WO2006098379A1 - Adaptive modulation method based on multi-user pre-coding - Google Patents

Adaptive modulation method based on multi-user pre-coding Download PDF

Info

Publication number
WO2006098379A1
WO2006098379A1 PCT/JP2006/305154 JP2006305154W WO2006098379A1 WO 2006098379 A1 WO2006098379 A1 WO 2006098379A1 JP 2006305154 W JP2006305154 W JP 2006305154W WO 2006098379 A1 WO2006098379 A1 WO 2006098379A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
communication terminal
noise ratio
signal
noise
Prior art date
Application number
PCT/JP2006/305154
Other languages
French (fr)
Japanese (ja)
Inventor
Qiang Wu
Jifeng Li
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2006098379A1 publication Critical patent/WO2006098379A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0016Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy involving special memory structures, e.g. look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03777Arrangements for removing intersymbol interference characterised by the signalling
    • H04L2025/03802Signalling on the reverse channel
    • H04L2025/03808Transmission of equaliser coefficients

Definitions

  • the present invention relates to precoding and adaptive modulation in a multiuser MIMO communication system.
  • Multi-input multi-output (MIMO) technology is a major achievement in the field of wireless mobile communications.
  • MIMO technology uses multiple antennas for both data transmission and reception.
  • MIMO technology has a tremendous potential for increasing the capacity of wireless communication systems, and is a key technology used in next-generation mobile communications.
  • multi-user MIMO communication is one of the technologies that are currently attracting attention.
  • FIG. 1 is a block diagram showing a configuration of a commonly used single user MIMO system.
  • MIMO transmitters transmitters that use the MIMO communication method
  • MIMO receivers receive antennas for signals. Send and receive.
  • transmission data is first processed by an SZP conversion unit 701 and divided into M data streams, and each data stream is transmitted from a corresponding transmission antenna 702.
  • SZP conversion unit 701 SZP conversion unit 701 and divided into M data streams, and each data stream is transmitted from a corresponding transmission antenna 702.
  • channel estimation section 704 performs channel estimation based on the received signals to estimate current channel characteristic matrix H.
  • the detection unit 705 detects the received signal using this channel characteristic matrix H! /, And demodulates the information bits transmitted by the MIMO transmitter.
  • FIG. 2 is a diagram showing an outline of a multiuser MIMO system.
  • the base station transmits signals Sl and S2 simultaneously to user terminal (communication terminal) # 1 and user terminal # 2.
  • the desired signal S2 of user terminal # 2 interferes with user terminal # 1
  • the desired signal S1 of user terminal # 1 also interferes with user terminal # 2.
  • user terminal # 1 cannot obtain the channel characteristics of user terminal # 2
  • user terminal # 2 cannot obtain the channel characteristics of user terminal # 1 as well.
  • n white Gaussian noise with mean value zero and square error ⁇ 2 at the receiving antenna
  • X is the signal vector of the receiving antenna
  • s is after precoding
  • the transmission signal of represents the channel matrix.
  • FIG. 3 is a diagram for explaining the reverse channel precoding method.
  • the transmission power must be increased to eliminate interference, and conversely, if the transmission power is not changed, noise will increase.
  • FIG. 4 is a diagram for explaining the Toml inson-Harashima precoding method.
  • the Tomlinson-Harashima precoding method decomposes the channel matrix H using LQ decomposition, which is a modification of QR decomposition, as shown in Equation (2) below. [Equation 2]
  • G means Eq. (4) below.
  • C is a lower triangular matrix with a diagonal element of 1.
  • the idea of this method is that if the interference is known, it can be reduced in advance by the MIMO transmitter. This is the case for the “CI” process in Figure 4.
  • the “CI” processing is mathematically equivalent to a lower triangular matrix having zero diagonal elements.
  • the “MOD” process in FIG. 4 represents a MOD calculation, and thus the transmission power can be reduced.
  • a gain control value g is set for each user for each frame data.
  • the precoding method based on lattice reduction performs pseudo-inverse matrix decomposition on H as shown in Equation (5) below.
  • H red “T ... (5)
  • each column of H is an approximate orthogonal basis vector.
  • precoding is performed by combining MOD operations according to the following equation (6).
  • the basic principle of the AMC precoding method is to change the modulation and code formats to adapt to the channel conditions within the limits of the system, and the channel conditions are estimated from the feedback information.
  • users typically use higher-order modulation schemes and code rates under desirable channel conditions, and sometimes lower-order modulation schemes and coding methods when desired and not under channel conditions. Is used.
  • An object of the present invention is to provide an adaptive modulation method based on multiuser precoding to improve downlink error tolerance in a multiuser trap system.
  • Adaptive modulation based on multi-user precoding provided by one aspect of the present invention
  • the method includes: obtaining a channel matrix and noise power of each communication terminal; and calculating an equivalent signal-to-noise ratio of each communication terminal using the channel matrix, the noise power, and a predetermined precoding method.
  • an adaptive modulation parameter table using the equivalent signal-to-noise ratio Determining an adaptive modulation parameter table using the equivalent signal-to-noise ratio; determining a power distribution value of each communication terminal according to a water injection theorem based on the equivalent signal-to-noise ratio; and the noise Calculating a signal-to-noise ratio of each communication terminal using the power and the power distribution value, and determining the modulation method for each communication terminal based on the signal-to-noise ratio; According to the same method as the noise-to-noise ratio, power is allocated again to communication terminals that use the same modulation method, and the final distribution power of each communication terminal is allocated. And a step of transmitting data addressed to each communication terminal based on the final distributed power and the modulation method.
  • FIG. 5 is a diagram showing a main configuration of a MIMO system according to an embodiment of the present invention.
  • FIG. 6 is a flowchart showing the procedure of an adaptive modulation method based on multi-user precoding according to the present embodiment.
  • FIG. 5 is a diagram showing a main configuration of the MIMO system according to one embodiment of the present invention.
  • the MIMO system normally includes a base station device 100 and a plurality (N in this case) of user terminal devices (communication terminal devices) 200-1 to 200-N which are mobile stations. Prepare.
  • Base station apparatus 100 includes a data source 101 such as a memory storing data of each user, adaptive modulation units 102-1 to 102-N, precoding units 103-1 to 103-N, and a transmission antenna. 104—1 to 104—N. There are N adaptive modulation sections 102—1 to 102—N, precoding sections 103—1 to 103—N, and transmission antennas 104—1 to 104—N corresponding to N user terminal devices. .
  • the user terminal device 200-1 includes a reception antenna 201-1, a channel Z noise estimation unit 202-1, and a demodulation unit 203-1.
  • the user terminal device 200-N also includes a reception antenna 201-N, a channel Z noise estimation unit 202-N, and a demodulation unit 203-N.
  • each user terminal device 200 with the branch number omitted is basically used below. Further, the generic name in which the branch number is omitted is also used for the configuration in the user terminal device 200.
  • the reception antenna 201 receives a signal from the base station apparatus 100.
  • the channel Z noise estimation unit 202 performs channel estimation using the pilot included in the received signal, performs line fluctuation compensation based on the obtained channel estimation value, and demodulates the signal after compensation. Output to. Demodulation section 203 also demodulates the received data from the signal output from channel Z noise estimation section 202. The obtained demodulated data is output to another configuration (not shown).
  • the channel Z noise estimator 202 also estimates the noise power of the received signal along with the channel estimation value, and sends this information (channel matrix and noise power that also includes the channel estimation value power) via the feedback channel CH1 and the like. Feedback to base station apparatus 100. More than Data reception and feedback processing are repeated.
  • Base station apparatus 100 uses user terminal apparatuses 200-1 to 200-N based on feedback information respectively notified via feedback channels CH1 to CHN! /, Channel matrix H and noise. Electric power can be acquired.
  • adaptive modulation section 102 determines the format of adaptive modulation of user terminal apparatus 200 according to the method described later, and transmits transmission of user terminal apparatus 200. Determine the power. Further, when the modulation method and transmission power of the user terminal device 200 are determined, the adaptive modulation unit 102 acquires data to be transmitted from the data source 101 to the user terminal device 200, modulates this data, and then performs a precoding unit. Output to 103. Precoding section 103 transmits data addressed to user terminal apparatus 200 via transmission antenna 104 according to the modulation scheme and transmission power finally determined according to the method described later.
  • FIG. 6 is a flowchart showing a procedure of an adaptive modulation method based on multi-user precoding according to the present embodiment.
  • step ST3010 base station apparatus 100 acquires the channel matrix of user terminal apparatus 200.
  • TDD time division multiplexing
  • FDD frequency division multiplexing
  • the user terminal device 200 needs to feed-knock channel information to the base station device 100.
  • the channel Z noise estimation unit 202 of the user terminal device 200 estimates the noise power of the received signal, and notifies the base station device 100 of the estimated noise power via the feedback channel CH1 and the like. In this way, base station apparatus 100 acquires channel matrix H and noise power of user terminal apparatus 200.
  • step ST3020 base station apparatus 100, based on channel matrix H and noise power of user terminal apparatus 200, performs an equivalent signal-to-noise ratio (equivalent SNR) of each user according to a predetermined precoding method.
  • a predetermined precoding method For example, if the reverse channel precoding method is used as the precoding method, the transmission channel before precoding is applied. If the symbol is d and the transmission symbol after precoding is s, the following equation (7) is obtained.
  • Equation (8) the average transmit power of the i-th antenna is the square of the 2-norm of the i-th row from 1 to H. It is shown that this corresponds to an increase in power. Assuming that the noise power of the i-th user is the 2-norm square of the i-th row of ⁇ ⁇ _1 , calculate the equivalent signal-to-noise ratio of the i-th user by the following equation (10) Can do.
  • step ST3030 where possible modulation schemes are determined according to each user's equivalent signal-to-noise ratio, and an adaptive modulation meter table is formed.
  • the modulation method is determined, there is a parameter table corresponding to each modulation method such as transmission power.
  • step ST3040 after obtaining the equivalent signal-to-noise ratio of each user in the base station apparatus 100, the water injection (Wa ter Filling) theorem determines the power distribution value of each user terminal device 200.
  • the water injection theorem is a method for obtaining the maximum channel capacity by allocating power to each user for n independent parallel channels. For example, assume that the total power is limited by the following equation (11).
  • Equation 14 L is a Lagrange multiplier. And let the partial derivative be the following formula (15).
  • u is a constant, and its value is the value shown in equation (17) below.
  • ⁇ ⁇ ⁇ satisfies Eq. (10), which is a power constraint, and ⁇ is 0 or more.
  • precoding goes through a linear transformation, so when receiving each user, Is completely removed. Therefore, from the viewpoint of the MIMO receiver (user), it is a parallel channel with no interchannel interference.
  • a channel with a high signal-to-noise ratio should be allocated higher power to obtain greater capacity. Therefore, it is possible to allocate power based on the equivalent signal-to-noise ratio of each user by the water injection theorem. If the total transmission power is NXP, that is, the number of antennas, and the average transmission power of each transmission antenna is P, the distribution of power to the i-th user is as shown in Equation (18) below.
  • step ST3050 since the noise power of each user is known, in this case, a new signal-to-noise ratio SNR 'for each user is calculated based on the power distribution value described above. Based on this SNR ′, the adaptive modulation parameter table power is selected and acquired by the required modulation method. Then, the power is redistributed to the same modulation method using a method based on the principle of signal-to-noise ratio or a similar method.
  • each user terminal has one antenna, and the number of user terminals is also ⁇ , ⁇ is a matrix of N X ⁇ .
  • the allocated power P (l), P (2), ..., P (k) is also different, and the higher the signal-to-noise ratio, the more allocated power Is also expensive.
  • the performance of a certain user is good (the allocated power is high!), While the performance of a certain user is poor (the allocated power is relatively low).
  • This leads to performance imbalance. Therefore, the total power of this set is redistributed within a set of similar modulation schemes. In doing so, it shall follow the principle of equal signal-to-noise ratio described below.
  • Adaptive modulation means assigning more bits to users with a high signal-to-noise ratio by the water injection theorem. However, once the modulation scheme is determined, power is distributed fairly among users of the same modulation scheme. In this way, in the same modulation system, the received signal-to-noise ratio of each user is basically the same, improving the overall error resilience and avoiding the occurrence of artificial “far-far effects”.
  • step ST3060 after obtaining the modulation scheme and power distribution value of each user, precoding is performed by the multiuser precoding method.
  • the precoding method the reverse channel precoding method, Tomlinson-Harashima multiuser MIMO precoding method, precoding method based on lattice reduction, AMC precoding method, or the like can be used.
  • step ST3070 the acquired data is transmitted from antennas 104-1 to 104-N based on the power distribution value and the corresponding modulation scheme V.
  • FIG. 7 is a diagram showing constellation in the case of the M-QAM modulation scheme, particularly 16QAM.
  • FIG. 8 and FIG. 9 are diagrams showing simulation results.
  • the base station apparatus 100 has four antennas, four user terminals, and each user terminal uses one antenna.
  • FIG. 8 is a diagram showing a performance comparison between the respective precoding methods.
  • 16QAM 4
  • Fig. 9 shows the performance comparison of each precoding method with and without adaptive modulation when the throughput is 12 bits, that is, the average of each user is 3 bits.
  • the horizontal SNR represents the ratio between the average transmission power of precoding and the average noise power of the MIMO receiver.
  • Figure 9 shows a comparison of ZF performance, ZF-AM performance, and LR-AM performance under conditions using 8PSK without adaptive modulation.
  • the ZF AM performance plot shows the performance when using the adaptive modulation of the present invention, that is, the modulation method also selects the medium power of 16QAM or QPSK, the number of users is 4, and the total number of bits is 12.
  • the performance and LR-AM performance plots show the performance with the adaptive modulation and lattice reduction precoding method of the present invention! /. As is apparent from this figure, the performance is greatly improved when the adaptive modulation of the present invention is used.
  • the MIMO transmission apparatus according to the present invention can be mounted on a communication terminal apparatus and a base station apparatus in a mobile communication system, and thereby a communication terminal apparatus having the same operational effects as described above, A base station apparatus and a mobile communication system can be provided.
  • the power described with reference to an example in which the present invention is configured by nodeware can also be realized by software.
  • the algorithm of the adaptive modulation method based on multi-user precoding according to the present invention is described in a programming language, and the program is stored in a memory and executed by an information processing means.
  • the same function as that of the MIMO transmission apparatus can be realized.
  • Adaptive modulation method and MIM based on multi-user * precoding according to the present invention o
  • the transmission device can be applied to applications such as communication terminal devices and base station devices in mobile communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

In this method, a base station acquires the channel matrix and noise power of each of user terminals; uses them and a predetermined pre-coding scheme to calculate an equivalent signal-to-noise ratio of each user terminal; decides, based on it, an adaptive modulation parameter table; decides, based on the equivalent signal-to-noise ratio of each user terminal, a power distribution by use of the water filling principal; calculates, from the noise power and power distribution value of each user terminal, a new signal-to-noise ratio of each user terminal; decides, based on it, a corresponding modulation scheme from the adaptive modulation parameter table; distributes, by use of a similar scheme to the signal-to-noise ratio, a power anew to the user terminals belonging to the same modulation scheme; acquires an ultimate distribution power of each user terminal; and transmits data on the basis of the ultimate distribution power and modulation scheme.

Description

マルチユーザ.プレコーディングに基づく適応変調方法  Adaptive modulation method based on multi-user precoding
技術分野  Technical field
[0001] 本発明は、マルチユーザ MIMO通信システムにおけるプレコーディングおよび適 応変調に関する。  The present invention relates to precoding and adaptive modulation in a multiuser MIMO communication system.
背景技術  Background art
[0002] マルチインプットマルチアウトプット(MIMO)技術は、無線移動体通信の分野にお ける大きな成果である。 MIMO技術とは、データの送受信いずれにも複数のアンテ ナを用いる。様々な研究の結果、 MIMO技術を用いることによりチャネル容量を増加 させることができるようになり、チャネルの信頼性を向上させて誤り率を低下させること が可能となった。 MIMO技術は無線通信システムの容量増加に対して極めて大きな 潜在能力を有しており、次世代の移動体通信に用いられるキーテクノロジーである。 中でもマルチユーザ MIMO通信は、現在注目されている技術の 1つである。  [0002] Multi-input multi-output (MIMO) technology is a major achievement in the field of wireless mobile communications. MIMO technology uses multiple antennas for both data transmission and reception. As a result of various studies, it has become possible to increase channel capacity by using MIMO technology, and it has become possible to improve channel reliability and reduce error rate. MIMO technology has a tremendous potential for increasing the capacity of wireless communication systems, and is a key technology used in next-generation mobile communications. In particular, multi-user MIMO communication is one of the technologies that are currently attracting attention.
[0003] 図 1は、通常用いられるシングルユーザ MIMOシステムの構成を示すブロック図で ある。このシステムにおいて、 MIMO送信装置(MIMO通信方式を採用する送信装 置)は M本の送信アンテナを用い、 MIMO受信装置 (MIMO通信方式を採用する 受信装置)は N本の受信アンテナを用いて信号の送受信を行う。 MIMO送信装置で は、送信データは、まず SZP変換部 701により処理されて M個のデータストリームに 分けられ、各データストリームは対応する送信アンテナ 702から送信される。 MIMO 受信装置では、まず N個の受信アンテナ 703により信号を受信し、次にチャネル推定 部 704がこの受信信号に基づ 、てチャネル推定を行なって、現在のチャネル特性行 列 Hを推定する。検出部 705はこのチャネル特性行列 Hを用いて受信信号の検出を 行な!/、、 MIMO送信装置が送信した情報ビットを復調する。  FIG. 1 is a block diagram showing a configuration of a commonly used single user MIMO system. In this system, MIMO transmitters (transmitters that use the MIMO communication method) use M transmit antennas, and MIMO receivers (receiver devices that use the MIMO communication method) use N receive antennas for signals. Send and receive. In the MIMO transmission apparatus, transmission data is first processed by an SZP conversion unit 701 and divided into M data streams, and each data stream is transmitted from a corresponding transmission antenna 702. In the MIMO receiver, first, signals are received by N reception antennas 703, and then channel estimation section 704 performs channel estimation based on the received signals to estimate current channel characteristic matrix H. The detection unit 705 detects the received signal using this channel characteristic matrix H! /, And demodulates the information bits transmitted by the MIMO transmitter.
[0004] 一方、図 2は、マルチユーザ MIMOシステムの概要を示す図である。図 2において 、基地局はユーザ端末 (通信端末) # 1およびユーザ端末 # 2に同時に信号 Sl、 S2 を送信する。しかし、ユーザ端末 # 2の所望信号 S2はユーザ端末 # 1に対して干渉 を生じ、ユーザ端末 # 1の所望信号 S1もまたユーザ端末 # 2に対して干渉を生じて いる。また、ユーザ端末 # 1はユーザ端末 # 2のチャネル特性を得ることはできず、ュ 一ザ端末 # 2も同様にユーザ端末 # 1のチャネル特性を得ることはできない。 [0004] On the other hand, FIG. 2 is a diagram showing an outline of a multiuser MIMO system. In FIG. 2, the base station transmits signals Sl and S2 simultaneously to user terminal (communication terminal) # 1 and user terminal # 2. However, the desired signal S2 of user terminal # 2 interferes with user terminal # 1, and the desired signal S1 of user terminal # 1 also interferes with user terminal # 2. Yes. Also, user terminal # 1 cannot obtain the channel characteristics of user terminal # 2, and user terminal # 2 cannot obtain the channel characteristics of user terminal # 1 as well.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] マルチユーザ MIMO通信システムにお!/、て使用されるプレコーディング法には、 以下の 4通りがある。 [0005] There are the following four precoding methods used in a multi-user MIMO communication system! /.
1.逆チャネル'プレコーディング法  1. Reverse channel precoding method
2. Tomlinson- Harashimaプレコーディング法  2. Tomlinson-Harashima precoding method
3. lattice reductionに基づくプレコーディング法  3. Precoding method based on lattice reduction
4. AMCプレコーディング法  4. AMC precoding method
これらの方法は以下に示すような特徴を有する。  These methods have the following characteristics.
[0006] なお、マルチユーザ MIMOシステムの数式モデルは、以下の式(1)のように表され る。 [0006] It should be noted that the mathematical model of the multiuser MIMO system is expressed as the following equation (1).
[数 1]  [Number 1]
X = Hs + n … ^ 1 式(1)において、 nは受信アンテナにおける平均値ゼロかつ二乗誤差 σ 2の白色ガ ウスノイズを表し、 Xは受信アンテナの信号ベクトル、 sはプレコーディングを施した後 の送信信号、 Ηはチャネル行列を表す。 X = Hs + n… ^ 1 In equation (1), n represents white Gaussian noise with mean value zero and square error σ 2 at the receiving antenna, X is the signal vector of the receiving antenna, s is after precoding The transmission signal of represents the channel matrix.
[0007] まず、逆チャネル 'プレコーディング法について説明する。図 3は、逆チャネル'プレ コーディング法を説明するための図である。図 3において、データ dはまずチャネル逆 行列 H_ 1の処理を経て、チャネル Hを経た後に H_1H = Iとなり、干渉が完全に除去 される。しかし、その代償として、干渉を除去するために送信電力を増大させなけれ ばならず、逆に、送信電力を変化させないとすると雑音が増大することになる。 [0007] First, the reverse channel 'precoding method will be described. FIG. 3 is a diagram for explaining the reverse channel precoding method. In FIG. 3, the data d first undergoes processing of the channel inverse matrix H_1 , and after passing through the channel H, H_1H = I, and the interference is completely eliminated. However, at the cost of this, the transmission power must be increased to eliminate interference, and conversely, if the transmission power is not changed, noise will increase.
[0008] 次いで、 Tomlinson-Harashimaプレコーディング法について説明する。図 4は、 Toml inson- Harashimaプレコーディング法を説明するための図である。 Tomlinson- Harashi maプレコーディング法は、 QR分解の変形である LQ分解を用いて、チャネル行列 H を分解するものであり、以下の式(2)の通りである。 [数 2] [0008] Next, the Tomlinson-Harashima precoding method will be described. FIG. 4 is a diagram for explaining the Toml inson-Harashima precoding method. The Tomlinson-Harashima precoding method decomposes the channel matrix H using LQ decomposition, which is a modification of QR decomposition, as shown in Equation (2) below. [Equation 2]
H = S FH … ( 2 ) 式(2)において、 Sは下三角行列、 Fはュ-タリ行列(FHF = I)である。そして、 Cを 以下の式(3)によって定義する。 H = SF H (2) In equation (2), S is a lower triangular matrix and F is a vertical matrix (F H F = I). And C is defined by the following equation (3).
[数 3]  [Equation 3]
C = G HF = G S … ( 3 ) 式(3)において Gの意味するところは以下の式 (4)の通りである。なお、 Cは、対角 要素が 1の下三角行列である。 C = G HF = G S (3) In Eq. (3), G means Eq. (4) below. C is a lower triangular matrix with a diagonal element of 1.
 Picture
G iA« ..,5 … ( 4 ) G iA «.., 5… (4)
[0009] この方法の考え方は、干渉が既知であれば、 MIMO送信装置にぉ 、て事前に減 じることができる、というものである。図 4の「C I」処理の作用がこれに該当する。「C I」処理は、数学的には対角要素が 0の下三角行列に相当する。 1番目のユーザに つ!、ては干渉が存在しな!、が、 2番目
Figure imgf000005_0001
、ては 1番目のユーザの干渉を 減じる必要があり、 K番目のユーザにつ 、ては 1番目から K 1番目までのユーザの 干渉を減じる必要がある。また、図 4の「MOD」処理は MOD演算を表し、このように して送信電力を下げることができる。 K番目のユーザが自己のデータを取得する場合 には、受信信号に Gの K番目の対角要素 gを乗算して復元した後、「MOD」処理を
[0009] The idea of this method is that if the interference is known, it can be reduced in advance by the MIMO transmitter. This is the case for the “CI” process in Figure 4. The “CI” processing is mathematically equivalent to a lower triangular matrix having zero diagonal elements. For the first user! There is no interference !, but second
Figure imgf000005_0001
It is necessary to reduce the interference of the first user, and for the Kth user, it is necessary to reduce the interference of the first to K1 users. Also, the “MOD” process in FIG. 4 represents a MOD calculation, and thus the transmission power can be reduced. When the Kth user obtains his data, the received signal is restored by multiplying the received signal by the Kth diagonal element g of G.
K  K
経て、「復調」処理を施し出力する。  Then, a “demodulation” process is performed and output.
[0010] このプレコーディング法は、送信電力を下げるため、性能的には逆行列を求める方 法より優れているものの、 1フレームデータごとに各ユーザに対して利得制御値 gを  [0010] Although this precoding method is superior to the method of obtaining an inverse matrix in terms of performance in order to reduce transmission power, a gain control value g is set for each user for each frame data.
K  K
送信しなければならな 、ため、送信信号のオーバーヘッドが大きくなると!/、う問題が ある。 Therefore, if the overhead of the transmission signal increases, there is a problem! is there.
[0011] 次いで、 lattice reductionに基づくプレコーディング法について説明する。 lattice re ductionに基づくプレコーディング法は、以下の式(5)の通り、 Hに対して擬似逆行列 分解を行うものである。  Next, a precoding method based on lattice reduction will be described. The precoding method based on lattice reduction performs pseudo-inverse matrix decomposition on H as shown in Equation (5) below.
[数 5]  [Equation 5]
Hred =『 T … ( 5 ) ここで、 H の各列は、近似直交基底ベクトルである。 Tと T_ 1とのそれぞれの要素 H red = “T ... (5) Here, each column of H is an approximate orthogonal basis vector. Each element of T and T _ 1
red  red
は整数であり、行列式は ± 1である。そして、 Tの特性を用いて、以下の式(6)に従つ て、 MOD演算を組み合わせてプレコーディングを施す。  Is an integer and the determinant is ± 1. Then, using the characteristics of T, precoding is performed by combining MOD operations according to the following equation (6).
[数 6] s = HredT{T~ld modr) … ( 6 ) 式(6)において、 dはプレコーディングを施す前のシンボル、 τは境界値であり、座 標点の実部と虚部は、共に 0. 5 てから 0. 5 てまでの間に位置する。 [Equation 6] s = H red T {T ~ l d modr) (6) In equation (6), d is the symbol before precoding, τ is the boundary value, and the real part of the coordinate point Both imaginary parts are located between 0.5 and 0.5.
[0012] 次!、で、 AMCプレコーディング法につ!、て説明する。 AMCプレコーディング法の 基本原理は、変調および符号ィ匕のフォーマットを変更してシステムの制限範囲内で チャネル条件に適応させるというものであり、チャネル条件はフィードバック情報により 推定される。 AMCシステムにおいては、通常、ユーザは望ましいチャネル条件下で は高次の変調方式および符号ィ匕レートを用い、望まし 、チャネル条件下ではな 、場 合には低次の変調方式および符号化方法を用いる。  [0012] Next, I will explain the AMC precoding method. The basic principle of the AMC precoding method is to change the modulation and code formats to adapt to the channel conditions within the limits of the system, and the channel conditions are estimated from the feedback information. In AMC systems, users typically use higher-order modulation schemes and code rates under desirable channel conditions, and sometimes lower-order modulation schemes and coding methods when desired and not under channel conditions. Is used.
[0013] 本発明の目的は、マルチユーザ'プレコーディングに基づいた適応変調方法を提 供して、マルチユーザ ΜΙΜΟシステムにおける下り回線の誤り耐性を向上させること である。  [0013] An object of the present invention is to provide an adaptive modulation method based on multiuser precoding to improve downlink error tolerance in a multiuser trap system.
課題を解決するための手段  Means for solving the problem
[0014] 本発明の 1つの態様が提供するマルチユーザ'プレコーディングに基づく適応変調 方法は、各通信端末のチャネル行列および雑音電力を取得するステップと、前記チ ャネル行列、前記雑音電力、および所定のプレコーディング方法を用いて、各通信 端末の等価信号対雑音比を計算するステップと、前記等価信号対雑音比を用いて 適応変調パラメータテーブルを決定するステップと、前記等価信号対雑音比に基づ いて、注水定理に従って各通信端末の電力配分値を決定するステップと、前記雑音 電力および前記電力配分値を用いて各通信端末の信号対雑音比を計算し、この信 号対雑音比に基づいて、前記適応変調パラメータテーブル力 各通信端末に対する 変調方式を決定するステップと、信号対雑音比と同じ方式に従って、同一の変調方 式を使用する通信端末に対して改めて電力を配分し、各通信端末の最終的な配分 電力を取得するステップと、前記最終的な配分電力および前記変調方式に基づ 、て 、各通信端末宛てのデータを送信するステップと、を具備するようにした。 [0014] Adaptive modulation based on multi-user precoding provided by one aspect of the present invention The method includes: obtaining a channel matrix and noise power of each communication terminal; and calculating an equivalent signal-to-noise ratio of each communication terminal using the channel matrix, the noise power, and a predetermined precoding method. Determining an adaptive modulation parameter table using the equivalent signal-to-noise ratio; determining a power distribution value of each communication terminal according to a water injection theorem based on the equivalent signal-to-noise ratio; and the noise Calculating a signal-to-noise ratio of each communication terminal using the power and the power distribution value, and determining the modulation method for each communication terminal based on the signal-to-noise ratio; According to the same method as the noise-to-noise ratio, power is allocated again to communication terminals that use the same modulation method, and the final distribution power of each communication terminal is allocated. And a step of transmitting data addressed to each communication terminal based on the final distributed power and the modulation method.
発明の効果  The invention's effect
[0015] 本発明によれば、マルチユーザ MIMOシステムにおける誤り耐性を向上させること ができる。  [0015] According to the present invention, it is possible to improve error resilience in a multiuser MIMO system.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]シングルユーザ MIMOシステムの構成を示す図 [0016] [Figure 1] Diagram showing the configuration of a single-user MIMO system
[図 2]マルチユーザ MIMOシステムの概要を示す図  [Figure 2] Diagram showing an overview of a multi-user MIMO system
[図 3]逆チャネル'プレコーディング法を説明するための図  [Figure 3] Diagram for explaining the reverse channel precoding method
[図 4]Tomlinson- Harashimaプレコ一ディング法を説明するための図  [Fig.4] Diagram for explaining the Tomlinson-Harashima precoding method
[図 5]本発明の一実施の形態に係る MIMOシステムの主要な構成を示す図  FIG. 5 is a diagram showing a main configuration of a MIMO system according to an embodiment of the present invention.
[図 6]本実施の形態に係るマルチユーザ 'プレコーディングに基づく適応変調方法の 手順を示すフロー図  FIG. 6 is a flowchart showing the procedure of an adaptive modulation method based on multi-user precoding according to the present embodiment.
[図 7]M— QAM変調方式のコンステレーシヨンを示す図  [Fig.7] Diagram showing M-QAM modulation constellation
[図 8]各プレコーディング法の性能の比較を示す図  [Fig.8] Diagram showing performance comparison of each precoding method
[図 9]適応変調の有無による各プレコーディング法の性能比較を示す図  [Fig.9] Performance comparison of precoding methods with and without adaptive modulation
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。なお 、ここでは、同様の機能を有する複数の構成に対し同一の符号を付すこととし、さらに 各符号に続けて異なる枝番を付して互いを区別することとする。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Here, the same reference numerals are assigned to a plurality of configurations having similar functions, and Each code is followed by a different branch number to distinguish each other.
[0018] 図 5は、本発明の一実施の形態に係る MIMOシステムの主要な構成を示す図であ る。  FIG. 5 is a diagram showing a main configuration of the MIMO system according to one embodiment of the present invention.
[0019] 本実施の形態に係る MIMOシステムは、通常、基地局装置 100と、移動局である 複数 (ここでは N個)のユーザ端末装置 (通信端末装置) 200— 1〜200— Nとを備え る。  [0019] The MIMO system according to the present embodiment normally includes a base station device 100 and a plurality (N in this case) of user terminal devices (communication terminal devices) 200-1 to 200-N which are mobile stations. Prepare.
[0020] 基地局装置 100は、各ユーザのデータを格納したメモリ等のデータ源 101、適応変 調部 102—1〜102— N、プレコーディング部 103— 1〜103— N、および送信アン テナ 104— 1〜104— Nを備える。適応変調部 102— 1〜102— N、プレコ一ディン グ部 103— 1〜103— N、および送信アンテナ 104— 1〜104— Nは、 N個のユーザ 端末装置に対応して N個存在する。  [0020] Base station apparatus 100 includes a data source 101 such as a memory storing data of each user, adaptive modulation units 102-1 to 102-N, precoding units 103-1 to 103-N, and a transmission antenna. 104—1 to 104—N. There are N adaptive modulation sections 102—1 to 102—N, precoding sections 103—1 to 103—N, and transmission antennas 104—1 to 104—N corresponding to N user terminal devices. .
[0021] ユーザ端末装置 200— 1は、受信アンテナ 201— 1、チャネル Z雑音推定部 202 —1、および復調部 203— 1を備える。同様に、ユーザ端末装置 200— Nも、受信ァ ンテナ 201— N、チャネル Z雑音推定部 202— N、および復調部 203— Nを備える。  The user terminal device 200-1 includes a reception antenna 201-1, a channel Z noise estimation unit 202-1, and a demodulation unit 203-1. Similarly, the user terminal device 200-N also includes a reception antenna 201-N, a channel Z noise estimation unit 202-N, and a demodulation unit 203-N.
[0022] なお、各ユーザ端末装置の構成は同様であるため、基本的に枝番を省略したユー ザ端末装置 200という総称を以下用いることとする。また、ユーザ端末装置 200内の 構成についても枝番を省略した総称を用いることとする。  [0022] Since the configuration of each user terminal device is the same, the generic term user terminal device 200 with the branch number omitted is basically used below. Further, the generic name in which the branch number is omitted is also used for the configuration in the user terminal device 200.
[0023] さらに、基地局装置 100内の構成においても、同様の構成に対しては、枝番を省略 した総称を用いることとする。  [0023] Furthermore, in the configuration within base station apparatus 100, a generic term in which branch numbers are omitted is used for the same configuration.
[0024] まず、ユーザ端末装置 200内の各部の機能について説明する。  First, the function of each unit in the user terminal device 200 will be described.
[0025] 受信アンテナ 201は、基地局装置 100からの信号を受信する。チャネル Z雑音推 定部 202は、この受信信号に含まれるパイロットを用いてチャネル推定を施し、得ら れるチャネル推定値に基づ ヽて回線変動補償を行 ヽ、補償後の信号を復調部 203 へ出力する。復調部 203は、チャネル Z雑音推定部 202から出力された信号カも受 信データの復調を行う。得られる復調データは他の構成(図示せず)へ出力される。 また、チャネル Z雑音推定部 202は、チャネル推定値と併せて、受信信号の雑音電 力も推定し、フィードバックチャネル CH1等を介して、これらの情報 (チャネル推定値 力もなるチャネル行列、雑音電力)を基地局装置 100にフィードバックする。以上の データ受信およびフィードバックの処理は繰り返して行われる。 The reception antenna 201 receives a signal from the base station apparatus 100. The channel Z noise estimation unit 202 performs channel estimation using the pilot included in the received signal, performs line fluctuation compensation based on the obtained channel estimation value, and demodulates the signal after compensation. Output to. Demodulation section 203 also demodulates the received data from the signal output from channel Z noise estimation section 202. The obtained demodulated data is output to another configuration (not shown). The channel Z noise estimator 202 also estimates the noise power of the received signal along with the channel estimation value, and sends this information (channel matrix and noise power that also includes the channel estimation value power) via the feedback channel CH1 and the like. Feedback to base station apparatus 100. More than Data reception and feedback processing are repeated.
[0026] 次に、基地局装置 100内の各部の機能について説明する。  Next, functions of each unit in base station apparatus 100 will be described.
[0027] 基地局装置 100は、ユーザ端末装置 200— 1〜200—N力もフィードバックチヤネ ル CH1〜CHNを介してそれぞれ通知されるフィードバック情報に基づ!/、て、チヤネ ル行列 Hおよび雑音電力を取得することができる。  [0027] Base station apparatus 100 uses user terminal apparatuses 200-1 to 200-N based on feedback information respectively notified via feedback channels CH1 to CHN! /, Channel matrix H and noise. Electric power can be acquired.
[0028] 適応変調部 102は、フィードバックされたチャネル行列 Hおよび雑音電力に基づ ヽ て、後述の方法に従って、ユーザ端末装置 200の適応変調のフォーマットを決定す ると共に、ユーザ端末装置 200の送信電力を決定する。また、適応変調部 102は、 ユーザ端末装置 200の変調方式および送信電力を決定すると、データ源 101からュ 一ザ端末装置 200に送信するデータを取得し、このデータを変調した後、プレコーデ イング部 103へ出力する。プレコーディング部 103は、後述の方法に従って、最終的 に決定した変調方式および送信電力に応じて、ユーザ端末装置 200宛てのデータ を送信アンテナ 104を介して送信する。  [0028] Based on the fed back channel matrix H and noise power, adaptive modulation section 102 determines the format of adaptive modulation of user terminal apparatus 200 according to the method described later, and transmits transmission of user terminal apparatus 200. Determine the power. Further, when the modulation method and transmission power of the user terminal device 200 are determined, the adaptive modulation unit 102 acquires data to be transmitted from the data source 101 to the user terminal device 200, modulates this data, and then performs a precoding unit. Output to 103. Precoding section 103 transmits data addressed to user terminal apparatus 200 via transmission antenna 104 according to the modulation scheme and transmission power finally determined according to the method described later.
[0029] 図 6は、本実施の形態に係るマルチユーザ 'プレコーディングに基づく適応変調方 法の手順を示すフロー図である。  FIG. 6 is a flowchart showing a procedure of an adaptive modulation method based on multi-user precoding according to the present embodiment.
[0030] ステップ ST3010において、基地局装置 100は、ユーザ端末装置 200のチャネル 行列を取得する。時分割多重 (TDD)システムについては、上り回線と下り回線の対 称性により、チャネル行列は上り回線に対する推定によって得られたチャネル行列を 下り回線のプレコーディングに直接用いることができる。周波数分割多重 (FDD)シス テムについては、ユーザ端末装置 200がチャネル情報を基地局装置 100にフィード ノ ックする必要がある。さらに、ユーザ端末装置 200のチャネル Z雑音推定部 202は 、受信した信号の雑音電力を推定し、それをフィードバックチャネル CH1等を介して 基地局装置 100に通知する。このようにして、基地局装置 100は、ユーザ端末装置 2 00のチャネル行列 Hおよび雑音電力を取得する。  [0030] In step ST3010, base station apparatus 100 acquires the channel matrix of user terminal apparatus 200. For time division multiplexing (TDD) systems, the channel matrix obtained by estimating the uplink can be used directly for downlink precoding due to the uplink and downlink symmetry. For the frequency division multiplexing (FDD) system, the user terminal device 200 needs to feed-knock channel information to the base station device 100. Further, the channel Z noise estimation unit 202 of the user terminal device 200 estimates the noise power of the received signal, and notifies the base station device 100 of the estimated noise power via the feedback channel CH1 and the like. In this way, base station apparatus 100 acquires channel matrix H and noise power of user terminal apparatus 200.
[0031] ステップ ST3020において、基地局装置 100は、所定のプレコーディング法に従つ て、チャネル行列 Hおよびユーザ端末装置 200の雑音電力に基づいて、各ユーザの 等価信号対雑音比 (等価 SNR)を計算する。例えば、プレコーディング法として逆チ ャネル 'プレコーディング方法を使用する場合、プレコーディングを施す前の送信シ ンボルを d、プレコーディングを施した後の送信シンボルを sとすると、以下の式(7)の ようになる。 [0031] In step ST3020, base station apparatus 100, based on channel matrix H and noise power of user terminal apparatus 200, performs an equivalent signal-to-noise ratio (equivalent SNR) of each user according to a predetermined precoding method. Calculate For example, if the reverse channel precoding method is used as the precoding method, the transmission channel before precoding is applied. If the symbol is d and the transmission symbol after precoding is s, the following equation (7) is obtained.
[数 7] s=H~ld ( 7 ) プレコーディング前の送信シンボル dが既に正規ィ匕されていると仮定すると、以下の 式 (8)の関係が存在する。 [Equation 7] s = H ~ l d (7) Assuming that the transmission symbol d before precoding has already been properly normalized, the following relationship (8) exists.
[数 8] [Equation 8]
E(ddH)^I … ( 8 ) 式(8)に基づ 、て、以下の式(9)が得られる。 E (dd H ) ^ I (8) Based on the equation (8), the following equation (9) is obtained.
[数 9] [Equation 9]
E{ssH)^H-xH-H … ( 9 ) 式(8)には、 i本目のアンテナの平均送信電力は 1から H の第 i行の 2—ノルムの 平方となり、これは送信電力の上昇に相当する、ということが示されている。 i番目のュ 一ザの雑音電力を σ Η_1の第 i行の 2—ノルムの平方を ^と仮定すると、下の式( 10)によって i番目のユーザの等価信号対雑音比を計算することができる。 E (ss H ) ^ H- x H- H (9) In Equation (8), the average transmit power of the i-th antenna is the square of the 2-norm of the i-th row from 1 to H. It is shown that this corresponds to an increase in power. Assuming that the noise power of the i-th user is the 2-norm square of the i-th row of σ Η _1 , calculate the equivalent signal-to-noise ratio of the i-th user by the following equation (10) Can do.
[数 10] [Equation 10]
Figure imgf000010_0001
各ユーザの等価信号対雑音比が決定されると、フローはステップ ST3030に進み、 各ユーザの等価信号対雑音比に応じて、可能となる変調方式を決定し、適応変調の ノ メータテーブルを形成する。通常は、例えば、信号対雑音比が 5dB未満の場合 には変調方式として QPSKを選択し、信号対雑音比が 5dB以上 lOdB未満の場合に は 8PSKを選択し、信号対雑音比が lOdB以上の場合には 16QAMを選択する、と いうように信号対雑音比に応じて異なる変調方式を選択することが可能である。変調 方式が決定すると、送信電力等、各変調方式に対してそれぞれ対応のパラメータテ 一ブルが存在する。
Figure imgf000010_0001
When the equivalent signal-to-noise ratio for each user is determined, the flow proceeds to step ST3030, where possible modulation schemes are determined according to each user's equivalent signal-to-noise ratio, and an adaptive modulation meter table is formed. To do. Usually, for example, when the signal-to-noise ratio is less than 5 dB QPSK is selected as the modulation method, 8PSK is selected when the signal-to-noise ratio is 5 dB or more and less than lOdB, and 16QAM is selected when the signal-to-noise ratio is 10 dB or more. Different modulation schemes can be selected depending on the noise ratio. When the modulation method is determined, there is a parameter table corresponding to each modulation method such as transmission power.
[0033] 続!、て、ステップ ST3040にお!/、て、基地局装置 100で各ユーザの等価信号対雑 音比を取得した後に、プレコーディングの干渉除去という特徴に基づいて、注水 (Wa ter Filling)定理により各ユーザ端末装置 200の電力配分値を決定する。  [0033] Next, in step ST3040, after obtaining the equivalent signal-to-noise ratio of each user in the base station apparatus 100, the water injection (Wa ter Filling) theorem determines the power distribution value of each user terminal device 200.
[0034] 注水定理とは、 n個の独立したパラレルチャネルに対して、各ユーザに電力を配分 することにより最大のチャネル容量を得る方法である。例えば、合計電力が下記の式 (11)により制限されているとする。  The water injection theorem is a method for obtaining the maximum channel capacity by allocating power to each user for n independent parallel channels. For example, assume that the total power is limited by the following equation (11).
[数 11]  [Equation 11]
Figure imgf000011_0001
かかる場合、各チャネルの利得 ^を、各チャネルの雑音電力を σ 2とすると、各チヤ ネルの信号対雑音比は以下の式( 12)で表される。
Figure imgf000011_0001
In this case, if the gain ^ of each channel is σ 2 and the noise power of each channel is σ 2 , the signal-to-noise ratio of each channel is expressed by the following equation (12).
[数 12]  [Equation 12]
Figure imgf000011_0002
Figure imgf000011_0002
よって、そのチャネル容量は、下記の式(13)で表される。  Therefore, the channel capacity is expressed by the following equation (13).
¾13]  ¾13]
C ... ( 1 3 )
Figure imgf000011_0003
ここで、ラグランジュ乗数法に基づき、以下の式(14)で表される補助関数を導入す る。
C ... (1 3)
Figure imgf000011_0003
Here, based on the Lagrange multiplier method, an auxiliary function expressed by the following equation (14) is introduced.
[数 14]
Figure imgf000012_0001
式(14)において、 Lはラグランジュ乗数である。そして、偏導関数を下記の式(15) とする。
[Equation 14]
Figure imgf000012_0001
In Equation (14), L is a Lagrange multiplier. And let the partial derivative be the following formula (15).
[数 15]
Figure imgf000012_0002
すると、式(16)で表される を取得することができる。
[Equation 15]
Figure imgf000012_0002
Then, it is possible to obtain the following expression (16).
[数 16] = w— … ( 1 6 ) [Equation 16] = w —… (1 6)
λ 式(16)において、 uは常数であり、その値は下記の式(17)に示す値である。  λ In equation (16), u is a constant, and its value is the value shown in equation (17) below.
[数 17][Equation 17]
Figure imgf000012_0003
また、 Ρは電力の制約条件である式(10)を満たし、かつ Ρは 0以上である。
Figure imgf000012_0003
Also, 満 た し satisfies Eq. (10), which is a power constraint, and Ρ is 0 or more.
実際には、プレコーディングは線形変換を経るため、各ユーザの受信時には、干渉 は完全に除去される。そのため、 MIMO受信装置 (ユーザ)から考えれば、パラレル でチャネル間干渉のないチャネルである。注水定理によれば、信号対雑音比の高い チャネルは、より大きな容量を得るために、より高い電力を配分されるはずである。従 つて、注水定理によって各ユーザの等価信号対雑音比に基づいて電力を配分する ことが可能である。合計送信電力が N X P、即ちアンテナ数力 で、各送信アンテナ の平均送信電力が Pであれば、 i番目のユーザへの電力の配分は下記の式(18)の 通りである。 In practice, precoding goes through a linear transformation, so when receiving each user, Is completely removed. Therefore, from the viewpoint of the MIMO receiver (user), it is a parallel channel with no interchannel interference. According to the water injection theorem, a channel with a high signal-to-noise ratio should be allocated higher power to obtain greater capacity. Therefore, it is possible to allocate power based on the equivalent signal-to-noise ratio of each user by the water injection theorem. If the total transmission power is NXP, that is, the number of antennas, and the average transmission power of each transmission antenna is P, the distribution of power to the i-th user is as shown in Equation (18) below.
[数 18]  [Equation 18]
P ) … ( 1 8 )P)… (1 8)
Figure imgf000013_0001
式(18)において、 SNRは i番目のユーザの等価信号対雑音比であり、 x+を x+ = max(x, 0)と定義すると、 λは以下の式(19)を満たす。
Figure imgf000013_0001
In equation (18), SNR is the equivalent signal-to-noise ratio of the i-th user. If x + is defined as x + = max (x, 0), λ satisfies the following equation (19).
[数 19]  [Equation 19]
Figure imgf000013_0002
Figure imgf000013_0002
[0036] ステップ ST3050において、各ユーザの雑音電力が既知であるから、この場合、上 述の電力配分値に基づ!、て、各ユーザの新たな信号対雑音比 SNR'を計算する。 そして、この SNR'に基づいて、適応変調パラメータテーブル力 必要な変調方式を 選択して取得する。そして、信号対雑音比の原則に基づいた方法、または同様の方 法によって、同一の変調方式に対してあらためて電力を配分する。 [0036] In step ST3050, since the noise power of each user is known, in this case, a new signal-to-noise ratio SNR 'for each user is calculated based on the power distribution value described above. Based on this SNR ′, the adaptive modulation parameter table power is selected and acquired by the required modulation method. Then, the power is redistributed to the same modulation method using a method based on the principle of signal-to-noise ratio or a similar method.
[0037] 例えば、基地局装置 100の送信アンテナ数が Νで、各ユーザ端末が 1つのアンテ ナを有し、ユーザ端末の数も Νであると仮定すると、 Ηは N X Νの行列である。  [0037] For example, assuming that the number of transmission antennas of base station apparatus 100 is Ν, each user terminal has one antenna, and the number of user terminals is also Ν, Η is a matrix of N X Ν.
[0038] 変調方式が決定すると、同一の変調方式を一組として、あらためて電力を配分する 。例えば、 k個のユーザがいずれも 16QAMであり、これらのユーザに配分する電力 をそれぞれ P(l)、 P(2)、 ···、 P(k)とする。これら 16個のユーザの近似信号対雑音 比はいずれも 16QAMを用いる下限を満たしている。電力配分の過程において、信 号対雑音比の高いユーザほど、より高い電力を配分され、達成し得る容量もより大き くなる。しかし、適応変調においては、選択可能な変調方式は数種類のみである。さ らに、同種の変調方式の集合においては、配分される電力 P(l)、 P(2)、 ···、 P(k)も また異なり、信号対雑音比が高いほど配分される電力も高い。このように、あるユーザ の性能は良好な (配分された電力が高!、)状態である一方、あるユーザの性能は劣 悪な (配分された電力が相対的に低い)状態であるという状況が生じ、性能の不均衡 を招く。従って、同種の変調方式の集合内で、この集合の合計電力をあらためて配 分する。その際、以下に述べる等信号対雑音比の原則に従うものとする。 [0038] When the modulation scheme is determined, power is allocated again with the same modulation scheme as a set. . For example, k users are all 16QAM, and the power distributed to these users is P (l), P (2),..., P (k), respectively. The approximate signal-to-noise ratios of these 16 users all satisfy the lower limit using 16QAM. In the process of power allocation, users with higher signal-to-noise ratios are allocated higher power and have a greater achievable capacity. However, in adaptive modulation, there are only a few types of modulation schemes that can be selected. Furthermore, in a set of modulation schemes of the same type, the allocated power P (l), P (2), ..., P (k) is also different, and the higher the signal-to-noise ratio, the more allocated power Is also expensive. In this way, the performance of a certain user is good (the allocated power is high!), While the performance of a certain user is poor (the allocated power is relatively low). This leads to performance imbalance. Therefore, the total power of this set is redistributed within a set of similar modulation schemes. In doing so, it shall follow the principle of equal signal-to-noise ratio described below.
等信号対雑音比の原則とは、以下の通りである。同一の変調方式に該当する k個 のユーザの合計配分電力が以下の式(20)で表されるものとする。  The principle of the equal signal to noise ratio is as follows. Assume that the total allocated power of k users corresponding to the same modulation method is expressed by the following equation (20).
[数 20] [Equation 20]
PM-QAM = P( … ( 2 0 ) PM- Q AM = P (… (2 0)
等信号対雑音比の原則とは、あらためて配分する P(i) 'が、以下の式 (21)の条件 を満たすことである。 The principle of equal signal-to-noise ratio is that P (i) 'newly allocated satisfies the condition of the following equation (21).
[数 21] 尸 尸 (2)'— _尸 ( ) ' ... [Equation 21] 尸 尸 ( 2 ) '— _ 尸 ()' ...
2 2 ? ( 2 1 ) び び 2 l twenty two ? (2 1) and 2 l
すなわち、式(21)において、以下の式(22)の関係が満たされる。  That is, in the equation (21), the relationship of the following equation (22) is satisfied.
[数 22]
Figure imgf000015_0001
これは、適応変調と電力制御との結合とみなすことができる。適応変調とは、注水定 理により信号対雑音比の高いユーザにより多くのビットを割り当てることである。しかし 、変調方式が決定されると、同一の変調方式のユーザにおいて電力は公平に配分さ れる。このように、同一の変調方式において、各ユーザの受信信号対雑音比は基本 的に一致し、全体の誤り耐性を向上させ、人為的な「遠近効果」の発生を避けること ができる。
[Number 22]
Figure imgf000015_0001
This can be viewed as a combination of adaptive modulation and power control. Adaptive modulation means assigning more bits to users with a high signal-to-noise ratio by the water injection theorem. However, once the modulation scheme is determined, power is distributed fairly among users of the same modulation scheme. In this way, in the same modulation system, the received signal-to-noise ratio of each user is basically the same, improving the overall error resilience and avoiding the occurrence of artificial “far-far effects”.
[0040] ステップ ST3060にお 、て、各ユーザの変調方式および電力配分値を取得した後 、マルチユーザ'プレコーディング方法によってプレコーディングを行う。この場合の プレコーディング法としては、逆チャネル'プレコーディング法、 Tomlinson- Harashima マルチユーザ MIMOプレコーディング法、 lattice reductionに基づくプレコーディング 法、 AMCプレコーディング法等を用いることが可能である。  [0040] In step ST3060, after obtaining the modulation scheme and power distribution value of each user, precoding is performed by the multiuser precoding method. In this case, as the precoding method, the reverse channel precoding method, Tomlinson-Harashima multiuser MIMO precoding method, precoding method based on lattice reduction, AMC precoding method, or the like can be used.
[0041] 最後に、ステップ ST3070において、電力配分値および対応する変調方式に基づ V、て、取得したデータをアンテナ 104— 1〜 104— Nから送信する。  [0041] Finally, in step ST3070, the acquired data is transmitted from antennas 104-1 to 104-N based on the power distribution value and the corresponding modulation scheme V.
[0042] 図 7は、 M— QAM変調方式、特に 16QAMの場合のコンステレーシヨンを示す図 である。 FIG. 7 is a diagram showing constellation in the case of the M-QAM modulation scheme, particularly 16QAM.
[0043] 図 8および図 9は、シミュレーション結果を示す図である。このシミュレーションにお いて、基地局装置 100のアンテナ数は 4、ユーザ端末数も 4、各ユーザ端末は 1本の アンテナを使用して 、ることを条件とした。 FIG. 8 and FIG. 9 are diagrams showing simulation results. In this simulation, the base station apparatus 100 has four antennas, four user terminals, and each user terminal uses one antenna.
[0044] 図 8は、各プレコーディング法の性能比較を示す図である。ここでは、 16QAM、 4  FIG. 8 is a diagram showing a performance comparison between the respective precoding methods. Here, 16QAM, 4
X 4アンテナの場合を例にとっている。逆チャネル(ZF)法と、 Tomlinson-Harashima プレコーディング(THP)法と、 lattice reduction (LR)法との比較を示している。この 図から明らかなように、 Lattice reductionプレコーディング法が他の 2つよりも優れて いる。  Take X 4 antenna as an example. A comparison of the inverse channel (ZF) method, the Tomlinson-Harashima precoding (THP) method, and the lattice reduction (LR) method is shown. As is clear from this figure, the Lattice reduction precoding method is superior to the other two.
[0045] 図 9は、スループットが 12ビット、すなわち各ユーザの平均が 3ビットである場合の適 応変調の有無による各プレコーディング法の性能比較を示しており、図 9の中におい て、横軸 SNRはプレコーディングの平均送信電力と MIMO受信装置の平均雑音電 力との比を表している。図 9は、適応変調なしで 8PSKを使用している条件下におい て、 ZF性能、 ZF— AM性能、および LR— AM性能の比較を示している。ここで、 ZF AM性能のプロットは、本発明の適応変調を用いた場合の性能、すなわち変調方 式は 16QAMもしくは QPSKの中力も選択し、ユーザ数は 4で総ビット数は 12である 場合の性能を示し、 LR— AM性能のプロットは、本発明の適応変調および Lattice re ductionプレコーディング法を用いた場合の性能を示して!/、る。この図から明らかなよ うに、本発明の適応変調を用いると、性能は大幅に向上する。 [0045] Fig. 9 shows the performance comparison of each precoding method with and without adaptive modulation when the throughput is 12 bits, that is, the average of each user is 3 bits. The horizontal SNR represents the ratio between the average transmission power of precoding and the average noise power of the MIMO receiver. Figure 9 shows a comparison of ZF performance, ZF-AM performance, and LR-AM performance under conditions using 8PSK without adaptive modulation. Here, the ZF AM performance plot shows the performance when using the adaptive modulation of the present invention, that is, the modulation method also selects the medium power of 16QAM or QPSK, the number of users is 4, and the total number of bits is 12. The performance and LR-AM performance plots show the performance with the adaptive modulation and lattice reduction precoding method of the present invention! /. As is apparent from this figure, the performance is greatly improved when the adaptive modulation of the present invention is used.
[0046] 以上、本発明の実施の形態について説明した。 [0046] The embodiments of the present invention have been described above.
[0047] なお、上に述べたものは本発明の具体的な実施の形態の一例に過ぎな 、。本発明 の保護範囲はこれに限定されず、当該技術に精通したいかなる技術者が本発明に 開示された技術範囲の中で容易に想到しうる変更や置換も、全て本発明の範囲に含 まれるものである。すなわち、本発明に係るマルチユーザ'プレコーディングに基づく 適応変調方法および MIMO送信装置は、上記実施の形態に限定されず、種々変更 して実施することが可能である。  Note that what has been described above is merely an example of a specific embodiment of the present invention. The scope of protection of the present invention is not limited to this, and all modifications and substitutions easily conceivable within the technical scope disclosed in the present invention by any person skilled in the art are also included in the scope of the present invention. It is what That is, the adaptive modulation method and MIMO transmission apparatus based on multi-user precoding according to the present invention are not limited to the above embodiments, and can be implemented with various modifications.
[0048] また、本発明に係る MIMO送信装置は、移動体通信システムにおける通信端末装 置および基地局装置に搭載することが可能であり、これにより上記と同様の作用効果 を有する通信端末装置、基地局装置、および移動体通信システムを提供することが できる。  [0048] Also, the MIMO transmission apparatus according to the present invention can be mounted on a communication terminal apparatus and a base station apparatus in a mobile communication system, and thereby a communication terminal apparatus having the same operational effects as described above, A base station apparatus and a mobile communication system can be provided.
[0049] また、ここでは、本発明をノヽードウエアで構成する場合を例にとって説明した力 本 発明をソフトウェアで実現することも可能である。例えば、本発明に係るマルチユーザ .プレコーディングに基づく適応変調方法のアルゴリズムをプログラミング言語によつ て記述し、このプログラムをメモリに記憶しておいて情報処理手段によって実行させる ことにより、本発明に係る MIMO送信装置と同様の機能を実現することができる。  [0049] Here, the power described with reference to an example in which the present invention is configured by nodeware can also be realized by software. For example, the algorithm of the adaptive modulation method based on multi-user precoding according to the present invention is described in a programming language, and the program is stored in a memory and executed by an information processing means. The same function as that of the MIMO transmission apparatus can be realized.
[0050] 本明細書は、 2005年 3月 16日出願の中国特許出願第 200510056303. 6号に 基づく。この内容はすべてここに含めておく。 [0050] This specification is based on Chinese Patent Application No. 200510056303.6 filed on Mar. 16, 2005. All this content is included here.
産業上の利用可能性  Industrial applicability
[0051] 本発明に係るマルチユーザ *プレコーディングに基づく適応変調方法および MIM o送信装置は、移動体通信システムにおける通信端末装置、基地局装置等の用途 に適用することができる。 [0051] Adaptive modulation method and MIM based on multi-user * precoding according to the present invention o The transmission device can be applied to applications such as communication terminal devices and base station devices in mobile communication systems.

Claims

請求の範囲 The scope of the claims
[1] 各通信端末のチャネル行列および雑音電力を取得するステップと、  [1] obtaining a channel matrix and noise power of each communication terminal;
前記チャネル行列、前記雑音電力、および所定のプレコーディング方法を用いて、 各通信端末の等価信号対雑音比を計算するステップと、  Calculating an equivalent signal-to-noise ratio of each communication terminal using the channel matrix, the noise power, and a predetermined precoding method;
前記等価信号対雑音比を用いて適応変調パラメータテーブルを決定するステップ と、  Determining an adaptive modulation parameter table using the equivalent signal-to-noise ratio;
前記等価信号対雑音比に基づいて、注水定理に従って各通信端末の電力配分値 を決定するステップと、  Determining a power distribution value of each communication terminal according to the water injection theorem based on the equivalent signal-to-noise ratio;
前記雑音電力および前記電力配分値を用いて各通信端末の信号対雑音比を計 算し、この信号対雑音比に基づいて、前記適応変調パラメータテーブル力 各通信 端末に対する変調方式を決定するステップと、  Calculating a signal-to-noise ratio of each communication terminal using the noise power and the power distribution value, and determining a modulation scheme for each communication terminal based on the signal-to-noise ratio; ,
信号対雑音比と同じ方式に従って、同一の変調方式を使用する通信端末に対して 改めて電力を配分し、各通信端末の最終的な配分電力を取得するステップと、 前記最終的な配分電力および前記変調方式に基づ!/、て、各通信端末宛てのデー タを送信するステップと、  In accordance with the same method as the signal-to-noise ratio, a step of allocating power again to communication terminals using the same modulation method to obtain a final distribution power of each communication terminal; and Based on the modulation method! /, Transmitting data addressed to each communication terminal,
を具備するマルチユーザ'プレコーディングに基づく適応変調方法。  An adaptive modulation method based on multi-user precoding comprising:
[2] 時分割多重方式においては、上り回線と下り回線の対称性に基づいて前記チヤネ ル行列を取得する、  [2] In time division multiplexing, the channel matrix is obtained based on the symmetry of the uplink and downlink.
請求項 1記載のマルチユーザ'プレコーディングに基づく適応変調方法。  The adaptive modulation method based on multi-user precoding according to claim 1.
[3] 周波数分割多重方式においては、各通信端末力ものフィードバック情報に基づい て前記チャネル行列を取得する、 [3] In the frequency division multiplexing method, the channel matrix is acquired based on feedback information of each communication terminal.
請求項 1記載のマルチユーザ'プレコーディングに基づく適応変調方法。  The adaptive modulation method based on multi-user precoding according to claim 1.
[4] 前記所定のプレコーディング方法は逆チャネルプレコーディング方法であり、各通 信端末の等価信号対雑音比を次式(1)に従って計算する、 [4] The predetermined precoding method is an inverse channel precoding method, and an equivalent signal-to-noise ratio of each communication terminal is calculated according to the following equation (1).
請求項 1記載のマルチユーザ'プレコーディングに基づく適応変調方法。  The adaptive modulation method based on multi-user precoding according to claim 1.
[数 1]
Figure imgf000019_0001
ただし、
[Number 1]
Figure imgf000019_0001
However,
σ ^ : i番目の通信端末の雑音電力  σ ^: Noise power of i-th communication terminal
β :チャネル行列の逆行列 Η_ 1の第 i行の 2—ノルムの平方 β: inverse matrix of channel matrix 2 _ 1 row i 2-norm square
[5] 前記注水定理は、 n個の独立パラレルチャネルに対して、各通信端末に電力を配 分することにより最大のチャネル容量を得る、 [5] The water injection theorem obtains the maximum channel capacity by distributing power to each communication terminal for n independent parallel channels.
請求項 1記載のマルチユーザ'プレコーディングに基づく適応変調方法。  The adaptive modulation method based on multi-user precoding according to claim 1.
[6] 前記同一の変調方式を使用する通信端末に対して、この同一の変調方式の k個の 通信端末の合計配分電力を次式 (2)とした場合に、改めて配分する P(i)'が次式 (3) の条件、かつ次式 (4)を満たすように改めて電力を配分する、 [6] For communication terminals using the same modulation scheme, when the total allocated power of k communication terminals of the same modulation scheme is expressed by the following equation (2), P (i) Distribute power again so that 'satisfies the condition of the following equation (3) and the following equation (4):
請求項 1記載のマルチユーザ'プレコーディングに基づく適応変調方法。  The adaptive modulation method based on multi-user precoding according to claim 1.
[数 2]  [Equation 2]
Figure imgf000019_0002
Figure imgf000019_0002
[数 3] [Equation 3]
Figure imgf000019_0003
Figure imgf000019_0003
[数 4]
Figure imgf000020_0001
前記変調方式は、 16QAM、 8PSK、または QPSKの少なくとも 1つを含む、 請求項 1記載のマルチユーザ'プレコーディングに基づく適応変調方法。
[Equation 4]
Figure imgf000020_0001
The adaptive modulation method based on multi-user precoding according to claim 1, wherein the modulation scheme includes at least one of 16QAM, 8PSK, or QPSK.
各通信端末のチャネル行列および雑音電力を取得する手段と、  Means for obtaining the channel matrix and noise power of each communication terminal;
前記チャネル行列、前記雑音電力、および所定のプレコーディング方法を用いて、 各通信端末の等価信号対雑音比を計算する手段と、  Means for calculating an equivalent signal-to-noise ratio of each communication terminal using the channel matrix, the noise power, and a predetermined precoding method;
前記等価信号対雑音比を用いて適応変調パラメータテーブルを決定する手段と、 前記等価信号対雑音比に基づいて、注水法に従って各通信端末の電力配分値を 決定する手段と、  Means for determining an adaptive modulation parameter table using the equivalent signal-to-noise ratio; means for determining a power distribution value for each communication terminal according to a water injection method based on the equivalent signal-to-noise ratio;
前記雑音電力および前記電力配分値を用いて各通信端末の信号対雑音比を計 算し、この信号対雑音比に基づいて、前記適応変調パラメータテーブル力 各通信 端末に対する変調方式を決定する手段と、  Means for calculating a signal-to-noise ratio of each communication terminal using the noise power and the power distribution value, and determining a modulation scheme for each communication terminal based on the signal-to-noise ratio; ,
信号対雑音比と同じ方式に従って、同一の変調方式を使用する通信端末に対して 改めて電力を配分し、各通信端末の最終的な配分電力を取得する手段と、  In accordance with the same method as the signal-to-noise ratio, means for allocating power again to communication terminals using the same modulation method, and obtaining the final distribution power of each communication terminal;
前記最終的な配分電力および前記変調方式に基づ!、て、各通信端末宛てのデー タを送信する手段と、  Based on the final allocated power and the modulation method, means for transmitting data addressed to each communication terminal;
を具備する MIMO送信装置。  A MIMO transmitter comprising:
PCT/JP2006/305154 2005-03-16 2006-03-15 Adaptive modulation method based on multi-user pre-coding WO2006098379A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200510056303.6 2005-03-16
CNA2005100563036A CN1835425A (en) 2005-03-16 2005-03-16 Self-adaptive modulation method based on multi-user precode

Publications (1)

Publication Number Publication Date
WO2006098379A1 true WO2006098379A1 (en) 2006-09-21

Family

ID=36991722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305154 WO2006098379A1 (en) 2005-03-16 2006-03-15 Adaptive modulation method based on multi-user pre-coding

Country Status (2)

Country Link
CN (1) CN1835425A (en)
WO (1) WO2006098379A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009253975A (en) * 2008-04-02 2009-10-29 Ntt Docomo Inc Multiple-input and multiple-output precoding method, and apparatus for the method
JP2009278205A (en) * 2008-05-12 2009-11-26 Ntt Docomo Inc Radio communication apparatus and radio communication method
JP2009278204A (en) * 2008-05-12 2009-11-26 Ntt Docomo Inc Radio communication apparatus and radio communication method
JP2010213282A (en) * 2009-03-11 2010-09-24 Hitachi Ltd Fast generalized decision feedback equalizer precoder implementation for multi-user multiple-input multiple-output wireless transmission systems
JP2010252322A (en) * 2009-03-31 2010-11-04 Toshiba Corp Wireless communication method and apparatus
JP2011015399A (en) * 2009-06-30 2011-01-20 Ntt Docomo Inc Apparatus and method for selecting terminal
WO2011018824A1 (en) * 2009-08-12 2011-02-17 株式会社日立製作所 Radio communication system, radio communication device, and radio communication method
JP2011250414A (en) * 2010-05-28 2011-12-08 Fujitsu Ltd Bit and power allocation method, device, and communication system
WO2012066880A1 (en) * 2010-11-18 2012-05-24 シャープ株式会社 Transmission device, communication system, communication method, processor
WO2012121153A1 (en) * 2011-03-04 2012-09-13 シャープ株式会社 Wireless communication system, base station device, and terminal device
CN101494475B (en) * 2008-01-25 2012-10-10 中兴通讯股份有限公司 Power distribution method, transmission and acceptance method and system for multi-input-output system
KR20160025487A (en) * 2014-08-27 2016-03-08 삼성전자주식회사 Signal processing apparatus, method for signal processing and computer readable medium
WO2017154996A1 (en) * 2016-03-11 2017-09-14 株式会社Nttドコモ Base station

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7983352B2 (en) * 2006-09-15 2011-07-19 Futurewei Technologies, Inc. Power allocation in a MIMO system without channel state information feedback
CN101192850B (en) * 2006-11-27 2011-07-06 华为技术有限公司 A dynamic power spectrum management method and spectrum optimization system, and client device
CN101291163B (en) * 2007-04-17 2013-07-10 电信科学技术研究院 Pre-coding method, system and device in time division duplex system
CN101299623B (en) * 2007-04-30 2013-01-02 华为技术有限公司 Power distribution method, system and sending terminal
CN101227218B (en) * 2008-01-29 2011-11-02 华为技术有限公司 Method, apparatus and system for precoding in MIMO
CN101610606B (en) * 2008-06-18 2012-07-11 电信科学技术研究院 Method, system and device for switching antenna modes of TDD system
CN101919182B (en) * 2008-06-20 2013-12-04 上海贝尔股份有限公司 Method and apparatus for collaboratively transmitting signals with other base stations in base station
CN101321005B (en) * 2008-06-26 2012-01-25 华为技术有限公司 Multi-data stream transmission power distribution method and apparatus
CN101662826B (en) * 2009-08-21 2012-01-11 中兴通讯股份有限公司 Method and device for resource optimization of broadband wireless access system
CN102088761B (en) * 2009-12-04 2014-09-03 华为技术有限公司 Method, equipment and system for allocating power
CN102571290B (en) * 2012-02-24 2014-06-18 中国电子科技集团公司第二十研究所 Pre-coding transmitting method based on link self-adaption for multiple input multiple output (MIMO) system
CN105450329B (en) * 2014-05-30 2019-01-08 华为技术有限公司 The code modulating method and device of parallel channel
KR20170097708A (en) * 2014-12-17 2017-08-28 후아웨이 테크놀러지 컴퍼니 리미티드 Precoding information collection method and transmission device
CN114422007B (en) * 2022-03-24 2022-07-01 新华三技术有限公司 Uplink data modulation method and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000358008A (en) * 1999-06-17 2000-12-26 Mitsubishi Electric Corp Apparatus and method for communication
JP2004194262A (en) * 2002-10-18 2004-07-08 Ntt Docomo Inc Signal transmission system, signal transmission method and transmitter
JP2004215254A (en) * 2002-12-26 2004-07-29 Korea Electronics Telecommun Adaptive modulator/demodulator to be applied to multi-input/multi-output system having detector of hierarchical space-time structure, and its method
JP2004266818A (en) * 2003-02-12 2004-09-24 Matsushita Electric Ind Co Ltd Transmission apparatus and wireless communication method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000358008A (en) * 1999-06-17 2000-12-26 Mitsubishi Electric Corp Apparatus and method for communication
JP2004194262A (en) * 2002-10-18 2004-07-08 Ntt Docomo Inc Signal transmission system, signal transmission method and transmitter
JP2004215254A (en) * 2002-12-26 2004-07-29 Korea Electronics Telecommun Adaptive modulator/demodulator to be applied to multi-input/multi-output system having detector of hierarchical space-time structure, and its method
JP2004266818A (en) * 2003-02-12 2004-09-24 Matsushita Electric Ind Co Ltd Transmission apparatus and wireless communication method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMPATH ET AL.: "Linear Precoding for Space-Time Coded Systems With Known Fading Correlations", IEEE COMMUNICATIONS LETTERS, vol. 6, no. 6, June 2002 (2002-06-01), pages 239 - 241, XP001133254 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101494475B (en) * 2008-01-25 2012-10-10 中兴通讯股份有限公司 Power distribution method, transmission and acceptance method and system for multi-input-output system
JP2009253975A (en) * 2008-04-02 2009-10-29 Ntt Docomo Inc Multiple-input and multiple-output precoding method, and apparatus for the method
JP2009278205A (en) * 2008-05-12 2009-11-26 Ntt Docomo Inc Radio communication apparatus and radio communication method
JP2009278204A (en) * 2008-05-12 2009-11-26 Ntt Docomo Inc Radio communication apparatus and radio communication method
US8385861B2 (en) 2008-05-12 2013-02-26 Ntt Docomo, Inc. Radio communication apparatus and radio communication method
JP2010213282A (en) * 2009-03-11 2010-09-24 Hitachi Ltd Fast generalized decision feedback equalizer precoder implementation for multi-user multiple-input multiple-output wireless transmission systems
JP2014158277A (en) * 2009-03-11 2014-08-28 Hitachi Ltd Fast generalized decision feedback equalizer precoder implementation for multi-user multiple-input multiple-output wireless transmission system
JP2010252322A (en) * 2009-03-31 2010-11-04 Toshiba Corp Wireless communication method and apparatus
JP2011015399A (en) * 2009-06-30 2011-01-20 Ntt Docomo Inc Apparatus and method for selecting terminal
US8824398B2 (en) 2009-08-12 2014-09-02 Hitachi, Ltd. Radio communication system, radio communication device, and radio communication method
JP5444353B2 (en) * 2009-08-12 2014-03-19 株式会社日立製作所 Wireless communication system, base station, and wireless communication method
WO2011018824A1 (en) * 2009-08-12 2011-02-17 株式会社日立製作所 Radio communication system, radio communication device, and radio communication method
JP2011250414A (en) * 2010-05-28 2011-12-08 Fujitsu Ltd Bit and power allocation method, device, and communication system
JP2012109858A (en) * 2010-11-18 2012-06-07 Sharp Corp Transmitter, communication system, communication method, and processor
WO2012066880A1 (en) * 2010-11-18 2012-05-24 シャープ株式会社 Transmission device, communication system, communication method, processor
WO2012121153A1 (en) * 2011-03-04 2012-09-13 シャープ株式会社 Wireless communication system, base station device, and terminal device
US9130629B2 (en) 2011-03-04 2015-09-08 Sharp Kabushiki Kaisha Wireless communication system, base station device, and terminal device
KR20160025487A (en) * 2014-08-27 2016-03-08 삼성전자주식회사 Signal processing apparatus, method for signal processing and computer readable medium
JP2016048826A (en) * 2014-08-27 2016-04-07 三星電子株式会社Samsung Electronics Co.,Ltd. Signal processing device, signal processing method, and program
KR102393822B1 (en) 2014-08-27 2022-05-04 삼성전자주식회사 Signal processing apparatus, method for signal processing and computer readable medium
WO2017154996A1 (en) * 2016-03-11 2017-09-14 株式会社Nttドコモ Base station
US10637543B2 (en) 2016-03-11 2020-04-28 Ntt Docomo, Inc. Base station

Also Published As

Publication number Publication date
CN1835425A (en) 2006-09-20

Similar Documents

Publication Publication Date Title
WO2006098379A1 (en) Adaptive modulation method based on multi-user pre-coding
CN101288244B (en) Apparatus and method for transmitting/receiving data in multi-user multi-antenna communication system
JP4604798B2 (en) Wireless communication system, wireless communication apparatus, wireless communication method, and computer program
KR101231357B1 (en) Channel status information feedback method and data transmission method for multiple antenna system
CN102084602B (en) A method for transmitting channel quality information in a multiple input multiple output system
KR101314423B1 (en) Method and apparatus for implementing space frequency block coding in an orthogonal frequency division multiplexing wireless communication system
KR101782077B1 (en) A method for operating a radio station in a cellular communication network
CN104980197B (en) A kind of method and device for realizing transparent Multi-user mimo transmissions
JP4865536B2 (en) Dynamic spatial frequency division multiplexing communication system and method
US20070253507A1 (en) Self-adaptive MIMO transmission/reception system and method
WO2010067419A1 (en) Wireless communication system and wireless communication method
CN103312390B (en) Based on the method for precoding of interference alignment, emitter and equipment
JP2004194262A (en) Signal transmission system, signal transmission method and transmitter
CN105745893B (en) Large-scale fading coefficient estimation method and mobile station in wireless a large amount of mimo systems
JP2010525736A (en) Multiple-input multiple-output communication system with reduced feedback
CN106452522A (en) Method for transmitting data over spatial layers and user equipment
JP2008053906A (en) Communication equipment and sir estimation method therefor
JP4658085B2 (en) Adaptive antenna device and modulation method
WO2013149440A1 (en) Multi-antenna power allocation method and device
JP6659413B2 (en) base station
KR101267569B1 (en) Apparatus for transmission in multiple input multiple output system
US8275062B2 (en) User scheduling method in multiple antenna system
JP5139331B2 (en) Multi-antenna communication method with improved channel correlation utilization
KR100731824B1 (en) Method, controller and computer-readable medium for controlling communication resources
EP3393065B1 (en) Wireless communication apparatus and number-of-transmission-streams determination method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06729175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP