WO2006100254A1 - 6-thioamide substituted benzimidazoles - Google Patents

6-thioamide substituted benzimidazoles Download PDF

Info

Publication number
WO2006100254A1
WO2006100254A1 PCT/EP2006/060935 EP2006060935W WO2006100254A1 WO 2006100254 A1 WO2006100254 A1 WO 2006100254A1 EP 2006060935 W EP2006060935 W EP 2006060935W WO 2006100254 A1 WO2006100254 A1 WO 2006100254A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
alkoxy
hydrogen
hydroxy
cycloalkyl
Prior art date
Application number
PCT/EP2006/060935
Other languages
French (fr)
Inventor
Peter Jan Zimmermann
Wilm Buhr
Christof Brehm
Andreas Palmer
Maria Vittoria Chiesa
Wolfgang-Alexander Simon
Stefan Postius
Wolfgang Kromer
Original Assignee
Nycomed Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nycomed Gmbh filed Critical Nycomed Gmbh
Priority to JP2008502402A priority Critical patent/JP2008534475A/en
Priority to EP06725219A priority patent/EP1910313A1/en
Priority to AU2006226351A priority patent/AU2006226351A1/en
Priority to CA002601381A priority patent/CA2601381A1/en
Publication of WO2006100254A1 publication Critical patent/WO2006100254A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/06Benzimidazoles; Hydrogenated benzimidazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/06Benzimidazoles; Hydrogenated benzimidazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • C07D235/08Radicals containing only hydrogen and carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/06Benzimidazoles; Hydrogenated benzimidazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • C07D235/12Radicals substituted by oxygen atoms

