板  Silicon rubber substrate
スぺーサー  Spacer
液層  Liquid layer
ソース基板及びターゲット基板の配置形態 正立顕微鏡  Arrangement of source and target substrates Upright microscope
ステージ  Stage
コンデンサーレンズ  Condenser lens
対物レンズ  Objective lens
光源ランプ  Light source lamp
CCDカメラ  CCD camera
パルスレーザー照射装置  Pulsed laser irradiation device
え /2板  / 2 board
偏光板  Polarizer
コリーメーターレンズ  Collimator lens
タ、'ィクロイツクミラー  Ta
ノ レスレーザー  Nores laser
配置装置  Placement device
、 42 電動ステージ , 42 Electric stage
ソース基板固定用支持具  Support for fixing source substrate
ソース基板  Source board
ターゲット基板  Target board
、 47 配置領域 , 47 Placement area
、 49 多角体 50 ソース基板及びターゲット基板の配置形態 , 49 Polyhedron 50 Arrangement of source and target substrates
51 液層  51 liquid layer
60 対物レンズ法線  60 Objective normal
100 ノ レスレーザー  100 laser
101 集光部  101 Light collector
103 基板  103 substrate
131 インクジェット  131 inkjet
132 タンパク質溶液の液滴  132 Droplets of protein solution
133 基板  133 PCB
134 マイクロスタンプ  134 Micro Stamp
135 タンパク質試料  135 Protein samples
136 レーザー  136 laser
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 本発明の微小粒子の配置方法の前記微小粒子分離工程において、レーザー照射 で誘起される物理的な力又は化学的な力は、レンズを含む光学システムによるレー ザ一の集光により誘起される物理的な力又は化学的な力であることが好ましい。前記 レーザーの集光部の位置は、分離させる微小粒子、又は、分離させる微小粒子近傍 の前記液層若しくは前記ソース基板であることが好まし 、。  [0014] In the fine particle separation step of the fine particle arrangement method of the present invention, the physical force or chemical force induced by laser irradiation is induced by condensing the laser by an optical system including a lens. It is preferably a physical force or a chemical force. The position of the condensing part of the laser is preferably the fine particles to be separated, or the liquid layer or the source substrate in the vicinity of the fine particles to be separated.
[0015] 本発明の微小粒子の配置方法の前記微小粒子分離工程において、レーザーの集 光により誘起される物理的な力は、レーザーアブレーシヨンに基づく力学的な力であ ることが好ましい。前記レーザーアブレーシヨンに基づく力学的な力を微小粒子に接 触させることで、ソース基板力も前記微小粒子を分離させるのである。また、前記レー ザ一アブレーシヨンは、衝撃波、気泡、及び、対流の少なくとも 1つの発生を含むもの であることが好ましい。 [0015] In the fine particle separation step of the fine particle arrangement method of the present invention, it is preferable that the physical force induced by laser concentration is a mechanical force based on laser abrasion. By bringing the mechanical force based on the laser abrasion into contact with the fine particles, the source substrate force also separates the fine particles. The laser ablation preferably includes at least one generation of shock waves, bubbles, and convection.
[0016] 本発明の微小粒子の配置方法の前記微小粒子分離工程において、レーザー照射 で誘起される化学的な力は、ソース基板の改質及び Z又はソース基板に接した微小 粒子の部分の改質であることが好ま 、。レーザー照射によるソース基板及び Z又 は微小粒子の一部の改質によってソース基板に微小粒子を固定ィ匕する力を弱め又 は無くすことで、ソース基板力も前記微小粒子を分離させるのである。 [0016] In the fine particle separation step of the fine particle arrangement method of the present invention, the chemical force induced by laser irradiation causes modification of the source substrate and modification of the portion of the fine particles in contact with Z or the source substrate. Prefer to be quality ,. Reducing the force to fix the microparticles on the source substrate by modifying the source substrate and some of the Z or microparticles by laser irradiation By eliminating, the source substrate force also separates the microparticles.
[0017] 本発明の微小粒子の配置方法は、前記微小粒子分離工程及び前記微小粒子配 置工程を繰り返すことで、任意の点及び線の少なくとも一方として、前記配置面に微 小粒子を配列することができる。また、本発明の配置方法の前記基板準備工程にお いて、異なる種類の微小粒子が固定化されたソース基板を準備することで、同一の 微小粒子配置面に、異なる種類の微小粒子を配置することができる。  In the method for arranging microparticles of the present invention, the microparticles are arranged on the arrangement surface as at least one of arbitrary points and lines by repeating the microparticle separation step and the microparticle arrangement step. be able to. Further, in the substrate preparation step of the arrangement method of the present invention, by preparing source substrates on which different types of microparticles are immobilized, different types of microparticles are arranged on the same microparticle arrangement surface. be able to.
[0018] 本発明の微小粒子の配置方法の前記微小粒子配置工程において、微小粒子にか かる力が、重力、磁力、静電力、光力及び浮力からなる群から選択される力であるこ とが好ましい。  [0018] In the fine particle arrangement step of the fine particle arrangement method of the present invention, the force applied to the fine particles may be a force selected from the group consisting of gravity, magnetic force, electrostatic force, light force, and buoyancy. preferable.
[0019] 本発明の微小粒子の配置方法は、前記基板配置工程にお!ヽて、前記ソース基板 力 前記ターゲット基板の上に位置するように配置することで、前記微小粒子配置ェ 程において、前記微小粒子を、重力により前記微小粒子配置面に配置することが好 ましい。  [0019] The method for arranging fine particles of the present invention includes the substrate arranging step! In addition, it is preferable that the fine particles are arranged on the fine particle arrangement surface by gravity in the fine particle arrangement step by arranging the source substrate force so as to be positioned on the target substrate. .
[0020] 本発明にお 、て、前記レーザーの光は、赤外光、可視光及び紫外光からなる群か ら選択される光であることが好ましい。また、前記レーザーは、ナノ秒レーザー、ピコ 秒レーザー及びフェムト秒レーザー力 なる群力 選択されるパルスレーザー、又は  [0020] In the present invention, the laser light is preferably light selected from the group consisting of infrared light, visible light, and ultraviolet light. In addition, the laser may be a nanosecond laser, a picosecond laser, and a femtosecond laser power, a group power selected by a pulse laser, or
、連続発振レーザーであることが好ましい。 A continuous wave laser is preferable.
[0021] 本発明において、前記微小粒子は、生体分子が固定化された担体、生体分子の 結晶、生体分子の集合体、ウィルス粒子及び細胞からなる群から選択されることが好 ましい。前記生体分子が固定化された担体の担体は、昆虫ウィルス由来の多角体で あってもよぐまた、高分子、金属、半導体、生体分子の集合体、これらの結晶及びこ れらの組合せ力もなる群力も選択される微粒子であってもよい。  In the present invention, the microparticles are preferably selected from the group consisting of a carrier on which a biomolecule is immobilized, a crystal of biomolecule, an aggregate of biomolecules, virus particles, and cells. The carrier on which the biomolecule is immobilized may be a polyhedron derived from an insect virus, or a polymer, a metal, a semiconductor, an aggregate of biomolecules, a crystal thereof, or a combination force thereof. Fine particles for which a group force is also selected may be used.
[0022] 本発明の微小粒子配置基板の製造方法は、本発明の微小粒子の配置方法により 、微小粒子を基板に配置する工程を含む製造方法である。  [0022] The method for producing a microparticle-arranged substrate of the present invention is a production method including a step of arranging microparticles on the substrate by the method for arranging microparticles of the present invention.
[0023] 本発明の微小粒子の配置装置は、本発明の微小粒子の配置方法又は本発明の 製造方法に用いる微小粒子の配置装置であって、前記ソース基板の設置部と、前記 ターゲット基板の設置部と、レーザー照射手段と、レーザー集光手段とを含む微小粒 子の配置装置である。 [0024] 本発明の細胞又は組織の培養方法は、生理活性を示す生体分子を含む微小粒子 を本発明の微小粒子の配置方法で配置して製造される細胞培養基板上で、細胞又 は組織を培養することを含む培養方法である。本発明の培養方法は、前記細胞培養 基板に配置された前記微小粒子上で細胞を培養することを含み、前記生理活性を 示す生体分子が、増殖、分化、移動及び死力 なる群力 選択されるシグナルを前 記細胞に伝達する培養方法であることが好ましい。また、本発明の細胞又は組織の 製造方法は、本発明の培養方法により、細胞又は組織を培養することを含む製造方 法である。 [0023] The fine particle arrangement device of the present invention is a fine particle arrangement device used in the fine particle arrangement method of the present invention or the production method of the present invention, wherein the source substrate installation unit, the target substrate It is a device for arranging fine particles including an installation section, laser irradiation means, and laser focusing means. [0024] The cell or tissue culturing method of the present invention comprises a cell or tissue on a cell culture substrate produced by placing microparticles containing biomolecules exhibiting physiological activity by the microparticle placement method of the present invention. Is a culturing method comprising culturing The culture method of the present invention includes culturing cells on the microparticles arranged on the cell culture substrate, and the biomolecules exhibiting the physiological activity are selected as a group force of proliferation, differentiation, migration and death force. It is preferable that the culture method transmits the above signal to the cells. The method for producing a cell or tissue of the present invention is a production method including culturing a cell or tissue by the culture method of the present invention.
[0025] 次に、本発明の微小粒子の配置方法について説明する。  Next, the method for arranging fine particles of the present invention will be described.
[0026] 本発明の微小粒子の配置方法にぉ 、て、微小粒子の配置とは、微小粒子の配列 を含む。例えば、レーザー照射による微小粒子の 1ドットの配置を連続することで、微 小粒子を配列できる。  In the method for arranging microparticles of the present invention, the arrangement of microparticles includes an arrangement of microparticles. For example, microparticles can be arranged by continuously arranging 1 dot of microparticles by laser irradiation.
[0027] 本発明の微小粒子の配置方法で配置される微小粒子は、基板に固定化でき、レー ザ一照射で誘起される物理的な力や化学的な力により分離できるものであれば、特 に制限されないが、例えば、生体分子が固定化された担体、生体分子の結晶、生体 分子の集合体、ウィルス粒子、及び細胞などが挙げられる。また、前記生体分子は、 特に制限されず、例えば、タンパク質、ペプチド、 DNA、 RNA、糖、脂質、有機化合 物、これらの複合体及びこれらの誘導体などが挙げられる。生体分子の集合体とは、 例えば、タンパク質や DNAをィ匕学的に凝集させたものをいう。本発明の配置方法に より製造される本発明の微小粒子配置基板の用途に応じて適宜 1種又は 2種類以上 の微小粒子を選択できる。  [0027] The fine particles arranged by the fine particle arrangement method of the present invention can be immobilized on a substrate and separated by physical force or chemical force induced by laser irradiation. Although not particularly limited, for example, a carrier on which a biomolecule is immobilized, a crystal of biomolecule, an aggregate of biomolecules, virus particles, a cell, and the like can be mentioned. The biomolecule is not particularly limited, and examples thereof include proteins, peptides, DNA, RNA, sugars, lipids, organic compounds, complexes thereof, and derivatives thereof. An aggregate of biomolecules is, for example, a protein or DNA that is agglutinated. One or more kinds of fine particles can be appropriately selected according to the use of the fine particle arrangement substrate of the present invention produced by the arrangement method of the present invention.
[0028] 本発明の微小粒子の配置方法において、前記微小粒子の大きさは、特に制限され ず、また、その大きさは、例えば、球形の場合、直径が、 10nm〜100 mであって、 好ましくは、 lOOnm〜: LO μ mであり、より好ましくは、 100nm〜l μ mである。また、 前記微小粒子の形状は、特に制限されない。  [0028] In the method for arranging microparticles of the present invention, the size of the microparticles is not particularly limited, and for example, in the case of a spherical shape, the diameter is 10 nm to 100 m, Preferably, lOOnm˜: LO μm, and more preferably 100 nm˜l μm. Further, the shape of the fine particles is not particularly limited.
[0029] 前記微小粒子が、生体分子が固定化される担体である場合、前記担体は、特に制 限されないが、前記生体分子を固定化でき、基板に固定ィ匕できるものが好ましい。前 記担体としては、固定ィ匕する生体分子に応じて従来公知の担体を使用でき、例えば 、昆虫ウィルス由来の多角体、高分子、金属、半導体、生体分子の集合体、これらの 結晶及びこれらの組合せ力 なる群力 選択される微粒子などが挙げられる。これら の中でも、タンパク質を固定ィ匕する担体としては、後述する従来公知の昆虫ウィルス 由来の多角体が好ましい。前記多角体は、タンパク質の生理活性を維持する効果を 有するからである。本発明において、多角体とは、本来の意味である昆虫ウィルスが 感染細胞内で形成する 1辺が 100nm〜10 μ mの多面体構造物であって、ポリへドリ ンが結晶状に会合してできた結晶構造物のほか、公知の遺伝子工学技術を用いて 任意のタンパク質をその生体機能を維持したまま前記多角体に取り込ませた、 V、わ ゆる結晶性タンパク質封入体を含む (例えば、特許文献 2、特開 2003— 319778号 公報、 WO2002Z036785号バンプレツ卜参照)。 [0029] When the microparticle is a carrier on which a biomolecule is immobilized, the carrier is not particularly limited, but a carrier that can immobilize the biomolecule and can be immobilized on a substrate is preferable. As the carrier, a conventionally known carrier can be used according to the biomolecule to be immobilized. Insect virus-derived polyhedrons, macromolecules, metals, semiconductors, aggregates of biomolecules, crystals of these, and the combined force of these, fine particles selected. Among these, as a carrier for immobilizing proteins, a polyhedron derived from a conventionally known insect virus described later is preferable. This is because the polyhedron has an effect of maintaining the physiological activity of the protein. In the present invention, a polyhedron is a polyhedral structure of 100 nm to 10 μm on one side formed by an insect virus, which is the original meaning, in an infected cell, and the polyhedrin is associated in a crystalline form. In addition to the resulting crystal structure, V and so-called crystalline protein inclusion bodies in which any protein is incorporated into the polyhedron while maintaining its biological function using known genetic engineering techniques (for example, patents) (Ref. Literature 2, Japanese Patent Laid-Open No. 2003-319778, WO2002Z036785, Bumplets IV).
本発明の微小粒子の配置方法において、レーザー照射で誘起される物理的な力 は、例えば、レンズを含む光学システムによるレーザーの集光により誘起される物理 的な力を含み、特に限定されないが、好ましくは、レーザーアブレーシヨンに基づく力 学的な力である。前記レーザーアブレーシヨンとは、高強度のレーザーを物質に照射 して集光させた時に見られる爆発的な侵食現象をいい、例えば、水中にパルスレー ザ一を集光させたとき、集光部における水の多光子吸収により衝撃波、気泡、対流な どが発生する現象をいい、前記気泡の発生には、いわゆる空泡(キヤビテーシヨンバ ブル)の発生が含まれる。本発明において、レーザーアブレーシヨンに基づく力学的 な力とは、例えば、前記衝撃波、気泡、対流などの発生による力学的な力を含むが、 これらに限定されず、前記爆発的な侵食現象一般に基づく力学的な力を含む。また 、前記衝撃波とは、パルスレーザーの集光部で発生する圧力波のことである。図 11 に、パルスレーザーを水中で集光させた場合のレーザーアブレーシヨンに基づく力 学的な力の一例の模式図を示す。同図に記載のように、例えば、フェムト秒パルスレ 一ザ一 100を基板 103に向けて照射して集光すると、その集光部 101で水の多光子 吸収及びレーザーアブレーシヨンが起こり、それにより矢印方向に衝撃波、気泡、対 流などの発生による力学的な力が伝搬し、点線 102の範囲まで前記力学的な力が及 ぶ。また、レーザーアブレーシヨンは、前記水の多光子吸収を利用する他、可視光や 紫外光で一光子吸収を有する分子を利用してもよい。例えば、基板中に、可視光や 紫外光で一光子吸収を有する分子を添加しておき、可視光や紫外光を発するレー ザ一を照射して前記基板でレーザーアブレーシヨンを誘起することもできる。 In the method for arranging microparticles of the present invention, the physical force induced by laser irradiation includes, for example, the physical force induced by laser focusing by an optical system including a lens, and is not particularly limited. Preferably, it is a mechanical force based on laser abrasion. The laser ablation is an explosive erosion phenomenon that occurs when a high-intensity laser is irradiated and condensed. For example, when a pulse laser is focused in water, This is a phenomenon in which shock waves, bubbles, convection, and the like are generated by multiphoton absorption of water in the water. The generation of the bubbles includes the generation of so-called air bubbles (cavitation bubbles). In the present invention, the mechanical force based on laser ablation includes, for example, the mechanical force due to the generation of the shock wave, bubble, convection, etc., but is not limited thereto, and generally the explosive erosion phenomenon. Including dynamic force based. The shock wave is a pressure wave generated at the condensing part of the pulse laser. Figure 11 shows a schematic diagram of an example of the mechanical force based on laser abrasion when a pulsed laser is focused in water. As shown in the figure, for example, when the femtosecond pulse laser 100 is irradiated toward the substrate 103 and condensed, multi-photon absorption of water and laser ablation occur at the condensing unit 101, and this occurs. As a result, the mechanical force due to the generation of shock waves, bubbles, convection, etc. propagates in the direction of the arrow, and the mechanical force reaches the range of the dotted line 102. Laser ablation may use a molecule having one-photon absorption in visible light or ultraviolet light in addition to the multiphoton absorption of water. For example, visible light or A molecule having one-photon absorption with ultraviolet light is added, and laser ablation is induced on the substrate by irradiating a laser that emits visible light or ultraviolet light.
[0031] 本発明の微小粒子の配置方法において、レーザー照射で誘起される化学的な力 は、例えば、ソース基板の改質及び Z又はソース基板に接した微小粒子の部分の改 質を含む。前記ソース基板及び Z又は微小粒子の一部の改質とは、レーザーをソー ス基板に照射した時に見られるソース基板及び Z又は微小粒子の一部の化学的状 態の変化であって、例えば、ソース基板及び Z又は微小粒子の一部の材質や修飾 物が光反応性や光分解性の分子を含み、レーザー照射により前記分子の化学的状 態が変化することを含む。このような化学的な力は、レンズを含む光学システムによる レーザーの集光により誘起されるものであることが好ましい。  [0031] In the method for arranging microparticles of the present invention, the chemical force induced by laser irradiation includes, for example, modification of the source substrate and modification of Z or the portion of the microparticles in contact with the source substrate. The modification of the source substrate and part of the Z or microparticle is a change in the chemical state of the source substrate and part of the Z or microparticle that is observed when the source substrate is irradiated with a laser, for example, In addition, the material of the source substrate and part of Z or microparticles or modified products contain photoreactive or photodegradable molecules, and the chemical state of the molecules changes by laser irradiation. Such chemical forces are preferably induced by laser focusing by an optical system including a lens.
[0032] したがって、本発明の微小粒子の配置方法で使用するレーザーは、前記物理的な 力やィ匕学的な力を誘起できるものであれば特に制限されず、レーザーの光は、例え ば、赤外光、可視光又は紫外光を使用できる。また、使用するレーザーは、例えば、 連続発振レーザーやパルスレーザーが使用でき、前記パルスレーザーとしては、例 えば、ナノ秒レーザー、ピコ秒レーザー及びフェムト秒レーザーなどの従来公知のレ 一ザ一が使用できる。具体例としては、フェムト秒チタンサファイアレーザー、フェムト ファイバーレーザー、フェムト秒、イツトリビゥムレーザー、フェムト秒、エキシマレーザ 一、ピコ秒 YAGレーザーなどが挙げられる。 Therefore, the laser used in the method for arranging fine particles of the present invention is not particularly limited as long as it can induce the physical force and the ionic force, and the laser light is, for example, Infrared light, visible light or ultraviolet light can be used. In addition, for example, a continuous wave laser or a pulse laser can be used as the laser to be used. As the pulse laser, for example, a conventionally known laser such as a nanosecond laser, a picosecond laser, or a femtosecond laser is used. it can. Specific examples include femtosecond titanium sapphire lasers, femto fiber lasers, femtoseconds, ittribium lasers, femtoseconds, excimer lasers, and picosecond YAG lasers.
[0033] 本発明の微小粒子の配置方法は、基板準備工程と、基板配置工程と、微小粒子分 離工程と、微小粒子配置工程とを含む。次に、各工程について説明する。  [0033] The fine particle arrangement method of the present invention includes a substrate preparation step, a substrate arrangement step, a fine particle separation step, and a fine particle arrangement step. Next, each step will be described.
[0034] (基板準備工程)  [0034] (Board preparation process)
ソース基板は、微小粒子固定面を有し、ここに、微小粒子が固定ィ匕されたものであ る。固定化される微小粒子は、前述のとおりである。また、前記微小粒子固定面は、 ソース基板の片面であっても両面であってもよい。ソース基板の材質は、特に制限さ れず、ガラス、プラスチック、ゴムなどを使用でき、固定ィ匕する微小粒子に応じて適宜 選択できる。また、ソース基板は、 2つ以上の層を含む積層物であってもよぐ例えば 、前記微小粒子固定面として、微小粒子の固定に適した層を積層してもよい。また、 ソース基板の微小粒子固定面は、微小粒子を固定するための修飾が施されても良い 。前記修飾としては、例えば、アビジン修飾などの抗原抗体反応を利用した修飾、ァ ルカンチオール修飾などの化学反応を利用した修飾が挙げられる。また、修飾基に 光反応性もしくは光分解性の分子を導入することにより、化学的な力を利用する微小 粒子配置面とすることができる。ソース基板の厚み、大きさは、特に制限されない。前 記ソース基板は、ソース基板を通して微小粒子を視認する必要がある場合、光学的 に透明であることが好ましい。また、ソース基板にレーザー ^^光させてアブレーショ ンを誘起する場合には、前述のとおり、照射するレーザー光で一光子吸収を有する 分子を含ませてもよい。 The source substrate has a fine particle fixing surface on which fine particles are fixed. The microparticles to be immobilized are as described above. The fine particle fixing surface may be one side or both sides of the source substrate. The material of the source substrate is not particularly limited, and glass, plastic, rubber and the like can be used, and can be appropriately selected according to the fine particles to be fixed. The source substrate may be a laminate including two or more layers. For example, a layer suitable for fixing microparticles may be stacked as the microparticle fixing surface. The fine particle fixing surface of the source substrate may be modified to fix the fine particles. . Examples of the modification include modification using an antigen-antibody reaction such as avidin modification, and modification using a chemical reaction such as alkanethiol modification. In addition, by introducing a photoreactive or photodegradable molecule into the modifying group, a fine particle arrangement surface utilizing chemical force can be obtained. The thickness and size of the source substrate are not particularly limited. The source substrate is preferably optically transparent when it is necessary to view fine particles through the source substrate. In addition, when ablation is induced by causing the source substrate to emit laser light, as described above, a molecule having one-photon absorption may be included in the irradiated laser light.
[0035] 微小粒子とソース基板との固定ィ匕は、化学結合を用いる方法や、物理吸着を用い る方法などの従来公知技術から適宜選択できる。ソース基板と微小粒子との分離が 物理的な力により行われる場合には、レーザーアブレーシヨンに基づく力学的な力の 物理的衝撃によりその結合が解かれる固定ィ匕方法であることが好ましい。ソース基板 と微小粒子との分離が化学的な力により行われる場合には、例えば、ソース基板と微 小粒子とが、光反応性や光分解性の分子を介して固定化され、レーザー照射による ソース基板の改質及び Z又はソース基板に接した微小粒子の部分の改質によりその 結合が解かれる固定ィ匕方法であることが好ましい。また、後述するように、 1つのター ゲット基板に複数の微小粒子を配置する場合には、ソース基板に複数の微小粒子を 、区分して固定ィ匕してもよい。  [0035] The fixation between the fine particles and the source substrate can be appropriately selected from conventionally known techniques such as a method using a chemical bond and a method using physical adsorption. In the case where the source substrate and the fine particles are separated by a physical force, it is preferable to use a fixed layer method in which the coupling is released by a physical impact of a mechanical force based on laser abrasion. When separation of the source substrate and microparticles is performed by chemical force, for example, the source substrate and microparticles are immobilized via photoreactive or photodegradable molecules, and laser irradiation is performed. It is preferable that the fixing method is such that the bond is released by modification of the source substrate and modification of the portion of the fine particles in contact with Z or the source substrate. As will be described later, when a plurality of fine particles are arranged on one target substrate, the plurality of fine particles may be divided and fixed on the source substrate.
[0036] ターゲット基板は、微小粒子の配置対象となる微小粒子配置面を有するものである 。ターゲット基板の材質は、特に制限されず、ガラス、プラスチック、ゴムなどを使用で き、配置 ·固定ィ匕する微小粒子に応じて適宜選択できる。また、ターゲット基板は、 2 つ以上の層を含む積層物であってもよぐ例えば、ターゲット基板と微小粒子との固 定化が必要な場合は、前記微小粒子配置面として、微小粒子の固定に適した層を 積層してもよい。また、ターゲット基板の微小粒子配置面は、微小粒子を固定するた めの修飾が施されても良い。ターゲット基板の厚み、大きさは、特に制限されない。前 記ターゲット基板は、ターゲット基板を通してターゲット基板上の微小粒子などを視認 する必要がある場合、光学的に透明であることが好ましい。ターゲット基板は、例えば 、微小粒子として多角体を用いる場合には、ガラス基材がポリジメチルシロキサン (P DMS)でコートされたものを使用できる。 PDMSによるコーティングは、ジメルチルシ ロキサン (DMS)をコートし、適当な加熱 (例えば、約 80°C、 1分間)により重合させる などして行うことができる。 [0036] The target substrate has a fine particle arrangement surface on which fine particles are to be arranged. The material of the target substrate is not particularly limited, and glass, plastic, rubber or the like can be used, and can be appropriately selected according to the fine particles to be placed and fixed. In addition, the target substrate may be a laminate including two or more layers. For example, when the target substrate and the microparticles need to be fixed, the microparticle placement surface may be used to fix the microparticles. A layer suitable for the above may be laminated. Further, the fine particle arrangement surface of the target substrate may be modified to fix the fine particles. The thickness and size of the target substrate are not particularly limited. The target substrate is preferably optically transparent when it is necessary to visually recognize fine particles on the target substrate through the target substrate. For example, when the target substrate uses a polyhedron as fine particles, the glass substrate is made of polydimethylsiloxane (P DMS) coated can be used. Coating with PDMS can be performed by coating with dimertyl siloxane (DMS) and polymerizing by appropriate heating (for example, about 80 ° C. for 1 minute).
[0037] (基板配置工程) [0037] (Substrate placement process)
本発明の微小粒子の配置方法のおける基板配置工程は、ソース基板及びターゲッ ト基板を、前記ソース基板の微小粒子固定面と前記ターゲット基板の微小粒子配置 面とが対面する状態で液層を介して配置する工程である。ソース基板とターゲット基 板との距離は、特に制限されないが、ソース基板で分離した微小粒子をターゲット基 板上へ精度よく配置できる距離であることが好ましい。その距離は、例えば、 lOOnm 〜lmmであって、 100ηπι〜100 /ζ πιであることが好ましぐより好ましくは 100nm〜 10 ^ mである。  The substrate placement step in the fine particle placement method of the present invention includes a source substrate and a target substrate, with a fine particle fixed surface of the source substrate and a fine particle placement surface of the target substrate facing each other via a liquid layer. It is the process of arranging. The distance between the source substrate and the target substrate is not particularly limited, but is preferably a distance that allows fine particles separated by the source substrate to be accurately arranged on the target substrate. The distance is, for example, lOOnm to lmm, preferably 100ηπι to 100 / ζ πι, more preferably 100 nm to 10 ^ m.
[0038] 前記ソース基板と前記ターゲット基板との間には、液層が配置される。これにより、 液体のレーザーアブレーシヨンを利用できる。前記液層としては、例えば、水溶液層 が挙げられる。前記水溶液は、特に制限されず、例えば、水、生理食塩水、各種バッ ファーなどを適宜使用できる。上述したとおり、生体デバイスにおいて、配置される微 小粒子がタンパク質や細胞と!/、つた生体分子である場合、これらの生体分子が生体 機能を維持したまま配置されることが好ましい。しかしながら、従来のインクジェットプ リンティング、マイクロコンタクトプリンティング、レーザーダイレクトライティングなどの 技術 (図 13参照)では生体分子を射出して固定する際に、生体分子が乾燥する可能 性があり、この乾燥により生体機能が失われると考えられる。したがって、乾燥に弱い 生体分子の微小粒子を水溶液層中で乾燥させることなる配置できると 、う本発明のメ リットは、非常に大きい。なお、前記液層の液体は、水溶液に制限されず、例えば、 有機溶媒や油などであってもよ 、。  [0038] A liquid layer is disposed between the source substrate and the target substrate. This makes it possible to use liquid laser ablation. Examples of the liquid layer include an aqueous solution layer. The aqueous solution is not particularly limited, and for example, water, physiological saline, various buffers, and the like can be used as appropriate. As described above, in the biodevice, when the microparticles arranged are proteins, cells, and other biomolecules, it is preferable that these biomolecules are arranged while maintaining the biofunction. However, conventional technologies such as inkjet printing, micro contact printing, and laser direct writing (see Fig. 13) may cause the biomolecules to dry when they are injected and fixed. Is thought to be lost. Therefore, the advantage of the present invention is very large if the fine particles of biomolecules that are vulnerable to drying can be disposed in an aqueous solution layer. The liquid in the liquid layer is not limited to an aqueous solution, and may be, for example, an organic solvent or oil.
[0039] (微小粒子分離工程)  [0039] (Microparticle separation step)
本発明の微小粒子の配置方法における微小粒子分離工程の第 1の態様として、レ 一ザ一照射で誘起される物理的な力により、前記微小粒子固定面力 微小粒子を分 離させる工程が挙げられる。前記物理的な力には、前述のとおり、例えば、レーザー アブレーシヨンに基づく力学的な力が含まれる。レーザーアブレーシヨンは、ソース基 板への集光により誘起してもよいが、前記ソース基板と前記ターゲット基板との間に 配置された液層のレーザーアブレーシヨンを利用することが好まし 、。レーザーの集 光部は、レーザーアブレーシヨンに基づく力学的な力により目的とする微小粒子が分 離できる位置であれば、特に制限されず、例えば、直接微小粒子に集光させても良 い。し力しながら、前記微小粒子の劣化などを防ぐ点からは集光部を、前記微小粒子 に接触させないことが好ましい。すなわち、集光部で生じる衝撃波、気泡、対流など の力学的な力のみを接触させて前記微小粒子を分離することで、与える損傷をより 低減できる。また、レーザーアブレーシヨンによって生じる衝撃波などは、パルスとし て伝搬するが、集光部力 の距離が離れるほど衝撃波のパルス形状は緩和するのでAs a first aspect of the fine particle separation step in the fine particle arrangement method of the present invention, there is a step of separating the fine particle fixing surface force and fine particles by a physical force induced by laser irradiation. It is done. As described above, the physical force includes, for example, a mechanical force based on laser abrasion. Laser ablation is the source group Although it may be induced by focusing on a plate, it is preferable to use laser ablation of a liquid layer disposed between the source substrate and the target substrate. The laser condensing part is not particularly limited as long as the target fine particles can be separated by a mechanical force based on laser abrasion. For example, the laser condensing part may be directly focused on the fine particles. . However, it is preferable not to bring the light condensing part into contact with the fine particles from the viewpoint of preventing the fine particles from deteriorating. That is, the damage caused can be further reduced by separating the microparticles by contacting only mechanical forces such as shock waves, bubbles, and convection generated in the light collecting portion. In addition, shock waves generated by laser ablation propagate as pulses, but the pulse shape of the shock waves relaxes as the distance of the focusing force increases.
、衝撃波などの力は、集光部からの距離の 2乗以上の関数に比例して減少する。した がって、レーザーアブレーシヨンに基づく力学的な力影響は、集光部から遠ざかるに 従い急速に低下するから、例えば、パルスレーザーの集光部の大きさ、集光位置、レ 一ザ一強度及びレーザーの光密度などを適宜選択すれば、一定範囲の微小粒子を 、高精度に分離できる。例えば、集光部の大きさが 1 μ mの場合、その周囲の数 10 μ mの範囲にある微小粒子とソース基板との結合を、衝撃波、気泡や対流の衝突な どによる力学的な摂動により解くことができる(図 11参照)。 The force such as shock wave decreases in proportion to the function of the square or more of the distance from the condensing part. Therefore, the mechanical force effect based on laser ablation decreases rapidly as the distance from the condensing part increases. For example, the size of the condensing part of the pulse laser, the condensing position, the laser If the intensity and laser light density are appropriately selected, a small range of fine particles can be separated with high accuracy. For example, when the size of the condensing part is 1 μm, the mechanical perturbation due to shock waves, bubbles, convection collisions, etc. (See Fig. 11).
本発明の微小粒子の配置方法における微小粒子分離工程の第 2の態様として、レ 一ザ一照射で誘起される化学的な力、例えば、ソース基板の化学的な改質及び Z 又はソース基板に接した微小粒子の部分の改質より、前記微小粒子固定面から微小 粒子を分離させる工程が挙げられる。前記ソース基板及び Z又は微小粒子の一部 の改質は、微小粒子が光反応性や光分解性の分子を介してソース基板に固定化さ れている場合に、レーザー照射により、前記分子の化学的状態を変化させ、固定す る力を弱める又は無力化することを含む。前記ソース基板及び Z又は微小粒子の一 部の改質は、例えば、レーザーをソース基板と微小粒子との境界面に集光することで 誘起できる。レーザーの集光部は、ソース基板の改質及び Z又は微小粒子の一部に より目的とする微小粒子が分離できる位置であれば、特に制限されず、例えば、直接 微小粒子に集光させても良いし、分離させる微小粒子の近傍のソース基板であって もよい。前記微小粒子の劣化などを防ぐ点からは集光部を、前記微小粒子に接触さ せないことが好ましい。 The second aspect of the fine particle separation step in the fine particle arrangement method of the present invention is a chemical force induced by laser irradiation, such as chemical modification of the source substrate and Z or source substrate. There is a step of separating the fine particles from the fine particle fixing surface by modifying the portion of the fine particles in contact therewith. Modification of the source substrate and part of the Z or microparticle is performed by laser irradiation when the microparticle is immobilized on the source substrate via a photoreactive or photodegradable molecule. This includes changing the chemical state and weakening or neutralizing the fixing force. Modification of the source substrate and part of the Z or microparticles can be induced, for example, by focusing a laser on the interface between the source substrate and the microparticles. The laser condensing part is not particularly limited as long as the target microparticle can be separated by modification of the source substrate and Z or a part of the microparticle. For example, the laser condensing part is directly focused on the microparticle. Alternatively, it may be a source substrate in the vicinity of the fine particles to be separated. From the viewpoint of preventing deterioration of the microparticles, the condensing part is in contact with the microparticles. Preferably not.
[0041] なお、本発明の微小粒子の配置方法における微小粒子分離工程は、第 3の態様と して、レーザー照射で誘起される物理的な力と化学的な力とを共に利用して、前記 微小粒子固定面力 微小粒子を分離させる工程であってもよい。  [0041] The fine particle separation step in the fine particle arrangement method of the present invention uses, as a third aspect, both physical force and chemical force induced by laser irradiation, The fine particle fixing surface force may be a step of separating the fine particles.
[0042] 前記微小粒子分離工程にお!、て、分離させる微小粒子のソース基板における位置 は、対面するターゲット基板の前記微小粒子が配置される位置に相当する。すなわ ち、ターゲット基板の微小粒子配置面の任意の特定位置に微小粒子を配置する場 合、前記配置面の特定位置に対向するソース基板の固定ィ匕面の位置に固定ィ匕され た微小粒子をレーザー照射により分離させればよい。したがって、ソース基板とター ゲット基板との相対位置が固定されている場合、前記ソース基板へのレーザー照射 のパター-ングを、そのまま、微小粒子の配置としてターゲット基板へ転写することが できる。  [0042] In the fine particle separation step, the position of the fine particles to be separated on the source substrate corresponds to the position on the target substrate where the fine particles are arranged. In other words, when the microparticles are arranged at any specific position on the surface of the target substrate where the microparticles are arranged, the microparticles fixed at the position of the fixed surface of the source substrate facing the specific position of the arrangement surface are arranged. The particles may be separated by laser irradiation. Therefore, when the relative position between the source substrate and the target substrate is fixed, the pattern of laser irradiation to the source substrate can be transferred to the target substrate as it is as an arrangement of fine particles.
[0043] 前記微小粒子分離工程にお!、て、レーザーの集光、集光部の大きさの調整、及び 、集光位置の調整する手段としては、特に制限されないが、例えば、レンズや絞りな どの光学系のシステムで調整可能であり、好ましくは、顕微鏡を利用できる。ノ レスレ 一ザ一の集光部は、点状、一定の面積をもった円形又は一定の体積を持った球形 などの形状であってよぐ前記集光部が円形若しくは球形の場合、その半径は、例え ば、 0を越え 100 μ m以下であり、好ましくは、 0を越え 10 μ m以下であり、より好まし くは、 0を越え 1 μ m以下である。  [0043] The means for condensing the laser, adjusting the size of the condensing part, and adjusting the condensing position are not particularly limited in the fine particle separation step, but for example, a lens or a diaphragm. The optical system can be adjusted, and a microscope can be preferably used. The concentrating part of the nozzle is the shape of a dot, a circle with a certain area, or a sphere with a certain volume. If the condensing part is circular or spherical, its radius Is, for example, more than 0 and not more than 100 μm, preferably more than 0 and not more than 10 μm, and more preferably more than 0 and not more than 1 μm.
[0044] 前記微小粒子分離工程にお!ヽて、パルスレーザーを集光させる集光位置は、前述 のとおり、分離させる微小粒子の近傍のソース基板又は液体が好ましぐ分離させる 微小粒子の範囲に応じて適宜調整できる。パルスレーザーの集光位置と微小粒子と の距離としては、例えば、 0を超え lmm以下であって、 0を超え 100 m以下が好ま しぐより好ましくは、 0を超え 1 μ m以下である。  [0044] In the fine particle separation step, the condensing position for condensing the pulse laser is, as described above, the range of the fine particles that the source substrate or liquid in the vicinity of the fine particles to be separated is preferably separated. It can be adjusted appropriately according to The distance between the focused position of the pulse laser and the fine particles is, for example, more than 0 and less than 1 mm, more preferably more than 0 and less than 100 m, and more preferably more than 0 and less than 1 μm.
[0045] 前記微小粒子分離工程の第 1の態様において、レーザーアブレーシヨンにより 50 m以内の半径領域の微小粒子の配置に使用する場合のパルスレーザーの光密度 (光子流量: photon flux)は、例えば、 5 X 105〜1 X 1012 (watt)であり、好ましくは 、 5 X 105〜1 X 109 (watt)であり、より好ましくは 5 X 105〜1 X 107 (watt)である。 [0046] ここで、 50 μ m以内の半径領域の微小粒子の配置についての光密度を示したが、 パルスレーザーが影響を及ぼす領域は領域半径の 2乗に比例するため、たとえば 10 /z m以内の半径領域の微小粒子を配置したい場合のパルスレーザーの光密度は上 記の場合の 25分の 1、 100 m以内の半径領域の微小粒子を配置したい場合のパ ルスレーザーの光密度は上記の場合の 400倍となる。また、パルスレーザーのパル ス幅を Δ tとした場合、パルスレーザーの強度(I)とパルスレーザーに光密度(D)の 関係は、下記式で表される。 [0045] In the first aspect of the fine particle separation step, the light density (photon flux) of the pulse laser when used for the placement of fine particles in a radius region within 50 m by laser abrasion is: For example, 5 x 10 5 to 1 x 10 12 (watt), preferably 5 x 10 5 to 1 x 10 9 (watt), more preferably 5 x 10 5 to 1 x 10 7 (watt) It is. [0046] Here, the optical density for the arrangement of microparticles in the radius region within 50 μm is shown. Since the region affected by the pulse laser is proportional to the square of the region radius, for example, within 10 / zm The optical density of the pulsed laser when placing fine particles in the radius region is 1/25 of the above, and the optical density of the pulse laser when placing fine particles in the radius region within 100 m is 400 times the case. When the pulse width of the pulse laser is Δt, the relationship between the pulse laser intensity (I) and the light density (D) of the pulse laser is expressed by the following equation.
