WO2006103995A1 - PROCESS FOR PRODUCTION OF OPTICALLY ACTIVE α-AMINO ACID DERIVATIVE - Google Patents

PROCESS FOR PRODUCTION OF OPTICALLY ACTIVE α-AMINO ACID DERIVATIVE Download PDF

Info

Publication number
WO2006103995A1
WO2006103995A1 PCT/JP2006/305737 JP2006305737W WO2006103995A1 WO 2006103995 A1 WO2006103995 A1 WO 2006103995A1 JP 2006305737 W JP2006305737 W JP 2006305737W WO 2006103995 A1 WO2006103995 A1 WO 2006103995A1
Authority
WO
WIPO (PCT)
Prior art keywords
optically active
amino acid
acid derivative
hydantoinase
rubamyl
Prior art date
Application number
PCT/JP2006/305737
Other languages
French (fr)
Japanese (ja)
Inventor
Makoto Ueda
Hirokazu Nanba
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Publication of WO2006103995A1 publication Critical patent/WO2006103995A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • C12P41/006Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by reactions involving C-N bonds, e.g. nitriles, amides, hydantoins, carbamates, lactames, transamination reactions, or keto group formation from racemic mixtures
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/10Nitrogen as only ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/07Bacillus

Definitions

  • the present invention relates to a method for producing an optically active ⁇ -amino acid derivative that is useful as an intermediate for pharmaceuticals and the like. More specifically, in the presence of a divalent metal ion, the racemic ⁇ -strength rubamylamino acid derivative is allowed to produce a hydantoinase whose hydrolysis activity is inhibited by the metal ion.
  • the present invention relates to a method for obtaining a hydantoin derivative and an optically active ⁇ ⁇ carbamyl amino acid derivative.
  • an extraction method requires large-scale purification equipment from protein hydrolysates.
  • the amino acid to be produced is usually a racemate, so that an expensive resolving agent, an asymmetric catalyst, etc. are required to produce an optically active substance.
  • Fermentation methods have low product concentrations and require large-scale purification equipment, as with extraction methods.
  • Non-patent Documents 1 and 2 As a method for synthesizing D-a amino acid by enzymatic synthesis, for example, a microorganism or enzyme having hydantoinase activity is used to selectively hydrolyze racemic 5-substituted hydantoin derivatives to form D Lubamil D—a Methods for producing amino acid derivatives are known (Patent Documents 1 and 2). In addition, it is generally known that there are examples in which divalent metal ions such as manganese and cobalt contribute to the improvement of enzyme activity in a hydrolysis reaction in which a hydantoinase is allowed to act on a 5-substituted hydantoin derivative to open the ring. (Non-patent documents 2 and 3).
  • Patent Documents 3 and 4 There are also known examples of adding manganese, which is a divalent metal ion, to carry out a cyclization reaction (Patent Document 5).
  • Patent Document 1 JP-A 53-44690
  • Patent Document 2 JP-A-53-91189
  • Patent Document 3 JP-A-60-180596
  • Patent Document 4 JP-A-1-124398
  • Patent Document 5 WO03Zl06689
  • Non-patent literature 1 Advances Biochemical EngmeermgZBiotechnoiogy, 41 ⁇ , 29, 1990
  • Patent Document 2 Bioscience Biotechnology Biochemistry ⁇ 58 ⁇ , 1621, 19 94
  • Non-Patent Document 3 Journal of Molecular Catalysis B: Enzymatic, 2 ⁇ , 163, 1997
  • the reaction of hydantoinase is a reversible reaction, and in the method of adding a divalent metal ion, the reverse reaction is not only the target hydrolysis reaction (or cyclization reaction). Is easily expected to be promoted.
  • a method of promoting only the target hydrolysis reaction or cyclization reaction more preferably a method of promoting the target reaction and inhibiting the reverse reaction Is desired.
  • an object of the present invention is to provide a practical method for industrial production, for example, an optically active ⁇ -amino acid derivative useful as an intermediate of a pharmaceutical can be easily produced from a predetermined raw material. There is.
  • optically active 5-substituted hydantoin derivatives can be obtained by stereoselectively cyclizing racemic and strong rubamyl amino acid derivatives using hydantoinase.
  • the divalent metal ion inhibits the hydrolysis activity, which is the reverse reaction of the above cyclization reaction.
  • the cyclization reaction was greatly accelerated.
  • the present invention relates to the general formula (2):
  • R is an optionally substituted alkyl group having 1 to 20 carbon atoms, has a substituent !, may be an aralkyl group having 7 to 20 carbon atoms, or is substituted.
  • a hydantoinase that inhibits the activity of hydrolyzing a 5-substituted hydantoin derivative into N-strength rubamyl amino acid by the divalent metal ion is represented by the general formula (1):
  • the present invention relates to a production method comprising stereoselectively cyclizing a high-strength rubamyl amino acid derivative represented by the formula (wherein R is as defined above).
  • the present invention also provides an optically active 5-substituted hydantoin derivative represented by the above formula (2), and
  • the present invention relates to a production method characterized by stereoselectively cyclizing a strong rubamyl amino acid derivative.
  • the present invention has the above-described configuration, and can efficiently produce an optically active 5-substituted hydantoin derivative and an optically active high-power rubamyl amino acid derivative.
  • a general hydantoinase has an activity of hydrolyzing a 5-substituted hydantoin derivative to produce a strong rubamyl amino acid derivative, and the reverse reaction of the hydrolysis reaction. It is known to have both the activity of cyclizing strong rubamyl amino acid derivatives to form 5-substituted hydantoin derivatives. In addition, it is known that the enzyme activity of the above hydrolytic reaction of hydantoinase is improved by divalent metal ions.
  • R has a substituent, and may have an alkyl group having 1 to 20 carbon atoms, a substituent! However, it also has an aralkyl group having 7 carbon atoms or a aralkyl group having 20 substituents! Or may represent an aryl group having 6 to 20 carbon atoms.
  • the alkyl group having 1 to 20 carbon atoms is not particularly limited, and for example, a straight chain alkyl group such as a methyl group, an ethyl group, or an n-propyl group, an isopropyl group, an isobutyl group, or a t-butyl group. And branched alkyl groups such as a neopentyl group or a t-pentyl group.
  • the aralkyl group having 7 to 20 carbon atoms which may have a substituent is not particularly limited, and examples thereof include a benzyl group, an indolylmethyl group, a 4-hydroxybenzyl group, and 3, 4-methylenedialkyl.
  • aryl group having 6 to 20 carbon atoms which may have a substituent examples include a phenol group and a 4-hydroxyphenol group.
  • the alkyl group, aryl group or aralkyl group may be unsubstituted or may have a substituent.
  • substituent examples include an amino group, a hydroxyl group, a phenol group, an aryl group, an alkanol group, an alkenyl group, an alkyl group, an alkoxyl group, and a halogen atom.
  • Hydantoinase is an enzyme having an activity of hydrolyzing a 5-substituted hydantoin derivative to produce an N-force rubamylamino acid derivative.
  • this enzyme is known to cyclize an N-strength rubamoyl amino acid derivative to produce a 5-substituted hydantoin derivative as the reverse reaction of the hydrolysis reaction.
  • conventional hydantoinases have improved enzyme activity in the presence of divalent metal ions such as manganese and conoleto. It has been.
  • the hydantoinase used in the present invention has a property that its hydrolysis activity is inhibited by a predetermined divalent metal ion. Therefore, as the hydantoinase of the present invention, for example, hydantoinase derived from animals, plants, or microorganisms and having hydrolytic activity inhibited by divalent metal ions can be used. For industrial use, hydantoinase derived from microorganisms is preferred.
  • microorganism from which hydantoinase is derived can be used as long as it is a microorganism having the ability to produce the enzyme.
  • bacteria include Aceto bacter, Achromobacter, Aerobacter, Agrobacterium, Alcaligenes, Arthrobacter, Bacillus ( Bacillus), Brevibacterium, Corynebacterium, Enterobacter, Erwinia, Escherichia, Klebsiella, Microbacteria (Microbacterium), Micrococcus, Protaminobacter (Protaminobacter, Proteus no., Proteus no, No.
  • Domonas for Pseudomonas (Sartina), Serratia, Serratia, Xanthomonas Genus (Xanthomonas), Aeromonas, Flavobataterium (Fla vobacterium), or a microorganism belonging to the genus Rhi zobium.
  • actinomycetes microorganisms belonging to the genus Actinomyces, Mycobacterium, Nocardia, Streptomyces, Actinoplanes or Rhodococcus Can be mentioned.
  • Examples of the fungi include microorganisms belonging to the genus Aspergillus, Paecilomyces, Penicillium, and the like.
