WO2006098428A1 - Method of lessening nonspecific amplification from primer dimer - Google Patents

Method of lessening nonspecific amplification from primer dimer Download PDF

Info

Publication number
WO2006098428A1
WO2006098428A1 PCT/JP2006/305372 JP2006305372W WO2006098428A1 WO 2006098428 A1 WO2006098428 A1 WO 2006098428A1 JP 2006305372 W JP2006305372 W JP 2006305372W WO 2006098428 A1 WO2006098428 A1 WO 2006098428A1
Authority
WO
WIPO (PCT)
Prior art keywords
primer
substance
nucleic acid
sequence
binds
Prior art date
Application number
PCT/JP2006/305372
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshihide Hayashizaki
Yasumasa Mitani
Chiaki Kato
Original Assignee
Kabushiki Kaisha Dnaform
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Dnaform filed Critical Kabushiki Kaisha Dnaform
Publication of WO2006098428A1 publication Critical patent/WO2006098428A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6848Nucleic acid amplification reactions characterised by the means for preventing contamination or increasing the specificity or sensitivity of an amplification reaction

Definitions

  • the present invention relates to a method for improving a nucleic acid amplification method, and more particularly to a method for reducing non-specific amplification of a primer dimarker formed during nucleic acid amplification.
  • Nucleic acid amplification techniques such as PCR have various known powers.
  • Primers are commonly used to form primer dimers in which all primers are paired.
  • primer dimer acts as a cage DNA and a non-specific amplification product is produced. This is because primers are consumed in non-specific amplification reaction, which is not only the problem that other DNA fragments are mixed into the original DNA product, and the efficiency of the target DNA amplification is reduced.
  • Primer design needs to take into account various factors such as oligonucleotide length, Tm value, physical sequence characteristics, and possible primer interactions. This alone completely solves the problem of primer dimers. I can't.
  • the non-specific amplification product and the target DNA product are separated by electrophoresis, and the target amplification product band is cut out or amplified.
  • detection methods capable of distinguishing between non-specific amplification products and target products associated with primer dimer formation have also been developed.
  • a detection method that can distinguish between fluorescence derived from the target product and fluorescence caused by non-specific binding such as primer dimer by continuous monitoring.
  • the dye QSY7 or QSY9 is bound to the 5 'end of the primer, and the fluores such as SYBR Green bound to the primer dimer. Primers designed to quench fluorescence near the mouth fore have also been developed.
  • the bound nucleic acid dye molecule such as SYBR Green fluoresces away from the quencher, but it is short like a primer dimer, and the strand is fluorescent by the quencher. Therefore, a signal of only the target amplification product can be obtained.
  • a primer-dimer is more likely to form non-specific nucleic acid amplification because a DNA-dimer is more likely to be formed at low temperatures, and DNA polymerases usually have some activity even at low temperatures.
  • a hot start method can be mentioned. This is a method in which the reaction of DNA polymerase occurs only after raising the temperature of the reaction solution. Specific examples include a method for adding components that are deficient at high temperatures, a wax barrier method, a method using a DNA polymerase antibody or an abutama, and a method using a DNA polymerase that is activated by heat treatment. .
  • these methods have problems such as complicated operations and the need for expensive reagents such as antibodies. In addition, it cannot be used for amplification reactions that originally have a low reaction temperature.
  • an object of the present invention is to provide an efficient and easy-to-operate method for preventing amplification of a non-specific amplification product due to formation of a primer dimer.
  • the present invention provides a novel method for suppressing non-specific amplification due to the formation of the primer dimer as described above.
  • the inventors added a substance that binds to a dimer dimer, such as a mismatch binding protein or a recombinant enzyme protein, to the amplification reaction solution, thereby non-specific due to the formation of the primer dimer. It has been found that amplification can be significantly reduced. These proteins bind to the non-complementary pairing part of the primer dimer and stop the DNA strand extension reaction from the 3 ′ end by the DNA polymerase. As a result, primer dimer From one, non-specific amplification is reduced.
  • a dimer dimer such as a mismatch binding protein or a recombinant enzyme protein
  • the present invention provides a method for suppressing a nonspecific amplification reaction associated with primer dimer formation, which comprises adding a substance that binds to a primer dimer in a nucleic acid amplification reaction to a sample.
  • a substance that binds to the primer dimer a substance having mismatch recognition ability, preferably a mismatch binding protein can be used.
  • the mismatch binding protein include MutS, MSH2, MSH6, or a mixture thereof.
  • the substance that binds to the primer dimer can be added to the sample at a concentration of 0.1% to 10%, preferably 0.5% to 2%, more preferably 0.7% to 1.3%.
  • a substance having a DNA recombination ability preferably a DNA recombination enzyme
  • DNA recombinant enzymes include RecA protein, T4 gene or single-stranded binding protein
  • a nucleic acid of interest comprising a substance that binds to a primer dimer, a step of adding a primer to a sample, and a step of incubating the sample.
  • a method for amplifying a region, a method for determining the presence or absence of a target nucleic acid sequence, or a method for determining the presence or absence of a mutation, deletion and Z or insertion in a target nucleic acid sequence are provided.
  • a substance having mismatch recognition ability preferably a mismatch binding protein can be used as the substance that binds to the primer dimer.
  • the mismatch-binding protein include MutS, MSH2, MSH6, or a mixture thereof.
  • a substance having DNA recombination ability preferably a DNA recombination enzyme
  • a DNA recombination enzyme can be used as the substance that binds to the primer dimer.
  • An example of the DNA recombination enzyme is RecA protein.
  • a PCR method or an isothermal amplification method can be used as a nucleic acid amplification method in these methods.
  • the primer used in the isothermal amplification method includes at least two kinds of primer sets capable of amplifying the target nucleic acid sequence, and the first primer included in the primer set is a target nucleic acid sequence.
  • a sequence ( ⁇ ′) that hybridizes to the complementary sequence (Be) of (B) is included on the 5 ′ side of the sequence (Ac ′), and the second primer included in the primer set is the target nucleic acid.
  • a mismatch binding protein or a recombinant enzyme protein binds to a mismatch sequence that is a force between primers, suppresses the amplification, and further causes only the target sequence-specific amplification, The effect of improving sensitivity and specificity for amplifying the target sequence can be obtained.
  • This method can be applied to a wide range of amplification and detection fields from infectious diseases to SNPs and mutations.
  • FIG. 1 is a diagram showing the positional relationship of each primer region with respect to the human STS DYS237 gene.
  • FIG. 2 is a diagram showing the three-dimensional structure of forward primer F1.
  • FIG. 3 is a graph showing the results of Example 1.
  • FIG. 4 is a diagram showing the positional relationship of each primer with respect to the CYP2C 19 sequence.
  • FIG. 5 shows the results of Example 2.
  • mismatch binding protein (“mismatch recognition protein”).
  • MutS protein bound to MutS protein JP 9-504699
  • MutM protein JP 2000-300265
  • GFP Green Fluore scence Protein
  • mismatch means a set of base pairs selected from adenine ( ⁇ ), guanine (G), cytosine (C), and thymine (T) (uracil (U) in the case of RNA). Is not a normal salt pair (a combination of ⁇ and ⁇ or a combination of G and C). Mismatches include not only one mismatch, but also multiple consecutive mismatches, mismatches caused by insertions and deletions of one or more bases, and combinations thereof.
  • a primer dimer has a double-stranded structure in which a part or the whole of a primer is paired with another primer and includes a non-complementary region.
  • Such a heteroduplex structure results in a false amplification product that should not be produced. Therefore, if a mismatch binding protein is added to the reaction solution used for the nucleic acid amplification reaction, the mismatch binding protein binds to the heteroduplex structure as described above, and the subsequent amplification reaction is hindered. Therefore, by using a mismatch binding protein, it is possible to prevent the generation of an erroneous amplification product.
  • the mismatch binding protein used in the present invention may be any protein known to those skilled in the art as long as it is a protein that recognizes a mismatch in a double-stranded nucleic acid and can bind to the mismatch site. It may be a thing.
  • Mismatch binding proteins used include MutS, MutH, MutL, HexA, MSH1-6, Rep3, RNaseA, uracil DNA glycosidase, T4 endonuclease VII, and resolvase.
  • it is MutS, MSH2 or MSH6, or a mixture of two or more thereof, more preferably a force that is MutS, but is not limited thereto.
  • the mismatch binding protein used in the present invention has one or more amino acid substitutions, deletions, additions, and Z in the amino acid sequence of the wild-type protein as long as the mismatch in the double-stranded nucleic acid can be recognized.
  • it may be an inserted amino acid sequence protein (variant).
  • Such mutants can also be created artificially by forces that may occur in nature.
  • site-directed mutagenesis methods include WP DengiJ. A. Nickoloff's method (An al. Biochem., 200, 81, 1992), KL Makamaye and F. Eckstein's method (Nucleic Adids Res., 14 , 9679-9698, 1986), and random mutagenesis methods include methods using E. coli XL1-Red strain (Stratagene) deficient in the basic repair system, sodium nitrite, etc. CF. — J. Diaz et al., BioTechnique, 11, 204— 211, 1991).
  • mismatch binding proteins such as MutM, MutS and their analogs (Radman, M. et al., Annu. Rev. Genet. 20: 523 -538 ( 1986); Radaman, M. etal., Sci. Amer., August 1988, pp40-46; Modrich, P., J. Biol. Chem. 264: 6597-6600 (1989); Lahue, RS et al., Science245 : 160-164 (1988); Jiricny, J. et al,. Nucl. Acids Res. 16: 7843-7853 (1988); Su, SS et al., J. Biol. Chem.
  • the mismatch binding protein may also bind to a single-stranded nucleic acid, and the binding of such a mismatch binding protein to a single-stranded nucleic acid is inhibited by the single-stranded binding protein. It is known that Therefore, when a mismatch binding protein is used in the mutation detection method according to the present invention, it is preferable to use a single chain binding protein in combination.
  • the single-stranded binding protein (SSB) used to inhibit the binding of the mismatch binding protein to the single-stranded nucleic acid can be any SSB known in the art.
  • Preferred SSBs include single-stranded binding proteins from E. coli, Drosophila, and Xenopus laevis, and the gene 32 protein from T4 butteriophage, and their equivalents from other species. It is not limited to.
  • the single-stranded binding protein used in the present invention has one or more amino acid substitutions, deletions, attached calories and Z in the amino acid sequence of the wild-type protein as long as it can bind to the single-stranded nucleic acid.
  • it may be a protein (mutant) having an inserted amino acid sequence ability. Such mutants can also be created artificially by forces that may occur in nature.
  • the mismatch binding protein may bind to a double-stranded nucleic acid that does not contain a mismatch, and the mismatch binding protein is activated by using an activator. It is known that such mismatch binding protein can be prevented from erroneous binding. Therefore, when a mismatch binding protein is used in the mutation detection method according to the present invention, it is preferable to use a protein that has been activated by a mismatch binding protein activator.
  • An active agent for activating the mismatch binding protein can be appropriately selected by those skilled in the art.
  • active agents for activating mismatch binding proteins ATP (adenosine 5, monotriphosphate), ADP (adenosine 5, monodiphosphate), ATP— ⁇ S (adenosine 5,- 0- (3-thiotriphosphate)), AMP- ⁇ (adenosine 5, mono [ ⁇ , y imido] triphosphate), or one of the nucleotides that can bind to mismatch-binding proteins. It is not limited to these.
  • the activity of the mismatch binding protein can be performed by incubating the mismatch binding protein and the active agent at room temperature for several seconds to several minutes.
  • the recombinant enzyme protein used in the present invention can be appropriately selected by those skilled in the art.
  • human genomic DNA manufactured by Clontech
  • the target nucleic acid sequence in the human STS DYS237 gene contained therein was amplified.
  • a primer a primer pair having the following sequence was used. The positional relationship of each primer region with respect to the saddle type was as shown in FIG. 1 (SEQ ID NO: 1).
  • the sequence on the 3 'end side 22mer: underlined portion
  • the sequence on the 5' end side (16mer: other than the underlined portion
  • Reverse primer R1 has its 3 terminal sequence (20mer: underlined) annealed in a saddle shape, and after extension reaction, 5 'terminal sequence (lOmer: other than underlined) 1S depends on the primer It is designed to hybridize to the region on the extension strand that begins 16 bases downstream of the 3 'terminal residue of the primer.
  • R1 GCAGCATCACCAACCCAAAAGCACTGAGTA (SEQ ID NO: 2)
  • a 25 ⁇ L reaction solution having the following composition was prepared and incubated at 60 ° C for 1 hour.
  • the type ⁇ ⁇ was allowed to react with double strands.
  • the same experiment was performed on a solution to which sterilized water was added instead of the bowl.
  • the composition of the reaction solution is as follows. Tris-HCl (20mM, pH8.8), KCl (10m
  • Outer primer R3Z SEQ ID NO: 4 5,-AGGGTTGTTG ATGTCC ATC 3 '
  • Table 2 shows the composition of each sample reaction solution. [0045] [Table 2]