I = D X A t  I = D X At
このように使用するパルスレーザーの強度は、微小粒子と集光位置との距離、分離 させる微小粒子の範囲などに応じて適宜調整できる力 汎用のフェムト秒レーザー( Δ t = lOOfs)を用いた場合の例を、下記表 1に示す。  The intensity of the pulse laser used in this way is a force that can be adjusted appropriately according to the distance between the microparticles and the focusing position, the range of the microparticles to be separated, etc. When using a general-purpose femtosecond laser (Δ t = lOOfs) Examples of these are shown in Table 1 below.
[0047] [表 1] [0047] [Table 1]
(表 1 ) パルスレーザ一強度 (J/pu l se) (Table 1) Intensity of pulse laser (J / pu l se)
距離 一般的強度 好ましい強度 より好ましい強度  Distance General strength Preferred strength More preferred strength
l OOO y m以内 2x 10— 5~ 4x10' 2x10— 5~8x10— 2 2x 10"5~2x10"3 50 ;u m以内 5x 10— 8~ 10x10— ' 5χ10"ε~2χ10"4 5x 10"s~2x10"6 l Within OOO ym 2x 10— 5 ~ 4x10 '2x10— 5 ~ 8x10— 2 2x 10 " 5 ~ 2x10" 3 50; um or less 5x 10— 8 ~ 10x10—' 5χ10 " ε ~ 2χ10" 4 5x 10 " s ~ 2x10 " 6
10 m以内 2x10"9~ 4x10"3 2x10— 9~8x10— 6 2x 10 ~ 2x10"' _ Within 10 m 2x10 " 9 to 4x10" 3 2x10— 9 to 8x10— 6 2x 10 to 2x10 "'_
[0048] 前記微小粒子分離工程の第 2の態様にぉ 、て、ソース基板の化学的改質により微 小粒子を分離させる場合のパルスレーザーの強度は、例えば、 1 X 10— 9〜: LO CiZpu lse)であり、好ましくは、 1 X 10— 6〜1 (jZpulse)であり、より好ましくは、 1 X 10— 6〜1 X 10— 3 CFZpulse)である。また、連続発振レーザーを使用する場合、そのレーザー 強度は、例えば、 1 X 10— 6〜 10 (watt)であり、好ましくは、 1 X 10— 4〜1 (watt)であり 、より好ましくは、 1 X 10— 4〜1 X 10— 2 (watt)である。 [0048] Te second aspect Nio, of the fine particle separation step, the intensity of the pulse laser when separating the fine small particles by chemical modification of the source substrate, for example, 1 X 10- 9 ~: LO a CiZpu lse), preferably, a 1 X 10- 6 ~1 (jZpulse) , more preferably 1 X 10- 6 ~1 X 10- 3 CFZpulse). When using a continuous wave laser, the laser intensity is, for example, 1 X 10- 6 ~ 10 (watt ), preferably a 1 X 10- 4 ~1 (watt) , more preferably, a 1 X 10- 4 ~1 X 10- 2 (watt).
[0049] 本発明において、パルスレーザーの波長は、例えば、 190nm〜20 μ mのレーザ 一が使用でき、その中でも、例えば、液層で集光させる場合、直接的に強い吸収の ある紫外線よりも、赤外光のほうが使用する基板などの材料に関係なくレーザーの集 光部で衝撃波を発生できることより、前記波長は、 400ηπ!〜 l lOOnmが好ましぐよ り好ましくは、 600應〜: L lOOnmである。  [0049] In the present invention, the wavelength of the pulse laser can be, for example, a laser having a wavelength of 190 nm to 20 μm. Among them, for example, when condensing in a liquid layer, the wavelength of the pulse laser is higher than that of ultraviolet light having a strong absorption directly. Because infrared light can generate a shock wave at the laser concentrator regardless of the substrate material used, the wavelength is 400ηπ! More preferably, l lOOnm is more preferable, and 600 l: L lOOnm.
[0050] 1ドットの微小粒子を前記固定ィ匕面力 分離させるためのパルスレーザーの照射回 数は、特に制限されず、例えば、 1発(単発)から 1000万発であり、好ましくは単発か ら 1000発、より好ましくは単発から 10発であり、さらに好ましくは単発である。ここで、 本発明において、 1ドットとは、単一集光点へのレーザー照射により、ソース基板の固 定面から分離され、ターゲット基板の配置面に配置される微小粒子の領域をいう。ま た、繰り返し照射する場合のレーザーの繰り返し周波数は、例えば、 1Hz〜: L00MH zであり、好ましくは、 1Hz〜: LMHzであり、より好ましくは、 1Hz〜: LkHzであり、さら により好ましくは、 1Ηζ〜20Ηζである。 [0050] Irradiation times of pulsed laser for separating the fine particles of one dot with the fixed surface force The number is not particularly limited, and is, for example, 1 shot (single shot) to 10 million shots, preferably 1 shot to 1000 shots, more preferably 1 shot to 10 shots, and even more preferably a single shot. Here, in the present invention, one dot refers to a region of fine particles that are separated from the fixed surface of the source substrate by laser irradiation to a single condensing point and are disposed on the surface of the target substrate. In addition, the repetition frequency of the laser in the case of repeated irradiation is, for example, 1 Hz to: L00 MHz, preferably 1 Hz to: LMHz, more preferably 1 Hz to: LkHz, and more preferably, 1Ηζ to 20〜ζ.
[0051] (微小粒子配置工程)  [0051] (Microparticle placement process)
本発明の微小粒子の配置方法における微小粒子配置工程は、微小粒子にかかる ソース基板力 ターゲット基板方向への力により、前記分離工程により分離された微 小粒子を、ターゲット基板の配置面に配置する工程である。微小粒子をソース基板か らターゲット基板へ移動させる力としては、例えば、重力、磁力、静電力、浮力などが 挙げられる。その他の態様として、前記分離工程により分離された微小粒子を、レー ザ一による光力(光の放射圧)を利用したレーザートラッピング法を用いて捕捉し、タ 一ゲット基板へ移動させる工程が挙げられる。  The fine particle arrangement step in the fine particle arrangement method of the present invention is such that the fine particles separated in the separation step are arranged on the arrangement surface of the target substrate by the source substrate force applied to the fine particles in the direction of the target substrate. It is a process. Examples of the force that moves the microparticles from the source substrate to the target substrate include gravity, magnetic force, electrostatic force, and buoyancy. As another embodiment, there is a step of capturing the fine particles separated in the separation step using a laser trapping method using light power (radiation pressure of light) by a laser and moving the particles to a target substrate. It is done.
[0052] この工程の好ましい態様としては、微小粒子を、重力により、ソース基板からターゲ ット基板上へ落下させることがあげられる。この態様の一例を、図 1A〜Cを用いて具 体的に説明する。なお、図 1A〜Cにおいて、同一箇所には同一の符号を付している 。まず、図 1Aの模式図のように、微小粒子 3が固定ィ匕されたソース基板 1を、液層 4を 介してターゲット基板 2上に配置する。次に、図 1Bの模式図のように、レーザー 5を集 光させることによりレーザーアブレーシヨンを誘起し、レーザーアブレーシヨンに基づく 力学的な力 6を生じさせ、それにより、微小粒子 3をソース基板 1から分離させる。そし て、図 1Cの模式図のように、分離した微小粒子 3が、落下してターゲット基板 2上に 配置される。このように、本発明の配置方法によれば、ソース基板へのレーザー照射 のパター-ングを、そのまま、ターゲット基板上の前記微小粒子の配列として転写す ることがでさる。  [0052] A preferred embodiment of this step is to drop the microparticles from the source substrate onto the target substrate by gravity. An example of this embodiment will be specifically described with reference to FIGS. 1A to 1C, the same portions are denoted by the same reference numerals. First, as shown in the schematic diagram of FIG. 1A, a source substrate 1 on which fine particles 3 are fixed is placed on a target substrate 2 via a liquid layer 4. Next, as shown in the schematic diagram of Fig. 1B, the laser ablation is induced by collecting the laser 5 and a mechanical force 6 based on the laser ablation is generated, thereby causing the microparticle 3 to Separate from source substrate 1. Then, as shown in the schematic diagram of FIG. 1C, the separated fine particles 3 fall and are arranged on the target substrate 2. As described above, according to the arrangement method of the present invention, the pattern of laser irradiation to the source substrate can be transferred as it is as an array of the fine particles on the target substrate.
[0053] また、微小粒子の移動させる力のその他の態様として、微小粒子に、例えば、磁性 や電荷を持たせることで、ソース基板カゝらターゲット基板へ移動させる方法が挙げら れる。さらにその他の態様として、例えば、ソース基板をターゲット基板の下に液層を 介して配置し、前記液中における微小粒子の浮力を利用する方法も挙げられる。こ れらの態様の移動方法は、従来公知の技術により、適宜実施可能である。 [0053] Further, as another aspect of the force for moving the microparticles, for example, a method of moving the microparticles from the source substrate to the target substrate by giving magnetism or electric charge, for example, can be mentioned. It is. Furthermore, as another aspect, for example, a method in which a source substrate is disposed under a target substrate via a liquid layer and the buoyancy of fine particles in the liquid is used. The movement method of these aspects can be appropriately implemented by a conventionally known technique.
[0054] 配置された微小粒子のターゲット基板への固定ィ匕は、特に制限されず、必要に応じ て、従来公知の化学結合を用いる方法や、物理吸着を用いる方法などを利用して実 施できる。また、 PDMSコーティングされたターゲット基板を使用してこれに多角体を 固定ィ匕する場合には、そのままでも多角体は固定化されるが、多角体を配置した後 に、例えば、 37°Cで 6時間加熱することでより硬化させることができる。  [0054] The method for fixing the arranged fine particles to the target substrate is not particularly limited, and may be performed using a conventionally known method using chemical bonds, a method using physical adsorption, or the like, if necessary. it can. In addition, when using a PDMS-coated target substrate and fixing a polygon to this, the polygon is fixed as it is, but after placing the polygon, for example, at 37 ° C. It can be hardened by heating for 6 hours.
[0055] 以上の本発明の微小粒子の配置方法にお!、て、前記微小粒子分離工程及び前 記微小粒子配置工程を繰り返すことで、前記配置面に、任意の点及び/又は線とし て、前記微小粒子を配列することができる。また、異なる種類の微小粒子が固定化さ れたソース基板を利用すれば、後述の例で説明するように、同一ターゲット基板に複 数種類の微小粒子配置することができる。  [0055] In the fine particle arrangement method of the present invention described above, by repeating the fine particle separation step and the fine particle arrangement step, the arrangement surface has arbitrary points and / or lines. The microparticles can be arranged. If a source substrate on which different types of microparticles are immobilized is used, a plurality of types of microparticles can be arranged on the same target substrate, as will be described in the following example.
[0056] 次に、微小粒子の例として昆虫ウィルス由来の多角体を用いた本発明の多角体の 配置方法を具体的に説明する。ここで、昆虫ウィルス由来の多角体は、上述のとおり 、ポリヘドリンというウィルスの外殻タンパク質が形成する結晶性の物質であって、任 意のタンパク質をその内部に活性を維持したまま取り込ませ、タンパク質の担体とし て利用可能な物質である(例えば、特許文献 1、特開 2003— 319778号公報、 WO 2002Z036785号パンブレット参照)。ただし、本発明の微小粒子は、前記多角体 に限定されない。  [0056] Next, the method for arranging a polyhedron of the present invention using an insect virus-derived polyhedron as an example of microparticles will be specifically described. Here, the insect virus-derived polyhedron is a crystalline substance formed by the outer shell protein of the virus called polyhedrin as described above, and the desired protein is incorporated into the protein while maintaining its activity. (See, for example, Patent Document 1, Japanese Patent Application Laid-Open No. 2003-319778, and WO 2002Z036785 pamphlet). However, the fine particles of the present invention are not limited to the polygon.
[0057] (ソース基板の準備)  [0057] (Preparation of source substrate)
本発明の多角体の配置方法におけるソース基板の準備工程の一例を、図 2A〜D を用いて説明する。なお、同図において、同一箇所には同一の符号を付している。ま ず、図 2Aの模式図のように、水、生理食塩水、もしくは各種バッファーに多角体を分 散させた多角体分散液 7を、マイクロピペット 8を用いて、ガラス基板 9の微小粒子固 定面に滴下し、数時間、室温で放置する。すると、図 2Bの模式図のように、自然乾燥 することにより、前記多角体 10が、ガラス基板 9の固定ィ匕面に吸着する。このように、 自然乾燥することにより、多角体 10と基板 9とは、静電力により接着し、その後、水な どを滴下しても剥離しない。次に、図 2Cの模式図のように、ガラス基板 9の固定ィ匕面 に吸着させた多角体 10上に、マイクロピペットを用いて弱アルカリ水溶液 11を滴下し て数分程度放置して、アルカリ処理する。ポリヘドリンの結晶性多角体は、アルカリ溶 液により溶解することがしられており、この処理により、前記乾燥で活性を失った多角 体表面のタンパク質を活性ィ匕する。最後に、前記弱アルカリ水溶液をマイクロピペット で除去し、図 2Dの模式図のように、多角体 10が基板 9の固定ィ匕面に固定ィ匕されたソ ース基板が準備される。前記弱アルカリ水溶液としては、例えば、 ρΗΙΟ. 3のカノレポ ネートバッファーなどがあげられる。なお、前記多角体表面のアルカリ処理による活 性ィ匕は、例えば、抗原抗体反応、多角体表面からの緑色蛍光タンパク質の発光によ り判断できる。固定化される領域の大きさは、特に制限されず、例えば、その直径が、 lmm以下である。この場合、基板上に滴下する液滴の数は特に制限されず、例えば 、図 2Eのように、ガラス基板 9の固定ィ匕面に、複数種類の多角体 10〜: LO" 'を固定ィ匕 してもよい。したがって、例えば、 1cm角の基板を用い、 1つの固定ィ匕領域の大きさを 直径 lmm程度とした場合、 1枚の基板上に、約 100種類の異なるタンパク質を含む 多角体を配置することができることとなる。 An example of a source substrate preparation process in the polygon arrangement method of the present invention will be described with reference to FIGS. In the figure, the same portions are denoted by the same reference numerals. First, as shown in the schematic diagram of FIG. 2A, a polyhedron dispersion liquid 7 in which a polyhedron is dispersed in water, physiological saline, or various buffers is used to fix fine particles on the glass substrate 9 using a micropipette 8. Drop on a fixed surface and leave at room temperature for several hours. Then, as shown in the schematic diagram of FIG. 2B, the polygon 10 is adsorbed to the fixed surface of the glass substrate 9 by natural drying. Thus, by natural drying, the polygon 10 and the substrate 9 are bonded to each other by electrostatic force, and then the water Does not peel off when dripping. Next, as shown in the schematic diagram of FIG. 2C, a weak alkaline aqueous solution 11 is dropped using a micropipette on the polygon 10 adsorbed on the fixed surface of the glass substrate 9, and left for several minutes. Treat with alkali. The polyhedrin crystalline polyhedron is dissolved in an alkaline solution, and this treatment activates the protein on the polyhedron surface that has lost its activity upon drying. Finally, the weak alkaline aqueous solution is removed with a micropipette, and a source substrate is prepared in which the polygon 10 is fixed on the fixed surface of the substrate 9 as shown in the schematic diagram of FIG. 2D. Examples of the weakly alkaline aqueous solution include ρΗΙΟ.3 canolesulfonate buffer. The activity due to alkali treatment of the polyhedron surface can be determined by, for example, antigen-antibody reaction and light emission of green fluorescent protein from the polyhedron surface. The size of the region to be fixed is not particularly limited, and for example, the diameter is 1 mm or less. In this case, the number of droplets dropped on the substrate is not particularly limited. For example, as shown in FIG. 2E, a plurality of types of polygons 10 to: LO ″ ′ are fixed on the fixed surface of the glass substrate 9. Therefore, for example, when a 1 cm square substrate is used and the size of one fixed area is about 1 mm in diameter, a polygon containing about 100 different proteins on one substrate. The body can be placed.
(ソース基板及びターゲット基板の配置)  (Arrangement of source substrate and target substrate)
次に、ソース基板及びターゲット基板が、ソース基板の微小粒子固定面とターゲット 基板の微小粒子配置面とが対面する状態で液層を介して配置される形態を構築す る。図 3に、配置形態の一例の模式図を示す。同図のように、ソース基板及びターゲ ット基板の配置形態 20は、ターゲット基板 12上に、スぺーサー 15によって形成され る液層 16を介して、前記準備工程で準備した多角体 10が固定化されたソース基板 9 が配置された構成である。なお、図 3に示すターゲット基板 12は、ガラス基板 13に、 微小粒子配置面として、シリコンゴムシート 14が積層されたターゲット基板の一例で ある。後述するように、シリコンゴムシート 14により、分離後に配置された多角体 10の ターゲット基板 12への固定ィ匕作業を省略できるため、好ましい。前記スぺーサー 15 の材質は、特に制限されず、例えば、シリコンゴム、プラスチックシート、金属薄板など を使用でき、その厚みは、特に制限されず、例えば、 100 mである。前記シリコンゴ ムシート 14の厚みも、特に制限されず、例えば、 100 mである。 [0059] (多角体の分離及び配置工程) Next, a configuration is constructed in which the source substrate and the target substrate are arranged via the liquid layer in a state where the fine particle fixing surface of the source substrate and the fine particle arrangement surface of the target substrate face each other. FIG. 3 shows a schematic diagram of an example of the arrangement form. As shown in the figure, the arrangement form 20 of the source substrate and the target substrate is that the polygon 10 prepared in the preparation step is formed on the target substrate 12 via the liquid layer 16 formed by the spacer 15. In this configuration, the fixed source substrate 9 is arranged. A target substrate 12 shown in FIG. 3 is an example of a target substrate in which a silicon rubber sheet 14 is laminated on a glass substrate 13 as a fine particle arrangement surface. As will be described later, the silicon rubber sheet 14 is preferable because the operation of fixing the polygon 10 placed after the separation to the target substrate 12 can be omitted. The material of the spacer 15 is not particularly limited. For example, silicon rubber, a plastic sheet, a metal thin plate, or the like can be used, and the thickness is not particularly limited, and is 100 m, for example. The thickness of the silicon rubber sheet 14 is not particularly limited, and is 100 m, for example. [0059] (Polygon separation and arrangement process)
多角体の分離工程及び配置工程は、例えば、顕微鏡を利用した本発明の配置装 置を用い、前記配置形態 20のように構成されたソース基板及びターゲット基板に対 してレーザー照射することにより実施できる。図 4に、本発明の多角体の配置方法に 使用できる本発明の配置装置の一例を示す。同図のとおり、本発明の配置装置 40 は、正立顕微鏡 21及びパルスレーザー照射装置 27を主要構成要素としている。正 立顕微鏡 21は、ステージ 22と、コンデンサーレンズ 23と、対物レンズ 24と、光源ラン プ 25と、 CCDカメラ 26と、ダイクロックミラー 31とを備えている。前記ステージ 22上に は、配置形態 20のようにソース基板及びターゲット基板が配置される。正立顕微鏡 2 1のステージ 22の下方には、コンデンサーレンズ 23が配置され、その下には、光源ラ ンプ 25が配置され、この光を検出する CCDカメラ 26が顕微鏡 21上部に配置されて いる。正立顕微鏡 21の外部に、パルスレーザー照射装置 27が配置されており、正立 顕微鏡 21及びパルスレーザー照射装置 27との間には、光学システムが配置されて いる。前記光学システムは、 λ Ζ2板 28、偏光子 29及びコリーメーターレンズ 30から なり、この順序で、発射されたパルスレーザー 32が通過する。正立顕微鏡 21内に導 入されたパルスレーザー 32は、ダイクロイツクミラー 31で反射され、対物レンズ 24を 通して、配置形態 20のように構成されたソース基板及びターゲット基板に照射される 。この装置では、前記 λ Ζ2板 28及び偏光子 29により、パルスレーザー 32の強度を 調節でき、また、前記コリーメーターレンズ 30により、パルスレーザー 32を顕微鏡の 結像面に集光するように調節でき、ステージ 22により、パルスレーザー 32の集光位 置を調節できる。なお、この例では、正立顕微鏡を用いて、ソース基板の上方力 レ 一ザ一を照射する装置の例を取り上げたが、倒立顕微鏡を用いて、ターゲット基板の 下方からレーザーを照射してもよ!/、。  The polygon separation process and the arrangement process are performed by, for example, irradiating the source substrate and the target substrate configured as in the arrangement form 20 with a laser using the arrangement apparatus of the present invention using a microscope. it can. FIG. 4 shows an example of an arrangement device of the present invention that can be used in the polygon arrangement method of the present invention. As shown in the figure, the arrangement device 40 of the present invention includes an upright microscope 21 and a pulse laser irradiation device 27 as main components. The upright microscope 21 includes a stage 22, a condenser lens 23, an objective lens 24, a light source lamp 25, a CCD camera 26, and a dichroic mirror 31. On the stage 22, a source substrate and a target substrate are arranged as in the arrangement form 20. A condenser lens 23 is disposed below the stage 22 of the upright microscope 21. A light source lamp 25 is disposed below the condenser lens 23. A CCD camera 26 for detecting this light is disposed above the microscope 21. . A pulse laser irradiation device 27 is arranged outside the upright microscope 21, and an optical system is arranged between the upright microscope 21 and the pulse laser irradiation device 27. The optical system includes a λλ2 plate 28, a polarizer 29, and a collimator lens 30, and the emitted pulse laser 32 passes in this order. The pulse laser 32 introduced into the upright microscope 21 is reflected by the dichroic mirror 31, and is irradiated to the source substrate and the target substrate configured as in the arrangement form 20 through the objective lens 24. In this apparatus, the intensity of the pulse laser 32 can be adjusted by the λ 2 plate 28 and the polarizer 29, and the pulse laser 32 can be adjusted by the collimator lens 30 so as to be focused on the image plane of the microscope. The focusing position of the pulse laser 32 can be adjusted by the stage 22. In this example, an example of an apparatus that irradiates the upper force laser of the source substrate using an upright microscope is taken up. However, even if an inverted microscope is used to irradiate a laser from below the target substrate. Yo! /
[0060] この装置 40を使用した多角体の分離及び配置は、例えば、次のようにして行う。ま ず、正立顕微鏡 21のステージ 22にソース基板とターゲット基板とを図 3に示すような 配置形態 20のように配置する。そして、 CCDカメラ 26で、前記ソース基板及びター ゲット基板の様子を観察し、分離させる多角体を決定する。そして、パルスレーザー の集光位置が適当な位置になるように、ステージ 22で調整する。ついで、パルスレー ザ一照射装置 27によりパルスレーザー 32を照射し、前記光学システムで強度などを 調整して前記ソース基板及びターゲット基板にレーザーを照射する。パルスレーザー の集光部では、レーザーアブレーシヨンが誘起される。この状態を、前述した図 1Bを 用いて説明する。同図のように、ソース基板 1とターゲット基板 3との間の液層 4中に パルスレーザー 5が集光し、レーザーアブレーシヨンが誘起され、レーザーアブレ一 シヨンに基づく力学的な力 6が生じると、それにより、集光部近傍の微小粒子 (多角体 ) 3が、ソース基板 1より分離し、重力によりターゲット基板 2に落下する。そして、落下 した前記微小粒子(多角体) 3は、図 1Cのように、ターゲット基板 2上に着地し、配置 されるのである。ここで、前述のように、ターゲット基板 2に、微小粒子配置面としてシ リコンゴムを使用すると、着地した多角体とシリコンゴムとが静電力によって接着し、そ の後の固定ィ匕作業を省くことができるため、好ましい。 [0060] Separation and arrangement of polygons using the apparatus 40 are performed as follows, for example. First, the source substrate and the target substrate are arranged on the stage 22 of the upright microscope 21 as shown in the arrangement form 20 shown in FIG. Then, the CCD camera 26 observes the state of the source substrate and the target substrate, and determines the polygon to be separated. Then, the stage 22 is adjusted so that the focused position of the pulse laser becomes an appropriate position. Then pulse train A pulse laser 32 is irradiated by the laser irradiation device 27, the intensity is adjusted by the optical system, and the source substrate and the target substrate are irradiated with the laser. Laser ablation is induced in the condensing part of the pulse laser. This state will be described with reference to FIG. 1B described above. As shown in the figure, the pulsed laser 5 is focused in the liquid layer 4 between the source substrate 1 and the target substrate 3, laser ablation is induced, and a mechanical force 6 based on laser abrasion is applied. When this occurs, fine particles (polyhedrons) 3 in the vicinity of the light condensing part are separated from the source substrate 1 and fall onto the target substrate 2 due to gravity. Then, the dropped microparticles (polyhedrons) 3 land on the target substrate 2 and are arranged as shown in FIG. 1C. Here, as described above, when the silicon rubber is used as the fine particle arrangement surface on the target substrate 2, the landed polygon and the silicon rubber are bonded to each other by electrostatic force, and the subsequent fixing work is omitted. Is preferable.
[0061] 本発明の配置装置を用いて、ステージを移動させながらパルスレーザーを連続照 射することで、ターゲット基板へ任意の形状に多角体配列を書き込むことが可能とな る。書き込む線の幅は、特に制限されず、前述のとおり、パルスレーザーの強度など で調整可能である力 例えば、 1 μ m〜50cmの範囲であり、好ましくは、 1 μ m〜lc mの範囲であり、より好ましくは、 10 /ζ πι〜1πιπιの範囲とすることができる。また、書 き込みスピードは、特に制限されないが、例えば、: mZsec〜10cmZsecの範囲 であり、好ましくは、 1 μ mZsec〜: LmmZsecの範囲であり、より好ましくは、 10 m Zsec lOO /z mZsecの範囲とすることができる。このように、本発明の配置装置を 用いた本発明の微小粒子の配置方法によれば、高精度、高密度、高速な微小粒子 の配置が可能となる。なお、本発明の配置装置は、ソース基板の設置部と、ターゲッ ト基板の設置部と、レーザー照射手段と、レーザー集光手段とを含む装置であれば、 上記の例に制限されない。  [0061] By using the placement device of the present invention and continuously irradiating a pulse laser while moving the stage, it is possible to write a polygonal array in an arbitrary shape on the target substrate. The width of the writing line is not particularly limited, and as described above, a force that can be adjusted by the intensity of the pulse laser, for example, in the range of 1 μm to 50 cm, preferably in the range of 1 μm to lcm. More preferably, it can be in the range of 10 / ζ πι to 1πιπι. The writing speed is not particularly limited, but is, for example, in the range of: mZsec to 10 cmZsec, preferably in the range of 1 μmZsec to: LmmZsec, and more preferably in the range of 10 mZsec lOO / z mZsec. It can be a range. As described above, according to the fine particle arrangement method of the present invention using the arrangement device of the present invention, it is possible to arrange the fine particles with high accuracy, high density, and high speed. The placement device of the present invention is not limited to the above example as long as the placement device includes a source substrate placement portion, a target substrate placement portion, laser irradiation means, and laser focusing means.