Definitions

  • the invention relates to novel compounds, which are used in the pharmaceutical industry as active compounds for the production of medicaments.
  • the International Patent Application WO 04/054984 discloses substituted, bicyclic benzimidazole derivatives which compounds are useful for treating gastrointestinal diseases.
  • the International Patent Application WO 04/087701 discloses tricyclic benzimidazole derivatives having different substituents in 5-position of the benzimidazole moiety which compounds are likewise useful for treating gastrointestinal diseases.
  • the invention relates to compounds of the formula 1
  • R1 is hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl, 3-7C-cycloalkyl-1-4C-alkyl, 1-4C-alkoxy, 1-4C-alkoxy-
  • R2 is hydrogen, 1-4C-alkyl, aryl, 3-7C-cycloalkyl, 3-7C-cycloalkyl-1-4C-alkyl, 1-4C-alkoxycarbonyl, mono- or di-1-4C-alkylamino1-4C-alkylcarbonyl, hydroxy-1-4C-alkyl, fluoro-2-4C-alkyl, aryl-1-
  • R31 is hydrogen, hydroxyl, 1-7C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy-1-4C-alkyl, 3-7C-cycloalkyl or amino and R32 is hydrogen, 1-7C-alkyl, hydroxy-1-4C-alkyl or 1-4C-alkoxy-1-4C-alkyl, or where R31 and R32 together, including the nitrogen atom to which both are bonded, are a pyrrolidino, piperidino, piperazino, N-1-4C-alkylpiperazino, morpholino, aziridino or azetidino group and
  • X is O (oxygen) or NH
  • Y has either the meaning -CH 2 -Ar wherein
  • Ar is a mono- or bicyclic aromatic residue, substituted by R4, R5, R6 and R7, which is selected from the group consisting of phenyl, naphthyl, pyrrolyl, pyrazolyl, imidazolyl, 1 ,2,3-triazolyl, in- dolyl, benzimidazolyl, furyl, benzofuryl, thienyl, benzothienyl, thiazolyl, isoxazolyl, pyridinyl, pyrimidinyl, chinolinyl and isochinolinyl, or Y denotes the group gp
  • Z has the meaning -CHR8- or -CHR8-CHR9- where in, Ar and/or in the group gp
  • R4 is hydrogen, 1-4C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy, 2-4C-alkenyloxy, 1-4C-alkylcarbo- nyl, carboxy, 1-4C-alkoxycarbonyl, carboxy-1-4C-alkyl, 1-4C-alkoxycarbonyl-1-4C-alkyl, halogen, hydroxy, aryl, aryl-1-4C-alkyl, aryl-oxy, aryl-1-4C-alkoxy, trifluoromethyl, nitro, amino, mono- or di-1-4C-alkylamino, 1-4C-alkylcarbonylamino, 1-4C-alkoxycarbonylamino, 1-4C-alkoxy-1-4C-alkoxycarbonylamino or sulfonyl,
  • R5 is hydrogen, 1-4C-alkyl, 1-4C-alkoxy, 1-4C-alkoxycarbonyl, halogen, trifluoromethyl or hydroxy
  • R6 is hydrogen, 1-4C-alkyl or halogen
  • R7 is hydrogen, 1-4C-alkyl or halogen
  • R8 is hydrogen, 1-7C-alkyl, 2-7C-alkenyl, hydroxyl, 1-4C-alkoxy, oxo-substituted 1-4C-alkoxy, 3-7C-cycloalkoxy, 3-7C-cycloalkyl-1-4C-alkoxy, hydroxy-1-4C-alkoxy, 1-4C-alkoxy-1-4C- alkoxy, 'MC-alkoxy-'MC-alkoxy-'MC-alkoxy, 3-7C-cycloalkoxy-1-4C-alkoxy, 3-7C-cyclo- alkyl-1-4C-alkoxy-1-4C-alkoxy, 1-4C-alkylcarbonyloxy, halo-1-4C-alkoxy, amino, mono- or di-1-4C-alkylamino, 1-4C-alkylcarbonylamino, 1-4C-alkoxycarbonylamino, mono- or di-1-4C- alkylamino-1-4C-alkylcarbon
  • R9 is hydrogen, 1-7C-alkyl, 2-7C-alkenyl, hydroxyl, 1-4C-alkoxy, oxo-substituted 1-4C-alkoxy, 3-7C-cycloalkoxy, 3-7C-cycloalkyl-1-4C-alkoxy, hydroxy-1-4C-alkoxy, 1-4C-alkoxy-1-4C- alkoxy, 1-4C-alkoxy-1-4C-alkoxy-1-4C-alkoxy, 3-7C-cycloalkoxy-1-4C-alkoxy, 3-7C- cycloalkyl-1-4C-alkoxy-1-4C-alkoxy, 1-4C-alkylcarbonyloxy, halo-1-4C-alkoxy, amino, mono- or di-1-4C-alkylamino, 1-4C-alkylcarbonylamino, 1-4C-alkoxycarbonylamino, mono- or di-1- 4C-alkylamino-1-4C-alkyl
  • 1-4C-Alkyl represents straight-chain or branched alkyl groups having 1 to 4 carbon atoms. Examples which may be mentioned are the butyl, isobutyl, sec-butyl, tert-butyl, propyl, isopropyl, ethyl and the methyl group.
  • 3-7C-Cycloalkyl represents cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl, of which cyclopropyl, cyclobutyl and cyclopentyl are preferred.
  • 3-7C-Cycloalkyl-1-4C-alkyl represents one of the aforementioned 1-4C-alkyl groups, which is substituted by one of the aforementioned 3-7C-cycloalkyl groups. Examples which may be mentioned are the cyclopropylmethyl, the cyclohexylmethyl and the cyclohexylethyl group.
  • 1-4C-Alkoxy represents groups, which in addition to the oxygen atom contain a straight-chain or branched alkyl group having 1 to 4 carbon atoms. Examples which may be mentioned are the butoxy, iso- butoxy, sec-butoxy, tert-butoxy, propoxy, isopropoxy and preferably the ethoxy and methoxy group.
  • 1-4C-Alkoxy-1-4C-alkyl represents one of the aforementioned 1-4C-alkyl groups, which is substituted by one of the aforementioned 1-4C-alkoxy groups. Examples which may be mentioned are the meth- oxymethyl, the methoxyethyl group and the butoxyethyl group.
  • 1-4C-Alkoxycarbonyl represents a carbonyl group, to which one of the aforementioned 1-4C-alkoxy groups is bonded. Examples which may be mentioned are the methoxycarbonyl (CH 3 O-C(O)-) and the ethoxycarbonyl group (CH 3 CH 2 O-C(O)-) .
  • 2-4C-Alkenyl represents straight-chain or branched alkenyl groups having 2 to 4 carbon atoms. Examples which may be mentioned are the 2-butenyl, 3-butenyl, 1-propenyl and the 2-propenyl group (allyl group).
  • 2-4C-Alkynyl represents straight-chain or branched alkynyl groups having 2 to 4 carbon atoms. Examples which may be mentioned are the 2-butynyl, 3-butynyl, and preferably the 2-propynyl, group (propargyl group).
  • Fluoro-1-4C-alkyl represents one of the aforementioned 1-4C-alkyl groups, which is substituted by one or more fluorine atoms. An example which may be mentioned is the trifluoromethyl group.
  • Hydroxy-1-4C-alkyl represents one of the aforementioned 1-4C-alkyl groups, which is substituted by a hydroxy group. Examples which may be mentioned are the hydroxymethyl, the 2-hydroxyethyl and the 3-hydroxypropyl group. Hydroxy-1-4C-alkyl within the scope of the invention is understood to include 1-4C-alkyl groups with two or more hydroxy groups. Examples which may be mentioned are the 3,4-di- hydroxybutyl and in particular the 2,3-dihydroxypropyl group.
  • 1-4C-Alkylcarbonyl represents a group, which in addition to the carbonyl group contains one of the aforementioned 1-4C-alkyl groups.
  • An example which may be mentioned is the acetyl group.
  • Mono- or di-1-4C-alkylamino represents an amino group, which is substituted by one or by two - identical or different - groups from the aforementioned 1-4C-alkyl groups. Examples which may be mentioned are the dimethylamino, the diethylamino and the diisopropylamino group.
  • Mono- or di-1-4C-alkylamino-1-4C-alkylcarbonyl represents a 1-4C-alkylcarbonyl group, which is substituted by a mono- or di-1-4C-alkylamino groups. Examples, which may be mentioned, are the di- methylamino-methylcarbonyl and the dimethylamino-ethylcarbonyl group.
  • Fluoro-2-4C-alkyl represents a 2-4C-alkyl groups, which is substituted by one or more fluorine atoms.
  • An example which may be mentioned is the 2,2,2-trifluoroethyl group.
  • Aryl-1-4C-alkoxy denotes an aryl-substituted 1-4C-alkoxy radical.
  • An example which may be mentioned is the benzyloxy radical.
  • Aryl-1-4C-alkoxy-1-4C-alkyl denotes one of the aforementioned 1-4C-alkyl groups, which is substituted by one of the aforementioned aryl-1-4C-alkoxy radicals.
  • An example which may be mentioned is the benzyloxymethyl radical.
  • Halogen within the meaning of the invention is bromo, chloro and fluoro.
  • 1-7C-Alkyl represents straight-chain or branched alkyl groups having 1 to 7 carbon atoms. Examples which may be mentioned are the heptyl, isoheptyl (5-methylhexyl), hexyl, isohexyl (4-methylpentyl), neohexyl (3,3-dimethylbutyl), pentyl, isopentyl (3-methylbutyl), neopentyl (2,2-dimethylpropyl), butyl, isobutyl, sec-butyl, tert-butyl, propyl, isopropyl, ethyl and the methyl group.
  • 2-4C-Alkenyloxy represents groups, which in addition to the oxygen atom contain one of the above- mentioned 2-4C-alkenyl groups. Examples, which may be mentioned, are the 2-butenyloxy, 3- butenyloxy, 1-propenyloxy and the 2-propenyloxy group (allyloxy group).
  • Carboxy-1-4C-alkyl represents 1-4C-alkyl groups which are substituted by a carboxyl group. Examples, which may be mentioned, are the carboxymethyl and the 2-carboxyethyl group.
  • 1-4C-Alkoxycarbonyl-1-4C-alkyl represents 1-4C-alkyl groups, which are substituted by one of the abovementioned 1-4C-alkoxycarbonyl groups. Examples, which may be mentioned, are the Methoxy- carbonylmethyl and the ethoxycarbonylmethyl group.
  • Aryl-1-4C-alkyl denotes an aryl-substituted 1-4C-alkyl radical.
  • An example which may be mentioned is the benzyl radical.
  • 1-4C-Alkylcarbonylamino represents an amino group to which a 1-4C-alkylcarbonyl group is bonded. Examples which may be mentioned are the propionylamino (C 3 H 7 C(O)NH-) and the acetylamino group (acetamido group) (CH 3 C(O)NH-) .
  • 1-4C-Alkoxycarbonylamino represents an amino group, which is substituted by one of the aforementioned 1-4C-alkoxycarbonyl groups. Examples, which may be mentioned, are the ethoxycarbonyl- amino and the methoxycarbonylamino group.
  • 1-4C-Alkoxy-1-4C-alkoxy represents one of the aforementioned 1-4C-alkoxy groups, which is substituted by a further 1-4C-alkoxy group. Examples which may be mentioned are the groups 2-(methoxy)ethoxy (CH 3 -O-CH 2 -CH 2 -O-) and 2-(ethoxy)ethoxy (CH 3 -CH 2 -O-CH 2 -CH 2 -O-).
  • 1-4C-Alkoxy-1-4C-alkoxycarbonyl represents a carbonyl group, to which one of the aforementioned 1- 4C-alkoxy-1-4C-alkoxy groups is bonded.
  • Examples which may be mentioned are the 2-(methoxy)eth- oxycarbonyl (CH 3 -O-CH 2 CH 2 -O-CO-) and the 2-(ethoxy)ethoxycarbonyl group (CH 3 CH 2 -O-CH 2 CH 2 -O- CO-).
  • 1-4C-Alkoxy-1-4C-alkoxycarbonylamino represents an amino group, which is substituted by one of the aforementioned 1-4C-alkoxy-1-4C-alkoxycarbonyl groups. Examples which may be mentioned are the 2-(methoxy)ethoxycarbonylamino and the 2-(ethoxy)ethoxycarbonylamino group.
  • 2-7C-Alkenyl represents straight-chain or branched alkenyl groups having 2 to 7 carbon atoms. Examples which may be mentioned are the 2-butenyl, 3-butenyl, 1-propenyl, the 2-propenyl (allyl) and the vinyl group. The aforementioned 2-4C-alkenyl groups are preferred.
  • 2-7C-Alkenyl represents straight-chain or branched alkenyl groups having 2 to 7 carbon atoms. Examples which may be mentioned are the 2-butenyl, 3-butenyl, 1-propenyl, the 2-propenyl (allyl) and the vinyl group. The aforementioned 2-4C-alkenyl groups are preferred.
  • Oxo-substituted 1-4C-alkoxy represents a 1-4C-alkoxy group, which instead of a methylene group contains a carbonyl group.
  • An example which may be mentioned is the 2-oxopropoxy group.
  • 3-7C-Cycloalkoxy represents cyclopropyloxy, cyclobutyloxy, cyclopentyloxy, cyclohexyloxy and cyclo- heptyloxy, of which cyclopropyloxy, cyclobutyloxy and cyclopentyloxy are preferred.
  • 3-7C-Cycloalkyl-1-4C-alkoxy represents one of the aforementioned 1-4C-alkoxy groups, which is substituted by one of the aforementioned 3-7C-cycloalkyl groups. Examples which may be mentioned are the cyclopropylmethoxy, the cyclobutylmethoxy and the cyclohexylethoxy group.
  • Hydroxy-1-4C-alkoxy represents aforementioned 1-4C-alkoxy groups, which are substituted by a hydroxy group.
  • a preferred example which may be mentioned is the 2-hydroxyethoxy group.
  • 1-4C-Alkoxy-1-4C-alkoxy-1-4C-alkoxy represents one of the aforementioned 1-4C-alkoxy groups, which is substituted by one of the aforementioned 1-4C-alkoxy-1-4C-alkoxy groups.
  • a preferred example which may be mentioned is the methoxyethoxyethoxy group.
  • 3-7C-Cycloalkoxy-1-4C-alkoxy represents one of the aforementioned 1-4C-alkoxy groups, which is substituted by one of the aforementioned 3-7C-cycloalkoxy groups. Examples which may be mentioned are the cyclopropoxymethoxy, the cyclobutoxymethoxy and the cyclohexyloxyethoxy group.