Abstract

It is intended to provide a method of suppressing a nonspecific amplification reaction accompanying primer dimer formation in a nucleic acid amplification reaction characterized by comprising adding a substance capable of binding to the primer dimer to a sample. As the substance capable of binding to the primer dimer, use can be made of a substance capable of recognizing mismatch such as a mismatch-binding protein or a substance having a DNA recombination ability such as a DNA recombinase.

Description

プライマーダイマーからの非特異的増幅を減少させる方法  Methods for reducing non-specific amplification from primer dimers
技術分野  Technical field
[0001] 本発明は、核酸の増幅方法の改良方法、より詳しくは、核酸増幅時に形成されるプ ライマーダイマーカ の非特異的増幅を減少させる方法に関する。  The present invention relates to a method for improving a nucleic acid amplification method, and more particularly to a method for reducing non-specific amplification of a primer dimarker formed during nucleic acid amplification.
背景技術  Background art
[0002] PCRをはじめとして核酸の増幅技術は種々知られている力 プライマーを用いる 増幅方法のすべてにおいて、プライマー同士が対合したプライマーダイマーの形成 は共通した問題である。 2種類のプライマーを用いた場合には特に、プライマーダイ マー生じると、これが铸型 DNAとして働いて、非特異的な増幅産物が作られてしまう 問題がある。これは、本来の目的である DNA産物に、それ以外の DNA断片が混入 するという問題だけでなぐ非特異的な増幅反応にプライマーが消費され、目的とす る DNA増幅の効率が低下すると 、う問題を招く。  [0002] Nucleic acid amplification techniques such as PCR have various known powers. Primers are commonly used to form primer dimers in which all primers are paired. In particular, when two types of primers are used, there is a problem that when a primer dimer is generated, it acts as a cage DNA and a non-specific amplification product is produced. This is because primers are consumed in non-specific amplification reaction, which is not only the problem that other DNA fragments are mixed into the original DNA product, and the efficiency of the target DNA amplification is reduced. Cause problems.
[0003] このような問題を解決するためには、まずプライマーダイマーを形成し辛いプライマ 一を設計することが重要である。プライマーの設計には、オリゴヌクレオチドの長さ、 T m値、配列の物理的特徴、プライマーの相互作用の可能性など様々な要素を考慮 する必要がある力 これだけではプライマーダイマーの問題を完全に解決はできな ヽ 。プライマーダイマーによる非特異的な増幅産物の問題を解決するために、電気泳 動により非特異的増幅産物と目的とする DNA産物とを分離し、目的とする増幅物の バンドを切り出す方法や、増幅反応後の反応液をスピンカラムにかけるなどの方法が あり、後者の例として Ultra PCR Clean -Up kit (日本ジエネテイクス社)、 Bay Gene PCR Clean -Up Kit (Bay Gene社)などが市販されている。  In order to solve such a problem, it is important to first design a primer that is difficult to form a primer dimer. Primer design needs to take into account various factors such as oligonucleotide length, Tm value, physical sequence characteristics, and possible primer interactions. This alone completely solves the problem of primer dimers. I can't. In order to solve the problem of non-specific amplification products by primer dimers, the non-specific amplification product and the target DNA product are separated by electrophoresis, and the target amplification product band is cut out or amplified. There are methods such as applying the reaction solution after the reaction to a spin column. Examples of the latter include Ultra PCR Clean -Up kit (Nippon Genetec) and Bay Gene PCR Clean -Up Kit (Bay Gene). .
[0004] 一方、プライマーダイマー形成に伴う非特異的増幅産物と目的産物とを区別できる 検出方法も開発されている。例えば PCR法により増幅を行なう際、連続的なモニタリ ングにより目的産物に由来する蛍光とプライマーダイマーのような非特異的結合に由 来する蛍光を区別できる検出方法がある。またプライマーの 5'末端に色素 QSY7ま たは QSY9を結合させ、プライマーダイマーに結合した SYBR Greenなどのフルォ 口フォア付近の蛍光をクェンチングするようにデザインされたプライマーも開発されて いる。目的とする増幅物の場合、結合した SYBR Greenなどの核酸色素分子は、ク ェンチヤ一から離れて 、き蛍光を発するが、プライマーダイマーのような短!、鎖のも のは、クェンチヤ一により蛍光を発することがないので、目的とする増幅物のみのシグ ナルを得ることができる。 [0004] On the other hand, detection methods capable of distinguishing between non-specific amplification products and target products associated with primer dimer formation have also been developed. For example, when amplification is performed by PCR, there is a detection method that can distinguish between fluorescence derived from the target product and fluorescence caused by non-specific binding such as primer dimer by continuous monitoring. In addition, the dye QSY7 or QSY9 is bound to the 5 'end of the primer, and the fluores such as SYBR Green bound to the primer dimer. Primers designed to quench fluorescence near the mouth fore have also been developed. In the case of the target amplification product, the bound nucleic acid dye molecule such as SYBR Green fluoresces away from the quencher, but it is short like a primer dimer, and the strand is fluorescent by the quencher. Therefore, a signal of only the target amplification product can be obtained.
[0005] さらに、反応自体を抑制する方法も種々開発されてきた。増幅反応を行なう際、ブラ イマ一ダイマーは低温においてより形成され易ぐ DNAポリメラーゼも通常は低温で もある程度活性を有しているため、プライマーダイマーカもの非特異的核酸増幅が起 きやすい。これを防ぐ方法としては、ホットスタート法があげられる。これは、 DNAポリ メラーゼの反応を反応液の温度を上昇させてからのみ起きるようにする方法である。 具体的には、高温下で不足しているコンポーネントを追加する方法、ワックスバリアー 法、 DNAポリメラーゼの抗体やアブタマ一を用いる方法、加熱処理することで活性 化する DNAポリメラーゼを用いる方法などが挙げられる。し力しこれらの方法には、 操作が煩雑になること、抗体などの高価な試薬が必要であることなどの問題点があつ た。また、もともと反応温度が低い増幅反応には利用ができない。 [0005] Furthermore, various methods for suppressing the reaction itself have been developed. When performing an amplification reaction, a primer-dimer is more likely to form non-specific nucleic acid amplification because a DNA-dimer is more likely to be formed at low temperatures, and DNA polymerases usually have some activity even at low temperatures. As a method for preventing this, a hot start method can be mentioned. This is a method in which the reaction of DNA polymerase occurs only after raising the temperature of the reaction solution. Specific examples include a method for adding components that are deficient at high temperatures, a wax barrier method, a method using a DNA polymerase antibody or an abutama, and a method using a DNA polymerase that is activated by heat treatment. . However, these methods have problems such as complicated operations and the need for expensive reagents such as antibodies. In addition, it cannot be used for amplification reactions that originally have a low reaction temperature.
発明の開示  Disclosure of the invention
[0006] 上記の通り、プライマーダイマー形成に伴う、非特異的増幅産物と目的産物とを区 別する方法や、非特異的増幅産物の増幅を減少させる方法が開発されているが、操 作が容易であり、かつ、効果の高い方法は未だ見出されていない。  [0006] As described above, a method for distinguishing a non-specific amplification product from a target product associated with primer dimer formation and a method for reducing the amplification of a non-specific amplification product have been developed. An easy and effective method has not yet been found.
[0007] そこで、本発明は、プライマーダイマーの形成による非特異的増幅産物の増幅を防 ぐ効率的かつ操作が容易な方法を提供することを目的とする。  [0007] Accordingly, an object of the present invention is to provide an efficient and easy-to-operate method for preventing amplification of a non-specific amplification product due to formation of a primer dimer.
[0008] 今回の発明は、上記のようなプライマーダイマーの形成による非特異的な増幅を抑 制する新 ヽ方法を提供する。  [0008] The present invention provides a novel method for suppressing non-specific amplification due to the formation of the primer dimer as described above.
[0009] 発明者らは、ミスマッチ結合タンパク質あるいは組換え酵素タンパク質のようなブラ イマ一ダイマーに結合する物質を増幅反応溶液に添加することにより、プライマーダ イマ一の形成に起因する非特異的な増幅を著しく減少できることを発見した。これら のタンパク質は、プライマーダイマーの非相補的対合部分に結合し、 DNAポリメラー ゼによる 3'末端からの DNA鎖伸長反応を中止させる。これにより、プライマーダイマ 一からは非特異的増幅が減少する。 [0009] The inventors added a substance that binds to a dimer dimer, such as a mismatch binding protein or a recombinant enzyme protein, to the amplification reaction solution, thereby non-specific due to the formation of the primer dimer. It has been found that amplification can be significantly reduced. These proteins bind to the non-complementary pairing part of the primer dimer and stop the DNA strand extension reaction from the 3 ′ end by the DNA polymerase. As a result, primer dimer From one, non-specific amplification is reduced.
[0010] すなわち、本発明は、核酸増幅反応においてプライマーダイマーに結合する物質 をサンプルに添加することを特徴とする、プライマーダイマー形成に伴う非特異的な 増幅反応を抑制する方法を提供する。  [0010] That is, the present invention provides a method for suppressing a nonspecific amplification reaction associated with primer dimer formation, which comprises adding a substance that binds to a primer dimer in a nucleic acid amplification reaction to a sample.
[0011] この方法において、プライマーダイマーに結合する物質として、ミスマッチ認識能を 有する物質、好ましくはミスマッチ結合タンパク質を用いることができる。ミスマッチ結 合タンパク質としては、 MutS、 MSH2、 MSH6、またはこれらの混合物を例示できる 。プライマーダイマーに結合する物質は、サンプルに 0. 1%〜10%、好ましくは 0. 5 %〜2%、より好ましくは 0. 7%〜1. 3%の濃度で添加することができる。  In this method, as a substance that binds to the primer dimer, a substance having mismatch recognition ability, preferably a mismatch binding protein can be used. Examples of the mismatch binding protein include MutS, MSH2, MSH6, or a mixture thereof. The substance that binds to the primer dimer can be added to the sample at a concentration of 0.1% to 10%, preferably 0.5% to 2%, more preferably 0.7% to 1.3%.
[0012] また、この方法において、プライマーダイマーに結合する物質として、 DNA組換え 能を有する物質、好ましくは DNA組換え酵素を用いることができる。 DNA組換え酵 素としては、 RecAタンパク質、 T4遺伝子または一本鎖結合タンパク質を例示できる [0012] In this method, a substance having a DNA recombination ability, preferably a DNA recombination enzyme, can be used as the substance that binds to the primer dimer. Examples of DNA recombinant enzymes include RecA protein, T4 gene or single-stranded binding protein
[0013] また、本発明の別の側面として、プライマーダイマーに結合する物質と、プライマー とをサンプルに添加するステップと、前記サンプルをインキュベートするステップとを 含むことを特徴とする、目的とする核酸領域を増幅する方法、標的核酸配列の有無 を判定する方法、又は、標的核酸配列における変異、欠失及び Z又は挿入の有無 を判定する方法を提供する。 [0013] In addition, as another aspect of the present invention, a nucleic acid of interest comprising a substance that binds to a primer dimer, a step of adding a primer to a sample, and a step of incubating the sample. A method for amplifying a region, a method for determining the presence or absence of a target nucleic acid sequence, or a method for determining the presence or absence of a mutation, deletion and Z or insertion in a target nucleic acid sequence are provided.
[0014] これらの方法において、プライマーダイマーに結合する物質として、ミスマッチ認識 能を有する物質、好ましくは、ミスマッチ結合タンパク質を用いることができる。ミスマツ チ結合タンパク質としては、 MutS、 MSH2、 MSH6、またはこれらの混合物を例示 できる。  [0014] In these methods, a substance having mismatch recognition ability, preferably a mismatch binding protein can be used as the substance that binds to the primer dimer. Examples of the mismatch-binding protein include MutS, MSH2, MSH6, or a mixture thereof.
[0015] また、これらの方法において、プライマーダイマーに結合する物質として、 DNA組 換え能を有する物質、好ましくは DNA組換え酵素を用いることができる。 DNA組換 え酵素としては、 RecAタンパク質を例示できる。  [0015] In these methods, a substance having DNA recombination ability, preferably a DNA recombination enzyme, can be used as the substance that binds to the primer dimer. An example of the DNA recombination enzyme is RecA protein.
[0016] これらの方法における核酸増幅方法には、 PCR法又は等温増幅法を使用できる。 [0016] As a nucleic acid amplification method in these methods, a PCR method or an isothermal amplification method can be used.
等温増幅反応としては、 SDA法、 3SR法、 NASBA法、 TMA法、 Qベータリプリカ ーゼ法、 LAMP法、 ICAN法を例示できる。 [0017] また、等温増幅法に用いられるプライマーには、標的核酸配列を増幅できる少なく とも 2種のプライマーセットを含んでなり、前記プライマーセットに含まれる第一のブラ イマ一は、標的核酸配列の 3'末端部分の配列 (A)にハイブリダィズする配列 (Ac' ) を第一のプライマーの 3'側に含み、かつ前記標的核酸配列において前記配列 (A) よりも 5'側に存在する配列(B)の相補配列(Be)にハイブリダィズする配列(Β' )を前 記配列 (Ac ' )の 5 '側に含んでなり、前記プライマーセットに含まれる第二のプライマ 一は、前記標的核酸配列の相補配列の 3'末端部分の配列(C)にハイブリダィズす る配列(Cc' )を 3'末端部分にふくんでなり、かつ相互がノ、イブリダィズする 2つの核 酸配列を同一鎖上に含む折り返し配列(D— Dc' )を前記配列(Cc' )の 5'側に含ん でなるものを使用できる。このようなプライマーセットは、 PCTZJP04Z019349に詳 細に記載されている。 Examples of isothermal amplification reactions include the SDA method, 3SR method, NASBA method, TMA method, Q beta-replicase method, LAMP method, and ICAN method. [0017] Further, the primer used in the isothermal amplification method includes at least two kinds of primer sets capable of amplifying the target nucleic acid sequence, and the first primer included in the primer set is a target nucleic acid sequence. A sequence (Ac ') that hybridizes to the sequence (A) of the 3' terminal portion of the first primer on the 3 'side of the first primer, and a sequence that is 5' to the target nucleic acid sequence from the sequence (A) A sequence (Β ′) that hybridizes to the complementary sequence (Be) of (B) is included on the 5 ′ side of the sequence (Ac ′), and the second primer included in the primer set is the target nucleic acid. The two nucleic acid sequences that hybridize to the sequence (Cc ') of the 3' end part of the complementary sequence (Cc) in the 3 'end part and that mutually hybridize and hybridize on the same strand Including the folded array (D—Dc ′) 5 ′ of the array (Cc ′) Those which comprise the use. Such a primer set is described in detail in PCTZJP04Z019349.
[0018] 本発明により、ミスマッチ結合タンパク質あるいは組換え酵素タンパク質がプライマ 一同士力もなるミスマッチ配列に結合し、その増幅を抑制し、さらに、目的とする配列 特異的な増幅のみを起こさせることで、目的配列を増幅するための感度、特異性が 向上する効果が得られる。  [0018] According to the present invention, a mismatch binding protein or a recombinant enzyme protein binds to a mismatch sequence that is a force between primers, suppresses the amplification, and further causes only the target sequence-specific amplification, The effect of improving sensitivity and specificity for amplifying the target sequence can be obtained.
[0019] 本法は、感染症から、 SNP、変異など、幅広い増幅、検出の分野に応用可能なも のである。  [0019] This method can be applied to a wide range of amplification and detection fields from infectious diseases to SNPs and mutations.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]ヒト STS DYS237遺伝子に対する各プライマー領域の位置関係を示す図であ る。  [0020] FIG. 1 is a diagram showing the positional relationship of each primer region with respect to the human STS DYS237 gene.
[図 2]フォワードプライマー F1の立体構造を示す図である。  FIG. 2 is a diagram showing the three-dimensional structure of forward primer F1.
[図 3]実施例 1の結果を示す図である。  FIG. 3 is a graph showing the results of Example 1.
[図 4]CYP2C 19配列に対する各プライマーの位置関係を示す図である。  FIG. 4 is a diagram showing the positional relationship of each primer with respect to the CYP2C 19 sequence.
[図 5]実施例 2の結果を示す図である。  FIG. 5 shows the results of Example 2.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] DNAの 2本鎖にぉ 、て部分的に対合できな 、(ミスマッチ)塩基対が生じたときに、 細菌や酵母等には、これを修復するための機構があることが既に知られている。この 修復は「ミスマッチ結合タンパク質」と呼ばれるタンパク質(「ミスマッチ認識タンパク質 」とも称される)によって行なわれるものであり、 MutSタンパク質(特表平 9— 504699 号公報)、 MutMタンパク質(特開 2000— 300265号公報)、 GFP (Green Fluore scence Protein)に結合した MutSタンパク質(国際公開第 99/06591号パンフ レット)などの様々なミスマッチ結合タンパクの使用が報告されている。さらに、近年、 ミスマッチ結合タンパク質を利用してミスマッチを検出する遺伝子診断法が開発され ている(M. Gotoh et al. , Genet. Anal. , 14, 47— 50, 1997)。核酸中におけ る特定のヌクレオチドにおける多型および突然変異の検出法としては、例えば、変異 のない対照核酸と、変異が存在 [0021] When a (mismatch) base pair is generated that cannot be partially paired with a double strand of DNA, bacteria and yeast already have a mechanism for repairing this. Are known. This repair is called a “mismatch binding protein” (“mismatch recognition protein”). MutS protein bound to MutS protein (JP 9-504699), MutM protein (JP 2000-300265), GFP (Green Fluore scence Protein) The use of various mismatch binding proteins such as (WO99 / 06591 pamphlet) has been reported. Furthermore, in recent years, genetic diagnostic methods that detect mismatches using mismatch binding proteins have been developed (M. Gotoh et al., Genet. Anal., 14, 47-50, 1997). Methods for detecting polymorphisms and mutations at specific nucleotides in nucleic acids include, for example, non-mutated control nucleic acids and mutations.
することが疑われる被検核酸とをハイブリダィズさせ、そこにミスマッチ認識タンパク質 を導入することによりミスマッチを検出する方法が知られている。  There is known a method of detecting a mismatch by hybridizing with a test nucleic acid suspected to be performed and introducing a mismatch recognition protein therein.
[0022] 本発明にお!/、て「ミスマッチ」とは、アデニン (Α)、グァニン(G)、シトシン(C)、およ びチミン (T) (RNAの場合はゥラシル (U) )から選択される一組の塩基対が正常な塩 基対 (Αと Τの組み合わせ、または Gと Cの組み合わせ)ではないことを意味する。ミス マッチには、 1つのミスマッチのみならず、複数の連続したミスマッチ、 1または複数の 塩基の挿入および Ζまたは欠失により生じるミスマッチ、ならびにそれらの組み合わ せが含まれる。  [0022] In the present invention! / “Mismatch” means a set of base pairs selected from adenine (Α), guanine (G), cytosine (C), and thymine (T) (uracil (U) in the case of RNA). Is not a normal salt pair (a combination of Α and Τ or a combination of G and C). Mismatches include not only one mismatch, but also multiple consecutive mismatches, mismatches caused by insertions and deletions of one or more bases, and combinations thereof.
[0023] プライマーダイマーは、プライマーの一部あるいは全体が他のプライマーと対合し、 非相補的な領域を含む二本鎖構造をとる。このようなヘテロ二本鎖構造により、本来 的には生成しないはずの誤った増幅産物力あたらされる。そこで、核酸増幅反応に 用いられる反応液中にミスマッチ結合タンパク質を添加しておけば、上記のようなへ テロ二本鎖構造にこのミスマッチ結合タンパク質が結合し、その後の増幅反応が妨げ られる。従って、ミスマッチ結合タンパク質を利用することにより、誤った増幅産物の生 成を防ぐことが可能となる。  [0023] A primer dimer has a double-stranded structure in which a part or the whole of a primer is paired with another primer and includes a non-complementary region. Such a heteroduplex structure results in a false amplification product that should not be produced. Therefore, if a mismatch binding protein is added to the reaction solution used for the nucleic acid amplification reaction, the mismatch binding protein binds to the heteroduplex structure as described above, and the subsequent amplification reaction is hindered. Therefore, by using a mismatch binding protein, it is possible to prevent the generation of an erroneous amplification product.
[0024] 本発明に用いられるミスマッチ結合タンパク質は、二本鎖核酸におけるミスマッチを 認識し、そのミスマッチの部位に結合することが可能なタンパク質であればよぐ例え ば、当業者に公知のいずれのものであってもよい。使用されるミスマッチ結合タンパク 質としては、 MutS、 MutH、 MutL、 HexA、 MSH1〜6、 Rep3、 RNaseA、ゥラシ ルー DNAグリコシダーゼ、 T4エンドヌクレアーゼ VII、レゾルバーゼなどが挙げられ 、好ましくは MutS、 MSH2もしくは MSH6、またはこれらの 2種以上の混合物であり 、より好ましくは MutSである力 これらに限定されない。 [0024] The mismatch binding protein used in the present invention may be any protein known to those skilled in the art as long as it is a protein that recognizes a mismatch in a double-stranded nucleic acid and can bind to the mismatch site. It may be a thing. Mismatch binding proteins used include MutS, MutH, MutL, HexA, MSH1-6, Rep3, RNaseA, uracil DNA glycosidase, T4 endonuclease VII, and resolvase. Preferably, it is MutS, MSH2 or MSH6, or a mixture of two or more thereof, more preferably a force that is MutS, but is not limited thereto.
[0025] また、本発明に用いられるミスマッチ結合タンパク質は、二本鎖核酸中のミスマッチ を認識しうる限り、野生型タンパク質のアミノ酸配列において 1または複数のアミノ酸 が置換、欠失、付加、および Zまたは挿入されたアミノ酸配列力 なるタンパク質 (変 異体)であってもよい。このような変異体は、 自然界において生じることもある力 人為 的に作製することも可能である。  [0025] In addition, the mismatch binding protein used in the present invention has one or more amino acid substitutions, deletions, additions, and Z in the amino acid sequence of the wild-type protein as long as the mismatch in the double-stranded nucleic acid can be recognized. Alternatively, it may be an inserted amino acid sequence protein (variant). Such mutants can also be created artificially by forces that may occur in nature.
[0026] タンパク質にアミノ酸変異を導入する方法としては、多くの方法が知られている。例 えば、部位特異的変異導入法としては、 W. P. DengiJ. A. Nickoloffの方法 (An al. Biochem. , 200, 81, 1992), K. L. Makamayeと F. Ecksteinの方法(Nucl eic Adids Res. , 14, 9679— 9698, 1986)など力知られており、ランダム変異 導入法としては、基本的な修復系を欠損した大腸菌 XL1— Red株(Stratagene社 )を用いる方法、亜硝酸ナトリウム等を用いて化学的に塩基を修飾する方法 CF. — J. Diaz et al. , BioTechnique, 11, 204— 211, 1991)など力 ^知られて!/ヽる。この ようなミスマッチ結合タンパク質としては、 MutM、 MutSおよびそれらの類似体など 、多くのもの力 S知られて ヽる(Radman, M. et al. , Annu. Rev. Genet. 20:523 -538(1986); Radaman, M. etal. , Sci. Amer. , August 1988, pp40— 46; Modrich, P. , J. Biol. Chem. 264:6597-6600(1989); Lahue, R. S. et al . , Science245:160- 164 (1988); Jiricny, J. et al, . Nucl. Acids Res. 16: 7843-7853(1988); Su, S. S. et al. , J. Biol. Chem. 263:6829— 6835(1 988); Lahue, R. S. et al. , Mutat. Res. 198:37— 43(1988); Dohet, C. et al. , Mol. Gen. Gent. 206:181-184(1987); Jones, M. et al. , Gentics 11 5:605-610(1987); Salmonella typhimuriumの Muts (Lu, A. L. , Genetic s 118:593-600(1988); HaberL. T. et al. , J. Bacteriol. 170:197— 202( 1988); Pang, P. P. et al. , J. Bacteriol. 163 : 1007— 1015 (1985) );及び Pri ebe S. D. et al. , J. Bacterilo. 170:190—196(1988))。  [0026] Many methods are known for introducing amino acid mutations into proteins. For example, site-directed mutagenesis methods include WP DengiJ. A. Nickoloff's method (An al. Biochem., 200, 81, 1992), KL Makamaye and F. Eckstein's method (Nucleic Adids Res., 14 , 9679-9698, 1986), and random mutagenesis methods include methods using E. coli XL1-Red strain (Stratagene) deficient in the basic repair system, sodium nitrite, etc. CF. — J. Diaz et al., BioTechnique, 11, 204— 211, 1991). There are many known mismatch binding proteins such as MutM, MutS and their analogs (Radman, M. et al., Annu. Rev. Genet. 20: 523 -538 ( 1986); Radaman, M. etal., Sci. Amer., August 1988, pp40-46; Modrich, P., J. Biol. Chem. 264: 6597-6600 (1989); Lahue, RS et al., Science245 : 160-164 (1988); Jiricny, J. et al,. Nucl. Acids Res. 16: 7843-7853 (1988); Su, SS et al., J. Biol. Chem. 263: 6829— 6835 (1 988); Lahue, RS et al., Mutat. Res. 198: 37—43 (1988); Dohet, C. et al., Mol. Gen. Gent. 206: 181-184 (1987); Jones, M. et al., Gentics 11 5: 605-610 (1987); Salmonella typhimurium Muts (Lu, AL, Genetics 118: 593-600 (1988); HaberL. T. et al., J. Bacteriol. 170: 197 — 202 (1988); Pang, PP et al., J. Bacteriol. 163: 1007—1015 (1985)); and Priebe SD et al., J. Bacterilo. 170: 190—196 (1988)).
[0027] ミスマッチ結合タンパク質は、一本鎖核酸にも結合することがあり、このようなミスマツ チ結合タンパク質の一本鎖核酸への結合は、一本鎖結合タンパク質により阻害され ることが知られている。従って、本発明による変異検出法においてミスマッチ結合タン ノ ク質を用いる場合には、一本鎖結合タンパク質を併用することが好まし 、。 [0027] The mismatch binding protein may also bind to a single-stranded nucleic acid, and the binding of such a mismatch binding protein to a single-stranded nucleic acid is inhibited by the single-stranded binding protein. It is known that Therefore, when a mismatch binding protein is used in the mutation detection method according to the present invention, it is preferable to use a single chain binding protein in combination.
[0028] 一本鎖核酸にミスマッチ結合タンパク質が結合するのを阻害するために使用する 一本鎖結合タンパク質 (SSB)は、当技術分野において公知の任意の SSBとすること ができる。好ましい SSBとしては、大腸菌、ショウジヨウバエ、およびアフリカッメガエ ルに由来する一本鎖結合タンパク質、および T4バタテリオファージ由来の遺伝子 32 タンパク質、ならびに他の種に由来するこれらの相当物が挙げられる力 これらに限 定されない。 [0028] The single-stranded binding protein (SSB) used to inhibit the binding of the mismatch binding protein to the single-stranded nucleic acid can be any SSB known in the art. Preferred SSBs include single-stranded binding proteins from E. coli, Drosophila, and Xenopus laevis, and the gene 32 protein from T4 butteriophage, and their equivalents from other species. It is not limited to.
[0029] また、本発明に用いられる一本鎖結合タンパク質は、一本鎖核酸に結合しうる限り、 野生型タンパク質のアミノ酸配列において 1または複数のアミノ酸が置換、欠失、付 カロ、および Zまたは挿入されたアミノ酸配列力もなるタンパク質 (変異体)であってもよ い。このような変異体は、自然界において生じることもある力 人為的に作製すること も可能である。  [0029] In addition, the single-stranded binding protein used in the present invention has one or more amino acid substitutions, deletions, attached calories and Z in the amino acid sequence of the wild-type protein as long as it can bind to the single-stranded nucleic acid. Alternatively, it may be a protein (mutant) having an inserted amino acid sequence ability. Such mutants can also be created artificially by forces that may occur in nature.
[0030] また、ミスマッチ結合タンパク質は、ミスマッチを含まな 、二本鎖核酸にも結合するこ とがあり、あら力じめ活性剤を用いてミスマッチ結合タンパク質を活性ィ匕しておくことに より、このようなミスマッチ結合タンパク質の誤った結合が防止できることが知られてい る。従って、本発明による変異検出法においてミスマッチ結合タンパク質を用いる場 合には、ミスマッチ結合タンパク質の活性剤によりあらカゝじめ活性ィ匕されたものを用い ることが好ましい。  [0030] In addition, the mismatch binding protein may bind to a double-stranded nucleic acid that does not contain a mismatch, and the mismatch binding protein is activated by using an activator. It is known that such mismatch binding protein can be prevented from erroneous binding. Therefore, when a mismatch binding protein is used in the mutation detection method according to the present invention, it is preferable to use a protein that has been activated by a mismatch binding protein activator.
[0031] ミスマッチ結合タンパク質を活性ィ匕するための活性剤は、当業者であれば適宜選 択することができる。ミスマッチ結合タンパク質を活性ィ匕するための活性剤として、好 ましくは、 ATP (アデノシン 5,一三リン酸)、 ADP (アデノシン 5,一二リン酸)、 ATP— γ S (アデノシン 5, -0- (3—チォ三リン酸))、 AMP— ΡΝΡ (アデノシン 5,一 [ β 、 y イミド]三リン酸)などの化合物であり、あるいは、ミスマッチ結合タンパク質に結 合できるヌクレオチドの一つとされる力 これらに限定されない。ミスマッチ結合タンパ ク質の活性ィ匕は、ミスマッチ結合タンパク質と活性剤とを、室温で数秒間から数分間 インキュベートすることにより行うことができる。  [0031] An active agent for activating the mismatch binding protein can be appropriately selected by those skilled in the art. As active agents for activating mismatch binding proteins, ATP (adenosine 5, monotriphosphate), ADP (adenosine 5, monodiphosphate), ATP—γ S (adenosine 5,- 0- (3-thiotriphosphate)), AMP-ΡΝΡ (adenosine 5, mono [β, y imido] triphosphate), or one of the nucleotides that can bind to mismatch-binding proteins. It is not limited to these. The activity of the mismatch binding protein can be performed by incubating the mismatch binding protein and the active agent at room temperature for several seconds to several minutes.
[0032] 本発明に用いる組換え酵素タンパク質は、当業者が適宜選択することができる。例 えば、 RecAタンパク質を用いることができる。 [0032] The recombinant enzyme protein used in the present invention can be appropriately selected by those skilled in the art. Example For example, RecA protein can be used.
[0033] 以下に実施例を挙げて、本発明をさらに詳細に説明するが、本実施例により本発 明を制限または限定することを意図するものではない。 [0033] The present invention will be described in more detail with reference to the following examples. However, the present invention is not intended to be limited or limited by the examples.
実施例 1  Example 1
[0034] [ヒト STS DYS237遺伝子中の標的核酸配列の増幅]  [0034] [Amplification of target nucleic acid sequence in human STS DYS237 gene]
本例では、铸型としてヒトゲノム DNA(Clontech社製)を使用して、その中に含ま れるヒト STS DYS237遺伝子中の標的核酸配列の増幅を行なった。プライマーとし ては、下記の配列を有するプライマーペアを用いた。また、铸型に対する各プライマ 一領域の位置関係は図 1 (配列番号 1)に示す通りとした。フォワードプライマー F1は 、その 3'末端側にある配列(22mer:下線部)が铸型にアニーリングし、 5'末端側に ある配列(16mer:下線部以外)がその領域内で折り畳まれて図 2に示す構造をとる ように設計されている。リバースプライマー R1は、その 3,末端側にある配列(20mer: 下線部)が铸型にアニーリングし、伸長反応の後、 5'末端側にある配列(lOmer:下 線部以外) 1S そのプライマーによる伸長鎖上の、該プライマーの 3'末端残基の 16 塩基下流力 始まる領域にハイブリダィズするように設計されて 、る。  In this example, human genomic DNA (manufactured by Clontech) was used as a cage, and the target nucleic acid sequence in the human STS DYS237 gene contained therein was amplified. As a primer, a primer pair having the following sequence was used. The positional relationship of each primer region with respect to the saddle type was as shown in FIG. 1 (SEQ ID NO: 1). In the forward primer F1, the sequence on the 3 'end side (22mer: underlined portion) anneals in a saddle shape, and the sequence on the 5' end side (16mer: other than the underlined portion) is folded within that region. It is designed to take the structure shown in. Reverse primer R1 has its 3 terminal sequence (20mer: underlined) annealed in a saddle shape, and after extension reaction, 5 'terminal sequence (lOmer: other than underlined) 1S depends on the primer It is designed to hybridize to the region on the extension strand that begins 16 bases downstream of the 3 'terminal residue of the primer.
[0035] プライマーペア: 号 1)  [0035] Primer pair: No. 1)
R1: GCAGCATCACCAACCCAAAAGCACTGAGTA (配列番号 2)  R1: GCAGCATCACCAACCCAAAAGCACTGAGTA (SEQ ID NO: 2)
[0036] 次の組成を有する 25 μ Lの反応液を調製し、 60°Cで 1時間インキュベートした。铸 型は二本鎖のまま反応させた。また、铸型の代わりに滅菌水を添加した溶液につい ても同様に実験を行なった。 [0036] A 25 μL reaction solution having the following composition was prepared and incubated at 60 ° C for 1 hour. The type 反 応 was allowed to react with double strands. The same experiment was performed on a solution to which sterilized water was added instead of the bowl.
[0037] 反応液の組成は、以下の通りである。 Tris-HCl (20mM, pH8. 8)、 KCl (10m[0037] The composition of the reaction solution is as follows. Tris-HCl (20mM, pH8.8), KCl (10m
M)ゝ (NH ) SO (lOmM)ゝ MgSO (8mM)ゝ DMSO (3%)、 Triton X— 100 (1 M) ゝ (NH) SO (lOmM) ゝ MgSO (8 mM) ゝ DMSO (3%), Triton X—100 (1
4 2 4 4  4 2 4 4
%)、 dNTP (l. 4mM)、それぞれ 2000nMの上記のプライマー対および铸型(100 ng)、さらに 16Uの Bst DNAポリメラーゼ(NEW ENGLAND BioLabs)、 SYBR GREEN I (Molecular Probe社)(最終的に 100, 000倍希釈となる濃度)、 MutS (0. 8 g)を 25 L中に含有する。各サンプルの組成を表 1に示す。 [0038] [表 1] %), DNTP (l. 4 mM), 2000 nM of each of the above primer pairs and saddle type (100 ng), 16 U of Bst DNA polymerase (NEW ENGLAND BioLabs), SYBR GREEN I (Molecular Probe) (100 , 000 times dilution), MutS (0.8 g) in 25 L. Table 1 shows the composition of each sample. [0038] [Table 1]
Figure imgf000010_0001
Figure imgf000010_0001
[0039] 結果を図 3に示す。図中、参はサンプル 1を、〇はサンプノレ 2を、▲はサンプル 4を それぞれ表す。サンプル 3、サンプル 5及びサンプル 6は、蛍光強度が測定期間中、 常に 0であった。サンプル 1とサンプル 2の結果を比較すると、サンプル 2の方が若干 増幅速度が遅くなつている。これは MutSを添カ卩しない場合、形成されたプライマー ダイマーを铸型とした非特異的な増幅反応によるプライマーの消費されるため、目的 とする領域の増幅効率に若干の影響があったことが理由として考えられる。サンプル 4では、本来铸型 DNAがないため,増幅反応は起こらないはずである力 時間の経 過につれて増幅が見られる。これは、プライマーダイマーの形成に起因する非特異 的増幅と考えられる。これに対し、サンプル 3では増幅が見られず、 MutSが非特異 的増幅の抑制に効果的であることが判った。 [0039] The results are shown in FIG. In the figure, san represents sample 1, ○ represents sampnore 2, and ▲ represents sample 4. Samples 3, 5, and 6 always had a fluorescence intensity of 0 during the measurement period. Comparing the results of sample 1 and sample 2, the amplification rate of sample 2 is slightly slower. When MutS is not added, the primer is consumed by a non-specific amplification reaction using the formed primer dimer as a cage, which may have a slight effect on the amplification efficiency of the target region. Possible reason. In sample 4, amplification is seen over the course of the force time, which should not occur in the amplification reaction, since it is essentially free of cage DNA. This is thought to be nonspecific amplification due to the formation of primer dimers. In contrast, no amplification was observed in sample 3, indicating that MutS is effective in suppressing nonspecific amplification.
実施例 2  Example 2
[0040] [ヒト CYP2C19遺伝子の検出]  [0040] [Detection of human CYP2C19 gene]
ヒト CYP2C19の遺伝子の検出を行なった。プライマーとして、次の塩基配列力もな るプライマーを設計した。各プライマーと標的塩基配列の関係は、図 4に示したとおり である。  Human CYP2C19 gene was detected. As a primer, a primer having the following base sequence ability was designed. The relationship between each primer and the target base sequence is as shown in FIG.
[0041] RA(R1 +R2)Z配列番号 3  [0041] RA (R1 + R2) Z SEQ ID NO: 3
TTTCTCCAAAATATC一 3, TTTCTCCAAAATATC one 3,
アウタープライマー R3Z配列番号 4 5, - AGGGTTGTTG ATGTCC ATC 3 ' Outer primer R3Z SEQ ID NO: 4 5,-AGGGTTGTTG ATGTCC ATC 3 '
FA (F1 +F2) Z配列番号 5  FA (F1 + F2) Z SEQ ID NO: 5
AATAAATTATTGTTTTCTCTTAG - 3 ' AATAAATTATTGTTTTCTCTTAG-3 '
アウタープライマー F3Z配列番号 6  Outer primer F3Z SEQ ID NO: 6
5 CCAGAGCTTGGCATATTGTATC 3 '  5 CCAGAGCTTGGCATATTGTATC 3 '
[0042] 上記塩基配列からなるプライマーを用い、ヒト CPY2C遺伝子を組み込んだ pBlues cript II (EcoRIで直鎖状にしたもの) 10〜19 molZtube (約 60000分子)を铸型と し、 60°Cで 2時間反応させた。铸型は 2本鎖のまま反応させた。反応液の組成は次の とおりである。 [0042] pBlues cript II (linearized with EcoRI) 10-19 molZtube (approx. 60,000 molecules) with the human CPY2C gene incorporated into the cocoon shape at 60 ° C The reaction was performed for 2 hours. The vertical type was allowed to react with two strands. The composition of the reaction solution is as follows.
[0043] ·反応液組成 (25 μ L中) [0043] · Reaction solution composition (in 25 μL)
20 mM Tris-HCl pH 8. 8  20 mM Tris-HCl pH 8.8
10 mM KC1  10 mM KC1
10 mM (NH ) SO  10 mM (NH) SO
4 2 4  4 2 4
4 mM MgSO  4 mM MgSO
4  Four
1M Betaine  1M Betaine
0. 1% TritonX— 100  0.1% TritonX—100
0. 4 mM dNTP  0.4 mM dNTP
8U Bst DNAポリメラーゼ(NEW ENGLAND BioLabs)  8U Bst DNA polymerase (NEW ENGLAND BioLabs)
SYBR GREEN I (Molecular Probe社)(最終的に 100, 000倍希釈となる濃度 SYBR GREEN I (Molecular Probe) (concentration at which the final dilution is 100,000)
) )
0. e ^ g MutS  0.e ^ g MutS
[0044] プライマー: [0044] Primer:
1600nM FA  1600nM FA
1600nM RA  1600nM RA
200nM F3  200nM F3
200nM R3  200nM R3
各サンプル反応液の組成を表 2に示す。 [0045] [表 2] Table 2 shows the composition of each sample reaction solution. [0045] [Table 2]
Figure imgf000012_0001
Figure imgf000012_0001
[0046] 結果を図 5に示す。図中、參はサンプル 1を、▲はサンプル 2を、 Xはサンプル 3を それぞれ表す。サンプル 4は、蛍光強度が測定期間中、常に 0であった。サンプル 3 と 4を増幅した結果を比べると、 MutSが無い場合、铸型 DNAが無い場合でも 1時間 を過ぎると非特異的な増幅が観察された力 MutSの添加により、この非特異的増幅 をほぼ完全に抑制できることが判った。これにより MutSは特異的配列を検出する感 度、特異性が向上する効果力 ると考えられる。 [0046] The results are shown in FIG. In the figure, 參 represents sample 1, ▲ represents sample 2, and X represents sample 3. Sample 4 always had a fluorescence intensity of 0 during the measurement period. Comparing the results of amplifying samples 3 and 4, the non-specific amplification was observed after 1 hour in the absence of MutS and in the absence of 铸 -type DNA. It turned out that it can suppress almost completely. As a result, MutS is considered to have the effect of improving sensitivity and specificity for detecting specific sequences.

Claims

請求の範囲 The scope of the claims
[I] 核酸増幅反応においてプライマーダイマーに結合する物質をサンプルに添加する ことを特徴とする、プライマーダイマー形成に伴う非特異的な増幅反応を抑制する方 法。  [I] A method for suppressing nonspecific amplification reaction associated with primer dimer formation, which comprises adding a substance that binds to primer dimer to a sample in a nucleic acid amplification reaction.
[2] プライマーダイマーに結合する物質が、ミスマッチ認識能を有する物質である請求 項 1の方法。  [2] The method according to claim 1, wherein the substance that binds to the primer dimer is a substance having mismatch recognition ability.
[3] ミスマッチ認識能を有する物質が、ミスマッチ結合タンパク質である請求項 2の方法  [3] The method according to claim 2, wherein the substance having mismatch recognition ability is a mismatch binding protein.
[4] ミスマッチ結合タンパク質が、 MutS、 MSH2、 MSH6、またはこれらの混合物であ る請求項 3の方法。 [4] The method of claim 3, wherein the mismatch binding protein is MutS, MSH2, MSH6, or a mixture thereof.
[5] プライマーダイマーに結合する物質を 0. 1%〜 10%の濃度でサンプルに添加する 請求項 1〜4のいずれか 1項に記載の方法。  [5] The method according to any one of claims 1 to 4, wherein a substance that binds to the primer dimer is added to the sample at a concentration of 0.1% to 10%.
[6] プライマーダイマーに結合する物質を 0. 5%〜2%の濃度でサンプルに添加する 請求項 5の方法。 [6] The method of claim 5, wherein a substance that binds to the primer dimer is added to the sample at a concentration of 0.5% to 2%.
[7] プライマーダイマーに結合する物質を 0. 7%〜1. 3%の濃度でサンプルに添加す る請求項 6の方法。  [7] The method of claim 6, wherein the substance that binds to the primer dimer is added to the sample at a concentration of 0.7% to 1.3%.
[8] プライマーダイマーに結合する物質が、 DNA組換え能を有する物質である請求項 1の方法。  [8] The method of claim 1, wherein the substance that binds to the primer dimer is a substance having DNA recombination ability.
[9] DNA組換え能を有する物質が、 DNA組換え酵素である請求項 8の方法。  [9] The method according to claim 8, wherein the substance having DNA recombination ability is a DNA recombination enzyme.
[10] DNA組換え酵素力 RecAタンパク質、 T4遺伝子または一本鎖結合タンパク質で ある請求項 9の方法。  [10] The method according to claim 9, wherein the enzyme is a DNA recombination enzyme, a RecA protein, a T4 gene, or a single-stranded binding protein.
[II] 目的とする核酸領域を増幅する方法であって、プライマーダイマーに結合する物質 とプライマーとをサンプルに添加するステップと、前記サンプルをインキュベートする ステップとを含むことを特徴とする方法。  [II] A method for amplifying a target nucleic acid region, comprising the steps of adding a substance that binds to a primer dimer and a primer to a sample, and incubating the sample.
[12] 標的核酸配列の有無を判定する方法であって、プライマーダイマーに結合する物 質とプライマーとをサンプルに添カ卩するステップと、前記サンプルをインキュベートす るステップとを含むことを特徴とする方法。  [12] A method for determining the presence or absence of a target nucleic acid sequence, comprising: adding a substance that binds to a primer dimer and a primer to a sample; and incubating the sample. how to.
[13] 標的核酸配列における変異、欠失及び Z又は挿入の有無を判定する方法であつ て、プライマーダイマーに結合する物質とプライマーとをサンプルに添加するステップ と、前記サンプルをインキュベートするステップとを含むことを特徴とする方法。 [13] A method for determining the presence or absence of mutations, deletions, and Z or insertions in a target nucleic acid sequence. Adding a substance that binds to a primer dimer and a primer to the sample, and incubating the sample.
[14] プライマーダイマーに結合する物質が、ミスマッチ認識能を有する物質である請求 項 11〜13のいずれ力 1項に記載の方法。  [14] The method according to any one of [11] to [13], wherein the substance that binds to the primer dimer is a substance having mismatch recognition ability.
[15] ミスマッチ認識能を有する物質が、ミスマッチ結合タンパク質である請求項 14の方 法。 [15] The method according to claim 14, wherein the substance having mismatch recognition ability is a mismatch binding protein.
[16] ミスマッチ結合タンパク質が、 MutS、 MSH2、 MSH6、またはこれらの混合物であ る請求項 15の方法。  [16] The method of claim 15, wherein the mismatch binding protein is MutS, MSH2, MSH6, or a mixture thereof.
[17] プライマーダイマーに結合する物質が、 DNA組換え能を有する物質である請求項 [17] The substance that binds to the primer dimer is a substance having DNA recombination ability.
11〜13のいずれ力 1項に記載の方法。 11. The method according to any one of 11 to 13, wherein force.
[18] DNA組換え能を有する物質が、 DNA組換え酵素である請求項 17の方法。 18. The method according to claim 17, wherein the substance having DNA recombination ability is a DNA recombination enzyme.
[19] DNA組換え酵素力 RecAタンパク質、 T4遺伝子または一本鎖結合タンパク質で ある請求項 18の方法。 [19] The method according to claim 18, wherein the enzyme is a DNA recombination enzyme, RecA protein, T4 gene or single-stranded binding protein.
[20] 核酸増幅方法が、 PCR法である請求項 11〜19のいずれか 1項に記載の方法。  [20] The method according to any one of claims 11 to 19, wherein the nucleic acid amplification method is a PCR method.
[21] 核酸増幅反応が、等温増幅法である請求項 11〜19のいずれ力 1項に記載の方法 [21] The method according to any one of [11] to [19], wherein the nucleic acid amplification reaction is an isothermal amplification method.
[22] 等温増幅反応が、 SDA法、 3SR法、 NASBA法、 TMA法、 Qベータリプリカーゼ 法、 LAMP法、 ICAN法力もなる群力 選択される方法である請求項 21の方法。 [22] The method according to claim 21, wherein the isothermal amplification reaction is a method in which a group force including an SDA method, a 3SR method, a NASBA method, a TMA method, a Q beta replicase method, a LAMP method, and an ICAN method is selected.
[23] プライマーが、標的核酸配列を増幅できる少なくとも 2種のプライマーセットを含ん でなり、  [23] The primer comprises at least two primer sets capable of amplifying the target nucleic acid sequence,
前記プライマーセットに含まれる第一のプライマーは、標的核酸配列の 3'末端部分 の配列 (A)にノ、イブリダィズする配列 (Ac,)を第一のプライマーの 3,側に含み、力 つ前記標的核酸配列にぉ 、て前記配列 (A)よりも 5'側に存在する配列(B)の相補 配列(Be)にハイブリダィズする配列(Β' )を前記配列 (Ac' )の 5'側に含んでなり、 前記プライマーセットに含まれる第二のプライマーは、前記標的核酸配列の相補配 列の 3'末端部分の配列 (C)にハイブリダィズする配列 (Cc' )を 3'末端部分に含ん でなり、かつ相互がノ、イブリダィズする 2つの核酸配列を同一鎖上に含む折り返し配 列(D— Dc ' )を前記配列(Cc ' )の 5 '側に含んでなることを特徴とする請求項 11〜2 の 、ずれか 1項に記載の方法。 The first primer included in the primer set includes a sequence (Ac,) to be sequenced (Ac) in the 3 'end portion of the target nucleic acid sequence (A) on the 3rd side of the first primer, A sequence (Β ′) that hybridizes to the complementary sequence (Be) of the sequence (B) existing 5 ′ to the target nucleic acid sequence is located 5 ′ to the sequence (Ac ′). The second primer included in the primer set includes a sequence (Cc ′) that hybridizes to the sequence (C) of the 3 ′ end portion of the complementary sequence of the target nucleic acid sequence in the 3 ′ end portion. And a folded sequence (D—Dc ′) containing two nucleic acid sequences that are mutually and hybridized on the same strand, on the 5 ′ side of the sequence (Cc ′). 11-2 The method according to item 1 above.
PCT/JP2006/305372 2005-03-17 2006-03-17 Method of lessening nonspecific amplification from primer dimer WO2006098428A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-076529 2005-03-17
JP2005076529A JP2006254784A (en) 2005-03-17 2005-03-17 Method for decreasing nonspecific amplification from primer dimer

Publications (1)

Publication Number Publication Date
WO2006098428A1 true WO2006098428A1 (en) 2006-09-21

Family

ID=36991772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305372 WO2006098428A1 (en) 2005-03-17 2006-03-17 Method of lessening nonspecific amplification from primer dimer

Country Status (2)

Country Link
JP (1) JP2006254784A (en)
WO (1) WO2006098428A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008136436A (en) * 2006-12-04 2008-06-19 Fujifilm Corp Method for detecting variation of nucleic acid by using protein binding single-stranded dna
CN111187805A (en) * 2020-01-19 2020-05-22 陕西师范大学 Design method and application of auxiliary mutation primer
CN113832147A (en) * 2021-09-08 2021-12-24 华南农业大学 Efficient PCR primer for large-fragment DNA synthesis and amplification, method and application

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100987352B1 (en) * 2008-04-15 2010-10-12 주식회사 인트론바이오테크놀로지 PCR primer capable of reducing non-specific amplification and PCR method using the PCR primer
EP2388322B1 (en) 2009-01-15 2017-10-25 Hokkaido Mitsui Chemicals, Inc. Enzymatic preparation containing thermostable dna polymerase, process for producing same, and method for detecting analyte organism
WO2011046972A2 (en) * 2009-10-12 2011-04-21 Life Technologies Corporation Compositions and methods for suppressing primer interactions
KR101742681B1 (en) * 2015-01-30 2017-06-01 에스디 바이오센서 주식회사 A primer for pcr amplification linked with complementary sequences or complementary sequences including mis-matched nucleotides and nucleic acid amplification method using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999010369A1 (en) * 1997-08-28 1999-03-04 Thomas Jefferson University Compositions, kits, and methods for effecting adenine nucleotide modulation of dna mismatch recognition proteins
JPH11511010A (en) * 1995-06-06 1999-09-28 ザ・マウント・シナイ・メデイカル・センター・オブ・ザ・シテイ・ユニバーシテイ・オブ・ニユーヨーク Cloning and expression of thermostable mutS gene and proteins and uses thereof
JP2001510681A (en) * 1997-07-01 2001-08-07 ローン・パーク・リサーチ・インコーポレーテッド Assay of nucleotides in solution using fluorescence intensity quenching effect
WO2002024902A1 (en) * 2000-09-19 2002-03-28 Eiken Kagaku Kabushiki Kaisha Method of synthesizing polynucleotide
JP2003259882A (en) * 2001-12-19 2003-09-16 F Hoffmann La Roche Ag Reagent for improved pcr

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11511010A (en) * 1995-06-06 1999-09-28 ザ・マウント・シナイ・メデイカル・センター・オブ・ザ・シテイ・ユニバーシテイ・オブ・ニユーヨーク Cloning and expression of thermostable mutS gene and proteins and uses thereof
JP2001510681A (en) * 1997-07-01 2001-08-07 ローン・パーク・リサーチ・インコーポレーテッド Assay of nucleotides in solution using fluorescence intensity quenching effect
WO1999010369A1 (en) * 1997-08-28 1999-03-04 Thomas Jefferson University Compositions, kits, and methods for effecting adenine nucleotide modulation of dna mismatch recognition proteins
WO2002024902A1 (en) * 2000-09-19 2002-03-28 Eiken Kagaku Kabushiki Kaisha Method of synthesizing polynucleotide
JP2003259882A (en) * 2001-12-19 2003-09-16 F Hoffmann La Roche Ag Reagent for improved pcr

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008136436A (en) * 2006-12-04 2008-06-19 Fujifilm Corp Method for detecting variation of nucleic acid by using protein binding single-stranded dna
CN111187805A (en) * 2020-01-19 2020-05-22 陕西师范大学 Design method and application of auxiliary mutation primer
CN111187805B (en) * 2020-01-19 2023-06-23 陕西师范大学 Design method and application of auxiliary mutation primer
CN113832147A (en) * 2021-09-08 2021-12-24 华南农业大学 Efficient PCR primer for large-fragment DNA synthesis and amplification, method and application

Also Published As

Publication number Publication date
JP2006254784A (en) 2006-09-28

Similar Documents

Publication Publication Date Title
CN107488710B (en) Application of Cas protein, and detection method and kit of target nucleic acid molecule
JP7112456B2 (en) Methods for variant detection
EP1712618B1 (en) Method of amplifying nucleic acid and method of detecting mutated nucleic acid using the same
EP1866434B1 (en) Isothermal nucleic acid amplification
JP5805064B2 (en) Methods, compositions, and kits for detecting allelic variants
EP1668148B1 (en) Nucleic acid detection assay
AU2003272438A1 (en) Helicase dependent amplification of nucleic acids
JP6837997B2 (en) Methods and products to prevent false positives in methods using ddNTPs
EP1876246A1 (en) Self-complementary primers used in LAMP gene amplification method
WO2006098428A1 (en) Method of lessening nonspecific amplification from primer dimer
JP3942627B2 (en) Mutant nucleic acid detection method
US11584955B2 (en) Application of Cas protein, method for detecting target nucleic acid molecule and kit
JP2008161165A (en) Method for detecting gene using competing oligonucleotide
US9121053B2 (en) Method of detecting single nucleotide polymorphisms
JP2008029335A (en) Primer set and kit for use in new gene amplification method
JP2007319096A (en) Nucleic acid amplification method utilizing nicking activity of endonuclease
US6878530B2 (en) Methods for detecting polymorphisms in nucleic acids
JP2008161164A (en) Method for detecting gene with primer containing artificial mismatched nucleic acid
WO2006051991A1 (en) Method of amplifying and detecting nucleic acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06729362

Country of ref document: EP

Kind code of ref document: A1