  • yeast examples include microorganisms belonging to the genus Candida, the genus Phichia, the genus Rhodo torula or the genus Torulopsis.
  • enzymes derived from microorganisms belonging to the genus Agrobacterium, Bacillus, Pseudomonas or Rhizobium can be mentioned. More preferably, Agrobacterium sp. KNK712 (FERM BP—1900), Bacillus sp. KNK2 45 (FERM BP— 4863), Pseudomonas putida NBRC12 996, Pseudomonas sp. (Pseudomonas sp.) KNK003A (FERM BP— 3181) or Rhizobium sp. KNK1415 (FERM BP— 44) Is mentioned.
  • Agrobacterium sp. KNK712 (FERM BP— 1900), Bacillus sp. KNK245 (FERM BP— 486 3), Pseudomonas sp. KNK003A (FERM BP-3 181) and Rhizobium sp. KNK1415 (FERM BP-441 9) are registered with the Patent Product Deposit Center (IPOD: 305- 8566 Deposited at Tsukuba Sakai Higashi, 1-chome, 1-chome, 1-center, 6), Ibaraki, Japan.
  • Rhizobium sp. KNK1415 (FERM BP- 4419): September 22, 1993.
  • NBRC12996 The above-mentioned Pseudomonas putida NBRC12996 is an independent administrative agency, National Institute of Technology and Evaluation, Biotechnology Headquarters, Biogenetic Resource Division (NBRC: 292-0818, Chiba Prefecture Kisarazu Kazusa Kamashisa 2-5-8) It is stored and can be obtained from the same institution.
  • Any transformant obtained in this manner that produces a high yield of D-form selective hydantoinase can be used as long as the hydrolysis activity is inhibited by a divalent metal ion.
  • Escherichia coli HB 101 pTH 104
  • FERM BP— 4864 containing a hydantoinase gene derived from Bacillus sp. K NK245 (FERM BP-4863) described in WO96Z20275.
  • the production of hydantoinase by these transformants, or the production of hydantoinase by a strain exhibiting the above-mentioned hydantoinase activity, for example, can be performed by culturing using a normal nutrient medium described in WO96 / 20275.
  • treatment for enzyme induction can be performed.
  • Escherichia coli HB 101 (pTHl 04) (FERM BP—486 4) is a patent biological deposit center (IPOD: 305) -8566 Deposited at Tsukuba Sakai Higashi, 1-chome, 1-chome, 1st, Central 6), Ibaraki, Japan (Deposit date: November 2, 1994).
  • the hydantoinase produced by the above-mentioned microorganism can be used not only as the enzyme itself, but also as a form of a microorganism having the enzyme activity or a processed product thereof.
  • the treated product of microorganisms means, for example, a crude extract, cultured cells, freeze-dried cells, acetone-dried cells, or a crushed product of these cells.
  • the hydantoinase or a processed product thereof may be used as the enzyme itself or as a fixed enzyme obtained by fixing it with a known means in the form of cells.
  • the immobilization may be carried out by a cross-linking method, a covalent bonding method, a physical adsorption method, a comprehensive method, etc., which are well known to those skilled in the art.
  • racemic N-strength rubamyl amino acid derivative (1) is stereoselectively cyclized with hydantoinase to synthesize an optically active 5-substituted hydantoin derivative (2) and an optically active N-force rubamyl amino acid derivative (3). How to do will be described.
  • the enzyme reaction of the present invention can be carried out by the following method.
  • a racemic N-type rubamyl amino acid derivative represented by the general formula (1) is used as a substrate, and the reaction is carried out in an aqueous medium in the presence of the above-mentioned hydantoinase and a divalent metal ion.
  • the concentration of the divalent metal ion is 0. OlmM or more, 1M or less, preferably 0. ImM or more, 1OmM or less, and the substrate concentration is 0.1% or more, 90% (wZv) or less, preferably 1% or less.
  • the reaction is performed in a dissolved or suspended state at 60% (wZv) or less.
  • the reaction temperature is adjusted to an appropriate temperature of 10 ° C or higher and 80 ° C or lower, preferably 20 ° C or higher and 60 ° C or lower, and is kept at pH 4 or higher, 9 or lower, preferably pH 5 or higher, 8 or lower for a while. It may be left still or stirred. Further, the substrate may be added continuously.
  • the reaction can be carried out batchwise or continuously.
  • the reaction of the present invention may be performed using an immobilized enzyme, a membrane reactor, or the like.
  • divalent metal ion examples include, but are not limited to, ions such as vanadium, chromium, manganese, iron, conoleto, nickel, copper, zinc, molybdenum, magnesium, or calcium. Cobalt, zinc, manganese or nickel ions are preferable, and cobalt or zinc ions are more preferable. These metal ions can be used alone or in combination of two or more metal ions.
  • aqueous medium examples include water, a buffer solution, an aqueous medium containing a water-soluble organic solvent such as ethanol, or an organic solvent that is difficult to dissolve in water, such as ethyl acetate, butylacetate, toluene,
  • a suitable solvent such as a two-layer system with an aqueous medium containing an organic solvent such as black mouth form and n-xane can be used.
  • antioxidants, surfactants, coenzymes, metals, etc. can be added as necessary.
  • optically active form of the racemic N-force rubamyl amino acid derivative is cyclized by the stereoselective hydantoinase of the present invention to produce an optically active 5-substituted hydantoin derivative.
  • an optically active N-force rubamyl amino acid derivative having the opposite steric structure remains. Isolation of the obtained optically active 5-substituted hydantoin derivative and optically active N-force rubamyl amino acid derivative can be performed by a conventional separation method such as extraction, concentration, crystallization, or column chromatography. Or they can be separated and purified by their combination.
  • optically active 5-substituted hydantoin derivative and optically active N-carbamylamino acid derivative can be obtained by known chemical methods (for example, acid / alkali treatment) or enzymatic methods (for example, decarbamylase). Can be easily derived to the corresponding optically active amino acid by the weak ruby moisturizing treatment.
  • the racemic N-force rubamyl amino acid derivative is exemplified.
  • a conductor may be used.
  • an optically active N-force rubamyl amino acid derivative is used, the optical purity of, for example, the remaining optically active N-force rubamyl amino acid derivative or the optically active 5-substituted hydantoin derivative produced by the hydantoinase of the present invention. Can be improved.
  • Escherichia coli HB101 pTH104 (FERM BP-4864), a recombinant E. coli with D-selective hydantoinase activity, sterilized in a 500 ml Sakaguchi flask (tryptone 16 g, yeast extract 10 g, chloride) 5 g of sodium, 11 deionized water, 400 ppm of manganese chloride, pH 7.0 before sterilization, and filter sterilized ampicillin sodium added separately at a final concentration of lOO ppm) and shaken at 37 ° C for 24 hours. Cultured aerobically.
  • the resulting culture is collected by centrifuging from 1 ml of the culture broth, suspended in 5 ml of 10 mM Tris-HCl buffer (pH 8.5), disrupted by sonication, and centrifuged to centrifuge the cells. The insoluble matter was removed, and a crude enzyme solution of D-form selective hydantoinase was obtained.
  • 4 ml of 50 mM sodium carbonate Z sodium hydrogen carbonate buffer (pH 8.7) containing 30 mM D-5-isobutylhydantoin and various metal salts shown in Table 1 was mixed. After standing at 40 ° C for 15 minutes, the reaction was stopped by adding 1 ml of 5N sulfuric acid. Table 1 shows the results of analyzing the amount of D—N—force rubamoyl leucine produced using high performance liquid chromatography (HPLC).
  • Table 2 shows the results of analysis of the amount of D—N-force rubermoyl (4-hydroxyphenyl) glycine produced using HPLC.
  • the obtained crude enzyme solution 0.1 ml contains 30 mM D—N—forced rubermoyl leucine and cobalt chloride or zinc sulfate at the concentrations shown in Table 3 50 mM 2— [4 (2- Hydroxy et hyl) 1 -piperazinyllethanesulfonic acid ( 4 ml of HEPES) -NaOH buffer (pH 7.0) was added and mixed. After standing at 40 ° C for 15 minutes, 4 ml of acetonitrile was added to stop the reaction. Table 3 shows the results of analysis of the amount of D-5 isoptylhydantoin produced in the same manner as in Reference Example 1.
  • Example 2 D-5- (4-hydroxyphenyl) hydantoin using hydantoinase Culture medium used in Example 1 11. Bacteria were collected by centrifugation at 7 ml force, and 10 mM Tris —Suspend in 5 ml of hydrochloric acid buffer (pH 8.5) and crush the cells by ultrasound. Then, remove the insoluble matter derived from the cells by centrifugation and remove the crude enzyme solution of D-form selective hydantoinase. Got.
  • Example 2 The crude enzyme solution used in Example 1 was mixed with 0.05 ml of 1M HEPES-NaOH buffer (6.8) containing 10% (wZv) DL-N-strong rubermoyl leucine and ImM cobalt chloride (6.8). . After stirring at 40 ° C for 3 hours, the yield and optical purity of the produced D-5 isoptylhydantoin and the remaining LN strength rubermoyl leucine were analyzed using HPLC, and as a comparative example, Table 5 shows the results when no force was added.