[0062] 前述のとおり、多角体には、従来公知の遺伝子操作により、様々なタンパク質を担 持させることができる。そこで、前述の図 2Eのような、異なる種類のタンパク質を担持 した多角体 10〜: LO' "が配置されたソース基板を使用して、ターゲット基板上に複数 種類の多角体を任意に配列する本発明の配置方法について説明する。この配置方 法は、例えば、図 5の展開模式図で示すソース基板及びターゲット基板の配置形態 5 0を利用することで実施できる。同図において、配置形態 50は、 2つの電動ステージ 41と 42とを主要構成要素としており、ターゲット基板 45を固定できる電動ステージ 41 上に、固定支持具 43を介してソース基板 44を固定できる電動ステージ 42が配置さ れる。配置形態 50において、電動ステージ 41を移動する時は、電動ステージ 42もそ の相対位置を変化することなく移動し、電動ステージ 42を移動するときは、電動ステ ージ 42のみが移動するように設定する。 [0062] As described above, the polyhedron can carry various proteins by a conventionally known genetic manipulation. Therefore, as shown in Fig. 2E, multiple types of polyhedrons are arbitrarily arranged on the target substrate using a source substrate on which polygons 10 ~: LO '"carrying different types of proteins are arranged. An arrangement method according to the present invention will be described in accordance with an arrangement form of the source substrate and the target substrate shown in the developed schematic diagram of FIG. This can be done by using 0. In the figure, the arrangement form 50 has two electric stages 41 and 42 as main components, and the electric substrate 41 can fix the source substrate 44 via the fixing support 43 on the electric stage 41 that can fix the target substrate 45. Stage 42 is placed. In the arrangement form 50, when the electric stage 41 is moved, the electric stage 42 is also moved without changing its relative position, and when the electric stage 42 is moved, only the electric stage 42 is moved. To do.
[0063] 前記配置形態 50のように配置されるソース基板及びターゲット基板を用いた多角 体の分離及び配置は、例えば、図 6A〜Eのようにして行う。なお、電動ステージが設 置される配置装置は、例えば、図 4のような正立顕微鏡でも、倒立顕微鏡でもよぐ適 宜選択できる。なお、図 6において、図 5と同一箇所には、同一符号を付す。図 6A〜 Eは、ターゲット基板 45の領域 46に、多角体 48を、領域 47〖こ、多角体 49を、それぞ れ、液層 51中で配置する工程を示した模式図である。図示しないが、ターゲット基板 45は、図 5の電動ステージ 41に固定され、ソース基板 44及び固定支持具 43は、図 5の電動ステージ 42に固定されている。なお、破線 60は、レーザーの照射位置、す なわち、配置装置である顕微鏡の対物レンズの法線を示す。まず、図 6Aのように、領 域 46に多角体 48を配置すベぐターゲット基板 45及びソース基板 44を、それぞれ、 レーザー照射位置の破線 60上に移動させ、図 6Bのように、レーザー照射により、タ 一ゲット基板 45の領域 46上に多角体 48を配置する。次に、図 6Cのように、ターゲッ ト基板 45が固定された電動ステージ 41 (図 5参照)を移動し、領域 47を破線 60上に 位置させる。しかし、この状態では、破線 60上のソース基板 44の領域には、多角体 4 9がない。そこで、図 6Dのように、電動ステージ 42 (図 5参照)でソース基板 44のみを 移動し、多角体 49を破線 60上に位置させる。これにより、図 6Eのように、ターゲット 基板 45の領域 46及び 47上に、異なる種類の多角体 48及び 49をそれぞれ配置でき る。ここで、前記液層 51は、図 3のように密閉しても良いが、密閉することなく表面張 力によりソース基板 44とターゲット基板 45との間に保持することができる。また、ソー ス基板 44やターゲット基板 45が移動した際でも前記液層 51により常に試料部が覆 われるように維持することが可能である。  The polygons are separated and arranged using the source substrate and the target substrate arranged as in the arrangement form 50, for example, as shown in FIGS. Note that the placement device on which the electric stage is placed can be selected as appropriate, for example, an upright microscope as shown in FIG. 4 or an inverted microscope. In FIG. 6, the same parts as those in FIG. 6A to 6E are schematic views showing a process of arranging the polygon 48, the region 47, and the polygon 49 in the liquid layer 51 in the region 46 of the target substrate 45, respectively. Although not shown, the target substrate 45 is fixed to the electric stage 41 in FIG. 5, and the source substrate 44 and the fixing support 43 are fixed to the electric stage 42 in FIG. The broken line 60 indicates the irradiation position of the laser, that is, the normal line of the objective lens of the microscope that is the placement device. First, as shown in FIG. 6A, the target substrate 45 and the source substrate 44 on which the polygon 48 is placed in the region 46 are moved onto the broken line 60 of the laser irradiation position, respectively, and the laser irradiation is performed as shown in FIG. 6B. As a result, the polygon 48 is arranged on the region 46 of the target substrate 45. Next, as shown in FIG. 6C, the electric stage 41 (see FIG. 5) to which the target substrate 45 is fixed is moved, and the region 47 is positioned on the broken line 60. However, in this state, there is no polygon 49 in the region of the source substrate 44 on the broken line 60. Therefore, as shown in FIG. 6D, only the source substrate 44 is moved on the electric stage 42 (see FIG. 5), and the polygon 49 is positioned on the broken line 60. Thereby, as shown in FIG. 6E, different types of polygons 48 and 49 can be arranged on the regions 46 and 47 of the target substrate 45, respectively. Here, the liquid layer 51 may be sealed as shown in FIG. 3, but can be held between the source substrate 44 and the target substrate 45 by surface tension without sealing. Further, even when the source substrate 44 and the target substrate 45 are moved, it is possible to keep the sample part always covered with the liquid layer 51.
[0064] 図 6のソース基板 44において、各種類の多角体の固定化領域が lmm弱であれば 、ソース基板 44の 1 cm2の領域に、約 100種類のタンパク質が担持された多角体を固 定ィ匕することができる。また、電動ステージは、数/ z mの精度で制御可能である。この ように、本発明の多角体の配置方法によれば、異なるタンパク質を担持した多角体を 、同一ターゲット基板上に、任意の位置に、高精度、高密度、高速で配置することが 可能である。 [0064] In the source substrate 44 of FIG. 6, if the immobilization region of each type of polygon is less than lmm A polyhedron carrying about 100 kinds of proteins can be fixed in a 1 cm 2 region of the source substrate 44. In addition, the electric stage can be controlled with an accuracy of a few zm. As described above, according to the polygon arrangement method of the present invention, polygons carrying different proteins can be arranged on the same target substrate at arbitrary positions with high accuracy, high density, and high speed. is there.
[0065] 以上、本発明の多角体の配置方法の一例を説明した力 この例における本発明の ソース基板及びターゲット基板の配置形態、配置装置、配置方法は、多角体に限定 されず、他の微小粒子についての本発明の微小粒子の配置方法にも使用できる。  [0065] The force described above as an example of the polygon arrangement method of the present invention The arrangement form, arrangement apparatus, and arrangement method of the source substrate and target substrate of the present invention in this example are not limited to polygons, It can also be used in the method for arranging microparticles of the present invention for microparticles.
[0066] 次に、本発明の微小粒子配置基板について説明する。本発明の微小粒子配置基 板は、微小粒子が、本発明の微小粒子の配置方法を用いて基板上に配列されたも のであり、その製造方法は、本発明の微小粒子の配置方法を用いる他は、特に制限 されない。本発明の微小粒子配置基板は、固定ィ匕する微小粒子を、タンパク質、ぺ プチド、 DNA、 RNA、糖、脂質、有機化合物などとすることで、例えば、細胞培養基 板、プロテインチップ、 DNAチップ、バイオリアクター、バイオセンサー、バイオアツセ ィ用試験片など、従来公知の様々な用途に、特に制限されることなぐ使用できる。  [0066] Next, the fine particle arrangement substrate of the present invention will be described. The fine particle arrangement substrate of the present invention is such that the fine particles are arranged on the substrate using the fine particle arrangement method of the present invention, and the production method uses the fine particle arrangement method of the present invention. Others are not particularly limited. The microparticle-arranged substrate of the present invention uses, for example, a cell culture substrate, a protein chip, a DNA chip, a protein, peptide, DNA, RNA, sugar, lipid, organic compound, etc. The present invention can be used without being particularly limited to various conventionally known applications such as bioreactors, biosensors, and bioassay test pieces.
[0067] これらの中でも、本発明の細胞培養基板について説明する。本発明の細胞培養基 板は、生理活性物質が基板上に配列された細胞培養基板であって、本発明の配置 方法により生理活性物質又は生理活性物質固定ィ匕担体を含む微小粒子が基板に 配列されて製造されたものである。前記生理活性物質としては、例えば、増殖、分ィ匕 、死などの機能を制御する従来公知のタンパク質などが挙げられる。これらを複数種 類配列することにより、様々なタンパク質性細胞間シグナル伝達物質を、個々の細胞 レベルで作用させることができる。このように、本発明の細胞培養基板の配置された 微小粒子上で細胞を培養することで、細胞ごとに増殖'分ィ匕などのコントロールが可 能になる。前記生理活性物質の具体例としては、サイト力イン、ホルモン、増殖因子 などが挙げられるが、これらに限定されない。なお、本発明の細胞培養基板には、加 えて、生理活性を有さな!/、微小粒子が配列されてもょ ヽ。  [0067] Among these, the cell culture substrate of the present invention will be described. The cell culture substrate of the present invention is a cell culture substrate in which physiologically active substances are arranged on a substrate, and microparticles containing a physiologically active substance or a physiologically active substance-immobilized carrier are arranged on the substrate by the arrangement method of the present invention. Has been manufactured. Examples of the physiologically active substance include conventionally known proteins that control functions such as proliferation, differentiation, and death. By arranging multiple types of these, various proteinaceous intercellular signaling substances can act at the individual cell level. As described above, by culturing the cells on the microparticles on which the cell culture substrate of the present invention is arranged, it becomes possible to control the growth and distribution of each cell. Specific examples of the physiologically active substance include, but are not limited to, site force-in, hormones, growth factors and the like. It should be noted that the cell culture substrate of the present invention may additionally have no physiological activity! / Microparticles may be arranged.
[0068] 本発明の細胞又は組織の培養方法は、本発明の細胞培養基板を用いて細胞や組 織を培養する方法あり、本発明の細胞又は組織の製造方法は、本発明の細胞又は 組織の培養方法よつて培養して細胞又は組織を得る方法である。本発明の細胞又 は組織の培養 ·製造方法において培養する細胞は、特に制限されない。本発明の細 胞又は組織の培養 ·製造方法によれば、従来方法では困難であった、組織化を誘導 する高度な細胞の配列と制御が可能となり、組織形成の基礎をなす細胞配列の最低 ユニットの再現が可能となる。 [0068] The cell or tissue culture method of the present invention is a method of culturing cells or tissues using the cell culture substrate of the present invention, and the method of producing a cell or tissue of the present invention is a cell or tissue of the present invention. In this method, cells or tissues are obtained by culturing according to a tissue culture method. Cells to be cultured in the method for culturing and producing cells or tissues of the present invention are not particularly limited. According to the cell / tissue culture and production method of the present invention, it is possible to arrange and control a high level of cells that induce organization, which has been difficult with the conventional method, and the minimum cell sequence that forms the basis of tissue formation. The unit can be reproduced.
[0069] 以下に、実施例を用いて本発明をさらに説明する。  [0069] The present invention will be further described below with reference to examples.
実施例 1  Example 1
[0070] (多角体の調製) [0070] (Preparation of polyhedron)
昆虫ウィルス由来のタンパク質 (ポリヘドリン)が形成する結晶性媒体である多角体 のみ力もなるタンパク質固定ィ匕担体を、以下のようにして作製した。まず、カイコ細胞 質多角体病ウィルス (BmCPV)の立方体の多角体を形成するために、昆虫ウィルス ベクター AcNPVにポリヘドリン遺伝子を組み込んだ組換えウィルスベクター AcCP -H (Mori et al. (1993)J. Gen. Virol. 74, 99— 102)を、 Spodoptera Fru giperda由来の IPLB— Sf21— AE (Sf21)細胞に感染させた。次に、 4日目の感染 細胞から立方体の多角体を回収し、 PBS (20mM NaH PO、 20mM Na HPO  A protein-immobilized carrier supporting only a polyhedron, which is a crystalline medium formed by an insect virus-derived protein (polyhedrin), was prepared as follows. First, the recombinant virus vector AcCP -H (Mori et al. (1993) J. Gen. Virol. 74, 99—102) was infected with IPLB—Sf21—AE (Sf21) cells derived from Spodoptera Fru giperda. Next, a cubic polyhedron was collected from the infected cells on the 4th day, and PBS (20 mM NaH PO, 20 mM Na HPO) was collected.
2 4 2 4 2 4 2 4
、 150mM NaCl、pH7. 2)で洗浄した後、ホモジナイザーを用いて氷中で磨砕し た。前記磨砕液を 1%の TWeen20で洗浄した後、遠心により多角体を回収し、さらに 1. 5M〜2. 2Mのショ糖密度勾配で 50, 000 X Gで 45分間遠心し、多角体の分画 を抽出した。そして、抽出したサンプルを PBSで洗浄した後、 15, 000 X Gで 10分間 遠心することにより、結晶性ポリヘドリン封入体のみ力もなる多角体を回収した。 , 150 mM NaCl, pH 7.2), and then ground in ice using a homogenizer. After washing the homogenate with 1% T W een20, by centrifugation to collect the polyhedra, further 1. 5M~2. Centrifuged for 45 minutes at a sucrose density gradient at 50, 000 XG of 2M, polyhedra Fractions were extracted. The extracted sample was washed with PBS, and then centrifuged at 15,000 XG for 10 minutes to recover a polyhedron having only crystalline polyhedrin inclusion bodies.
[0071] (ソース基板の作製)  [0071] (Production of source substrate)
多角体を水に分散させ、 1mm程度の液滴となるように、マイクロピペットを用いてガ ラス基板 (厚み 100 m)上に滴下し、 24°Cで、数時間放置し、 自然乾燥させた。そ の後、弱アルカリ性水溶液 (ρΗΙΟ. 3)を多角体表面に滴下して数分程度放置し、多 角体表面を溶解し、前記アルカリ水溶液を、ピペットを用いて除去することにより、ソ ース基板を作製した。  The polyhedron is dispersed in water and dropped onto a glass substrate (thickness: 100 m) using a micropipette so as to form a droplet of about 1 mm, left at 24 ° C for several hours, and then naturally dried. . Thereafter, a weakly alkaline aqueous solution (ρΗΙΟ.3) is dropped on the surface of the polyhedron and allowed to stand for about several minutes to dissolve the surface of the polyhedron, and the alkaline aqueous solution is removed using a pipette. A substrate was prepared.
[0072] (多角体の配列)  [0072] (polygon array)
ターゲット基板としてガラス基板上にシリコンゴムシート (厚み 100 μ m)を積層した ものを用いた。ターゲット基板上に、シリコンゴムシート (厚み 100 m)をくり抜いた作 製したスぺーサーを配置し、そのくり抜いた部分に水を充填し、さらにその上に、多角 体を接着させた面が下方となるように前記ソース基板を配置し、密閉し、配列用プレ ートを作製した。これを、図 4に示すような正立顕微鏡 21のステージ 22に配置し、多 角体の配列過程および配列後の様子を、 CCDカメラ 26により観察した。なお、レー ザ一照射装置 27として、高出力フェムト秒レーザー照射装置 (120fs、 800nm、 20H z、 10mW)を使用した。 A silicon rubber sheet (thickness 100 μm) was laminated on the glass substrate as the target substrate. A thing was used. A spacer made of a silicon rubber sheet (thickness: 100 m) is placed on the target substrate, and the hollowed portion is filled with water. The source substrate was placed so as to be sealed and sealed to prepare an array plate. This was placed on a stage 22 of an upright microscope 21 as shown in FIG. 4, and the process of arranging the polygonal bodies and the state after the arrangement were observed with a CCD camera 26. A high-power femtosecond laser irradiation device (120 fs, 800 nm, 20 Hz, 10 mW) was used as the laser irradiation device 27.
[0073] 配列用プレートの上部から、強度 150njZpulseでフェムト秒レーザー照射し、集光 部の大きさを約 1 μ mとして、水層で集光させ (ソース基板表面から 5 μ m付近)、多 角体をターゲット基板上に配列した。その結果、速度約 1 μ mZsecで、多角体を配 列できた。配列した多角体は、その後、ソース基板および水層を取り除いても、ター ゲット基板上力も剥離しな力つた。  [0073] From the upper part of the array plate, femtosecond laser irradiation with an intensity of 150 njZpulse was performed, and the size of the condensing part was about 1 μm, and the light was condensed in the water layer (around 5 μm from the source substrate surface). The horns were arranged on the target substrate. As a result, polygons could be arranged at a speed of about 1 μmZsec. The arranged polygons did not peel off the force on the target substrate even when the source substrate and the water layer were removed.
[0074] 多角体を配列した結果の一例を、図 7に示す。図 7Aおよび Bは、多角体を配列し たターゲット基板の顕微鏡写真であり、図 7Bは、図 7Aの四角で囲った部分を拡大し たものである。図 7Aにおいて、線状に見えている部分が配列した多角体であり、図 7 Bにおいて、四角に見える各々が多角体である。この結果により、本発明の方法によ れば、極めて速い速度で、多角体 1つの大きさに相当する線幅で配列できるといえる  [0074] FIG. 7 shows an example of the result of arranging the polygons. 7A and B are photomicrographs of the target substrate on which polygons are arranged, and FIG. 7B is an enlarged view of the portion surrounded by the square in FIG. 7A. In FIG. 7A, the portions that appear to be linear are polygons arranged, and in FIG. 7B, each that appears as a square is a polygon. As a result, according to the method of the present invention, it can be said that a line width corresponding to the size of one polygon can be arranged at an extremely high speed.
実施例 2 Example 2
[0075] フェムト秒レーザーの強度を、 300njZpulseとした以外は、実施例 1と同様にして 、多角体を配列した。その結果を図 8Aおよび Bに示す。図 8Aおよび Bは、多角体を 配列したターゲット基板の顕微鏡写真であり、図 8Bは、図 8Aの四角で囲った部分を 拡大したものである。この「JST」の 3文字の配列に要した時間は、約 1分であり、速度 約 10 /z mZsecで、多角体を配列できた。また、この線幅は動物細胞の大きさとほぼ 同じである。したがって、この多角体の配列上に動物細胞を培養することにより、特定 の個々の細胞に対して多角体を作用させることができると!、える。  [0075] Polyhedrons were arranged in the same manner as in Example 1 except that the intensity of the femtosecond laser was 300 njZpulse. The results are shown in FIGS. 8A and B. 8A and B are photomicrographs of the target substrate on which polygons are arranged, and FIG. 8B is an enlarged view of the portion surrounded by the square in FIG. 8A. The time required for the arrangement of the three characters “JST” was about 1 minute, and the polyhedron could be arranged at a speed of about 10 / z mZsec. The line width is almost the same as the size of animal cells. Therefore, by culturing animal cells on this polyhedron array, the polyhedron can act on specific individual cells.
実施例 3  Example 3
[0076] 実施例 2で作製した細胞培養基板を培養液 (培地: Dulbecco's modification of Eagl e's medium (DMEM) containing 5% fetal bovine serum)に浸漬し、そこに NIH3T3株 を添加した。数分後、添加した細胞は細胞培養基板上に着床し、 COインキュベータ [0076] The cell culture substrate prepared in Example 2 was used as a culture solution (medium: Dulbecco's modification of Eagl e's medium (DMEM) containing 5% fetal bovine serum), and NIH3T3 strain was added thereto. After a few minutes, the added cells are deposited on the cell culture substrate, and the CO incubator
2  2
一中で細胞を 24時間培養した。その結果を、図 9A〜Cに示す。図 9A〜Cは、細胞 培養基板の顕微鏡写真であり、図 9Bは、図 9Aにおいて下方の四角で囲った部分を 拡大したものであり、図 9Cは、同図において上方の四角で囲った部分を拡大したも のである。これら図において、液滴状の模様が増殖した細胞であり、細胞培養基板上 と比較して多角体上において、細胞が顕著に増殖した。これは、細胞培養基板 (ター ゲット基板)上よりも、タンパク質で構成されている多角体上の方が、細胞にとって増 殖しゃすい環境であるためと考えられる。このように、本発明によれば、細胞の増殖を 制御できるといえる。  Cells were cultured in one for 24 hours. The results are shown in FIGS. 9A to C are photomicrographs of the cell culture substrate, FIG. 9B is an enlarged view of the portion enclosed by the lower square in FIG. 9A, and FIG. 9C is the portion enclosed by the upper square in FIG. Is an enlargement of In these figures, the droplet-shaped pattern is a proliferated cell, and the cell proliferated remarkably on the polyhedron as compared with the cell culture substrate. This is considered to be because the environment on the polyhedron composed of proteins is more prone to cell growth than on the cell culture substrate (target substrate). Thus, according to the present invention, it can be said that cell proliferation can be controlled.
実施例 4  Example 4
[0077] (EGFPが固定化された多角体の調製)  [0077] (Preparation of polyhedron with immobilized EGFP)
BmCPVの外殻タンパク質の 1つである VP3タンパク質と EGFP (enhanced green fl uorescent protein)タンパク質との融合タンパク質を発現可能な組換えウィルスベクタ 一 AcVP3ZEGFPと、実施例 1用いた多角体タンパク質を発現する組換えウィルス ベクター AcCP— Hとを、 Sf21細胞にダブル感染させた他は、実施例 1と同様にして 、 EGFPタンパク質が包埋された結晶性ポリヘドリン封入体を回収した。  A recombinant viral vector that can express a fusion protein of VP3 protein, one of the outer proteins of BmCPV, and EGFP (enhanced green fl uorescent protein) protein. 1 AcVP3ZEGFP and a set that expresses the polyhedron protein used in Example 1. The crystalline polyhedrin inclusion body in which the EGFP protein was embedded was recovered in the same manner as in Example 1 except that Sf21 cells were double-infected with the replacement virus vector AcCP-H.
[0078] (ソース基板の準備)  [0078] (Preparation of source substrate)
ポリヘドリンのみ力 なる多角体と、 EGFPタンパク質が固定ィ匕された多角体とが同 一の微小粒子固定面に固定化されたソース基板(図 2E参照)を、実施例 1と同様に して準備した。  Prepare a source substrate (see Fig. 2E) in which the polyhedrin-only polyhedron and the EGFP protein-immobilized polyhedron are immobilized on the same microparticle immobilization surface as in Example 1. did.
[0079] (2種類の多角体の配列)  [0079] (Array of two types of polygons)
前記ソース基板と、実施例 1と同様のターゲット基板を、図 5の配置形態 50のように配 置されるソース基板及びターゲット基板を備えた本発明の配置装置で、図 6のように して、 EGFP固定化多角体及びポリヘドリンのみの多角体の 2種類の多角体をターゲ ット基板上に配置した。その結果を図 10に示す。同図は、ターゲット基板の蛍光顕微 鏡写真であり、同図において、円で囲った部分が、 EGFPを導入させた多角体を配 置した箇所であり、四角で囲った部分力 EGFPを導入させな力つた多角体を配置し た箇所である。 EGFPを導入させた多角体から、 EGFPに起因する発光が観察され たことから、本発明の配置方法によれば、タンパク質の活性を維持したままタンパク質 固定ィヒ担体を配置できることが示された。 FIG. 6 shows an arrangement apparatus according to the present invention including the source substrate and the target substrate that are arranged as shown in the arrangement form 50 of FIG. Two types of polygons, an EGFP-immobilized polyhedron and a polyhedrin-only polyhedron, were placed on the target substrate. The results are shown in Fig. 10. This figure is a fluorescence micrograph of the target substrate. In the figure, the circled part is the place where the polyhedron with EGFP introduced is placed, and the partial force EGFP enclosed by the square is introduced. Place a strong polyhedron It is a place. Since luminescence caused by EGFP was observed from the polyhedron into which EGFP was introduced, it was shown that according to the arrangement method of the present invention, the protein-immobilized carrier can be arranged while maintaining the protein activity.
実施例 5  Example 5
[0080] (ソース基板及びターゲット基板の準備)  [0080] (Preparation of source substrate and target substrate)
実施例 4と同様にして、 EGFPを含む多角体と EGFPを含まな 、多角体とが同一の 微小粒子固定面に固定化されたソース基板を準備した。また、ガラス基板にジメルチ ルシロキサン(DMS)をコートし、その後 80°Cで 1分間加熱して厚さ約 20 μ mのポリ ジメチルシロキサン (PDMS)コートを形成させることによりターゲット基板を準備した。  In the same manner as in Example 4, a source substrate in which a polyhedron containing EGFP and a polyhedron containing no EGFP were immobilized on the same fine particle fixing surface was prepared. Also, a target substrate was prepared by coating a glass substrate with dimethyl siloxane (DMS) and then heating at 80 ° C. for 1 minute to form a polydimethylsiloxane (PDMS) coat having a thickness of about 20 μm.
[0081] (2種類の多角体の巿松模様のパターユング)  [0081] (Two kinds of polygonal pattern patterning)
レーザー周波数を lkHz、強度を 31rjZpulse、集光部をソース基板表面から約 2 μ m、及び、配置速度を mZsecとした以外は、実施例 4と同様にして本発明の 配置装置により巿松模様のパターユングをした。すなわち、 40 m X 40 mのブロ ックを、 EGPF含有多角体及び EGFP非含有多角体を交互に使用して配置した。各 ブロックは、 5 mの間隔の直線でレーザー走査することにより配置した。各ブロック の間隔は、 5 mとした。この配置の模式図を図 12Aに示し、実際に配置したターゲ ット基板の透過像の一例を図 12Bに示す。図 12Bに示すような配置は、約 30分で行 うことができた。このターゲット基板を蛍光顕微鏡観察したところ、図 12Cに示すとおり 、市松模様の蛍光像を得ることができた。  Except for the laser frequency of lkHz, the intensity of 31rjZpulse, the condensing part of about 2 μm from the source substrate surface, and the arrangement speed of mZsec, the arrangement device of the present invention is used to form a pine pattern by the same manner as in Example 4. Patter jung. That is, 40 m × 40 m blocks were placed using EGPF-containing polyhedra and EGFP-free polyhedra alternately. Each block was placed by laser scanning with straight lines spaced 5 m. The interval between each block was 5 m. A schematic diagram of this arrangement is shown in FIG. 12A, and an example of a transmission image of the target substrate actually arranged is shown in FIG. 12B. The arrangement shown in Figure 12B could be done in about 30 minutes. When this target substrate was observed with a fluorescence microscope, a checkered fluorescent image was obtained as shown in FIG. 12C.
産業上の利用可能性  Industrial applicability
[0082] 以上説明したように、本発明の微小粒子の配置方法は、レーザーアブレーシヨンを 利用する配置方法である。本発明によれば、例えば、生理活性因子が固定ィ匕した担 体を、高精度、高密度、高速で、さらに、配列するタンパク質などの生理活性の維持 も可能な配列技術が提供できるから、様々なバイオチップを利用する分野で有用で ある。その中でも、本発明は、例えば、再生医療分野で有用である。すなわち、本発 明の配置方法により作製される細胞培養基板を用いれば、固定化された様々な細胞 シグナル伝達因子を、単一細胞レベルで作用させることが可能となり、組織化と誘導 するような高度な細胞の配列や制御が可能となる。このように、本発明は、組織形成 の基礎をなす細胞配列の最低ユニットを再現し、組織誘導を図ることにより、組織や 臓器の再生技術に寄与しょうとするものである。 [0082] As described above, the method for arranging fine particles of the present invention is an arrangement method using laser abrasion. According to the present invention, for example, it is possible to provide a sequencing technique capable of maintaining a physiological activity of a carrier to which a physiologically active factor is immobilized at high accuracy, high density, and high speed, and further, for example, a protein to be sequenced. It is useful in fields that use various biochips. Among these, the present invention is useful, for example, in the field of regenerative medicine. That is, by using the cell culture substrate produced by the arrangement method of the present invention, it becomes possible to cause various immobilized cell signal transduction factors to act at the single cell level, and to induce organization and induction. Advanced cell arrangement and control becomes possible. Thus, the present invention provides tissue formation It is intended to contribute to tissue and organ regeneration technology by reproducing the minimum unit of cell arrangement that is the basis of the above and by inducing tissue guidance.

Claims

請求の範囲 The scope of the claims
[1] 微小粒子の配置方法であって、  [1] A method for arranging fine particles,
微小粒子固定面を有するソース基板であって前記微小粒子固定面に前記微小粒子 が固定化されたソース基板、及び、前記微小粒子の配置対象となる微小粒子配置面 を有するターゲット基板の 2つの基板を準備する基板準備工程と、  Two substrates, a source substrate having a microparticle fixing surface, the source substrate having the microparticles immobilized on the microparticle fixing surface, and a target substrate having a microparticle arrangement surface on which the microparticles are to be arranged A substrate preparation process to prepare
前記ソース基板と前記ターゲット基板とを前記微小粒子固定面と前記微小粒子配置 面とが対面する状態で液層を介して対置する基板配置工程と、  A substrate disposing step of facing the source substrate and the target substrate through a liquid layer in a state where the fine particle fixing surface and the fine particle disposing surface face each other;
前記微小粒子を前記微小粒子固定面から分離させる微小粒子分離工程と、 微小粒子に力かるソース基板力 ターゲット基板方向への力により分離した前記微 小粒子を前記微小粒子配置面に配置する微小粒子配置工程とを含み、  A microparticle separation step for separating the microparticles from the microparticle fixing surface, and a source substrate force acting on the microparticles. Microparticles that dispose the microparticles separated by a force toward the target substrate on the microparticle arrangement surface. Including an arrangement step,
前記微小粒子分離工程において、微小粒子の固定面からの分離が、レーザー照射 で誘起される物理的な力及びィ匕学的な力の少なくとも一方により行われる微小粒子 の配置方法。  In the fine particle separation step, the fine particles are separated from the fixed surface by a method of arranging the fine particles by at least one of a physical force and an ionic force induced by laser irradiation.
[2] 前記微小粒子分離工程にお!、て、レーザー照射で誘起される物理的な力又は化 学的な力が、レンズを含む光学システムによるレーザーの集光により誘起される物理 的な力又は化学的な力である請求項 1記載の微小粒子の配置方法。  [2] In the fine particle separation step, the physical force or chemical force induced by laser irradiation is the physical force induced by the focusing of the laser by the optical system including the lens. 2. The method for arranging fine particles according to claim 1, wherein the method is a chemical force.
[3] 前記微小粒子分離工程にお!、て、前記レーザーの集光部の位置が、分離させる 微小粒子、又は、分離させる微小粒子近傍の前記液層若しくは前記ソース基板であ る請求項 2記載の微小粒子の配置方法。  [3] In the fine particle separation step, the position of the condensing part of the laser is the fine particles to be separated, or the liquid layer or the source substrate in the vicinity of the fine particles to be separated. The arrangement method of the microparticles described.
[4] 前記微小粒子分離工程において、レーザーの集光により誘起される物理的な力が 、レーザーアブレーシヨンに基づく力学的な力であり、前記力学的な力を微小粒子に 接触させることで、ソース基板カゝら前記微小粒子を分離させる請求項 2記載の微小粒 子の配置方法。  [4] In the fine particle separation step, the physical force induced by laser focusing is a mechanical force based on laser abrasion, and the mechanical force is brought into contact with the fine particles. The method for arranging microparticles according to claim 2, wherein the microparticles are separated from the source substrate.
[5] 前記レーザーアブレーシヨンが、衝撃波、気泡、及び、対流の少なくとも 1つの発生 を含む請求項 4記載の微小粒子の配置方法。  5. The method for arranging microparticles according to claim 4, wherein the laser ablation includes at least one generation of shock waves, bubbles, and convection.
[6] 前記微小粒子分離工程において、レーザー照射で誘起される化学的な力がソース 基板の改質及び Z又はソース基板に接した微小粒子の部分の改質であり、レーザー 照射による前記改質によってソース基板に微小粒子を固定ィ匕する力を弱め又は無く すことでソース基板力 前記微小粒子を分離させる請求項 2記載の微小粒子の配置 方法。 [6] In the fine particle separation step, the chemical force induced by laser irradiation is modification of the source substrate and modification of the portion of the fine particles in contact with Z or the source substrate, and the modification by laser irradiation. Weakens or eliminates the force of fixing fine particles on the source substrate 3. The method for arranging microparticles according to claim 2, wherein the source substrate force is used to separate the microparticles.
[7] 前記微小粒子分離工程にお!、て、分離させる微小粒子が、前記配置面の所望の 微小粒子配置位置に対向する前記固定ィ匕面の位置に固定ィ匕された微小粒子である 請求項 1記載の微小粒子の配置方法。  [7] In the fine particle separation step, the fine particles to be separated are fine particles fixed at a position on the fixed surface opposite to a desired fine particle arrangement position on the arrangement surface. The method for arranging fine particles according to claim 1.
[8] 前記微小粒子分離工程及び前記微小粒子配置工程を繰り返し、前記配置面に、 任意の点及び線の少なくとも一方として、前記微小粒子を配列する請求項 1記載の 微小粒子の配置方法。 8. The method for arranging microparticles according to claim 1, wherein the microparticle separation step and the microparticle arrangement step are repeated, and the microparticles are arranged on the arrangement surface as at least one of arbitrary points and lines.
[9] 前記基板準備工程において、異なる種類の微小粒子が固定化されたソース基板を 準備し、同一の微小粒子配置面に、異なる種類の微小粒子を配置する請求項 1記載 の微小粒子の配置方法。  [9] The arrangement of microparticles according to claim 1, wherein in the substrate preparation step, source substrates on which different types of microparticles are immobilized are prepared, and different types of microparticles are arranged on the same microparticle arrangement surface. Method.
[10] 前記微小粒子配置工程において、微小粒子に力かる力が、重力、磁力、静電力、 光力及び浮力からなる群から選択される力である請求項 1記載の微小粒子の配置方 法。 [10] The method for arranging microparticles according to [1], wherein in the microparticle arranging step, the force exerted on the microparticles is a force selected from the group consisting of gravity, magnetic force, electrostatic force, light force and buoyancy. .
[11] 前記レーザーの光が、赤外光、可視光及び紫外光からなる群から選択される光で ある請求項 1記載の微小粒子の配置方法。  11. The method for arranging fine particles according to claim 1, wherein the laser beam is a light selected from the group consisting of infrared light, visible light, and ultraviolet light.
[12] 前記レーザーが、ナノ秒レーザー、ピコ秒レーザー及びフェムト秒レーザーからなる 群力 選択されるパルスレーザー、又は、連続発振レーザーである請求項 1記載の 微小粒子の配置方法。 12. The method for arranging fine particles according to claim 1, wherein the laser is a pulsed laser selected from a group power consisting of a nanosecond laser, a picosecond laser, and a femtosecond laser, or a continuous wave laser.
[13] 前記微小粒子が、生体分子が固定化された担体、生体分子の結晶、生体分子の 集合体、ウィルス粒子、及び細胞からなる群から選択される請求項 1記載の微小粒子 の配置方法。  13. The method for arranging microparticles according to claim 1, wherein the microparticles are selected from the group consisting of a carrier on which biomolecules are immobilized, a crystal of biomolecules, an aggregate of biomolecules, virus particles, and cells. .
[14] 前記生体分子が固定化された担体の担体が、昆虫ウィルス由来の多角体である請 求項 13記載の微小粒子の配置方法。  [14] The method for arranging microparticles according to claim 13, wherein the carrier on which the biomolecule is immobilized is a polyhedron derived from an insect virus.
[15] 前記生体分子が固定化された担体の担体が、高分子、金属、半導体、生体分子の 集合体、これらの結晶及びこれらの組合せ力 なる群力 選択される微粒子である請 求項 13に記載の微小粒子の配置方法。 [15] The carrier of the carrier on which the biomolecule is immobilized is a polymer, a metal, a semiconductor, an aggregate of biomolecules, a crystal thereof, and a group force consisting of a combination force thereof. 4. A method for arranging fine particles according to 1.
[16] 微小粒子配置基板の製造方法であって、請求項 1に記載の微小粒子の配置方法 により、微小粒子を基板に配置する工程を含む微小粒子配置基板の製造方法。 [16] A method for producing a microparticle arrangement substrate according to claim 1, which is a method for producing a microparticle arrangement substrate. The manufacturing method of the microparticle arrangement | positioning board | substrate including the process of arrange | positioning a microparticle on a board | substrate.
[17] 請求項 1記載の微小粒子の配置方法に用いる微小粒子の配置装置であって、前 記ソース基板の設置部と、前記ターゲット基板の設置部と、レーザー照射手段と、レ 一ザ一集光手段とを含む微小粒子の配置装置。 [17] A device for arranging microparticles used in the method for arranging microparticles according to claim 1, wherein the installation portion of the source substrate, the installation portion of the target substrate, the laser irradiation means, and the laser A device for arranging microparticles including a light collecting means.
[18] 細胞又は組織の培養方法であって、生理活性を示す生体分子を含む微小粒子を 請求項 1記載の微小粒子の配置方法で配置して製造される細胞培養基板上で、細 胞又は組織を培養することを含む培養方法。 [18] A method for culturing a cell or tissue, wherein a cell or a tissue is produced on a cell culture substrate produced by arranging microparticles containing biomolecules exhibiting physiological activity according to the microparticle arrangement method according to claim 1. A culture method comprising culturing a tissue.
[19] 請求項 18記載の細胞又は組織の培養方法であって、前記細胞培養基板に配置さ れた前記微小粒子上で細胞を培養することを含み、前記生理活性を示す生体分子 力 増殖、分化、移動及び死からなる群から選択されるシグナルを前記細胞に伝達 する培養方法。 [19] The method for culturing a cell or tissue according to claim 18, comprising culturing cells on the microparticles arranged on the cell culture substrate, wherein the biomolecules exhibit proliferation of the physiological activity. A culture method for transmitting a signal selected from the group consisting of differentiation, migration and death to the cells.
[20] 細胞又は組織の製造方法であって、請求項 18記載の培養方法により、細胞又は 組織を培養することを含む製造方法。  [20] A method for producing a cell or tissue, comprising culturing the cell or tissue by the culture method according to claim 18.
PCT/JP2006/305993 2005-03-25 2006-03-24 Method for arranging fine particles WO2006104048A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007510456A JPWO2006104048A1 (en) 2005-03-25 2006-03-24 How to arrange fine particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-089697 2005-03-25
JP2005089697 2005-03-25

Publications (1)

Publication Number Publication Date
WO2006104048A1 true WO2006104048A1 (en) 2006-10-05

Family

ID=37053306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305993 WO2006104048A1 (en) 2005-03-25 2006-03-24 Method for arranging fine particles

Country Status (2)

Country Link
JP (1) JPWO2006104048A1 (en)
WO (1) WO2006104048A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103641112A (en) * 2013-12-24 2014-03-19 华南师范大学 Method for preparing nano-diamond through femtosecond laser
JPWO2012099180A1 (en) * 2011-01-18 2014-06-30 国立大学法人大阪大学 Target substance transfer method, crystal manufacturing method, composition manufacturing method, target substance transfer apparatus
CN106660004A (en) * 2014-05-08 2017-05-10 公立大学法人大阪府立大学 Accumulation device and accumulation method, manufacturing device for microscopic object accumulation structural body, microscopic organism accumulation and elimination device, detection-substance detection device, separation-substance separation device, and introduction-substance introduction device
JP2020514823A (en) * 2017-03-15 2020-05-21 ユニベルシテ ドゥ ボルドー Apparatus and method for depositing particles on a target

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102658076B (en) * 2012-05-11 2015-06-03 中山大学 Micro-nanometer material as well as preparation method, device and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08104058A (en) * 1994-10-05 1996-04-23 Kawamura Inst Of Chem Res Novel information image forming method
JP2002355026A (en) * 2001-03-29 2002-12-10 Canon Inc Base for cell culture, method for producing the same, method for cell culture and cell culture device each using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08104058A (en) * 1994-10-05 1996-04-23 Kawamura Inst Of Chem Res Novel information image forming method
JP2002355026A (en) * 2001-03-29 2002-12-10 Canon Inc Base for cell culture, method for producing the same, method for cell culture and cell culture device each using the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HOSOKAWA Y. ET AL.: "Femto-second Laser Yuki Shogekiha ni yoru Saibo Sosa. (Single Cell Manipulation Using Femtosecond Laser Induced Shockwave)", THE REVIEW OF LASER ENGINEERING, vol. 32, no. 2, 2004, pages 94 - 98, XP003002074 *
MATSUBARA C. ET AL.: "Laser Manipulation o Riyo shita Shinki Microchip no Sakusei to Oyo (9)", THE JAPAN SOCIETY OF APPLIED PHYSICS, EXTENDED ABSTRACTS, vol. 64, no. 3, 30 August 2003 (2003-08-30), pages 1188 - 3OP-S-17, XP003002075 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012099180A1 (en) * 2011-01-18 2014-06-30 国立大学法人大阪大学 Target substance transfer method, crystal manufacturing method, composition manufacturing method, target substance transfer apparatus
US9751068B2 (en) 2011-01-18 2017-09-05 Osaka University Target substance transfer method, crystal production method, composition production method, and target substance transfer device
CN103641112A (en) * 2013-12-24 2014-03-19 华南师范大学 Method for preparing nano-diamond through femtosecond laser
CN103641112B (en) * 2013-12-24 2016-03-23 华南师范大学 A kind of method utilizing femtosecond laser to prepare Nano diamond
CN106660004A (en) * 2014-05-08 2017-05-10 公立大学法人大阪府立大学 Accumulation device and accumulation method, manufacturing device for microscopic object accumulation structural body, microscopic organism accumulation and elimination device, detection-substance detection device, separation-substance separation device, and introduction-substance introduction device
JP2020514823A (en) * 2017-03-15 2020-05-21 ユニベルシテ ドゥ ボルドー Apparatus and method for depositing particles on a target

Also Published As

Publication number Publication date
JPWO2006104048A1 (en) 2008-09-04

Similar Documents

Publication Publication Date Title
Stratakis et al. Laser-based micro/nanoengineering for biological applications
Guillemot et al. High-throughput laser printing of cells and biomaterials for tissue engineering
Ringeisen et al. Generation of mesoscopic patterns of viable Escherichia coli by ambient laser transfer
EP1641955B1 (en) Biological laser printing via indirect photon-biomaterial interactions
WO2006088154A1 (en) Method and apparatus for separating cells
WO2006104048A1 (en) Method for arranging fine particles
Nguyen et al. Liquid-phase laser induced forward transfer for complex organic inks and tissue engineering
US7713750B2 (en) Ablation based laser machining of biomolecule patterns on substrates
Turunen et al. Chemical and topographical patterning of hydrogels for neural cell guidance in vitro
US20180010149A1 (en) Plasmonic nanocavity-based cell therapy method and system
Okano et al. In situ patterning and controlling living cells by utilizing femtosecond laser
Yang et al. Recent advance in cell patterning techniques: Approaches, applications and future prospects
Yu et al. Microprocessing on single protein crystals using femtosecond pulse laser
Gayathri et al. Single-cell patterning: a new frontier in bioengineering
JP2008173018A (en) Method for culturing cell and substrate for cell culture
JP4681279B2 (en) Method for introducing extracellular substance into cells
Guillotin et al. Rapid prototyping of complex tissues with laser-assisted bioprinting (LAB)
KR20120061083A (en) Methods for forming hydrogels on surfaces and articles formed thereby
Chang et al. Laser-induced forward transfer based laser bioprinting in biomedical applications
JP7113440B2 (en) Cell culture vessel, cell culture vessel manufacturing method, cell collection system, and cell acquisition method
WO2021117680A1 (en) Biological substance immobilization material
Dinca et al. 2D and 3D biotin patterning by ultrafast lasers
Serien et al. Laser Printing of Biomaterials
Man Photothermal Intracellular Delivery Platforms
Dinescu et al. Laser processing of organic materials: Applications in tissue engineering and chemical sensing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007510456

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06729941

Country of ref document: EP

Kind code of ref document: A1