WO2006101002A1 - Semiconductor light emitting element, semiconductor light receiving element and method for manufacturing them - Google Patents

Semiconductor light emitting element, semiconductor light receiving element and method for manufacturing them Download PDF

Info

Publication number
WO2006101002A1
WO2006101002A1 PCT/JP2006/305232 JP2006305232W WO2006101002A1 WO 2006101002 A1 WO2006101002 A1 WO 2006101002A1 JP 2006305232 W JP2006305232 W JP 2006305232W WO 2006101002 A1 WO2006101002 A1 WO 2006101002A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
semiconductor light
layer
active layer
thickness direction
Prior art date
Application number
PCT/JP2006/305232
Other languages
French (fr)
Japanese (ja)
Inventor
Osamu Ishiguro
Original Assignee
Kabushiki Kaisha Toyota Chuo Kenkyusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toyota Chuo Kenkyusho filed Critical Kabushiki Kaisha Toyota Chuo Kenkyusho
Publication of WO2006101002A1 publication Critical patent/WO2006101002A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Definitions

  • the present invention relates to a semiconductor light emitting device having improved luminous efficiency (ratio at which excitation energy is converted to light energy).
  • the present invention also relates to a semiconductor light receiving element having improved light receiving efficiency (ratio at which light energy is converted into electric energy).
  • a semiconductor light emitting device has a laminated structure of a lower semiconductor cladding layer, a semiconductor active layer, and an upper semiconductor cladding layer.
  • a GaN-based semiconductor material, a GaAs-based semiconductor material, or a ZnSe-based semiconductor material is used for this type of laminated structure.
  • n-type GaN is used for the lower semiconductor cladding layer
  • InGaN is used for the semiconductor active layer
  • P-type GaN is used for the upper semiconductor cladding layer.
  • the semiconductor active layer contains In in the crystal structure. For this reason, the band gap of the semiconductor active layer is adjusted so that both the band gap of the lower semiconductor cladding layer and the band gap of the upper semiconductor cladding layer are narrow.
  • the semiconductor active layer provides a field in which electrons existing in the conduction band and holes existing in the valence band combine to emit light.
  • a laminated structure of GaN-based semiconductor materials is generally formed by crystal growth on a sapphire substrate.
  • an internal electric field (called a piezoelectric field) is generated in the laminated structure due to lattice mismatch between the sapphire substrate and the GaN-based semiconductor material.
  • a piezoelectric field is generated in the laminated structure due to lattice mismatch between the sapphire substrate and the GaN-based semiconductor material.
  • Reference 1 is ⁇ tj.Pozina, JP Bergman, B. Monemar, M. Iwava, S. Nitta, H. Amano, I. Akasaki, Applie. d Physics Letters, 77, 11 (2000), p.27-29 ".
  • Reference 2 is “VEKudryashov, AE Yunovich, Journal of Experimental and Theoretical Physics, 97, 5 (2003), p. 43-47”.
  • FIG. 7 shows a band diagram of a stacked structure using a GaN-based semiconductor material. Due to the lattice mismatch, an internal electric field in the direction of force is generated from the upper semiconductor clad layer (p-GaN) side to the lower semiconductor clad layer (n-GaN) side. As a result, as shown in FIG. 7, the energy level of the conduction band of the semiconductor active layer (InGaN) and the energy level of the valence band are inclined in the thickness direction of the semiconductor active layer (the horizontal axis direction of FIG. 7). is doing. Therefore, electrons existing in the conduction band are unevenly distributed on the upper surface side (upper semiconductor clad layer side) of the semiconductor active layer.
  • the energy level of the conduction band and the energy level of the valence band are inclined. For this reason, electrons existing in the conduction band of the semiconductor light-receiving layer and holes existing in the valence band are unevenly distributed on the upper surface side and the lower surface side in the thickness direction of the semiconductor light-receiving layer, respectively. Will fall.
  • the present invention relates to a semiconductor light emitting device in which the light emission efficiency is not substantially reduced even if the energy level of the conductor of the semiconductor active layer and the energy level of the valence band are inclined in the thickness direction based on the internal electric field.
  • the purpose is to provide.
  • the present invention also provides that the energy level of the conductor of the semiconductor light receiving layer and the energy level of the valence band are inclined in the thickness direction.
  • An object of the present invention is to provide a semiconductor light receiving element in which the light receiving efficiency is not substantially lowered.
  • the present invention is characterized in that the band gap of the semiconductor active layer or the semiconductor light receiving layer is changed in the thickness direction.
  • the semiconductor An energy level region in which electrons or holes can stably exist (hereinafter referred to as a concentrated region) can be formed in at least a part of the body active layer or the semiconductor light receiving layer.
  • the energy level of this concentration region is surrounded by the energy level of the remaining semiconductor active layer or semiconductor light receiving layer, and electrons or holes can be concentrated.
  • electrons can be concentrated locally in a part of the conduction band and holes can be concentrated locally in a part of the valence band.
  • the positional relationship between the concentration of electrons and holes coincides with the thickness direction of the semiconductor active layer or semiconductor light receiving layer.
  • the present invention uses the semiconductor active layer or the semiconductor light receiving layer having the above phenomenon to suppress the light emission efficiency or the light reception efficiency from being lowered due to the influence of the internal electric field. According to the present invention, a semiconductor light emitting device with improved luminous efficiency can be provided. In addition, according to the present invention, it is possible to provide a semiconductor light receiving element with improved light receiving efficiency.
  • the semiconductor light emitting device of the present invention has a laminated structure of a lower semiconductor cladding layer, a semiconductor active layer, and an upper semiconductor cladding layer.
  • the band gap of the semiconductor active layer is adjusted to be narrower than both the band gap of the lower semiconductor cladding layer and the band gap of the upper semiconductor cladding layer. Furthermore, the band gap of the semiconductor active layer changes in the thickness direction of the semiconductor active layer.
  • the semiconductor active layer may be constituted by a so-called multiple quantum well structure (MQW) which may be constituted by a single layer.
  • MQW multiple quantum well structure
  • the band gap of each layer of the polymer well structure changes in the thickness direction.
  • a concentrated region in which electrons or holes can stably exist can be formed in at least a part of the semiconductor active layer.
  • electrons are concentrated locally in the concentrated region of the conduction band, and holes are concentrated locally in the concentrated region of the valence band.
  • the energy level of the conduction band in the concentrated region is surrounded by the energy levels of the surrounding conduction bands.
  • the energy level of the valence band in the concentrated region is surrounded by the energy level of the surrounding valence band. Even if the energy level in the concentrated region is tilted by the internal electric field acting on the semiconductor active layer, the concentrated region is surrounded by the surrounding energy levels (electrons and holes are less likely to exist than in the concentrated region). Because electrons and holes are concentrated in the concentration region Can do. Therefore, the electrons existing in the conduction band and the holes existing in the valence band are prevented from being unevenly distributed separately on the upper surface side and the lower surface side of the semiconductor active layer. In the semiconductor light emitting device of the present invention, a decrease in light emission efficiency is remarkably suppressed.
  • the semiconductor light emitting device when the operating voltage is applied, the energy level of the conduction band and the energy level of the valence band of the semiconductor active layer are tilted, and the emission wavelength is shifted due to fluctuations in the operating voltage.
  • the emission wavelength shifts even if the energy level of the conduction band of the semiconductor active layer and the energy level of the valence band are inclined. It is suppressed.
  • the semiconductor light emitting device of the present invention even if the energy level of the conduction band of the semiconductor active layer and the energy level of the valence band are inclined, electrons and holes can be concentrated in the concentration region. .
  • the semiconductor light emitting device of the present invention even if the energy level of the conduction band of the semiconductor active layer and the energy level of the valence band are inclined, the band gap of the concentrated region is stable, so that the emission wavelength is stable. Yes.
  • the energy level of the conduction band of the semiconductor active layer continuously changes in the thickness direction and has one minimum value at a substantially intermediate position in the thickness direction.
  • the energy level of the valence band of the semiconductor active layer continuously changes in the thickness direction and has one maximum value at a substantially intermediate position in the thickness direction.
  • the energy level of the conduction band can draw a curve of a second order function in the thickness direction of the semiconductor active layer.
  • the concentrated area is formed corresponding to the minimum value of the curve of the quadratic function.
  • electrons are locally concentrated in a region corresponding to the minimum value of the energy level of the conduction band, and holes are locally concentrated in a region corresponding to the maximum value of the valence band. is doing.
  • the energy level of the conduction band draws a curve of a quadratic function
  • the allowed quantization energy levels are arranged at approximately equal intervals. For this reason, the quantization energy level of the conduction band can be increased as necessary. Therefore, the amount of electrons existing in the conduction band can be increased, and the light emission efficiency can be improved.
  • Lower semiconductor clad layer, semiconductor active layer, and upper clad layer force Al Ga In —— N (0 ⁇ X ⁇ 1, 0 ⁇ Y ⁇ 1, 0 ⁇ 1—X—Y ⁇ l).
  • Increasing the content of aluminum (A1) increases the band gap, and decreasing the content decreases the band gap.
  • Increasing the indium (In) content narrows the bandgap, and decreasing the content increases the bandgap.
  • the present invention is a technique for reducing the influence of such an internal electric field. Therefore, the present invention is particularly useful when such a semiconductor material is used.
  • the lower semiconductor clad layer is formed using GaN as a main material
  • the semiconductor active layer is formed using InGaN as a main material
  • the upper semiconductor clad layer is formed using GaN as a main material.
  • the content of In in the semiconductor active layer is small on the lower side in the thickness direction and small on the upper side in the middle.
  • the band gap of the semiconductor active layer becomes narrower in the middle and wider in the thickness direction.
  • a wide structure can be obtained.
  • a concentrated region is formed in the middle of the semiconductor active layer, and the semiconductor light emitting device of the present invention can be implemented.
  • the present invention is also useful for a semiconductor light receiving element.
  • the semiconductor light-receiving element of the present invention comprises a semiconductor light-receiving layer, one main electrode directly or indirectly in contact with the semiconductor light-receiving layer, and the other main electrode directly or indirectly in contact with the semiconductor light-receiving layer.
  • the band gap force of the semiconductor light-receiving layer changes in the thickness direction, and is characterized by that.
  • a concentrated region of energy levels where electrons or holes can stably exist is formed in at least a part of the semiconductor light receiving layer.
  • the energy level of this concentrated region is surrounded by the energy level of the remaining semiconductor light receiving layer, and electrons or holes can be concentrated and exist. Even if the energy level of the semiconductor light-receiving layer is tilted by the internal electric field applied to the semiconductor light-receiving layer, the positional relationship in the thickness direction between the conduction band concentration region and the valence band concentration region is maintained. Therefore, the semiconductor light receiving layer is light energy.
  • the electrons are excited to the conduction band at the shortest distance. The decrease in light receiving efficiency is remarkably suppressed.
  • the semiconductor light receiving element of the present invention even if the energy level of the conduction band and the energy level of the valence band of the semiconductor light receiving layer are inclined, electrons and holes can be concentrated in the concentration region.
  • the semiconductor light-receiving element of the present invention even if the energy level of the conduction band and the energy level of the valence band of the semiconductor light-receiving layer are inclined, the band gap in the concentrated region is stable, so that the light-receiving efficiency decreases. Is suppressed.
  • the energy level of the conduction band of the semiconductor light-receiving layer continuously changes in the thickness direction and has one minimum value at a substantially intermediate position in the thickness direction.
  • the energy level of the valence band of the semiconductor light-receiving layer continuously changes in the thickness direction and has one maximum value at a substantially intermediate position in the thickness direction.
  • the energy level of the conduction band can draw a curve of a second order function in the thickness direction of the semiconductor light receiving layer.
  • the concentrated area is formed corresponding to the minimum value of the curve of the quadratic function.
  • electrons are locally concentrated in a region corresponding to the minimum value of the energy level of the conduction band, and holes are locally concentrated in a region corresponding to the maximum value of the valence band. is doing.
  • the conduction band energy level draws a curve of a quadratic function
  • the allowed quantization energy levels are arranged at almost equal intervals. For this reason, the quantization energy level of the conduction band can be increased as necessary. Therefore, the amount of electrons existing in the conduction band can be increased, and the light receiving efficiency can be improved.
  • the inventor has also created a method for manufacturing a semiconductor light-emitting element or light-receiving element suitable for manufacturing the semiconductor light-emitting element or semiconductor light-receiving element described above.
  • the method for producing a semiconductor light-emitting device or semiconductor light-receiving device provides a semiconductor active layer or a semiconductor light-receiving device for the initial stage force and the middle stage when a semiconductor active layer or a semiconductor light-receiving layer is grown on the semiconductor layer.
  • the first half of the process is adjusted so that the band gap of the layer becomes smaller over time.
  • a second half process in which the band gap of the semiconductor active layer or the semiconductor light receiving layer is adjusted to increase with time.
  • Ga N (0 ⁇ X ⁇ 1) is used as the main material for the semiconductor active layer or semiconductor light receiving layer.
  • the In content in the crystal structure is adjusted from the initial stage to the middle stage, and the In content in the crystal structure is adjusted from the middle stage to the final stage in the second half process. It is preferable to adjust to the condition that the content of
  • the tape becomes narrower. Therefore, when the above manufacturing method is performed, a region in which the In content in the semiconductor active layer or the semiconductor light receiving layer is maximized is formed at the timing when the first half process and the second half process are switched. Thereby, a concentrated region is formed in the semiconductor active layer or the semiconductor light receiving layer, and the semiconductor light emitting device or the semiconductor light receiving device of the present invention can be obtained.
  • the crystal growth temperature should be adjusted to be lower from the initial stage to the middle stage, and in the second half process, the medium stage must be adjusted to the condition in which the crystal growth temperature is increased toward the final stage. Is preferred.
  • the In content can be increased. Therefore, when the above manufacturing method is performed, a region in which the In content in the semiconductor active layer is maximized is formed at the timing when the first half process and the second half process are switched. As a result, a concentration region is formed in the semiconductor active layer or in the semiconductor light receiving layer, and the semiconductor light emitting device or semiconductor light receiving device of the present invention can be obtained.
  • FIG. 1 is a longitudinal sectional view of an essential part of a semiconductor light emitting device of an example.
  • FIG. 2 (a) shows a band diagram of the semiconductor light emitting device of the example. (b) Operating voltage is marked The band diagram of the semiconductor light-emitting device of an example when it is calorified is shown.
  • FIG. 3 A band diagram of one modified example is shown.
  • B A band diagram of another modification is shown.
  • C A band diagram of another modification is shown.
  • FIG. 5 (a) Changes in the growth temperature of the semiconductor active layer. (b) shows the variation in the growth temperature of the semiconductor active layer of the comparative example.
  • FIG. 6 is a longitudinal sectional view of a main part of the semiconductor light receiving element of the example.
  • FIG. 7 shows a band diagram of a conventional semiconductor light emitting device.
  • FIG. 8 (a) A band diagram before applying the operating voltage of a conventional semiconductor light emitting device is shown. (b) A band diagram when the operating voltage of a semiconductor light emitting device with a conventional structure is marked.
  • a typical example of the internal electric field is a piezo electric field. Therefore, the technology disclosed in this specification is particularly useful for a semiconductor light emitting device and a semiconductor light receiving device having a heterojunction.
  • nitride-based semiconductor materials have a large piezoelectric effect, a strong piezoelectric field is likely to occur. Therefore, the technology disclosed in this specification is particularly useful in a semiconductor light emitting device and a semiconductor light receiving device that use a nitride semiconductor material.
  • the energy level of the conduction band and the valence band of the semiconductor active layer or the semiconductor light-receiving layer change in a quadratic function shape, a step shape, or a sharp peak shape in the thickness direction.
  • FIG. 1 schematically shows a longitudinal sectional view of a main part of the semiconductor light emitting device 10.
  • the semiconductor light emitting device 10 includes a sapphire substrate 22.
  • the semiconductor light emitting device 10 includes a lower semiconductor clad layer 24 having n-type GaN force formed on a sapphire substrate 22, a semiconductor active layer 30 having InGaN force, and an upper semiconductor clad layer also having p-type GaN force. 26 laminated structures 52 are provided.
  • a negative electrode 42 is in contact with a part of the lower semiconductor clad layer 24.
  • a positive electrode 44 is in contact with a part of the upper semiconductor clad layer 26.
  • the semiconductor active layer 30 provides a field where electrons present in the conduction band and holes present in the valence band combine to emit light.
  • FIG. 2 (a) shows a band diagram of the stacked structure 52 of the semiconductor light emitting device 10.
  • the horizontal axis shows the thickness direction of the laminated structure 52
  • the vertical axis shows the energy level.
  • the band gap of the semiconductor active layer 30 is narrower than both the band gap of the lower semiconductor clad layer 24 and the band gap of the upper semiconductor clad layer 26. Further, the band gap of the semiconductor active layer 30 is formed to change in the thickness direction.
  • the energy level of the conduction band of the semiconductor active layer 30 continuously changes in the thickness direction, and has one minimum value at a substantially intermediate position in the thickness direction.
  • the energy level of the conduction band of the semiconductor active layer 30 draws a curve of a quadratic function in the thickness direction.
  • the energy level of the conduction band of the semiconductor active layer 30 draws a stepless curve in the thickness direction.
  • the energy level of the valence band of the semiconductor active layer 30 continuously changes in the thickness direction, and has one maximum value at a substantially intermediate position in the thickness direction.
  • the energy level of the valence band of the semiconductor active layer 30 draws a curve of a nearly quadratic function that is negative in the thickness direction.
  • the content of In in the semiconductor active layer 30 is small on the lower side in the thickness direction (lower clad layer 24 side) and slightly on the upper side (upper clad layer 26 side). Therefore, the band gap of the semiconductor active layer 30 is formed wide on the middle and narrower on the lower side in the thickness direction and wider on the upper side.
  • an energy level concentration region 32 a in which electrons stably exist is formed at a substantially intermediate position in the thickness direction of the semiconductor active layer 30.
  • the concentrated region 32a is surrounded by the energy level of the surrounding conduction band, and electrons can be concentrated.
  • a concentrated region 32b of ruby levels is formed. The concentrated region 32b is surrounded by the energy level of the surrounding valence band, and holes can be concentrated.
  • the concentrated regions 32a and 32b form a well having a narrow potential in the thickness direction.
  • the concentration region 32a is a region where the energy level of the conduction band is surrounded by the energy level of the conduction band of the surrounding semiconductor active layer 30, and the energy level of the conduction band forms a valley. is there.
  • the concentrated region 32b the energy level of the valence band is surrounded by the energy level of the valence band of the surrounding semiconductor active layer 30, and the energy level of the valence band forms a mountain. It is an area. Therefore, electrons are locally concentrated in the concentrated region 32a of the conduction band, and holes are concentrated locally in the concentrated region 32b of the valence band.
  • the positional relationship between the conduction band concentration region 32 a and the valence band concentration region 32 b is substantially the same as the thickness direction of the semiconductor active layer 30.
  • the laminated structure 52 of the lower semiconductor clad layer 24, the semiconductor active layer 30, and the upper semiconductor clad layer 26 is formed by crystal growth on the sapphire substrate 22. Therefore, a strong internal electric field (piezoelectric field) is generated in the multilayer structure 52 due to lattice mismatch with the sapphire substrate 22. As shown in FIG. 2 (a), the internal electric field (piezoelectric field) is generated in the direction from the upper semiconductor clad layer 26 side toward the lower semiconductor clad layer 24 side.
  • the concentration region 32a where carriers are likely to concentrate is surrounded by the energy level of the surrounding conduction band where carriers are difficult to exist.
  • the concentrated region 32b where carriers are likely to concentrate is surrounded by the energy level of the surrounding valence band. Therefore, as compared with the band diagram of the conventional structure shown in FIG. 7, the electrons are concentrated in the conduction band concentration region 32a despite the influence of the internal electric field, and the holes are It is concentrated in the valence band concentration region 32b.
  • the electrons existing in the conduction band and the hole force semiconductor active layer 30 existing in the valence band are prevented from being unevenly distributed on the upper surface side and the lower surface side in the thickness direction.
  • the real space distance between electrons and holes is the shortest, and the luminous efficiency is low.
  • the bottom is suppressed.
  • electrons existing in the conduction band and hole forces existing in the valence band are separated and separated from the upper surface side and the lower surface side in the thickness direction of the semiconductor active layer 30. This suppresses the excitation energy from being consumed at emission wavelengths other than the desired emission wavelength.
  • the energy level of the conduction band of the semiconductor active layer 30 and the energy level of the valence band are inclined by the internal electric field, and the concentration region 32a of the conduction band and the concentration of the valence band are Based on the band gap V between the regions 32b, the desired emission wavelength is obtained.
  • the semiconductor light emitting device 10 has the following characteristics.
  • a positive voltage is applied to the positive electrode 44 more than the negative electrode 42.
  • 30 holes in the semiconductor active layer are supplied from the upper semiconductor clad layer 26, and electrons are supplied from the lower semiconductor clad layer 24 to the semiconductor active layer 30.
  • the supplied electrons and holes combine to generate light having a wavelength based on the band gap.
  • FIG. 8 the case of the semiconductor light emitting device of the comparative example shown in FIG. 8 will be described.
  • the energy of the conduction band of the semiconductor active layer of InGaN is formed constant in the thickness direction.
  • Figure 8 (a) is a band diagram before applying an operating voltage to the semiconductor light emitting device.
  • Figure 8 (b) is a band diagram when an operating voltage is applied to the semiconductor light emitting device.
  • the energy level of the conduction band and the energy level of the valence band are determined based on the applied voltage. Tilts.
  • the band gap of the semiconductor active layer changes from V to V.
  • FIG. 2 (b) shows a band diagram of the laminated structure when operating voltage is applied to the semiconductor light emitting device 10 of this example.
  • the broken line in the figure is before applying the operating voltage. It is a band diagram of a laminated structure.
  • the conduction band As shown in FIG. 2 (b), in the semiconductor light emitting device 10 of this example, even when the energy level of the conduction band and the energy level of the valence band are inclined by applying an operating voltage, the conduction band The energy level of the valence band and the energy level of the valence band change while maintaining a parallel relationship. Accordingly, the band gap V between the conduction band concentration region 32a and the valence band concentration region 32b does not substantially change even when an operating voltage is applied.
  • the emission wavelength is stable even when an operating voltage is applied.
  • the semiconductor active layer 30 in the semiconductor light emitting device 10 it is possible to suppress a decrease in light emission efficiency against the influence of the internal electric field. Furthermore, by adopting the semiconductor active layer 30 for the semiconductor light emitting device 10, the shift of the emission wavelength can be suppressed against the influence of the operating voltage.
  • the quantization energy level of the conduction band can be increased or decreased depending on the curvature of the curve of the quadratic function. become. Decreasing the curvature of the quadratic function curve can increase the quantization energy level of the conduction band. In this case, the amount of electrons existing in the conduction band can be increased, and the light emission efficiency can be improved.
  • FIG. 3 shows a modified example of a useful semiconductor active layer.
  • Figure 3 shows the energy levels of the conduction band and the valence band of the semiconductor active layer of the modification.
  • Fig. 3 (a) is an example in which the energy level of the conduction band and the energy level of the valence band of the semiconductor active layer change in steps in the thickness direction of the semiconductor active layer.
  • Concentrated regions 32a and 32b are formed approximately in the middle of the semiconductor active layer, so that electrons and holes can be concentrated. This semiconductor active layer can suppress a decrease in luminous efficiency against the influence of the internal electric field.
  • Fig. 3 (b) is an example in which the energy level of the conduction band of the semiconductor active layer and the energy level force of the valence band change so that a sharp peak is formed in the thickness direction of the semiconductor active layer. .
  • a steep peak is formed approximately in the middle of the semiconductor active layer, and the peaks become the concentration regions 32a and 32b.
  • This semiconductor active layer can concentrate electrons and holes in the concentrated regions 32a and 32b.
  • This semiconductor active layer has a luminous efficiency against the influence of internal electric field Can be suppressed.
  • Fig. 3 (c) shows an example where the conduction band energy level of the semiconductor active layer and the energy level force of the valence band are continuously lowered from the lower edge force to the upper edge in the thickness direction of the semiconductor active layer.
  • concentrated regions 32a and 32b are formed at the upper end of the semiconductor active layer, and can be trapped in electrons and holes. This semiconductor active layer can suppress a decrease in light emission efficiency against the influence of the internal electric field.
  • FIG. 4 shows a detailed configuration of the laminated structure 52 used in the semiconductor light emitting device 10.
  • the force illustrated by simply showing the laminated structure 52 is actually preferably provided with a plurality of layers as shown in FIG. 4.
  • the laminated structure 52 can be obtained by using the following manufacturing method. Note that the manufacturing method described below is an example, and other manufacturing methods may be adopted.
  • a sapphire substrate 22 that has been subjected to organic cleaning and acid cleaning is prepared, and the sapphire substrate 22 is placed in a MOCVD apparatus.
  • the a-surface is selected as the reaction surface.
  • a buffer layer 21 made of aluminum nitride (A1N) having a thickness of 500 A is supplied to the reaction chamber and formed on the sapphire substrate 22.
  • a lower semiconductor clad layer 24 having a thickness of 4 m and an impurity (Si) concentration of 3 ⁇ 10 18 cm _3 is formed on the buffer layer 21 while maintaining the temperature of the sapphire substrate 22 at 1130 ° C. .
  • the first lower semiconductor layer 31 thickness is from I n Ga N of 0. 1 m on the lower semiconductor cladding layer 24 Form.
  • the crystal growth temperature decreases with time from the initial stage (0 seconds) to the middle stage (100 seconds) in the first half process. Adjust to the conditions. In this example, the temperature is continuously changed from 750 ° C to 720 ° C. In the latter half of the process, the crystal growth temperature is adjusted to increase with time from the middle stage (100 seconds) to the final stage (200 seconds). In this example, the temperature is continuously changed from 720 ° C to 750 ° C.
  • the energy level of the conduction band of the semiconductor active layer 30 can draw a curve of a quadratic function in the thickness direction.
  • the composition of the semiconductor active layer 30 is represented by InGaN, and its X is from 0.25 to 0.5.
  • the upper semiconductor layer 34 having a thickness of 250 A and having a GaN force is formed on the semiconductor active layer 30 by supplying at 0 _5 mol / min.
  • the upper semiconductor clad layer 26 having a thickness of 400 A and a p-type Al Ga N force
  • a contact layer 28 having a thickness of 250 A and a p-type GaN force is formed on the conductive layer 26.
  • a laminated structure used for the semiconductor light emitting device 10 can be formed.
  • the light emission efficiency was 274 W.
  • the luminous efficiency was 202 W. It was confirmed that the luminous efficiency of the semiconductor light emitting device 10 of this example was significantly improved.
  • the value obtained by subtracting PL (photo-luminescence: emission wavelength observed when excited by light) from EL (electro-luminescence: emission wavelength observed when voltage is applied) of the semiconductor light-emitting element 10 is obtained.
  • the measured value was 21.
  • in the comparative example it was 30 °.
  • the semiconductor light emitting device 10 of this example it was confirmed that the shift of the emission wavelength was remarkably suppressed.
  • the response speed was 40mA for the maximum forward current, and the rising speed (output 10% -90%) and falling speed (output 90% -10%) were measured.
  • the rising speed of the semiconductor light emitting device 10 was 4.1 nsec (nanosecond).
  • the falling speed of the semiconductor light emitting device 10 was 7.6 nsec (nanoseconds).
  • the rising speed was 5.2 nsec (nanosecond) and the falling speed was 7.9 nse C (nanosecond).
  • the response speed was improved.
  • FIG. 6 schematically shows a longitudinal sectional view of the main part of the semiconductor light receiving element 100.
  • the semiconductor light receiving element 100 includes a sapphire substrate 122.
  • Semiconductor photo detector 100 Has a laminated structure of an insulating layer 124 made of i-type GaN formed on a sapphire substrate 122, a semiconductor light-receiving layer 130 made of InGaN, and a cap layer 126 also having an i-type GaN force.
  • the positive electrode 144 is indirectly in contact with a part of the semiconductor light receiving layer 130 through the cap layer 126.
  • the negative electrode 142 is indirectly in contact with the other part of the semiconductor light receiving layer 130 through the cap layer 126.
  • the energy level of the conduction band of the semiconductor light-receiving layer 130 continuously changes in the thickness direction and has one minimum value at a substantially intermediate position in the thickness direction.
  • the energy level of the conduction band of the semiconductor light receiving layer 130 draws a curve of a quadratic function in the thickness direction.
  • the energy level of the valence band of the semiconductor light-receiving layer 130 continuously changes in the thickness direction and has one maximum value at a substantially intermediate position in the thickness direction.
  • the energy level of the valence band of the semiconductor light-receiving layer 130 describes a negative quadratic function in the thickness direction.
  • the band gap between the minimum value of the energy level of the conduction band and the maximum value of the energy level of the valence band is adjusted so as to obtain a desired light receiving wavelength.
  • carriers are more likely to exist at approximately the intermediate position in the thickness direction of the semiconductor light receiving layer 130 than the energy levels of the surrounding conduction band and the energy level of the valence band.
  • a concentrated region of energy levels is formed.
  • the concentration region of the conduction band and the concentration region of the valence band are inclined by the internal electric field (piezoelectric field) acting on the semiconductor light-receiving layer 130, the thickness of the concentration region of the conduction band and the concentration region of the valence band The positional relationship of direction is maintained. Therefore, when the semiconductor light receiving layer 130 receives light energy, electrons are excited to the conduction band at the shortest distance. A decrease in light receiving efficiency is remarkably suppressed.
  • the semiconductor light-receiving element 100 even if the concentration region of the conduction band and the concentration region of the valence band are inclined by the internal electric field (piezoelectric field), the band between the concentration region of the conduction band and the concentration region of the valence band. The size of the gap is maintained, and the conversion of electrical energy to a received wavelength other than the desired received wavelength is suppressed.
  • a desired light receiving wavelength is obtained based on the band gap between the concentrated region of the conduction band and the concentrated region of the valence band. In the semiconductor light receiving element 100, a decrease in light receiving efficiency is suppressed.
  • the conduction band energy level draws a curve of almost quadratic function, it is possible to increase the quantization energy level. Therefore, it exists in the conduction band The amount of electrons can be increased, and the light receiving efficiency is greatly improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)

Abstract

A semiconductor light emitting element (10) is provided with a lower side semiconductor clad layer (24) made of n-type GaN, a semiconductor active layer (30) made of InGaN, and a layer structure (26) of an upper side semiconductor clad layer made of p-type GaN. A bandgap of the semiconductor active layer (30) is formed narrower than a bandgap of the lower side semiconductor clad layer (24) and a bandgap of the upper side semiconductor clad layer (26). Furthermore, the bandgap of the semiconductor active layer (30) is characterized in that it is changed in a thickness direction.

Description

半導体発光素子と半導体受光素子とその製造方法  Semiconductor light-emitting device, semiconductor light-receiving device, and manufacturing method thereof
技術分野  Technical field
[0001] 本出願は、 2005年 3月 22日に出願された日本国特許出願第 2005— 081801号 に基づく優先権を主張する。その出願の全ての内容は、この明細書中に参照により 援用されている。  [0001] This application claims priority based on Japanese Patent Application No. 2005-081801 filed on Mar. 22, 2005. The entire contents of that application are incorporated herein by reference.
本発明は、発光効率 (励起エネルギーが光エネルギーに変換される割合)が向上し た半導体発光素子に関する。本発明はまた、受光効率 (光エネルギーが電気工ネル ギ一に変換される割合)が向上した半導体受光素子にも関する。  The present invention relates to a semiconductor light emitting device having improved luminous efficiency (ratio at which excitation energy is converted to light energy). The present invention also relates to a semiconductor light receiving element having improved light receiving efficiency (ratio at which light energy is converted into electric energy).
背景技術  Background art
[0002] 半導体発光素子は、下側半導体クラッド層と、半導体活性層と、上側半導体クラッド 層の積層構造を備えている。この種の積層構造には、一般的に、 GaN系半導体材 料、 GaAs系半導体材料、又は ZnSe系半導体材料等が利用されている。  A semiconductor light emitting device has a laminated structure of a lower semiconductor cladding layer, a semiconductor active layer, and an upper semiconductor cladding layer. In general, a GaN-based semiconductor material, a GaAs-based semiconductor material, or a ZnSe-based semiconductor material is used for this type of laminated structure.
例えば、 GaN系半導体材料を利用する積層構造では、下側半導体クラッド層に n 型の GaNが用いられており、半導体活性層に InGaNが用いられており、上側半導体 クラッド層に P型の GaNが用いられていることが多い。半導体活性層は、結晶構造中 に Inを含有している。このため、半導体活性層のバンドギャップは、下側半導体クラッ ド層のバンドギャップと上側半導体クラッド層のバンドギャップのどちらょりも狭く調整 されている。半導体活性層は、伝導帯に存在する電子と、価電子帯に存在する正孔 が結合して発光する場を提供して 、る。  For example, in a stacked structure using a GaN-based semiconductor material, n-type GaN is used for the lower semiconductor cladding layer, InGaN is used for the semiconductor active layer, and P-type GaN is used for the upper semiconductor cladding layer. Often used. The semiconductor active layer contains In in the crystal structure. For this reason, the band gap of the semiconductor active layer is adjusted so that both the band gap of the lower semiconductor cladding layer and the band gap of the upper semiconductor cladding layer are narrow. The semiconductor active layer provides a field in which electrons existing in the conduction band and holes existing in the valence band combine to emit light.
GaN系半導体材料の積層構造は、一般的に、サファイア基板上に結晶成長して形 成される。この場合、サファイア基板と GaN系半導体材料の格子不整合に起因して、 積層構造に内部電場 (ピエゾ電場という)が発生することが知られている。サファイア 基板上に GaN系半導体材料を結晶成長した場合、その GaN系半導体材料の結晶 表面力 サファイア基板に向力 方向に内部電場が発生して 、る。  A laminated structure of GaN-based semiconductor materials is generally formed by crystal growth on a sapphire substrate. In this case, it is known that an internal electric field (called a piezoelectric field) is generated in the laminated structure due to lattice mismatch between the sapphire substrate and the GaN-based semiconductor material. When a GaN-based semiconductor material is grown on a sapphire substrate, the crystal surface force of the GaN-based semiconductor material generates an internal electric field in the direction of the sapphire substrate.
内部電場に関しては、以下の文献 1及び文献 2に詳しく記載されている。文献 1は、 「tj.Pozina, J.P.Bergman, B.Monemar, M.Iwava, S.Nitta, H.Amano, I.Akasaki, Applie d Physics Letters, 77, 11(2000), p.27- 29」である。文献 2は、「V.E.Kudryashov, A.E Yunovich, Journal of Experimental and Theoretical Physics, 97, 5(2003), p.43- 47」で ある。 The internal electric field is described in detail in Reference 1 and Reference 2 below. Reference 1 is `` tj.Pozina, JP Bergman, B. Monemar, M. Iwava, S. Nitta, H. Amano, I. Akasaki, Applie. d Physics Letters, 77, 11 (2000), p.27-29 ". Reference 2 is “VEKudryashov, AE Yunovich, Journal of Experimental and Theoretical Physics, 97, 5 (2003), p. 43-47”.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] 図 7に、 GaN系半導体材料を利用した積層構造のバンドダイアグラムを示す。前記 の格子不整合に起因して、上側半導体クラッド層(p— GaN)側から下側半導体クラッ ド層(n— GaN)側に向力 方向の内部電場が発生している。これにより、図 7に示す ように、半導体活性層(InGaN)の伝導帯のエネルギー準位と価電子帯のエネルギ 一準位が、半導体活性層の厚み方向(図 7の横軸方向)に傾斜している。したがって 、伝導帯に存在している電子は、半導体活性層の上面側 (上側半導体クラッド層側) に偏在している。一方、価電子帯に存在している正孔は、半導体活性層の下面側( 下側半導体クラッド層側)に偏在している。このため、内部電場が作用している半導 体活性層では、電子と正孔の実空間距離が長くなつており、発光効率が低下してし まつ。 FIG. 7 shows a band diagram of a stacked structure using a GaN-based semiconductor material. Due to the lattice mismatch, an internal electric field in the direction of force is generated from the upper semiconductor clad layer (p-GaN) side to the lower semiconductor clad layer (n-GaN) side. As a result, as shown in FIG. 7, the energy level of the conduction band of the semiconductor active layer (InGaN) and the energy level of the valence band are inclined in the thickness direction of the semiconductor active layer (the horizontal axis direction of FIG. 7). is doing. Therefore, electrons existing in the conduction band are unevenly distributed on the upper surface side (upper semiconductor clad layer side) of the semiconductor active layer. On the other hand, holes present in the valence band are unevenly distributed on the lower surface side (lower semiconductor clad layer side) of the semiconductor active layer. For this reason, in the semiconductor active layer in which the internal electric field acts, the real space distance between electrons and holes becomes longer, and the luminous efficiency decreases.
同様の問題は、半導体受光素子にも存在している。半導体受光素子の半導体受 光層も、内部電場が作用すると、伝導帯のエネルギー準位と価電子帯のエネルギー 準位が傾斜してしまう。このため、半導体受光層の伝導帯に存在している電子と価電 子帯に存在している正孔は、半導体受光層の厚み方向の上面側と下面側にそれぞ れ偏在し、受光効率が低下してしまう。  A similar problem exists in the semiconductor light receiving element. In the semiconductor light receiving layer of the semiconductor light receiving element, when the internal electric field acts, the energy level of the conduction band and the energy level of the valence band are inclined. For this reason, electrons existing in the conduction band of the semiconductor light-receiving layer and holes existing in the valence band are unevenly distributed on the upper surface side and the lower surface side in the thickness direction of the semiconductor light-receiving layer, respectively. Will fall.
本発明は、内部電場に基づいて、半導体活性層の伝導体のエネルギー準位と価 電子帯のエネルギー準位が厚み方向に傾斜しても、発光効率が実質的に低下しな い半導体発光素子を提供することを目的としている。本発明はまた、半導体受光層 の伝導体のエネルギー準位と価電子帯のエネルギー準位が厚み方向に傾斜しても The present invention relates to a semiconductor light emitting device in which the light emission efficiency is not substantially reduced even if the energy level of the conductor of the semiconductor active layer and the energy level of the valence band are inclined in the thickness direction based on the internal electric field. The purpose is to provide. The present invention also provides that the energy level of the conductor of the semiconductor light receiving layer and the energy level of the valence band are inclined in the thickness direction.
、受光効率が実質的に低下しない半導体受光素子を提供することを目的としている。 課題を解決するための手段 An object of the present invention is to provide a semiconductor light receiving element in which the light receiving efficiency is not substantially lowered. Means for solving the problem
[0004] 本発明は、半導体活性層又は半導体受光層のバンドギャップを厚み方向に変化さ せることを特徴としている。バンドギャップを厚み方向に変化させることによって、半導 体活性層又は半導体受光層の少なくとも一部に、電子又は正孔が安定的に存在で きるエネルギー準位の領域 (以下、集中領域という)を形成することができる。この集 中領域のエネルギー準位は、残部の半導体活性層又は半導体受光層のエネルギー 準位に囲まれており、電子又は正孔が集中して存在することができる。この集中領域 を利用して、伝導帯の一部に電子を局所的に集中させるとともに、価電子帯の一部 に正孔を局所的に集中させることができる。電子と正孔が集中して 、る両者の位置関 係は、半導体活性層又は半導体受光層の厚み方向に一致する。 [0004] The present invention is characterized in that the band gap of the semiconductor active layer or the semiconductor light receiving layer is changed in the thickness direction. By changing the band gap in the thickness direction, the semiconductor An energy level region in which electrons or holes can stably exist (hereinafter referred to as a concentrated region) can be formed in at least a part of the body active layer or the semiconductor light receiving layer. The energy level of this concentration region is surrounded by the energy level of the remaining semiconductor active layer or semiconductor light receiving layer, and electrons or holes can be concentrated. Using this concentration region, electrons can be concentrated locally in a part of the conduction band and holes can be concentrated locally in a part of the valence band. The positional relationship between the concentration of electrons and holes coincides with the thickness direction of the semiconductor active layer or semiconductor light receiving layer.
本発明は、上記の現象を有する半導体活性層又は半導体受光層を利用することに よって、内部電場の影響によって発光効率又は受光効率が低下するのを抑制する。 本発明によると、発光効率が向上した半導体発光素子を提供することができる。また 、本発明によると、受光効率が向上した半導体受光素子を提供することができる。 本発明の半導体発光素子は、下側半導体クラッド層と半導体活性層と上側半導体 クラッド層の積層構造を備えている。半導体活性層のバンドギャップは、下側半導体 クラッド層のバンドギャップと上側半導体クラッド層のバンドギャップのどちらよりも狭く 調整されている。さらに、半導体活性層のバンドギャップは、半導体活性層の厚み方 向に変化して 、ることを特徴として 、る。  The present invention uses the semiconductor active layer or the semiconductor light receiving layer having the above phenomenon to suppress the light emission efficiency or the light reception efficiency from being lowered due to the influence of the internal electric field. According to the present invention, a semiconductor light emitting device with improved luminous efficiency can be provided. In addition, according to the present invention, it is possible to provide a semiconductor light receiving element with improved light receiving efficiency. The semiconductor light emitting device of the present invention has a laminated structure of a lower semiconductor cladding layer, a semiconductor active layer, and an upper semiconductor cladding layer. The band gap of the semiconductor active layer is adjusted to be narrower than both the band gap of the lower semiconductor cladding layer and the band gap of the upper semiconductor cladding layer. Furthermore, the band gap of the semiconductor active layer changes in the thickness direction of the semiconductor active layer.
半導体活性層は、単一の層で構成されていてもよぐいわゆる多重量子井戸構造( MQW)で構成されていてもよい。半導体活性層が多重量子井戸構造の場合は、多 重量子井戸構造の各層のバンドギャップが厚み方向に変化して 、るのが好ま U、。 半導体活性層のバンドギャップを厚み方向に変化させると、半導体活性層の少なく とも一部に、電子又は正孔が安定的に存在することができる集中領域を形成すること ができる。その半導体活性層では、伝導帯の集中領域に電子が局所的に集中して おり、価電子帯の集中領域に正孔が局所的に集中している。集中領域の伝導帯の エネルギー準位は、周囲の伝導帯のエネルギー準位に囲まれている。集中領域の 価電子帯のエネルギー準位は、周囲の価電子帯のエネルギー準位に囲まれている 。半導体活性層に作用する内部電場によって、集中領域のエネルギー準位が傾斜 したとしても、集中領域が周囲のエネルギー準位 (集中領域に比して電子と正孔が存 在しづらい)に囲まれているので、電子と正孔は集中領域内に集中して存在すること ができる。したがって、伝導帯に存在している電子と、価電子帯に存在している正孔 は、半導体活性層の上面側と下面側に分離して偏在することが抑制されている。本 発明の半導体発光素子は、発光効率の低下が顕著に抑制されている。 The semiconductor active layer may be constituted by a so-called multiple quantum well structure (MQW) which may be constituted by a single layer. When the semiconductor active layer has a multiple quantum well structure, it is preferable that the band gap of each layer of the polymer well structure changes in the thickness direction. When the band gap of the semiconductor active layer is changed in the thickness direction, a concentrated region in which electrons or holes can stably exist can be formed in at least a part of the semiconductor active layer. In the semiconductor active layer, electrons are concentrated locally in the concentrated region of the conduction band, and holes are concentrated locally in the concentrated region of the valence band. The energy level of the conduction band in the concentrated region is surrounded by the energy levels of the surrounding conduction bands. The energy level of the valence band in the concentrated region is surrounded by the energy level of the surrounding valence band. Even if the energy level in the concentrated region is tilted by the internal electric field acting on the semiconductor active layer, the concentrated region is surrounded by the surrounding energy levels (electrons and holes are less likely to exist than in the concentrated region). Because electrons and holes are concentrated in the concentration region Can do. Therefore, the electrons existing in the conduction band and the holes existing in the valence band are prevented from being unevenly distributed separately on the upper surface side and the lower surface side of the semiconductor active layer. In the semiconductor light emitting device of the present invention, a decrease in light emission efficiency is remarkably suppressed.
また、半導体発光素子では、動作電圧が印加されることによって、半導体活性層の 伝導帯のエネルギー準位と価電子帯のエネルギー準位が傾斜し、動作電圧の変動 に起因して発光波長がシフトするという現象が問題となっている。しかしながら、本発 明の半導体発光素子では、動作電圧が印加されることによって、半導体活性層の伝 導帯のエネルギー準位と価電子帯のエネルギー準位が傾斜したとしても、発光波長 がシフトすることが抑制される。本発明の半導体発光素子では、半導体活性層の伝 導帯のエネルギー準位と価電子帯のエネルギー準位が傾斜したとしても、電子と正 孔が集中領域内に集中して存在することができる。本発明の半導体発光素子では、 半導体活性層の伝導帯のエネルギー準位と価電子帯のエネルギー準位が傾斜した としても、集中領域のバンドギャップは安定しているので、発光波長が安定している。  In the semiconductor light emitting device, when the operating voltage is applied, the energy level of the conduction band and the energy level of the valence band of the semiconductor active layer are tilted, and the emission wavelength is shifted due to fluctuations in the operating voltage. The phenomenon of doing is a problem. However, in the semiconductor light emitting device of the present invention, when the operating voltage is applied, the emission wavelength shifts even if the energy level of the conduction band of the semiconductor active layer and the energy level of the valence band are inclined. It is suppressed. In the semiconductor light emitting device of the present invention, even if the energy level of the conduction band of the semiconductor active layer and the energy level of the valence band are inclined, electrons and holes can be concentrated in the concentration region. . In the semiconductor light emitting device of the present invention, even if the energy level of the conduction band of the semiconductor active layer and the energy level of the valence band are inclined, the band gap of the concentrated region is stable, so that the emission wavelength is stable. Yes.
[0006] 半導体活性層の伝導帯のエネルギー準位が、厚み方向に連続的に変化するととも に厚み方向の略中間位置に一つの極小値を持つことが好ましい。この場合、半導体 活性層の価電子帯のエネルギー準位は、厚み方向に連続的に変化するとともに厚 み方向の略中間位置に一つの極大値を持っている。  [0006] It is preferable that the energy level of the conduction band of the semiconductor active layer continuously changes in the thickness direction and has one minimum value at a substantially intermediate position in the thickness direction. In this case, the energy level of the valence band of the semiconductor active layer continuously changes in the thickness direction and has one maximum value at a substantially intermediate position in the thickness direction.
この場合の伝導帯のエネルギー準位は、半導体活性層の厚み方向にほぼ 2次関 数のカーブを描くことができる。集中領域は、その 2次関数のカーブの極小値に対応 して形成される。上記態様の半導体活性層では、伝導帯のエネルギー準位の極小 値に対応する領域に電子が局所的に集中しており、価電子帯の極大値に対応する 領域に正孔が局所的に集中している。これにより、半導体活性層に作用する内部電 場に杭して、発光効率の低下を顕著に抑制することができる。さらに、伝導帯のエネ ルギー準位がほぼ 2次関数のカーブを描くと、許容量子化エネルギー準位がほぼ等 間隔配置になる。このため、必要に応じて伝導帯の量子化エネルギー準位を増加さ せることが可能になる。したがって、伝導帯に存在する電子量を増大させることができ 、発光効率を向上させることができる。  In this case, the energy level of the conduction band can draw a curve of a second order function in the thickness direction of the semiconductor active layer. The concentrated area is formed corresponding to the minimum value of the curve of the quadratic function. In the semiconductor active layer of the above aspect, electrons are locally concentrated in a region corresponding to the minimum value of the energy level of the conduction band, and holes are locally concentrated in a region corresponding to the maximum value of the valence band. is doing. As a result, it is possible to remarkably suppress a decrease in luminous efficiency by piled on an internal electric field acting on the semiconductor active layer. Furthermore, when the energy level of the conduction band draws a curve of a quadratic function, the allowed quantization energy levels are arranged at approximately equal intervals. For this reason, the quantization energy level of the conduction band can be increased as necessary. Therefore, the amount of electrons existing in the conduction band can be increased, and the light emission efficiency can be improved.
[0007] 下側半導体クラッド層と半導体活性層と上側クラッド層力 Al Ga In —― N (0≤X ≤1、 0≤Y≤1、 0≤1—X— Y≤l)を主材料として形成されているのが好ましい。ァ ルミ-ゥム (A1)の含有量を増カロさせればバンドギャップは広くなり、含有量を減少さ せればバンドギャップは狭くなる。インジウム(In)の含有量を増加させればバンドギヤ ップは狭くなり、含有量を減少させればバンドギャップは広くなる。アルミニウム及び Z又はインジウムの含有量を増減させて、下側半導体クラッド層と半導体活性層と上 側クラッド層の間に、所望のバンドギャップの大小関係を得ることができる。 [0007] Lower semiconductor clad layer, semiconductor active layer, and upper clad layer force Al Ga In —— N (0≤X ≤1, 0≤Y≤1, 0≤1—X—Y≤l). Increasing the content of aluminum (A1) increases the band gap, and decreasing the content decreases the band gap. Increasing the indium (In) content narrows the bandgap, and decreasing the content increases the bandgap. By increasing or decreasing the contents of aluminum and Z or indium, a desired band gap size relationship can be obtained among the lower semiconductor cladding layer, the semiconductor active layer, and the upper cladding layer.
なお、この半導体材料を利用すると、半導体活性層に強い内部電場が発生するこ とが知られている。本発明は、このような内部電場の影響を低下させる技術である。し たがって、本発明は、このような半導体材料を利用する場合に特に有用である。  It is known that when this semiconductor material is used, a strong internal electric field is generated in the semiconductor active layer. The present invention is a technique for reducing the influence of such an internal electric field. Therefore, the present invention is particularly useful when such a semiconductor material is used.
[0008] 下側半導体クラッド層は GaNを主材料として形成されており、半導体活性層は InG aNを主材料として形成されており、上側半導体クラッド層は GaNを主材料として形成 されているのが好ましい。半導体活性層の Inの含有量は、厚み方向の下側で少なく 、中間で多ぐ上側で少ないことが好ましい。 [0008] The lower semiconductor clad layer is formed using GaN as a main material, the semiconductor active layer is formed using InGaN as a main material, and the upper semiconductor clad layer is formed using GaN as a main material. preferable. It is preferable that the content of In in the semiconductor active layer is small on the lower side in the thickness direction and small on the upper side in the middle.
半導体活性層の Inの含有量を、厚み方向の下側で少なぐ中間で多ぐ上側で少 なく調整すると、半導体活性層のバンドギャップが、厚み方向の下側で広ぐ中間で 狭ぐ上側で広い構造が得られる。半導体活性層の中間に集中領域が形成され、本 発明の半導体発光素子を具現ィ匕することができる。  When the In content of the semiconductor active layer is adjusted slightly higher in the middle and lower in the thickness direction, the band gap of the semiconductor active layer becomes narrower in the middle and wider in the thickness direction. A wide structure can be obtained. A concentrated region is formed in the middle of the semiconductor active layer, and the semiconductor light emitting device of the present invention can be implemented.
[0009] 本発明は、半導体受光素子に対しても有用である。  The present invention is also useful for a semiconductor light receiving element.
即ち、本発明の半導体受光素子は、半導体受光層と、その半導体受光層に直接 的又は間接的に接する一方の主電極と、その半導体受光層に直接的又は間接的に 接する他方の主電極を備えている。ここで、半導体受光層のバンドギャップ力 厚み 方向に変化して 、ることを特徴として 、る。  That is, the semiconductor light-receiving element of the present invention comprises a semiconductor light-receiving layer, one main electrode directly or indirectly in contact with the semiconductor light-receiving layer, and the other main electrode directly or indirectly in contact with the semiconductor light-receiving layer. I have. Here, the band gap force of the semiconductor light-receiving layer changes in the thickness direction, and is characterized by that.
この場合も同様に、半導体受光層の少なくとも一部に、電子または正孔が安定的に 存在できるエネルギー準位の集中領域が形成される。この集中領域のエネルギー準 位は、残部の半導体受光層のエネルギー準位に囲まれており、電子又は正孔が集 中して存在することができる。半導体受光層のエネルギー準位が半導体受光層に作 用する内部電場によって傾斜したとしても、伝導帯の集中領域と価電子帯の集中領 域の厚み方向の位置関係は維持される。したがって、半導体受光層が光エネルギー を受けると、電子は最短距離で伝導帯に励起される。受光効率の低下が顕著に抑制 される。本発明の半導体受光素子では、半導体受光層の伝導帯のエネルギー準位 と価電子帯のエネルギー準位が傾斜したとしても、電子と正孔が集中領域内に集中 して存在することができる。本発明の半導体受光素子では、半導体受光層の伝導帯 のエネルギー準位と価電子帯のエネルギー準位が傾斜したとしても、集中領域のバ ンドギャップは安定して 、るので、受光効率の低下が抑制される。 In this case as well, a concentrated region of energy levels where electrons or holes can stably exist is formed in at least a part of the semiconductor light receiving layer. The energy level of this concentrated region is surrounded by the energy level of the remaining semiconductor light receiving layer, and electrons or holes can be concentrated and exist. Even if the energy level of the semiconductor light-receiving layer is tilted by the internal electric field applied to the semiconductor light-receiving layer, the positional relationship in the thickness direction between the conduction band concentration region and the valence band concentration region is maintained. Therefore, the semiconductor light receiving layer is light energy. The electrons are excited to the conduction band at the shortest distance. The decrease in light receiving efficiency is remarkably suppressed. In the semiconductor light receiving element of the present invention, even if the energy level of the conduction band and the energy level of the valence band of the semiconductor light receiving layer are inclined, electrons and holes can be concentrated in the concentration region. In the semiconductor light-receiving element of the present invention, even if the energy level of the conduction band and the energy level of the valence band of the semiconductor light-receiving layer are inclined, the band gap in the concentrated region is stable, so that the light-receiving efficiency decreases. Is suppressed.
[0010] 半導体受光層の伝導帯のエネルギー準位が、厚み方向に連続的に変化するととも に厚み方向の略中間位置に一つの極小値を持つことが好ましい。この場合、半導体 受光層の価電子帯のエネルギー準位は、厚み方向に連続的に変化するとともに厚 み方向の略中間位置に一つの極大値を持っている。  [0010] It is preferable that the energy level of the conduction band of the semiconductor light-receiving layer continuously changes in the thickness direction and has one minimum value at a substantially intermediate position in the thickness direction. In this case, the energy level of the valence band of the semiconductor light-receiving layer continuously changes in the thickness direction and has one maximum value at a substantially intermediate position in the thickness direction.
この場合の伝導帯のエネルギー準位は、半導体受光層の厚み方向にほぼ 2次関 数のカーブを描くことができる。集中領域は、その 2次関数のカーブの極小値に対応 して形成される。上記態様の半導体受光層では、伝導帯のエネルギー準位の極小 値に対応する領域に電子が局所的に集中しており、価電子帯の極大値に対応する 領域に正孔が局所的に集中している。また、伝導帯エネルギー準位がほぼ 2次関数 のカーブを描くと、許容量子化エネルギー準位がほぼ等間隔配置になる。このため、 必要に応じて伝導帯の量子化エネルギー準位を増加させることが可能になる。した がって、伝導帯に存在する電子量を増大させることができ、受光効率を向上させるこ とがでさる。  In this case, the energy level of the conduction band can draw a curve of a second order function in the thickness direction of the semiconductor light receiving layer. The concentrated area is formed corresponding to the minimum value of the curve of the quadratic function. In the semiconductor light receiving layer of the above aspect, electrons are locally concentrated in a region corresponding to the minimum value of the energy level of the conduction band, and holes are locally concentrated in a region corresponding to the maximum value of the valence band. is doing. Also, if the conduction band energy level draws a curve of a quadratic function, the allowed quantization energy levels are arranged at almost equal intervals. For this reason, the quantization energy level of the conduction band can be increased as necessary. Therefore, the amount of electrons existing in the conduction band can be increased, and the light receiving efficiency can be improved.
[0011] 本発明者は、上記の半導体発光素子又は半導体受光素子を製造するのに好適な 半導体発光素子又は受光素子の製造方法も創作した。  The inventor has also created a method for manufacturing a semiconductor light-emitting element or light-receiving element suitable for manufacturing the semiconductor light-emitting element or semiconductor light-receiving element described above.
本発明の半導体発光素子又は半導体受光素子の製造方法は、半導体層上に半 導体活性層又は半導体受光層を結晶成長するときに、初期段階力 中期段階に向 けては半導体活性層又は半導体受光層のバンドギャップが経時的に小さくなる条件 に調整する前半工程を備えている。さらに、中期段階から終期段階に向けては半導 体活性層又は半導体受光層のバンドギャップが経時的に大きくなる条件に調整する 後半工程を備えている。  The method for producing a semiconductor light-emitting device or semiconductor light-receiving device according to the present invention provides a semiconductor active layer or a semiconductor light-receiving device for the initial stage force and the middle stage when a semiconductor active layer or a semiconductor light-receiving layer is grown on the semiconductor layer. The first half of the process is adjusted so that the band gap of the layer becomes smaller over time. Furthermore, from the middle stage to the final stage, there is provided a second half process in which the band gap of the semiconductor active layer or the semiconductor light receiving layer is adjusted to increase with time.
上記の製造方法を実施すると、前半工程と後半工程の切り替わるタイミングで、半 導体活性層中又は半導体受光層中に集中領域が形成される。本発明の半導体発 光素子又は半導体受光素子を得ることができる。 When the above manufacturing method is carried out, at the timing when the first half process and the second half process are switched, Concentrated regions are formed in the conductor active layer or the semiconductor light receiving layer. The semiconductor light emitting device or semiconductor light receiving device of the present invention can be obtained.
[0012] 半導体活性層又は半導体受光層は、主材料として In Ga N (0≤X≤1)が用い  [0012] In Ga N (0≤X≤1) is used as the main material for the semiconductor active layer or semiconductor light receiving layer.
X 1 -X  X 1 -X
られるのが好ましい。この場合、前半工程では、初期段階から中期段階に向けて結 晶構造中の Inの含有量が大きくなる条件に調整し、後半工程では、中期段階から終 期段階に向けて結晶構造中の Inの含有量が小さくなる条件に調整するのが好ましい  It is preferred that In this case, in the first half process, the In content in the crystal structure is adjusted from the initial stage to the middle stage, and the In content in the crystal structure is adjusted from the middle stage to the final stage in the second half process. It is preferable to adjust to the condition that the content of
In Ga N (0≤X≤ 1)の半導体材料では、 Inの含有量が多いほど、バンドギヤッIn semiconductor materials with In Ga N (0≤X≤ 1), the higher the In content, the higher the band gap.
X 1 -X X 1 -X
プが狭くなる。したがって、上記の製造方法を実施すると、前半工程と後半工程の切 り替わるタイミングで、半導体活性層中又は半導体受光層中の Inの含有量が最大と なる領域が形成される。これにより、半導体活性層中又は半導体受光層中に集中領 域が形成され、本発明の半導体発光素子又は半導体受光素子を得ることができる。  The tape becomes narrower. Therefore, when the above manufacturing method is performed, a region in which the In content in the semiconductor active layer or the semiconductor light receiving layer is maximized is formed at the timing when the first half process and the second half process are switched. Thereby, a concentrated region is formed in the semiconductor active layer or the semiconductor light receiving layer, and the semiconductor light emitting device or the semiconductor light receiving device of the present invention can be obtained.
[0013] 前半工程では、初期段階から中期段階に向けて結晶成長温度が低くなる条件に調 整し、後半工程では、中期段階力 終期段階に向けて結晶成長温度が高くなる条件 に調整することが好ましい。 [0013] In the first half process, the crystal growth temperature should be adjusted to be lower from the initial stage to the middle stage, and in the second half process, the medium stage must be adjusted to the condition in which the crystal growth temperature is increased toward the final stage. Is preferred.
In Ga N (0≤X≤1)の半導体材料を結晶成長するときに、成長温度が低いほ When crystal growth of InGaN (0≤X≤1) semiconductor material, the growth temperature is lower.
X 1 -X X 1 -X
ど、 Inの含有量を多くすることができる。したがって、上記の製造方法を実施すると、 前半工程と後半工程の切り替わるタイミングで、半導体活性層中の Inの含有量が最 大となる領域が形成される。これにより、半導体活性層中又は半導体受光層中に集 中領域が形成され、本発明の半導体発光素子又は半導体受光素子を得ることがで きる。  However, the In content can be increased. Therefore, when the above manufacturing method is performed, a region in which the In content in the semiconductor active layer is maximized is formed at the timing when the first half process and the second half process are switched. As a result, a concentration region is formed in the semiconductor active layer or in the semiconductor light receiving layer, and the semiconductor light emitting device or semiconductor light receiving device of the present invention can be obtained.
[0014] 厚み方向にバンドギャップが変化している半導体活性層を利用すると、内部電場に よって発光効率が低下することが抑制された半導体発光素子を得ることができる。ま た、厚み方向にバンドギャップが変化している半導体受光層を利用すると、内部電場 によって受光効率が低下することが抑制された半導体受光素子を得ることができる。 図面の簡単な説明  [0014] When a semiconductor active layer whose band gap is changed in the thickness direction is used, a semiconductor light emitting device in which the light emission efficiency is suppressed from being reduced by the internal electric field can be obtained. In addition, when a semiconductor light-receiving layer whose band gap changes in the thickness direction is used, a semiconductor light-receiving element in which the light-receiving efficiency is suppressed from being reduced by an internal electric field can be obtained. Brief Description of Drawings
[0015] [図 1]実施例の半導体発光素子の要部縦断面図を示す。  [0015] FIG. 1 is a longitudinal sectional view of an essential part of a semiconductor light emitting device of an example.
[図 2] (a)実施例の半導体発光素子のバンドダイアグラムを示す。 (b)動作電圧が印 カロされたときの、実施例の半導体発光素子のバンドダイアグラムを示す。 FIG. 2 (a) shows a band diagram of the semiconductor light emitting device of the example. (b) Operating voltage is marked The band diagram of the semiconductor light-emitting device of an example when it is calorified is shown.
[図 3] (a)一つの変形例のバンドダイアグラムを示す。(b)他の一つの変形例のバンド ダイアグラムを示す。(c)他の一つの変形例のバンドダイアグラムを示す。  [Fig. 3] (a) A band diagram of one modified example is shown. (B) A band diagram of another modification is shown. (C) A band diagram of another modification is shown.
圆 4]実施例の半導体発光素子の積層構造を示す。  IV] Shows the laminated structure of the semiconductor light emitting device of the example.
[図 5] (a)半導体活性層の成長温度の変動を示す。 (b)比較例の半導体活性層の成 長温度の変動を示す。  [Fig. 5] (a) Changes in the growth temperature of the semiconductor active layer. (b) shows the variation in the growth temperature of the semiconductor active layer of the comparative example.
[図 6]実施例の半導体受光素子の要部縦断面図を示す。  FIG. 6 is a longitudinal sectional view of a main part of the semiconductor light receiving element of the example.
[図 7]従来構造の半導体発光素子のバンドダイアグラムを示す。  FIG. 7 shows a band diagram of a conventional semiconductor light emitting device.
[図 8] (a)従来構造の半導体発光素子の動作電圧を印加する前のバンドダイアグラム を示す。 (b)従来構造の半導体発光素子の動作電圧を印カロしたときのバンドダイァ グラムを示す。  [Fig. 8] (a) A band diagram before applying the operating voltage of a conventional semiconductor light emitting device is shown. (b) A band diagram when the operating voltage of a semiconductor light emitting device with a conventional structure is marked.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 本発明の特徴を列記する。 [0016] The features of the present invention will be listed.
(1) 半導体活性層又は半導体受光層に利用される半導体材料の種類に関しては、 特に制限はない。内部電場が少しでも発生している半導体材料であれば、本明細書 で開示される技術によって有用な効果を得ることができる。  (1) There are no particular restrictions on the type of semiconductor material used for the semiconductor active layer or semiconductor light receiving layer. If the semiconductor material generates even a small amount of internal electric field, a useful effect can be obtained by the technique disclosed in this specification.
(2) 内部電場としては、典型的にはピエゾ電場を挙げることができる。したがって、 ヘテロ接合を有する半導体発光素子及び半導体受光素子では、本明細書で開示さ れる技術が特に有用である。  (2) A typical example of the internal electric field is a piezo electric field. Therefore, the technology disclosed in this specification is particularly useful for a semiconductor light emitting device and a semiconductor light receiving device having a heterojunction.
(3) 窒化物系半導体材料は圧電効果が大きい材料なので、強いピエゾ電場が発生 し易い。したがって、窒化物半導体材料を利用する半導体発光素子及び半導体受 光素子では、本明細書で開示される技術が特に有用である。  (3) Since nitride-based semiconductor materials have a large piezoelectric effect, a strong piezoelectric field is likely to occur. Therefore, the technology disclosed in this specification is particularly useful in a semiconductor light emitting device and a semiconductor light receiving device that use a nitride semiconductor material.
(4) 半導体活性層又は半導体受光層は、その伝導帯及び価電子帯のエネルギー 準位が、厚み方向に 2次関数状、段差状、又は急峻なピーク状に変化しているのが 好ましい。  (4) It is preferable that the energy level of the conduction band and the valence band of the semiconductor active layer or the semiconductor light-receiving layer change in a quadratic function shape, a step shape, or a sharp peak shape in the thickness direction.
実施例  Example
[0017] (第 1実施例) [0017] (First embodiment)
図 1に、半導体発光素子 10の要部縦断面図を模式的に示す。 半導体発光素子 10は、サファイア基板 22を備えている。半導体発光素子 10は、サ ファイア基板 22上に形成されている n型の GaN力もなる下側半導体クラッド層 24と、 I nGaN力もなる半導体活性層 30と、 p型の GaN力もなる上側半導体クラッド層 26の 積層構造 52を備えている。下側半導体クラッド層 24の一部には、負電極 42が接して いる。上側半導体クラッド層 26の一部には、正電極 44が接している。半導体活性層 30は、伝導帯に存在する電子と、価電子帯に存在する正孔が結合して発光する場 を提供している。 FIG. 1 schematically shows a longitudinal sectional view of a main part of the semiconductor light emitting device 10. The semiconductor light emitting device 10 includes a sapphire substrate 22. The semiconductor light emitting device 10 includes a lower semiconductor clad layer 24 having n-type GaN force formed on a sapphire substrate 22, a semiconductor active layer 30 having InGaN force, and an upper semiconductor clad layer also having p-type GaN force. 26 laminated structures 52 are provided. A negative electrode 42 is in contact with a part of the lower semiconductor clad layer 24. A positive electrode 44 is in contact with a part of the upper semiconductor clad layer 26. The semiconductor active layer 30 provides a field where electrons present in the conduction band and holes present in the valence band combine to emit light.
[0018] 図 2 (a)に、半導体発光素子 10の積層構造 52のバンドダイアグラムを示す。横軸が 積層構造 52の厚み方向を示しており、縦軸がエネルギー準位の高低を示している。 半導体活性層 30のバンドギャップは、下側半導体クラッド層 24のバンドギャップと 上側半導体クラッド層 26のバンドギャップのどちらよりも狭く形成されている。さらに、 半導体活性層 30のバンドギャップは、厚み方向に変化して形成されている。半導体 活性層 30の伝導帯のエネルギー準位は、厚み方向に連続的に変化するとともに、 厚み方向の略中間位置に一つの極小値を持って!/、る。半導体活性層 30の伝導帯 のエネルギー準位は、厚み方向にほぼ 2次関数のカーブを描いている。半導体活性 層 30の伝導帯のエネルギー準位は、厚み方向に無段階のカーブを描!ヽて 、るとも いえる。また、半導体活性層 30の価電子帯のエネルギー準位は、厚み方向に連続 的に変化するとともに、厚み方向の略中間位置に一つの極大値を持っている。半導 体活性層 30の価電子帯のエネルギー準位は、厚み方向に負のほぼ 2次関数のカー ブを描いている。半導体活性層 30の Inの含有量は、厚み方向の下側(下側クラッド 層 24側)で少なぐ中間で多ぐ上側(上側クラッド層 26側)で少ない。したがって、半 導体活性層 30のバンドギャップは、厚み方向の下側で広ぐ中間で狭ぐ上側で広く 形成されている。  FIG. 2 (a) shows a band diagram of the stacked structure 52 of the semiconductor light emitting device 10. The horizontal axis shows the thickness direction of the laminated structure 52, and the vertical axis shows the energy level. The band gap of the semiconductor active layer 30 is narrower than both the band gap of the lower semiconductor clad layer 24 and the band gap of the upper semiconductor clad layer 26. Further, the band gap of the semiconductor active layer 30 is formed to change in the thickness direction. The energy level of the conduction band of the semiconductor active layer 30 continuously changes in the thickness direction, and has one minimum value at a substantially intermediate position in the thickness direction. The energy level of the conduction band of the semiconductor active layer 30 draws a curve of a quadratic function in the thickness direction. It can be said that the energy level of the conduction band of the semiconductor active layer 30 draws a stepless curve in the thickness direction. In addition, the energy level of the valence band of the semiconductor active layer 30 continuously changes in the thickness direction, and has one maximum value at a substantially intermediate position in the thickness direction. The energy level of the valence band of the semiconductor active layer 30 draws a curve of a nearly quadratic function that is negative in the thickness direction. The content of In in the semiconductor active layer 30 is small on the lower side in the thickness direction (lower clad layer 24 side) and slightly on the upper side (upper clad layer 26 side). Therefore, the band gap of the semiconductor active layer 30 is formed wide on the middle and narrower on the lower side in the thickness direction and wider on the upper side.
[0019] 半導体活性層 30の伝導帯のエネルギー準位には、半導体活性層 30の厚み方向 の略中間位置に、電子が安定して存在するエネルギー準位の集中領域 32aが形成 されている。集中領域 32aは、周囲の伝導帯のエネルギー準位に囲まれており、電 子が集中して存在することができる。半導体活性層 30の価電子帯のエネルギー準位 には、半導体活性層 30の厚み方向の略中間位置に、正孔が安定して存在するエネ ルギー準位の集中領域 32bが形成されている。集中領域 32bは、周囲の価電子帯 のエネルギー準位に囲まれており、正孔が集中して存在することができる。 At the energy level of the conduction band of the semiconductor active layer 30, an energy level concentration region 32 a in which electrons stably exist is formed at a substantially intermediate position in the thickness direction of the semiconductor active layer 30. The concentrated region 32a is surrounded by the energy level of the surrounding conduction band, and electrons can be concentrated. In the energy level of the valence band of the semiconductor active layer 30, the energy in which holes exist stably at a substantially intermediate position in the thickness direction of the semiconductor active layer 30. A concentrated region 32b of ruby levels is formed. The concentrated region 32b is surrounded by the energy level of the surrounding valence band, and holes can be concentrated.
集中領域 32a、 32bは、厚み方向に狭幅なポテンシャルの井戸を形成している。集 中領域 32aは、その伝導帯のエネルギー準位が周囲の半導体活性層 30の伝導帯 のエネルギー準位に囲まれており、その伝導帯のエネルギー準位が谷を形成して ヽ る領域である。集中領域 32bは、その価電子帯のエネルギー準位が周囲の半導体 活性層 30の価電子帯のエネルギー準位に囲まれており、その価電子帯のエネルギ 一準位が山を形成している領域である。したがって、伝導帯の集中領域 32aには、電 子が局所的に集中しており、価電子帯の集中領域 32bには、正孔が局所的に集中し ている。伝導帯の集中領域 32aと価電子帯の集中領域 32bの位置関係は、半導体 活性層 30の厚み方向に略一致して 、る。  The concentrated regions 32a and 32b form a well having a narrow potential in the thickness direction. The concentration region 32a is a region where the energy level of the conduction band is surrounded by the energy level of the conduction band of the surrounding semiconductor active layer 30, and the energy level of the conduction band forms a valley. is there. In the concentrated region 32b, the energy level of the valence band is surrounded by the energy level of the valence band of the surrounding semiconductor active layer 30, and the energy level of the valence band forms a mountain. It is an area. Therefore, electrons are locally concentrated in the concentrated region 32a of the conduction band, and holes are concentrated locally in the concentrated region 32b of the valence band. The positional relationship between the conduction band concentration region 32 a and the valence band concentration region 32 b is substantially the same as the thickness direction of the semiconductor active layer 30.
なお、伝導帯の集中領域 32aと価電子帯の集中領域 32bの間のバンドギャップ V  Note that the band gap V between the conduction band concentration region 32a and the valence band concentration region 32b
2 は、所望する発光波長が得られる幅に調整されて 、る。  2 is adjusted to a width that provides a desired emission wavelength.
後の製造方法で説明するように、下側半導体クラッド層 24と、半導体活性層 30と、 上側半導体クラッド層 26の積層構造 52は、サファイア基板 22上に結晶成長して形 成される。したがって、積層構造 52には、サファイア基板 22との格子不整合に起因し て、強い内部電場 (ピエゾ電場)が発生している。図 2 (a)に示すように、内部電場 (ピ ェゾ電場)は、上側半導体クラッド層 26側から下側半導体クラッド層 24側に向けた方 向に発生している。  As will be described later in the manufacturing method, the laminated structure 52 of the lower semiconductor clad layer 24, the semiconductor active layer 30, and the upper semiconductor clad layer 26 is formed by crystal growth on the sapphire substrate 22. Therefore, a strong internal electric field (piezoelectric field) is generated in the multilayer structure 52 due to lattice mismatch with the sapphire substrate 22. As shown in FIG. 2 (a), the internal electric field (piezoelectric field) is generated in the direction from the upper semiconductor clad layer 26 side toward the lower semiconductor clad layer 24 side.
本実施例の半導体活性層 30では、キャリアが集中し易い集中領域 32aが、キャリア が存在しづらい周囲の伝導帯のエネルギー準位に取り囲まれている。また、本実施 例の半導体活性層 30では、キャリアが集中し易い集中領域 32bが、周囲の価電子 帯のエネルギー準位に取り囲まれている。このため、図 7に示す従来構造のバンドダ ィアグラムと比較すると分力るように、内部電場の影響にも関わらず、電子は伝導帯 の集中領域 32aに集中して存在しており、正孔は価電子帯の集中領域 32bに集中し て存在している。伝導帯に存在している電子と価電子帯に存在している正孔力 半 導体活性層 30の厚み方向の上面側と下面側に分離して偏在することが防止されて いる。したがって、電子と正孔の間の実空間距離が最短となっており、発光効率の低 下が抑制されている。本実施例の半導体発光素子 10では、伝導帯に存在している 電子と価電子帯に存在している正孔力 半導体活性層 30の厚み方向の上面側と下 面側に分離して偏在しないことによって、所望する発光波長以外の発光波長に励起 エネルギーが消費されることが抑制されている。本実施例の半導体発光素子 10では 、内部電場によって半導体活性層 30の伝導帯のエネルギー準位と価電子帯のエネ ルギー準位が傾斜したとして、伝導帯の集中領域 32aと価電子帯の集中領域 32bの 間のバンドギャップ Vに基づいて、所望する発光波長が得られる。本実施例の半導 In the semiconductor active layer 30 of the present embodiment, the concentration region 32a where carriers are likely to concentrate is surrounded by the energy level of the surrounding conduction band where carriers are difficult to exist. Further, in the semiconductor active layer 30 of the present embodiment, the concentrated region 32b where carriers are likely to concentrate is surrounded by the energy level of the surrounding valence band. Therefore, as compared with the band diagram of the conventional structure shown in FIG. 7, the electrons are concentrated in the conduction band concentration region 32a despite the influence of the internal electric field, and the holes are It is concentrated in the valence band concentration region 32b. The electrons existing in the conduction band and the hole force semiconductor active layer 30 existing in the valence band are prevented from being unevenly distributed on the upper surface side and the lower surface side in the thickness direction. Therefore, the real space distance between electrons and holes is the shortest, and the luminous efficiency is low. The bottom is suppressed. In the semiconductor light emitting device 10 of this example, electrons existing in the conduction band and hole forces existing in the valence band are separated and separated from the upper surface side and the lower surface side in the thickness direction of the semiconductor active layer 30. This suppresses the excitation energy from being consumed at emission wavelengths other than the desired emission wavelength. In the semiconductor light emitting device 10 of this example, it is assumed that the energy level of the conduction band of the semiconductor active layer 30 and the energy level of the valence band are inclined by the internal electric field, and the concentration region 32a of the conduction band and the concentration of the valence band are Based on the band gap V between the regions 32b, the desired emission wavelength is obtained. Semiconductor of this example
2  2
体発光素子 10では、発光効率の低下が抑制されている。 In the body light emitting element 10, a decrease in luminous efficiency is suppressed.
また、半導体発光素子 10は、次の特徴を有している。  The semiconductor light emitting device 10 has the following characteristics.
半導体発光素子 10を動作させる場合、正電極 44に負電極 42よりも正の電圧を印 加する。動作電圧が印加されると、上側半導体クラッド層 26から半導体活性層 30〖こ 正孔が供給され、下側半導体クラッド層 24から半導体活性層 30に電子が供給される 。半導体活性層 30では、供給された電子と正孔が結合し、バンドギャップに基づいた 波長の光を生成する。  When the semiconductor light emitting element 10 is operated, a positive voltage is applied to the positive electrode 44 more than the negative electrode 42. When an operating voltage is applied, 30 holes in the semiconductor active layer are supplied from the upper semiconductor clad layer 26, and electrons are supplied from the lower semiconductor clad layer 24 to the semiconductor active layer 30. In the semiconductor active layer 30, the supplied electrons and holes combine to generate light having a wavelength based on the band gap.
ここで、図 8に示す比較例の半導体発光素子の場合を説明する。この比較例の半 導体発光素子では、 InGaNの半導体活性層の伝導帯のエネルギーが厚み方向に 一定に形成されている。図 8 (a)は、半導体発光素子に動作電圧を印加する前のバ ンドダイアグラムである。図 8 (b)は、半導体発光素子に動作電圧を印加したときのバ ンドダイアグラムである。  Here, the case of the semiconductor light emitting device of the comparative example shown in FIG. 8 will be described. In the semiconductor light emitting device of this comparative example, the energy of the conduction band of the semiconductor active layer of InGaN is formed constant in the thickness direction. Figure 8 (a) is a band diagram before applying an operating voltage to the semiconductor light emitting device. Figure 8 (b) is a band diagram when an operating voltage is applied to the semiconductor light emitting device.
半導体発光素子を動作させるために、上側半導体クラッド層 (p-GaN)に正電圧 を印加すると、印加される電圧に基づいて、積層構造の伝導帯のエネルギー準位と 価電子帯のエネルギー準位が傾斜する。伝導帯のエネルギー準位と価電子帯のェ ネルギー準位が傾斜すると、半導体活性層のバンドギャップが Vから V に変化する  When a positive voltage is applied to the upper semiconductor cladding layer (p-GaN) to operate the semiconductor light emitting device, the energy level of the conduction band and the energy level of the valence band are determined based on the applied voltage. Tilts. When the energy level of the conduction band and the energy level of the valence band are tilted, the band gap of the semiconductor active layer changes from V to V.
8a 8b 8a 8b
。このため、半導体発光素子の発光波長が、印加する電圧に基づいてシフトするとい う問題がある。 . For this reason, there is a problem that the emission wavelength of the semiconductor light emitting element shifts based on the applied voltage.
一方、本実施例の半導体発光素子は、この発光波長のシフトを顕著に抑制すること 力 Sできる。図 2 (b)に、本実施例の半導体発光素子 10に動作電圧を印カロしたときの、 積層構造のバンドダイアグラムを示す。なお、図中の破線は、動作電圧を印加する前 の、積層構造のバンドダイアグラムである。 On the other hand, the semiconductor light emitting device of this example can significantly suppress the shift of the emission wavelength. FIG. 2 (b) shows a band diagram of the laminated structure when operating voltage is applied to the semiconductor light emitting device 10 of this example. In addition, the broken line in the figure is before applying the operating voltage. It is a band diagram of a laminated structure.
図 2 (b)に示すように、本実施例の半導体発光素子 10では、動作電圧を印加する ことによって、伝導帯のエネルギー準位と価電子帯のエネルギー準位が傾斜しても、 伝導帯のエネルギー準位と価電子帯のエネルギー準位は平行な関係を維持しなが ら変化する。したがって、伝導帯の集中領域 32aと価電子帯の集中領域 32bの間の バンドギャップ Vは、動作電圧が印加されたとしても、実質的に変化しない。半導体  As shown in FIG. 2 (b), in the semiconductor light emitting device 10 of this example, even when the energy level of the conduction band and the energy level of the valence band are inclined by applying an operating voltage, the conduction band The energy level of the valence band and the energy level of the valence band change while maintaining a parallel relationship. Accordingly, the band gap V between the conduction band concentration region 32a and the valence band concentration region 32b does not substantially change even when an operating voltage is applied. Semiconductor
2  2
発光素子 10では、動作電圧が印加されたとしても、発光波長は安定している。  In the light-emitting element 10, the emission wavelength is stable even when an operating voltage is applied.
したがって、半導体発光素子 10に半導体活性層 30を採用することによって、内部 電場の影響に抗して発光効率の低下を抑制することができる。さらに、半導体発光素 子 10に半導体活性層 30を採用することによって、動作電圧の影響に抗して発光波 長のシフトを抑制することができる。  Therefore, by adopting the semiconductor active layer 30 in the semiconductor light emitting device 10, it is possible to suppress a decrease in light emission efficiency against the influence of the internal electric field. Furthermore, by adopting the semiconductor active layer 30 for the semiconductor light emitting device 10, the shift of the emission wavelength can be suppressed against the influence of the operating voltage.
[0022] 伝導帯のエネルギー準位がほぼ 2次関数のカーブを描くと、その 2次関数のカーブ の曲率に応じて伝導帯の量子化エネルギー準位を増加させることも、減少させること も可能になる。 2次関数のカーブの曲率を小さくすると、伝導帯の量子化エネルギー 準位を増加させることができる。この場合は、伝導帯に存在する電子量を増大させる ことができ、発光効率を向上させることができる。 [0022] When the energy level of the conduction band draws a curve of a quadratic function, the quantization energy level of the conduction band can be increased or decreased depending on the curvature of the curve of the quadratic function. become. Decreasing the curvature of the quadratic function curve can increase the quantization energy level of the conduction band. In this case, the amount of electrons existing in the conduction band can be increased, and the light emission efficiency can be improved.
[0023] 図 3に、有用な半導体活性層の変形例を示す。図 3は、変形例の半導体活性層の 伝導帯のエネルギー準位と価電子帯のエネルギー準位を示している。 FIG. 3 shows a modified example of a useful semiconductor active layer. Figure 3 shows the energy levels of the conduction band and the valence band of the semiconductor active layer of the modification.
図 3 (a)は、半導体活性層の伝導帯のエネルギー準位と価電子帯のエネルギー準 位が、半導体活性層の厚み方向に段差状に変化している例である。半導体活性層 の略中間に集中領域 32a、 32bが形成されており、電子と正孔を集中させることがで きる。この半導体活性層は、内部電場の影響に抗して発光効率の低下を抑制するこ とがでさる。  Fig. 3 (a) is an example in which the energy level of the conduction band and the energy level of the valence band of the semiconductor active layer change in steps in the thickness direction of the semiconductor active layer. Concentrated regions 32a and 32b are formed approximately in the middle of the semiconductor active layer, so that electrons and holes can be concentrated. This semiconductor active layer can suppress a decrease in luminous efficiency against the influence of the internal electric field.
図 3 (b)は、半導体活性層の伝導帯のエネルギー準位と価電子帯のエネルギー準 位力 半導体活性層の厚み方向に急峻なピークが形成されるように変化して ヽる例 である。急峻なピークが半導体活性層の略中間に形成されており、そのピークが集 中領域 32a、 32bとなる。この半導体活性層は、集中領域 32a、 32bに電子と正孔を 集中させることができる。この半導体活性層は、内部電場の影響に抗して発光効率 の低下を抑制することができる。 Fig. 3 (b) is an example in which the energy level of the conduction band of the semiconductor active layer and the energy level force of the valence band change so that a sharp peak is formed in the thickness direction of the semiconductor active layer. . A steep peak is formed approximately in the middle of the semiconductor active layer, and the peaks become the concentration regions 32a and 32b. This semiconductor active layer can concentrate electrons and holes in the concentrated regions 32a and 32b. This semiconductor active layer has a luminous efficiency against the influence of internal electric field Can be suppressed.
図 3 (c)は、半導体活性層の伝導帯エネルギー準位と価電子帯のエネルギー準位 力 半導体活性層の厚み方向に下側端力 上側端まで連続して下降して 、る例であ る。この場合、半導体活性層の上側端に集中領域 32a、 32bが形成されており、電子 と正孔魏中させることができる。この半導体活性層は、内部電場の影響に抗して発 光効率の低下を抑制することができる。  Fig. 3 (c) shows an example where the conduction band energy level of the semiconductor active layer and the energy level force of the valence band are continuously lowered from the lower edge force to the upper edge in the thickness direction of the semiconductor active layer. The In this case, concentrated regions 32a and 32b are formed at the upper end of the semiconductor active layer, and can be trapped in electrons and holes. This semiconductor active layer can suppress a decrease in light emission efficiency against the influence of the internal electric field.
[0024] 図 4は、半導体発光素子 10に利用されている積層構造 52の詳細な構成を示して いる。なお、図 1では、積層構造 52を簡単ィ匕して図示していた力 実際には図 4に示 すように、複数の層を備えているのが好ましい。 FIG. 4 shows a detailed configuration of the laminated structure 52 used in the semiconductor light emitting device 10. In FIG. 1, the force illustrated by simply showing the laminated structure 52 is actually preferably provided with a plurality of layers as shown in FIG. 4.
次に、図 4を参照して、積層構造 52の製造方法を説明する。積層構造 52は、以下 の製造方法を利用することによって得ることができる。なお、以下に説明する製造方 法はその一例であり、その他の製造方法を採用してもよい。  Next, a manufacturing method of the laminated structure 52 will be described with reference to FIG. The laminated structure 52 can be obtained by using the following manufacturing method. Note that the manufacturing method described below is an example, and other manufacturing methods may be adopted.
[0025] まず、有機洗浄及び酸洗浄を施したサファイア基板 22を用意し、そのサファイア基 板 22を MOCVD装置内に設置する。反応面には、 a—面が選択されている。 First, a sapphire substrate 22 that has been subjected to organic cleaning and acid cleaning is prepared, and the sapphire substrate 22 is placed in a MOCVD apparatus. The a-surface is selected as the reaction surface.
次に、サファイア基板 22の温度を 1100°Cに保ちながら、常圧下において、水素ガ ス (H )を流速 10リットル Zminで反応室に供給し、サファイア基板 22の表面をエッチ Next, while maintaining the temperature of the sapphire substrate 22 at 1100 ° C, hydrogen gas (H) was supplied to the reaction chamber at a flow rate of 10 liters Zmin at normal pressure, and the surface of the sapphire substrate 22 was etched.
2 2
ングする。  To
[0026] 次に、サファイア基板 22の温度を 420°Cまで低下させた後に、水素ガス (H )を 20  Next, after the temperature of the sapphire substrate 22 is lowered to 420 ° C., hydrogen gas (H 2) is added to 20
2 リットル Zmin、アンモニアガス(NH )を 15リットル Zmin、 TMAを 2 X 10_5molZminで 2 liters Zmin, ammonia gas (NH) a 15 l Zmin, the TMA at 2 X 10 _5 molZmin
3  Three
反応室に供給し、厚さが 500 Aの窒化アルミニウム (A1N)からなるバッファ層 21をサ ファイア基板 22上に形成する。  A buffer layer 21 made of aluminum nitride (A1N) having a thickness of 500 A is supplied to the reaction chamber and formed on the sapphire substrate 22.
次に、サファイア基板 22の温度を 1130°Cに保ちながら、厚さが 4 mで不純物(Si) の濃度が 3 X 1018cm_3の下側半導体クラッド層 24をバッファ層 21上に形成する。 Next, a lower semiconductor clad layer 24 having a thickness of 4 m and an impurity (Si) concentration of 3 × 10 18 cm _3 is formed on the buffer layer 21 while maintaining the temperature of the sapphire substrate 22 at 1130 ° C. .
[0027] 次に、サファイア基板 22の温度を 850度に保ちながら、水素ガス (H )又は窒素ガ Next, while maintaining the temperature of the sapphire substrate 22 at 850 ° C., hydrogen gas (H 2) or nitrogen gas
2  2
ス(N )を 10リットル Zmin、アンモニアガス(NH )を 12リットル Zmin、 TMGを 1. 93 X  (N) 10 liters Zmin, ammonia gas (NH) 12 liters Zmin, TMG 1.93 X
2 3  twenty three
10_5molZmin、 TMIを 1. 93 X 10_5molZminで反応室に供給し、厚さが 0. 1 mの I n Ga Nからなる第 1下側半導体層 31を下側半導体クラッド層 24上に形成する。10 _5 molZmin, fed to the reaction chamber of TMI with 1. 93 X 10 _5 molZmin, the first lower semiconductor layer 31 thickness is from I n Ga N of 0. 1 m on the lower semiconductor cladding layer 24 Form.
0.05 0.95 0.05 0.95
次に、サファイア基板 22の温度を 885°Cに保ちながら、水素ガス (H )又は窒素ガ ス(N )を 10リットル/ min、アンモニアガス(NH )を 25リットル Zmin、 TMGを 1. 3 X 1Next, while maintaining the temperature of the sapphire substrate 22 at 885 ° C., hydrogen gas (H 2) or nitrogen gas (N) 10 liters / min, ammonia gas (NH) 25 liters Zmin, TMG 1.3 X 1
2 3 twenty three
0_5mOlZminで供給し、厚さが 70Aの GaN力もなる第 2下側半導体層 32を第 1下側 半導体層 31上に形成する。 0 _5 supplied at m O lZmin, to form the second lower semiconductor layer 32 which thickness is even GaN force of 70A on the first lower semiconductor layer 31.
[0028] 次に、サファイア基板 22の温度を変化させながら、水素ガス (H )又は窒素ガス (N Next, while changing the temperature of the sapphire substrate 22, hydrogen gas (H 2) or nitrogen gas (N
2 2 twenty two
)を 10リットル Zmin、アンモニアガス(NH )を 25リットル Zmin、 TMGを 3 X 10_6molZ ) 10 liters Zmin, ammonia gas (NH) 25 liters Zmin, 3 X 10 _6 molZ the TMG
3  Three
min、 TMIを 2 X 10_5molZminで反応室に供給し、厚さが 40 Aの半導体活性層 30を 第 2下側半導体層 32上に形成する。 min, supplying TMI into the reaction chamber at 2 X 10 _5 molZmin, thickness to form a semiconductor active layer 30 of 40 A on the second lower semiconductor layer 32.
具体的な温度変化を、図 5 (a)に示す。  The specific temperature change is shown in Fig. 5 (a).
第 2下側半導体層 32上に半導体活性層 30を結晶成長するときに、前半工程では 、初期段階 (0秒)から中期段階(100秒)に向けて、結晶成長温度が経時的に低くな る条件に調整する。この例では、 750°Cから 720°Cまで連続的に変化させている。 後半工程では、中期段階(100秒)から終期段階 (200秒)に向けて、結晶成長温 度が経時的に高くなる条件に調整する。この例では、 720°Cから 750°Cまで連続的 に変化させている。  When the semiconductor active layer 30 is grown on the second lower semiconductor layer 32, the crystal growth temperature decreases with time from the initial stage (0 seconds) to the middle stage (100 seconds) in the first half process. Adjust to the conditions. In this example, the temperature is continuously changed from 750 ° C to 720 ° C. In the latter half of the process, the crystal growth temperature is adjusted to increase with time from the middle stage (100 seconds) to the final stage (200 seconds). In this example, the temperature is continuously changed from 720 ° C to 750 ° C.
結晶成長温度が低いほど、 Inの含有量を多くすることができる。したがって、上記の 製造方法を実施すると、前半工程と後半工程の切り替わるタイミング(100秒)で、半 導体活性層 30中の Inの含有量が最大となる領域が形成される。これにより、半導体 活性層 30の厚み方向の略中間位置に、 Inの含有量が最大となる領域が形成される 。本実施例のように、温度変化の増減を連続的に制御することによって、半導体活性 層 30の伝導帯のエネルギー準位は、厚み方向にほぼ 2次関数のカーブを描くことが できる。半導体活性層 30の組成は、 In Ga Nで表され、その Xは、 0. 25〜0. 5の  The lower the crystal growth temperature, the greater the In content. Therefore, when the above manufacturing method is performed, a region in which the In content in the semiconductor active layer 30 is maximized is formed at the timing (100 seconds) at which the first half process and the second half process are switched. As a result, a region where the In content is maximized is formed at a substantially intermediate position in the thickness direction of the semiconductor active layer 30. As in this embodiment, by continuously controlling the increase / decrease in temperature change, the energy level of the conduction band of the semiconductor active layer 30 can draw a curve of a quadratic function in the thickness direction. The composition of the semiconductor active layer 30 is represented by InGaN, and its X is from 0.25 to 0.5.
X 1 -X  X 1 -X
範囲で変動している。  It fluctuates in range.
[0029] 次に、サファイア基板 22の温度を 885°Cに保ちながら、水素ガス (H )又は窒素ガ  Next, while maintaining the temperature of the sapphire substrate 22 at 885 ° C., hydrogen gas (H 2) or nitrogen gas
2  2
ス(N )を 10リットル Zmin、アンモニアガス(NH )を 12リットル Zmin、 TMGを 1· 3 X 1 (N) 10 liters Zmin, ammonia gas (NH) 12 liters Zmin, TMG 1.3 X 1
2 3 twenty three
0_5mol/minで供給し、半導体活性層 30上に厚さが 250Aの GaN力もなる上側半導 体層 34を形成する。 The upper semiconductor layer 34 having a thickness of 250 A and having a GaN force is formed on the semiconductor active layer 30 by supplying at 0 _5 mol / min.
[0030] 次に、サファイア基板 22の温度を 1000°Cに保ちながら、水素ガス (H )又は窒素ガ  Next, while maintaining the temperature of the sapphire substrate 22 at 1000 ° C., hydrogen gas (H 2) or nitrogen gas
2  2
ス(N )を 20リットル Zmin、アンモニアガス(NH )を 15リットル Zmin、 TMGを 3 X 10_6 mol/min, TMAを 1. O X 10" mol/min, Cp Mgを 1. 2 X 10 molZminで反応室に (N) 20 liters Zmin, ammonia gas (NH) 15 liters Zmin, TMG 3 X 10_ 6 mol / min, TMA 1. OX 10 "mol / min, Cp Mg 1.2 x 10 molZmin in the reaction chamber
2  2
供給し、厚さが 400 Aの p型の Al Ga N力もなる上側半導体クラッド層 26を上側半  The upper semiconductor clad layer 26 having a thickness of 400 A and a p-type Al Ga N force
0.1 0.9  0.1 0.9
導体層 34上に形成する。  It is formed on the conductor layer 34.
[0031] 次に、サファイア基板 22の温度を 1000°Cに保ちながら、水素ガス (H )又は窒素ガ Next, while maintaining the temperature of the sapphire substrate 22 at 1000 ° C., hydrogen gas (H 2) or nitrogen gas
2  2
ス(N )を 20リットル Zmin、アンモニアガス(NH )を 15リットル Zmin、 TMGを 3. 2 X 1 (N) 20 liters Zmin, ammonia gas (NH) 15 liters Zmin, TMG 3.2 X 1
2 3 twenty three
0_5molZmin、 Cp Mgを 1. 5 X 10_7molZminで反応室に供給し、上側半導体クラッ 0 _5 molZmin, fed to the reaction chamber Cp Mg in 1. 5 X 10 _7 molZmin, upper semiconductor cladding
2  2
ド層 26上に厚さが 250Aの p型の GaN力もなるコンタクト層 28を形成する。  A contact layer 28 having a thickness of 250 A and a p-type GaN force is formed on the conductive layer 26.
これらの工程を経て、半導体発光素子 10に利用される積層構造を形成することが できる。  Through these steps, a laminated structure used for the semiconductor light emitting device 10 can be formed.
[0032] 上記の製造方法で得られた積層構造を備えた半導体発光素子 10を動作させると、 発光効率は 274 Wであった。一方、図 5 (b)に示すように、半導体活性層を一定の 反応温度で作成した比較例では、発光効率が 202 Wであった。本実施例の半導 体発光素子 10の発光効率が顕著に向上していることが確認された。  [0032] When the semiconductor light emitting device 10 having the laminated structure obtained by the above manufacturing method was operated, the light emission efficiency was 274 W. On the other hand, as shown in FIG. 5 (b), in the comparative example in which the semiconductor active layer was formed at a constant reaction temperature, the luminous efficiency was 202 W. It was confirmed that the luminous efficiency of the semiconductor light emitting device 10 of this example was significantly improved.
さらに、半導体発光素子 10の EL (electro— luminescence :電圧を印加したときに観 測される発光波長)から PL (photo— luminescence:光によって励起したときに観測さ れる発光波長)を引いた値を測定すると、 21應であった。一方、比較例では 30應で あった。本実施例の半導体発光素子 10では、発光波長のシフトが顕著に抑制される ことが確認された。  Furthermore, the value obtained by subtracting PL (photo-luminescence: emission wavelength observed when excited by light) from EL (electro-luminescence: emission wavelength observed when voltage is applied) of the semiconductor light-emitting element 10 is obtained. The measured value was 21. On the other hand, in the comparative example, it was 30 °. In the semiconductor light emitting device 10 of this example, it was confirmed that the shift of the emission wavelength was remarkably suppressed.
さら〖こ、半導体発光素子 10では、応答速度も改善されることが確認された。応答速 度は、最大の順電流を 40mAとし、立ち上がり速度(出力 10%-90%)と立ち下がり 速度(出力 90%-10%)を測定した。半導体発光素子 10の立ち上がり速度は、 4. 1 nsec (ナノ秒)であった。また、半導体発光素子 10の立ち下がり速度は、 7. 6nsec (ナ ノ秒)であった。一方、比較例の半導体発光素子では、立ち上がり速度が 5. 2nsec ( ナノ秒)であり、立ち下がり速度が 7. 9nseC (ナノ秒)であった。本実施例の半導体発 光素子 10では、応答速度が改善されることが確認された。 Furthermore, it was confirmed that the response speed was also improved in the semiconductor light emitting device 10. The response speed was 40mA for the maximum forward current, and the rising speed (output 10% -90%) and falling speed (output 90% -10%) were measured. The rising speed of the semiconductor light emitting device 10 was 4.1 nsec (nanosecond). The falling speed of the semiconductor light emitting device 10 was 7.6 nsec (nanoseconds). On the other hand, in the semiconductor light emitting device of the comparative example, the rising speed was 5.2 nsec (nanosecond) and the falling speed was 7.9 nse C (nanosecond). In the semiconductor light emitting device 10 of this example, it was confirmed that the response speed was improved.
[0033] (第 2実施例) [0033] (Second embodiment)
図 6に、半導体受光素子 100の要部縦断面図を模式的に示す。  FIG. 6 schematically shows a longitudinal sectional view of the main part of the semiconductor light receiving element 100.
半導体受光素子 100は、サファイア基板 122を備えている。半導体受光素子 100 は、サファイア基板 122上に形成されている i型の GaNからなる絶縁層 124と、 InGa Nからなる半導体受光層 130と、 i型の GaN力もなるキャップ層 126の積層構造を備 えている。正電極 144は、キャップ層 126を介して半導体受光層 130の一部に間接 的に接している。負電極 142は、キャップ層 126を介して半導体受光層 130の他の 一部に間接的に接している。 The semiconductor light receiving element 100 includes a sapphire substrate 122. Semiconductor photo detector 100 Has a laminated structure of an insulating layer 124 made of i-type GaN formed on a sapphire substrate 122, a semiconductor light-receiving layer 130 made of InGaN, and a cap layer 126 also having an i-type GaN force. The positive electrode 144 is indirectly in contact with a part of the semiconductor light receiving layer 130 through the cap layer 126. The negative electrode 142 is indirectly in contact with the other part of the semiconductor light receiving layer 130 through the cap layer 126.
半導体受光層 130の伝導帯のエネルギー準位は、厚み方向に連続的に変化する とともに、厚み方向の略中間位置に一つの極小値を持っている。半導体受光層 130 の伝導帯のエネルギー準位は、厚み方向にほぼ 2次関数のカーブを描いている。ま た、半導体受光層 130の価電子帯のエネルギー準位は、厚み方向に連続的に変化 するとともに、厚み方向の略中間位置に一つの極大値を持っている。半導体受光層 130の価電子帯のエネルギー準位は、厚み方向に負のほぼ 2次関数を描 ヽて 、る。 伝導帯のエネルギー準位の極小値と価電子帯のエネルギー準位の極大値の間のバ ンドギャップは、所望する受光波長が得られる幅に調整されている。  The energy level of the conduction band of the semiconductor light-receiving layer 130 continuously changes in the thickness direction and has one minimum value at a substantially intermediate position in the thickness direction. The energy level of the conduction band of the semiconductor light receiving layer 130 draws a curve of a quadratic function in the thickness direction. In addition, the energy level of the valence band of the semiconductor light-receiving layer 130 continuously changes in the thickness direction and has one maximum value at a substantially intermediate position in the thickness direction. The energy level of the valence band of the semiconductor light-receiving layer 130 describes a negative quadratic function in the thickness direction. The band gap between the minimum value of the energy level of the conduction band and the maximum value of the energy level of the valence band is adjusted so as to obtain a desired light receiving wavelength.
この場合も第 1実施例の場合と同様に、半導体受光層 130の厚み方向の略中間位 置に、周囲の伝導帯のエネルギー準位と価電子帯のエネルギー準位よりもキャリアが 存在し易いエネルギー準位の集中領域が形成されている。伝導帯の集中領域と価 電子帯の集中領域は、半導体受光層 130に作用する内部電場 (ピエゾ電場)によつ て傾斜したとしても、伝導帯の集中領域と価電子帯の集中領域の厚み方向の位置関 係が維持される。したがって、半導体受光層 130が光エネルギーを受けると、電子は 最短距離で伝導帯に励起される。受光効率の低下が顕著に抑制されている。半導 体受光素子 100では、伝導帯の集中領域と価電子帯の集中領域が内部電場 (ピエ ゾ電場)によって傾斜したとしても、伝導帯の集中領域と価電子帯の集中領域の間の バンドギャップの大きさは維持され、所望する受光波長以外の受光波長に電気エネ ルギ一が変換されることが抑制されている。半導体受光素子 100では、伝導帯の集 中領域と価電子帯の集中領域の間のバンドギャップに基づいて、所望する受光波長 が得られる。半導体受光素子 100では、受光効率の低下が抑制されている。  In this case as well, as in the case of the first embodiment, carriers are more likely to exist at approximately the intermediate position in the thickness direction of the semiconductor light receiving layer 130 than the energy levels of the surrounding conduction band and the energy level of the valence band. A concentrated region of energy levels is formed. Even though the concentration region of the conduction band and the concentration region of the valence band are inclined by the internal electric field (piezoelectric field) acting on the semiconductor light-receiving layer 130, the thickness of the concentration region of the conduction band and the concentration region of the valence band The positional relationship of direction is maintained. Therefore, when the semiconductor light receiving layer 130 receives light energy, electrons are excited to the conduction band at the shortest distance. A decrease in light receiving efficiency is remarkably suppressed. In the semiconductor light-receiving element 100, even if the concentration region of the conduction band and the concentration region of the valence band are inclined by the internal electric field (piezoelectric field), the band between the concentration region of the conduction band and the concentration region of the valence band. The size of the gap is maintained, and the conversion of electrical energy to a received wavelength other than the desired received wavelength is suppressed. In the semiconductor light receiving element 100, a desired light receiving wavelength is obtained based on the band gap between the concentrated region of the conduction band and the concentrated region of the valence band. In the semiconductor light receiving element 100, a decrease in light receiving efficiency is suppressed.
また、伝導帯エネルギー準位がほぼ 2次関数のカーブを描いているので、量子化 エネルギー準位を増カロさせることが可能になっている。このため、伝導帯に存在する 電子量を増大させることができ、受光効率が極めて向上して 、る。 In addition, since the conduction band energy level draws a curve of almost quadratic function, it is possible to increase the quantization energy level. Therefore, it exists in the conduction band The amount of electrons can be increased, and the light receiving efficiency is greatly improved.
上記の半導体受光素子 100に代えて、 pn接合型、ショットキー接合型、ヘテロ接合 型、アバランシェ 'ホトダイオード型、又は pinホトダイオード型等の構造を採用しても、 同様の作用効果を得ることができる。  Similar effects can be obtained by adopting a pn junction type, Schottky junction type, heterojunction type, avalanche photodiode type, or pin photodiode type instead of the semiconductor light receiving element 100 described above. .
以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の 範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した 具体例を様々に変形、変更したものが含まれる。  Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せ によって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定さ れるものではない。また、本明細書または図面に例示した技術は複数目的を同時に 達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を 持つものである。  The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology illustrated in this specification or the drawings can achieve a plurality of purposes at the same time, and has technical usefulness by achieving one of them.

Claims

請求の範囲 The scope of the claims
[1] 下側半導体クラッド層と半導体活性層と上側半導体クラッド層の積層構造を備え、 半導体活性層のバンドギャップは、下側半導体クラッド層のバンドギャップと上側半 導体クラッド層のバンドギャップのどちらよりも狭ぐ且つ厚み方向に変化していること を特徴とする半導体発光素子。  [1] A laminated structure of a lower semiconductor clad layer, a semiconductor active layer, and an upper semiconductor clad layer. The band gap of the semiconductor active layer is either the band gap of the lower semiconductor clad layer or the band gap of the upper semiconductor clad layer. A semiconductor light emitting device characterized by being narrower and changing in the thickness direction.
[2] 半導体活性層の伝導帯のエネルギー準位が、厚み方向に連続的に変化するととも に厚み方向の略中間位置に一つの極小値を持つことを特徴とする請求項 1の半導 体発光素子。  [2] The semiconductor according to claim 1, wherein the energy level of the conduction band of the semiconductor active layer continuously changes in the thickness direction and has one minimum value at a substantially intermediate position in the thickness direction. Light emitting element.
[3] 下側半導体クラッド層と半導体活性層と上側クラッド層が、 Al Ga In N (0≤X  [3] The lower semiconductor cladding layer, the semiconductor active layer, and the upper cladding layer are made of Al Ga In N (0≤X
X Υ 1 -Χ-Υ X Υ 1 -Χ-Υ
≤ι、 ο≤γ≤ι、 ο≤ι— χ— γ≤ι)を主材料として形成されていることを特徴とする 請求項 1又は 2の半導体発光素子。 3. The semiconductor light emitting device according to claim 1, wherein the semiconductor light emitting device is formed using ≤ι, ο≤γ≤ι, ο≤ι—χ—γ≤ι) as a main material.
[4] 下側半導体クラッド層は GaNを主材料として形成されており、 [4] The lower semiconductor cladding layer is made of GaN as the main material.
半導体活性層は InGaNを主材料として形成されており、  The semiconductor active layer is made of InGaN as the main material,
上側半導体クラッド層は GaNを主材料として形成されており、  The upper semiconductor cladding layer is made of GaN as the main material,
半導体活性層の Inの含有量は、厚み方向の下側で少なぐ中間で多ぐ上側で少 な 、ことを特徴とする請求項 3の半導体発光素子。  4. The semiconductor light-emitting element according to claim 3, wherein the content of In in the semiconductor active layer is small in the middle and small in the upper side in the thickness direction.
[5] 半導体受光層と、その半導体受光層に直接的又は間接的に接する一方の主電極 と、その半導体受光層に直接的又は間接的に接する他方の主電極を備え、 半導体受光層のバンドギャップが、厚み方向に変化していることを特徴とする半導 体受光素子。 [5] A semiconductor light-receiving layer comprising: a semiconductor light-receiving layer; one main electrode directly or indirectly in contact with the semiconductor light-receiving layer; and the other main electrode directly or indirectly in contact with the semiconductor light-receiving layer. A semiconductor light-receiving element characterized in that the gap changes in the thickness direction.
[6] 半導体受光層の伝導帯のエネルギー準位が、厚み方向に連続的に変化するととも に厚み方向の略中間位置に一つの極小値を持つことを特徴とする請求項 5の半導 体受光素子。  6. The semiconductor according to claim 5, wherein the energy level of the conduction band of the semiconductor light-receiving layer continuously changes in the thickness direction and has one minimum value at a substantially intermediate position in the thickness direction. Light receiving element.
[7] 半導体発光素子又は半導体受光素子の製造方法であって、  [7] A method of manufacturing a semiconductor light emitting device or a semiconductor light receiving device,
半導体層上に半導体活性層又は半導体受光層を結晶成長するときに、初期段階 力 中期段階に向けて半導体活性層又は半導体受光層のバンドギャップが経時的 に小さくなる条件に調整する前半工程と、  A first half step of adjusting the band gap of the semiconductor active layer or the semiconductor light receiving layer to be gradually reduced toward the middle stage when the semiconductor active layer or the semiconductor light receiving layer is grown on the semiconductor layer;
中期段階から終期段階に向けて半導体活性層又は半導体受光層のバンドギヤッ プが経時的に大きくなる条件に調整する後半工程を備えていることを特徴とする製造 方法。 The bandgap of the semiconductor active layer or semiconductor light-receiving layer from the middle to the final stage A manufacturing method characterized by comprising a second half step of adjusting the conditions so that the size of the substrate increases with time.
[8] 半導体活性層又は半導体受光層は、主材料として In Ga N (0≤X≤1)が用い  [8] In Ga N (0≤X≤1) is used as the main material for the semiconductor active layer or semiconductor light receiving layer.
X 1 -X  X 1 -X
られており、  And
前記前半工程では、初期段階力 中期段階に向けて結晶構造中の Inの含有量が 多くなる条件に調整し、  In the first half process, the initial stage force is adjusted to the condition that the In content in the crystal structure increases toward the middle stage,
前記後半工程では、中期段階力 終期段階に向けて結晶構造中の Inの含有量が 少なくなる条件に調整することを特徴とする請求項 7の製造方法。  8. The manufacturing method according to claim 7, wherein in the latter half process, the medium stage force is adjusted to a condition in which the content of In in the crystal structure decreases toward the final stage.
[9] 前記前半工程では、初期段階力 中期段階に向けて結晶成長温度が低くなる条 件に調整し、 [9] In the first half step, the initial stage force is adjusted to the condition where the crystal growth temperature is lowered toward the middle stage,
前記後半工程では、中期段階力 終期段階に向けて結晶成長温度が高くなる条 件に調整することを特徴とする請求項 8の製造方法。  9. The manufacturing method according to claim 8, wherein, in the latter half process, the medium-stage power is adjusted to a condition in which the crystal growth temperature increases toward the final stage.
PCT/JP2006/305232 2005-03-22 2006-03-16 Semiconductor light emitting element, semiconductor light receiving element and method for manufacturing them WO2006101002A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005081801 2005-03-22
JP2005-081801 2005-03-22

Publications (1)

Publication Number Publication Date
WO2006101002A1 true WO2006101002A1 (en) 2006-09-28

Family

ID=37023663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305232 WO2006101002A1 (en) 2005-03-22 2006-03-16 Semiconductor light emitting element, semiconductor light receiving element and method for manufacturing them

Country Status (1)

Country Link
WO (1) WO2006101002A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245982A (en) * 2008-03-28 2009-10-22 Sumitomo Electric Ind Ltd Nitride light-emitting element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1154794A (en) * 1997-07-29 1999-02-26 Toshiba Corp Compound semiconductor device and its manufacture
JPH11112029A (en) * 1997-09-30 1999-04-23 Hewlett Packard Co <Hp> Optical semiconductor element and its manufacture
JP2003234545A (en) * 2002-02-07 2003-08-22 Sanyo Electric Co Ltd Semiconductor light emitting element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1154794A (en) * 1997-07-29 1999-02-26 Toshiba Corp Compound semiconductor device and its manufacture
JPH11112029A (en) * 1997-09-30 1999-04-23 Hewlett Packard Co <Hp> Optical semiconductor element and its manufacture
JP2003234545A (en) * 2002-02-07 2003-08-22 Sanyo Electric Co Ltd Semiconductor light emitting element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245982A (en) * 2008-03-28 2009-10-22 Sumitomo Electric Ind Ltd Nitride light-emitting element

Similar Documents

Publication Publication Date Title
JP5523459B2 (en) Light emitting diode with modulation doping layer
US8835902B2 (en) Nano-structured light-emitting devices
JP4572963B2 (en) Group III nitride semiconductor light emitting device and epitaxial wafer
US6720570B2 (en) Gallium nitride-based semiconductor light emitting device
US20080283822A1 (en) Semiconductor light emitting device
EP2120273A2 (en) Semiconductor light emitting device
EP2325899A1 (en) Semiconductor device
Shatalov et al. Deep ultraviolet light-emitting diodes using quaternary AlInGaN multiple quantum wells
JP2005528809A (en) III-nitride LED with undoped cladding layer and multi-quantum well
EP2105974B1 (en) Method for manufacturing a nitride semiconductor light emitting diode
WO2005101532A1 (en) Gallium nitride based light-emitting device
WO2007063832A1 (en) Nitride semiconductor light-emitting element
JP2010028072A (en) Nitride semiconductor light emitting element
JP2003017746A (en) Nitride semiconductor element
JP2007157766A (en) Gallium nitride semiconductor light-emitting element
KR20090034169A (en) Iii-nitride semiconductor light emitting device
KR20090034163A (en) Iii-nitride semiconductor light emitting device
JP2002134786A (en) Nitride semiconductor light-emitting element
US7253451B2 (en) III-nitride semiconductor light emitting device
JP2009164572A (en) Group iii nitride semiconductor light-emitting device
JP5075298B1 (en) Nitride-based semiconductor light-emitting device and manufacturing method thereof
JPH09252163A (en) Semiconductor light-emitting element
KR20120071572A (en) Light emitting device having active region of multi-quantum well structure
US20130299776A1 (en) High output power, high efficiency blue light-emitting diodes
KR20110084683A (en) Light emitting device having active region of quantum well structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 06729229

Country of ref document: EP

Kind code of ref document: A1