Abstract

A process for producing an optically active 5-substituted hydantoin derivative and an optically active N-carbamoylamino acid derivative comprising cyclizing a racemic N-carbamoylamino acid derivative with a hydantoinase stereoselectively, the cyclization being performed in the presence of a divalent metal ion using such a hydantoinase that the hydrolysis of the 5-substituted hydantoin derivative into the N-carbamoylamino acid derivative (the reverse reaction) caused by the hydantoinase is inhibited by the metal ion. The method can produce an optically active 5-substituted hydantoin derivative and an optically active N-carbamoylamino acid derivative in a simple manner. These compounds can be used for readily producing an optically active α-amino acid derivative which is useful as an intermediate for a medicine or the like.

Description

明 細 書  Specification
光学活性 a 一アミノ酸誘導体の製造方法  Optically active a Method for producing a single amino acid derivative
技術分野  Technical field
[0001] 本発明は、医薬品等の中間体として有用な、光学活性 α アミノ酸誘導体の製造 法に関する。より詳細には、二価の金属イオンの存在下、ラセミ体 Ν—力ルバミルアミ ノ酸誘導体に、該金属イオンにより加水分解活性が阻害されるヒダントイナーゼを作 用させること〖こより光学活性な 5—置換ヒダントイン誘導体及び光学活性な Ν カル バミルアミノ酸誘導体を得る方法に関する。  The present invention relates to a method for producing an optically active α-amino acid derivative that is useful as an intermediate for pharmaceuticals and the like. More specifically, in the presence of a divalent metal ion, the racemic 力 -strength rubamylamino acid derivative is allowed to produce a hydantoinase whose hydrolysis activity is inhibited by the metal ion. The present invention relates to a method for obtaining a hydantoin derivative and an optically active カ ル carbamyl amino acid derivative.
背景技術  Background art
[0002] 光学活性アミノ酸の製造方法としては、抽出法、化学合成法、発酵法、酵素的合成 法など種々の方法が知られている。抽出法では蛋白質加水分解物からの大規模な 精製設備が必要となる。化学合成法では、製造されるアミノ酸は通常ラセミ体である ため、光学活性体を製造するためには、高価な分割剤、不斉触媒等を必要とする。 発酵法では、生成物濃度が低ぐまた、抽出法同様大規模な精製設備を必要とする 。酵素的合成法は安価な生体触媒を利用することにより、これらの問題点を回避して 、より低コストで効率のよい製造方法を提供可能である。  As a method for producing an optically active amino acid, various methods such as an extraction method, a chemical synthesis method, a fermentation method, and an enzymatic synthesis method are known. The extraction method requires large-scale purification equipment from protein hydrolysates. In the chemical synthesis method, the amino acid to be produced is usually a racemate, so that an expensive resolving agent, an asymmetric catalyst, etc. are required to produce an optically active substance. Fermentation methods have low product concentrations and require large-scale purification equipment, as with extraction methods. By utilizing an inexpensive biocatalyst, the enzymatic synthesis method can avoid these problems and provide an efficient production method at a lower cost.
[0003] 酵素的合成法による D— a アミノ酸の合成方法としては、例えば、ヒダントイナー ゼ活性を有する微生物もしくは酵素を用いてラセミ体 5—置換ヒダントイン誘導体を D 体選択的に加水分解して N 力ルバミル D— a アミノ酸誘導体を製造する方法 が知られている(特許文献 1及び 2)。また、 5 置換ヒダントイン誘導体にヒダントイナ ーゼを作用させて開環する加水分解反応において、マンガン、コバルト等の二価の 金属イオンが酵素活性の向上に寄与する例があることも一般に知られている(非特許 文献 2、及び 3)。  [0003] As a method for synthesizing D-a amino acid by enzymatic synthesis, for example, a microorganism or enzyme having hydantoinase activity is used to selectively hydrolyze racemic 5-substituted hydantoin derivatives to form D Lubamil D—a Methods for producing amino acid derivatives are known (Patent Documents 1 and 2). In addition, it is generally known that there are examples in which divalent metal ions such as manganese and cobalt contribute to the improvement of enzyme activity in a hydrolysis reaction in which a hydantoinase is allowed to act on a 5-substituted hydantoin derivative to open the ring. (Non-patent documents 2 and 3).
[0004] 一方、ラセミ体 N—力ルバミルアミノ酸誘導体にヒダントイナーゼを作用させて環化 し、光学活性 5—置換ヒダントイン誘導体を製造する方法もまた公知であり(特許文献 3及び 4)、効率的に環化反応を行うために二価の金属イオンであるマンガンを添カロ する例も知られて!/ゝる(特許文献 5)。 特許文献 1:特開昭 53—44690 [0004] On the other hand, a method of producing an optically active 5-substituted hydantoin derivative by reacting a racemic N-strength rubamyl amino acid derivative with a hydantoinase to produce a cyclization is also known (Patent Documents 3 and 4). There are also known examples of adding manganese, which is a divalent metal ion, to carry out a cyclization reaction (Patent Document 5). Patent Document 1: JP-A 53-44690
特許文献 2:特開昭 53 - 91189  Patent Document 2: JP-A-53-91189
特許文献 3 :特開昭 60— 180596  Patent Document 3: JP-A-60-180596
特許文献 4:特開平 1— 124398  Patent Document 4: JP-A-1-124398
特許文献 5 :WO03Zl06689  Patent Document 5: WO03Zl06689
非特干文献 1: Advances Biochemical EngmeermgZBiotechnoiogy、 41卷、 29頁、 1990年  Non-patent literature 1: Advances Biochemical EngmeermgZBiotechnoiogy, 41 卷, 29, 1990
特許文献 2 : Bioscience Biotechnology Biochemistry^ 58卷、 1621頁、 19 94年  Patent Document 2: Bioscience Biotechnology Biochemistry ^ 58 卷, 1621, 19 94
非特許文献 3 Journal of Molecular Catalysis B : Enzymatic, 2卷、 163頁、 1997年  Non-Patent Document 3 Journal of Molecular Catalysis B: Enzymatic, 2 卷, 163, 1997
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] しかしながら、ヒダントイナーゼの反応は可逆反応であることは周知であり、上記の 二価の金属イオンを添加する方法では、目的とする加水分解反応 (又は環化反応) だけでなぐその逆反応までもが促進されることが容易に予想される。 目的の光学活 性体を効率よく製造するためには、目的の加水分解反応もしくは環化反応のみを促 進する方法、更に好ましくは、目的の反応を促進し、且つ、逆反応を阻害する方法が 望まれる。 [0005] However, it is well known that the reaction of hydantoinase is a reversible reaction, and in the method of adding a divalent metal ion, the reverse reaction is not only the target hydrolysis reaction (or cyclization reaction). Is easily expected to be promoted. In order to efficiently produce the target optically active substance, a method of promoting only the target hydrolysis reaction or cyclization reaction, more preferably a method of promoting the target reaction and inhibiting the reverse reaction Is desired.
[0006] 上記に鑑み、本発明の目的は、例えば医薬品の中間体として有用な光学活性 α アミノ酸誘導体を、所定の原料から簡便に製造でき、工業的生産に対して実用的 な方法を提供することにある。  In view of the above, an object of the present invention is to provide a practical method for industrial production, for example, an optically active α-amino acid derivative useful as an intermediate of a pharmaceutical can be easily produced from a predetermined raw material. There is.
課題を解決するための手段  Means for solving the problem
[0007] 本発明者等は上記に鑑み、鋭意検討を行った結果、ヒダントイナーゼを使用してラ セミ体 Ν 力ルバミルアミノ酸誘導体を立体選択的に環化して光学活性な 5—置換ヒ ダントイン誘導体及び光学活性な Ν 力ルバモイルアミノ酸誘導体を得る反応を行う 場合にお 1、て、二価の金属イオンにより上記環化反応の逆反応である加水分解活性 が阻害されるにもかかわらず、逆に上記環化反応が大幅に促進されることを見出した [0008] 本発明の対象の一部として、例えば以下のものを挙げることができる。 As a result of intensive studies in view of the above, the present inventors have determined that optically active 5-substituted hydantoin derivatives can be obtained by stereoselectively cyclizing racemic and strong rubamyl amino acid derivatives using hydantoinase. In the case of carrying out the reaction for obtaining an optically active rubamoyl amino acid derivative 1, the divalent metal ion inhibits the hydrolysis activity, which is the reverse reaction of the above cyclization reaction. Found that the cyclization reaction was greatly accelerated. [0008] As a part of the subject of the present invention, for example, the following can be cited.
[0009] すなわち本発明は、一般式 (2): That is, the present invention relates to the general formula (2):
[0010] [化 10] [0010] [Chemical 10]
Figure imgf000004_0001
Figure imgf000004_0001
[0011] (式中、 Rは置換基を有していてもよい炭素数 1から 20のアルキル基、置換基を有し て!、てもよ 、炭素数 7から 20のァラルキル基、又は置換基を有して!/、てもよ 、炭素数 6から 20のァリール基を表し、 *は不斉炭素原子を表す。)で表される光学活性 5— 置換ヒダントイン誘導体、及び、一般式 (3): [In the formula, R is an optionally substituted alkyl group having 1 to 20 carbon atoms, has a substituent !, may be an aralkyl group having 7 to 20 carbon atoms, or is substituted. An optically active 5-substituted dantoin derivative represented by the formula (1), or an aryl group having 6 to 20 carbon atoms, and * represents an asymmetric carbon atom. 3):
[0012] [化 11]  [0012] [Chemical 11]
Figure imgf000004_0002
Figure imgf000004_0002
[0013] (式中、 R及び *は前記と同じ)で表される光学活性 N—力ルバミルアミノ酸誘導体の 製造方法であって、 [0013] (wherein, R and * are the same as those described above)
二価の金属イオンの存在下、当該二価の金属イオンによって 5—置換ヒダントイン誘 導体を N—力ルバミルアミノ酸に加水分解する活性が阻害されるヒダントイナーゼを 用いて、一般式(1) :  In the presence of a divalent metal ion, a hydantoinase that inhibits the activity of hydrolyzing a 5-substituted hydantoin derivative into N-strength rubamyl amino acid by the divalent metal ion is represented by the general formula (1):