  • 3-7C-Cycloalkyl-1-4C-alkoxy-1-4C-alkoxy represents one of the aforementioned 1-4C-alkoxy groups, which is substituted by one of the aforementioned 3-7C-cycloalkyl-1-4C-alkoxy groups. Examples which may be mentioned are the cyclopropylmethoxyethoxy, the cyclobutylmethoxyethoxy and the cyclohexylethoxyethoxy group.
  • 1-4C-Alkylcarbonyloxy represents a 1-4C-alkylcarbonyl group which is bonded to an oxygen atom.
  • An example which may be mentioned is the acetoxy group (CH 3 CO-O-).
  • 1-4C-Alkylcarbonyloxy-1-4C-alkyl represents one of the aforementioned 1-4C-alkyl groups, which is substituted by one of the aforementioned 1-4C-alkylcarbonyloxy groups.
  • An example which may be mentioned is the acetoxymethyl group (CH 3 CO-O-CH 2 ).
  • Halo-1-4C-alkoxy represents 1-4C-alkoxy groups which are completely or mainly substituted by halogen. "Mainly” in this connection means that more than half of the hydrogen atoms in the 1-4C-alkoxy groups are replaced by halogen atoms.
  • Halo-1-4C-alkoxy groups are primarily chloro- and/or in particular fluoro-substituted 1-4C-alkoxy groups.
  • halogen-substituted 1-4C-alkoxy groups which may be mentioned are the 2,2,2-trichloroethoxy, the hexachloroisopropoxy, the pentachloroiso- propoxy, the 1 , 1 , 1 -trichloro-3,3,3-trifluoro-2-propoxy, the 1 , 1 , 1 -trichloro-2-methyl-2-propoxy, the 1 ,1 ,1- trichloro-2-propoxy, the 3-bromo-1 ,1 ,1-trifluoro-2-propoxy, the 3-bromo-1 ,1 ,1-trifluoro-2-butoxy, the 4- bromo-3,3,4,4-tetrafluoro-1-butoxy, the chlorodifluoromethoxy, the 1 ,1 ,1 ,3,3,3-hexafluoro-2-propoxy, the 2-trifluoromethyl-2-propoxy, the 1 ,1 ,1-trifluor
  • Mono- or di-1-4C-alkylamino-1-4C-alkylcarbonyloxy represents a 1-4C-alkylcarbonyloxy group, which is substituted by one of the aforementioned mono- or di-1-4C-alkylamino groups. Examples, which may be mentioned, are the dimethylamino-methylcarbonyloxy and the dimethylamino- ethylcarbonyloxy group.
  • 1 -4C-Alkoxy-1 -4C-alkylcarbonyloxy represents one of the aforementioned 1 -4C-alkylcarbonyloxy radicals which is substituted by one of the aforementioned 1-4C-alkoxy groups.
  • An example, which may be mentioned, is the methoxymethylcarbonyloxy group.
  • Possible salts of compounds of the formula 1 - depending on substitution - are especially all acid addition salts. Particular mention may be made of the pharmacologically tolerable salts of the inorganic and organic acids customarily used in pharmacy. Those suitable are water-soluble and water-insoluble acid addition salts with acids such as, for example, hydrochloric acid, hydrobromic acid, phosphoric acid, nitric acid, sulfuric acid, acetic acid, citric acid, D-gluconic acid, benzoic acid, 2-(4- hydroxybenzoyl)benzoic acid, butyric acid, sulfosalicylic acid, maleic acid, lauric acid, malic acid, fu- maric acid, succinic acid, oxalic acid, tartaric acid, embonic acid, stearic acid, toluenesulfonic acid, methanesulfonic acid or 3-hydroxy-2-naphthoic acid, where the acids are used in salt preparation - depending on whether a mono
  • Pharmacologically intolerable salts which can initially be obtained, for example, as process products in the production of the compounds according to the invention on the industrial scale, are converted into the pharmacologically tolerable salts by processes known to the person skilled in the art.
  • the invention therefore also comprises all solvates and in particular all hydrates of the compounds of the formula 1 , and also all solvates and in particular all hydrates of the salts of the compounds of the formula 1.
  • One embodiment (embodiment a) of the invention relates to compounds of the formula 1 , wherein X is O (oxygen).
  • Another embodiment (embodiment b) of the invention relates to compounds of the formula 1 , wherein X is NH.
  • the invention relates to compounds of the formula 1a
  • R1 is hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl, 3-7C-cycloalkyl-1-4C-alkyl, 1-4C-alkoxy, 1-4C-alkoxy- 1-4C-alkyl, 1-4C-alkoxycarbonyl, 2-4C-alkenyl, 2-4C-alkynyl, fluoro-1-4C-alkyl, hydroxy-1-4C- alkyl, mono- or di-1-4C-alkylamino or 1-4C-alkylcarbonyloxy-1-4C-alkyl
  • R2 is hydrogen, 1-4C-alkyl, aryl, 3-7C-cycloalkyl, 3-7C-cycloalkyl-1-4C-alkyl, 1-4C-alkoxycarbonyl, mono- or di-1-4C-alkylamino1-4C-alkylcarbonyl, hydroxy-1-4C-alkyl, fluoro-2-4C-alkyl, aryl-1- 4C-alkoxy-1-4C-alkyl, hydroxy or 1-4C-alkoxy
  • R31 is hydrogen, hydroxyl, 1-7C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy-1-4C-alkyl, 3-7C-cycloalkyl or amino and
  • R32 is hydrogen, 1-7C-alkyl, hydroxy-1-4C-alkyl or 1-4C-alkoxy-1-4C-alkyl, or where R31 and R32 together, including the nitrogen atom to which both are bonded, are a pyrrolidino, piperidino, piperazino, N-1-4C-alkylpiperazino, morpholino, aziridino or azetidino group, X is O (oxygen) or NH and
  • Ar is a mono- or bicyclic aromatic residue, substituted by R4, R5, R6 and R7, which is selected from the group consisting of phenyl, naphthyl, pyrrolyl, pyrazolyl, imidazolyl, 1 ,2,3-triazolyl, in- dolyl, benzimidazolyl, furyl, benzofuryl, thienyl, benzothienyl, thiazolyl, isoxazolyl, pyridinyl, pyrimidinyl, chinolinyl and isochinolinyl, where
  • R4 is hydrogen, 1-4C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy, 2-4C-alkenyloxy, 1-4C-alkylcarbo- nyl, carboxy, 1-4C-alkoxycarbonyl, carboxy-1-4C-alkyl, 1-4C-alkoxycarbonyl-1-4C-alkyl, halogen, hydroxy, aryl, aryl-1-4C-alkyl, aryl-oxy, aryl-1-4C-alkoxy, trifluoromethyl, nitro, amino, mono- or di-1-4C-alkylamino, 1-4C-alkylcarbonylamino, 1-4C-alkoxycarbonylamino, 1-4C-alkoxy-1-4C-alkoxycarbonylamino or sulfonyl,
  • R5 is hydrogen, 1-4C-alkyl, 1-4C-alkoxy, 1-4C-alkoxycarbonyl, halogen, trifluoromethyl or hydroxy
  • R6 is hydrogen, 1-4C-alkyl or halogen and R7 is hydrogen, 1-4C-alkyl or halogen, and wherein aryl is phenyl or substituted phenyl with one, two or three same or different substituents from the group of 1-4C-alkyl, 1-4C-alkoxy, carboxy, 1-4C-alkoxycarbonyl, halogen, trifluoromethyl, nitro, trifluoromethoxy, hydroxy and cyano, and the salts of these compounds
  • the invention relates to compounds of the formula 1b
  • R1 is hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl, 3-7C-cycloalkyl-1-4C-alkyl, 1-4C-alkoxy, 1-4C-alkoxy-
  • R2 is hydrogen, 1-4C-alkyl, aryl, 3-7C-cycloalkyl, 3-7C-cycloalkyl-1-4C-alkyl, 1-4C-alkoxycarbonyl, mono- or di-1-4C-alkylamino1-4C-alkylcarbonyl, hydroxy-1-4C-alkyl, fluoro-2-4C-alkyl, aryl-1-
  • R31 is hydrogen, hydroxyl, 1-7C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy-1-4C-alkyl, 3-7C-cycloalkyl or amino and R32 is hydrogen, 1-7C-alkyl, hydroxy-1-4C-alkyl or 1-4C-alkoxy-1-4C-alkyl, or where
  • R31 and R32 together, including the nitrogen atom to which both are bonded, are a pyrrolidino, piperidino, piperazino, N-1-4C-alkylpiperazino, morpholino, aziridino or azetidino group
  • R4 is hydrogen, 1-4C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy, 2-4C-alkenyloxy, 1-4C-alkylcarbonyl, carboxy, 1-4C-alkoxycarbonyl, carboxy-1-4C-alkyl, 1-4C-alkoxycarbonyl-1-4C-alkyl, halogen, hydroxy, aryl, aryl-1-4C-alkyl, aryl-oxy, aryl-1-4C-alkoxy, trifluoromethyl, nitro, amino, mono- or di-1-4C-alkylamino, 1-4C-alkylcarbonylamino, 1-4C-alkoxycarbonylamin
  • R5 is hydrogen, 1-4C-alkyl, 1-4C-alkoxy, 1-4C-alkoxycarbonyl, halogen, trifluoromethyl or hydroxy
  • X is O (oxygen) or NH
  • Z has the meaning -CHR8- or -CHR8-CHR9- where
  • R8 is hydrogen, 1-7C-alkyl, 2-7C-alkenyl, hydroxyl, 1-4C-alkoxy, oxo-substituted 1-4C-alkoxy, 3-7C-cycloalkoxy, 3-7C-cycloalkyl-1-4C-alkoxy, hydroxy-1-4C-alkoxy, 1-4C-alkoxy-1-4C- alkoxy, 1-4C-alkoxy-1 -4OaIkOXy-I ⁇ OaIkOXy, 3-7C-cycloalkoxy-1-4C-alkoxy, 3-7C-cyclo- alkyl-1-4C-alkoxy-1-4C-alkoxy, 1-4C-alkylcarbonyloxy, halo-1-4C-alkoxy, amino, mono- or di-1-4C-alkylamino, 1-4C-alkylcarbonylamino, 1-4C-alkoxycarbonylamino, mono- or di-1-4C- alkylamino-'
  • R9 is hydrogen, 1-7C-alkyl, 2-7C-alkenyl, hydroxyl, 1-4C-alkoxy, oxo-substituted 1-4C-alkoxy, 3-7C-cycloalkoxy, 3-7C-cycloalkyl-1-4C-alkoxy, hydroxy-1-4C-alkoxy, 1-4C-alkoxy-1-4C- alkoxy, 1-4C-alkoxy-1-4C-alkoxy-1-4C-alkoxy, 3-7C-cycloalkoxy-1-4C-alkoxy, 3-7C- cycloalkyl-1-4C-alkoxy-1-4C-alkoxy, 1-4C-alkylcarbonyloxy, halo-1-4C-alkoxy, amino, mono- or di-1-4C-alkylamino, 1-4C-alkylcarbonylamino, 1-4C-alkoxycarbonylamino, mono- or di-1- 4C-alkylamino-1-4C-alkyl
  • the compounds of the formula 1b have up to three chiral centers in the parent structure.
  • the invention thus relates to all conceivable stereoisomers in any desired mixing ratio to one another, including the pure enantiomers, which are a preferred subject of the invention.
  • R1 is hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl, hydroxy-1-4C-alkyl or 1-4C-alkoxy-1-4C-alkyl,
  • R2 is hydrogen, 1-4C-alkyl, hydroxy, 1-4C-alkoxy or aryl-1-4C-alkoxy-1-4C-alkyl,
  • R31 is hydrogen, 1-7C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy-1-4C-alkyl, 3-7C-cycloalkyl or amino and R32 is hydrogen or 1-7C-alkyl, or where
  • R31 and R32 together, including the nitrogen atom to which both are bonded, are a pyrrolidino, piperidino, piperazino, N-1-4C-alkylpiperazino, morpholino, aziridino or azetidino group
  • R4 is hydrogen, 1-4C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy, 1-4C-alkoxycarbonyl, halogen, trifluoromethyl, amino, mono- or di-1-4C-alkylamino, 1-4C-alkylcarbonylamino, 1-4C- alkoxycarbonylamino or 1-4C-alkoxy-1-4C-alkoxycarbonylamino,
  • R5 is hydrogen, 1-4C-alkyl, 1-4C-alkoxy, halogen or trifluoromethyl and
  • X is O (oxygen) or NH, and the salts of these compounds.
  • R1 is hydrogen, 1-4C-alkyl or hydroxy-1-4C-alkyl
  • R2 is hydrogen or 1-4C-alkyl
  • R31 is hydrogen, 1-7C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy-1-4C-alkyl or 3-7C-cycloalkyl and
  • R32 is hydrogen or 1-7C-alkyl, or where
  • R31 and R32 together, including the nitrogen atom to which both are bonded, are a pyrrolidino, piperidino, piperazino, N-1-4C-alkylpiperazino, morpholino, aziridino or azetidino group,
  • R4 is hydrogen, 1-4C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy, 1-4C-alkoxycarbonyl, halogen, trifluoromethyl, amino, mono- or di-1-4C-alkylamino, 1-4C-alkylcarbonylamino, 1-4C- alkoxycarbonylamino or 1-4C-alkoxy-1-4C-alkoxycarbonylamino,
  • R5 is hydrogen, 1-4C-alkyl, 1-4C-alkoxy, halogen or trifluoromethyl and
  • X is O (oxygen) or NH, and the salts of these compounds.
  • R1 is 1-4C-alkyl
  • R2 is hydrogen or 1-4C-alkyl
  • R31 is 1-4C-alkyl
  • R32 is 1-4C-alkyl
  • R4 is hydrogen, 1-4C-alkyl or halogen
  • R5 is 1-4C-alkyl, 1-4C-alkoxy or trifluoromethyl
  • X is O (oxygen) or NH, and their salts.
  • R1 is 1-4C-alkyl
  • R2 is hydrogen or 1-4C-alkyl
  • R31 is 1-4C-alkyl
  • R32 is 1-4C-alkyl
  • R4 is hydrogen, 1-4C-alkyl or halogen
  • R5 is 1-4C-alkyl, 1-4C-alkoxy or trifluoromethyl X is NH, and their salts.
  • R1 is hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl, hydroxy-1-4C-alkyl or 1-4C-alkoxy-1-4C-alkyl,
  • R2 is hydrogen, 1 -4C-alkyl, hydroxy, 1 -4C-alkoxy or aryl-1 -4C-alkoxy-1 -4C-alkyl,
  • R31 is hydrogen, 1-7C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy-1-4C-alkyl, 3-7C-cycloalkyl or amino and
  • R32 is hydrogen or 1-7C-alkyl, or where
  • R31 and R32 together, including the nitrogen atom to which both are bonded, are a pyrrolidino, piperidino, piperazino, N-1-4C-alkylpiperazino, morpholino, aziridino or azetidino group,
  • R4 is hydrogen, 1-4C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy, 1-4C-alkoxycarbonyl, halogen, trifluoromethyl, amino, mono- or di-1-4C-alkylamino, 1-4C-alkylcarbonylamino, 1-4C- alkoxycarbonylamino or 1-4C-alkoxy-1-4C-alkoxycarbonylamino,
  • R5 is hydrogen, 1-4C-alkyl, 1-4C-alkoxy, halogen or trifluoromethyl and
  • R8 is hydroxyl, 1-4C-alkoxy, oxo-substituted 1-4C-alkoxy, 3-7C-cycloalkoxy, 3-7C-cycloalkyl-1-4C- alkoxy, hydroxy-1-4C-alkoxy, 1-4C-alkoxy-1-4C-alkoxy, 1-4C-alkoxy-1-4C-alkoxy-1-4C-alkoxy, 3-7C-cycloalkoxy-1 -4C-alkoxy, 3-7C-cycloalkyl-1 -4C-alkoxy-1 -4C-alkoxy, 1 -4C- alkylcarbonyloxy, halo-1-4C-alkoxy, amino, mono- or di-1-4C-alkylamino, 1-4C- alkylcarbonylamino, 1-4C-alkoxycarbonylamino, mono- or di-1-4C-alkylamino-1-4C- alkylcarbonyloxy, 1-4C-alkoxy-1-4C-al
  • X is O (oxygen) or NH, and their salts.
  • R1 is hydrogen, 1-4C-alkyl or hydroxy-1-4C-alkyl
  • R2 is hydrogen or 1-4C-alkyl
  • R31 is hydrogen, 1-7C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy-1-4C-alkyl or 3-7C-cycloalkyl and
  • R32 is hydrogen or 1-7C-alkyl, or where
  • R31 and R32 together, including the nitrogen atom to which both are bonded, are a pyrrolidino, piperidino, piperazino, N-1-4C-alkylpiperazino, morpholino, aziridino or azetidino group,
  • R4 is hydrogen, 1-4C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy, 1-4C-alkoxycarbonyl, halogen, trifluoro- methyl, amino, mono- or di-1-4C-alkylamino, 1-4C-alkylcarbonylamino, 1-4C- alkoxycarbonylamino or 1-4C-alkoxy-1-4C-alkoxycarbonylamino,
  • R5 is hydrogen, 1-4C-alkyl, 1-4C-alkoxy, halogen or trifluoromethyl and
  • R8 is hydroxyl, 1-4C-alkoxy, oxo-substituted 1-4C-alkoxy, 3-7C-cycloalkoxy, 3-7C-cycloalkyl-1-4C- alkoxy, hydroxy-1-4C-alkoxy, 1-4C-alkoxy-1-4C-alkoxy, 1-4C-alkoxy-1-4C-alkoxy-1-4C-alkoxy, 3-7C-cycloalkoxy-1 -4C-alkoxy, 3-7C-cycloalkyl-1 -4C-alkoxy-1 -4C-alkoxy, 1 -4C- alkylcarbonyloxy, halo-1-4C-alkoxy, amino, mono- or di-1-4C-alkylamino, 1-4C- alkylcarbonylamino, 1-4C-alkoxycarbonylamino, mono- or di-1-4C-alkylamino-1-4C- alkylcarbonyloxy, 1-4C-alkoxy-1-4C-al
  • X is O (oxygen) or NH, and their salts.
  • R1 is hydrogen, 1-4C-alkyl or hydroxy-1-4C-alkyl
  • R2 is hydrogen or 1-4C-alkyl
  • R31 is hydrogen, 1-7C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy-1-4C-alkyl or 3-7C-cycloalkyl and
  • R32 is hydrogen or 1-7C-alkyl, or where
  • R31 and R32 together, including the nitrogen atom to which both are bonded, are a pyrrolidino, piperidino, piperazino, N-1-4C-alkylpiperazino, morpholino, aziridino or azetidino group,
  • R4 is hydrogen, 1-4C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy, 1-4C-alkoxycarbonyl, halogen, trifluoromethyl, amino, mono- or di-1-4C-alkylamino, 1-4C-alkylcarbonylamino, 1-4C- alkoxycarbonylamino or 1-4C-alkoxy-1-4C-alkoxycarbonylamino,
  • R5 is hydrogen, 1-4C-alkyl, 1-4C-alkoxy, halogen or trifluoromethyl and
  • R8 is hydroxyl, 1-4C-alkoxy or 1-4C-alkoxy-1-4C-alkylcarbonyloxy
  • X is O (oxygen) or NH, and their salts.
  • Preferred compounds are those of the formula 1a-1.
  • Exemplary particularly preferred compounds are those of the formula 1a-1 , in which R1 , R2, R31 , R32, R4, R5 and X have the meanings given in the following table 1 and the salts of these compounds.
  • Exemplary particularly preferred compounds are also those of the formula 1b wherein Z is CHR8 and in which R1 , R2, R31 , R32, R4, R5, R8 and X have the meanings given in the following table 2 and the salts of these compounds.
  • the compounds according to the invention can be synthesised from corresponding starting compounds of the formula 2, for example according to the reaction scheme 1 given below.
  • the synthesis is carried out in a manner known to the expert, for example by treatment of appropriate starting compounds with a sulphur transfer reagent like for example phosphorus pentasulfide (P2S5), 0,0- diethyldithio-phosphonic acid, boron sulfide, silicon disulfide, elemental sulfur or in particular Lawes- son's reagent [2,4-bis(4-methoxyphenyl)-2,4-dithioxo-1 ,3,2,4-dithiadiphosphetane] which is described for example in M. P. Cava, M. I. Levinson, Tetrahedron 1985, 41, 5061-5087, or by any other method known to replace the carbonyl oxygen of amides by sulphur.
  • Scheme 1 for example Lawesson's
  • the starting compounds of the formula 2 are known, for example, from WO 04/054984 or they can be prepared as outlined in a general way in that patent application or they can be prepared using analogous process steps or they can be prepared generally as outlined by way of example in the following examples from known starting materials.
  • the compounds of the formulae 1 , 1a, 1 b, 1a-1 and 1b-1 and their pharmacologically acceptable salts have valuable pharmacological properties which make them commercially utilizable. In particular, they exhibit marked inhibition of gastric acid secretion and an excellent gastric and intestinal protective action in warm-blooded animals, in particular humans.
  • the active compounds according to the invention are distinguished by a high selectivity of action, an advantageous duration of action, a particularly good enteral activity, the absence of significant side effects and a large therapeutic range.
  • Gastric and intestinal protection in this connection is understood as meaning the prevention and treatment of gastrointestinal diseases, in particular of gastrointestinal inflammatory diseases and lesions (such as, for example, gastric ulcer, peptic ulcer, including peptic ulcer bleeding, duodenal ulcer, gastritis, hyperacidic or medicament-related functional dyspepsia), which can be caused, for example, by microorganisms (e.g. Helicobacter pylori), bacterial toxins, medicaments (e.g. certain antiinflammatories and antirheumatics, such as NSAIDs and COX-inhibitors), chemicals (e.g. ethanol), gastric acid or stress situations.
  • gastroesophageal reflux disease GGID
  • the symptoms of which include, but are not limited to, heartburn and/or acid regurgitation include, but are not limited to, heartburn and/or acid regurgitation.
  • the active compounds according to the invention surprisingly prove to be clearly superior to the compounds known from the prior art in various models in which the antiulcero- genic and the antisecretory properties are determined.
  • the active compounds according to the invention are outstandingly suitable for use in human and veterinary medicine, where they are used, in particular, for the treatment and/or prophylaxis of disorders of the stomach and/or intestine.
  • a further subject of the invention are therefore the active compounds according to the invention for use in the treatment and/or prophylaxis of the abovementioned diseases.
  • the invention likewise includes the use of the active compounds according to the invention for the production of medicaments which are employed for the treatment and/or prophylaxis of the above- mentioned diseases.
  • the invention furthermore includes the use of the active compounds according to the invention for the treatment and/or prophylaxis of the abovementioned diseases.
  • a further subject of the invention are medicaments which comprise one or more active compounds according to the invention.
  • the medicaments are prepared by processes which are known per se and familiar to the person skilled in the art.
  • suitable pharmaceutical auxiliaries or excipients in the form of tablets, coated tablets, capsules, suppositories, patches (e.g. as TTS), emulsions, suspensions or solutions, the active
  • auxiliaries and excipients which are suitable for the desired pharmaceutical formulations are known to the person skilled in the art on the basis of his/her expert knowledge.
  • solvents for example, antioxidants, dispersants, emulsifiers, antifoams, flavor corrigents, preservatives, solubilizers, colorants or, in particular, permeation promoters and complexing agents (e.g. cyclodextrins).
  • the active compounds can be administered orally, parenterally or percutaneously.
  • the active compound(s) in the case of oral administration in a daily dose of approximately 0.01 to approximately 20, preferably 0.05 to 5, in particular 0.1 to 1.5, mg/kg of body weight, if appropriate in the form of several, preferably 1 to 4, individual doses to achieve the desired result.
  • a parenteral treatment similar or (in particular in the case of the intravenous administration of the active compounds), as a rule, lower doses can be used.
  • the establishment of the optimal dose and manner of administration of the active compounds necessary in each case can easily be carried out by any person skilled in the art on the basis of his/her expert knowledge.
  • the pharmaceutical preparations can also contain one or more pharmacologically active constituents of other groups of medicaments, for example: tranquillizers (for example from the group of the benzodiazepines, for example diazepam), spasmolytics (for example, bietamiverine or camylofine), anticholinergics (for example, oxyphencyclimine or phencarbamide), local anesthetics, (for example, tetracaine or procaine), and, if appropriate, also enzymes, vitamins or amino acids.
  • tranquillizers for example from the group of the benzodiazepines, for example diazepam
  • spasmolytics for example, bietamiverine or camylofine
  • anticholinergics for example, oxyphencyclimine or phencarbamide
  • local anesthetics for example, tetracaine or procaine
  • enzymes for example, tetracaine or procaine
  • H 2 blockers e.g. cimetidine, ranitidine
  • H + /K + ATPase inhibitors e.g. omeprazole, pantoprazole
  • peripheral anticholinergics e.g.
  • pirenzepine pirenzepine, telenzepine
  • gastrin antagonists with the aim of increasing the principal action in an additive or super-additive sense and/or of eliminating or of decreasing the side effects, or further the combination with antibacterially active substances (such as, for example, cephalosporins, tetracyclines, penicillins, macrolides, nitroimidazoles or alternatively bismuth salts) for the control of Helicobacter pylori.
  • antibacterially active substances such as, for example, cephalosporins, tetracyclines, penicillins, macrolides, nitroimidazoles or alternatively bismuth salts
  • Suitable antibacterial co-components which may be mentioned are, for example, mezlocillin, ampicillin, amoxicillin, cefalothin, cefoxitin, cefotaxime, imipenem, gentamycin, amikacin, erythromycin, ciprofloxacin, metronidazole, clarithromycin, azithromycin and combinations thereof (for example clarithromycin + metronidazole).
  • the active compounds according to the invention are suited for a free or fixed combination with those medicaments (e.g. certain antiinflammatories and antirheumatics, such as NSAIDs), which are known to have a certain ulcerogenic potency.
  • those medicaments e.g. certain antiinflammatories and antirheumatics, such as NSAIDs
  • the compounds of formula 1 are suited for a free or fixed combination with motil- ity-modifying drugs.
  • the excellent gastric protective action and the gastric acid secretion-inhibiting action of the compounds according to the invention can be demonstrated in investigations on animal experimental models.
  • the compounds according to the invention investigated in the model mentioned below have been provided with numbers which correspond to the numbers of these compounds in the examples.
  • the substances to be tested were administered intraduodenally in a 2.5 ml/kg liquid volume 60 min after the start of the continuous pentagastrin infusion.
  • the body temperature of the animals was kept at a constant 37.8-38°C by infrared irradiation and heat pads (automatic, stepless control by means of a rectal temperature sensor).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The invention relates to (6)-thioamide-substituted benzimidazoles of formula (1), in which the substituents and symbols have the meanings indicated in the description. The compounds have gastric secretion inhibiting and excellent gastric and intestinal protective action properties.

