WO2006103914A1 - Exhaust gas purifier - Google Patents

Exhaust gas purifier Download PDF

Info

Publication number
WO2006103914A1
WO2006103914A1 PCT/JP2006/304996 JP2006304996W WO2006103914A1 WO 2006103914 A1 WO2006103914 A1 WO 2006103914A1 JP 2006304996 W JP2006304996 W JP 2006304996W WO 2006103914 A1 WO2006103914 A1 WO 2006103914A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
adsorbent
exhaust gas
nitrogen oxide
nitrogen
Prior art date
Application number
PCT/JP2006/304996
Other languages
French (fr)
Japanese (ja)
Inventor
Toshihisa Kanda
Shogo Matsubayashi
Original Assignee
Yanmar Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005093802A external-priority patent/JP2006272116A/en
Priority claimed from JP2005093798A external-priority patent/JP2006272115A/en
Application filed by Yanmar Co., Ltd. filed Critical Yanmar Co., Ltd.
Priority to US11/887,118 priority Critical patent/US20090081087A1/en
Priority to EP06729030A priority patent/EP1867381A4/en
Publication of WO2006103914A1 publication Critical patent/WO2006103914A1/en
Priority to US13/010,325 priority patent/US20110138788A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/38Arrangements for igniting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0211Compounds of Ti, Zr, Hf
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0222Compounds of Mn, Re
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0259Compounds of N, P, As, Sb, Bi
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2033Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using a fuel burner or introducing fuel into exhaust duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/30Arrangements for supply of additional air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2390/00Arrangements for controlling or regulating exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2410/00By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2410/00By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
    • F01N2410/12By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device in case of absorption, adsorption or desorption of exhaust gas constituents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an apparatus for purifying exhaust gas from an internal combustion engine such as a diesel engine, a gas engine, a gasoline engine or a gas turbine engine, or a combustion device such as an incinerator or boiler, and in particular, performs normal operation in an excess air state.
  • the present invention relates to an exhaust gas purification device that is installed in an exhaust passage of an internal combustion engine or the like and is suitable for removing nitrogen oxides.
  • Substances that are subject to exhaust gas purification are particulate substances such as nitrogen oxides, carbon monoxide, unburned hydrocarbons, and soot.
  • Various devices for purifying these substances have been developed in the past. ing.
  • a reduction catalyst using ammonia or urea as a reducing agent is installed in the exhaust passage, and a denitration device that selectively reduces nitrogen oxides, etc.
  • a denitration device that selectively reduces nitrogen oxides, etc.
  • relatively small gas engines and automobile gasoline engines have developed three-way catalysts that can simultaneously decompose nitrogen oxides, carbon monoxide (CO), and unburned hydrocarbons (HC). Contributes to effective purification of exhaust gas.
  • the three-way catalyst exhibits a purifying action effectively when operated within the stoichiometric air-fuel ratio or a range close thereto, but under other conditions, in particular, excessive exhaust of air (oxygen) It has been found that it does not work effectively in gas.
  • FIG. 15 shows a case where a nitrogen oxide storage catalyst in which a noble metal is combined with an alkali metal oxide or an alkaline earth metal oxide is used, and the nitrogen oxide storage catalyst is recovered from the regeneration operation. It is a graph showing the component ratio of released substances. About 75% is released as N, and the remaining 25% is released as N0x such as N0, N0 and N0.
  • Patent Document 1 JP 2001-000863 A
  • a denitration device that selectively reduces nitrogen oxides using ammonia, urea, or the like is applied to relatively large industrial internal combustion engines and combustion equipment. It is very expensive, and the maintenance cost of the reducing agents ammonia and urea is high. In addition, unconsumed ammonia is likely to be released into the atmosphere.
  • the three-way catalyst does not exert its catalytic function in an internal combustion engine or combustion equipment that is operated under an excess air condition.
  • the basic invention described in claim 1 of the present application is an exhaust gas purification apparatus installed in an exhaust passage of an internal combustion engine or a combustion device, wherein a nitrogen oxide adsorbent is provided in the exhaust passage.
  • the nitrogen oxide adsorbents are manganese (Mn), nickel (Ni), cobalt (Co), vanadium (V), chromium (Cr), iron (Fe), titanium (Ti), scandium (Sc ) And yttrium (Y), at least one element A and a lithium composite oxide represented by the general formula LiAxOy or LiAxP04 having lithium (Li) as constituent elements.
  • a lithium composite oxide such as lithium manganate (LiMn 2 O 3), lithium titanate (Li TiO 2), or mangan lithium phosphate (LiMnPO 4).
  • Composite oxides of alkali metal lithium (Li) and transition metals such as manganese (Mn) are currently produced in large quantities as positive electrode materials for lithium-ion batteries and are now on the market. It can be obtained easily and inexpensively. As a result, the cost of the apparatus can be reduced, and the inclusion of a transition metal such as manganese (Mn) makes it easier to react with lattice oxygen, so that NO can be rapidly oxidized to NO. Saturated N0x adsorption amount can be increased, and N0x adsorption capacity is improved.
  • the invention according to claim 2 is the exhaust gas purifying apparatus according to claim 1, wherein a noble metal is added to the nitrogen oxide adsorbent.
  • Ox absorption ability can be improved.
  • the invention according to claim 3 is the exhaust gas purifying apparatus according to claim 2, wherein the noble metal is platinum (Pt) and the lithium composite oxide is lithium titanate (Li TiO).
  • the invention according to claim 4 is the exhaust gas purifying apparatus according to any one of claims 1 to 3, wherein the nitrogen oxide adsorbent is aluminum oxide (Al 2 O 3) and / or anatase type. It is supported on a carrier made of titanium oxide (TiO 2).
  • Anatase-type titanium oxide (TiO) is stable at low temperatures and has a large comparative surface area compared to rutile-type titanium oxide that is stable at high temperatures.
  • the invention according to claim 5 is the exhaust gas purifying apparatus according to any one of claims 1 to 4, wherein the nitrogen oxide adsorbent is an additive amount as lithium oxide (Li 2 O). Is 10-20% by weight.
  • the invention according to claim 6 is the exhaust gas purification device according to any one of claims 1 to 5, wherein the nitrogen oxide adsorbent is fired within a range of 400 ° C to 500 ° C. To do.
  • firing within the temperature range as described above, a large specific surface area can be secured, the amount of saturated NOx adsorbed can be increased, and the NOx absorption capacity can be further improved. Most preferably, firing is performed at approximately 450 ° C.
  • the invention according to claim 7 is the exhaust gas purifying device according to any one of claims 2 to 6, wherein the adsorbed substance desorbing means is disposed upstream of the nitrogen oxide adsorbent in the exhaust gas, A combustion device is arranged downstream of the oxide adsorbent exhaust.
  • nitrogen oxides such as NO and NO are likely to be generated during normal operation of the internal combustion engine, particularly during normal operation under excessive air conditions.
  • Nitrogen oxides such as O are temporarily adsorbed by the nitrogen oxide adsorbent. Then, when the NOx adsorption amount reaches a predetermined value, the nitrogen oxide desorbing means and the combustion device are operated to perform a regeneration operation. In this regeneration operation, first, nitrogen oxide is desorbed by the adsorbent desorbing means while the nitrogen oxide adsorbing material is heated or reduced. When the noble metal is not included in the nitrogen oxide adsorbent, most of the NOx is desorbed in the form of nitrogen oxides such as NO and N0, and these desorbed NOx is the fuel rich concentration of the downstream combustion device. It is reduced to N in the combustion area, detoxified and discharged.
  • the fuel-rich combustion region of the adsorbent detachment means or the combustion device When CO and hydrocarbons are generated in this process, these CO and hydrocarbons are oxidized to CO and HO in the fuel lean combustion zone of the combustor, detoxified and discharged.
  • the combustion temperature is low in the fuel lean combustion region of the combustion apparatus, N2 desorbed by the adsorbed material desorbing means will not be oxidized again and will not return to nitrogen oxides.
  • the invention according to claim 8 is the exhaust gas purifying apparatus according to any one of claims 3 to 7, which refers to claim 2 or claim 2, wherein the combustion apparatus is a lean fuel combustion system. It is.
  • the combustion device disposed downstream is a combustion device that performs only lean fuel combustion that renders only CO and hydrocarbons harmless, thereby saving fuel consumption.
  • the invention according to claim 9 is the exhaust gas purifying apparatus according to any one of claims 3 to 7, wherein the temperature of the adsorbed substance desorbing means is set to be near or lower than the firing temperature. Yes. For example, if the firing temperature is 450 ° C, control should be done so that it burns near 450 ° C or below.
  • the invention according to claim 10 is the exhaust gas purifying apparatus according to claim 1, wherein a sulfur oxide adsorbing material is arranged upstream of the nitrogen oxide adsorbing material.
  • lithium composite oxides composed of transition metal elements other than titanium (Ti) contain titanium (Ti).
  • the sulfur oxide adsorbent can be prevented from being poisoned as described above.
  • the invention according to claim 11 is the exhaust gas purifying apparatus according to claim 10, wherein the sulfur oxide adsorbing material includes copper oxide and zirconium oxide.
  • the invention according to claim 12 is the exhaust gas purifying apparatus according to claim 11, wherein the sulfur oxide adsorbent has a metal ratio of copper to zirconium of 1: 1.
  • the invention according to claim 13 is the exhaust gas purifying device according to claim 11 or 12, wherein an adsorbent detachment means is disposed upstream of the sulfur oxide adsorbent, and the nitrogen oxide adsorbent A combustion device is disposed downstream of the exhaust.
  • nitrogen oxide desorbing means is provided upstream of the nitrogen oxide adsorbent, and a combustion device is provided downstream.
  • nitrogen oxide is adsorbed by the nitrogen oxide adsorbent at the time of excessive air combustion in normal operation, and at the same time, sulfur oxide is adsorbed by the sulfur oxide adsorbent. Adsorbed and then desorbs the nitrogen oxides and sulfur oxides adsorbed on each adsorbent during the excessive fuel combustion in the regeneration operation, and the nitrogen oxides are detoxified by the downstream combustion device and discharged. be able to.
  • the invention according to claim 14 is an exhaust gas purification device installed in an exhaust passage of an internal combustion engine or a combustion device, wherein nitrogen oxide is temporarily adsorbed in an excess air atmosphere, and the adsorbed nitrogen oxide
  • a combustion device disposed downstream of the nitrogen oxide adsorbent from the exhaust gas, and the nitrogen oxide adsorbent is made of a metal oxide containing no noble metal.
  • the nitrogen oxide adsorbent contains no precious metal, most of the nitrogen oxides are desorbed in the form of nitrogen oxides such as N0 and N0, and the amount desorbed in the N state is small, but nitrogen oxide adsorption is not possible.
  • Nx is reduced to N, detoxified and discharged.
  • the inexpensive nitrogen oxide adsorbent that does not contain the noble metal is used in the same manner as when the catalyst containing the noble metal is used. It is economical because nitrogen oxides in exhaust gas can be made harmless and discharged. In addition, normal operation and regenerative operation can be performed without complicated lean and rich control on the engine side.
  • the invention according to claim 15 is the exhaust gas purification device according to claim 14, wherein the nitrogen oxide adsorbing material is a transition metal oxide.
  • the invention according to claim 16 is the exhaust gas purifying apparatus according to claim 15, wherein the transition metal oxide constituting the nitrogen oxide adsorbent includes manganese oxide and zirconium oxide.
  • the manganese oxide since the manganese oxide has a strong oxidizing ability, the saturated NOx adsorption amount of the nitrogen oxide adsorbent that easily generates NO and the NOx adsorption amount per unit time are increased. That power S.
  • the invention according to claim 17 is the exhaust gas purifying apparatus according to claim 16, wherein the compounding ratio of manganese oxide and zirconium oxide in the nitrogen oxide adsorbent is 1: 1 as a metal ratio. .
  • the saturated N0x adsorption amount of the NOx adsorbent can be increased as much as possible.
  • the invention according to claim 18 is the exhaust gas purifying apparatus according to claim 16 or 17, wherein the nitrogen oxide adsorbent further contains yttrium oxide.
  • Saturated N0x adsorption amount can be further increased.
  • the invention according to claim 19 is the exhaust gas purifying apparatus according to claim 18, wherein the yttrium oxide is from 0.:! To 0.5% by weight of the entire nitrogen oxide adsorbent.
  • the invention according to claim 20 is the exhaust gas purifying apparatus according to claim 16, wherein the nitrogen oxide adsorbing material further contains aluminum oxide.
  • the aluminum oxide as described above is used as a support for manganese oxide and zirconium oxide, but the aluminum oxide is porous and has a high surface area. As a result, the amount of saturated NOx adsorbed and the amount of NOx adsorbed per unit time increase.
  • the invention according to claim 21 is the exhaust gas purifying device according to claim 20, wherein the nitrogen oxide adsorbing material is a ratio of manganese oxide and zirconium oxide to 3 to 3 of the entire nitrogen oxide adsorbing material: 10% by weight.
  • the invention according to claim 22 is the exhaust gas length device according to claim 15, wherein the nitrogen
  • the oxide adsorbent is made of a transition metal oxide containing cobalt oxide and zirconium oxide.
  • Cobalt oxide has the same strong oxidizing ability as manganese oxide described in claim 15, and thus, NO is also generated by including cobalt oxide. Easy to increase NOx storage.
  • the invention according to claim 23 is the exhaust gas purifying device according to claim 22, wherein the nitrogen oxide adsorbent is comprised of cobalt oxide in an amount of 0.:! To 1 wt% of the entire adsorbent.
  • the invention according to claim 24 is the exhaust gas purifying apparatus according to any one of claims 14 to 23, wherein a sulfur oxide adsorbing material is disposed upstream of the nitrogen oxide adsorbing material.
  • the sulfur oxide in the exhaust gas is adsorbed by the sulfur oxide adsorbent on the upstream side of the exhaust gas before reaching the nitrogen oxide adsorbent. It is possible to prevent a decrease in NOx adsorption due to sulfur poisoning without being poisoned. It also improves durability.
  • the invention according to claim 25 is the exhaust gas purifying apparatus according to claim 24, wherein the sulfur oxide adsorbing material includes copper oxide and zirconium oxide.
  • copper oxide and zirconium oxide have an excellent ability to absorb sulfur oxide (S0x), and can reversibly absorb and desorb sulfur oxide.
  • S0x sulfur oxide
  • an exhaust gas purification device equipped with a nitrogen oxide desorption means upstream of the oxide adsorbent and a combustion device downstream By switching between normal operation and regeneration operation in an exhaust gas purification device equipped with a nitrogen oxide desorption means upstream of the oxide adsorbent and a combustion device downstream, during excess air combustion in normal operation At the same time, the nitrogen oxide is adsorbed by the nitrogen oxide adsorbent, and at the same time the sulfur oxide is adsorbed by the sulfur oxide adsorbent. Each sulfur oxide can be desorbed and a small amount of nitrogen oxide can be made harmless by the downstream combustion device and discharged.
  • the invention according to claim 26 is the exhaust gas purifying apparatus according to claim 24, wherein the metal ratio of the copper and zirconium is 1: 1.
  • the invention according to claim 27 is the exhaust gas purification device according to claim 24, wherein the sulfur oxide adsorbing material includes a noble metal and a lithium titanium composite oxide.
  • a lithium composite oxide containing lithium (Li) used as a positive electrode material of a lithium ion battery and a transition metal such as manganese (Mn) is used as a nitrogen oxide adsorbent.
  • a nitrogen oxide adsorbent that is inexpensive and has a good N0x absorption capacity, and thereby it is possible to provide an exhaust gas purification device that is inexpensive and has a large amount of saturated NOx adsorption.
  • the lithium-titanium composite oxide by using lithium titanate to which platinum is added, or by arranging a sulfur oxide adsorbent on the exhaust upstream side of the nitrogen oxide adsorbent, the nitrogen oxide adsorbent Can also be prevented.
  • the cost of the apparatus can be reduced, while the nitrogen oxide can be easily and It can effectively detoxify and discharge.
  • FIG. 1 is a schematic view of a first embodiment of an exhaust gas purification apparatus to which the present invention is applied.
  • FIG. 2 is a schematic view of a second embodiment of an exhaust gas purification apparatus to which the present invention is applied.
  • Fig. 7 is a diagram showing the relationship between the firing temperature and the specific surface area when making the ⁇ adsorbent.
  • FIG. 9 is a diagram showing the component ratio of a substance that desorbs NOx adsorbent force according to the present invention.
  • FIG. 10 is a graph showing the amount of saturated Nx adsorbed on NOx adsorbents by various transition metal oxides.
  • FIG. 11 is a graph showing saturated Nx adsorption amounts at various metal ratios in Nx adsorbents composed of manganese oxide and zirconium oxide.
  • FIG.12 Diagram showing the change in the amount of saturated Nx adsorbed with respect to the change in the amount of yttrium oxide added to the Nx adsorbent composed of manganese oxide and zirconium oxide in the structure where yttrium oxide is added. It is.
  • NOx adsorbent in which aluminum oxide is added to a 1: 1 metal ratio NOx adsorbent consisting of manganese oxide and zirconium oxide, saturation with respect to changes in the overall proportion of manganese oxide and zirconium oxide It is a figure which shows the change of NOx adsorption amount.
  • FIG. 14 is a diagram showing a change in saturated NOx adsorption amount with respect to a change in addition amount of conoult in a NOx adsorbent composed of cobalt oxide and zirconium oxide.
  • FIG. 15 is a diagram showing a component ratio of a desorbed substance of a conventional nitrogen oxide storage catalyst containing a noble metal.
  • FIG. 1 shows an embodiment of an exhaust gas purifying apparatus according to the present invention.
  • An internal combustion engine 1 or an exhaust passage 2 of a combustion device is branched into first and second branched exhaust passages 2a and 2b.
  • a switching valve 20 is provided at the branch portion on the exhaust upstream side, and both branch exhaust passages 2a and 2b merge at the end portion on the exhaust downstream side and are connected to the downstream exhaust passage 2c.
  • the exhaust gas from the internal combustion engine 1 is selectively discharged into one of the branch exhaust passages 2a, 2b, and the remaining branch exhaust passage can be regenerated.
  • Examples of the internal combustion engine 1 include a diesel engine, a gas engine, a gasoline engine, or a gas turbine engine, and examples of a combustion device include an industrial boiler, which are mainly operated under an excess air condition.
  • the adsorbed substance desorbing means 3 In each of the branch exhaust passages 2a and 2b, the adsorbed substance desorbing means 3, the particulate adsorption filter 40, the nitrogen oxide adsorbing material (hereinafter referred to as "NOx adsorbing material") 4 in order from the exhaust upstream side.
  • the combustion device 5 is arranged at intervals in the exhaust flow direction.
  • NOx adsorbent 4 is a transition metal, in particular, manganese (Mn), nickel (Ni), covanoleto (Co), vanadium (V), chromium (Cr), iron (Fe), titanium (Ti), scandium.
  • Mn manganese
  • Ni nickel
  • Co covanoleto
  • V vanadium
  • Cr chromium
  • Fe iron
  • Ti titanium
  • Sc yttrium
  • Y yttrium
  • it is formed of a lithium composite oxide represented by the general formula LiAxOy or LiAxPO having at least one element A and lithium (Li) as constituent elements.
  • LiAxOy lithium manganate (LiMn 2 O 3)
  • Li TiO lithium tanoate
  • LiAxPO lithium tanoate
  • LiMnPO 4 lithium manganese phosphate
  • a material obtained by further adding a noble metal platinum (Pt) to the lithium composite oxide is used, and in order to maintain high NOx absorption capacity and SOx resistance, the lithium composite oxide is used.
  • the nitrogen oxide adsorbent 4 has an addition amount of 10 to 20 times as lithium oxide LiO.
  • the amount is in the range of 400 ° C. to 500 ° C. Preferably approximately 450. Bake with C.
  • the adsorbed substance desorbing means 3 arranged on the most upstream side of the exhaust gas is composed of a fuel nozzle 31, an ignition device 32, and an air supply means 33.
  • the fuel nozzle 31 passes through the fuel metering device 10.
  • the fuel supply amount and the supply timing are controlled by an electronic control unit (hereinafter referred to as “ECU”) 12.
  • the air supply means 33 is connected to the air supply source 17 via the air metering device 16, and the air metering device 16 is controlled by the ECU 12 so that the air supply amount and the supply timing are controlled.
  • the fuel supply amount and the air supply are set such that the combustion temperature of the adsorbent desorption means 3 is close to or below the firing temperature (400 ° C to 500 ° C) of the nitrogen oxide adsorbent 4.
  • the amount is set. For example, if the firing temperature is 450 ° C, it is set to around 450 ° C or lower.
  • Combustion device 5 arranged on the most downstream side includes fuel nozzle 6, ignition device 7 and air supply means 15, and in the operating state of combustion device 5, the exhaust upstream side and downstream side of air supply means 15
  • the fuel rich combustion region XI and the fuel lean combustion region X2 can be formed.
  • the fuel nozzle 6 is connected to a fuel tank 11 via a fuel metering device 10, and the amount and timing of fuel supply are controlled by an electronic control unit 12.
  • the air supply means 15 is connected to an air supply source 17 via an air metering device 16, and the air metering device 16 is controlled by an ECU 12 for the air supply amount and the supply timing.
  • the combustion apparatus 5 has a fuel rich combustion region XI on the exhaust upstream side and downstream side of the air supply means 15 as described above. Burning The fuel supply amount and the air supply amount are controlled so as to form the lean-burning region X2, but if the NOx adsorbent 4 contains a noble metal such as platinum as in this embodiment, the fuel supply amount It is also possible to reduce the fuel consumption and increase the air supply amount so that only the lean fuel combustion region X2 is formed.
  • the switching valve 20 switches the connection destination of the exhaust passage 2 so that one of the branched exhaust passages 2a and 2b is used as the exhaust gas exhaust passage of the internal combustion engine 1. The other is regenerated as required.
  • the state of FIG. 1 is a state in which the second branch exhaust passage 2b is used as an exhaust gas discharge passage of the internal combustion engine 1 and the first branch exhaust passage 2a is used for regeneration operation.
  • the combustion device 5 and the adsorbed substance desorbing means 3 are stopped in the second branch exhaust passage 2b used as the exhaust gas discharge passage in FIG.
  • the internal combustion engine 1 is operated under an excess air condition, and therefore there is a high possibility that the exhaust gas contains a small amount of CO, but contains a lot of NOx.
  • This exhaust gas flows from the exhaust passage 2 into the second branch exhaust passage 2b.
  • particulate matter is removed by the particulate filter 40, and NOx is adsorbed by the NOx adsorbent 4, and is made harmless and downstream. It is discharged through the side exhaust passage 2c.
  • the combustion device 5 and the adsorbed substance desorbing means 3 are operated.
  • the fuel from the fuel nozzle 31 is discharged.
  • high-temperature air is supplied to the NOx adsorbent 4, and NOx is desorbed from the NOx adsorbent 4. That is, the NOx adsorbent 4 is regenerated.
  • the combustion temperature of the adsorbent desorption means 3 is near or below the firing temperature of the NOx adsorbent 4, sintering does not occur and lithium (Li) does not disappear.
  • the combustion device 5 is used as described above. Forms a fuel rich combustion region XI and a fuel lean combustion region X2, which reduces Nx desorbed from the NOx adsorbent 4 to N in the fuel rich combustion region XI. .
  • N2 is not oxidized because it is low. If no precious metal is added to the NOx adsorbent 4, CO and hydrocarbons may be generated in the fuel rich combustion zone XI. Oxidized and detoxified in lean burn zone X2.
  • the switching valve 20 Is switched to the first branch exhaust passage 2a side, the combustion device 5 in the first branch exhaust passage 2a and the adsorbate desorption means 3 are stopped, while the combustion device 5 in the second branch exhaust passage 2b and Activate adsorbent desorption means 3. That is, the normal operation is performed in the first branch exhaust passage 2a, and the regeneration operation is performed in the second branch exhaust passage 2b at the same time.
  • the exhaust passage 2 of the exhaust gas purification device is split into two branch exhaust passages 2a and 2b.
  • One is used as an exhaust gas exhaust passage during normal operation, and the other is used as the engine exhaust passage. Since it is shut off from the exhaust passage 2 and the nitrogen oxide desorbing means 3 and the combustion device 5 are operated to perform the regeneration operation, it is used for desorbing adsorbed substances and for the combustion device related to the amount of exhaust gas from the internal combustion engine 1. Therefore, it is possible to save the fuel supply amount of the adsorbed substance desorbing means 3 and the fuel supply amount in the combustion device 5. Of course, regenerative operation can be performed without performing complicated lean-rich control on the engine side.
  • the particulate filter 40 is disposed upstream of the N0x adsorbent 4, so that the particulate filter 40 is particulate during normal operation (when used as an exhaust gas exhaust passage).
  • the exhaust gas from which the substance has been removed can be allowed to flow into the NOx adsorbent 4, and the NOx adsorption rate can be prevented from decreasing due to the N0x adsorbent 4.
  • Fig. 3 shows the addition of precious metal as a lithium composite oxide. Lithium manganate not added (LiMnO) and manganate phosphate not added noble metal
  • Lithium titanate Pt—Li T
  • LiMnPO 4 Lithium titanate
  • Pt noble metal platinum
  • LiMnO lithium phosphate
  • LiMnPO lithium manganese phosphate
  • LiMnO lithium manganate
  • LiMnPO 4 lithium manganese phosphate
  • NOx adsorbent 4 can be provided, which can prevent poisoning of Nx adsorbent 4 and extend its life.
  • Fig. 4 is a graph showing SOx resistance of Nx adsorbent 4, and the two graphs on the left side described as the present invention show NOx adsorption formed from lithium titanate (Pt Li TiO) with platinum added. It is material 4 and the two on the right side described as a comparative example
  • the graph shows NOx adsorbent 4 made of barium oxide with platinum added (Pt-BaO system). Each hatched graph shows the case where the exhaust gas flowing through NOx adsorbent 4 does not contain SOx.
  • the cross-line graph shows the amount of saturated NOx adsorbed when 300 ppm of SOx is contained in the exhaust gas flowing through the NOx adsorbent 4.
  • Fig. 5 shows a Nx adsorbent formed of platinum titanate lithium titanate (Pt_Li TiO).
  • O is a graph showing the change in the saturated N0x adsorption amount when the weight ratio is changed
  • the weight ratio of the carrier is 0 to 80%, the amount of saturated Nx adsorbed increases in proportion to the increase in the carrier. Therefore, the weight ratio of aluminum oxide (Al 2 O 3) should be 80% or more.
  • FIG. 6 is a graph showing the relationship between the amount of addition as lithium oxide (Li 2 O) and the amount of saturated NOx adsorbed for the Nx adsorbent 4, and as can be understood from this graph, It can be understood that when the addition amount as lithium oxide (LiO) is 10 to 20% by weight, the saturated Nx adsorption amount is maintained at the maximum value. Therefore, by adding lithium oxide (LiO) in an amount of 10 to 20% by weight of the entire nitrogen oxide adsorbent, the amount of saturated N0x adsorbed can be increased and the NOx absorption capacity can be improved.
  • FIG. 7 is a graph showing the relationship between the temperature at which the Nx adsorbent 4 is calcined, the specific surface area, and the saturated Nx adsorption amount, when the calcining temperature is 450 ° C. And 600 ° C are compared. As can be seen from Fig. 7, a larger specific surface area and a larger saturated N0x adsorption / absorption amount were obtained when the firing temperature was 450 ° C than when the firing temperature was 600 ° C. You can see that the performance is excellent.
  • FIG. 8 is a graph showing the relationship between the temperature of the adsorbent desorption means 3 and the saturated NOx adsorption amount when the firing temperature of the N 0x adsorbent 4 is 450 ° C. It can be seen that the highest saturated NOx adsorption amount can be obtained at a calcination temperature of around 450 ° C, and that the saturated NOx adsorption amount rapidly decreases both above and below 450 ° C. However, if the temperature of the adsorbent desorption means 3 is higher than the firing temperature, the possibility of sintering and loss of lithium (Li) increases, so the temperature of the desorption means 3 during the regeneration operation is It can be seen that a temperature around 450 ° C is optimal.
  • FIG. 2 shows a second embodiment of the exhaust gas purifying apparatus according to the present invention.
  • the sulfur oxide adsorbent (Hereinafter referred to as “Sx adsorbent”) 42).
  • Sx adsorbent the sulfur oxide adsorbent
  • SxP and the adhering material 42 are oxides of copper and zirconium, and the metal ratio of copper and zirconium is 1: 1.
  • the SOx in the exhaust gas is adsorbed by the SOx adsorbent 42.
  • SOx does not flow into the NOx adsorbent 4 and sulfur poisoning of the NOx adsorbent 4 can be prevented.
  • a lithium oxide other than lithium titanate (Pt—Li TiO) to which noble metal is added is used as the NOx adsorbent 4, the SOx resistance is low.
  • the sulfur oxide adsorbent 42 contains copper oxide and dinoleum oxide, and when the metal ratio of copper to zirconium is 1: 1, the amount of sulfur oxide adsorbed Can increase the power S.
  • a nitrogen oxide desorbing means is provided upstream of the nitrogen oxide adsorbent, and a combustion device is provided downstream.
  • nitrogen oxide is adsorbed by the nitrogen oxide adsorbent at the time of excessive air combustion in normal operation, and at the same time, sulfur oxide by the sulfur oxide adsorbent After that, during the excessive combustion of fuel in the regeneration operation, nitrogen oxides and sulfur oxides adsorbed on each adsorbent are separated, and the nitrogen oxides are detoxified by the downstream combustion device and discharged. can do.
  • the NOx adsorbent 4 in the exhaust purification system shown in Fig. 2 uses a metal oxide that does not contain precious metals, and can efficiently adsorb N0x even in an excess air atmosphere and at a predetermined temperature. It has the property of desorbing the adsorbed NOx when the temperature is raised or in a reducing atmosphere.
  • the NOx adsorbent 4 is composed of a transition metal oxide consisting of manganese oxide and dinoleum oxide, and the compounding ratio of manganese oxide and dinoleum oxide is 1: 1. It has become.
  • the S0x adsorbent 42 is an oxide of copper and zirconium, and the metal ratio of copper and zirconium is 1: 1.
  • the switching valve 20 switches the connection destination of the exhaust passage 2 so that one of the branch exhaust passages 2a and 2b is connected to the exhaust gas exhaust passage of the internal combustion engine 1. And the other is regenerated as required.
  • the state shown in FIG. 2 is a state in which the second branch exhaust passage 2b is used as an exhaust gas exhaust passage of the internal combustion engine 1 and the first branch exhaust passage 2a is used in a regeneration operation.
  • the combustion device 5 and the adsorbed substance desorbing means 3 are stopped in the second branch exhaust passage 2b used as the exhaust gas discharge passage in FIG.
  • the internal combustion engine 1 is operated under excessive air conditions, so there is a high possibility that the exhaust gas contains a small amount of CO, but contains a lot of NOx.
  • This exhaust gas flows into the second branch exhaust passage 2b from the exhaust passage 2, and first, particulate matter is removed by the particulate filter 40, and then S0x force S is adsorbed by the SOx adsorbent 42, and NOx NOx is adsorbed by the adsorbent 4, and is exhausted through the downstream exhaust passage 2c in a detoxified state.
  • the combustion device 5 and the adsorbed substance desorbing means 3 are operated in the first branch exhaust passage 2a to be regenerated.
  • the fuel from the fuel nozzle 31 is discharged in the adsorbed substance desorbing means 3.
  • high-temperature air is supplied to the NOx adsorbent 4, and NOx is desorbed from the NOx adsorbent 4. That is, the NOx adsorbent 4 is regenerated.
  • the first branch exhaust passage 2a in the regeneration operation state is in a state in which the exhaust gas from the internal combustion engine 1 is blocked and operates independently from the second branch exhaust passage 2b in the normal operation state. Since the regeneration operation is performed by the fuel supply and air supply of the adsorbed material desorbing means 3 and the combustion supply and air supply of the combustion device 5, the adsorbed material desorption and combustion device relating to the amount of exhaust gas from the internal combustion engine 1 is used. Therefore, the amount of fuel supplied from the adsorbent desorption means 3 and the amount of fuel supplied to the combustion device 5 can be saved.
  • the adsorbent desorption means 3 is burned in a fuel-rich state, so that the temperature of the Nx adsorbent 4 can be raised to a reducing atmosphere at the same time, thereby improving desorption performance.
  • NOx is not generated by the combustion of the adsorbent desorption means 3.
  • Figure 9 shows the proportion of substances that desorb from the NOx adsorbent 4 during the regeneration operation.
  • the amount desorbed in the state of nitrogen (N2) is about 8% of the total.
  • N0x 2 2 nitrogen oxide
  • region XI CO or hydrocarbons are generated, but are oxidized to CO in the downstream lean fuel combustion region X2 and emitted.
  • the combustion temperature is
  • high-temperature air is also supplied to the SOx adsorbent 42 from the adsorbent desorption means 3, and S0x adsorbed on the Sox adsorbent 42 is desorbed. That is, the S0x adsorbent 42 is regenerated. The detached S0x is discharged as it is.
  • the NOx adsorbent 4 is also desorbed as described above, so there is no possibility that the SOx force SNOx adsorbent 4 desorbed from the SOx adsorbent 42 is re-adsorbed.
  • the switching valve 20 is turned off. 1 is switched to the branch exhaust passage 2a side, the combustion device 5 and the adsorbate desorption means 3 in the first branch exhaust passage 2a are stopped, while the combustion device 5 and the adsorbent in the second branch exhaust passage 2b are stopped. Release means 3 is activated. That is, the normal operation is performed in the first branch exhaust passage 2a, and the regeneration operation is performed in the second branch exhaust passage 2b at the same time.
  • Figure 10 is a graph comparing the amount of saturated NOx adsorbed by typical transition metal oxides (Daraf).
  • Manganese Mn and cobalt Co are among the most saturated NOx adsorbed, Next, iron Fe, copper Cu, nickel Ni, chromium Cr and so on. This is because, among the transition metal oxides, manganese oxide and cobalt oxide have the property of easily generating NOx having the strongest oxidizing ability.
  • the saturated N0x adsorption amount is almost proportional to the NOx adsorption amount per unit time.Therefore, if manganese oxide is used as the NOx adsorbent 4 as in this embodiment, saturated NOx Adsorption amount and unit time The amount of N0x adsorbed can be increased, so that NOx can be effectively adsorbed and the frequency of regeneration operation can be reduced, which is economical.
  • FIG. 11 shows the case where a transition metal oxide consisting of manganese oxide and zirconium oxide (a precious metal is not included) is used as the NOx adsorbent 4.
  • This figure shows the amount of saturated NOx adsorbed at various metal ratios with various ratios.
  • the metal ratio between manganese and zirconium (Mn: Zr) is 1: 1
  • the saturated N0x adsorption amount is the largest (Q0)
  • the metal ratio is 1: 5
  • the metal ratio is 1: 9. It decreases in order of metal ratio 5: 1 and metal ratio 9: 1. Therefore, as in this embodiment, by setting the metal ratio of mangan to zirconium to 1: 1, it is possible to secure a large amount of saturated ⁇ adsorption amount as ⁇ and adhering material 4.
  • yttrium Y oxide is added to the transition metal oxide (metal ratio 1: 1) consisting of manganese oxide and dinolenium oxide.
  • the amount of yttrium oxide added is from 0.:! To 0.5% by weight of the entire NOx adsorbent 4, preferably 0.2% by weight.
  • Fig. 12 shows the saturation N of NOx adsorbent 4 with respect to changes in the amount of yttrium oxide (YO) added.
  • the change in Ox adsorption amount shows the saturated NOx adsorption amount Q0 when the yttrium oxide addition amount is 0 wt%, which corresponds to the saturated NOx adsorption amount Q0 when the metal ratio is 1: 1 in Fig. 4. ing.
  • the saturated N0x adsorption amount rapidly increases to the maximum value Q3 via the value Q2 at 0.1 wt%, followed by
  • the saturated N Ox adsorption amount increases from the maximum value Q3 to the 0.1 wt% value Q2.
  • the saturated N0x adsorption amount is maintained at the above value Q4 and should not increase or decrease. I understand. Therefore, the amount of added yttrium oxide is economical to increase the amount of saturated N0x adsorption.
  • the range of 0.:! To 0.5% by weight is preferable, and the vicinity of 0.2% by weight is most preferable.
  • Al A1 oxide to transition metal oxide consisting of manganese oxide and zirconium oxide as Nx adsorbent 4 placed in the exhaust gas purification system shown in Fig. 2
  • metal ratio 1: 1 consisting of manganese oxide and zirconium oxide as Nx adsorbent 4 placed in the exhaust gas purification system shown in Fig. 2
  • Aluminum oxide Al O is porous and has a high specific surface area. Utilizing this aluminum oxide as a support, supporting manganese oxide and dinoleum oxide improves the utilization of active sites. However, the amount of saturated ⁇ adsorption and N0x adsorption per unit time increase.
  • the ratio of manganese and zirconium oxide to the entire NOx adsorbent 4 is in the range of 3 wt% to 10 wt%, and preferably approximately 5 wt%.
  • the ratio of aluminum oxide is 97 to 90% of the entire NOx adsorbent 4, and preferably about 95%.
  • Fig. 13 shows the relationship between the change in the ratio of manganese oxide and dinoleconium oxide to the entire NOx adsorbent 4 and the amount of saturated NOx adsorbed.
  • the weight% is 0, as shown at the left end of the graph, the aluminum oxide is 100%, and the saturated NOx adsorption amount is almost zero.
  • the proportion of manganese oxide and zirconium oxide increases from 0% to about 5% by weight, it suddenly increases from the value Q5 at 3% by weight to the maximum value Q6, and further from about 5% to about 30%.
  • the ratio of manganese oxide and zirconium oxide to NOx adsorbent 4 as a whole is preferably in the range of 3% to 10% by weight in order to effectively increase the amount of NOx adsorbed. Of these, the vicinity of 5% by weight is most preferable.
  • a transition metal oxide made of cobalt Co oxide and zirconium Zr oxide is used as the Nx adsorbent 4 placed in the exhaust gas purification device shown in Fig. 2.
  • the ratio of cobalt oxide to the total N0x adsorbent 4 should be in the range of 0.1% to 1% by weight, preferably about N 0.5% by weight.
  • Cobalt oxide has almost the same oxidizing power as manganese oxide as described above. As shown in Fig. 10, it can obtain the same amount of saturated NOx adsorption as manganese oxide.
  • Figure 14 shows the change in the amount of saturated Nx adsorption with respect to the amount of cobalt oxide added.
  • the amount of NOx adsorbed increases rapidly from the value Q10 to the maximum value Q11.
  • the amount of cobalt oxide added increases from approximately 0.5% by weight to approximately 1% by weight, the value increases from the maximum value Q11. It can be seen that when it decreases to ⁇ 312 (> value (3 10) and further exceeds approximately 1% by weight, it is maintained at the value Q12. Therefore, the amount of cobalt oxide added is economically saturated.
  • the range of 0.:! To 1% by weight is preferred as in the present embodiment, and the range of about 0.5% by weight is most preferable. .
  • a sulfur oxide adsorbent 42 made of noble metal and lithium titanium composite oxide (Li / TiO) is arranged.
  • Precious metals include platinum Pt and rhodium Rh.
  • the sulfur oxide adsorbent 42 composed of a noble metal and a lithium titanium composite oxide has an excellent SOx absorption capacity, similar to the sulfur oxide adsorbent composed of the manganese oxide and zirconium oxide of the first embodiment.
  • the exhaust gas purification device equipped with the adsorbate detachment means 3 and the combustion device 5 can be used as a lean-rich engine on the engine side. Industrial applicability that allows adsorption and desorption without control
  • the present invention is used as an exhaust gas purification device for various machines that exhaust exhaust gas, such as internal combustion engines such as diesel engines, gas engines, gasoline engines, and gas turbine engines, or combustion equipment such as incinerators and boilers. Is possible.
  • internal combustion engines such as diesel engines, gas engines, gasoline engines, and gas turbine engines
  • combustion equipment such as incinerators and boilers. Is possible.