[0014] [化 12]
Figure imgf000005_0001
[0014] [Chemical 12]
Figure imgf000005_0001
[0015] (式中、 Rは前記と同じ)で表される Ν—力ルバミルアミノ酸誘導体を立体選択的に環 化することを特徴とする製造方法に関する。 [0015] The present invention relates to a production method comprising stereoselectively cyclizing a high-strength rubamyl amino acid derivative represented by the formula (wherein R is as defined above).
[0016] また、本発明は、前記式 (2)で表される光学活性 5—置換ヒダントイン誘導体、及び[0016] The present invention also provides an optically active 5-substituted hydantoin derivative represented by the above formula (2), and
、前記式(3)で表される光学活性 Ν—力ルバミルアミノ酸誘導体の製造方法であって コバルトイオン又は亜鉛イオンの存在下、ヒダントイナーゼを用いて前記式(1): で表される Ν—力ルバミルアミノ酸誘導体を立体選択的に環化することを特徴とする 製造方法に関する。 , An optical activity represented by the formula (3) Ν—a method for producing a powerful ruvamil amino acid derivative, wherein hydantoinase is used in the presence of cobalt ion or zinc ion, and the formula (1): The present invention relates to a production method characterized by stereoselectively cyclizing a strong rubamyl amino acid derivative.
発明の効果  The invention's effect
[0017] 本発明は上述の構成からなり、光学活性な 5—置換ヒダントイン誘導体及び光学活 性な Ν—力ルバミルアミノ酸誘導体を効率よく製造することができる。  [0017] The present invention has the above-described configuration, and can efficiently produce an optically active 5-substituted hydantoin derivative and an optically active high-power rubamyl amino acid derivative.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 上述のように、一般的なヒダントイナーゼは、 5—置換ヒダントイン誘導体を加水分 解して Ν—力ルバミルアミノ酸誘導体を生成する活性、および、その加水分解反応の 逆反応として、 Ν—力ルバミルアミノ酸誘導体を環化して 5—置換ヒダントイン誘導体 を生成する活性の両者を有することが知られている。また、ヒダントイナーゼの上記加 水分解反応の酵素活性は、二価の金属イオンによって向上する例が知られて 、る。  [0018] As described above, a general hydantoinase has an activity of hydrolyzing a 5-substituted hydantoin derivative to produce a strong rubamyl amino acid derivative, and the reverse reaction of the hydrolysis reaction. It is known to have both the activity of cyclizing strong rubamyl amino acid derivatives to form 5-substituted hydantoin derivatives. In addition, it is known that the enzyme activity of the above hydrolytic reaction of hydantoinase is improved by divalent metal ions.
[0019] 一方、本発明者による検討の結果、実施例の D体選択的ヒダントイナーゼは、所定 の二価の金属イオンによって上記加水分解反応の活性が阻害される性質を有するこ とがわかった (後述の参考例 1、 2参照)。  [0019] On the other hand, as a result of examination by the present inventors, it was found that the D-form selective hydantoinase of Example has a property that the activity of the hydrolysis reaction is inhibited by a predetermined divalent metal ion ( (See Reference Examples 1 and 2 below.)
[0020] 一般に、加水分解酵素について、特定の化合物により加水分解活性が阻害される のであれば、逆反応も同化合物によって阻害されることが予想される。しかしながら、 本発明者による更なる検討の結果、意外にも、実施例の D体選択的ヒダントイナーゼ は、二価の金属イオンによって環化反応が促進されることがわ力つた (後述の実施例[0020] Generally, if a hydrolytic enzyme inhibits hydrolytic activity by a specific compound, the reverse reaction is expected to be inhibited by the compound. However, as a result of further studies by the present inventor, surprisingly, the D-form selective hydantoinase of Example It was proved that the cyclization reaction was promoted by divalent metal ions.
1〜3参照)。 1 to 3).
[0021] 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
[0022] 1.ラセミ体 N—力ルバミルアミノ酸誘導体 [0022] 1. Racemic N-powered rubamyl amino acid derivative
本発明に用いるラセミ体 N—力ルバミルアミノ酸誘導体(1)において、 Rは置換基を 有して 、てもよ 、炭素数 1から 20のアルキル基、置換基を有して!/、てもよ 、炭素数 7 力も 20のァラルキル基、又は置換基を有して!/、てもよ 、炭素数 6から 20のァリール基 を表す。  In the racemic N-strength rubamyl amino acid derivative (1) used in the present invention, R has a substituent, and may have an alkyl group having 1 to 20 carbon atoms, a substituent! However, it also has an aralkyl group having 7 carbon atoms or a aralkyl group having 20 substituents! Or may represent an aryl group having 6 to 20 carbon atoms.
[0023] 炭素数 1から 20のアルキル基としては、特に限定されず、例えばメチル基、ェチル 基、または、 n—プロピル基等の直鎖アルキル基、もしくはイソプロピル基、イソブチル 基、 t—ブチル基、ネオペンチル基、または、 t—ペンチル基等の分枝アルキル基が 挙げられる。置換基を有していてもよい炭素数 7〜20のァラルキル基としては、特に 限定されず、例えば、ベンジル基、インドリルメチル基、 4ーヒドロキシベンジル基、又 は、 3, 4—メチレンジォキシベンジル基等が挙げられる。置換基を有していてもよい 炭素数 6〜20のァリール基としては、フエ-ル基、または 4ーヒドロキシフエ-ル基な どが挙げられる。上記アルキル基、ァリール基、または、ァラルキル基は無置換であ つてもよく、また置換基を有していてもよい。置換基としては、アミノ基、ヒドロキシル基 、フエ-ル基、ァリール基、アルカノィル基、ァルケ-ル基、アルキ-ル基、アルコキシ ル基、ハロゲン原子等が挙げられる。  [0023] The alkyl group having 1 to 20 carbon atoms is not particularly limited, and for example, a straight chain alkyl group such as a methyl group, an ethyl group, or an n-propyl group, an isopropyl group, an isobutyl group, or a t-butyl group. And branched alkyl groups such as a neopentyl group or a t-pentyl group. The aralkyl group having 7 to 20 carbon atoms which may have a substituent is not particularly limited, and examples thereof include a benzyl group, an indolylmethyl group, a 4-hydroxybenzyl group, and 3, 4-methylenedialkyl. And an oxybenzyl group. Examples of the aryl group having 6 to 20 carbon atoms which may have a substituent include a phenol group and a 4-hydroxyphenol group. The alkyl group, aryl group or aralkyl group may be unsubstituted or may have a substituent. Examples of the substituent include an amino group, a hydroxyl group, a phenol group, an aryl group, an alkanol group, an alkenyl group, an alkyl group, an alkoxyl group, and a halogen atom.
[0024] 2.ヒダントイナーゼの取得  [0024] 2. Acquisition of hydantoinase
ヒダントイナーゼは、 5—置換ヒダントイン誘導体を加水分解して N—力ルバミルアミ ノ酸誘導体を生成する活性を有する酵素である。本酵素は、一般に、加水分解反応 の逆反応として、 N—力ルバモイルアミノ酸誘導体を環化して 5—置換ヒダントイン誘 導体を生成することが知られている。また、 5—置換ヒダントイン誘導体に作用させて 開環する加水分解反応において、従来のヒダントイナーゼは、マンガン、コノ レト等 の二価の金属イオンの存在下で酵素活性が向上する例があることが知られている。  Hydantoinase is an enzyme having an activity of hydrolyzing a 5-substituted hydantoin derivative to produce an N-force rubamylamino acid derivative. In general, this enzyme is known to cyclize an N-strength rubamoyl amino acid derivative to produce a 5-substituted hydantoin derivative as the reverse reaction of the hydrolysis reaction. In addition, in the hydrolysis reaction that causes ring-opening by acting on 5-substituted hydantoin derivatives, it has been known that conventional hydantoinases have improved enzyme activity in the presence of divalent metal ions such as manganese and conoleto. It has been.
[0025] 一方、本発明で用いるヒダントイナーゼは、所定の二価の金属イオンにより加水分 解活性が阻害される性質を有する。したがって、本発明のヒダントイナーゼとしては、 例えば動物、植物、または微生物由来のヒダントイナーゼであって、かつ、二価の金 属イオンにより加水分解活性が阻害されるものを使用することができる。工業的な利 用には微生物由来のヒダントイナーゼが好ましい。 [0025] On the other hand, the hydantoinase used in the present invention has a property that its hydrolysis activity is inhibited by a predetermined divalent metal ion. Therefore, as the hydantoinase of the present invention, For example, hydantoinase derived from animals, plants, or microorganisms and having hydrolytic activity inhibited by divalent metal ions can be used. For industrial use, hydantoinase derived from microorganisms is preferred.
[0026] ヒダントイナーゼの由来となる微生物としては、当該酵素の生産能力を有する微生 物であればいずれも利用できる力 例えば、以下の公知の、当該酵素の生産能力を 有する微生物を挙げることができる。すなわち、細菌としてはァセトパクター属 (Aceto bacter)、ァクロモノくクター属 (Achromobacter)、了エロパクター属 (Aerobacter)、ァグ ロバクテリゥム属(Agrobacterium)、アルカリゲネス属 (Alcaligenes)、ァルスロパクター 属(Arthrobacter)、バチルス属(Bacillus)、ブレビバタテリゥム属(Brevibacterium)、コ リネノ クテリゥム属 (Corynebacterium)、ェンテロノくクター属 (Enterobacter)、ェノレウイ ニァ属 (Erwinia)、ェシエリヒア属(Escherichia)、クレブシェラ属(Klebsiella)、ミクロバ クテリゥム属 (Microbacterium)、ミクロコッカス属 (Micrococcus)、プロタミノバクター属 (Protaminobacter 、プロアウス J¾ (Proteusノ、、ノュ. ~~ドモナス為 (Pseudomonasノ、サル チナ属(Sartina)、セラチア属(Serratia)、キサントモナス属(Xanthomonas)、ァエロモ ナス属(Aeromonas)、フラボバタテリゥム属(Flavobacterium)、またはリゾビゥム属(Rhi zobium)などに属する微生物が挙げられる。  [0026] The microorganism from which hydantoinase is derived can be used as long as it is a microorganism having the ability to produce the enzyme. For example, the following known microorganisms having the ability to produce the enzyme can be mentioned. . In other words, bacteria include Aceto bacter, Achromobacter, Aerobacter, Agrobacterium, Alcaligenes, Arthrobacter, Bacillus ( Bacillus), Brevibacterium, Corynebacterium, Enterobacter, Erwinia, Escherichia, Klebsiella, Microbacteria (Microbacterium), Micrococcus, Protaminobacter (Protaminobacter, Proteus no., Proteus no, No. ~~ Domonas for Pseudomonas (Sartina), Serratia, Serratia, Xanthomonas Genus (Xanthomonas), Aeromonas, Flavobataterium (Fla vobacterium), or a microorganism belonging to the genus Rhi zobium.