Description

6-thioamide substituted benzimidazoles
Technical field
The invention relates to novel compounds, which are used in the pharmaceutical industry as active compounds for the production of medicaments.
Background art
In European patent application 266326 (which corresponds to US Patent 5,106,862), benzimidazole derivatives having a very broad variety of substituents are disclosed, which are said to be active as anti-ulcer agents. In the International Patent Application WO 97/47603 (which corresponds to US Patent 6,465,505 from Astra AB) benzimidazoles with a specific benzyloxy or benzylamino substitution are described which are said to be active as inhibitors of the H+/K+-ATPase.
The International Patent Application WO 04/054984 discloses substituted, bicyclic benzimidazole derivatives which compounds are useful for treating gastrointestinal diseases.
The International Patent Application WO 04/087701 discloses tricyclic benzimidazole derivatives having different substituents in 5-position of the benzimidazole moiety which compounds are likewise useful for treating gastrointestinal diseases.
Summary of the invention
The invention relates to compounds of the formula 1
Figure imgf000002_0001
in which
R1 is hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl, 3-7C-cycloalkyl-1-4C-alkyl, 1-4C-alkoxy, 1-4C-alkoxy-
1-4C-alkyl, 1-4C-alkoxycarbonyl, 2-4C-alkenyl, 2-4C-alkynyl, fluoro-1-4C-alkyl, hydroxy-1-4C- alkyl, mono- or di-1-4C-alkylamino or 1-4C-alkylcarbonyloxy-1-4C-alkyl R2 is hydrogen, 1-4C-alkyl, aryl, 3-7C-cycloalkyl, 3-7C-cycloalkyl-1-4C-alkyl, 1-4C-alkoxycarbonyl, mono- or di-1-4C-alkylamino1-4C-alkylcarbonyl, hydroxy-1-4C-alkyl, fluoro-2-4C-alkyl, aryl-1-
4C-alkoxy-1-4C-alkyl, hydroxy or 1-4C-alkoxy R31 is hydrogen, hydroxyl, 1-7C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy-1-4C-alkyl, 3-7C-cycloalkyl or amino and R32 is hydrogen, 1-7C-alkyl, hydroxy-1-4C-alkyl or 1-4C-alkoxy-1-4C-alkyl, or where R31 and R32 together, including the nitrogen atom to which both are bonded, are a pyrrolidino, piperidino, piperazino, N-1-4C-alkylpiperazino, morpholino, aziridino or azetidino group and
X is O (oxygen) or NH and
Y has either the meaning -CH2-Ar wherein
Ar is a mono- or bicyclic aromatic residue, substituted by R4, R5, R6 and R7, which is selected from the group consisting of phenyl, naphthyl, pyrrolyl, pyrazolyl, imidazolyl, 1 ,2,3-triazolyl, in- dolyl, benzimidazolyl, furyl, benzofuryl, thienyl, benzothienyl, thiazolyl, isoxazolyl, pyridinyl, pyrimidinyl, chinolinyl and isochinolinyl, or Y denotes the group gp
Figure imgf000003_0001
wherein
Z has the meaning -CHR8- or -CHR8-CHR9- where in, Ar and/or in the group gp
R4 is hydrogen, 1-4C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy, 2-4C-alkenyloxy, 1-4C-alkylcarbo- nyl, carboxy, 1-4C-alkoxycarbonyl, carboxy-1-4C-alkyl, 1-4C-alkoxycarbonyl-1-4C-alkyl, halogen, hydroxy, aryl, aryl-1-4C-alkyl, aryl-oxy, aryl-1-4C-alkoxy, trifluoromethyl, nitro, amino, mono- or di-1-4C-alkylamino, 1-4C-alkylcarbonylamino, 1-4C-alkoxycarbonylamino, 1-4C-alkoxy-1-4C-alkoxycarbonylamino or sulfonyl,
R5 is hydrogen, 1-4C-alkyl, 1-4C-alkoxy, 1-4C-alkoxycarbonyl, halogen, trifluoromethyl or hydroxy,
R6 is hydrogen, 1-4C-alkyl or halogen and
R7 is hydrogen, 1-4C-alkyl or halogen,
R8 is hydrogen, 1-7C-alkyl, 2-7C-alkenyl, hydroxyl, 1-4C-alkoxy, oxo-substituted 1-4C-alkoxy, 3-7C-cycloalkoxy, 3-7C-cycloalkyl-1-4C-alkoxy, hydroxy-1-4C-alkoxy, 1-4C-alkoxy-1-4C- alkoxy, 'MC-alkoxy-'MC-alkoxy-'MC-alkoxy, 3-7C-cycloalkoxy-1-4C-alkoxy, 3-7C-cyclo- alkyl-1-4C-alkoxy-1-4C-alkoxy, 1-4C-alkylcarbonyloxy, halo-1-4C-alkoxy, amino, mono- or di-1-4C-alkylamino, 1-4C-alkylcarbonylamino, 1-4C-alkoxycarbonylamino, mono- or di-1-4C- alkylamino-1-4C-alkylcarbonyloxy, 1-4C-alkoxy-1-4C-alkoxycarbonylamino or 1-4C-alkoxy-1- 4C-alkylcarbonyloxy
R9 is hydrogen, 1-7C-alkyl, 2-7C-alkenyl, hydroxyl, 1-4C-alkoxy, oxo-substituted 1-4C-alkoxy, 3-7C-cycloalkoxy, 3-7C-cycloalkyl-1-4C-alkoxy, hydroxy-1-4C-alkoxy, 1-4C-alkoxy-1-4C- alkoxy, 1-4C-alkoxy-1-4C-alkoxy-1-4C-alkoxy, 3-7C-cycloalkoxy-1-4C-alkoxy, 3-7C- cycloalkyl-1-4C-alkoxy-1-4C-alkoxy, 1-4C-alkylcarbonyloxy, halo-1-4C-alkoxy, amino, mono- or di-1-4C-alkylamino, 1-4C-alkylcarbonylamino, 1-4C-alkoxycarbonylamino, mono- or di-1- 4C-alkylamino-1-4C-alkylcarbonyloxy, 'MC-alkoxy-'MC-alkoxycarbonylamino or 1-4C- alkoxy-1 ^C-alkylcarbonyloxy, and wherein aryl is phenyl or substituted phenyl with one, two or three same or different substituents from the group of 1-4C-alkyl, 1-4C-alkoxy, carboxy, 1-4C-alkoxycarbonyl, halogen, trifluoromethyl, nitro, trifluoromethoxy, hydroxy and cyano and the salts of these compounds.
1-4C-Alkyl represents straight-chain or branched alkyl groups having 1 to 4 carbon atoms. Examples which may be mentioned are the butyl, isobutyl, sec-butyl, tert-butyl, propyl, isopropyl, ethyl and the methyl group.
3-7C-Cycloalkyl represents cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl, of which cyclopropyl, cyclobutyl and cyclopentyl are preferred.
3-7C-Cycloalkyl-1-4C-alkyl represents one of the aforementioned 1-4C-alkyl groups, which is substituted by one of the aforementioned 3-7C-cycloalkyl groups. Examples which may be mentioned are the cyclopropylmethyl, the cyclohexylmethyl and the cyclohexylethyl group.
1-4C-Alkoxy represents groups, which in addition to the oxygen atom contain a straight-chain or branched alkyl group having 1 to 4 carbon atoms. Examples which may be mentioned are the butoxy, iso- butoxy, sec-butoxy, tert-butoxy, propoxy, isopropoxy and preferably the ethoxy and methoxy group.
1-4C-Alkoxy-1-4C-alkyl represents one of the aforementioned 1-4C-alkyl groups, which is substituted by one of the aforementioned 1-4C-alkoxy groups. Examples which may be mentioned are the meth- oxymethyl, the methoxyethyl group and the butoxyethyl group.
1-4C-Alkoxycarbonyl (-CO-1-4C-alkoxy) represents a carbonyl group, to which one of the aforementioned 1-4C-alkoxy groups is bonded. Examples which may be mentioned are the methoxycarbonyl (CH3O-C(O)-) and the ethoxycarbonyl group (CH3CH2O-C(O)-) .
2-4C-Alkenyl represents straight-chain or branched alkenyl groups having 2 to 4 carbon atoms. Examples which may be mentioned are the 2-butenyl, 3-butenyl, 1-propenyl and the 2-propenyl group (allyl group).
2-4C-Alkynyl represents straight-chain or branched alkynyl groups having 2 to 4 carbon atoms. Examples which may be mentioned are the 2-butynyl, 3-butynyl, and preferably the 2-propynyl, group (propargyl group). Fluoro-1-4C-alkyl represents one of the aforementioned 1-4C-alkyl groups, which is substituted by one or more fluorine atoms. An example which may be mentioned is the trifluoromethyl group.
Hydroxy-1-4C-alkyl represents one of the aforementioned 1-4C-alkyl groups, which is substituted by a hydroxy group. Examples which may be mentioned are the hydroxymethyl, the 2-hydroxyethyl and the 3-hydroxypropyl group. Hydroxy-1-4C-alkyl within the scope of the invention is understood to include 1-4C-alkyl groups with two or more hydroxy groups. Examples which may be mentioned are the 3,4-di- hydroxybutyl and in particular the 2,3-dihydroxypropyl group.
1-4C-Alkylcarbonyl represents a group, which in addition to the carbonyl group contains one of the aforementioned 1-4C-alkyl groups. An example which may be mentioned is the acetyl group.
Mono- or di-1-4C-alkylamino represents an amino group, which is substituted by one or by two - identical or different - groups from the aforementioned 1-4C-alkyl groups. Examples which may be mentioned are the dimethylamino, the diethylamino and the diisopropylamino group.
Mono- or di-1-4C-alkylamino-1-4C-alkylcarbonyl represents a 1-4C-alkylcarbonyl group, which is substituted by a mono- or di-1-4C-alkylamino groups. Examples, which may be mentioned, are the di- methylamino-methylcarbonyl and the dimethylamino-ethylcarbonyl group.
Fluoro-2-4C-alkyl represents a 2-4C-alkyl groups, which is substituted by one or more fluorine atoms. An example which may be mentioned is the 2,2,2-trifluoroethyl group.
Aryl-1-4C-alkoxy denotes an aryl-substituted 1-4C-alkoxy radical. An example which may be mentioned is the benzyloxy radical.
Aryl-1-4C-alkoxy-1-4C-alkyl denotes one of the aforementioned 1-4C-alkyl groups, which is substituted by one of the aforementioned aryl-1-4C-alkoxy radicals. An example which may be mentioned is the benzyloxymethyl radical.
Halogen within the meaning of the invention is bromo, chloro and fluoro.
1-7C-Alkyl represents straight-chain or branched alkyl groups having 1 to 7 carbon atoms. Examples which may be mentioned are the heptyl, isoheptyl (5-methylhexyl), hexyl, isohexyl (4-methylpentyl), neohexyl (3,3-dimethylbutyl), pentyl, isopentyl (3-methylbutyl), neopentyl (2,2-dimethylpropyl), butyl, isobutyl, sec-butyl, tert-butyl, propyl, isopropyl, ethyl and the methyl group.
2-4C-Alkenyloxy represents groups, which in addition to the oxygen atom contain one of the above- mentioned 2-4C-alkenyl groups. Examples, which may be mentioned, are the 2-butenyloxy, 3- butenyloxy, 1-propenyloxy and the 2-propenyloxy group (allyloxy group). Carboxy-1-4C-alkyl represents 1-4C-alkyl groups which are substituted by a carboxyl group. Examples, which may be mentioned, are the carboxymethyl and the 2-carboxyethyl group.
1-4C-Alkoxycarbonyl-1-4C-alkyl represents 1-4C-alkyl groups, which are substituted by one of the abovementioned 1-4C-alkoxycarbonyl groups. Examples, which may be mentioned, are the Methoxy- carbonylmethyl and the ethoxycarbonylmethyl group.
Aryl-1-4C-alkyl denotes an aryl-substituted 1-4C-alkyl radical. An example which may be mentioned is the benzyl radical.
1-4C-Alkylcarbonylamino represents an amino group to which a 1-4C-alkylcarbonyl group is bonded. Examples which may be mentioned are the propionylamino (C3H7C(O)NH-) and the acetylamino group (acetamido group) (CH3C(O)NH-) .
1-4C-Alkoxycarbonylamino represents an amino group, which is substituted by one of the aforementioned 1-4C-alkoxycarbonyl groups. Examples, which may be mentioned, are the ethoxycarbonyl- amino and the methoxycarbonylamino group.
1-4C-Alkoxy-1-4C-alkoxy represents one of the aforementioned 1-4C-alkoxy groups, which is substituted by a further 1-4C-alkoxy group. Examples which may be mentioned are the groups 2-(methoxy)ethoxy (CH3-O-CH2-CH2-O-) and 2-(ethoxy)ethoxy (CH3-CH2-O-CH2-CH2 -O-).
1-4C-Alkoxy-1-4C-alkoxycarbonyl represents a carbonyl group, to which one of the aforementioned 1- 4C-alkoxy-1-4C-alkoxy groups is bonded. Examples which may be mentioned are the 2-(methoxy)eth- oxycarbonyl (CH3-O-CH2CH2-O-CO-) and the 2-(ethoxy)ethoxycarbonyl group (CH3CH2-O-CH2CH2-O- CO-).
1-4C-Alkoxy-1-4C-alkoxycarbonylamino represents an amino group, which is substituted by one of the aforementioned 1-4C-alkoxy-1-4C-alkoxycarbonyl groups. Examples which may be mentioned are the 2-(methoxy)ethoxycarbonylamino and the 2-(ethoxy)ethoxycarbonylamino group. 2-7C-Alkenyl represents straight-chain or branched alkenyl groups having 2 to 7 carbon atoms. Examples which may be mentioned are the 2-butenyl, 3-butenyl, 1-propenyl, the 2-propenyl (allyl) and the vinyl group. The aforementioned 2-4C-alkenyl groups are preferred.
2-7C-Alkenyl represents straight-chain or branched alkenyl groups having 2 to 7 carbon atoms. Examples which may be mentioned are the 2-butenyl, 3-butenyl, 1-propenyl, the 2-propenyl (allyl) and the vinyl group. The aforementioned 2-4C-alkenyl groups are preferred. Oxo-substituted 1-4C-alkoxy represents a 1-4C-alkoxy group, which instead of a methylene group contains a carbonyl group. An example which may be mentioned is the 2-oxopropoxy group.
3-7C-Cycloalkoxy represents cyclopropyloxy, cyclobutyloxy, cyclopentyloxy, cyclohexyloxy and cyclo- heptyloxy, of which cyclopropyloxy, cyclobutyloxy and cyclopentyloxy are preferred.
3-7C-Cycloalkyl-1-4C-alkoxy represents one of the aforementioned 1-4C-alkoxy groups, which is substituted by one of the aforementioned 3-7C-cycloalkyl groups. Examples which may be mentioned are the cyclopropylmethoxy, the cyclobutylmethoxy and the cyclohexylethoxy group.
Hydroxy-1-4C-alkoxy represents aforementioned 1-4C-alkoxy groups, which are substituted by a hydroxy group. A preferred example which may be mentioned is the 2-hydroxyethoxy group.
1-4C-Alkoxy-1-4C-alkoxy-1-4C-alkoxy represents one of the aforementioned 1-4C-alkoxy groups, which is substituted by one of the aforementioned 1-4C-alkoxy-1-4C-alkoxy groups. A preferred example which may be mentioned is the methoxyethoxyethoxy group.
3-7C-Cycloalkoxy-1-4C-alkoxy represents one of the aforementioned 1-4C-alkoxy groups, which is substituted by one of the aforementioned 3-7C-cycloalkoxy groups. Examples which may be mentioned are the cyclopropoxymethoxy, the cyclobutoxymethoxy and the cyclohexyloxyethoxy group.
3-7C-Cycloalkyl-1-4C-alkoxy-1-4C-alkoxy represents one of the aforementioned 1-4C-alkoxy groups, which is substituted by one of the aforementioned 3-7C-cycloalkyl-1-4C-alkoxy groups. Examples which may be mentioned are the cyclopropylmethoxyethoxy, the cyclobutylmethoxyethoxy and the cyclohexylethoxyethoxy group.
1-4C-Alkylcarbonyloxy represents a 1-4C-alkylcarbonyl group which is bonded to an oxygen atom. An example which may be mentioned is the acetoxy group (CH3CO-O-).
1-4C-Alkylcarbonyloxy-1-4C-alkyl represents one of the aforementioned 1-4C-alkyl groups, which is substituted by one of the aforementioned 1-4C-alkylcarbonyloxy groups. An example which may be mentioned is the acetoxymethyl group (CH3CO-O-CH2).
Halo-1-4C-alkoxy represents 1-4C-alkoxy groups which are completely or mainly substituted by halogen. "Mainly" in this connection means that more than half of the hydrogen atoms in the 1-4C-alkoxy groups are replaced by halogen atoms. Halo-1-4C-alkoxy groups are primarily chloro- and/or in particular fluoro-substituted 1-4C-alkoxy groups. Examples of halogen-substituted 1-4C-alkoxy groups which may be mentioned are the 2,2,2-trichloroethoxy, the hexachloroisopropoxy, the pentachloroiso- propoxy, the 1 , 1 , 1 -trichloro-3,3,3-trifluoro-2-propoxy, the 1 , 1 , 1 -trichloro-2-methyl-2-propoxy, the 1 ,1 ,1- trichloro-2-propoxy, the 3-bromo-1 ,1 ,1-trifluoro-2-propoxy, the 3-bromo-1 ,1 ,1-trifluoro-2-butoxy, the 4- bromo-3,3,4,4-tetrafluoro-1-butoxy, the chlorodifluoromethoxy, the 1 ,1 ,1 ,3,3,3-hexafluoro-2-propoxy, the 2-trifluoromethyl-2-propoxy, the 1 ,1 ,1-trifluoro-2-propoxy, the perfluoro-tert-butoxy, the 2,2,3,3,4,4,4-heptafluoro-1-butoxy, the 4,4,4-trifluoro-1-butoxy, the 2,2,3,3,3-pentafluoropropoxy, the perfluoroethoxy, the 1 ,2,2-trifluoroethoxy, in particular the 1 ,1 ,2,2-tetrafluoroethoxy, the 2,2,2-trifluor- oethoxy, the trifluoromethoxy and preferably the difluoromethoxy group.
Mono- or di-1-4C-alkylamino-1-4C-alkylcarbonyloxy represents a 1-4C-alkylcarbonyloxy group, which is substituted by one of the aforementioned mono- or di-1-4C-alkylamino groups. Examples, which may be mentioned, are the dimethylamino-methylcarbonyloxy and the dimethylamino- ethylcarbonyloxy group.
1 -4C-Alkoxy-1 -4C-alkylcarbonyloxy represents one of the aforementioned 1 -4C-alkylcarbonyloxy radicals which is substituted by one of the aforementioned 1-4C-alkoxy groups. An example, which may be mentioned, is the methoxymethylcarbonyloxy group.
Possible salts of compounds of the formula 1 - depending on substitution - are especially all acid addition salts. Particular mention may be made of the pharmacologically tolerable salts of the inorganic and organic acids customarily used in pharmacy. Those suitable are water-soluble and water-insoluble acid addition salts with acids such as, for example, hydrochloric acid, hydrobromic acid, phosphoric acid, nitric acid, sulfuric acid, acetic acid, citric acid, D-gluconic acid, benzoic acid, 2-(4- hydroxybenzoyl)benzoic acid, butyric acid, sulfosalicylic acid, maleic acid, lauric acid, malic acid, fu- maric acid, succinic acid, oxalic acid, tartaric acid, embonic acid, stearic acid, toluenesulfonic acid, methanesulfonic acid or 3-hydroxy-2-naphthoic acid, where the acids are used in salt preparation - depending on whether a mono- or polybasic acid is concerned and on which salt is desired - in an equimolar quantitative ratio or one differing therefrom.
Pharmacologically intolerable salts, which can initially be obtained, for example, as process products in the production of the compounds according to the invention on the industrial scale, are converted into the pharmacologically tolerable salts by processes known to the person skilled in the art.
It is known to the person skilled in the art that the compounds according to invention and their salts, if, for example, they are isolated in crystalline form, can contain various amounts of solvents. The invention therefore also comprises all solvates and in particular all hydrates of the compounds of the formula 1 , and also all solvates and in particular all hydrates of the salts of the compounds of the formula 1.
One embodiment (embodiment a) of the invention relates to compounds of the formula 1 , wherein X is O (oxygen). Another embodiment (embodiment b) of the invention relates to compounds of the formula 1 , wherein X is NH.
In one aspect, the invention relates to compounds of the formula 1a
Figure imgf000009_0001
in which
R1 is hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl, 3-7C-cycloalkyl-1-4C-alkyl, 1-4C-alkoxy, 1-4C-alkoxy- 1-4C-alkyl, 1-4C-alkoxycarbonyl, 2-4C-alkenyl, 2-4C-alkynyl, fluoro-1-4C-alkyl, hydroxy-1-4C- alkyl, mono- or di-1-4C-alkylamino or 1-4C-alkylcarbonyloxy-1-4C-alkyl
R2 is hydrogen, 1-4C-alkyl, aryl, 3-7C-cycloalkyl, 3-7C-cycloalkyl-1-4C-alkyl, 1-4C-alkoxycarbonyl, mono- or di-1-4C-alkylamino1-4C-alkylcarbonyl, hydroxy-1-4C-alkyl, fluoro-2-4C-alkyl, aryl-1- 4C-alkoxy-1-4C-alkyl, hydroxy or 1-4C-alkoxy R31 is hydrogen, hydroxyl, 1-7C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy-1-4C-alkyl, 3-7C-cycloalkyl or amino and
R32 is hydrogen, 1-7C-alkyl, hydroxy-1-4C-alkyl or 1-4C-alkoxy-1-4C-alkyl, or where R31 and R32 together, including the nitrogen atom to which both are bonded, are a pyrrolidino, piperidino, piperazino, N-1-4C-alkylpiperazino, morpholino, aziridino or azetidino group, X is O (oxygen) or NH and
Ar is a mono- or bicyclic aromatic residue, substituted by R4, R5, R6 and R7, which is selected from the group consisting of phenyl, naphthyl, pyrrolyl, pyrazolyl, imidazolyl, 1 ,2,3-triazolyl, in- dolyl, benzimidazolyl, furyl, benzofuryl, thienyl, benzothienyl, thiazolyl, isoxazolyl, pyridinyl, pyrimidinyl, chinolinyl and isochinolinyl, where
R4 is hydrogen, 1-4C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy, 2-4C-alkenyloxy, 1-4C-alkylcarbo- nyl, carboxy, 1-4C-alkoxycarbonyl, carboxy-1-4C-alkyl, 1-4C-alkoxycarbonyl-1-4C-alkyl, halogen, hydroxy, aryl, aryl-1-4C-alkyl, aryl-oxy, aryl-1-4C-alkoxy, trifluoromethyl, nitro, amino, mono- or di-1-4C-alkylamino, 1-4C-alkylcarbonylamino, 1-4C-alkoxycarbonylamino, 1-4C-alkoxy-1-4C-alkoxycarbonylamino or sulfonyl,
R5 is hydrogen, 1-4C-alkyl, 1-4C-alkoxy, 1-4C-alkoxycarbonyl, halogen, trifluoromethyl or hydroxy,
R6 is hydrogen, 1-4C-alkyl or halogen and R7 is hydrogen, 1-4C-alkyl or halogen, and wherein aryl is phenyl or substituted phenyl with one, two or three same or different substituents from the group of 1-4C-alkyl, 1-4C-alkoxy, carboxy, 1-4C-alkoxycarbonyl, halogen, trifluoromethyl, nitro, trifluoromethoxy, hydroxy and cyano, and the salts of these compounds
In another aspect, the invention relates to compounds of the formula 1b
Figure imgf000010_0001
in which
R1 is hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl, 3-7C-cycloalkyl-1-4C-alkyl, 1-4C-alkoxy, 1-4C-alkoxy-
1-4C-alkyl, 1-4C-alkoxycarbonyl, 2-4C-alkenyl, 2-4C-alkynyl, fluoro-1-4C-alkyl, hydroxy-1-4C- alkyl, mono- or di-1-4C-alkylamino or 1-4C-alkylcarbonyloxy-1-4C-alkyl, R2 is hydrogen, 1-4C-alkyl, aryl, 3-7C-cycloalkyl, 3-7C-cycloalkyl-1-4C-alkyl, 1-4C-alkoxycarbonyl, mono- or di-1-4C-alkylamino1-4C-alkylcarbonyl, hydroxy-1-4C-alkyl, fluoro-2-4C-alkyl, aryl-1-
4C-alkoxy-1-4C-alkyl, hydroxy or 1-4C-alkoxy, R31 is hydrogen, hydroxyl, 1-7C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy-1-4C-alkyl, 3-7C-cycloalkyl or amino and R32 is hydrogen, 1-7C-alkyl, hydroxy-1-4C-alkyl or 1-4C-alkoxy-1-4C-alkyl, or where
R31 and R32 together, including the nitrogen atom to which both are bonded, are a pyrrolidino, piperidino, piperazino, N-1-4C-alkylpiperazino, morpholino, aziridino or azetidino group, R4 is hydrogen, 1-4C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy, 2-4C-alkenyloxy, 1-4C-alkylcarbonyl, carboxy, 1-4C-alkoxycarbonyl, carboxy-1-4C-alkyl, 1-4C-alkoxycarbonyl-1-4C-alkyl, halogen, hydroxy, aryl, aryl-1-4C-alkyl, aryl-oxy, aryl-1-4C-alkoxy, trifluoromethyl, nitro, amino, mono- or di-1-4C-alkylamino, 1-4C-alkylcarbonylamino, 1-4C-alkoxycarbonylamino, 1-4C-alkoxy-1-4C- alkoxycarbonylamino or sulfonyl,
R5 is hydrogen, 1-4C-alkyl, 1-4C-alkoxy, 1-4C-alkoxycarbonyl, halogen, trifluoromethyl or hydroxy, X is O (oxygen) or NH and Z has the meaning -CHR8- or -CHR8-CHR9- where
R8 is hydrogen, 1-7C-alkyl, 2-7C-alkenyl, hydroxyl, 1-4C-alkoxy, oxo-substituted 1-4C-alkoxy, 3-7C-cycloalkoxy, 3-7C-cycloalkyl-1-4C-alkoxy, hydroxy-1-4C-alkoxy, 1-4C-alkoxy-1-4C- alkoxy, 1-4C-alkoxy-1 -4OaIkOXy-I^OaIkOXy, 3-7C-cycloalkoxy-1-4C-alkoxy, 3-7C-cyclo- alkyl-1-4C-alkoxy-1-4C-alkoxy, 1-4C-alkylcarbonyloxy, halo-1-4C-alkoxy, amino, mono- or di-1-4C-alkylamino, 1-4C-alkylcarbonylamino, 1-4C-alkoxycarbonylamino, mono- or di-1-4C- alkylamino-'MC-alkylcarbonyloxy, I^C-alkoxy-I^C-alkoxycarbonylamino or 1-4C-alkoxy-1- 4C-alkylcarbonyloxy,
R9 is hydrogen, 1-7C-alkyl, 2-7C-alkenyl, hydroxyl, 1-4C-alkoxy, oxo-substituted 1-4C-alkoxy, 3-7C-cycloalkoxy, 3-7C-cycloalkyl-1-4C-alkoxy, hydroxy-1-4C-alkoxy, 1-4C-alkoxy-1-4C- alkoxy, 1-4C-alkoxy-1-4C-alkoxy-1-4C-alkoxy, 3-7C-cycloalkoxy-1-4C-alkoxy, 3-7C- cycloalkyl-1-4C-alkoxy-1-4C-alkoxy, 1-4C-alkylcarbonyloxy, halo-1-4C-alkoxy, amino, mono- or di-1-4C-alkylamino, 1-4C-alkylcarbonylamino, 1-4C-alkoxycarbonylamino, mono- or di-1- 4C-alkylamino-1-4C-alkylcarbonyloxy, 1-4C-alkoxy-1-4C-alkoxycarbonylamino or 1-4C- alkoxy-1 ^C-alkylcarbonyloxy, and wherein aryl is phenyl or substituted phenyl with one, two or three same or different substituents from the group of 1-4C-alkyl, 1-4C-alkoxy, carboxy, 1-4C-alkoxycarbonyl, halogen, trifluoromethyl, nitro, trifluoromethoxy, hydroxy and cyano, and the salts of these compounds.
The compounds of the formula 1b have up to three chiral centers in the parent structure. The invention thus relates to all conceivable stereoisomers in any desired mixing ratio to one another, including the pure enantiomers, which are a preferred subject of the invention.
Among the compounds of the formula 1a, preferred compounds are those of the formula 1a-1
)
Figure imgf000011_0001
Compounds of the formula 1a-1 which are to be mentioned are those compounds, in which
R1 is hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl, hydroxy-1-4C-alkyl or 1-4C-alkoxy-1-4C-alkyl,
R2 is hydrogen, 1-4C-alkyl, hydroxy, 1-4C-alkoxy or aryl-1-4C-alkoxy-1-4C-alkyl,
R31 is hydrogen, 1-7C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy-1-4C-alkyl, 3-7C-cycloalkyl or amino and R32 is hydrogen or 1-7C-alkyl, or where
R31 and R32 together, including the nitrogen atom to which both are bonded, are a pyrrolidino, piperidino, piperazino, N-1-4C-alkylpiperazino, morpholino, aziridino or azetidino group, R4 is hydrogen, 1-4C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy, 1-4C-alkoxycarbonyl, halogen, trifluoromethyl, amino, mono- or di-1-4C-alkylamino, 1-4C-alkylcarbonylamino, 1-4C- alkoxycarbonylamino or 1-4C-alkoxy-1-4C-alkoxycarbonylamino,
R5 is hydrogen, 1-4C-alkyl, 1-4C-alkoxy, halogen or trifluoromethyl and
X is O (oxygen) or NH, and the salts of these compounds.
Compounds of the formula 1a-1 which are to be particularly mentioned are those compounds, in which
R1 is hydrogen, 1-4C-alkyl or hydroxy-1-4C-alkyl,
R2 is hydrogen or 1-4C-alkyl,
R31 is hydrogen, 1-7C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy-1-4C-alkyl or 3-7C-cycloalkyl and
R32 is hydrogen or 1-7C-alkyl, or where
R31 and R32 together, including the nitrogen atom to which both are bonded, are a pyrrolidino, piperidino, piperazino, N-1-4C-alkylpiperazino, morpholino, aziridino or azetidino group,
R4 is hydrogen, 1-4C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy, 1-4C-alkoxycarbonyl, halogen, trifluoromethyl, amino, mono- or di-1-4C-alkylamino, 1-4C-alkylcarbonylamino, 1-4C- alkoxycarbonylamino or 1-4C-alkoxy-1-4C-alkoxycarbonylamino,
R5 is hydrogen, 1-4C-alkyl, 1-4C-alkoxy, halogen or trifluoromethyl and
X is O (oxygen) or NH, and the salts of these compounds.
Emphasis is given to those compounds of the formula 1a-1 , in which
R1 is 1-4C-alkyl,
R2 is hydrogen or 1-4C-alkyl,
R31 is 1-4C-alkyl and
R32 is 1-4C-alkyl,
R4 is hydrogen, 1-4C-alkyl or halogen,
R5 is 1-4C-alkyl, 1-4C-alkoxy or trifluoromethyl
X is O (oxygen) or NH, and their salts.
Particular emphasis is given to those compounds of the formula 1a-1 , in which
R1 is 1-4C-alkyl,
R2 is hydrogen or 1-4C-alkyl,
R31 is 1-4C-alkyl and
R32 is 1-4C-alkyl,
R4 is hydrogen, 1-4C-alkyl or halogen,
R5 is 1-4C-alkyl, 1-4C-alkoxy or trifluoromethyl X is NH, and their salts.
Among the compounds of the formula 1b, compounds of the formula 1b-1
)
Figure imgf000013_0001
are preferred.
Compounds of the formula 1b-1 which are to be mentioned are those compounds, in which
R1 is hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl, hydroxy-1-4C-alkyl or 1-4C-alkoxy-1-4C-alkyl,
R2 is hydrogen, 1 -4C-alkyl, hydroxy, 1 -4C-alkoxy or aryl-1 -4C-alkoxy-1 -4C-alkyl,
R31 is hydrogen, 1-7C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy-1-4C-alkyl, 3-7C-cycloalkyl or amino and
R32 is hydrogen or 1-7C-alkyl, or where
R31 and R32 together, including the nitrogen atom to which both are bonded, are a pyrrolidino, piperidino, piperazino, N-1-4C-alkylpiperazino, morpholino, aziridino or azetidino group,
R4 is hydrogen, 1-4C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy, 1-4C-alkoxycarbonyl, halogen, trifluoromethyl, amino, mono- or di-1-4C-alkylamino, 1-4C-alkylcarbonylamino, 1-4C- alkoxycarbonylamino or 1-4C-alkoxy-1-4C-alkoxycarbonylamino,
R5 is hydrogen, 1-4C-alkyl, 1-4C-alkoxy, halogen or trifluoromethyl and
R8 is hydroxyl, 1-4C-alkoxy, oxo-substituted 1-4C-alkoxy, 3-7C-cycloalkoxy, 3-7C-cycloalkyl-1-4C- alkoxy, hydroxy-1-4C-alkoxy, 1-4C-alkoxy-1-4C-alkoxy, 1-4C-alkoxy-1-4C-alkoxy-1-4C-alkoxy, 3-7C-cycloalkoxy-1 -4C-alkoxy, 3-7C-cycloalkyl-1 -4C-alkoxy-1 -4C-alkoxy, 1 -4C- alkylcarbonyloxy, halo-1-4C-alkoxy, amino, mono- or di-1-4C-alkylamino, 1-4C- alkylcarbonylamino, 1-4C-alkoxycarbonylamino, mono- or di-1-4C-alkylamino-1-4C- alkylcarbonyloxy, 1-4C-alkoxy-1-4C-alkoxycarbonylamino or 1-4C-alkoxy-1-4C-alkylcarbonyloxy
X is O (oxygen) or NH, and their salts.
Compounds of the formula 1 b-1 which are to be particularly mentioned are those compounds, in which
R1 is hydrogen, 1-4C-alkyl or hydroxy-1-4C-alkyl,
R2 is hydrogen or 1-4C-alkyl, R31 is hydrogen, 1-7C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy-1-4C-alkyl or 3-7C-cycloalkyl and
R32 is hydrogen or 1-7C-alkyl, or where
R31 and R32 together, including the nitrogen atom to which both are bonded, are a pyrrolidino, piperidino, piperazino, N-1-4C-alkylpiperazino, morpholino, aziridino or azetidino group,
R4 is hydrogen, 1-4C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy, 1-4C-alkoxycarbonyl, halogen, trifluoro- methyl, amino, mono- or di-1-4C-alkylamino, 1-4C-alkylcarbonylamino, 1-4C- alkoxycarbonylamino or 1-4C-alkoxy-1-4C-alkoxycarbonylamino,
R5 is hydrogen, 1-4C-alkyl, 1-4C-alkoxy, halogen or trifluoromethyl and
R8 is hydroxyl, 1-4C-alkoxy, oxo-substituted 1-4C-alkoxy, 3-7C-cycloalkoxy, 3-7C-cycloalkyl-1-4C- alkoxy, hydroxy-1-4C-alkoxy, 1-4C-alkoxy-1-4C-alkoxy, 1-4C-alkoxy-1-4C-alkoxy-1-4C-alkoxy, 3-7C-cycloalkoxy-1 -4C-alkoxy, 3-7C-cycloalkyl-1 -4C-alkoxy-1 -4C-alkoxy, 1 -4C- alkylcarbonyloxy, halo-1-4C-alkoxy, amino, mono- or di-1-4C-alkylamino, 1-4C- alkylcarbonylamino, 1-4C-alkoxycarbonylamino, mono- or di-1-4C-alkylamino-1-4C- alkylcarbonyloxy, 1-4C-alkoxy-1-4C-alkoxycarbonylamino or 1-4C-alkoxy-1-4C-alkylcarbonyloxy
X is O (oxygen) or NH, and their salts.
Compounds of the formula 1b-1 which are to be emphasized are those compounds, in which
R1 is hydrogen, 1-4C-alkyl or hydroxy-1-4C-alkyl,
R2 is hydrogen or 1-4C-alkyl,
R31 is hydrogen, 1-7C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy-1-4C-alkyl or 3-7C-cycloalkyl and
R32 is hydrogen or 1-7C-alkyl, or where
R31 and R32 together, including the nitrogen atom to which both are bonded, are a pyrrolidino, piperidino, piperazino, N-1-4C-alkylpiperazino, morpholino, aziridino or azetidino group,
R4 is hydrogen, 1-4C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy, 1-4C-alkoxycarbonyl, halogen, trifluoromethyl, amino, mono- or di-1-4C-alkylamino, 1-4C-alkylcarbonylamino, 1-4C- alkoxycarbonylamino or 1-4C-alkoxy-1-4C-alkoxycarbonylamino,
R5 is hydrogen, 1-4C-alkyl, 1-4C-alkoxy, halogen or trifluoromethyl and
R8 is hydroxyl, 1-4C-alkoxy or 1-4C-alkoxy-1-4C-alkylcarbonyloxy,
X is O (oxygen) or NH, and their salts.
Preferred compounds are those of the formula 1a-1.
Exemplary particularly preferred compounds are those of the formula 1a-1 , in which R1 , R2, R31 , R32, R4, R5 and X have the meanings given in the following table 1 and the salts of these compounds. Table 1:
Figure imgf000015_0001
Figure imgf000016_0001
Exemplary particularly preferred compounds are also those of the formula 1b wherein Z is CHR8 and in which R1 , R2, R31 , R32, R4, R5, R8 and X have the meanings given in the following table 2 and the salts of these compounds. Table 2:
Figure imgf000016_0002
Figure imgf000017_0001
Particularly preferred are the compounds given as final products of formula 1 in the examples, and the salts of these compounds.
The compounds according to the invention can be synthesised from corresponding starting compounds of the formula 2, for example according to the reaction scheme 1 given below. The synthesis is carried out in a manner known to the expert, for example by treatment of appropriate starting compounds with a sulphur transfer reagent like for example phosphorus pentasulfide (P2S5), 0,0- diethyldithio-phosphonic acid, boron sulfide, silicon disulfide, elemental sulfur or in particular Lawes- son's reagent [2,4-bis(4-methoxyphenyl)-2,4-dithioxo-1 ,3,2,4-dithiadiphosphetane] which is described for example in M. P. Cava, M. I. Levinson, Tetrahedron 1985, 41, 5061-5087, or by any other method known to replace the carbonyl oxygen of amides by sulphur. Scheme 1 : for example Lawesson's
R31 reagent R31
Figure imgf000018_0002
Figure imgf000018_0001
The starting compounds of the formula 2 are known, for example, from WO 04/054984 or they can be prepared as outlined in a general way in that patent application or they can be prepared using analogous process steps or they can be prepared generally as outlined by way of example in the following examples from known starting materials.
The following examples serve to illustrate the invention in greater detail without restricting it. Likewise, further compounds of the formula 1 whose preparation is not described explicitly can be prepared in an analogous manner or in a manner familiar per se to the person skilled in the art using customary process techniques. The abbreviation min stands for minute(s), h for hour(s) and m.p. for melting point.
Examples
Final products of the formula 1
1. 6-(N,N-Dimethylaminothiocarbonyl)-4-(2,6-dimethyl-benzylamino)-1,2-dimethyl-1H- benzimidazole
A suspension of 0.35 g (1 mmol) 6-(N,N-dimethylaminocarbonyl)-4-(2,6-dimethyl-benzylamino)-1 ,2- dimethyl-1/-/-benzimidazole and 0.5 g (1.2 mmol) Lawesson's reagent [2,4-bis(4-methoxyphenyl)-2,4- dithioxo-1 ,3,2,4-dithiadiphosphetane] in 10 ml 1 ,2-dimethoxyethane was stirred 1 h at 50 0C. After complete reaction, the mixture was cooled down and partitioned between dichloromethane and saturated aqueous sodium hydrogencarbonate. The organic layer was separated, dried over anhydrous magnesium sulphate and evaporated. Purification of the residue by column chromatography on silica gel using ethyl acetate/light petroleum ether (4:1) and crystallization from diethyl ether yielded 0.32 g (87 %) of the title compound as a colourless solid (m.p. 206-207 0C).
2. 6-(N,N-Dimethylaminothiocarbonyl)-4-(2-fluoro-6-methoxy-benzylamino)-1,2-dimethyl- 1H-benzimidazole
A suspension of 0.2 g (0.54 mmol) 6-(N,N-dimethylaminocarbonyl)-4-(2-fluoro-6-methoxy- benzylamino)-1 ,2-dimethyl-1/-/-benzimidazole and 0.24 g (0.59 mmol) Lawesson's reagent in 6 ml 1 ,2- dimethoxyethane was stirred 16 h at ambient temperature. After complete reaction, the mixture was partitioned between dichloromethane and saturated aqueous sodium hydrogencarbonate. The organic layer was separated, dried over anhydrous magnesium sulphate and evaporated. Purification of the residue by column chromatography on silica gel using ethyl acetate/triethylamine (9:1) and crystallization from diethyl ether yielded 115 mg (55 %) of the title compound as a colourless solid (m.p. 180- 181 0C).
3. 6-(N,N-Dimethylaminothiocarbonyl)-4-(2-fluoro-6-trifluoromethyl-benzylamino)-1,2- dimethyMH-benzimidazole
A suspension of 0.2 g (0.5 mmol) 6-(N,N-dimethylaminocarbonyl)-4-(2-fluoro-6-trifluoromethyl- benzylamino)-1 ,2-dimethyl-1/-/-benzimidazole and 0.24 g (0.59 mmol) Lawesson's reagent in 6 ml 1 ,2- dimethoxyethane was stirred 16 h at ambient temperature. After complete reaction, the mixture was partitioned between dichloromethane and saturated aqueous sodium hydrogencarbonate. The organic layer was separated, dried over anhydrous magnesium sulphate and evaporated. Purification of the residue by column chromatography on silica gel using ethyl acetate/triethylamine (9:1) and crystallization from diethyl ether yielded 126 mg (59 %) of the title compound as a colourless solid (m.p. 210- 211 0C).
4. 6-(N,N-Dimethylaminothiocarbonyl)-4-(2-methyl-benzylamino)-1,2-dimethyl-1H- benzimidazole
A suspension of 0.3 g (0.9 mmol) 6-(N,N-dimethylaminocarbonyl)-4-(2-methyl-benzylamino)-1 ,2- dimethyl-1/-/-benzimidazole and 0.4 g (1 mmol) Lawesson's reagent in 6 ml 1 ,2-dimethoxyethane was stirred 3 h at ambient temperature. After complete reaction, the mixture was partitioned between di- chloromethane and saturated aqueous sodium hydrogencarbonate. The organic layer was separated, dried over anhydrous magnesium sulphate and evaporated. Purification of the residue by column chromatography on silica gel using ethyl acetate/triethylamine (9:1) and crystallization from diethyl ether yielded 150 mg (48 %) of the title compound as a colourless solid (m.p. 160-161 0C).
5. 6-(N,N-Dimethylaminothiocarbonyl)-4-(2,6-dimethyl-benzylamino)-2-methyl-1H- benzimidazole
A suspension of 0.3 g (0.9 mmol) 6-(N,N-dimethylaminocarbonyl)-4-(2,6-dimethyl-benzylamino)-2- methyl-1/-/-benzimidazole and 0.4 g (1 mmol) Lawesson's reagent in 6 ml 1 ,2-dimethoxyethane was stirred 16 h at ambient temperature. After complete reaction, the mixture was partitioned between dichloromethane and saturated aqueous sodium hydrogencarbonate. The organic layer was separated, dried over anhydrous magnesium sulphate and evaporated. Purification of the residue by successive column chromatography on silica gel using ethyl acetate/triethylamine (9:1) and ethyl acetate and crystallization from diethyl ether/ethyl acetate yielded 20 mg (6 %) of the title compound as a colourless solid (m.p. 159-160 °C).
Starting Materials
A. 6-(N,N-Dimethylaminocarbonyl)-4-(2-fluoro-6-methoxy-benzylamino)-1,2-dimethyl-1H- benzimidazole
To a suspension of 0.4 g (1.72 mmol) 4-amino-6-(N,N-dimethylaminocarbonyl)-1 ,2-dimethyl-1/-/- benzimidazole and 0.27 g (1.75 mmol) 2-fluoro-6-methoxy-benzaldehyde in 10 ml dichloromethane and 2.5 ml acetic acid were added 0.5 g (2.36 mmol) sodium triacetoxyborohydride in small portions. After complete reaction (30 min), the mixture was partitioned between dichloromethane and saturated aqueous sodium hydrogen carbonate. The organic layer was separated, dried over anhydrous magne- sium sulphate and evaporated. Purification of the residue by crystallization from ethyl acetate/n- heptane yielded 570 mg (89 %) of the title compound as a colourless solid (m.p. 165-166 0C).
B. 6-(N,N-Dimethylaminocarbonyl)-4-(2-fluoro-6-trifluoromethyl-benzylamino)-1,2- dimethyMH-benzimidazole
To a suspension of 0.4 g (1.72 mmol) 4-amino-6-(N,N-dimethylaminocarbonyl)-1 ,2-dimethyl-1/-/- benzimidazole and 0.33 g (1.72 mmol) 2-fluoro-6-trifluoromethyl-benzaldehyde in 10 ml dichloro- methane and 2.5 ml acetic acid were added 0.5 g (2.36 mmol) sodium triacetoxyborohydride in small portions. After complete reaction (1.5 h), the mixture was partitioned between dichloromethane and saturated aqueous sodium hydrogen carbonate. The organic layer was separated, dried over anhydrous magnesium sulphate and evaporated. Purification of the residue by column chromatography on silica gel using ethyl acetate and crystallization from ethyl acetate/n-heptane yielded 580 mg (83 %) of the title compound as a colourless solid (m.p. 137-138 0C).
Commercial utility
The compounds of the formulae 1 , 1a, 1 b, 1a-1 and 1b-1 and their pharmacologically acceptable salts (= active compounds according to the invention) have valuable pharmacological properties which make them commercially utilizable. In particular, they exhibit marked inhibition of gastric acid secretion and an excellent gastric and intestinal protective action in warm-blooded animals, in particular humans. In this connection, the active compounds according to the invention are distinguished by a high selectivity of action, an advantageous duration of action, a particularly good enteral activity, the absence of significant side effects and a large therapeutic range.
"Gastric and intestinal protection" in this connection is understood as meaning the prevention and treatment of gastrointestinal diseases, in particular of gastrointestinal inflammatory diseases and lesions (such as, for example, gastric ulcer, peptic ulcer, including peptic ulcer bleeding, duodenal ulcer, gastritis, hyperacidic or medicament-related functional dyspepsia), which can be caused, for example, by microorganisms (e.g. Helicobacter pylori), bacterial toxins, medicaments (e.g. certain antiinflammatories and antirheumatics, such as NSAIDs and COX-inhibitors), chemicals (e.g. ethanol), gastric acid or stress situations. "Gastric and intestinal protection" is understood to include, according to general knowledge, gastroesophageal reflux disease (GERD), the symptoms of which include, but are not limited to, heartburn and/or acid regurgitation.
In their excellent properties, the active compounds according to the invention surprisingly prove to be clearly superior to the compounds known from the prior art in various models in which the antiulcero- genic and the antisecretory properties are determined. On account of these properties, the active compounds according to the invention are outstandingly suitable for use in human and veterinary medicine, where they are used, in particular, for the treatment and/or prophylaxis of disorders of the stomach and/or intestine.
A further subject of the invention are therefore the active compounds according to the invention for use in the treatment and/or prophylaxis of the abovementioned diseases.
The invention likewise includes the use of the active compounds according to the invention for the production of medicaments which are employed for the treatment and/or prophylaxis of the above- mentioned diseases.
The invention furthermore includes the use of the active compounds according to the invention for the treatment and/or prophylaxis of the abovementioned diseases.
A further subject of the invention are medicaments which comprise one or more active compounds according to the invention. The medicaments are prepared by processes which are known per se and familiar to the person skilled in the art. As medicaments, the active compounds according to the invention (= active compounds) are either employed as such, or preferably in combination with suitable pharmaceutical auxiliaries or excipients in the form of tablets, coated tablets, capsules, suppositories, patches (e.g. as TTS), emulsions, suspensions or solutions, the active compound content advantageously being between 0.1 and 95% and it being possible to obtain a pharmaceutical administration form exactly adapted to the active compound and/or to the desired onset and/or duration of action (e.g. a sustained-release form or an enteric form) by means of the appropriate selection of the auxiliaries and excipients.
The auxiliaries and excipients which are suitable for the desired pharmaceutical formulations are known to the person skilled in the art on the basis of his/her expert knowledge. In addition to solvents, gel-forming agents, suppository bases, tablet auxiliaries and other active compound excipients, it is possible to use, for example, antioxidants, dispersants, emulsifiers, antifoams, flavor corrigents, preservatives, solubilizers, colorants or, in particular, permeation promoters and complexing agents (e.g. cyclodextrins).
The active compounds can be administered orally, parenterally or percutaneously.
In general, it has proven advantageous in human medicine to administer the active compound(s) in the case of oral administration in a daily dose of approximately 0.01 to approximately 20, preferably 0.05 to 5, in particular 0.1 to 1.5, mg/kg of body weight, if appropriate in the form of several, preferably 1 to 4, individual doses to achieve the desired result. In the case of a parenteral treatment, similar or (in particular in the case of the intravenous administration of the active compounds), as a rule, lower doses can be used. The establishment of the optimal dose and manner of administration of the active compounds necessary in each case can easily be carried out by any person skilled in the art on the basis of his/her expert knowledge.
If the active compounds according to the invention and/or their salts are to be used for the treatment of the abovementioned diseases, the pharmaceutical preparations can also contain one or more pharmacologically active constituents of other groups of medicaments, for example: tranquillizers (for example from the group of the benzodiazepines, for example diazepam), spasmolytics (for example, bietamiverine or camylofine), anticholinergics (for example, oxyphencyclimine or phencarbamide), local anesthetics, (for example, tetracaine or procaine), and, if appropriate, also enzymes, vitamins or amino acids.
To be emphasized in this connection is in particular the combination of the active compounds according to the invention with pharmaceuticals which inhibit acid secretion, such as, for example, H2 blockers (e.g. cimetidine, ranitidine), H+/K+ ATPase inhibitors (e.g. omeprazole, pantoprazole), or further with so-called peripheral anticholinergics (e.g. pirenzepine, telenzepine) and with gastrin antagonists with the aim of increasing the principal action in an additive or super-additive sense and/or of eliminating or of decreasing the side effects, or further the combination with antibacterially active substances (such as, for example, cephalosporins, tetracyclines, penicillins, macrolides, nitroimidazoles or alternatively bismuth salts) for the control of Helicobacter pylori. Suitable antibacterial co-components which may be mentioned are, for example, mezlocillin, ampicillin, amoxicillin, cefalothin, cefoxitin, cefotaxime, imipenem, gentamycin, amikacin, erythromycin, ciprofloxacin, metronidazole, clarithromycin, azithromycin and combinations thereof (for example clarithromycin + metronidazole).
In view of their excellent gastric and intestinal protection action, the active compounds according to the invention are suited for a free or fixed combination with those medicaments (e.g. certain antiinflammatories and antirheumatics, such as NSAIDs), which are known to have a certain ulcerogenic potency. In addition, the compounds of formula 1 are suited for a free or fixed combination with motil- ity-modifying drugs.
Pharmacology
The excellent gastric protective action and the gastric acid secretion-inhibiting action of the compounds according to the invention can be demonstrated in investigations on animal experimental models. The compounds according to the invention investigated in the model mentioned below have been provided with numbers which correspond to the numbers of these compounds in the examples.
Testing of the secretion-inhibiting action on the perfused rat stomach
In Table A which follows, the influence of the compounds according to the invention on the pentagastrin-stimulated acid secretion of the perfused rat stomach after intraduodenal administration in vivo is shown.
Table A
Biological Data
Figure imgf000025_0001
Methodology
The abdomen of anesthetized rats (CD rat, female, 200-250 g; 1.5 g/kg i.m. urethane) was opened after tracheotomy by a median upper abdominal incision and a PVC catheter was fixed transorally in the esophagus and another via the pylorus such that the ends of the tubes just projected into the gastric lumen. The catheter leading from the pylorus led outward into the right abdominal wall through a side opening.
After thorough rinsing (about 50-100 ml), warm (37°C) physiological NaCI solution was continuously passed through the stomach (0.5 ml/min, pH 6.8-6.9; Braun-Unita I). The pH (pH meter 632, glass electrode EA 147; φ = 5 mm, Metrohm) and, by titration with a freshly prepared 0.01 N NaOH solution to pH 7 (Dosimat 665 Metrohm), the secreted HCI were determined in the effluent in each case collected at an interval of 15 minutes.
The gastric secretion was stimulated by continuous infusion of 1 μg/kg (= 1.65 ml/h) of i.v. pentagas- trin (left femoral vein) about 30 min after the end of the operation (i.e. after determination of 2 preliminary fractions). The substances to be tested were administered intraduodenally in a 2.5 ml/kg liquid volume 60 min after the start of the continuous pentagastrin infusion.
The body temperature of the animals was kept at a constant 37.8-38°C by infrared irradiation and heat pads (automatic, stepless control by means of a rectal temperature sensor).

Claims

Patent claims
1. A compound of the formula 1
Figure imgf000026_0001
in which
R1 is hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl, 3-7C-cycloalkyl-1-4C-alkyl, 1-4C-alkoxy, 1-4C-alkoxy-
1-4C-alkyl, 1-4C-alkoxycarbonyl, 2-4C-alkenyl, 2-4C-alkynyl, fluoro-1-4C-alkyl, hydroxy-1-4C- alkyl, mono- or di-1-4C-alkylamino or 1-4C-alkylcarbonyloxy-1-4C-alkyl R2 is hydrogen, 1-4C-alkyl, aryl, 3-7C-cycloalkyl, 3-7C-cycloalkyl-1-4C-alkyl, 1-4C-alkoxycarbonyl, mono- or di-1-4C-alkylamino1-4C-alkylcarbonyl, hydroxy-1-4C-alkyl, fluoro-2-4C-alkyl, aryl-1-
4C-alkoxy-1-4C-alkyl, hydroxy or 1-4C-alkoxy R31 is hydrogen, hydroxyl, 1-7C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy-1-4C-alkyl, 3-7C-cycloalkyl or amino and R32 is hydrogen, 1-7C-alkyl, hydroxy-1-4C-alkyl or 1-4C-alkoxy-1-4C-alkyl, or where
R31 and R32 together, including the nitrogen atom to which both are bonded, are a pyrrolidino, piperidino, piperazino, N-1-4C-alkylpiperazino, morpholino, aziridino or azetidino group and X is O (oxygen) or NH and Y has either the meaning -CH2-Ar wherein
Ar is a mono- or bicyclic aromatic residue, substituted by R4, R5, R6 and R7, which is selected from the group consisting of phenyl, naphthyl, pyrrolyl, pyrazolyl, imidazolyl, 1 ,2,3-triazolyl, in- dolyl, benzimidazolyl, furyl, benzofuryl, thienyl, benzothienyl, thiazolyl, isoxazolyl, pyridinyl, pyrimidinyl, chinolinyl and isochinolinyl, or Y denotes the group gp
Figure imgf000026_0002
wherein
Z has the meaning -CHR8- or -CHR8-CHR9- where in, Ar and/or in the group gp
R4 is hydrogen, 1-4C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy, 2-4C-alkenyloxy, 1-4C-alkylcarbo- nyl, carboxy, 1-4C-alkoxycarbonyl, carboxy-1-4C-alkyl, 1-4C-alkoxycarbonyl-1-4C-alkyl, halogen, hydroxy, aryl, aryl-1-4C-alkyl, aryl-oxy, aryl-1-4C-alkoxy, trifluoromethyl, nitro, amino, mono- or di-1-4C-alkylamino, 1-4C-alkylcarbonylamino, MC-alkoxycarbonylamino, I^C-alkoxy-'MC-alkoxycarbonylamino or sulfonyl,
R5 is hydrogen, 1-4C-alkyl, 1-4C-alkoxy, 1-4C-alkoxycarbonyl, halogen, trifluoromethyl or hydroxy,
R6 is hydrogen, 1-4C-alkyl or halogen and
R7 is hydrogen, 1-4C-alkyl or halogen,
R8 is hydrogen, 1-7C-alkyl, 2-7C-alkenyl, hydroxyl, 1-4C-alkoxy, oxo-substituted 1-4C-alkoxy, 3-7C-cycloalkoxy, 3-7C-cycloalkyl-1-4C-alkoxy, hydroxy-1-4C-alkoxy, 1-4C-alkoxy-1-4C- alkoxy, I^C-alkoxy-I^C-alkoxy-I^C-alkoxy, 3-7C-cycloalkoxy-1-4C-alkoxy, 3-7C-cyclo- alkyl-1-4C-alkoxy-1-4C-alkoxy, 1-4C-alkylcarbonyloxy, halo-1-4C-alkoxy, amino, mono- or di-1-4C-alkylamino, 1-4C-alkylcarbonylamino, 1-4C-alkoxycarbonylamino, mono- or di-1-4C- alkylamino-1-4C-alkylcarbonyloxy, 1-4C-alkoxy-1-4C-alkoxycarbonylamino or 1-4C-alkoxy-1- 4C-alkylcarbonyloxy
R9 is hydrogen, 1-7C-alkyl, 2-7C-alkenyl, hydroxyl, 1-4C-alkoxy, oxo-substituted 1-4C-alkoxy, 3-7C-cycloalkoxy, 3-7C-cycloalkyl-1-4C-alkoxy, hydroxy-1-4C-alkoxy, 1-4C-alkoxy-1-4C- alkoxy, 1-4C-alkoxy-1-4C-alkoxy-1-4C-alkoxy, 3-7C-cycloalkoxy-1-4C-alkoxy, 3-7C- cycloalkyl-1-4C-alkoxy-1-4C-alkoxy, 1-4C-alkylcarbonyloxy, halo-1-4C-alkoxy, amino, mono- or di-1-4C-alkylamino, 1-4C-alkylcarbonylamino, 1-4C-alkoxycarbonylamino, mono- or di-1- 4C-alkylamino-1-4C-alkylcarbonyloxy, 1-4C-alkoxy-1-4C-alkoxycarbonylamino or 1-4C- alkoxy-1 ^C-alkylcarbonyloxy, and wherein aryl is phenyl or substituted phenyl with one, two or three same or different substituents from the group of 1-4C-alkyl, 1-4C-alkoxy, carboxy, 1-4C-alkoxycarbonyl, halogen, trifluoromethyl, nitro, trifluoromethoxy, hydroxy and cyano and its salts.
2. A compound as claimed in claim 1 , characterized by the formula 1a
Figure imgf000027_0001
in which
R1 is hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl, 3-7C-cycloalkyl-1-4C-alkyl, 1-4C-alkoxy, 1-4C-alkoxy- 1-4C-alkyl, 1-4C-alkoxycarbonyl, 2-4C-alkenyl, 2-4C-alkynyl, fluoro-1-4C-alkyl, hydroxy-1-4C- alkyl, mono- or di-1-4C-alkylamino or 1-4C-alkylcarbonyloxy-1-4C-alkyl R2 is hydrogen, 1-4C-alkyl, aryl, 3-7C-cycloalkyl, 3-7C-cycloalkyl-1-4C-alkyl, 1-4C-alkoxycarbonyl, mono- or di-'MC-alkylamino'MC-alkylcarbonyl, hydroxy-1-4C-alkyl, fluoro-2-4C-alkyl, aryl-1- 4C-alkoxy-1-4C-alkyl, hydroxy or 1-4C-alkoxy R31 is hydrogen, hydroxyl, 1-7C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy-1-4C-alkyl, 3-7C-cycloalkyl or amino and
R32 is hydrogen, 1-7C-alkyl, hydroxy-1-4C-alkyl or 1-4C-alkoxy-1-4C-alkyl, or where R31 and R32 together, including the nitrogen atom to which both are bonded, are a pyrrolidino, piperidino, piperazino, N-1-4C-alkylpiperazino, morpholino, aziridino or azetidino group, X is O (oxygen) or NH and
Ar is a mono- or bicyclic aromatic residue, substituted by R4, R5, R6 and R7, which is selected from the group consisting of phenyl, naphthyl, pyrrolyl, pyrazolyl, imidazolyl, 1 ,2,3-triazolyl, in- dolyl, benzimidazolyl, furyl, benzofuryl, thienyl, benzothienyl, thiazolyl, isoxazolyl, pyridinyl, pyrimidinyl, chinolinyl and isochinolinyl, where
R4 is hydrogen, 1-4C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy, 2-4C-alkenyloxy, 1-4C-alkylcarbo- nyl, carboxy, 1-4C-alkoxycarbonyl, carboxy-1-4C-alkyl, 1-4C-alkoxycarbonyl-1-4C-alkyl, halogen, hydroxy, aryl, aryl-1-4C-alkyl, aryl-oxy, aryl-1-4C-alkoxy, trifluoromethyl, nitro, amino, mono- or di-1-4C-alkylamino, 1-4C-alkylcarbonylamino, 1-4C-alkoxycarbonylamino, 1-4C-alkoxy-1-4C-alkoxycarbonylamino or sulfonyl,
R5 is hydrogen, 1-4C-alkyl, 1-4C-alkoxy, 1-4C-alkoxycarbonyl, halogen, trifluoromethyl or hydroxy,
R6 is hydrogen, 1-4C-alkyl or halogen and R7 is hydrogen, 1-4C-alkyl or halogen, and wherein aryl is phenyl or substituted phenyl with one, two or three same or different substituents from the group of 1-4C-alkyl, 1-4C-alkoxy, carboxy, 1-4C-alkoxycarbonyl, halogen, trifluoromethyl, nitro, trifluoromethoxy, hydroxy and cyano, and its salts.
3. A compound as claimed in claim 1 , characterized by the formula 1 b
Figure imgf000028_0001
in which R1 is hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl, 3-7C-cycloalkyl-1-4C-alkyl, 1-4C-alkoxy, 1-4C-alkoxy- 1-4C-alkyl, 1-4C-alkoxycarbonyl, 2-4C-alkenyl, 2-4C-alkynyl, fluoro-1-4C-alkyl, hydroxy-1-4C- alkyl, mono- or di-1-4C-alkylamino or 1-4C-alkylcarbonyloxy-1-4C-alkyl,
R2 is hydrogen, 1-4C-alkyl, aryl, 3-7C-cycloalkyl, 3-7C-cycloalkyl-1-4C-alkyl, 1-4C-alkoxycarbonyl, mono- or di-1-4C-alkylamino1-4C-alkylcarbonyl, hydroxy-1-4C-alkyl, fluoro-2-4C-alkyl, aryl-1- 4C-alkoxy-1-4C-alkyl, hydroxy or 1-4C-alkoxy, R31 is hydrogen, hydroxyl, 1-7C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy-1-4C-alkyl, 3-7C-cycloalkyl or amino and
R32 is hydrogen, 1-7C-alkyl, hydroxy-1-4C-alkyl or 1-4C-alkoxy-1-4C-alkyl, or where
R31 and R32 together, including the nitrogen atom to which both are bonded, are a pyrrolidino, piperidino, piperazino, N-1-4C-alkylpiperazino, morpholino, aziridino or azetidino group, R4 is hydrogen, 1-4C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy, 2-4C-alkenyloxy, 1-4C-alkylcarbonyl, carboxy, 1-4C-alkoxycarbonyl, carboxy-1-4C-alkyl, 1-4C-alkoxycarbonyl-1-4C-alkyl, halogen, hydroxy, aryl, aryl-1-4C-alkyl, aryl-oxy, aryl-1-4C-alkoxy, trifluoromethyl, nitro, amino, mono- or di-1-4C-alkylamino, 1-4C-alkylcarbonylamino, 1-4C-alkoxycarbonylamino, 1-4C-alkoxy-1-4C- alkoxycarbonylamino or sulfonyl,
R5 is hydrogen, 1-4C-alkyl, 1-4C-alkoxy, 1-4C-alkoxycarbonyl, halogen, trifluoromethyl or hydroxy, X is O (oxygen) or NH and Z has the meaning -CHR8- or -CHR8-CHR9- where
R8 is hydrogen, 1-7C-alkyl, 2-7C-alkenyl, hydroxyl, 1-4C-alkoxy, oxo-substituted 1-4C-alkoxy, 3-7C-cycloalkoxy, 3-7C-cycloalkyl-1-4C-alkoxy, hydroxy-1-4C-alkoxy, 1-4C-alkoxy-1-4C- alkoxy, 'MC-alkoxy-'MC-alkoxy-'MC-alkoxy, 3-7C-cycloalkoxy-1-4C-alkoxy, 3-7C-cyclo- alkyl-1-4C-alkoxy-1-4C-alkoxy, 1-4C-alkylcarbonyloxy, halo-1-4C-alkoxy, amino, mono- or di-1-4C-alkylamino, 1-4C-alkylcarbonylamino, 1-4C-alkoxycarbonylamino, mono- or di-1-4C- alkylamino-1-4C-alkylcarbonyloxy, 1-4C-alkoxy-1-4C-alkoxycarbonylamino or 1-4C-alkoxy-1- 4C-alkylcarbonyloxy,
R9 is hydrogen, 1-7C-alkyl, 2-7C-alkenyl, hydroxyl, 1-4C-alkoxy, oxo-substituted 1-4C-alkoxy, 3-7C-cycloalkoxy, 3-7C-cycloalkyl-1-4C-alkoxy, hydroxy-1-4C-alkoxy, 1-4C-alkoxy-1-4C- alkoxy, 1-4C-alkoxy-1-4C-alkoxy-1-4C-alkoxy, 3-7C-cycloalkoxy-1-4C-alkoxy, 3-7C- cycloalkyl-1-4C-alkoxy-1-4C-alkoxy, 1-4C-alkylcarbonyloxy, halo-1-4C-alkoxy, amino, mono- or di-1-4C-alkylamino, 1-4C-alkylcarbonylamino, 1-4C-alkoxycarbonylamino, mono- or di-1- 4C-alkylamino-1-4C-alkylcarbonyloxy, 1-4C-alkoxy-1-4C-alkoxycarbonylamino or 1-4C- alkoxy-1 ^C-alkylcarbonyloxy, and wherein aryl is phenyl or substituted phenyl with one, two or three same or different substituents from the group of 1-4C-alkyl, 1-4C-alkoxy, carboxy, 1-4C-alkoxycarbonyl, halogen, trifluoromethyl, nitro, trifluoromethoxy, hydroxy and cyano, and its salts.
4. A compound of formula 1a as claimed in claim 2, characterized by the formula 1a-1
Figure imgf000030_0001
in which
R1 is hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl, hydroxy-1-4C-alkyl or 1-4C-alkoxy-1-4C-alkyl,
R2 is hydrogen, 1-4C-alkyl, hydroxy, 1-4C-alkoxy or aryl-1-4C-alkoxy-1-4C-alkyl,
R31 is hydrogen, 1-7C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy-1-4C-alkyl, 3-7C-cycloalkyl or amino and R32 is hydrogen or 1-7C-alkyl, or where
R31 and R32 together, including the nitrogen atom to which both are bonded, are a pyrrolidino, piperidino, piperazino, N-1-4C-alkylpiperazino, morpholino, aziridino or azetidino group, R4 is hydrogen, 1-4C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy, 1-4C-alkoxycarbonyl, halogen, trifluoromethyl, amino, mono- or di-1-4C-alkylamino, 1-4C-alkylcarbonylamino, 1-4C- alkoxycarbonylamino or 1-4C-alkoxy-1-4C-alkoxycarbonylamino, R5 is hydrogen, 1-4C-alkyl, 1-4C-alkoxy, halogen or trifluoromethyl and X is O (oxygen) or NH, and its salts.
5. A compound of formula 1a-1 as claimed in claim 4 in which
R1 is hydrogen, 1-4C-alkyl or hydroxy-1-4C-alkyl,
R2 is hydrogen or 1-4C-alkyl,
R31 is hydrogen, 1-7C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy-1-4C-alkyl or 3-7C-cycloalkyl and
R32 is hydrogen or 1-7C-alkyl, or where
R31 and R32 together, including the nitrogen atom to which both are bonded, are a pyrrolidino, piperidino, piperazino, N-1-4C-alkylpiperazino, morpholino, aziridino or azetidino group,
R4 is hydrogen, 1-4C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy, 1-4C-alkoxycarbonyl, halogen, trifluoromethyl, amino, mono- or di-1-4C-alkylamino, 1-4C-alkylcarbonylamino, 1-4C- alkoxycarbonylamino or 1-4C-alkoxy-1-4C-alkoxycarbonylamino,
R5 is hydrogen, 1-4C-alkyl, 1-4C-alkoxy, halogen or trifluoromethyl and
X is O (oxygen) or NH, and its salts.
6. A compound of formula 1a-1 as claimed in claim 4 in which
R1 is 1-4C-alkyl,
R2 is hydrogen or 1-4C-alkyl,
R31 is 1-4C-alkyl and
R32 is 1-4C-alkyl,
R4 is hydrogen, 1-4C-alkyl or halogen,
R5 is 1-4C-alkyl, 1-4C-alkoxy or trifluoromethyl
X is O (oxygen) or NH, and its salts.
7. A compound of formula 1a-1 as claimed in claim 4 in which
R1 is 1-4C-alkyl,
R2 is hydrogen or 1-4C-alkyl,
R31 is 1-4C-alkyl and
R32 is 1-4C-alkyl,
R4 is hydrogen, 1-4C-alkyl or halogen,
R5 is 1-4C-alkyl, 1-4C-alkoxy or trifluoromethyl
X is NH, and its salts.
8. A compound of formula 1b as claimed in claim 3, characterized by the formula 1b-1
)
Figure imgf000031_0001
in which
R1 is hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl, hydroxy-1-4C-alkyl or 1-4C-alkoxy-1-4C-alkyl,
R2 is hydrogen, 1-4C-alkyl, hydroxy, 1-4C-alkoxy or aryl-1-4C-alkoxy-1-4C-alkyl,
R31 is hydrogen, 1-7C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy-1-4C-alkyl, 3-7C-cycloalkyl or amino and R32 is hydrogen or 1-7C-alkyl, or where R31 and R32 together, including the nitrogen atom to which both are bonded, are a pyrrolidino, piperidino, piperazino, N-1-4C-alkylpiperazino, morpholino, aziridino or azetidino group,
R4 is hydrogen, 1-4C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy, 1-4C-alkoxycarbonyl, halogen, trifluoromethyl, amino, mono- or di-1-4C-alkylamino, 1-4C-alkylcarbonylamino, 1-4C- alkoxycarbonylamino or 1-4C-alkoxy-1-4C-alkoxycarbonylamino,
R5 is hydrogen, 1-4C-alkyl, 1-4C-alkoxy, halogen or trifluoromethyl and
R8 is hydroxyl, 1-4C-alkoxy, oxo-substituted 1-4C-alkoxy, 3-7C-cycloalkoxy, 3-7C-cycloalkyl-1-4C- alkoxy, hydroxy-1-4C-alkoxy, 1-4C-alkoxy-1-4C-alkoxy, 1-4C-alkoxy-1-4C-alkoxy-1-4C-alkoxy, 3-7C-cycloalkoxy-1 -4C-alkoxy, 3-7C-cycloalkyl-1 -4C-alkoxy-1 -4C-alkoxy, 1 -4C- alkylcarbonyloxy, halo-1-4C-alkoxy, amino, mono- or di-1-4C-alkylamino, 1-4C- alkylcarbonylamino, 1-4C-alkoxycarbonylamino, mono- or di-1-4C-alkylamino-1-4C- alkylcarbonyloxy, 1-4C-alkoxy-1-4C-alkoxycarbonylamino or 1-4C-alkoxy-1-4C-alkylcarbonyloxy
X is O (oxygen) or NH, and its salts.
9. A compound of formula 1 b-1 as claimed in claim 8, in which
R1 is hydrogen, 1-4C-alkyl or hydroxy-1-4C-alkyl,
R2 is hydrogen or 1-4C-alkyl,
R31 is hydrogen, 1-7C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy-1-4C-alkyl or 3-7C-cycloalkyl and
R32 is hydrogen or 1-7C-alkyl, or where
R31 and R32 together, including the nitrogen atom to which both are bonded, are a pyrrolidino, piperidino, piperazino, N-1-4C-alkylpiperazino, morpholino, aziridino or azetidino group,
R4 is hydrogen, 1-4C-alkyl, hydroxy-1-4C-alkyl, 1-4C-alkoxy, 1-4C-alkoxycarbonyl, halogen, trifluoromethyl, amino, mono- or di-1-4C-alkylamino, 1-4C-alkylcarbonylamino, 1-4C- alkoxycarbonylamino or 1-4C-alkoxy-1-4C-alkoxycarbonylamino,
R5 is hydrogen, 1-4C-alkyl, 1-4C-alkoxy, halogen or trifluoromethyl and
R8 is hydroxyl, 1-4C-alkoxy or 1-4C-alkoxy-1-4C-alkylcarbonyloxy,
X is O (oxygen) or NH, and its salts. and its salts.
10. A medicament comprising a compound as claimed in claim 1 and/or a pharmacologically acceptable salt thereof together with customary pharmaceutical auxiliaries and/or excipients.
11. The use of a compound as claimed in claim 1 and its pharmacologically acceptable salts for the prevention and treatment of gastrointestinal disorders.
PCT/EP2006/060935 2005-03-24 2006-03-22 6-thioamide substituted benzimidazoles WO2006100254A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008502402A JP2008534475A (en) 2005-03-24 2006-03-22 6-Thiamido substituted benzimidazoles
EP06725219A EP1910313A1 (en) 2005-03-24 2006-03-22 6-thioamide substituted benzimidazoles
AU2006226351A AU2006226351A1 (en) 2005-03-24 2006-03-22 6-thioamide substituted benzimidazoles
CA002601381A CA2601381A1 (en) 2005-03-24 2006-03-22 6-thioamide substituted benzimidazoles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP05102406.5 2005-03-24
EP05102406 2005-03-24

Publications (1)

Publication Number Publication Date
WO2006100254A1 true WO2006100254A1 (en) 2006-09-28

Family

ID=34981771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/060935 WO2006100254A1 (en) 2005-03-24 2006-03-22 6-thioamide substituted benzimidazoles

Country Status (5)

Country Link
EP (1) EP1910313A1 (en)
JP (1) JP2008534475A (en)
AU (1) AU2006226351A1 (en)
CA (1) CA2601381A1 (en)
WO (1) WO2006100254A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072142A2 (en) * 2005-12-19 2007-06-28 Pfizer Japan Inc. Benzimidazole-5-carboxamide derivatives
WO2011004882A1 (en) 2009-07-09 2011-01-13 ラクオリア創薬株式会社 Acid pump antagonist for treatment of diseases associated with abnormal gastrointestinal movement
US8314140B2 (en) 2006-03-31 2012-11-20 Antibe Therapeutics Inc. 4-hydroxythiobenzamide derivatives of drugs
US8541398B2 (en) 2005-05-27 2013-09-24 Antibe Therapeutics Inc. Hydrogen sulfide derivatives of non-steroidal anti-inflammatory drugs

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004054984A1 (en) * 2002-12-13 2004-07-01 Altana Pharma Ag 4-substituted benzimidazoles and their use as inhibitors of gastric secretion

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004054984A1 (en) * 2002-12-13 2004-07-01 Altana Pharma Ag 4-substituted benzimidazoles and their use as inhibitors of gastric secretion

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8541398B2 (en) 2005-05-27 2013-09-24 Antibe Therapeutics Inc. Hydrogen sulfide derivatives of non-steroidal anti-inflammatory drugs
WO2007072142A2 (en) * 2005-12-19 2007-06-28 Pfizer Japan Inc. Benzimidazole-5-carboxamide derivatives
WO2007072142A3 (en) * 2005-12-19 2008-08-28 Pfizer Japan Inc Benzimidazole-5-carboxamide derivatives
US8314140B2 (en) 2006-03-31 2012-11-20 Antibe Therapeutics Inc. 4-hydroxythiobenzamide derivatives of drugs
WO2011004882A1 (en) 2009-07-09 2011-01-13 ラクオリア創薬株式会社 Acid pump antagonist for treatment of diseases associated with abnormal gastrointestinal movement

Also Published As

Publication number Publication date
JP2008534475A (en) 2008-08-28
AU2006226351A1 (en) 2006-09-28
EP1910313A1 (en) 2008-04-16
CA2601381A1 (en) 2006-09-28

Similar Documents

Publication Publication Date Title
US20060194969A1 (en) 4-Substituted benzimidazoles and their uses as inhibitors of gastric secretion
US20080113963A1 (en) Cyclic benzimidazoles
US20080113962A1 (en) Condensed Tricyclic Benzimidazoles For the Treatment of Gastrointestinal Disorders
CA2566821A1 (en) 7-substituted benzimidazoles and their use as inhibitors of gastric acid secretion
EP1910313A1 (en) 6-thioamide substituted benzimidazoles
US7326718B2 (en) 8-Substituted imidazopyridines
EP1758900B1 (en) Substituted tricyclic benzimidazoles
US20080119510A1 (en) Substituted Imidazo [4,5-B] Pyridines As Inhibitors Of Gastric Acid Secretion
CA2601388A1 (en) Thioamide-substituted tricyclic benzimidazoles useful for the treatment of gastrointestinal diseases
US20060194782A1 (en) Pharmacologically active imidazo[4,5-c] pyridines
US20070244173A1 (en) 6,7-Dihydroxy-8-Phenyl-3,6,7,8-Tetrahydro-Chromeno [7,8-d] Imidazole Derivatives and Their Use as Gastric Acid Secretion Inhibitors
US20080114020A1 (en) Difluoro-Substituted Imidazopyridines
WO2005058893A1 (en) Tricyclic benzimidazoles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2601381

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2008502402

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006725219

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006226351

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006226351

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2006725219

Country of ref document: EP