Abstract

It is intended to provide at low cost an exhaust gas purifier capable of in an internal combustion engine or other combustion equipment mainly driven under excess air conditions, efficiently removing nitrogen oxides from exhaust gas. Nitrogen oxide adsorbent (4) is disposed in an exhaust passage, which nitrogen oxide adsorbent (4) is composed of a lithium composite oxide of the general formula LiAxOy or LiAxPO4 containing as constituent elements lithium (Li) and at least one element (A) selected from the group consisting of manganese (Mn), nickel (Ni), cobalt (Co), vanadium (V), chromium (Cr), iron (Fe), titanium (Ti), scandium (Sc) and yttrium (Y). For example, the nitrogen oxide adsorbent is composed of a lithium composite oxide, such as lithium manganate (LiMn2O4), lithium titanate (Li2TiO3) or lithium manganese phosphate (LiMnPO4).

Description

明 細 書  Specification
排気ガス浄化装置  Exhaust gas purification device
技術分野  Technical field
[0001] 本発明は、ディーゼル機関、ガス機関、ガソリン機関あるいはガスタービン機関等の 内燃機関又は焼却炉ゃボイラ等の燃焼機器の排気ガスを浄化する装置に関し、特 に空気過剰状態で通常運転を行う内燃機関等の排気通路内に設置されて窒素酸化 物を除去するのに適した排気ガス浄化装置に関する。  The present invention relates to an apparatus for purifying exhaust gas from an internal combustion engine such as a diesel engine, a gas engine, a gasoline engine or a gas turbine engine, or a combustion device such as an incinerator or boiler, and in particular, performs normal operation in an excess air state. The present invention relates to an exhaust gas purification device that is installed in an exhaust passage of an internal combustion engine or the like and is suitable for removing nitrogen oxides.
背景技術  Background art
[0002] 排気ガス浄化の対象となる物質は、窒素酸化物、一酸化炭素、未燃炭化水素及び すす等粒子状物質であるが、これらの物質を浄化する装置については、従来各種開 発されている。  [0002] Substances that are subject to exhaust gas purification are particulate substances such as nitrogen oxides, carbon monoxide, unburned hydrocarbons, and soot. Various devices for purifying these substances have been developed in the past. ing.
[0003] 窒素酸化物(NOx)を低減するための装置としてはアンモニアや尿素を還元剤とし て用いた還元触媒を排気通路中に設置し、窒素酸化物を選択的に還元する脱硝装 置等が実用化されている。また、比較的小型のガス機関や自動車用ガソリン機関で は、窒素酸化物、一酸化炭素 (C〇)及び未燃炭化水素 (HC)の三者を同時に分解 できる三元触媒が開発されており、排気ガスの効果的な浄化に寄与している。  [0003] As a device for reducing nitrogen oxides (NOx), a reduction catalyst using ammonia or urea as a reducing agent is installed in the exhaust passage, and a denitration device that selectively reduces nitrogen oxides, etc. Has been put to practical use. In addition, relatively small gas engines and automobile gasoline engines have developed three-way catalysts that can simultaneously decompose nitrogen oxides, carbon monoxide (CO), and unburned hydrocarbons (HC). Contributes to effective purification of exhaust gas.
[0004] しかし、前記三元触媒は、理論空燃比又はそれに近い範囲内で運転されている時 には有効に浄化作用を発揮するが、それ以外の条件下、特に空気 (酸素)過剰な排 気ガス中では有効に作用しないことが判明している。  [0004] However, the three-way catalyst exhibits a purifying action effectively when operated within the stoichiometric air-fuel ratio or a range close thereto, but under other conditions, in particular, excessive exhaust of air (oxygen) It has been found that it does not work effectively in gas.
[0005] これに対処するため、空気過剰状態で運転されるガス又はガソリン機関においては 、空気(酸素)過剰条件での運転時に一時的に窒素酸化物を吸蔵材に吸蔵しておき 、次に燃料過剰条件で運転することにより、前記吸蔵した窒素酸化物を放出 '還元す る窒素酸化物吸蔵触媒方式が実用化されている。  [0005] In order to cope with this, in a gas or gasoline engine operated in an excess air state, nitrogen oxide is temporarily stored in the storage material during operation in an excess air (oxygen) condition. A nitrogen oxide storage catalyst system that releases and reduces the stored nitrogen oxides by operating under excessive fuel conditions has been put into practical use.
[0006] 上記窒素酸化物吸蔵触媒方式の触媒としては、従来、貴金属と、アルカリ金属酸 化物又はアルカリ土類金属酸化物とを組み合わせたものが各種開発されている(特 許文献 1等参照)。これらの触媒は、通常運転の空気過剰燃焼時 (リーン燃焼時)に、 排気ガス中の NOを貴金属触媒上で酸化して NOとし、該 NOをアルカリ金属又は アルカリ土類金属の塩基性酸化物と反応させ、硝酸塩として NOxを吸蔵している。そ して燃料過剰条件の再生運転時 (リッチ運転時)に酸化物から脱離した NOを、炭化 水素又は CO等の還元物質により貴金属触媒上で Nに還元し、無害化した状態で 放出している。 [0006] As the catalyst of the above-described nitrogen oxide storage catalyst system, various combinations of noble metals and alkali metal oxides or alkaline earth metal oxides have been developed (see Patent Document 1 etc.). . These catalysts oxidize NO in the exhaust gas on the noble metal catalyst during the excessive air combustion (lean combustion) in normal operation, and the NO is alkali metal or It reacts with alkaline earth metal basic oxides and stores NOx as nitrates. In addition, NO desorbed from oxides during regeneration operation under rich fuel conditions (during rich operation) is reduced to N on noble metal catalysts by reducing substances such as hydrocarbons or CO, and released in a detoxified state. ing.
[0007] なお、図 15は、貴金属と、アルカリ金属酸化物又はアルカリ土類金属酸化物とを組 み合わせた窒素酸化物吸蔵触媒を使用した場合に、再生運転により窒素酸化物吸 蔵触媒から放出される物質の成分割合を示すグラフであり、 75%程度が Nとして放 出され、残り 25%が N〇、 N〇及び N〇等の N〇xとして放出されている。  [0007] FIG. 15 shows a case where a nitrogen oxide storage catalyst in which a noble metal is combined with an alkali metal oxide or an alkaline earth metal oxide is used, and the nitrogen oxide storage catalyst is recovered from the regeneration operation. It is a graph showing the component ratio of released substances. About 75% is released as N, and the remaining 25% is released as N0x such as N0, N0 and N0.
特許文献 1 :特開 2001— 000863号公報  Patent Document 1: JP 2001-000863 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] アンモニアや尿素等を用いて窒素酸化物を選択的に還元する脱硝装置は、比較 的大型の産業用内燃機関や燃焼機器に適用されているが、装置自体が大掛力、りで 非常に高価なものであり、また、還元剤のアンモニアや尿素の維持費も高くなる。さら に、消費されないアンモニアが大気中に放出される可能性も大きい。  [0008] A denitration device that selectively reduces nitrogen oxides using ammonia, urea, or the like is applied to relatively large industrial internal combustion engines and combustion equipment. It is very expensive, and the maintenance cost of the reducing agents ammonia and urea is high. In addition, unconsumed ammonia is likely to be released into the atmosphere.
[0009] 前記三元触媒では、既に説明しているように、空気過剰条件で運転される内燃機 関や燃焼機器では触媒機能を発揮させることがでない。  [0009] As described above, the three-way catalyst does not exert its catalytic function in an internal combustion engine or combustion equipment that is operated under an excess air condition.
[0010] 前記小型のガス機関や自動車用ガソリン機関で実用化されている前記窒素酸化物 吸蔵触媒方式では、触媒の成分として必ず貴金属を含んでいるので、浄化装置が高 価になり、し力も、完全に還元でき得る運転範囲(温度及び SV値等)が狭い範囲に 限定されると共に、エンジン側で複雑なリーン'リッチ制御(空気及び燃料の供給量の 制御)が必要となる。  [0010] In the nitrogen oxide storage catalyst system that is put into practical use in the small gas engine and the gasoline engine for automobiles, since the precious metal is always included as a component of the catalyst, the purification device becomes expensive and has a strong force. In addition, the operating range (temperature, SV value, etc.) that can be completely reduced is limited to a narrow range, and complicated lean-rich control (control of the supply amount of air and fuel) is required on the engine side.
[0011] (発明の目的)  [0011] (Object of invention)
本発明の目的は、主として空気過剰条件で運転する内燃機関又は燃焼機器にお いて、排気ガス中の窒素酸化物を効率良く除去し、無害化して排出できる排気ガス 浄化装置を、安価に提供できるようにすることである。また、硫黄被毒による窒素酸化 物吸着材の劣化を少なくし、硫黄成分を多く含むような燃料でも性能が十分に発揮 できるようにすることあ目白勺としてレ、る。 課題を解決するための手段 It is an object of the present invention to provide an exhaust gas purification device that can efficiently remove nitrogen oxides in exhaust gas and render it harmless and discharged at low cost, mainly in an internal combustion engine or combustion equipment that operates under excessive air conditions. Is to do so. In addition, it is important to reduce the deterioration of the nitrogen oxide adsorbent due to sulfur poisoning so that the fuel can fully perform even with fuels that contain a large amount of sulfur components. Means for solving the problem
[0012] 前記課題を解決するため、本願請求項 1に記載した基本発明は、内燃機関又は燃 焼機器の排気通路に設置される排気ガス浄化装置において、排気通路内に窒素酸 化物吸着材を配置し、該窒素酸化物吸着材は、マンガン (Mn)、ニッケル (Ni)、コバ ルト(Co)、バナジウム(V)、クロム(Cr)、鉄(Fe)、チタン (Ti)、スカンジウム(Sc)及び イットリウム (Y)の元素群の内、少なくとも一種類の元素 Aとリチウム(Li)を構成元素と する一般式 LiAxOy又は LiAxP04で示されるリチウム複合酸化物で形成している。 たとえば、マンガン酸リチウム(LiMn O )、チタン酸リチウム(Li TiO )又はリン酸マン ガンリチウム(LiMnPO )等のリチウム複合酸化物で形成する。 [0012] In order to solve the above-described problem, the basic invention described in claim 1 of the present application is an exhaust gas purification apparatus installed in an exhaust passage of an internal combustion engine or a combustion device, wherein a nitrogen oxide adsorbent is provided in the exhaust passage. The nitrogen oxide adsorbents are manganese (Mn), nickel (Ni), cobalt (Co), vanadium (V), chromium (Cr), iron (Fe), titanium (Ti), scandium (Sc ) And yttrium (Y), at least one element A and a lithium composite oxide represented by the general formula LiAxOy or LiAxP04 having lithium (Li) as constituent elements. For example, it is formed of a lithium composite oxide such as lithium manganate (LiMn 2 O 3), lithium titanate (Li TiO 2), or mangan lithium phosphate (LiMnPO 4).
[0013] アルカリ金属のリチウム(Li)と、マンガン (Mn)等の遷移金属との複合酸化物は、 現在、リチウムイオン電池の正極材料として大量に製造され、市場に流通しているの で、容易にかつ安価に入手することができる。これにより、装置コストの低減を達成で き、しかも、マンガン (Mn)等の遷移金属を含んでいることにより、格子酸素と反応し 易くなり、 NOを速やかに酸化して NOとすることができ、飽和 N〇x吸着量を増加さ せることができ、 N〇x吸着能が向上する。  [0013] Composite oxides of alkali metal lithium (Li) and transition metals such as manganese (Mn) are currently produced in large quantities as positive electrode materials for lithium-ion batteries and are now on the market. It can be obtained easily and inexpensively. As a result, the cost of the apparatus can be reduced, and the inclusion of a transition metal such as manganese (Mn) makes it easier to react with lattice oxygen, so that NO can be rapidly oxidized to NO. Saturated N0x adsorption amount can be increased, and N0x adsorption capacity is improved.
[0014] 請求項 2記載の発明は、請求項 1記載の排気ガス浄化装置において、前記窒素酸 化物吸着材に貴金属を添加する。 [0014] The invention according to claim 2 is the exhaust gas purifying apparatus according to claim 1, wherein a noble metal is added to the nitrogen oxide adsorbent.
[0015] 上記構成のように、貴金属を添加すると、貴金属を含まない場合よりも装置コストは 高くなるが、窒素酸化物吸着材全体としては、安価に、大量に市場に流通しているリ チウムイオン電池の正極材料を利用できることにより、コストの高騰を抑制しつつ、 N[0015] When the noble metal is added as in the above configuration, the cost of the apparatus is higher than when no noble metal is included, but the entire nitrogen oxide adsorbent is inexpensive and in large quantities distributed in the market. The ability to use battery positive electrode materials prevents N
Ox吸収能を向上させることができる。 Ox absorption ability can be improved.
[0016] 請求項 3記載の発明は、請求項 2記載の排気ガス浄化装置において、前記貴金属 は白金 (Pt)であり、リチウム複合酸化物はチタン酸リチウム (Li TiO )である。 [0016] The invention according to claim 3 is the exhaust gas purifying apparatus according to claim 2, wherein the noble metal is platinum (Pt) and the lithium composite oxide is lithium titanate (Li TiO).
[0017] 上記構成のように、貴金属として白金が添加されたチタン酸リチウム(Pt—Li Ti〇 ) を用いることにより、耐 SOx性が向上し、窒素酸化物吸着材の被毒を防止し、寿命を 延ばすことができる。  [0017] By using lithium titanate to which platinum is added as a noble metal (Pt—LiTiO) as in the above configuration, SOx resistance is improved, and poisoning of the nitrogen oxide adsorbent is prevented. Life can be extended.
[0018] 請求項 4記載の発明は、請求項 1〜3のいずれかに記載の排気ガス浄化装置にお いて、前記窒素酸化物吸着材は、酸化アルミニウム (Al O )及び又はアナターゼ型 酸化チタン (TiO )よりなる担体に担持する。 [0018] The invention according to claim 4 is the exhaust gas purifying apparatus according to any one of claims 1 to 3, wherein the nitrogen oxide adsorbent is aluminum oxide (Al 2 O 3) and / or anatase type. It is supported on a carrier made of titanium oxide (TiO 2).
[0019] 上記構成のように、多孔質で比表面積の大きい担体に窒素酸化物吸着材を担持さ せていると、 NOx吸収能がさらに向上する。なお、アナターゼ型酸化チタン (Ti〇 ) は、高温で安定するルチル型酸化チタンに対し、低温で安定し、比較表面積が大き い特性を有している。  [0019] As described above, when the nitrogen oxide adsorbent is supported on a porous carrier having a large specific surface area, the NOx absorption capacity is further improved. Anatase-type titanium oxide (TiO) is stable at low temperatures and has a large comparative surface area compared to rutile-type titanium oxide that is stable at high temperatures.
[0020] 請求項 5記載の発明は、請求項 1〜4のいずれかに記載の排気ガス浄化装置にお いて、前記窒素酸化物吸着材は、酸化リチウム (Li O)としての添カ卩量が 10〜20重 量%である。  [0020] The invention according to claim 5 is the exhaust gas purifying apparatus according to any one of claims 1 to 4, wherein the nitrogen oxide adsorbent is an additive amount as lithium oxide (Li 2 O). Is 10-20% by weight.
[0021] 上記構成のような重量割合で、酸化リチウム (Li〇)を添加すると、 N〇x吸収能はさ らに向上する。  [0021] When lithium oxide (LiO) is added at a weight ratio as described above, the Nx absorption capacity is further improved.
[0022] 請求項 6記載の発明は、請求項 1〜5のいずれかに記載の排気ガス浄化装置にお いて、前記窒素酸化物吸着材は、 400° C〜500° Cの範囲内で焼成する。  [0022] The invention according to claim 6 is the exhaust gas purification device according to any one of claims 1 to 5, wherein the nitrogen oxide adsorbent is fired within a range of 400 ° C to 500 ° C. To do.
[0023] 上記構成のような温度範囲内で焼成することにより、比表面積を大きく確保できると 共に飽和 NOx吸着量を増大させることができ、 NOx吸収能をさらに向上させることが できる。最も好ましくは概ね 450° Cで焼成する。 [0023] By firing within the temperature range as described above, a large specific surface area can be secured, the amount of saturated NOx adsorbed can be increased, and the NOx absorption capacity can be further improved. Most preferably, firing is performed at approximately 450 ° C.
[0024] 請求項 7記載の発明は、請求項 2〜6のいずれかに記載の排気ガス浄化装置にお いて、 窒素酸化物吸着材の排気上流側に吸着物質脱離手段を配置し、窒素酸化 物吸着材の排気下流側に燃焼装置を配置する。 [0024] The invention according to claim 7 is the exhaust gas purifying device according to any one of claims 2 to 6, wherein the adsorbed substance desorbing means is disposed upstream of the nitrogen oxide adsorbent in the exhaust gas, A combustion device is arranged downstream of the oxide adsorbent exhaust.
[0025] 上記構成によると、内燃機関を通常運転している時、特に空気過剰条件で通常運 転している時は NO及び NO等の窒素酸化物が発生し易いが、発生した NO及び N[0025] According to the above configuration, nitrogen oxides such as NO and NO are likely to be generated during normal operation of the internal combustion engine, particularly during normal operation under excessive air conditions.
O等の窒素酸化物は、窒素酸化物吸着材に一時的に吸着される。そして、 NOx吸 着量が所定値に達した時に、窒素酸化物脱離手段及び燃焼装置を作動させ、再生 運転する。この再生運転において、まず、吸着物質脱離手段により、窒素酸化物吸 着材を昇温又は還元雰囲気として、窒素酸化物を脱離する。前記窒素酸化物吸着 材中に貴金属を含んでいない場合には、大半は NO及び N〇等の窒素酸化物の状 態で脱離し、これら脱離 NOxは、下流側の燃焼装置の燃料過濃燃焼領域で Nに還 元され、無害化され、排出される。 Nitrogen oxides such as O are temporarily adsorbed by the nitrogen oxide adsorbent. Then, when the NOx adsorption amount reaches a predetermined value, the nitrogen oxide desorbing means and the combustion device are operated to perform a regeneration operation. In this regeneration operation, first, nitrogen oxide is desorbed by the adsorbent desorbing means while the nitrogen oxide adsorbing material is heated or reduced. When the noble metal is not included in the nitrogen oxide adsorbent, most of the NOx is desorbed in the form of nitrogen oxides such as NO and N0, and these desorbed NOx is the fuel rich concentration of the downstream combustion device. It is reduced to N in the combustion area, detoxified and discharged.
[0026] また、再生運転において、吸着物質脱離手段又は燃焼装置の燃料過濃燃焼領域 で CO及び炭化水素が発生する場合には、これらの CO及び炭化水素は燃焼装置の 燃料希薄領燃焼域で酸化されて CO及び H〇となり、無害化されて排出される。な お、燃焼装置の燃料希薄燃焼領域では燃焼温度が低いため、前記吸着物質脱離手 段で脱離した N2が再び酸化することは無ぐ窒素酸化物に戻ることはない。 [0026] Further, in the regeneration operation, the fuel-rich combustion region of the adsorbent detachment means or the combustion device When CO and hydrocarbons are generated in this process, these CO and hydrocarbons are oxidized to CO and HO in the fuel lean combustion zone of the combustor, detoxified and discharged. In addition, since the combustion temperature is low in the fuel lean combustion region of the combustion apparatus, N2 desorbed by the adsorbed material desorbing means will not be oxidized again and will not return to nitrogen oxides.
[0027] このように、窒素酸化物吸着材の下流側に燃焼装置を配置することにより、貴金属 を含まない安価な窒素酸化物吸着材によっても、貴金属を含んだ触媒を利用する場 合と同様に排気ガス中の窒素酸化物を無害化し、排出することができ、経済的である 。しかも、エンジン側での複雑なリーン'リッチ制御を行うことなぐ通常運転と再生運 転を行うことができる。 [0027] In this way, by arranging the combustion device downstream of the nitrogen oxide adsorbent, even with an inexpensive nitrogen oxide adsorbent that does not contain a noble metal, it is the same as when a catalyst containing a noble metal is used. It is economical because nitrogen oxides in the exhaust gas can be made harmless and discharged. In addition, normal operation and regenerative operation can be performed without complicated lean and rich control on the engine side.
[0028] 請求項 8記載の発明は、請求項 2又は請求項 2を引用する請求項 3〜7のいずれか に記載の排気ガス浄化装置におレ、て、前記燃焼装置は燃料希薄燃焼方式である。  [0028] The invention according to claim 8 is the exhaust gas purifying apparatus according to any one of claims 3 to 7, which refers to claim 2 or claim 2, wherein the combustion apparatus is a lean fuel combustion system. It is.
[0029] 上記構成によると、窒素酸化物吸着材に貴金属を含んでいる場合には、窒素酸化 物吸着材力 脱離する物質は、大半が貴金属の触媒作用により Nの状態まで還元 されており、したがって、下流側に配置される燃焼装置は、 CO及び炭化水素のみを 無害化する燃料希薄燃焼のみを行う燃焼装置でよぐこれにより、燃費を節約するこ とができる。  [0029] According to the above configuration, when the nitrogen oxide adsorbent contains a noble metal, most of the substance that desorbs the nitrogen oxide adsorbent is reduced to the N state by the catalytic action of the noble metal. Therefore, the combustion device disposed downstream is a combustion device that performs only lean fuel combustion that renders only CO and hydrocarbons harmless, thereby saving fuel consumption.
[0030] 請求項 9記載の発明は、請求項 3〜7のいずれかに記載の排気ガス浄化装置にお いて、前記吸着物質脱離手段の温度を前記焼成温度付近又はそれ以下に設定して いる。たとえば焼成温度が 450° Cであれば、 450° C付近又はそれ以下で燃焼す るように制御する。  [0030] The invention according to claim 9 is the exhaust gas purifying apparatus according to any one of claims 3 to 7, wherein the temperature of the adsorbed substance desorbing means is set to be near or lower than the firing temperature. Yes. For example, if the firing temperature is 450 ° C, control should be done so that it burns near 450 ° C or below.
[0031] 上記構成のように、窒素酸化物の脱離時の温度を焼成温度付近又はそれ以下に 抑制することにより、シンタリング及びリチウム (Li)の消失を防ぎ、これにより性能劣化 を抑制し、窒素酸化物吸着材の寿命を延ばすことができる。  [0031] As described above, by suppressing the temperature at the time of desorption of nitrogen oxides to near or below the firing temperature, sintering and loss of lithium (Li) are prevented, thereby suppressing performance deterioration. The life of the nitrogen oxide adsorbent can be extended.
[0032] 請求項 10記載の発明は、請求項 1記載の排気ガス浄化装置において、前記窒素 酸化物吸着材の排気上流側に硫黄酸化物吸着材を配置している。  [0032] The invention according to claim 10 is the exhaust gas purifying apparatus according to claim 1, wherein a sulfur oxide adsorbing material is arranged upstream of the nitrogen oxide adsorbing material.
[0033] 上記構成により、内燃機関の通常運転時において、排気ガス中の硫黄酸化物は、 窒素酸化物吸着材に至る前に硫黄酸化物吸着材で吸着されるので、窒素酸化物吸 着材が硫黄被毒を受けることはなぐ硫黄被毒による窒素酸化物の吸着量低下を防 ぐことができる。また、耐久性も向上する。特に、チタン (Ti)以外の遷移金属元素で 構成されるリチウム複合酸化物(たとえば LiMn O等)は、チタン (Ti)を含む場合と [0033] With the above configuration, during normal operation of the internal combustion engine, sulfur oxide in the exhaust gas is adsorbed by the sulfur oxide adsorbent before reaching the nitrogen oxide adsorbent, so that the nitrogen oxide adsorbent Prevent sulfur poisoning from reducing the amount of nitrogen oxide adsorbed by sulfur poisoning You can In addition, durability is improved. In particular, lithium composite oxides composed of transition metal elements other than titanium (Ti) (for example, LiMn O) contain titanium (Ti).
2 4  twenty four
比べて S〇x吸収性が低いので、前記のように硫黄酸化物吸着材を配置することによ り、窒素酸化物吸着材の被毒を防ぐことができる。  Compared with the low sulfur absorption, the sulfur oxide adsorbent can be prevented from being poisoned as described above.
[0034] 請求項 11記載の発明は、請求項 10記載の排気ガス浄化装置において、前記硫黄 酸化物吸着材は、銅酸化物とジルコニウム酸化物とを含んでいる。  [0034] The invention according to claim 11 is the exhaust gas purifying apparatus according to claim 10, wherein the sulfur oxide adsorbing material includes copper oxide and zirconium oxide.
[0035] 上記構成によると、銅酸化物とジルコニウム酸化物は、優れた硫黄酸化物(S〇x) の吸収能を有しているので、硫黄酸化物の吸着量を増加させることができる。  [0035] According to the above configuration, since the copper oxide and the zirconium oxide have an excellent ability to absorb sulfur oxide (Sx), the amount of sulfur oxide adsorbed can be increased.
[0036] 請求項 12記載の発明は、請求項 11記載の排気ガス浄化装置において、前記硫黄 酸化物吸着材は、銅とジルコニウムの金属比が 1: 1である。  [0036] The invention according to claim 12 is the exhaust gas purifying apparatus according to claim 11, wherein the sulfur oxide adsorbent has a metal ratio of copper to zirconium of 1: 1.
[0037] 上記構成により、硫黄酸化物の吸着量を増加させることができる。  [0037] With the above configuration, the amount of sulfur oxide adsorbed can be increased.
[0038] 請求項 13記載の発明は、請求項 11又は 12に記載の排気ガス浄化装置において 、前記硫黄酸化物吸着材の上流側に吸着物質脱離手段を配置し、窒素酸化物吸着 材の排気下流側に燃焼装置を配置する。  [0038] The invention according to claim 13 is the exhaust gas purifying device according to claim 11 or 12, wherein an adsorbent detachment means is disposed upstream of the sulfur oxide adsorbent, and the nitrogen oxide adsorbent A combustion device is disposed downstream of the exhaust.
[0039] 銅酸化物とジルコニウム酸化物は、可逆的に硫黄酸化物の吸脱着を行えるので、 窒素酸化物吸着材の上流側に窒素酸化物脱離手段を、下流側に燃焼装置を備え た排気ガス浄化装置内において、通常運転と再生運転を切り換えることにより、通常 運転の空気過剰燃焼時に、窒素酸化物吸着材により窒素酸化物を吸着すると同時 に、硫黄酸化物吸着材により硫黄酸化物を吸着し、その後、再生運転の燃料過剰燃 焼時に、各吸着材に吸着されている窒素酸化物及び硫黄酸化物をそれぞれ脱離し 、窒素酸化物は下流側の燃焼装置で無害化して、排出することができる。  [0039] Since copper oxide and zirconium oxide can reversibly absorb and desorb sulfur oxides, nitrogen oxide desorbing means is provided upstream of the nitrogen oxide adsorbent, and a combustion device is provided downstream. By switching between normal operation and regenerative operation in the exhaust gas purification device, nitrogen oxide is adsorbed by the nitrogen oxide adsorbent at the time of excessive air combustion in normal operation, and at the same time, sulfur oxide is adsorbed by the sulfur oxide adsorbent. Adsorbed and then desorbs the nitrogen oxides and sulfur oxides adsorbed on each adsorbent during the excessive fuel combustion in the regeneration operation, and the nitrogen oxides are detoxified by the downstream combustion device and discharged. be able to.
[0040] 請求項 14記載の発明は、内燃機関又は燃焼機器の排気通路に設置される排気ガ ス浄化装置において、空気過剰雰囲気で窒素酸化物を一時的に吸着し、該吸着し た窒素酸化物を昇温又は還元雰囲気で脱離する窒素酸化物吸着材と、前記窒素酸 化物吸着材より排気上流側に配置され、排気通路内を昇温又は還元雰囲気にする 吸着物質脱離手段と、前記窒素酸化物吸着材より排気下流側に配置された燃焼装 置と、を備え、前記窒素酸化物吸着材は、貴金属を含まない金属酸化物からなる。  [0040] The invention according to claim 14 is an exhaust gas purification device installed in an exhaust passage of an internal combustion engine or a combustion device, wherein nitrogen oxide is temporarily adsorbed in an excess air atmosphere, and the adsorbed nitrogen oxide A nitrogen oxide adsorbent that desorbs a substance in a temperature rising or reducing atmosphere, and an adsorbent desorbing means that is disposed upstream of the nitrogen oxide adsorbing material and makes the inside of the exhaust passage a temperature rising or reducing atmosphere; A combustion device disposed downstream of the nitrogen oxide adsorbent from the exhaust gas, and the nitrogen oxide adsorbent is made of a metal oxide containing no noble metal.
[0041] 上記排気ガス浄化装置において、エンジンを通常運転している時、特に空気過剰 条件で通常運転している時は NO及び NO等の窒素酸化物が発生し易いが、発生 した NO及び NO等の窒素酸化物は、窒素酸化物吸着材に一時的に吸着される。そ して、 NOx吸着量が所定値に達した時に、窒素酸化物脱離手段及び燃焼装置を作 動させ、再生運転する。この再生運転において、まず、吸着物脱離手段により、窒素 酸化物吸着材を昇温又は還元雰囲気として、窒素酸化物を脱離する。前記窒素酸 化物吸着材中に貴金属を含んでいないことから、大半は N〇及び N〇等の窒素酸化 物の状態で脱離し、 Nの状態で脱離する量は少ないが、窒素酸化物吸着材より下 流側の燃焼装置の燃料過濃燃焼領域で、 N〇xは Nに還元され、無害化され、排出 される。 [0041] In the above exhaust gas purification device, when the engine is normally operated, in particular, excessive air Nitrogen oxides such as NO and NO are likely to be generated during normal operation under conditions, but the generated nitrogen oxides such as NO and NO are temporarily adsorbed by the nitrogen oxide adsorbent. Then, when the NOx adsorption amount reaches a predetermined value, the nitrogen oxide desorbing means and the combustion device are operated and the regeneration operation is performed. In this regeneration operation, first, nitrogen oxides are desorbed by the adsorbate desorbing means with the nitrogen oxide adsorbent as a temperature rising or reducing atmosphere. Since the nitrogen oxide adsorbent contains no precious metal, most of the nitrogen oxides are desorbed in the form of nitrogen oxides such as N0 and N0, and the amount desorbed in the N state is small, but nitrogen oxide adsorption is not possible. In the fuel rich combustion region of the combustion system downstream from the material, Nx is reduced to N, detoxified and discharged.
[0042] 一方、燃焼装置の燃料過濃燃焼領域で発生した CO及び炭化水素等は、燃焼装 置の空気過剰燃焼領域で酸化されて C〇となり、排出される。なお、空気過剰燃焼 領域では燃焼温度が低いため、前記燃料過濃燃焼領域で生成した Nが再び酸化 することは無く、窒素酸化物に戻ることはない。  [0042] On the other hand, CO, hydrocarbons, and the like generated in the fuel rich combustion region of the combustion device are oxidized to C0 and discharged in the air excess combustion region of the combustion device. Since the combustion temperature is low in the excessive air combustion region, N produced in the fuel rich combustion region is not oxidized again and does not return to nitrogen oxides.
[0043] このように、窒素酸化物吸着材の下流側に燃焼装置を配置することにより、貴金属 を含まない廉価な窒素酸化物吸着材によって、貴金属を含んだ触媒を利用する場 合と同様に排気ガス中の窒素酸化物を無害化し、排出することができ、経済的である 。しかも、エンジン側での複雑なリーン'リッチ制御を行うことなぐ通常運転と再生運 転を行うことができる。 [0043] In this way, by arranging the combustion device downstream of the nitrogen oxide adsorbent, the inexpensive nitrogen oxide adsorbent that does not contain the noble metal is used in the same manner as when the catalyst containing the noble metal is used. It is economical because nitrogen oxides in exhaust gas can be made harmless and discharged. In addition, normal operation and regenerative operation can be performed without complicated lean and rich control on the engine side.
[0044] 請求項 15記載の発明は、請求項 14記載の排気ガス浄化装置において、前記窒素 酸化物吸着材は、遷移金属酸化物としている。  [0044] The invention according to claim 15 is the exhaust gas purification device according to claim 14, wherein the nitrogen oxide adsorbing material is a transition metal oxide.
[0045] 上記構成のように遷移金属酸化物を用いていると、格子酸素と反応し易ぐ NOを 速やかに酸化して N〇とすることができ、窒素酸化物吸着材の飽和 N〇x吸着量及 び単位時間当たりの N〇x吸着量を増加させることができる。 [0045] When a transition metal oxide is used as in the above configuration, NO that easily reacts with lattice oxygen can be rapidly oxidized to N0, and the saturation of nitrogen oxide adsorbent N0x Adsorption amount and Nx adsorption amount per unit time can be increased.
[0046] 請求項 16記載の発明は、請求項 15記載の排気ガス浄化装置において、窒素酸化 物吸着材を構成する遷移金属酸化物として、マンガン酸化物とジルコニウム酸化物と を含でいる。 [0046] The invention according to claim 16 is the exhaust gas purifying apparatus according to claim 15, wherein the transition metal oxide constituting the nitrogen oxide adsorbent includes manganese oxide and zirconium oxide.
[0047] 上記構成によると、マンガン酸化物は酸化能が強いので、 NOを生成し易ぐ窒素 酸化物吸着材の飽和 NOx吸着量及び単位時間当たりの NOx吸着量を増加させる こと力 Sできる。 [0047] According to the above configuration, since the manganese oxide has a strong oxidizing ability, the saturated NOx adsorption amount of the nitrogen oxide adsorbent that easily generates NO and the NOx adsorption amount per unit time are increased. That power S.
[0048] 請求項 17記載の発明は、請求項 16記載の排気ガス浄化装置において、前記窒素 酸化物吸着材のマンガン酸化物とジルコニウム酸化物との配合比を、金属比で 1: 1 としている。  [0048] The invention according to claim 17 is the exhaust gas purifying apparatus according to claim 16, wherein the compounding ratio of manganese oxide and zirconium oxide in the nitrogen oxide adsorbent is 1: 1 as a metal ratio. .
[0049] 上記構成によると、マンガン酸化物とジルコニウム酸化物を含む遷移金属酸化物に おいて、可能な限り、 NOx吸着材の飽和 N〇x吸着量を増加させることができる。  [0049] According to the above configuration, in the transition metal oxide containing manganese oxide and zirconium oxide, the saturated N0x adsorption amount of the NOx adsorbent can be increased as much as possible.
[0050] 請求項 18記載の発明は、請求項 16又は 17記載の排気ガス浄化装置において、 前記窒素酸化物吸着材は、さらにイットリウム酸化物を含んでいる。  [0050] The invention according to claim 18 is the exhaust gas purifying apparatus according to claim 16 or 17, wherein the nitrogen oxide adsorbent further contains yttrium oxide.
[0051] 上記構成のようにイットリウム酸化物を添加すると、硝酸塩を形成し易くなるため、上 記生成した NOと反応し硝酸塩の状態で窒素酸化物を吸収することで可能となり、  [0051] When yttrium oxide is added as in the above configuration, it becomes easier to form nitrate, so it becomes possible by reacting with the generated NO and absorbing nitrogen oxide in the form of nitrate,
2  2
飽和 N〇x吸着量をさらに増加させることができる。  Saturated N0x adsorption amount can be further increased.
[0052] 請求項 19記載の発明は、請求項 18記載の排気ガス浄化装置において、前記イツ トリウム酸化物は、窒素酸化物吸着材全体の 0.:!〜 0. 5重量%である。 [0052] The invention according to claim 19 is the exhaust gas purifying apparatus according to claim 18, wherein the yttrium oxide is from 0.:! To 0.5% by weight of the entire nitrogen oxide adsorbent.
[0053] 上記のような範囲でイットリウムを添加すると、飽和 NOx吸着量の増加が顕著であり[0053] When yttrium is added within the above range, the increase in the amount of saturated NOx adsorbed is significant.
、特に、 0. 2重量%付近で最も増加する。 In particular, it increases most around 0.2% by weight.
[0054] 請求項 20記載の発明は、請求項 16に記載の排気ガス浄化装置において、前記窒 素酸化物吸着材は、さらにアルミ酸化物を含んでいる。 [0054] The invention according to claim 20 is the exhaust gas purifying apparatus according to claim 16, wherein the nitrogen oxide adsorbing material further contains aluminum oxide.
[0055] 上記のようなアルミ酸化物は、マンガン酸化物及びジルコニウム酸化物の担持体と して利用されるが、アルミ酸化物は多孔質で、高批表面積を有しているので、活性サ イトの利用率が向上し、飽和 NOx吸着量及び単位時間当たりの NOx吸着量が増加 する。 [0055] The aluminum oxide as described above is used as a support for manganese oxide and zirconium oxide, but the aluminum oxide is porous and has a high surface area. As a result, the amount of saturated NOx adsorbed and the amount of NOx adsorbed per unit time increase.
[0056] 請求項 21記載の発明は、請求項 20記載の排気ガス浄化装置において、前記窒素 酸化物吸着材は、マンガン酸化物及びジルコニウム酸化物の割合力 窒素酸化物 吸着材全体の 3〜: 10重量%である。  [0056] The invention according to claim 21 is the exhaust gas purifying device according to claim 20, wherein the nitrogen oxide adsorbing material is a ratio of manganese oxide and zirconium oxide to 3 to 3 of the entire nitrogen oxide adsorbing material: 10% by weight.
[0057] 上記構成のように、マンガン酸化物及びジルコニウム酸化物を、窒素酸化物吸着 材全体の 3〜: 10重量%としていると、飽和 NOx吸着量及び単位時間当たりの N〇x 吸着量が増加し、特に、 5%付近では最も増加する。 [0057] As described above, when manganese oxide and zirconium oxide are 3 to 10% by weight of the entire nitrogen oxide adsorbent, the saturated NOx adsorption amount and the N0x adsorption amount per unit time are reduced. It increases, especially at around 5%.
[0058] 請求項 22記載の発明は、請求項 15記載の排気ガス丈か装置において、前記窒素 酸化物吸着材は、コバルト酸化物とジルコニウム酸化物を含む遷移金属酸化物から なっている。 [0058] The invention according to claim 22 is the exhaust gas length device according to claim 15, wherein the nitrogen The oxide adsorbent is made of a transition metal oxide containing cobalt oxide and zirconium oxide.
[0059] コバルト酸化物は、前記請求項 15に記載したマンガン酸化物と同じ程度の強い酸 化能を有しており、このように、コバルト酸化物を含むことによつても、 NOを生成し易 ぐ NOx吸蔵量を増やすことができる。  [0059] Cobalt oxide has the same strong oxidizing ability as manganese oxide described in claim 15, and thus, NO is also generated by including cobalt oxide. Easy to increase NOx storage.
[0060] 請求項 23記載の発明は、請求項 22記載の排気ガス浄化装置において、前記窒素 酸化物吸着材は、コバルト酸化物が吸着材全体の 0. :!〜 1重量%である。 [0060] The invention according to claim 23 is the exhaust gas purifying device according to claim 22, wherein the nitrogen oxide adsorbent is comprised of cobalt oxide in an amount of 0.:! To 1 wt% of the entire adsorbent.
[0061] 上記構成のように、コバルト酸化物とジルコニウム酸化物を含む遷移金属酸化物に おいて、コバルト酸化物を吸着材全体の 0.:!〜 1重量%の範囲で含んでいると、飽 和 N〇x吸着量及び単位時間当たりの N〇x吸着量が増加し、特に、 0. 5重量%で最 も増加する。 [0061] As described above, in the transition metal oxide containing cobalt oxide and zirconium oxide, if the cobalt oxide is contained in the range of 0.:! To 1 wt% of the entire adsorbent, Saturation N0x adsorption amount and Nx adsorption amount per unit time increase, especially at 0.5% by weight.
[0062] 請求項 24記載の発明は、請求項 14〜23のいずれかに記載の排気ガス浄化装置 において、前記窒素酸化物吸着材の排気上流側に硫黄酸化物吸着材を配置してい る。  [0062] The invention according to claim 24 is the exhaust gas purifying apparatus according to any one of claims 14 to 23, wherein a sulfur oxide adsorbing material is disposed upstream of the nitrogen oxide adsorbing material.
[0063] 上記構成により、排気ガス中の硫黄酸化物は、窒素酸化物吸着材に至る前に、排 気ガス上流側の硫黄酸化物吸着材で吸着されるので、窒素酸化物吸着材が硫黄被 毒を受けることはなぐ硫黄被毒による NOx吸着量低下を防ぐことができる。また、耐 久性も向上する。  [0063] With the above configuration, the sulfur oxide in the exhaust gas is adsorbed by the sulfur oxide adsorbent on the upstream side of the exhaust gas before reaching the nitrogen oxide adsorbent. It is possible to prevent a decrease in NOx adsorption due to sulfur poisoning without being poisoned. It also improves durability.
[0064] 請求項 25記載の発明は、請求項 24記載の排気ガス浄化装置において、前記硫黄 酸化物吸着材は、銅酸化物とジルコニウム酸化物とを含んでいる。  [0064] The invention according to claim 25 is the exhaust gas purifying apparatus according to claim 24, wherein the sulfur oxide adsorbing material includes copper oxide and zirconium oxide.
[0065] 上記構成によると、銅酸化物とジルコニウム酸化物は、優れた硫黄酸化物(S〇x) の吸収能を有し、しかも、可逆的に硫黄酸化物の吸脱着を行えるので、窒素酸化物 吸着材の上流側に窒素酸化物脱離手段を、下流側に燃焼装置を備えた排気ガス浄 化装置内において、通常運転と再生運転を切り換えることにより、通常運転の空気過 剰燃焼時に、窒素酸化物吸着材により窒素酸化物を吸着すると同時に、硫黄酸化物 吸着材により硫黄酸化物を吸着し、その後、再生運転の燃料過剰燃焼時に、各吸着 材に吸着されている窒素酸化物及び硫黄酸化物をそれぞれ脱離し、少なくとの窒素 酸化物は下流側の燃焼装置で無害化して、排出することができる。 [0066] 請求項 26記載の発明は、請求項 24記載の排気ガス浄化装置において、上記銅と ジルコニウムの金属比を 1: 1としている。 [0065] According to the above configuration, copper oxide and zirconium oxide have an excellent ability to absorb sulfur oxide (S0x), and can reversibly absorb and desorb sulfur oxide. By switching between normal operation and regeneration operation in an exhaust gas purification device equipped with a nitrogen oxide desorption means upstream of the oxide adsorbent and a combustion device downstream, during excess air combustion in normal operation At the same time, the nitrogen oxide is adsorbed by the nitrogen oxide adsorbent, and at the same time the sulfur oxide is adsorbed by the sulfur oxide adsorbent. Each sulfur oxide can be desorbed and a small amount of nitrogen oxide can be made harmless by the downstream combustion device and discharged. [0066] The invention according to claim 26 is the exhaust gas purifying apparatus according to claim 24, wherein the metal ratio of the copper and zirconium is 1: 1.
[0067] 上記構成により、硫黄酸化物の吸着量を増加させることができる。  [0067] With the above configuration, the amount of sulfur oxide adsorbed can be increased.
[0068] 請求項 27記載の発明は、請求項 24記載の排気ガス浄化装置において、前記硫黄 酸化物吸着材は、貴金属と、リチウムチタン複合酸化物とを含んでいる。  [0068] The invention according to claim 27 is the exhaust gas purification device according to claim 24, wherein the sulfur oxide adsorbing material includes a noble metal and a lithium titanium composite oxide.
[0069] 上記構成により、前記請求項 12の銅酸化物及びジルコニウム酸化物を用いた硫黄 酸化物吸着材と同様に、硫黄酸化物を、窒素酸化物と共に、効果的に無害化して排 出すること力 Sできる。 発明の効果 [0069] With the above configuration, as in the sulfur oxide adsorbent using the copper oxide and zirconium oxide of claim 12, the sulfur oxide together with the nitrogen oxide is effectively rendered harmless and discharged. That power S. The invention's effect
[0070] 要するに本発明によると、リチウムイオン電池の正極材として利用されるリチウム (Li )と、マンガン (Mn)等の遷移金属と、を含むリチウム複合酸化物を、窒素酸化物吸 着材として用いることにより、安価で N〇x吸収能の良い窒素酸化物吸着材を提供で き、これにより、安価で飽和 NOx吸着量の多い排気ガス浄化装置を提供することが できる。特に、リチウムチタン複合酸化物として、白金を添加したチタン酸リチウムを用 いることにより、又は、窒素酸化物吸着材の排気上流側に硫黄酸化物吸着材を配置 することにより、窒素酸化物吸着材の被毒化を防ぐこともできる。  In summary, according to the present invention, a lithium composite oxide containing lithium (Li) used as a positive electrode material of a lithium ion battery and a transition metal such as manganese (Mn) is used as a nitrogen oxide adsorbent. By using it, it is possible to provide a nitrogen oxide adsorbent that is inexpensive and has a good N0x absorption capacity, and thereby it is possible to provide an exhaust gas purification device that is inexpensive and has a large amount of saturated NOx adsorption. In particular, as the lithium-titanium composite oxide, by using lithium titanate to which platinum is added, or by arranging a sulfur oxide adsorbent on the exhaust upstream side of the nitrogen oxide adsorbent, the nitrogen oxide adsorbent Can also be prevented.
[0071] また、貴金属を含まない金属酸化物、特に遷移金属酸化物よりなる低コストの窒素 酸化物吸着材を備えることにより、装置のコストを低減できる一方、窒素酸化物を、容 易にかつ効率良く無害化して、排出すること力 Sできる。  [0071] Further, by providing a low-cost nitrogen oxide adsorbent made of a metal oxide containing no noble metal, particularly a transition metal oxide, the cost of the apparatus can be reduced, while the nitrogen oxide can be easily and It can effectively detoxify and discharge.
図面の簡単な説明  Brief Description of Drawings
[0072] [図 1]本発明を適用した排気ガス浄化装置の第 1の実施の形態の概略図である。  FIG. 1 is a schematic view of a first embodiment of an exhaust gas purification apparatus to which the present invention is applied.
[図 2]本発明を適用した排気ガス浄化装置の第 2の実施の形態の概略図である。  FIG. 2 is a schematic view of a second embodiment of an exhaust gas purification apparatus to which the present invention is applied.
[図 3]LiMn Oと、 LiMnPOと、 Pt-Li TiOの飽和 NOx吸着量を比較した図であ  [Fig. 3] Comparison of saturated NOx adsorption amounts of LiMn O, LiMnPO, and Pt-Li TiO
2 3 4 2 3  2 3 4 2 3
る。  The
[図 4]本発明の Pt— Li TiOで形成した NOx吸着材と、比較例の Pt— Ba〇系で形  [Fig. 4] NOx adsorbent made of Pt—Li TiO of the present invention and Pt—Ba 0 type of comparative example
2 3 2 成した NOx吸着材との、飽和 NOx吸着量の違いを示す図であり、排気ガス中に SO Xを含む場合と含まなレ、場合とをそれぞれ示してレ、る。  2 3 2 This figure shows the difference in the amount of saturated NOx adsorbed from the formed NOx adsorbent, showing the case where SO X is included in the exhaust gas, the case where SO X is included, and the case where SO X is included.
[図 5]Pt— Li TiOで形成した N〇x吸着材と、担体との重量割合を変化させた場合 の飽和 NOx吸着量の変化を示す図である。 [Fig.5] When the weight ratio of the Nx adsorbent made of Pt—Li TiO and the carrier is changed It is a figure which shows the change of saturated NOx adsorption amount.
[図 6]NOx吸着材において、酸化リチウム(Li O)としての添カ卩量と飽和 NOx吸着量  [Figure 6] Additive amount of lithium oxide (Li 2 O) and saturated NOx adsorption amount in NOx adsorbent
2  2
との関係を示す図である。 It is a figure which shows the relationship.
園 7]ΝΟχ吸着材を作る時の焼成温度と比表面積の関係を示す図である。 Fig. 7] is a diagram showing the relationship between the firing temperature and the specific surface area when making the ΝΟχ adsorbent.
園 8]ΝΟχ吸着材の焼成温度が 450° Cの場合において、吸着材脱離手段の温度 と飽和 NOx吸着量との関係を示す図である。 8] A graph showing the relationship between the temperature of the adsorbent desorbing means and the saturated NOx adsorption amount when the firing temperature of the χχ adsorbent is 450 ° C.
園 9]本発明による NOx吸着材力 脱離する物質の成分割合を示す図である。 FIG. 9] is a diagram showing the component ratio of a substance that desorbs NOx adsorbent force according to the present invention.
[図 10]各種遷移金属酸化物による NOx吸着材の飽和 N〇x吸着量を示す図である。 FIG. 10 is a graph showing the amount of saturated Nx adsorbed on NOx adsorbents by various transition metal oxides.
[図 11]マンガン酸化物とジルコニウム酸化物からなる N〇x吸着材において、各種金 属比における飽和 N〇x吸着量を示す図である。 FIG. 11 is a graph showing saturated Nx adsorption amounts at various metal ratios in Nx adsorbents composed of manganese oxide and zirconium oxide.
[図 12]マンガン酸化物とジルコニウム酸化物からなる N〇x吸着材にイットリウム酸化 物を添加した構造において、イットリウム酸化物の添カ卩量の変化に対する飽和 N〇x 吸着量の変化を示す図である。  [Fig.12] Diagram showing the change in the amount of saturated Nx adsorbed with respect to the change in the amount of yttrium oxide added to the Nx adsorbent composed of manganese oxide and zirconium oxide in the structure where yttrium oxide is added. It is.
[図 13]マンガン酸化物とジルコニウム酸化物からなる金属比 1: 1の NOx吸着材に、 アルミ酸化物を添加した NOx吸着材において、マンガン酸化物とジルコニウム酸化 物の全体の割合の変化に対する飽和 NOx吸着量の変化を示す図である。  [Figure 13] NOx adsorbent in which aluminum oxide is added to a 1: 1 metal ratio NOx adsorbent consisting of manganese oxide and zirconium oxide, saturation with respect to changes in the overall proportion of manganese oxide and zirconium oxide It is a figure which shows the change of NOx adsorption amount.
[図 14]コバルト酸化物とジルコニウム酸化物からなる NOx吸着材において、コノくルト の添加量の変化に対する飽和 NOx吸着量の変化を示す図である。  FIG. 14 is a diagram showing a change in saturated NOx adsorption amount with respect to a change in addition amount of conoult in a NOx adsorbent composed of cobalt oxide and zirconium oxide.
[図 15]従来の貴金属を含む窒素酸化物吸蔵触媒の脱離物質の成分割合を示す図 である  FIG. 15 is a diagram showing a component ratio of a desorbed substance of a conventional nitrogen oxide storage catalyst containing a noble metal.
符号の説明 Explanation of symbols
1 内燃機関  1 Internal combustion engine
2 排気通路  2 Exhaust passage
2a, 2b 分岐排気通路  2a, 2b Branch exhaust passage
2c 下流側排気通路  2c Downstream exhaust passage
3 吸着物質脱離手段  3 Adsorbent desorption means
4 NOx吸着材  4 NOx adsorbent
5 燃焼装置 40 微粒子フィルター 5 Combustion device 40 particulate filter
42 S〇x吸着材  42 S0x adsorbent
XI 燃料過濃燃焼領域  XI Fuel rich combustion region
X2 燃料希薄燃焼領域  X2 Fuel lean combustion region
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0074] [発明の第 1の実施の形態]  [First Embodiment of the Invention]
図 1は本発明による排気ガス浄化装置の実施の形態であり、内燃機関 1又は燃焼 機器の排気通路 2は、第 1と第 2の 2本の分岐排気通路 2a、 2bに分岐されており、排 気上流側の分岐部に切替弁 20を備え、排気下流側端部で両分岐排気通路 2a, 2b は合流し、下流側排気通路 2cに接続している。前記切替弁 20を切り替えることにより 、内燃機関 1からの排気ガスを、分岐排気通路 2a、 2bの一方に選択的に排出し、残 りの分岐排気通路を再生運転できるようになつている。内燃機関 1としては、ディーゼ ノレ機関、ガス機関、ガソリン機関又はガスタービン機関などがあり、燃焼機器としては 産業用ボイラ等があり、それらは、主として空気過剰条件で運転が行われる。  FIG. 1 shows an embodiment of an exhaust gas purifying apparatus according to the present invention. An internal combustion engine 1 or an exhaust passage 2 of a combustion device is branched into first and second branched exhaust passages 2a and 2b. A switching valve 20 is provided at the branch portion on the exhaust upstream side, and both branch exhaust passages 2a and 2b merge at the end portion on the exhaust downstream side and are connected to the downstream exhaust passage 2c. By switching the switching valve 20, the exhaust gas from the internal combustion engine 1 is selectively discharged into one of the branch exhaust passages 2a, 2b, and the remaining branch exhaust passage can be regenerated. Examples of the internal combustion engine 1 include a diesel engine, a gas engine, a gasoline engine, or a gas turbine engine, and examples of a combustion device include an industrial boiler, which are mainly operated under an excess air condition.
[0075] 各分岐排気通路 2a、 2b内には、それぞれ排気上流側から順に、吸着物質脱離手 段 3、微粒子吸着フィルター 40、窒素酸化物吸着材 (以下「NOx吸着材」と称する) 4 及び燃焼装置 5が排気流れ方向に間隔を置レ、て配置されてレ、る。  [0075] In each of the branch exhaust passages 2a and 2b, the adsorbed substance desorbing means 3, the particulate adsorption filter 40, the nitrogen oxide adsorbing material (hereinafter referred to as "NOx adsorbing material") 4 in order from the exhaust upstream side. And the combustion device 5 is arranged at intervals in the exhaust flow direction.
[0076] NOx吸着材 4は、遷移金属、特に、マンガン(Mn)、ニッケル(Ni)、コバノレト(Co)、 バナジウム(V)、クロム(Cr)、鉄(Fe)、チタン (Ti)、スカンジウム(Sc)及びイットリウム( Y)の元素群の内、少なくとも一種類の元素 Aとリチウム (Li)を構成元素とする一般式 LiAxOy又は LiAxPOで示されるリチウム複合酸化物で形成されている。前記一般  [0076] NOx adsorbent 4 is a transition metal, in particular, manganese (Mn), nickel (Ni), covanoleto (Co), vanadium (V), chromium (Cr), iron (Fe), titanium (Ti), scandium. Of the element group of (Sc) and yttrium (Y), it is formed of a lithium composite oxide represented by the general formula LiAxOy or LiAxPO having at least one element A and lithium (Li) as constituent elements. General
4  Four
式 LiAxOyに適合する具体例としては、たとえばマンガン酸リチウム(LiMn O )ゃチ  As a specific example conforming to the formula LiAxOy, for example, lithium manganate (LiMn 2 O 3)
2 4 タン酸リチウム (Li Ti〇)があり、また前記一般式 LiAxPOに適合する具体例として  2 4 There is lithium tanoate (Li TiO), and as a specific example conforming to the above general formula LiAxPO
2 3 4  2 3 4
は、リン酸マンガンリチウム(LiMnPO )等がある。  Includes lithium manganese phosphate (LiMnPO 4).
4  Four
[0077] 本実施の形態では、前記リチウム複合酸化物に、さらに貴金属の白金 (Pt)を添カロ した材料を用いており、さらに、 NOx吸収能と耐 SOx性を高く維持するために、リチ ゥム複合酸化物として、チタン (Ti)を構成元素とするチタン酸リチウム (Li Ti〇)を用  [0077] In the present embodiment, a material obtained by further adding a noble metal platinum (Pt) to the lithium composite oxide is used, and in order to maintain high NOx absorption capacity and SOx resistance, the lithium composite oxide is used. Lithium titanate (Li Ti〇) containing titanium (Ti) as a constituent element
2 3 いている。 [0078] また、前記窒素酸化物吸着材 4は、酸化リチウム Li Oとしての添加量が 10〜20重 2 3 [0078] Further, the nitrogen oxide adsorbent 4 has an addition amount of 10 to 20 times as lithium oxide LiO.
2  2
量%となっており、 400° C〜500° Cの範囲内で焼成してある。好ましくは概ね 450 。 Cで焼成する。  The amount is in the range of 400 ° C. to 500 ° C. Preferably approximately 450. Bake with C.
[0079] また、該実施の形態では、酸化アルミニウム (Al O )及び又はアナターゼ型酸化チ  [0079] Further, in this embodiment, aluminum oxide (Al 2 O 3) and / or anatase type oxide
2 3  twenty three
タン (TiO )よりなる担体に、前記白金及びチタン酸リチウム(Li Ti〇)を担持してい  The above platinum and lithium titanate (Li TiO) are supported on a carrier made of tantalum (TiO 2).
2 2 3  2 2 3
る。  The
[0080] 最も排気上流側に配置された吸着物質脱離手段 3は、燃料ノズル 31、点火装置 3 2及び空気供給手段 33から構成されており、燃料ノズル 31は燃料調量装置 10を介 して燃料タンク 11に接続し、電子制御ユニット(以下「ECU」と称する) 12により、燃 料の供給量及び供給時期が制御されるようになっている。空気供給手段 33は空気 調量装置 16を介して空気供給源 17に接続し、空気調量装置 16は ECU 12により空 気の供給量及び供給時期が制御されるようになっている。上記のように燃料供給量 及び供給時期並びに空気供給量及び供給時期を制御することにより、たとえば、燃 料過濃燃焼を行い、対応する分岐排気通路 2a又は 2b内を、昇温すると同時に還元 雰囲気とすることができる。  [0080] The adsorbed substance desorbing means 3 arranged on the most upstream side of the exhaust gas is composed of a fuel nozzle 31, an ignition device 32, and an air supply means 33. The fuel nozzle 31 passes through the fuel metering device 10. The fuel supply amount and the supply timing are controlled by an electronic control unit (hereinafter referred to as “ECU”) 12. The air supply means 33 is connected to the air supply source 17 via the air metering device 16, and the air metering device 16 is controlled by the ECU 12 so that the air supply amount and the supply timing are controlled. By controlling the fuel supply amount and supply timing as well as the air supply amount and supply timing as described above, for example, fuel rich combustion is performed, and the temperature in the corresponding branch exhaust passage 2a or 2b is raised and reduced at the same time. It can be.
[0081] 前記吸着物質脱離手段 3の燃焼温度は、前記窒素酸化物吸着材 4の焼成温度 (4 00° C〜500° C)付近又はそれ以下になるように、燃料供給量及び空気供給量を 設定してある。たとえば、焼成温度が 450° Cであれば、 450° C付近又はそれ以下 に設定してある。  [0081] The fuel supply amount and the air supply are set such that the combustion temperature of the adsorbent desorption means 3 is close to or below the firing temperature (400 ° C to 500 ° C) of the nitrogen oxide adsorbent 4. The amount is set. For example, if the firing temperature is 450 ° C, it is set to around 450 ° C or lower.
[0082] 最も下流側に配置された燃焼装置 5は、燃料ノズル 6、点火装置 7及び空気供給手 段 15からなり、燃焼装置 5の作動状態において、空気供給手段 15の排気上流側と 下流側には燃料過濃燃焼領域 XIと燃料希薄燃焼領域 X2が形成できるようになって いる。燃料ノズル 6は燃料調量装置 10を介して燃料タンク 11に接続し、電子制御ュ ニット 12により、燃料の供給量及び供給時期が制御されるようになっている。空気供 給手段 15は空気調量装置 16を介して空気供給源 17に接続し、空気調量装置 16は ECU12により空気供給量及び供給時期が制御されるようになっている。  [0082] Combustion device 5 arranged on the most downstream side includes fuel nozzle 6, ignition device 7 and air supply means 15, and in the operating state of combustion device 5, the exhaust upstream side and downstream side of air supply means 15 The fuel rich combustion region XI and the fuel lean combustion region X2 can be formed. The fuel nozzle 6 is connected to a fuel tank 11 via a fuel metering device 10, and the amount and timing of fuel supply are controlled by an electronic control unit 12. The air supply means 15 is connected to an air supply source 17 via an air metering device 16, and the air metering device 16 is controlled by an ECU 12 for the air supply amount and the supply timing.
[0083] なお、前記燃焼装置 5は、 NOx吸着材 4に白金等の貴金属を含んでいない場合は 、前記のように空気供給手段 15の排気上流側と下流側に燃料過濃燃焼領域 XIと燃 料希薄燃焼領域 X2を形成するように、燃料供給量及び空気供給量を制御するが、 本実施の形態のように、 NOx吸着材 4に白金等の貴金属を含んでいる場合は、燃料 供給量を減らすと共に空気供給量を増加して、燃料希薄燃焼領域 X2のみが形成さ れるように制卸することもできる。 [0083] When the NOx adsorbent 4 does not contain a noble metal such as platinum, the combustion apparatus 5 has a fuel rich combustion region XI on the exhaust upstream side and downstream side of the air supply means 15 as described above. Burning The fuel supply amount and the air supply amount are controlled so as to form the lean-burning region X2, but if the NOx adsorbent 4 contains a noble metal such as platinum as in this embodiment, the fuel supply amount It is also possible to reduce the fuel consumption and increase the air supply amount so that only the lean fuel combustion region X2 is formed.
[0084] (実施の形態の作用) [0084] (Effects of Embodiment)
内燃機関 1を運転する場合には、切替弁 20によって排気通路 2の接続先を切り換 えることにより、両分岐排気通路 2a、 2bの一方を内燃機関 1の排気ガスの排出流路 として利用し、他方は必要に応じて再生運転する。図 1の状態は、第 2の分岐排気通 路 2bを内燃機関 1の排気ガスの排出流路として利用し、第 1の分岐排気通路 2aを再 生運転に利用している状態である。  When operating the internal combustion engine 1, the switching valve 20 switches the connection destination of the exhaust passage 2 so that one of the branched exhaust passages 2a and 2b is used as the exhaust gas exhaust passage of the internal combustion engine 1. The other is regenerated as required. The state of FIG. 1 is a state in which the second branch exhaust passage 2b is used as an exhaust gas discharge passage of the internal combustion engine 1 and the first branch exhaust passage 2a is used for regeneration operation.
[0085] 内燃機関 1の運転時、図 1において排気ガスの排出流路として利用する第 2の分岐 排気通路 2bでは、燃焼装置 5及び吸着物質脱離手段 3は停止している。内燃機関 1 は、空気過剰条件で運転されており、そのため排気ガス中の CO等は少なレ、が、 NO Xが多く含まれている可能性が大きい。この排気ガスは、排気通路 2から第 2分岐排 気通路 2bに流入し、まず、微粒子フィルター 40により粒子状物質が除去され、そして NOx吸着材 4により NOxが吸着され、無害化した状態で下流側の排気通路 2cを経 て排出される。  [0085] During operation of the internal combustion engine 1, the combustion device 5 and the adsorbed substance desorbing means 3 are stopped in the second branch exhaust passage 2b used as the exhaust gas discharge passage in FIG. The internal combustion engine 1 is operated under an excess air condition, and therefore there is a high possibility that the exhaust gas contains a small amount of CO, but contains a lot of NOx. This exhaust gas flows from the exhaust passage 2 into the second branch exhaust passage 2b. First, particulate matter is removed by the particulate filter 40, and NOx is adsorbed by the NOx adsorbent 4, and is made harmless and downstream. It is discharged through the side exhaust passage 2c.
[0086] 一方、再生運転する第 1の分岐排気通路 2aでは、燃焼装置 5及び吸着物質脱離 手段 3を作動させており、吸着物質脱離手段 3においては、燃料ノズル 31からの燃 料を空気供給手段 33からの空気で燃焼させることにより、 NOx吸着材 4へ高温の空 気を供給し、 NOx吸着材 4から NOxを脱離させる。すなわち、 NOx吸着材 4を再生 する。この場合、吸着物質脱離手段 3の燃焼温度は、前記 NOx吸着材 4の焼成温度 付近又はそれ以下なので、シンタリングが生じたり、リチウム (Li)が消失することはな レ、。  [0086] On the other hand, in the first branch exhaust passage 2a that performs the regeneration operation, the combustion device 5 and the adsorbed substance desorbing means 3 are operated. In the adsorbed substance desorbing means 3, the fuel from the fuel nozzle 31 is discharged. By burning with air from the air supply means 33, high-temperature air is supplied to the NOx adsorbent 4, and NOx is desorbed from the NOx adsorbent 4. That is, the NOx adsorbent 4 is regenerated. In this case, since the combustion temperature of the adsorbent desorption means 3 is near or below the firing temperature of the NOx adsorbent 4, sintering does not occur and lithium (Li) does not disappear.
[0087] 本実施の形態のように、 N〇x吸着材 4に白金 (Pt)を添加している場合には、再生 運転時、 NOxは白金の触媒作用により N2に還元され、無害化された状態で脱離さ れ、排出される。  [0087] When platinum (Pt) is added to the N0x adsorbent 4 as in this embodiment, during the regeneration operation, NOx is reduced to N2 by the catalytic action of platinum and rendered harmless. It is desorbed and discharged.
[0088] NOx吸着材 4に貴金属を添加していない場合には、前述のように前記燃焼装置 5 は、燃料過濃燃焼領域 XIと燃料希薄燃焼領域 X2を形成しており、これにより、 NOx 吸着材 4から脱離した N〇xを燃料過濃燃焼領域 XIにおレ、て Nに還元する。 [0088] When noble metal is not added to the NOx adsorbent 4, the combustion device 5 is used as described above. Forms a fuel rich combustion region XI and a fuel lean combustion region X2, which reduces Nx desorbed from the NOx adsorbent 4 to N in the fuel rich combustion region XI. .
2  2
[0089] 燃焼装置 5の燃料希薄燃焼領域 X2では、 CO及び炭化水素が酸化されて CO及  [0089] In the lean fuel combustion region X2 of the combustion apparatus 5, CO and hydrocarbons are oxidized and CO and
2 び H〇等に無害化され、排出される。なお、燃焼希薄燃焼領域 X2では燃焼温度が 2 Detoxified by H0 etc. and discharged. In the lean combustion zone X2, the combustion temperature is
2 2
低いため、 N2が酸化されることはなレ、。また、 NOx吸着材 4に貴金属を添加していな い場合においては、燃料過濃燃焼領域 XIで CO及び炭化水素が発生することがあ るが、これら C〇及び炭化水素は、下流側の燃料希薄燃焼領域 X2において、酸化さ れ、無害化される。  N2 is not oxidized because it is low. If no precious metal is added to the NOx adsorbent 4, CO and hydrocarbons may be generated in the fuel rich combustion zone XI. Oxidized and detoxified in lean burn zone X2.
[0090] 通常運転を幾度か行うことにより、第 2の分岐排気通路 2bの NOx吸着材 4の N〇x 吸着量が所定量 (飽和量またそれより少ない規定量)に達すると、切替弁 20を第 1の 分岐排気通路 2a側に切り替え、第 1の分岐排気通路 2a内の燃焼装置 5及び吸着物 質脱離手段 3を停止し、一方、第 2の分岐排気通路 2bの燃焼装置 5及び吸着物質脱 離手段 3を作動状態とする。すなわち、第 1の分岐排気通路 2aで通常運転を行い、 同時に第 2の分岐排気通路 2bで再生運転を行うことになる。  [0090] When the N0x adsorption amount of the NOx adsorbent 4 in the second branch exhaust passage 2b reaches a predetermined amount (saturation amount or a prescribed amount less than that) by performing normal operation several times, the switching valve 20 Is switched to the first branch exhaust passage 2a side, the combustion device 5 in the first branch exhaust passage 2a and the adsorbate desorption means 3 are stopped, while the combustion device 5 in the second branch exhaust passage 2b and Activate adsorbent desorption means 3. That is, the normal operation is performed in the first branch exhaust passage 2a, and the regeneration operation is performed in the second branch exhaust passage 2b at the same time.
[0091] (実施の形態の効果)  [0091] (Effects of Embodiment)
(1)図 1のように排気ガス浄化装置の排気通路 2を 2つの分岐排気通路 2a、 2bに分 岐し、一方は、通常運転時に排気ガスの排出流路として利用し、他方をエンジンの排 気通路 2から遮断し、窒素酸化物脱離手段 3及び燃焼装置 5を作動させて再生運転 を行うので、内燃機関 1からの排気ガス量に関係なぐ吸着物質脱離用及び燃焼装 置用の空気量を設定でき、前記吸着物質脱離手段 3の燃料供給量及び燃焼装置 5 における燃料供給量を節約できる。もちろん、エンジン側の複雑なリーン'リッチ制御 を行うことなく、再生運転を行うことができる。  (1) As shown in Fig. 1, the exhaust passage 2 of the exhaust gas purification device is split into two branch exhaust passages 2a and 2b. One is used as an exhaust gas exhaust passage during normal operation, and the other is used as the engine exhaust passage. Since it is shut off from the exhaust passage 2 and the nitrogen oxide desorbing means 3 and the combustion device 5 are operated to perform the regeneration operation, it is used for desorbing adsorbed substances and for the combustion device related to the amount of exhaust gas from the internal combustion engine 1. Therefore, it is possible to save the fuel supply amount of the adsorbed substance desorbing means 3 and the fuel supply amount in the combustion device 5. Of course, regenerative operation can be performed without performing complicated lean-rich control on the engine side.
[0092] (2) N〇x吸着材 4の上流側に微粒子フィルター 40を配置してあることにより、通常運 転時 (排気ガスの排出流路としての利用時)、微粒子フィルター 40で粒子状物質を 除去した排気ガスを NOx吸着材 4に流入させることができ、 N〇x吸着材 4による NO Xの吸着率の低下を防ぐことができる。  [0092] (2) The particulate filter 40 is disposed upstream of the N0x adsorbent 4, so that the particulate filter 40 is particulate during normal operation (when used as an exhaust gas exhaust passage). The exhaust gas from which the substance has been removed can be allowed to flow into the NOx adsorbent 4, and the NOx adsorption rate can be prevented from decreasing due to the N0x adsorbent 4.
[0093] (3) N〇x吸着材 4に貴金属の白金(Pt)を添加していると、飽和 NOx吸着量を大幅 に増カロさせること力 Sできる。すなわち、図 3は、リチウム複合酸化物として、貴金属を添 加していないマンガン酸リチウム(LiMnO )と、貴金属を添加していないリン酸マンガ [0093] (3) When noble metal platinum (Pt) is added to the N0x adsorbent 4, the amount of saturated NOx adsorbed can be greatly increased. That is, Fig. 3 shows the addition of precious metal as a lithium composite oxide. Lithium manganate not added (LiMnO) and manganate phosphate not added noble metal
3  Three
ンリチウム(LiMnPO )と、貴金属の白金(Pt)を添加したチタン酸リチウム(Pt— Li T  Lithium titanate (Pt—Li T) with the addition of lithium (LiMnPO 4) and the noble metal platinum (Pt)
4 2 i〇)の飽和 NOx吸着量を比較したグラフであり、貴金属を添加していないマンガン 4 2 i〇) Saturated NOx adsorption amount comparison graph, manganese with no precious metal added
3 Three
酸リチウム(LiMnO )及びリン酸マンガンリチウム(LiMnPO )でも必要十分な飽和 N  Necessary and sufficient saturation with lithium phosphate (LiMnO) and lithium manganese phosphate (LiMnPO) N
3 4  3 4
Ox吸着量を確保できる力 白金を添加したチタン酸リチウム(Pt— Li Ti〇)の場合  Power to secure Ox adsorption amount In the case of lithium titanate (Pt—Li Ti〇) with platinum added
2 3 には、前記マンガン酸リチウム(LiMnO )及びリン酸マンガンリチウム(LiMnPO )の  2 3 includes lithium manganate (LiMnO) and lithium manganese phosphate (LiMnPO 4).
3 4 二倍から三倍程度の飽和 N〇x吸着量を確保することができ、 NOx吸着性能の点で 優れていることが分かる。  3 4 Saturated N0x adsorption amount of 2 to 3 times can be secured, and it can be seen that the NOx adsorption performance is excellent.
[0094] (4) N〇x吸着材 4として、チタン酸リチウム(Li TiO )を用いていると、耐 S〇x性に優 [0094] (4) When lithium titanate (Li TiO) is used as the N0x adsorbent 4, the S0x resistance is excellent.
2 3  twenty three
れた NOx吸着材 4を提供することができ、これにより、 N〇x吸着材 4の被毒化を防ぎ 、寿命を延ばすことができる。図 4は N〇x吸着材 4の耐 SOx性を示すグラフであり、 本発明として記載している左側二本のグラフは、白金を添加したチタン酸リチウム(Pt Li TiO )で形成した NOx吸着材 4であり、比較例として記載している右側二本の NOx adsorbent 4 can be provided, which can prevent poisoning of Nx adsorbent 4 and extend its life. Fig. 4 is a graph showing SOx resistance of Nx adsorbent 4, and the two graphs on the left side described as the present invention show NOx adsorption formed from lithium titanate (Pt Li TiO) with platinum added. It is material 4 and the two on the right side described as a comparative example
2 3 twenty three
グラフは、白金を添加した酸化バリウム(Pt— Ba〇系)で形成した NOx吸着材 4であ り、各斜線のグラフは、 NOx吸着材 4を流れる排気ガス中に SOxが含まれない場合、 クロス線のグラフは、 NOx吸着材 4を流れる排気ガス中に 300ppmの SOxが含まれ ている場合のそれぞれの飽和 NOx吸着量を示している。この図 4のグラフから理解 できるように、白金を添カ卩したチタン酸リチウム(Pt— Li TiO )で形成した NOx吸着  The graph shows NOx adsorbent 4 made of barium oxide with platinum added (Pt-BaO system). Each hatched graph shows the case where the exhaust gas flowing through NOx adsorbent 4 does not contain SOx. The cross-line graph shows the amount of saturated NOx adsorbed when 300 ppm of SOx is contained in the exhaust gas flowing through the NOx adsorbent 4. As can be seen from the graph in Fig. 4, NOx adsorption formed with lithium titanate (Pt—Li TiO) doped with platinum.
2 3  twenty three
材 4では、排気ガス中に SOxを含む場合でも、 SOxを含まない場合と同程度の飽和 NOx吸着量を確保している。一方、白金を添加した酸化バリウム(Pt— Ba〇系)では 、排気ガス中に SOxを含んでいる場合には、飽和 NOx吸着量が大きく減少している  In material 4, even when SOx is included in the exhaust gas, the same amount of saturated NOx adsorption is secured as when SOx is not included. On the other hand, in the case of barium oxide with platinum added (Pt-BaO series), when the exhaust gas contains SOx, the saturated NOx adsorption amount is greatly reduced.
[0095] (5)図 5は、白金を添加したチタン酸リチウム(Pt_Li TiO )で形成した N〇x吸着材 [0095] (5) Fig. 5 shows a Nx adsorbent formed of platinum titanate lithium titanate (Pt_Li TiO).
2 3  twenty three
4と、これを担持する担体としての酸化アルミニウム(Al O )及び又は酸化チタン (Ti  4 and aluminum oxide (Al 2 O 3) and / or titanium oxide (Ti
2 3  twenty three
O )との重量割合を変化させた場合の飽和 N〇x吸着量の変化を示すグラフであり、 O) is a graph showing the change in the saturated N0x adsorption amount when the weight ratio is changed,
2 2
担体の重量割合が 0〜80%までは、担体の増加に比例して飽和 N〇x吸着量が増え ている。したがって、酸化アルミニウム (Al O )の重量割合を、 80%又はそれ以上で  When the weight ratio of the carrier is 0 to 80%, the amount of saturated Nx adsorbed increases in proportion to the increase in the carrier. Therefore, the weight ratio of aluminum oxide (Al 2 O 3) should be 80% or more.
2 3  twenty three
ほぼ 95 %程度の間に設定するのが好ましレ、。 [0096] (6)図 6は、 N〇x吸着材 4について、酸化リチウム(Li O)としての添加量と飽和 NOx 吸着量との関係を示しグラフであり、このグラフから理解できるように、酸化リチウム (L i O)としての添加量が 10〜20重量%の場合に、飽和 N〇x吸着量がほぼ最大値に 維持されること力 S理解できる。したがって、酸化リチウム (Li〇)を窒素酸化物吸着材 全体の 10〜20重量%で添加することにより、飽和 N〇x吸着量を増加させ、 NOx吸 収能を向上させることができる。 It is preferable to set it to about 95%. [0096] (6) FIG. 6 is a graph showing the relationship between the amount of addition as lithium oxide (Li 2 O) and the amount of saturated NOx adsorbed for the Nx adsorbent 4, and as can be understood from this graph, It can be understood that when the addition amount as lithium oxide (LiO) is 10 to 20% by weight, the saturated Nx adsorption amount is maintained at the maximum value. Therefore, by adding lithium oxide (LiO) in an amount of 10 to 20% by weight of the entire nitrogen oxide adsorbent, the amount of saturated N0x adsorbed can be increased and the NOx absorption capacity can be improved.
[0097] (7)図 7は、 N〇x吸着材 4を焼成する時の温度と、比表面積及び飽和 N〇x吸着量と の関係を示すグラフであり、焼成温度が 450° Cの場合と 600° Cの場合を比較して いる。図 7から理解できるように、焼成温度 600° Cの場合に比べ、焼成温度 450° Cの場合の方が、大きな比表面積及び大きな飽和 N〇x吸吸着量が得られ、 N〇x吸 収能に優れてレ、ることが分かる。  [0097] (7) FIG. 7 is a graph showing the relationship between the temperature at which the Nx adsorbent 4 is calcined, the specific surface area, and the saturated Nx adsorption amount, when the calcining temperature is 450 ° C. And 600 ° C are compared. As can be seen from Fig. 7, a larger specific surface area and a larger saturated N0x adsorption / absorption amount were obtained when the firing temperature was 450 ° C than when the firing temperature was 600 ° C. You can see that the performance is excellent.
[0098] (8)図 8は、 N〇x吸着材 4の焼成温度が 450° Cの場合において、吸着物質脱離手 段 3の温度と飽和 NOx吸着量との関係を示すグラフであり、焼成温度 450° C付近 で最高の飽和 NOx吸着量を得ることができ、 450° Cより高くなつても、低くなつても 飽和 NOx吸着量が急激に低下することが分かる。ただし、吸着物質脱離手段 3の温 度が焼成温度よりも高くなると、シンタリングやリチウム (Li)の消失が生じる可能性が 大きくなるので、再生運転時における脱離手段 3の温度は、焼成温度 450° C付近 が最適であることが分かる。  (8) FIG. 8 is a graph showing the relationship between the temperature of the adsorbent desorption means 3 and the saturated NOx adsorption amount when the firing temperature of the N 0x adsorbent 4 is 450 ° C. It can be seen that the highest saturated NOx adsorption amount can be obtained at a calcination temperature of around 450 ° C, and that the saturated NOx adsorption amount rapidly decreases both above and below 450 ° C. However, if the temperature of the adsorbent desorption means 3 is higher than the firing temperature, the possibility of sintering and loss of lithium (Li) increases, so the temperature of the desorption means 3 during the regeneration operation is It can be seen that a temperature around 450 ° C is optimal.
[0099] [発明の第 2の実施の形態]  [0099] [Second Embodiment of the Invention]
図 2は本発明による排気ガス浄化装置の第 2の実施の形態であり、図 1の実施の形 態と比較して、微粒子フィルター 40と NOx吸着材 4の間に、硫黄酸化物吸着材(以 下、「S〇x吸着材」と称する) 42を配置している。それ以外の構成は、図 1と同様であ り、同じ部品には同じ符号を付してある。  FIG. 2 shows a second embodiment of the exhaust gas purifying apparatus according to the present invention. Compared with the embodiment of FIG. 1, the sulfur oxide adsorbent ( (Hereinafter referred to as “Sx adsorbent”) 42). The rest of the configuration is the same as in Fig. 1, and the same parts are given the same reference numerals.
[0100] S〇xP及着材 42は、本実施の形態では、銅及びジルコニウムの酸化物であり、銅と ジルコニウムの金属比は 1: 1となっている。  [0100] In the present embodiment, SxP and the adhering material 42 are oxides of copper and zirconium, and the metal ratio of copper and zirconium is 1: 1.
[0101] (実施の形態の作用)  [0101] (Operation of the embodiment)
S〇x吸着材 42の作用を除いては、前記図 1の実施の形態と基本的には同様であ るので、 S〇x吸着材 42の作用についてのみ説明する。 [0102] 内燃機関 1を通常運転時には、 S〇x吸着材 42により排気ガス中の S〇xが吸着され る。これにより、 NOx吸着材 4へ SOxが流れることは無ぐ NOx吸着材 4の硫黄被毒 を防ぐことができる。特に、貴金属を添加したチタン酸リチウム(Pt— Li TiO )以外の リチウム酸化物を NOx吸着材 4として用いる場合には、耐 SOx性が低いので、上記 のように N〇x吸着材 4の上流側に SOx吸着材 42を配置していることにより、 NOx吸 着材 4の被毒化を防ぐことができる。 Except for the action of the Sx adsorbent 42, it is basically the same as the embodiment of FIG. 1, and only the action of the Sx adsorbent 42 will be described. [0102] During normal operation of the internal combustion engine 1, the SOx in the exhaust gas is adsorbed by the SOx adsorbent 42. As a result, SOx does not flow into the NOx adsorbent 4 and sulfur poisoning of the NOx adsorbent 4 can be prevented. In particular, when a lithium oxide other than lithium titanate (Pt—Li TiO) to which noble metal is added is used as the NOx adsorbent 4, the SOx resistance is low. By placing the SOx adsorbent 42 on the side, the NOx adsorbent 4 can be prevented from being poisoned.
[0103] 再生運転時には、 S〇x吸着材 42にも吸着物質脱離手段 3から高温の空気が供給 され、 S〇x吸着材 42に吸着されていた S〇xが脱離される。すなわち、 SOx吸着材 4 2を再生する。脱離した SOxは、そのまま排出される。なお、再生運転において、上 記 N〇x吸着材 4も前述のように脱離作用を行っているので、前記 S〇x吸着材 42から 脱離した S〇xが NOx吸着材 4に再吸着されるおそれもない。  [0103] During the regeneration operation, high-temperature air is also supplied from the adsorbent desorption means 3 to the S0x adsorbent 42, and S0x adsorbed on the S0x adsorbent 42 is desorbed. That is, the SOx adsorbent 42 is regenerated. The detached SOx is discharged as it is. In the regeneration operation, the above N〇x adsorbent 4 is also desorbing as described above, so that S〇x desorbed from the S〇x adsorbent 42 is re-adsorbed on the NOx adsorbent 4. There is no fear of being done.
[0104] 前記硫黄酸化物吸着材 42は、前述のように銅酸化物とジノレコニゥム酸化物とを含 み、しかも、銅とジルコニウムの金属比が 1: 1であると、硫黄酸化物の吸着量を増加さ せること力 Sできる。  [0104] As described above, the sulfur oxide adsorbent 42 contains copper oxide and dinoleum oxide, and when the metal ratio of copper to zirconium is 1: 1, the amount of sulfur oxide adsorbed Can increase the power S.
[0105] また、銅酸化物とジノレコニゥム酸化物は、可逆的に硫黄酸化物の吸脱着を行える ので、窒素酸化物吸着材の上流側に窒素酸化物脱離手段を、下流側に燃焼装置を 備えた排気ガス浄化装置内において、通常運転と再生運転を切り換えることにより、 通常運転の空気過剰燃焼時に、窒素酸化物吸着材により窒素酸化物を吸着すると 同時に、硫黄酸化物吸着材により硫黄酸化物を吸着し、その後、再生運転の燃料過 剰燃焼時に、各吸着材に吸着されている窒素酸化物及び硫黄酸化物をそれぞれ脱 離し、窒素酸化物は下流側の燃焼装置で無害化して、排出することができる。  [0105] Further, since copper oxide and dinoleum oxide can reversibly adsorb and desorb sulfur oxides, a nitrogen oxide desorbing means is provided upstream of the nitrogen oxide adsorbent, and a combustion device is provided downstream. By switching between normal operation and regeneration operation in the exhaust gas purification device provided, nitrogen oxide is adsorbed by the nitrogen oxide adsorbent at the time of excessive air combustion in normal operation, and at the same time, sulfur oxide by the sulfur oxide adsorbent After that, during the excessive combustion of fuel in the regeneration operation, nitrogen oxides and sulfur oxides adsorbed on each adsorbent are separated, and the nitrogen oxides are detoxified by the downstream combustion device and discharged. can do.
[0106] [発明の第 3の実施の形態] [Third Embodiment of the Invention]
図 2に示す排気浄化装置の NOx吸着材 4として、貴金属を含まない金属酸化物を 利用しており、特に空気過剰雰囲気においても効率良く N〇xを吸着することができ、 かつ、所定温度に昇温した時あるいは還元雰囲気においては前記吸着した NOxを 脱離する性質を有している。たとえば、 NOx吸着材 4は、マンガン酸化物とジノレコニ ゥム酸化物とからなる遷移金属酸化物から構成されており、マンガン酸化物とジノレコ ニゥム酸化物との配合比は、金属比で 1: 1となっている。 [0107] S〇x吸着材 42は、本実施の形態では、銅及びジルコニウムの酸化物であり、銅と ジルコニウムの金属比は 1: 1となっている。 The NOx adsorbent 4 in the exhaust purification system shown in Fig. 2 uses a metal oxide that does not contain precious metals, and can efficiently adsorb N0x even in an excess air atmosphere and at a predetermined temperature. It has the property of desorbing the adsorbed NOx when the temperature is raised or in a reducing atmosphere. For example, the NOx adsorbent 4 is composed of a transition metal oxide consisting of manganese oxide and dinoleum oxide, and the compounding ratio of manganese oxide and dinoleum oxide is 1: 1. It has become. [0107] In the present embodiment, the S0x adsorbent 42 is an oxide of copper and zirconium, and the metal ratio of copper and zirconium is 1: 1.
[0108] (実施の形態の作用)  [Operation of Embodiment]
図 2において、内燃機関 1を運転する場合には、切替弁 20によって排気通路 2の接 続先を切り換えることにより、両分岐排気通路 2a、 2bの一方を内燃機関 1の排気ガス の排出流路として利用し、他方は必要に応じて再生運転する。図 2の状態は、第 2の 分岐排気通路 2bを内燃機関 1の排気ガスの排出流路として利用し、第 1の分岐排気 通路 2aを再生運転に利用している状態である。  In FIG. 2, when the internal combustion engine 1 is operated, the switching valve 20 switches the connection destination of the exhaust passage 2 so that one of the branch exhaust passages 2a and 2b is connected to the exhaust gas exhaust passage of the internal combustion engine 1. And the other is regenerated as required. The state shown in FIG. 2 is a state in which the second branch exhaust passage 2b is used as an exhaust gas exhaust passage of the internal combustion engine 1 and the first branch exhaust passage 2a is used in a regeneration operation.
[0109] 内燃機関 1の運転時、図 2において排気ガスの排出流路として利用されている第 2 の分岐排気通路 2bでは、燃焼装置 5及び吸着物質脱離手段 3は停止している。内 燃機関 1は、空気過剰条件で運転されており、そのため排気ガス中の CO等は少な レ、が、 NOxが多く含まれている可能性が大きい。この排気ガスは、排気通路 2から第 2分岐排気通路 2bに流入し、まず、微粒子フィルター 40により粒子状物質が除去さ れ、次に SOx吸着材 42により S〇x力 S吸着され、そして NOx吸着材 4により NOxが吸 着され、無害化した状態で下流側の排気通路 2cを経て排出される。  [0109] During operation of the internal combustion engine 1, the combustion device 5 and the adsorbed substance desorbing means 3 are stopped in the second branch exhaust passage 2b used as the exhaust gas discharge passage in FIG. The internal combustion engine 1 is operated under excessive air conditions, so there is a high possibility that the exhaust gas contains a small amount of CO, but contains a lot of NOx. This exhaust gas flows into the second branch exhaust passage 2b from the exhaust passage 2, and first, particulate matter is removed by the particulate filter 40, and then S0x force S is adsorbed by the SOx adsorbent 42, and NOx NOx is adsorbed by the adsorbent 4, and is exhausted through the downstream exhaust passage 2c in a detoxified state.
[0110] 一方、再生運転する第 1の分岐排気通路 2aでは、燃焼装置 5及び吸着物質脱離 手段 3を作動させており、吸着物質脱離手段 3においては、燃料ノズル 31からの燃 料を空気供給手段 33からの空気で燃焼させることにより、 NOx吸着材 4へ高温の空 気を供給し、 NOx吸着材 4から NOxを脱離させる。すなわち、 NOx吸着材 4を再生 する。  [0110] On the other hand, in the first branch exhaust passage 2a to be regenerated, the combustion device 5 and the adsorbed substance desorbing means 3 are operated. In the adsorbed substance desorbing means 3, the fuel from the fuel nozzle 31 is discharged. By burning with air from the air supply means 33, high-temperature air is supplied to the NOx adsorbent 4, and NOx is desorbed from the NOx adsorbent 4. That is, the NOx adsorbent 4 is regenerated.
[0111] 再生運転状態の第 1の分岐排気通路 2aは、内燃機関 1からの排気ガスが遮断され 、通常運転状態の第 2の分岐排気通路 2bから独立に作動する状態となっており、吸 着物質脱離手段 3の燃料供給及び空気供給並びに燃焼装置 5の燃焼供給及び空 気供給によって再生運転されているので、内燃機関 1からの排気ガス量に関係なぐ 吸着物質脱離用及び燃焼装置用の空気量を設定でき、前記吸着物質脱離手段 3か らの燃料供給量及び燃焼装置 5における燃料供給量を節約できる。なお、再生運転 時には、吸着物質脱離手段 3を燃料過濃状態で燃焼させることにより、 N〇x吸着材 4 を昇温すると同時に還元雰囲気とすることができ、これにより脱離性能を向上させるこ とができ、また、吸着物質脱離手段 3の燃焼により NOxが発生することもない。 [0111] The first branch exhaust passage 2a in the regeneration operation state is in a state in which the exhaust gas from the internal combustion engine 1 is blocked and operates independently from the second branch exhaust passage 2b in the normal operation state. Since the regeneration operation is performed by the fuel supply and air supply of the adsorbed material desorbing means 3 and the combustion supply and air supply of the combustion device 5, the adsorbed material desorption and combustion device relating to the amount of exhaust gas from the internal combustion engine 1 is used. Therefore, the amount of fuel supplied from the adsorbent desorption means 3 and the amount of fuel supplied to the combustion device 5 can be saved. During regeneration operation, the adsorbent desorption means 3 is burned in a fuel-rich state, so that the temperature of the Nx adsorbent 4 can be raised to a reducing atmosphere at the same time, thereby improving desorption performance. This In addition, NOx is not generated by the combustion of the adsorbent desorption means 3.
[0112] 図 9は、再生運転時に NOx吸着材 4から脱離する物質の成分割合を示しており、 窒素(N2)の状態で脱離する量は全体の 8%程度であり、 NO、 NO及び N Oのよう [0112] Figure 9 shows the proportion of substances that desorb from the NOx adsorbent 4 during the regeneration operation. The amount desorbed in the state of nitrogen (N2) is about 8% of the total. NO, NO And like NO
2 2 な窒素酸化物(N〇x)の状態で脱離する量が 90%以上となっている。このように大半 力 SNOxの状態で脱離されるが、脱離した NOxは、図 2の下流側の燃焼装置 5の燃料 過濃燃焼領域 XIにおいて無害の Nに還元され、排出される。一方、燃料過濃燃焼  The amount of desorption in the state of 2 2 nitrogen oxide (N0x) is 90% or more. Thus, most of the NOx is desorbed in the state of power SNOx, but the desorbed NOx is reduced to harmless N in the fuel rich combustion region XI of the combustion device 5 on the downstream side of FIG. On the other hand, fuel rich combustion
2  2
領域 XIでは COあるいは炭化水素が発生するが、下流側の燃料希薄燃焼領域 X2に て酸化されて COとなり、排出される。なお、燃焼希薄燃焼領域 X2では燃焼温度が  In region XI, CO or hydrocarbons are generated, but are oxidized to CO in the downstream lean fuel combustion region X2 and emitted. In the lean combustion zone X2, the combustion temperature is
2  2
低いため、前記燃焼過濃燃焼領域 XIにて生成した Nが酸化されることはない。  Since it is low, N produced in the combustion rich combustion region XI is not oxidized.
2  2
[0113] また、 SOx吸着材 42にも吸着物質脱離手段 3から高温の空気が供給され、 S〇x吸 着材 42に吸着されていた S〇xが脱離される。すなわち、 S〇x吸着材 42を再生する。 脱離した S〇xは、そのまま排出される。なお、再生運転において、上記 NOx吸着材 4も前述のように脱離作用を行っているので、前記 SOx吸着材 42から脱離した SOx 力 SNOx吸着材 4に再吸着されるおそれもない。  [0113] Further, high-temperature air is also supplied to the SOx adsorbent 42 from the adsorbent desorption means 3, and S0x adsorbed on the Sox adsorbent 42 is desorbed. That is, the S0x adsorbent 42 is regenerated. The detached S0x is discharged as it is. In the regeneration operation, the NOx adsorbent 4 is also desorbed as described above, so there is no possibility that the SOx force SNOx adsorbent 4 desorbed from the SOx adsorbent 42 is re-adsorbed.
[0114] 通常運転を幾度か行うことにより、第 2の分岐排気通路 2bの NOx吸着材 4の NOx 吸着量が所定量 (飽和量またそれより少ない規定量)に達すると、切替弁 20を第 1の 分岐排気通路 2a側に切り替え、第 1の分岐排気通路 2a内の燃焼装置 5及び吸着物 質脱離手段 3を停止し、一方、第 2の分岐排気通路 2bの燃焼装置 5及び吸着物質脱 離手段 3を作動状態とする。すなわち、第 1の分岐排気通路 2aで通常運転を行い、 同時に第 2の分岐排気通路 2bで再生運転を行うことになる。  [0114] By performing normal operation several times, when the NOx adsorption amount of the NOx adsorbent 4 in the second branch exhaust passage 2b reaches a predetermined amount (saturation amount or a prescribed amount less than that), the switching valve 20 is turned off. 1 is switched to the branch exhaust passage 2a side, the combustion device 5 and the adsorbate desorption means 3 in the first branch exhaust passage 2a are stopped, while the combustion device 5 and the adsorbent in the second branch exhaust passage 2b are stopped. Release means 3 is activated. That is, the normal operation is performed in the first branch exhaust passage 2a, and the regeneration operation is performed in the second branch exhaust passage 2b at the same time.
[0115] (実施の形態の効果)  [0115] (Effect of the embodiment)
(1)図 10は、代表的な遷移金属の酸化物による飽和 NOx吸着量を比較した図(ダラ フ)であり、マンガン Mn及びコバルト Coが最も飽和 N〇x吸着量の多い部類に入り、 次いで鉄 Fe、銅 Cu、ニッケル Ni及びクロム Cr等の順となっている。これは、遷移金属 酸化物の中で、マンガン酸化物及びコバルト酸化物は酸化能が最も強ぐ NOxを生 成し易い性質をもっているからである。上記、飽和 N〇x吸着量は単位時間当たり NO X吸着量とほぼ比例するものであり、したがって、本実施の形態のように、 NOx吸着 材 4としてマンガン酸化物を用いていると、飽和 NOx吸着量及び単位時間当たりの N〇x吸着量を増加させることができ、それにより、 NOxを効果的に吸着できると共に 、再生運転の頻度も減らすことができ、経済的である。 (1) Figure 10 is a graph comparing the amount of saturated NOx adsorbed by typical transition metal oxides (Daraf). Manganese Mn and cobalt Co are among the most saturated NOx adsorbed, Next, iron Fe, copper Cu, nickel Ni, chromium Cr and so on. This is because, among the transition metal oxides, manganese oxide and cobalt oxide have the property of easily generating NOx having the strongest oxidizing ability. The saturated N0x adsorption amount is almost proportional to the NOx adsorption amount per unit time.Therefore, if manganese oxide is used as the NOx adsorbent 4 as in this embodiment, saturated NOx Adsorption amount and unit time The amount of N0x adsorbed can be increased, so that NOx can be effectively adsorbed and the frequency of regeneration operation can be reduced, which is economical.
[0116] (2)図 11は、 NOx吸着材 4として、マンガン酸化物とジルコニウム酸化物からなる遷 移金属酸化物(貴金属は含まなレ、)を用いた場合において、マンガンとジルコニウム との金属比を様々に変化させ、各金属比における飽和 NOx吸着量を示したものであ る。該グラフから理解できるように、マンガンとジルコニウムとの金属比(Mn : Zr)が 1 : 1の時に飽和 N〇x吸着量は最も多く(Q0)、次いで金属比 1: 5、金属比 1: 9、金属比 5 : 1及び金属比 9 : 1の順に減少している。したがって、本実施の形態のように、マン ガンとジルコニウムの金属比を 1: 1とすることにより、 ΝΟχΡ及着材 4として、大容量の 飽和 Ν〇χ吸着量を確保できる。  [0116] (2) Figure 11 shows the case where a transition metal oxide consisting of manganese oxide and zirconium oxide (a precious metal is not included) is used as the NOx adsorbent 4. This figure shows the amount of saturated NOx adsorbed at various metal ratios with various ratios. As can be understood from the graph, when the metal ratio between manganese and zirconium (Mn: Zr) is 1: 1, the saturated N0x adsorption amount is the largest (Q0), then the metal ratio is 1: 5, and the metal ratio is 1: 9. It decreases in order of metal ratio 5: 1 and metal ratio 9: 1. Therefore, as in this embodiment, by setting the metal ratio of mangan to zirconium to 1: 1, it is possible to secure a large amount of saturated Νχχ adsorption amount as ΝΟχΡ and adhering material 4.
[0117] [発明の第 4の実施の形態]  [Fourth embodiment of the invention]
図 2に示す排気ガス浄化装置の NOx吸着材 4として、マンガン酸化物とジノレコニゥ ム酸化物からなる遷移金属酸化物(金属比 1: 1)に、イットリウム Yの酸化物を添カロす る。イットリウム酸化物の添加量は、 NOx吸着材 4全体の 0.:!〜 0. 5重量%とし、好 ましくは概ね 0. 2重量%とする。  As the NOx adsorbent 4 in the exhaust gas purifying device shown in Fig. 2, yttrium Y oxide is added to the transition metal oxide (metal ratio 1: 1) consisting of manganese oxide and dinolenium oxide. The amount of yttrium oxide added is from 0.:! To 0.5% by weight of the entire NOx adsorbent 4, preferably 0.2% by weight.
[0118] このように、窒素酸化物吸着材 4に、イットリウム酸化物を添加していると、硝酸塩を 形成し易くなり、上記生成した NOと反応し硝酸塩の状態で窒素酸化物を吸収する ことで可能となり、飽和 NOx吸着量をさらに増加させることができる。  [0118] As described above, when yttrium oxide is added to the nitrogen oxide adsorbing material 4, it becomes easy to form nitrate, and reacts with the generated NO to absorb nitrogen oxide in the form of nitrate. This makes it possible to further increase the amount of saturated NOx adsorption.
[0119] 図 12はイットリウム酸化物(Y〇)の添加量の変化に対する NOx吸着材 4の飽和 N[0119] Fig. 12 shows the saturation N of NOx adsorbent 4 with respect to changes in the amount of yttrium oxide (YO) added.
Ox吸着量の変化を示しており、イットリウム酸化物の添加量が 0重量%の場合の飽和 NOx吸着量 Q0は、前記図 4の金属比 1 : 1の時の飽和 NOx吸着量 Q0に相当してい る。イットリウム酸化物の添加量が 0重量%から概ね 0. 2重量%まで増加すると、飽和 N〇x吸着量は、 0. 1重量%時の値 Q2を経て最大の値 Q3まで急増し、続いてイツトリ ゥム酸化物の添加量が概ね 0. 2重量%から概ね 0. 5重量%まで増加すると、飽和 N Ox吸着量は前記最大値 Q3から前記 0. 1重量%時の値 Q2を経て値 Q4 (< Q2)まで 緩やかに減少し、さらにイットリウム酸化物の添カ卩量が概ね 0. 5重量%を越えると、飽 和 N〇x吸着量はほぼ前記値 Q4に維持され、増減しないことが分かる。したがって、 イットリウム酸化物の添カ卩量は、経済的に飽和 N〇x吸着量を増加させるためには、 本実施の形態のように、 0.:!〜 0. 5重量%の範囲が好ましぐその範囲の内でも、 0 . 2重量%付近が最も好ましい。 The change in Ox adsorption amount shows the saturated NOx adsorption amount Q0 when the yttrium oxide addition amount is 0 wt%, which corresponds to the saturated NOx adsorption amount Q0 when the metal ratio is 1: 1 in Fig. 4. ing. When the amount of yttrium oxide added increases from 0 wt% to approximately 0.2 wt%, the saturated N0x adsorption amount rapidly increases to the maximum value Q3 via the value Q2 at 0.1 wt%, followed by When the amount of yttrium oxide added increases from approximately 0.2 wt% to approximately 0.5 wt%, the saturated N Ox adsorption amount increases from the maximum value Q3 to the 0.1 wt% value Q2. When it gradually decreases to Q4 (<Q2) and the amount of yttrium oxide added exceeds 0.5% by weight, the saturated N0x adsorption amount is maintained at the above value Q4 and should not increase or decrease. I understand. Therefore, the amount of added yttrium oxide is economical to increase the amount of saturated N0x adsorption. As in the present embodiment, the range of 0.:! To 0.5% by weight is preferable, and the vicinity of 0.2% by weight is most preferable.
[0120] [発明の第 5の実施の形態] [Fifth embodiment of the invention]
図 2に示す排気ガス浄化装置に配置する N〇x吸着材 4として、マンガン酸化物とジ ルコニゥム酸化物からなる遷移金属酸化物(金属比 1: 1)に、アルミ A1の酸化物を添 加する。アルミ酸化物 Al Oは、多孔質で、高比表面積を有しており、このアルミ酸化 物を担持体とし、マンガン酸化物とジノレコニゥム酸化物を担持することにより、活性サ イトの利用率が向上し、飽和 ΝΟχ吸着量及び単位時間当たりの N〇x吸着量が多く なる。  Addition of aluminum A1 oxide to transition metal oxide (metal ratio 1: 1) consisting of manganese oxide and zirconium oxide as Nx adsorbent 4 placed in the exhaust gas purification system shown in Fig. 2 To do. Aluminum oxide Al O is porous and has a high specific surface area. Utilizing this aluminum oxide as a support, supporting manganese oxide and dinoleum oxide improves the utilization of active sites. However, the amount of saturated ΝΟχ adsorption and N0x adsorption per unit time increase.
[0121] 上記 NOx吸着材 4全体に対するマンガン及びジルコニウムの酸化物の割合は、 3 重量%〜: 10重量%の範囲とし、好ましくは概ね 5重量%とする。いいかえると、アルミ 酸化物の割合を、 NOx吸着材 4全体の 97〜90%として、好ましくは、概ね 95%とす る。  [0121] The ratio of manganese and zirconium oxide to the entire NOx adsorbent 4 is in the range of 3 wt% to 10 wt%, and preferably approximately 5 wt%. In other words, the ratio of aluminum oxide is 97 to 90% of the entire NOx adsorbent 4, and preferably about 95%.
[0122] 図 13は、 NOx吸着材 4全体に対するマンガン酸化物及びジノレコニゥム酸化物の割 合の変化と、飽和 NOx吸着量との関係を示しており、マンガン酸化物及びジルコ二 ゥム酸化物の重量%が 0の場合は、グラフの左端に示すように、アルミ酸化物が 100 %であって、飽和 NOx吸着量はほぼ 0となっている。マンガン酸化物及びジルコニゥ ム酸化物の割合が 0重量%から概ね 5重量%まで増加すると、途中、 3重量%時の値 Q5を経て最大値 Q6まで急増し、さらに、概ね 5重量%から概ね 30重量%まで増加 すると、 NOx吸着量は前記最大値 Q6から前記 3重量%時の値 Q5を経て値 Q7付近 まで減少し、さらに 30重量%を越えると、飽和 NOx吸着量はほぼ前記値 Q7に維持 されること力分力る。したがって、 NOx吸着材 4全体に対するマンガン酸化物及びジ ルコニゥム酸化物の割合は、効果的に N〇x吸着量を増加させるためには、 3重量% 〜10重量%の範囲が好ましぐその範囲内でも、 5重量%付近が最も好ましい。  [0122] Fig. 13 shows the relationship between the change in the ratio of manganese oxide and dinoleconium oxide to the entire NOx adsorbent 4 and the amount of saturated NOx adsorbed. When the weight% is 0, as shown at the left end of the graph, the aluminum oxide is 100%, and the saturated NOx adsorption amount is almost zero. When the proportion of manganese oxide and zirconium oxide increases from 0% to about 5% by weight, it suddenly increases from the value Q5 at 3% by weight to the maximum value Q6, and further from about 5% to about 30%. When increased to wt%, the NOx adsorption amount decreases from the maximum value Q6 to the value Q7 through the value Q5 at the time of 3 wt%, and when it exceeds 30 wt%, the saturated NOx adsorption amount almost reaches the value Q7. It is a force that is maintained. Therefore, the ratio of manganese oxide and zirconium oxide to NOx adsorbent 4 as a whole is preferably in the range of 3% to 10% by weight in order to effectively increase the amount of NOx adsorbed. Of these, the vicinity of 5% by weight is most preferable.
[0123] [発明の第 6の実施の形態]  [Sixth Embodiment of the Invention]
図 2に示す排気ガス浄化装置に配置する N〇x吸着材 4として、コバルト Coの酸化 物とジルコニウム Zrの酸化物からなる遷移金属酸化物を用いる。 N〇x吸着材 4全体 に対するコバルト酸化物の割合は、 0. 1重量%〜1重量%の範囲とし、好ましくは概 ね 0. 5重量%とする。コバルト酸化物は、前述のマンガン酸化物とほぼ同程度に酸 化能が強ぐ図 10で示しているようにマンガン酸化物と同程度の飽和 NOx吸着量を 得ること力 Sできる。 As the Nx adsorbent 4 placed in the exhaust gas purification device shown in Fig. 2, a transition metal oxide made of cobalt Co oxide and zirconium Zr oxide is used. The ratio of cobalt oxide to the total N0x adsorbent 4 should be in the range of 0.1% to 1% by weight, preferably about N 0.5% by weight. Cobalt oxide has almost the same oxidizing power as manganese oxide as described above. As shown in Fig. 10, it can obtain the same amount of saturated NOx adsorption as manganese oxide.
[0124] 図 14はコバルト酸化物の添加量に対する飽和 N〇x吸着量の変化を示しており、コ バルト酸化物の添加量が 0. 1重量%から概ね 0. 5重量%まで増加すると、 NOx吸 着量は、値 Q10から最大の値 Q11まで急増し、続いてコバルト酸化物の添カ卩量が概 ね 0. 5重量%から概ね 1重量%まで増加すると、前記最大値 Q11から値 <312 ( >値(3 10)まで減少し、さらに概ね 1重量%を越えると、ほぼ前記値 Q12に維持されることが 分かる。したがって、コバルト酸化物の添カ卩量は、経済的に飽和 N〇x吸着量を増加 させるためには、本実施の形態のように、 0.:!〜 1重量%の範囲が好ましぐその範 囲の内でも、 0. 5重量%付近が最も好ましい。  [0124] Figure 14 shows the change in the amount of saturated Nx adsorption with respect to the amount of cobalt oxide added. When the amount of cobalt oxide added increases from 0.1 wt% to approximately 0.5 wt%, The amount of NOx adsorbed increases rapidly from the value Q10 to the maximum value Q11.Subsequently, when the amount of cobalt oxide added increases from approximately 0.5% by weight to approximately 1% by weight, the value increases from the maximum value Q11. It can be seen that when it decreases to <312 (> value (3 10) and further exceeds approximately 1% by weight, it is maintained at the value Q12. Therefore, the amount of cobalt oxide added is economically saturated. In order to increase the amount of N0x adsorbed, the range of 0.:! To 1% by weight is preferred as in the present embodiment, and the range of about 0.5% by weight is most preferable. .
[0125] [発明の第 7の実施の形態]  [Seventh embodiment of the invention]
図 2に示す排気ガス浄化装置に配置する SOx吸着材 42として、貴金属及びリチウ ムチタン複合酸化物 (Li/Ti〇)からなる硫黄酸化物吸着材 42を配置する。貴金属と しては、プラチナ Ptあるいはロジウム Rh等がある。  As the SOx adsorbent 42 to be arranged in the exhaust gas purification apparatus shown in Fig. 2, a sulfur oxide adsorbent 42 made of noble metal and lithium titanium composite oxide (Li / TiO) is arranged. Precious metals include platinum Pt and rhodium Rh.
[0126] 貴金属及びリチウムチタン複合酸化物からなる硫黄酸化物吸着材 42は、前記第 1 の実施の形態のマンガン酸化物及びジルコニウム酸化物からなる硫黄酸化物吸着 材と同様、優れた SOx吸収能を有すると共に、可逆的に SOxの脱着が可能であるの で、図 2のように、吸着物脱離手段 3と燃焼装置 5を備えた排気ガス浄化装置におい て、エンジン側でのリーン'リッチ制御を行うことなぐ吸着及び脱離を行うことができる 産業上の利用可能性 [0126] The sulfur oxide adsorbent 42 composed of a noble metal and a lithium titanium composite oxide has an excellent SOx absorption capacity, similar to the sulfur oxide adsorbent composed of the manganese oxide and zirconium oxide of the first embodiment. In addition, as shown in Fig. 2, the exhaust gas purification device equipped with the adsorbate detachment means 3 and the combustion device 5 can be used as a lean-rich engine on the engine side. Industrial applicability that allows adsorption and desorption without control
[0127] 本発明は、ディーゼル機関、ガス機関、ガソリン機関あるいはガスタービン機関等の 内燃機関又は焼却炉ゃボイラ等の燃焼機器等、排気ガスを排出する各種機械の排 気ガス浄化装置として、利用可能である。 [0127] The present invention is used as an exhaust gas purification device for various machines that exhaust exhaust gas, such as internal combustion engines such as diesel engines, gas engines, gasoline engines, and gas turbine engines, or combustion equipment such as incinerators and boilers. Is possible.

Claims

請求の範囲  The scope of the claims
[I] 内燃機関又は燃焼機器の排気通路に設置される排気ガス浄化装置におレ、て、 排気通路内に窒素酸化物吸着材を配置し、該窒素酸化物吸着材は、 マンガン(Mn)、ニッケル(Ni)、コバノレト(Co)、バナジウム(V)、クロム(Cr)、鉄(F e)、チタン (Ti)、スカンジウム(Sc)及びイットリウム(Y)の元素群の内、少なくとも一種 類の元素 Aとリチウム(Li)を構成元素とする一般式 LiAxOy又は LiAxPOで示され るリチウム複合酸化物で形成したことを特徴とする排気ガス浄化装置。  [I] An exhaust gas purifying device installed in an exhaust passage of an internal combustion engine or combustion equipment, and a nitrogen oxide adsorbent disposed in the exhaust passage, the nitrogen oxide adsorbent being manganese (Mn) , Nickel (Ni), covanoleto (Co), vanadium (V), chromium (Cr), iron (Fe), titanium (Ti), scandium (Sc) and yttrium (Y), at least one kind An exhaust gas purification device formed of a lithium composite oxide represented by the general formula LiAxOy or LiAxPO, which comprises the elements A and lithium (Li) as constituent elements.
[2] 前記窒素酸化物吸着材に貴金属を添加したことを特徴とする請求項 1記載の排気 ガス浄化装置。 2. The exhaust gas purification device according to claim 1, wherein a noble metal is added to the nitrogen oxide adsorbent.
[3] 前記貴金属は白金 (Pt)であり、リチウム複合酸化物はチタン酸リチウム (Li TiO ) であることを特徴とする請求項 2記載の排気ガス浄化装置。  3. The exhaust gas purifying apparatus according to claim 2, wherein the noble metal is platinum (Pt) and the lithium composite oxide is lithium titanate (Li TiO 3).
[4] 前記窒素酸化物吸着材は、酸化アルミニウム (Al O )及び/又はアナターゼ型酸化 チタン (TiO )よりなる担体に担持したことを特徴とする請求項 1〜3のいずれかに記 載の排気ガス浄化装置。 [4] The nitrogen oxide adsorbing material according to any one of claims 1 to 3, wherein the nitrogen oxide adsorbing material is supported on a carrier made of aluminum oxide (Al 2 O 3) and / or anatase-type titanium oxide (TiO 2). Exhaust gas purification device.
[5] 前記窒素酸化物吸着材は、酸化リチウム (Li〇)としての添カ卩量が 10〜20重量% であることを特徴とする請求項:!〜 4のいずれかに記載の排気ガス浄化装置。 [5] The exhaust gas according to any one of [1] to [4] above, wherein the nitrogen oxide adsorbent has an additive amount of 10 to 20% by weight as lithium oxide (LiO). Purification equipment.
[6] 前記窒素酸化物吸着材は、 400° C〜500° Cの範囲内で焼成したことを特徴と する請求項 1〜5のいずれかに記載の排気ガス浄化装置。 6. The exhaust gas purifying apparatus according to any one of claims 1 to 5, wherein the nitrogen oxide adsorbent is fired within a range of 400 ° C to 500 ° C.
[7] 前記窒素酸化物吸着材の排気上流側に吸着物質脱離手段を配置し、窒素酸化物 吸着材の排気下流側に燃焼装置を配置したことを特徴とする請求項 2〜6のいずれ かに記載の排気ガス浄化装置。 7. The adsorbent detachment means is disposed upstream of the nitrogen oxide adsorbent on the exhaust side, and a combustion device is disposed on the exhaust downstream side of the nitrogen oxide adsorbent. An exhaust gas purification device according to claim 1.
[8] 前記燃焼装置は燃料希薄燃焼方式である請求項 2又は請求項 2を引用する請求 項 3〜7のいずれかに記載の排気ガス浄化装置。 8. The exhaust gas purification device according to any one of claims 3 to 7, wherein the combustion device is a lean fuel combustion system.
[9] 前記吸着物質脱離手段の温度を前記焼成温度付近又はそれ以下に設定したこと を特徴とする請求項 6を引用する請求項 7記載の排気ガス浄化装置。 [9] The exhaust gas purification device according to claim 7, wherein the temperature of the adsorbent desorption means is set to be near or lower than the firing temperature.
[10] 前記窒素酸化物吸着材の排気上流側に硫黄酸化物吸着材を配置したことを特徴 とする請求項 1記載の排気ガス浄化装置。 10. The exhaust gas purifying apparatus according to claim 1, wherein a sulfur oxide adsorbing material is disposed upstream of the nitrogen oxide adsorbing material.
[II] 前記硫黄酸化物吸着材は、銅酸化物とジノレコニゥム酸化物とを含んでいることを特 徴とする請求項 10記載の排気ガス浄化装置。 [II] The sulfur oxide adsorbent contains copper oxide and dinoleconium oxide. The exhaust gas purification device according to claim 10.
[12] 前記硫黄酸化物吸着材は、銅とジノレコニゥムの金属比力 : 1であることを特徴とす る請求項 11記載の排気ガス浄化装置。 12. The exhaust gas purifying apparatus according to claim 11, wherein the sulfur oxide adsorbing material has a metal specific power of copper and dinoleconium: 1.
[13] 前記硫黄酸化物吸着材の排気上流側に吸着物質脱手段を配置し、前記窒素酸化 物吸着材の排気下流側に燃焼装置を配置したことを特徴とする請求項 10〜: 12のい ずれかに記載の排気ガス浄化装置。 [13] The method according to any one of claims 10 to 12, wherein an adsorbent removing means is disposed upstream of the sulfur oxide adsorbent, and a combustion device is disposed downstream of the nitrogen oxide adsorbent. The exhaust gas purifier according to any one of the above.
[14] 内燃機関又は燃焼機器の排気通路に設置される排気ガス浄化装置において、 空気過剰雰囲気でも窒素酸化物を一時的に吸着し、該吸着した窒素酸化物を昇 温又は還元雰囲気で脱離する窒素酸化物吸着材と、 [14] In an exhaust gas purification device installed in an exhaust passage of an internal combustion engine or combustion equipment, nitrogen oxides are temporarily adsorbed even in an excess air atmosphere, and the adsorbed nitrogen oxides are desorbed in a heated or reducing atmosphere. A nitrogen oxide adsorbing material,
前記窒素酸化物吸着材より排気上流側に配置され、排気通路内を昇温又は還元 雰囲気にする吸着物質脱離手段と、  An adsorbent detachment means that is disposed upstream of the nitrogen oxide adsorbent and makes the inside of the exhaust passage a temperature rising or reducing atmosphere;
前記窒素酸化物吸着材より排気下流側に配置された燃焼装置と、を備え、 前記窒素酸化物吸着材は、貴金属を含まなレ、金属酸化物からなることを特徴とす る排気ガス浄化装置。  An exhaust gas purification device comprising: a combustion device disposed downstream of the nitrogen oxide adsorbent from the exhaust gas, wherein the nitrogen oxide adsorbent is made of a metal oxide containing no precious metal. .
[15] 前記窒素酸化物吸着材は、遷移金属酸化物からなることを特徴とする請求項 14記 載の排気ガス浄化装置。  15. The exhaust gas purifying device according to claim 14, wherein the nitrogen oxide adsorbent is made of a transition metal oxide.
[16] 前記窒素酸化物吸着材は、マンガン酸化物とジノレコニゥム酸化物とを含む遷移金 属酸化物からなることを特徴とする請求項 15記載の排気ガス浄化装置。 16. The exhaust gas purifying device according to claim 15, wherein the nitrogen oxide adsorbing material is made of a transition metal oxide containing manganese oxide and dinoleconium oxide.
[17] 前記窒素酸化物吸着材のマンガン酸化物とジルコニウム酸化物との配合比は、金 属比で 1: 1であることを特徴とする請求項 16記載の排気ガス浄化装置。 17. The exhaust gas purifying apparatus according to claim 16, wherein the compounding ratio of manganese oxide and zirconium oxide in the nitrogen oxide adsorbent is a metal ratio of 1: 1.
[18] 前記窒素酸化物吸着材は、さらにイットリウム酸化物を含むことを特徴とする請求項[18] The nitrogen oxide adsorbent further includes yttrium oxide.
16又は 17記載の排気ガス浄化装置。 The exhaust gas purifying device according to 16 or 17.
[19] 前記イットリウム酸化物は、窒素酸化物吸着材全体の 0.:!〜 0. 5重量%であること を特徴とする請求項 18記載の排気ガス浄化装置。 [19] The exhaust gas purification device according to [18], wherein the yttrium oxide is in an amount of 0.:! To 0.5% by weight of the entire nitrogen oxide adsorbent.
[20] 前記窒素酸化物吸着材は、さらにアルミ酸化物を含むことを特徴とする請求項 16 記載の排気ガス浄化装置。 20. The exhaust gas purifying apparatus according to claim 16, wherein the nitrogen oxide adsorbing material further contains aluminum oxide.
[21] 前記窒素酸化物吸着材は、マンガン酸化物及びジルコニウム酸化物の割合が、窒 素酸化物吸着材全体の 3〜: 10重量%であることを特徴とする請求項 20記載の排気 ガス浄化装置。 21. The exhaust according to claim 20, wherein the nitrogen oxide adsorbent has a ratio of manganese oxide and zirconium oxide of 3 to 10% by weight of the entire nitrogen oxide adsorbent. Gas purification device.
[22] 前記窒素酸化物吸着材は、コバルト酸化物とジルコニウム酸化物を含む遷移金属 酸化物からなることを特徴とする請求項 15記載の排気ガス浄化装置。  22. The exhaust gas purifying apparatus according to claim 15, wherein the nitrogen oxide adsorbing material comprises a transition metal oxide containing cobalt oxide and zirconium oxide.
[23] 前記窒素酸化物吸着材は、コバルト酸化物が吸着材全体の 0.:!〜 1重量%である ことを特徴とする請求項 22記載の排気ガス浄化装置。 23. The exhaust gas purifying apparatus according to claim 22, wherein the nitrogen oxide adsorbent is cobalt oxide in an amount of 0.:! To 1 wt% of the entire adsorbent.
[24] 前記窒素酸化物吸着材の排気上流側に硫黄酸化物吸着材を配置したことを特徴 とする請求項 14〜23のいずれかに記載の排気ガス浄化装置。 24. The exhaust gas purifying device according to any one of claims 14 to 23, wherein a sulfur oxide adsorbent is disposed upstream of the nitrogen oxide adsorbent.
[25] 前記硫黄酸化物吸着材は、銅酸化物とジノレコニゥム酸化物とを含んでいることを特 徴とする請求項 24記載の排気ガス浄化装置。 25. The exhaust gas purifying apparatus according to claim 24, wherein the sulfur oxide adsorbing material contains copper oxide and dinolenium oxide.
[26] 前記硫黄酸化物吸着材は、銅とジノレコニゥムの金属比力 S1: 1であることを特徴とす る請求項 25記載の排気ガス浄化装置。 26. The exhaust gas purifying device according to claim 25, wherein the sulfur oxide adsorbing material is a metal specific force S1: 1 of copper and dinoleconium.
[27] 前記硫黄酸化物吸着材は、貴金属と、リチウムチタン複合酸化物とを含んでいるこ とを特徴とする請求項 24記載の排気ガス浄化装置。 27. The exhaust gas purifying device according to claim 24, wherein the sulfur oxide adsorbing material contains a noble metal and a lithium titanium composite oxide.
PCT/JP2006/304996 2005-03-29 2006-03-14 Exhaust gas purifier WO2006103914A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/887,118 US20090081087A1 (en) 2005-03-29 2006-03-14 Exhaust gas purifier
EP06729030A EP1867381A4 (en) 2005-03-29 2006-03-14 Exhaust gas purifier
US13/010,325 US20110138788A1 (en) 2005-03-29 2011-01-20 Exhaust Gas Purifier

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-093798 2005-03-29
JP2005093802A JP2006272116A (en) 2005-03-29 2005-03-29 Exhaust gas purifying apparatus
JP2005-093802 2005-03-29
JP2005093798A JP2006272115A (en) 2005-03-29 2005-03-29 Exhaust gas purifying apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/010,325 Division US20110138788A1 (en) 2005-03-29 2011-01-20 Exhaust Gas Purifier

Publications (1)

Publication Number Publication Date
WO2006103914A1 true WO2006103914A1 (en) 2006-10-05

Family

ID=37053177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304996 WO2006103914A1 (en) 2005-03-29 2006-03-14 Exhaust gas purifier

Country Status (5)

Country Link
US (2) US20090081087A1 (en)
EP (2) EP1867381A4 (en)
KR (2) KR20090016737A (en)
CN (1) CN102107113A (en)
WO (1) WO2006103914A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5285309B2 (en) * 2008-03-14 2013-09-11 ヤンマー株式会社 Exhaust gas purification device
KR101098247B1 (en) * 2008-05-16 2011-12-23 포항공과대학교 산학협력단 Catalyst for removing NOx in the emission gases of lean burn engines and stationary sources
US9518236B2 (en) 2009-09-08 2016-12-13 The Ohio State University Research Foundation Synthetic fuels and chemicals production with in-situ CO2 capture
JP5535782B2 (en) * 2010-06-16 2014-07-02 三菱重工業株式会社 Combustion system
US8997461B2 (en) 2012-05-21 2015-04-07 Cummins Emission Solutions Inc. Aftertreatment system having two SCR catalysts
US9677439B2 (en) 2014-01-20 2017-06-13 Cummins Inc. Systems and methods to mitigate NOx and HC emissions
US9512761B2 (en) * 2014-02-28 2016-12-06 Cummins Inc. Systems and methods for NOx reduction and aftertreatment control using passive NOx adsorption
US9567888B2 (en) 2014-03-27 2017-02-14 Cummins Inc. Systems and methods to reduce reductant consumption in exhaust aftertreament systems
US11111143B2 (en) 2016-04-12 2021-09-07 Ohio State Innovation Foundation Chemical looping syngas production from carbonaceous fuels
CN106582252B (en) * 2016-12-21 2020-04-24 贵州大学 Flue gas desulfurization and mercury removal agent and preparation method thereof
CN106731463B (en) * 2016-12-21 2019-03-26 贵州大学 A kind of Li2MnTiO4Method for flue gas desulfurizing and hydrargyrum-removing processing
CN106582251B (en) * 2016-12-21 2019-05-14 贵州大学 A kind of manganese titanate lithium raw material prepares flue gas desulfurizing and hydrargyrum-removing agent method
CN106731644A (en) * 2016-12-22 2017-05-31 贵州大学 A kind of method that modified pyrolusite processes coal-fired flue-gas
AU2018312361B2 (en) 2017-07-31 2021-11-18 Ohio State Innovation Foundation Reactor system with unequal reactor assembly operating pressures
US10549236B2 (en) * 2018-01-29 2020-02-04 Ohio State Innovation Foundation Systems, methods and materials for NOx decomposition with metal oxide materials
FI128631B (en) * 2018-03-09 2020-09-15 Vocci Oy Method for heat production in a power plant
US11413574B2 (en) 2018-08-09 2022-08-16 Ohio State Innovation Foundation Systems, methods and materials for hydrogen sulfide conversion
CN112601598A (en) 2018-08-22 2021-04-02 国际壳牌研究有限公司 Selective catalytic reduction process and off-line regeneration of deactivated catalyst of process
JP2021533989A (en) * 2018-08-22 2021-12-09 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Selective catalytic reduction process and method for regenerating inactivated SCR catalysts in parallel flue gas treatment systems
AU2020271068A1 (en) 2019-04-09 2021-09-30 Ohio State Innovation Foundation Alkene generation using metal sulfide particles
US11291976B2 (en) 2019-10-18 2022-04-05 Carus Llc Mixed valent manganese-based NOx adsorber
KR102339394B1 (en) 2020-06-24 2021-12-15 주식회사 오알피이노베이션 Apparatus for purify of exhaust gas
KR102334066B1 (en) * 2021-01-13 2021-12-06 주식회사 삼진에이치에스 Water-saving water-saving device for reverse return method of construction machinery construction

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4891419A (en) * 1972-03-07 1973-11-28
JPS59191809A (en) * 1983-04-14 1984-10-31 Babcock Hitachi Kk Method for reducing production of nox in steam-gas composite cycle and device thereof
JPH03135417A (en) * 1989-10-20 1991-06-10 Matsushita Electric Ind Co Ltd Nox removing device
JPH04176335A (en) * 1990-11-08 1992-06-24 Kawasaki Heavy Ind Ltd Adsorption remover for nitrogen oxide and its manufacture
JPH06319953A (en) * 1993-05-14 1994-11-22 Hitachi Ltd Purification of nitrogen oxide
JP2000032580A (en) 1998-07-09 2000-01-28 Victor Co Of Japan Ltd Headset
JP2000325780A (en) * 1999-05-24 2000-11-28 Nippon Shokubai Co Ltd Nitrogen oxide and/or sulfur oxide adsorbent
JP2001000863A (en) 1999-04-22 2001-01-09 Toyota Motor Corp Waste gas purifying catalyst and waste gas purifying method using the catalyst
JP2002543964A (en) * 1999-05-07 2002-12-24 ロディア・シミ Compounds which can be used as NOx traps, combining two compositions based on manganese and another element selected from alkali, alkaline earth and rare earth, and their use in the treatment of exhaust gases
JP2004008838A (en) * 2002-06-04 2004-01-15 Hitachi Ltd Catalyst for cleaning exhaust gas of internal combustion engine, method of cleaning exhaust gas and apparatus for cleaning exhaust gas
JP2004058054A (en) * 2002-06-25 2004-02-26 Ford Global Technologies Llc CATALYST COMPOSITION OF SOx TRAP FOR DIESEL ENGINE AND LEAN BURN GASOLINE ENGINE, METHOD OF USING THE CATALYST COMPOSITION, DIESEL OXIDATION CATALYST HAVING THE CATALYST COMPOSITION, AND CATALYZED SOOT FILTER
DE10307571A1 (en) 2003-02-22 2004-09-02 Steris Gmbh Furnishing with a footprint

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4001372A (en) * 1972-02-19 1977-01-04 Mitsubishi Kinzoku Kogyo Kabushiki Kaisha Removing oxides of nitrogen from gaseous mixtures with alkali manganate solutions
JP3483190B2 (en) * 1996-09-09 2004-01-06 日野自動車株式会社 Nitrogen oxide removal catalyst and method for producing the same
US6105365A (en) * 1997-04-08 2000-08-22 Engelhard Corporation Apparatus, method, and system for concentrating adsorbable pollutants and abatement thereof
EP0892159A3 (en) * 1997-07-17 2000-04-26 Hitachi, Ltd. Exhaust gas cleaning apparatus and method for internal combustion engine
US6033461A (en) * 1998-01-02 2000-03-07 Gas Research Institute Selective nitrogen oxides adsorption from hot gas mixtures and thermal release by adsorbent
FR2793161B1 (en) * 1999-05-07 2001-10-12 Renault EXHAUST PURIFICATION DEVICE FOR AN INTERNAL COMBUSTION ENGINE
DE10132890A1 (en) * 2001-07-06 2003-01-16 Daimler Chrysler Ag Solid used for adsorption and desorption of nitrogen oxides found in internal combustion engine exhaust gases comprises a porous support; a metal component selected from alkali metals, alkaline earth
JP4087659B2 (en) * 2002-08-05 2008-05-21 三井造船株式会社 Method of manufacturing denitration catalyst, denitration catalyst, and denitration system
DE10308571B4 (en) * 2003-02-24 2014-05-08 Volkswagen Ag Process for the preparation of a composite material for the storage of nitrogen oxides, composite material produced by the process and its use
JP4265445B2 (en) * 2004-03-03 2009-05-20 トヨタ自動車株式会社 Exhaust gas purification catalyst

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4891419A (en) * 1972-03-07 1973-11-28
JPS59191809A (en) * 1983-04-14 1984-10-31 Babcock Hitachi Kk Method for reducing production of nox in steam-gas composite cycle and device thereof
JPH03135417A (en) * 1989-10-20 1991-06-10 Matsushita Electric Ind Co Ltd Nox removing device
JPH04176335A (en) * 1990-11-08 1992-06-24 Kawasaki Heavy Ind Ltd Adsorption remover for nitrogen oxide and its manufacture
JPH06319953A (en) * 1993-05-14 1994-11-22 Hitachi Ltd Purification of nitrogen oxide
JP2000032580A (en) 1998-07-09 2000-01-28 Victor Co Of Japan Ltd Headset
JP2001000863A (en) 1999-04-22 2001-01-09 Toyota Motor Corp Waste gas purifying catalyst and waste gas purifying method using the catalyst
JP2002543964A (en) * 1999-05-07 2002-12-24 ロディア・シミ Compounds which can be used as NOx traps, combining two compositions based on manganese and another element selected from alkali, alkaline earth and rare earth, and their use in the treatment of exhaust gases
JP2000325780A (en) * 1999-05-24 2000-11-28 Nippon Shokubai Co Ltd Nitrogen oxide and/or sulfur oxide adsorbent
JP2004008838A (en) * 2002-06-04 2004-01-15 Hitachi Ltd Catalyst for cleaning exhaust gas of internal combustion engine, method of cleaning exhaust gas and apparatus for cleaning exhaust gas
JP2004058054A (en) * 2002-06-25 2004-02-26 Ford Global Technologies Llc CATALYST COMPOSITION OF SOx TRAP FOR DIESEL ENGINE AND LEAN BURN GASOLINE ENGINE, METHOD OF USING THE CATALYST COMPOSITION, DIESEL OXIDATION CATALYST HAVING THE CATALYST COMPOSITION, AND CATALYZED SOOT FILTER
DE10307571A1 (en) 2003-02-22 2004-09-02 Steris Gmbh Furnishing with a footprint

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1867381A4 *

Also Published As

Publication number Publication date
US20090081087A1 (en) 2009-03-26
CN102107113A (en) 2011-06-29
EP1867381A4 (en) 2010-05-26
KR20070108269A (en) 2007-11-08
US20110138788A1 (en) 2011-06-16
EP1867381A1 (en) 2007-12-19
EP2279785A2 (en) 2011-02-02
KR20090016737A (en) 2009-02-17
EP2279785A3 (en) 2011-09-21

Similar Documents

Publication Publication Date Title
WO2006103914A1 (en) Exhaust gas purifier
US6732507B1 (en) NOx aftertreatment system and method for internal combustion engines
EP1608854B2 (en) Method of purification of nitrogen oxides by the selective catalytic reduction in the lean exhaust gas of internal combustion engines
JP4263711B2 (en) Exhaust gas purification device for internal combustion engine
JP4608347B2 (en) Exhaust gas purification device
US6758036B1 (en) Method for sulfur protection of NOx adsorber
WO2005071236A1 (en) Exhaust gas purifier and method of control therefor
US20030115860A1 (en) Exhaust aftertreatment system and method for an internal combustion engine
WO2007123011A1 (en) Exhaust gas purification method and exhaust gas purification system
KR100370486B1 (en) Internal combustion engine exhaust gas purification apparatus, exhaust gas purification process and exhaust gas purification catalyst
JP2006272116A (en) Exhaust gas purifying apparatus
JP2006272115A (en) Exhaust gas purifying apparatus
JP4515217B2 (en) Exhaust gas purification device control method
JP4626854B2 (en) Exhaust gas purification device for internal combustion engine
JP2007100572A (en) Exhaust emission control device of internal combustion engine
KR102563441B1 (en) Apparatus for purifying exhaust gas
JP4877574B2 (en) Exhaust gas purification device for internal combustion engine
WO2007064004A1 (en) Exhaust gas purifier for internal combustion engine
JP3945137B2 (en) Exhaust gas purification device for internal combustion engine
JP2007113497A (en) Exhaust emission control device of internal combustion engine
JPH11169708A (en) Exhaust gas purification device for internal combustion engine
JP2002256926A (en) Exhaust emission control method and exhaust emission control device of internal combustion engine
JP2008298034A (en) Exhaust emission control device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680010123.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006729030

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11887118

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077022262

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 4022/KOLNP/2007

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006729030

Country of ref document: EP