[0027] 放線菌としてはァクチノミセス属(Actinomyces)、ミコバタテリゥム属(Mycobacterium )、ノカルディア属(Nocardia)、ストレプトミセス属(Streptomyces)、ァクチノプラネス属 (Actinoplanes)、またはロドコッカス属(Rhodococcus)などに属する微生物が挙げられ る。  [0027] As actinomycetes, microorganisms belonging to the genus Actinomyces, Mycobacterium, Nocardia, Streptomyces, Actinoplanes or Rhodococcus Can be mentioned.
[0028] かびとしては、ァスペルギルス属(Aspergillus)、パェシ口ミセス属(Paecilomyces)、 またはぺ-シリウム属(Penicillium)などに属する微生物が挙げられる。  [0028] Examples of the fungi include microorganisms belonging to the genus Aspergillus, Paecilomyces, Penicillium, and the like.
[0029] 酵母としては、キャンディダ属(Candida)、ピヒア属(Phichia)、ロードトルラ属(Rhodo torula)又はトルロプシス属(Torulopsis)などに属する微生物が挙げられる。  [0029] Examples of the yeast include microorganisms belonging to the genus Candida, the genus Phichia, the genus Rhodo torula or the genus Torulopsis.
[0030] 好ましくは、ァグロバタテリゥム属(Agrobacterium)、バチルス属(Bacillus)、シユード モナス属(Pseudomonas)又はリゾビゥム属(Rhizobium)に属する微生物由来の酵素 が挙げられる。さらに好ましくは、ァグロバタテリゥム スピーシーズ (Agrobacterium s p.) KNK712 (FERM BP— 1900)、バチルス スピーシーズ(Bacillus sp.) KNK2 45 (FERM BP— 4863)、シユードモナス プチダ(Pseudomonas putida) NBRC12 996、シユードモナス スピーシーズ(Pseudomonas sp.)KNK003A(FERM BP— 3181)又はリゾビゥム スピーシーズ(Rhizobium sp.)KNK1415 (FERM BP— 44 19)由来の酵素が挙げられる。 [0030] Preferably, enzymes derived from microorganisms belonging to the genus Agrobacterium, Bacillus, Pseudomonas or Rhizobium can be mentioned. More preferably, Agrobacterium sp. KNK712 (FERM BP—1900), Bacillus sp. KNK2 45 (FERM BP— 4863), Pseudomonas putida NBRC12 996, Pseudomonas sp. (Pseudomonas sp.) KNK003A (FERM BP— 3181) or Rhizobium sp. KNK1415 (FERM BP— 44) Is mentioned.
[0031] 上記、ァグロバタテリゥム スピーシーズ (Agrobacterium sp.)KNK712 (FERM BP— 1900)、バチルス スピーシーズ(Bacillus sp.)KNK245 (FERM BP— 486 3)、シユードモナス スピーシーズ(Pseudomonas sp.)KNK003A(FERM BP— 3 181)及びリゾビゥム スピーシーズ(Rhizobium sp.)KNK1415 (FERM BP— 441 9)は、それぞれ前記の受託番号にて、独立行政法人産業技術総合研究所 特許生 物寄託センター(IPOD:〒 305-8566 日本国茨城県つくば巿東 1丁目 1番地 1 中 央第 6)に寄託されている。 [0031] Above, Agrobacterium sp. KNK712 (FERM BP— 1900), Bacillus sp. KNK245 (FERM BP— 486 3), Pseudomonas sp. KNK003A (FERM BP-3 181) and Rhizobium sp. KNK1415 (FERM BP-441 9) are registered with the Patent Product Deposit Center (IPOD: 305- 8566 Deposited at Tsukuba Sakai Higashi, 1-chome, 1-chome, 1-center, 6), Ibaraki, Japan.
[寄託日]  [Deposit date]
Agrobacterium sp. KNK712 (FERM BP— 1900) : 1988年 5月 31日  Agrobacterium sp. KNK712 (FERM BP— 1900): May 31, 1988
Bacillus sp. KNK245 (FERM BP— 4863): 1994年 11月 2日  Bacillus sp. KNK245 (FERM BP— 4863): November 2, 1994
Pseudomonas sp. KNK003A (FERM BP— 3181) : 1990年 12月 1日  Pseudomonas sp. KNK003A (FERM BP— 3181): December 1, 1990
Rhizobium sp. KNK1415 (FERM BP- 4419) : 1993年 9月 22日。  Rhizobium sp. KNK1415 (FERM BP- 4419): September 22, 1993.
[0032] 前記、シユードモナス プチダ(Pseudomonas putida) NBRC12996は、独立行政 法人製品評価技術基盤機構 バイオテクノロジー本部生物遺伝資源部門 (NBRC : 〒292-0818 千葉県木更津巿かずさ鎌足 2-5-8)に保存されており、同機関より入手 することができる。 [0032] The above-mentioned Pseudomonas putida NBRC12996 is an independent administrative agency, National Institute of Technology and Evaluation, Biotechnology Headquarters, Biogenetic Resource Division (NBRC: 292-0818, Chiba Prefecture Kisarazu Kazusa Kamashisa 2-5-8) It is stored and can be obtained from the same institution.
[0033] ヒダントイナーゼを効率良く高生産する高活性菌を得るためには、周知のとおり、形 質転換微生物を作成することが有効である。作成方法としては、例えば WO96Z20 275記載のように、ヒダントイナーゼ活性を示す菌株カもヒダントイナーゼ遺伝子をク ローニングした後、適当なベクターとの糸且換えプラスミドを作成して、これを用いて適 当な宿主菌を形質転換することで得られる。なお、組換え DNA技術については当該 分野において周知である。  [0033] In order to obtain a highly active bacterium that efficiently produces hydantoinase, it is effective to produce a transforming microorganism as is well known. As a preparation method, for example, as described in WO96Z20275, a strain demonstrating hydantoinase activity also clones the hydantoinase gene, then creates a thread-replaceable plasmid with an appropriate vector, and uses this to prepare an appropriate host. Obtained by transforming bacteria. Recombinant DNA technology is well known in the art.
[0034] このようにして得られた D体選択的ヒダントイナーゼを高生産する形質転換体として は、二価の金属イオンにより加水分解活性が阻害されるものであればいずれも使用 できるが、例として WO96Z20275記載の、バチルス スピーシーズ(Bacillus sp.)K NK245 (FERM BP— 4863)由来のヒダントイナーゼ遺伝子を含有するェシエリヒ ァ コリ(Escherichia coli) HB 101 (pTH 104) (FERM BP— 4864)を挙げることが できる。これら形質転換体によるヒダントイナーゼの生産、あるいは、前述のヒダントイ ナーゼ活性を示す菌株によるヒダントイナーゼの生産は、例えば、 WO96/20275 記載の、通常の栄養培地を用いて培養を行えば良ぐ必用に応じて、酵素誘導のた めの処理を行うこともできる。 [0034] Any transformant obtained in this manner that produces a high yield of D-form selective hydantoinase can be used as long as the hydrolysis activity is inhibited by a divalent metal ion. As an example, the Escherichia coli HB 101 (pTH 104) (FERM BP— 4864) containing a hydantoinase gene derived from Bacillus sp. K NK245 (FERM BP-4863) described in WO96Z20275. Can be mentioned. The production of hydantoinase by these transformants, or the production of hydantoinase by a strain exhibiting the above-mentioned hydantoinase activity, for example, can be performed by culturing using a normal nutrient medium described in WO96 / 20275. In addition, treatment for enzyme induction can be performed.
[0035] 上記、ェシエリヒア コリ(Escherichia coli) HB 101 (pTHl 04) (FERM BP— 486 4)は、当該受託番号にて、独立行政法人産業技術総合研究所 特許生物寄託セン ター (IPOD:〒 305-8566 日本国茨城県つくば巿東 1丁目 1番地 1 中央第 6)に寄 託されている(寄託日: 1994年 11月 2日)。  [0035] The above-mentioned Escherichia coli HB 101 (pTHl 04) (FERM BP—486 4) is a patent biological deposit center (IPOD: 305) -8566 Deposited at Tsukuba Sakai Higashi, 1-chome, 1-chome, 1st, Central 6), Ibaraki, Japan (Deposit date: November 2, 1994).
[0036] 本発明において、前述の微生物によって生産されたヒダントイナーゼは、酵素自体 として用いることができるほか、本酵素活性を有する微生物もしくはその処理物の形 態としても用いることができる。ここで、微生物の処理物とは、例えば、粗抽出液、培 養菌体、凍結乾燥菌体、アセトン乾燥菌体、またはそれらの菌体の破砕物を意味す る。更にヒダントイナーゼまたはそれらの処理物は、酵素自体、あるいは菌体のまま公 知の手段で固定ィ匕して得た固定ィ匕酵素として用いてもよい。固定ィ匕は当業者に周知 の方法である架橋法、共有結合法、物理的吸着法、包括法などで行ってもよい。  [0036] In the present invention, the hydantoinase produced by the above-mentioned microorganism can be used not only as the enzyme itself, but also as a form of a microorganism having the enzyme activity or a processed product thereof. Here, the treated product of microorganisms means, for example, a crude extract, cultured cells, freeze-dried cells, acetone-dried cells, or a crushed product of these cells. Furthermore, the hydantoinase or a processed product thereof may be used as the enzyme itself or as a fixed enzyme obtained by fixing it with a known means in the form of cells. The immobilization may be carried out by a cross-linking method, a covalent bonding method, a physical adsorption method, a comprehensive method, etc., which are well known to those skilled in the art.
[0037] 3.ヒダントイナーゼによる光学活件 5 置橼ヒダントイン謙導体、および光学活件 N 力ルバミルアミノ酸誘導体の合成方法  [0037] 3. Optical activity by hydantoinase 5 Oki Hydantoin Ken-conductor, and optical activity N synthetic method of rubamyl amino acid derivative
次にラセミ体 N 力ルバミルアミノ酸誘導体(1)をヒダントイナーゼによって立体選 択的に環化し、光学活性な 5 置換ヒダントイン誘導体 (2)および光学活性な N—力 ルバミルアミノ酸誘導体 (3)を合成する方法について説明する。本発明の酵素反応 は以下の方法で行うことができる。  Next, the racemic N-strength rubamyl amino acid derivative (1) is stereoselectively cyclized with hydantoinase to synthesize an optically active 5-substituted hydantoin derivative (2) and an optically active N-force rubamyl amino acid derivative (3). How to do will be described. The enzyme reaction of the present invention can be carried out by the following method.
[0038] 基質として前記一般式( 1 )で表されるラセミ体 N 力ルバミルアミノ酸誘導体を用 、 、前述のヒダントイナーゼ及び二価の金属イオンの存在下、水性媒体中で反応を行う 。二価の金属イオンの濃度は 0. OlmM以上、 1M以下、好ましくは 0. ImM以上、 1 OmM以下、基質の仕込み濃度は 0. 1%以上、 90% (wZv)以下、好ましくは 1%以 上、 60% (wZv)以下で溶解または懸濁した状態で反応を行う。反応温度は 10°C以 上、 80°C以下、好ましくは 20°C以上、 60°C以下の適当な温度で調節し、 pH4以上、 9以下、好ましくは pH5以上、 8以下に保ちつつ暫時静置または攪拌すればよい。ま た、基質を連続的に添加してもよい。反応は、バッチ法または連続方式で行い得る。 本発明の反応は、固定化酵素、膜リアクターなどを利用して行ってもよい。 [0038] A racemic N-type rubamyl amino acid derivative represented by the general formula (1) is used as a substrate, and the reaction is carried out in an aqueous medium in the presence of the above-mentioned hydantoinase and a divalent metal ion. The concentration of the divalent metal ion is 0. OlmM or more, 1M or less, preferably 0. ImM or more, 1OmM or less, and the substrate concentration is 0.1% or more, 90% (wZv) or less, preferably 1% or less. Above, the reaction is performed in a dissolved or suspended state at 60% (wZv) or less. The reaction temperature is adjusted to an appropriate temperature of 10 ° C or higher and 80 ° C or lower, preferably 20 ° C or higher and 60 ° C or lower, and is kept at pH 4 or higher, 9 or lower, preferably pH 5 or higher, 8 or lower for a while. It may be left still or stirred. Further, the substrate may be added continuously. The reaction can be carried out batchwise or continuously. The reaction of the present invention may be performed using an immobilized enzyme, a membrane reactor, or the like.
[0039] 二価の金属イオンとしては、特に限定されないが、バナジウム、クロム、マンガン、鉄 、コノ レト、ニッケル、銅、亜鉛、モリブデン、マグネシウム、またはカルシウム等のィォ ンが挙げられる。好ましくはコバルト、亜鉛、マンガンまたはニッケルのイオンが挙げら れ、更に好ましくは、コバルト、または亜鉛のイオンが挙げられる。これらの金属イオン は単独で用いてもょ 、し、 2種類以上の金属イオンを組み合わせて用いてもょ 、。  [0039] Examples of the divalent metal ion include, but are not limited to, ions such as vanadium, chromium, manganese, iron, conoleto, nickel, copper, zinc, molybdenum, magnesium, or calcium. Cobalt, zinc, manganese or nickel ions are preferable, and cobalt or zinc ions are more preferable. These metal ions can be used alone or in combination of two or more metal ions.
[0040] 水性媒体としては、水、緩衝液、これらにエタノールのような水溶性有機溶媒を含 む水性媒体、あるいは、水に溶解しにくい有機溶媒、たとえば、酢酸ェチル、酢酸ブ チル、トルエン、クロ口ホルム、 n キサンなどの有機溶媒を含む水性媒体との 2層 系などの適当な溶媒を用いることができる。さらに必用に応じて、抗酸化剤、界面活 性剤、補酵素、金属などを添加することもできる。  [0040] Examples of the aqueous medium include water, a buffer solution, an aqueous medium containing a water-soluble organic solvent such as ethanol, or an organic solvent that is difficult to dissolve in water, such as ethyl acetate, butylacetate, toluene, A suitable solvent such as a two-layer system with an aqueous medium containing an organic solvent such as black mouth form and n-xane can be used. Furthermore, antioxidants, surfactants, coenzymes, metals, etc. can be added as necessary.
[0041] カゝくして、ラセミ体 N—力ルバミルアミノ酸誘導体は、本発明の立体選択的ヒダントイ ナーゼにより一方の光学活性体のみが環化され、光学活性な 5—置換ヒダントイン誘 導体が生成し、逆の立体を有する光学活性な N—力ルバミルアミノ酸誘導体が残存 する。得られた光学活性な 5—置換ヒダントイン誘導体、及び光学活性な N—力ルバ ミルアミノ酸誘導体の単離は、通常の分離方法、例えば、抽出、濃縮、晶析、または カラムクロマトグラフィーなどの分離方法や、それらの組み合わせにより分離、精製す ることがでさる。  [0041] As a matter of fact, only one optically active form of the racemic N-force rubamyl amino acid derivative is cyclized by the stereoselective hydantoinase of the present invention to produce an optically active 5-substituted hydantoin derivative. However, an optically active N-force rubamyl amino acid derivative having the opposite steric structure remains. Isolation of the obtained optically active 5-substituted hydantoin derivative and optically active N-force rubamyl amino acid derivative can be performed by a conventional separation method such as extraction, concentration, crystallization, or column chromatography. Or they can be separated and purified by their combination.
[0042] さらに、得られた光学活性な 5—置換ヒダントイン誘導体、及び光学活性な N—カル ノ ミルアミノ酸誘導体は、公知の化学的方法 (例えば酸 ·アルカリ処理)あるいは酵素 的方法 (例えばデカルバミラーゼ等による脱力ルバモイルイ匕処理)により、容易に対 応する光学活性なアミノ酸に誘導することができる。  [0042] Further, the obtained optically active 5-substituted hydantoin derivative and optically active N-carbamylamino acid derivative can be obtained by known chemical methods (for example, acid / alkali treatment) or enzymatic methods (for example, decarbamylase). Can be easily derived to the corresponding optically active amino acid by the weak ruby moisturizing treatment.
[0043] 以上の説明では、本発明の N—力ルバミルアミノ酸誘導体の例示としてラセミ体 N —力ルバミルアミノ酸誘導体を例示した力 光学活性体の N—力ルバミルアミノ酸誘 導体を用いてもよい。光学活性体の N—力ルバミルアミノ酸誘導体を用いた場合、本 発明のヒダントイナーゼによって、例えば、残存する光学活性な N—力ルバミルアミノ 酸誘導体、もしくは生成する光学活性な 5—置換ヒダントイン誘導体の光学純度を向 上させることができる。 In the above description, as an example of the N-force rubamyl amino acid derivative of the present invention, the racemic N-force rubamyl amino acid derivative is exemplified. A conductor may be used. When an optically active N-force rubamyl amino acid derivative is used, the optical purity of, for example, the remaining optically active N-force rubamyl amino acid derivative or the optically active 5-substituted hydantoin derivative produced by the hydantoinase of the present invention. Can be improved.
実施例  Example
[0044] 以下に本発明の具体的な実施例を示す。しかし、本発明はこれらの実施例により限 定されるものではない。  [0044] Specific examples of the present invention are shown below. However, the present invention is not limited to these examples.
[0045] (参者例 1 )ヒダントイナーゼを用いた D— N—力ルバモイルロイシンの合成  [0045] (Participant Example 1) Synthesis of D—N—strength rubermoylleucine using hydantoinase
D体選択的ヒダントイナーゼ活性を有する組換え大腸菌であるェシエリヒア コリ(Es cherichia coli) HB101 (pTH104) (FERM BP— 4864)を 500ml坂口フラスコ内 で滅菌した 50mlの培地(トリプトン 16g、イーストエキス 10g、塩化ナトリウム 5g、脱ィ オン水 11、塩化マンガン 400ppm、滅菌前 pH7. 0、ろ過滅菌したアンピシリンナトリ ゥムを終濃度 lOOppmで別途添加する)に接種して、 37°Cで 24時間振とうして好気 的に培養した。得られた培養液 lmlカゝら遠心分離により菌体を集菌し、 10mM Tris —塩酸緩衝液 (pH8. 5) 5mlに懸濁して超音波により菌体を破砕した後、遠心分離 により菌体由来の不溶物を除去して、 D体選択的ヒダントイナーゼの粗酵素液を取得 した。得られた粗酵素液 0. lmlに 30mM D— 5—イソブチルヒダントイン及び表 1に 示す各種金属塩を含む 50mM 炭酸ナトリゥム Z炭酸水素ナトリゥム緩衝液 (pH8. 7) 4mlをカ卩えて混合した。 40°Cにて 15分間静置した後、 5N 硫酸 lmlをカ卩えて反 応を停止した。高速液体クロマトグラフィー (HPLC)を用いて D—N—力ルバモイル ロイシンの生成量を分析した結果を表 1に示す。  Escherichia coli HB101 (pTH104) (FERM BP-4864), a recombinant E. coli with D-selective hydantoinase activity, sterilized in a 500 ml Sakaguchi flask (tryptone 16 g, yeast extract 10 g, chloride) 5 g of sodium, 11 deionized water, 400 ppm of manganese chloride, pH 7.0 before sterilization, and filter sterilized ampicillin sodium added separately at a final concentration of lOO ppm) and shaken at 37 ° C for 24 hours. Cultured aerobically. The resulting culture is collected by centrifuging from 1 ml of the culture broth, suspended in 5 ml of 10 mM Tris-HCl buffer (pH 8.5), disrupted by sonication, and centrifuged to centrifuge the cells. The insoluble matter was removed, and a crude enzyme solution of D-form selective hydantoinase was obtained. To 0.1 ml of the obtained crude enzyme solution, 4 ml of 50 mM sodium carbonate Z sodium hydrogen carbonate buffer (pH 8.7) containing 30 mM D-5-isobutylhydantoin and various metal salts shown in Table 1 was mixed. After standing at 40 ° C for 15 minutes, the reaction was stopped by adding 1 ml of 5N sulfuric acid. Table 1 shows the results of analyzing the amount of D—N—force rubamoyl leucine produced using high performance liquid chromatography (HPLC).
[HPLC分析条件]  [HPLC analysis conditions]
カラム: COSMOSIL 5C18— AR (4. 6mm X 250mm、ナカライテスタ社製)、 溶離液: 10mM燐酸カリウム緩衝液 (pH2) Zァセトニトリル = 5Zl、流速: lmlZ分 、カラム温度: 30°C、測定波長: 210nm  Column: COSMOSIL 5C18—AR (4.6 mm x 250 mm, manufactured by Nacalai Testa), eluent: 10 mM potassium phosphate buffer (pH 2) Z-acetonitrile = 5 Zl, flow rate: lmlZ min, column temperature: 30 ° C, measurement wavelength: 210nm
[0046] [表 1] 添加金属塩 属 ;辰 D—N—力ルバモイルロイシン 相対活性 [0046] [Table 1] Additive metal salt; 辰 D—N—Strengthened rubermoyl leucine Relative activity
(mM) 生成量(U mol) (%) なし - 5.1 100.0 塩化コバルト 0.1 3.7 72.6  (mM) Production (U mol) (%) None-5.1 100.0 Cobalt chloride 0.1 3.7 72.6
1 1.9 38.0 硫酸亜鈴 0.1 1.1 21.0  1 1.9 38.0 Duplex sulphate 0.1 1.1 21.0
1 0.4 7.5  1 0.4 7.5
[0047] 表 1に示すように、 D— 5 イソブチルヒダントインの加水分解による D— N 力ルバ モイルロイシンの生成反応は、実施例の D体選択的ヒダントイナーゼの場合、所定の 金属イオン(例えばコバルトおよび Zまたは亜鉛を含む二価の金属イオン)によって 阻害された。 [0047] As shown in Table 1, in the case of the D-selective hydantoinase of Example, the formation reaction of D—N-powered rubamoyl leucine by hydrolysis of D-5 isobutylhydantoin is carried out with a predetermined metal ion (for example, cobalt and Divalent metal ions containing Z or zinc).
[0048] (参者例 2)ヒダントイナーゼを用いた D— N 力ルバモイル(4 ヒドロキシフエニル )グリシンの合成  [0048] (Participant example 2) Synthesis of D—N-strength rubermoyl (4-hydroxyphenyl) glycine using hydantoinase
参考例 1で得られた培養液 lmlから遠心分離により菌体魏菌し、 10mM Tris —塩酸緩衝液 (pH8. 5) 5mlに懸濁して超音波により菌体を破砕した後、遠心分離 により菌体由来の不溶物を除去して、 D体選択的ヒダントイナーゼの粗酵素液を取得 した。得られた粗酵素液 0. 1mlに 30mM DL— 5— (4 ヒドロキシフエ-ル)ヒダン トイン及び表 2に示す濃度の塩ィ匕コノ レトを含む 50mM 炭酸ナトリウム Z炭酸水素 ナトリウム緩衝液 (PH8. 7) 4mlを加えて混合した。 40°Cにて 15分間静置した後、 5 N 硫酸 lmlをカ卩えて反応を停止した。 HPLCを用いて D— N—力ルバモイル (4—ヒ ドロキシフエニル)グリシンの生成量を分析した結果を表 2に示す。  After culturing the cells from 1 ml of the culture solution obtained in Reference Example 1 by centrifugation, suspending the cells in 5 ml of 10 mM Tris-HCl buffer (pH 8.5), crushing the cells by ultrasound, and then centrifuging the cells by centrifugation. The insoluble matter derived from the body was removed and a crude enzyme solution of D-form selective hydantoinase was obtained. The obtained crude enzyme solution (0.1 ml) was added with 30 mM DL-5- (4 hydroxyphenol) hydantoin and 50 mM sodium carbonate Z sodium bicarbonate buffer (PH8. 7) 4ml was added and mixed. After standing at 40 ° C for 15 minutes, the reaction was stopped by adding 1 ml of 5 N sulfuric acid. Table 2 shows the results of analysis of the amount of D—N-force rubermoyl (4-hydroxyphenyl) glycine produced using HPLC.
[HPLC分析条件]  [HPLC analysis conditions]
カラム: COSMOSIL 5C18— AR (4. 6mm X 250mm、ナカライテスタ社製)、 溶離液: 10mM燐酸カリウム緩衝液 (pH2) Zァセトニトリル = 19Zl、流速: lmlZ 分、カラム温度: 30°C、測定波長: 210nm  Column: COSMOSIL 5C18—AR (4.6 mm x 250 mm, manufactured by Nacalai Testa), eluent: 10 mM potassium phosphate buffer (pH 2) Z-acetonitrile = 19 Zl, flow rate: lmlZ min, column temperature: 30 ° C, measurement wavelength: 210nm
[0049] [表 2] 添加金属塩 金属塩濃度 D— N—(4—ヒドロキシフエニル)グリシン 相対活性 [0049] [Table 2] Addition metal salt Metal salt concentration D—N— (4-Hydroxyphenyl) glycine Relative activity
(mM) 生成量(/i mol) (%) なし - 9.1 100.0 塩化コバルト 0.1 2.8 31.4  (mM) Production (/ i mol) (%) None-9.1 100.0 Cobalt chloride 0.1 2.8 31.4
1 1.0 10.9  1 1.0 10.9
[0050] 表 2に示すように、 DL— 5— (4 ヒドロキシフエ-ル)ヒダントインの加水分解による D— N 力ルバモイル(4 ヒドロキシフエ-ル)グリシンの生成反応は、実施例の D体 選択的ヒダントイナーゼの場合、所定の金属イオン (例えばコバルトを含む二価の金 属イオン)によって阻害された。 [0050] As shown in Table 2, DL-5- (4 hydroxyphenol) hydantoin hydrolysis In the case of the D-selective hydantoinase of the example, the production reaction of D—N-force rubamoyl (4 hydroxyphenol) glycine was inhibited by a predetermined metal ion (for example, a divalent metal ion containing cobalt).
[0051] (実施例 1)ヒダントイナーゼを用いた D— 5 イソプチルヒダントインの合成  [Example 1] Synthesis of D-5 isoptylhydantoin using hydantoinase
参考例 1で得られた培養液 5ml力も遠心分離により菌体を集菌し、 10mM Tris— 塩酸緩衝液 (pH8. 5) 5mlに懸濁して超音波により菌体を破砕した後、遠心分離に より菌体由来の不溶物を除去して、 D体選択的ヒダントイナーゼの粗酵素液を取得し た。得られた粗酵素液 0. 1mlに 30mM D—N—力ルバモイルロイシン及び表 3に 示す濃度の塩化コバルトまたは硫酸亜鉛を含む 50mM 2— [4 (2- Hydroxy et hyl) 1 -piperazinyllethanesulfonic acid (HEPES)—NaOH緩衝液 (pH7. 0) 4mlを加えて混合した。 40°Cにて 15分間静置した後、ァセトニトリル 4mlをカ卩えて 反応を停止した。参考例 1と同様の方法で D— 5 イソプチルヒダントインの生成量を 分析した結果を表 3に示す。  Collect the cells by centrifuging the 5 ml culture solution obtained in Reference Example 1 and suspend the cells in 5 ml of 10 mM Tris-HCl buffer (pH 8.5). The insoluble matter derived from the bacterial cells was removed, and a crude enzyme solution of D-form selective hydantoinase was obtained. The obtained crude enzyme solution 0.1 ml contains 30 mM D—N—forced rubermoyl leucine and cobalt chloride or zinc sulfate at the concentrations shown in Table 3 50 mM 2— [4 (2- Hydroxy et hyl) 1 -piperazinyllethanesulfonic acid ( 4 ml of HEPES) -NaOH buffer (pH 7.0) was added and mixed. After standing at 40 ° C for 15 minutes, 4 ml of acetonitrile was added to stop the reaction. Table 3 shows the results of analysis of the amount of D-5 isoptylhydantoin produced in the same manner as in Reference Example 1.
[0052] [表 3] 添加金属塩 < &>辰 ' D— 5—イソプチルヒダントイン 相対活性  [0052] [Table 3] Added metal salt <&> 辰 'D— 5-Isoptylhydantoin Relative activity
(mM) 生成量 mol) (%) なし - 7.9 100.0 塩化コバルト 0.1 15.6 198.2  (mM) Production mol) (%) None-7.9 100.0 Cobalt chloride 0.1 15.6 198.2
1 15.7 200.0 硫酸亜鈴 1 8.5 108.1  1 15.7 200.0 Duplex sulfate 1 8.5 108.1
[0053] 表 3に示すように、 D—N—力ルバモイルロイシンの環化反応による D— 5 イソブ チルヒダントインの生成は、実施例の D体選択的ヒダントイナーゼの場合、所定の金 属イオン (例えばコバルトまたは亜鉛を含む二価の金属イオン)によって促進された。 [0053] As shown in Table 3, the production of D-5 isobutyric hydantoin by the cyclization reaction of D—N—strength rubamoyl leucine is carried out in the case of the D-selective hydantoinase of the example in the case of a predetermined metal ion (E.g., divalent metal ions including cobalt or zinc).
[0054] (実施例 2)ヒダントイナーゼを用いた D— 5—(4ーヒドロキシフエニル)ヒダントインの 実施例 1で用いた培養液 11. 7ml力も遠心分離により菌体を集菌し、 10mM Tr is—塩酸緩衝液 (pH8. 5) 5mlに懸濁して超音波により菌体を破砕した後、遠心分 離により菌体由来の不溶物を除去して、 D体選択的ヒダントイナーゼの粗酵素液を取 得した。得られた粗酵素液 0. 1mlに 30mM D—N—力ルバモイル(4ーヒドロキシフ ェ -ル)グリシン及び表 4に示す濃度の塩化コバルトを含む 50mM HEPES -NaO H緩衝液 (pH7. 0) 4mlをカ卩えて混合した。 40°Cにて 15分間静置した後、ァセトニト リル 4mlをカ卩えて反応を停止した。参考例 2と同様の方法で D— 5—(4ーヒドロキシフ ェニル)ヒダントインの生成量を分析した結果を表 4に示す。 [0054] (Example 2) D-5- (4-hydroxyphenyl) hydantoin using hydantoinase Culture medium used in Example 1 11. Bacteria were collected by centrifugation at 7 ml force, and 10 mM Tris —Suspend in 5 ml of hydrochloric acid buffer (pH 8.5) and crush the cells by ultrasound. Then, remove the insoluble matter derived from the cells by centrifugation and remove the crude enzyme solution of D-form selective hydantoinase. Got. 50 ml of HEPES-NaO containing 0.1 mM of the crude enzyme solution containing 30 mM D—N—strength rubermoyl (4-hydroxyphenyl) glycine and cobalt chloride at the concentrations shown in Table 4 4 ml of H buffer (pH 7.0) was added and mixed. After standing at 40 ° C for 15 minutes, the reaction was stopped by adding 4 ml of acetonitrile. Table 4 shows the results of analyzing the amount of D-5- (4-hydroxyphenyl) hydantoin produced in the same manner as in Reference Example 2.
[表 4] 添加金属塩 金属塩濃度 D— 5- -(4ーヒドロキシフエニル)ヒダントイン 相対活性  [Table 4] Added metal salt Metal salt concentration D— 5--(4-hydroxyphenyl) hydantoin Relative activity
(mM) 生成量(ii mol) (%) なし - 10.0 100.0 塩化コバルト 0.1 12.7 126.9  (mM) Production (ii mol) (%) None-10.0 100.0 Cobalt chloride 0.1 12.7 126.9
1 13.4 134.6  1 13.4 134.6
[0056] 表 4に示すように、 D— N—力ルバモイル(4ーヒドロキシフエ-ル)グリシンの環化反 応による D— 5— (4—ヒドロキシフエ-ル)ヒダントインの生成は、実施例の D体選択 的ヒダントイナーゼの場合、所定の金属イオン (例えばコバルトを含む二価の金属ィ オン)によって促進された。 [0056] As shown in Table 4, the formation of D-5- (4-hydroxyphenol) hydantoin by the cyclization reaction of D-N-force rubamoyl (4-hydroxyphenol) glycine In the case of the body selective hydantoinase, it was promoted by certain metal ions (eg, divalent metal ions containing cobalt).
[0057] ( 施例 3)ヒダントイナーゼ 用いた D— 5 イソプチルヒダントインの合成  [0057] (Example 3) Synthesis of D-5 isoptylhydantoin using hydantoinase
実施例 1で用いた粗酵素液 0. 05mlに 10% (wZv) DL—N—力ルバモイルロイシ ン及び ImM 塩化コバルトを含む 1M HEPES— NaOH緩衝液(6. 8) 1. 5mlを 加えて混合した。 40°Cにて 3時間攪拌した後、生成した D— 5 イソプチルヒダントイ ン及び残存した L N 力ルバモイルロイシンの収率と光学純度を HPLCを用 、て 分析した結果、及び比較例として塩ィ匕コノ レトを添加しな力 た場合の結果を表 5に 示す。  The crude enzyme solution used in Example 1 was mixed with 0.05 ml of 1M HEPES-NaOH buffer (6.8) containing 10% (wZv) DL-N-strong rubermoyl leucine and ImM cobalt chloride (6.8). . After stirring at 40 ° C for 3 hours, the yield and optical purity of the produced D-5 isoptylhydantoin and the remaining LN strength rubermoyl leucine were analyzed using HPLC, and as a comparative example, Table 5 shows the results when no force was added.
[HPLC分析条件 (光学純度) ]  [HPLC analysis conditions (optical purity)]
カラム: Chirobiotic T(4. 6mm X 250mm、 ASTEC社製)を 2本連結、 0. 01% ( V/ v) Triethylamine acetate Η6. 8) Ζ methanol = 9/ 1、流速: 0. 7mレ分 、カラム温度: 35°C、測定波長: 210nm  Column: Chirobiotic T (4.6 mm x 250 mm, manufactured by ASTEC), connected in two, 0.01% (V / v) Triethylamine acetate Η6.8) Ζ methanol = 9/1, flow rate: 0.7m Column temperature: 35 ° C, measurement wavelength: 210nm
[0058] [表 5] 添加金属塩 D— 5—イソブチルヒダントイン L—N—力ルバモイルロイシン 生成量 (mol%) 光学純 J i<¼e.e.) 残存量 (mol¾) 光学純度(¾e.e.) なし 26.7 95.2 74.8 45.2 塩化コバルト 43.7 _ 95.9 57.6 70.1 [0058] [Table 5] Addition metal salt D-5-isobutylhydantoin L—N—strength rubamoylleucine Production amount (mol%) Optical purity J i <¼e.e) Residual amount (mol¾) Optical purity (¾e. e.) None 26.7 95.2 74.8 45.2 Cobalt chloride 43.7 _ 95.9 57.6 70.1
[0059] 表 5に示すように、 DL— N 力ルバモイルロイシンに対して実施例の D体選択的ヒ ダントイナーゼを作用させた場合、所定の金属イオン (例えばコバルトを含む二価の 金属イオン)により D体選択的な環化反応が促進された結果、光学活性な D— 5—ィ ソブチルヒダントインが生成し、逆の光学活性体である L— N—力ルバモイルロイシン が残存した。 [0059] As shown in Table 5, the D-form selective H When Dantoinase is allowed to act, the D-selective cyclization reaction is promoted by certain metal ions (for example, divalent metal ions containing cobalt), resulting in the production of optically active D-5-isobutylhydantoin. However, the reverse optically active substance L—N—force rubermoyl leucine remained.

Claims

請求の範囲 一般式 (2) Claim General formula (2)
[化 1]  [Chemical 1]
Figure imgf000016_0001
Figure imgf000016_0001
(式中、 Rは置換基を有していてもよい炭素数 1から 20のアルキル基、置換基を有し て!、てもよ 、炭素数 7から 20のァラルキル基、又は置換基を有して!/、てもよ 、炭素数 6から 20のァリール基を表し、 *は不斉炭素原子を表す。)で表される光学活性 5— 置換ヒダントイン誘導体、及び、一般式 (3): (Wherein R has an optionally substituted alkyl group having 1 to 20 carbon atoms, has a substituent !, may have an aralkyl group having 7 to 20 carbon atoms, or has a substituent. / !, but represents an aryl group having 6 to 20 carbon atoms, and * represents an asymmetric carbon atom.) And an optically active 5-substituted hydantoin derivative represented by the general formula (3):
[化 2] [Chemical 2]
Figure imgf000016_0002
Figure imgf000016_0002
(式中、 R及び *は前記と同じ)で表される光学活性 N—力ルバミルアミノ酸誘導体の 製造方法であって、 (Wherein, R and * are the same as above), which is a method for producing an optically active N-force rubamyl amino acid derivative,
二価の金属イオンの存在下、当該二価の金属イオンによって 5—置換ヒダントイン誘 導体を N—力ルバミルアミノ酸に加水分解する活性が阻害されるヒダントイナーゼを 用いて、一般式(1) : In the presence of a divalent metal ion, a hydantoinase that inhibits the activity of hydrolyzing a 5-substituted hydantoin derivative into N-strength rubamyl amino acid by the divalent metal ion is represented by the general formula (1):
[化 3] [Chemical 3]
Figure imgf000017_0001
Figure imgf000017_0001
(式中、 Rは前記と同じ)で表される N—力ルバミルアミノ酸誘導体を立体選択的に環 化することを特徴とする製造方法。 (Wherein R is the same as defined above), N-force rubamyl amino acid derivative represented by the stereoselective cyclization.
[2] 二価の金属イオンがコバルト、亜鉛、マンガン、及びニッケル力 選択される少なくと も 1種の金属イオンである請求項 1記載の製造方法。  [2] The production method according to claim 1, wherein the divalent metal ion is at least one metal ion selected from cobalt, zinc, manganese, and nickel.
[3] 二価の金属イオンがコバルトイオン、または亜鉛イオンである請求項 1記載の製造方 法。 [3] The method according to claim 1, wherein the divalent metal ion is a cobalt ion or a zinc ion.
[4] 一般式 (2) :  [4] General formula (2):
[化 4]  [Chemical 4]
Figure imgf000017_0002
Figure imgf000017_0002
(式中、 Rは置換基を有していてもよい炭素数 1から 20のアルキル基、置換基を有し て!、てもよ 、炭素数 7から 20のァラルキル基、又は置換基を有して!/、てもよ 、炭素数 6から 20のァリール基を表し、 *は不斉炭素原子を表す。)で表される光学活性 5— 置換ヒダントイン誘導体、及び、一般式 (3): (Wherein R has an optionally substituted alkyl group having 1 to 20 carbon atoms, has a substituent !, may have an aralkyl group having 7 to 20 carbon atoms, or has a substituent. / !, but represents an aryl group having 6 to 20 carbon atoms, and * represents an asymmetric carbon atom.) And an optically active 5-substituted hydantoin derivative represented by the general formula (3):
[化 5]  [Chemical 5]
Figure imgf000017_0003
(式中、 R及び *は前記と同じ)で表される光学活性 N—力ルバミルアミノ酸誘導体の 製造方法であって、
Figure imgf000017_0003
(Wherein, R and * are the same as those mentioned above),
コバルトイオン又は亜鉛イオンの存在下、ヒダントイナーゼを用いて一般式(1): [化 6]  Using hydantoinase in the presence of cobalt ions or zinc ions, general formula (1):
Figure imgf000018_0001
Figure imgf000018_0001
(式中、 Rは前記と同じ)で表される N—力ルバミルアミノ酸誘導体を立体選択的に環 化することを特徴とする製造方法。 (Wherein R is the same as defined above), N-force rubamyl amino acid derivative represented by the stereoselective cyclization.
[5] ヒダントイナーゼがバチルス属に属する微生物由来である請求項 1から 4のいずれか に記載の製造方法。  5. The production method according to any one of claims 1 to 4, wherein the hydantoinase is derived from a microorganism belonging to the genus Bacillus.
[6] ヒダントイナーゼがバチルス スピーシーズ(Bacillus sp.)KNK245 (FERM BP— 4[6] Hydantoinase is Bacillus sp. KNK245 (FERM BP— 4
863)由来である請求項 1から 4のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 4, which is derived from 863).
[7] ヒダントイナーゼがェシエリヒア コリ(Escherichia coli) HB101 (pTH104) (FERM[7] Hydantoinase is Escherichia coli HB101 (pTH104) (FERM
BP— 4864)由来である請求項 1から 4のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 4, which is derived from BP-4864).
[8] Rが置換基を有して 、てもよ 、フエ-ル基、置換基を有して 、てもよ 、ベンジル基、 又は置換基を有して 、てもよ 、炭素数 1から 4のアルキル基の!/、ずれかである請求項[8] R may have a substituent, a phenyl group, a substituent, a benzyl group, or a substituent, which may have 1 carbon atom. The alkyl group of from 4 to!
1から 7のいずれかに記載の製造方法。 The manufacturing method in any one of 1-7.
[9] R力 ヒドロキシフエ-ル基、又はイソブチル基である請求項 1から 7のいずれか記 載の製造方法。  [9] The production method according to any one of claims 1 to 7, wherein the R force is a hydroxyphenol group or an isobutyl group.
[10] 得られる光学活性な 5 置換ヒダントイン誘導体力 ¾体である請求項 1から 9のいずれ か記載の製造方法。 10. The production method according to any one of claims 1 to 9, which is an optically active 5-substituted hydantoin derivative complex obtained.
[11] 得られる光学活性な N—力ルバミルアミノ酸誘導体力 体である請求項 1から 10のい ずれか記載の製造方法。 [11] The production method according to any one of [1] to [10], wherein the optically active N-force rubamyl amino acid derivative is obtained.
[12] 請求項 1から 11のいずれかに記載の製造方法によって得られる、光学活性な N—力 ルバミルアミノ酸誘導体及び Z又は光学活性な 5—置換ヒダントイン誘導体から、対 応する光学活性 α—アミノ酸誘導体を生成する光学活性 α—アミノ酸誘導体の製造 方法。 [12] From an optically active N-force rubamyl amino acid derivative and Z or an optically active 5-substituted hydantoin derivative obtained by the production method according to any one of claims 1 to 11, A method for producing an optically active α-amino acid derivative to produce a corresponding optically active α-amino acid derivative.
以下の一般式 (1) : The following general formula (1):
[化 7] [Chemical 7]
Figure imgf000019_0001
Figure imgf000019_0001
(式中、 Rは置換基を有していてもよい炭素数 1から 20のアルキル基、置換基を有し て!、てもよ 、炭素数 7から 20のァラルキル基、又は置換基を有して!/、てもよ 、炭素数 6から 20のァリール基を表す)で表される N—力ルバミルアミノ酸誘導体を立体選択 的に環化して一般式 (2) : (Wherein R has an optionally substituted alkyl group having 1 to 20 carbon atoms, has a substituent !, may have an aralkyl group having 7 to 20 carbon atoms, or has a substituent. N-force rubamyl amino acid derivative represented by the following formula (2): represents an aryl group having 6 to 20 carbon atoms).
Figure imgf000019_0002
Figure imgf000019_0002
(式中、 Rは前記と同じ、 *は不斉炭素を表す)で表される光学活性な 5 ントイン誘導体、及び一般式 (3): (Wherein R represents the same as above, * represents an asymmetric carbon), and an optically active 5-tontoin derivative represented by the general formula (3):
[化 9] [Chemical 9]
Figure imgf000019_0003
Figure imgf000019_0003
(式中、 R及び *は前記と同じ)で表される光学活性な N—力ルバミルアミノ酸誘導体 を生成する活性を有するヒダントイナーゼであって、 (Wherein R and * are the same as above), an optically active N-force rubamyl amino acid derivative A hydantoinase having an activity to produce
二価の金属イオンにより、上記環化反応が促進され、かつ 5—置換ヒダントイン誘導 体から N—力ルバミルアミノ酸誘導体への加水分解反応が阻害される性質を有する ことを特徴とするヒダントイナーゼ。 A hydantoinase characterized in that the cyclization reaction is promoted by a divalent metal ion, and the hydrolysis reaction from a 5-substituted hydantoin derivative to an N-force rubamyl amino acid derivative is inhibited.
PCT/JP2006/305737 2005-03-25 2006-03-22 PROCESS FOR PRODUCTION OF OPTICALLY ACTIVE α-AMINO ACID DERIVATIVE WO2006103995A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005088303 2005-03-25
JP2005-088303 2005-03-25

Publications (1)

Publication Number Publication Date
WO2006103995A1 true WO2006103995A1 (en) 2006-10-05

Family

ID=37053254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305737 WO2006103995A1 (en) 2005-03-25 2006-03-22 PROCESS FOR PRODUCTION OF OPTICALLY ACTIVE α-AMINO ACID DERIVATIVE

Country Status (1)

Country Link
WO (1) WO2006103995A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9499521B2 (en) 2014-12-11 2016-11-22 President And Fellows Of Harvard College Inhibitors of cellular necrosis and related methods

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60180596A (en) * 1984-02-02 1985-09-14 スクラーボ・エセ・ピ・ア Production of l-alpha-amino acid
WO1996020275A1 (en) * 1994-12-28 1996-07-04 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha PROCESS FOR PRODUCING D-N-CARBAMOYL-α-AMINO ACID
JP2003061692A (en) * 2001-06-22 2003-03-04 Degussa Ag METHOD FOR PRODUCING ACTIVATED rec-HYDANTOINASE, THE RESULTANT rec-HYDANTOINASE, NUCLEIC ACID ENCODING THE SAME, PLASMID, VECTOR AND MICROORGANISM EACH HAVING THE NUCLEIC ACID, NUCLEIC ACID TO BE HYBRIDIZED, PRIMER FOR PRODUCING THE NUCLEIC ACID, AND USE OF THE rec- HYDANTOINASE AND THE NUCLEIC ACID
JP2003277343A (en) * 2002-03-20 2003-10-02 Kanegafuchi Chem Ind Co Ltd NEW N-CARBAMOYL-alpha-AMINO ACID AND METHOD FOR PRODUCING THE SAME
WO2003106689A1 (en) * 2002-06-05 2003-12-24 鐘淵化学工業株式会社 PROCESS FOR PRODUCING OPTICALLY ACTIVE α-METHYLCYSTEINE DERIVATIVE
WO2004022766A1 (en) * 2002-09-06 2004-03-18 Kaneka Corporation PROCESS FOR PRODUCING L-α-METHYLCYSTEINE DERIVATIVE

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60180596A (en) * 1984-02-02 1985-09-14 スクラーボ・エセ・ピ・ア Production of l-alpha-amino acid
WO1996020275A1 (en) * 1994-12-28 1996-07-04 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha PROCESS FOR PRODUCING D-N-CARBAMOYL-α-AMINO ACID
JP2003061692A (en) * 2001-06-22 2003-03-04 Degussa Ag METHOD FOR PRODUCING ACTIVATED rec-HYDANTOINASE, THE RESULTANT rec-HYDANTOINASE, NUCLEIC ACID ENCODING THE SAME, PLASMID, VECTOR AND MICROORGANISM EACH HAVING THE NUCLEIC ACID, NUCLEIC ACID TO BE HYBRIDIZED, PRIMER FOR PRODUCING THE NUCLEIC ACID, AND USE OF THE rec- HYDANTOINASE AND THE NUCLEIC ACID
JP2003277343A (en) * 2002-03-20 2003-10-02 Kanegafuchi Chem Ind Co Ltd NEW N-CARBAMOYL-alpha-AMINO ACID AND METHOD FOR PRODUCING THE SAME
WO2003106689A1 (en) * 2002-06-05 2003-12-24 鐘淵化学工業株式会社 PROCESS FOR PRODUCING OPTICALLY ACTIVE α-METHYLCYSTEINE DERIVATIVE
WO2004022766A1 (en) * 2002-09-06 2004-03-18 Kaneka Corporation PROCESS FOR PRODUCING L-α-METHYLCYSTEINE DERIVATIVE

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9499521B2 (en) 2014-12-11 2016-11-22 President And Fellows Of Harvard College Inhibitors of cellular necrosis and related methods
US9944628B2 (en) 2014-12-11 2018-04-17 President And Fellows Of Harvard College Inhibitors of cellular necrosis and related methods
US10508102B2 (en) 2014-12-11 2019-12-17 President And Fellows Of Harvard College Inhibitors of cellular necrosis and related methods

Similar Documents

Publication Publication Date Title
US7098019B2 (en) DNA for encoding D-hydantoin hydrolases, DNA for encoding N-carbamyl-D-amino acid hydrolases, recombinant DNA containing the genes, cells transformed with the recombinant DNA, methods for producing proteins utilizing the transformed cells and methods for producing D-amino acids
JP2720140B2 (en) Method for producing optically active α-hydroxycarboxylic acid having phenyl group
JP3218133B2 (en) Method for producing optically active α-hydroxycarboxylic acid having phenyl group
EP1624052B1 (en) Process for the production of beta-amino acids with the use of acylase
AU613963B2 (en) Process for preparation of organic chemicals
JPS6230758B2 (en)
MXPA06000367A (en) Methods for the stereoselective synthesis and enantiomeric enrichment of b-amino acids.
WO2006103995A1 (en) PROCESS FOR PRODUCTION OF OPTICALLY ACTIVE α-AMINO ACID DERIVATIVE
JP3941184B2 (en) Process for producing optically active 1-acyloxy-3-chloro-2-propanol and optically active 3-chloro-1,2-propanediol
US6869788B2 (en) DNA encoding novel D-aminoacylase and process for producing D-amino acid by using the same
JPS60180596A (en) Production of l-alpha-amino acid
JP3160879B2 (en) Preparation of optically active amino acid derivatives
WO1998020152A1 (en) Process for producing optically active 3-quinuclidinol derivatives
JPH0440899A (en) Biological production of alpha-hydroxy-4-methylthiobutyramide
JPH0822228B2 (en) Amino acid amide hydrolase and use thereof
US5036004A (en) Process for producing L-serine
JP4192331B2 (en) Process for producing optically active 2-oxobicyclo [3.1.0] hexane-6-carboxylic acid derivative
JP5096911B2 (en) 5-substituted hydantoin racemase, DNA encoding the same, recombinant DNA, transformed cell, and method for producing optically active N-carbamyl amino acid or optically active amino acid
JPH1080297A (en) Production of d-amino acid
JPWO2004009829A1 (en) Method for producing methionine
JP2002034593A (en) METHOD FOR PRODUCING OPTICALLY ACTIVE alpha-AMINO ACID
EP0997531B1 (en) Process for producing alkali metal s,s-ethylenediamine-n,n&#39;-disuccinates
US20060172393A1 (en) Process for producing optically active alpha -methylcysteine derivative
JP3090761B2 (en) Production method of optically active lactic acid
JP2004081169A (en) Method for producing hydroxycarboxylic acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06729704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP