WO2006098213A1 - Electrochemical device - Google Patents

Electrochemical device Download PDF

Info

Publication number
WO2006098213A1
WO2006098213A1 PCT/JP2006/304586 JP2006304586W WO2006098213A1 WO 2006098213 A1 WO2006098213 A1 WO 2006098213A1 JP 2006304586 W JP2006304586 W JP 2006304586W WO 2006098213 A1 WO2006098213 A1 WO 2006098213A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive polymer
ionic liquid
electrode
thiophene
electrochemical element
Prior art date
Application number
PCT/JP2006/304586
Other languages
French (fr)
Japanese (ja)
Inventor
Masamitsu Tachibana
Hideo Yamagishi
Mutsuaki Murakami
Hiroyuki Furutani
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to JP2007508091A priority Critical patent/JPWO2006098213A1/en
Publication of WO2006098213A1 publication Critical patent/WO2006098213A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/02Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof using combined reduction-oxidation reactions, e.g. redox arrangement or solion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrochemical device, and more particularly to a redox capacitor using a bipolar conductive polymer doping / de-doping reaction.
  • An electrochemical element is an element using an electrochemical reaction, and includes elements used for energy storage such as a battery, a capacitor, and a fuel cell. In such devices, it has long been considered to use a conductive polymer doping and dedoping reaction. However, doping and dedoping reactions of conductive polymers have a problem of lack of repeated stability and do not occur during repeated reactions. Electrochemical devices based on these principles are a major problem in practical use. There is.
  • An electric double layer capacitor is an electrochemical element for electrical storage that utilizes an electric double layer capacitance generated at the interface between an electrode and an electrolyte when a voltage is applied.
  • the mechanism of storage by this electric double layer capacity is characterized by being able to charge / discharge faster than secondary batteries with electrochemical reaction and having excellent repeated life characteristics.
  • the electric double layer capacitor has the disadvantage that its energy density is much lower than that of the secondary battery. Since the electric double layer capacity is proportional to the surface area of the electrode, activated carbon having a large surface area is generally used as the electrode. However, even when using an activated carbon electrode with such a large surface area, the energy density of an electric double layer capacitor remains at around 5 WhZkg, and its capacity density is less than that of a secondary battery.
  • a capacitor using a pseudo capacitance by a conductive polymer has been proposed.
  • the pseudocapacitance is stored with an electron transfer process (Faraday process) at the electrode interface.
  • Faraday process electron transfer process
  • the electric double layer is formed at the interface even in the process in which the pseudo capacity is developed, the electric double layer capacity and the pseudo capacity are developed in parallel, resulting in a large capacity.
  • Such pseudocapacitance is reduced when the conductive polymer is used. It is manifested by a dox reaction, that is, a dope de-dope reaction.
  • Patent Document 1 discloses a capacitor composed of a conductive polymer film.
  • a capacitor using a pseudo-capacitance is an element that can exhibit breakthrough characteristics, but has not been put into practical use due to two major technical problems. .
  • molten salts that are liquid at room temperature have recently been developed and attracting attention. These are referred to as ionic liquids and include quaternary salt cations such as imidazolium pyridinium and appropriate key ions (Br-, A1C1-, BF-, PF-, etc.)
  • Ionic liquids have features such as non-volatility, nonflammability, chemical stability, and high ionic conductivity, and are attracting attention as reusable green solvents used in chemical reactions such as various syntheses and catalytic reactions. Ionic liquids have a large potential window, excellent voltage resistance, and high ion concentration. In addition, since it is flame retardant and does not volatilize, it has excellent safety without worrying about evaporation. For this reason, application of ionic liquids as electrolytes for electric double layer capacitors is being studied.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-104141
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-109875
  • Non-Patent Document 1 Andy Rudge et al., Journal of Power Sources 47, 1994, 89-107 Disclosure of Invention
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a novel electrochemical device having improved repeated stability of doping and dedoping reactions. It is.
  • the electrochemical element of the present invention is characterized by having a bipolar conductive polymer and an electrolyte containing an ionic liquid.
  • the reason why the doping reaction does not occur gradually during repeated doping and dedoping reactions in the electrolyte is that the dedoped dopant diffuses into the electrolyte, and the conductive polymer during doping This is because there is no effective dopant in the vicinity of. Therefore, we first examined the combination of conductive polymer and ion liquid. If the ion component and Z or cation component of the ionic liquid are selected as components that can also be conductive polymer dopants, the dopant should always be present in the vicinity of the conductive polymer.
  • the ionic liquid, the ion component and the Z or cation component constituting the ionic liquid are incorporated as a dopant of the conductive polymer while repeating the doping and dedoping reactions, and the ionic liquid
  • the ionic liquid and the Z or force thione component constituting the ionic liquid and a part of the dopant of the conductive polymer are considered to form an ionic liquid 'conductive polymer composite.
  • 'Conductive polymer composites are considered to contribute to the development of excellent doping stability of repeated undoping reactions.
  • the present inventors have found that a particularly high performance electrochemical device can be realized by using a bipolar polymer among the conductive polymers, and have completed the present invention. That is, the present invention is as follows.
  • the electrochemical device of the present invention is characterized by having a bipolar conductive polymer and an electrolyte containing an ionic liquid.
  • the electrolyte is preferably a mixture of an ionic liquid and an organic solvent.
  • the bipolar conductive polymer further contains an ionic liquid.
  • the ionic liquid used in the present invention is BF-on, PF-on or sulfonic acid.
  • ionic liquids containing Yuon 1-Ethyl 3-methyl imidazolium tetrafluoroborate, 1-Butyl 3-methyl imidazole tetrafluoroborate, 1-Ethyl 3-methyl imidazolium At least one selected from xafluorophosphate, 1-butyl-3-methylimidazole hexafluorophosphate, 1-ethyl-3-methylimidazolium mutosylate, 1-butyl 3-methylimidazolium tosylate More preferred.
  • the bipolar conductive polymer used in the present invention has an electric conductivity of 1000 times or more in the doped state and the undoped state, and the conductivity in the doped state is not less than 0. OlSZcm. Is preferred.
  • the bipolar conductive polymer used in the present invention is preferably a polythiophene derivative, such as poly 3- (4 fluorophenyl) thiophene, poly 3- (4-tert-butylphenol) thiophene, Poly 3— (4 trifluoromethyl phenol) thiophene, Poly 3 mono (2, 4 difluorophenol) thiophene, Poly 3— (2, 3, 4, 5, 6 Pentafluoro oral phenol) thiophene More preferably, it is at least one selected.
  • a polythiophene derivative such as poly 3- (4 fluorophenyl) thiophene, poly 3- (4-tert-butylphenol) thiophene, Poly 3— (4 trifluoromethyl phenol) thiophene, Poly 3 mono (2, 4 difluorophenol) thiophene, Poly 3— (2, 3, 4, 5, 6 Pentafluoro oral phenol) thiophene More preferably, it is at least one selected.
  • the electrochemical device of the present invention includes two electrodes facing each other and an electrolyte containing an ionic liquid sandwiched between the electrodes, and at least the surface of the electrode has a conductive high polarity.
  • the molecule is present so as to contact the electrolyte.
  • the electrochemical element of the present invention is preferably a redox capacitor used as a polar device.
  • FIG. 1 is a diagram schematically showing a configuration of a redox capacitor 1 which is a preferred example of an electrochemical element of the present invention.
  • FIG. 2 is a diagram schematically showing changes in voltage and current during charging / discharging of a system using a bipolar conductive polymer used in the present invention.
  • FIG. 3 is a diagram schematically showing cells used in Examples and Comparative Examples of the present invention.
  • FIG. 4 is a graph showing cyclic voltammetry measured in Comparative Example 1.
  • the bipolar conductive polymer in the present invention is a conductive polymer capable of both P-doping and N-doping (a-on-cation both-doping type conductive polymer).
  • Fig. 2 schematically shows the state of charge and discharge in a system in which a bipolar conductive polymer is used for two electrodes, with current on the vertical axis and voltage on the horizontal axis. The arrows in Fig. 2 indicate the direction of change in voltage and current during discharge.
  • one of the conductive polymers is P-doped (a-
  • the other conductive polymer is N-doped (force thione doped).
  • the voltage of the system after charging is V. Discharge
  • one conductive polymer is de-doped with ions, the other conductive polymer is de-doped with cations, and a doping charge Q is released.
  • both conductive polymers return to the state where they are not doped with cation and cation.
  • a bipolar polymer among conductive polymers it is possible to realize a particularly high-performance electrochemical element in characteristics such as discharge voltage, stored charge, and energy density. it can.
  • bipolar conductive polymer examples include, but are not limited to, various polythiophene derivatives.
  • Suitable as a polythiophene derivative that is a bipolar conductive polymer used in the present invention examples include poly-1- (4-fluorophenyl) thiophene, poly-3- (4-trifluoromethylphenol) thiophene, poly-3- (2,4-difluorophenyl) thiophene, poly-3- ( 2, 3, 4, 5, 6 Pentafluorophenyl) thiophene, at least one selected.
  • polythiophene derivatives having 1 to 4 fluorine atoms per monomer unit are preferable because the N-doped polymer is moderately stabilized.
  • poly-1- (4-fluorophenyl) thiophene, poly-3- (4-t-butylphenol) thiophene, poly-3- (4 trifluoromethylphenol) thiophene, poly-3- (2 , 4-difluorophenyl) thiophene is preferably used.
  • the bipolar conductive polymer used in the present invention can be doped and dedoped with a large amount of dopants, which is preferable from the viewpoint of increasing the capacitance of the electrochemical device.
  • a conductive polymer whose electrical conductivity change due to doping and dedoping is 1000 times or more.
  • the polythiophene derivatives exemplified above can be used without any problem.
  • the change in electrical conductivity due to the above-described doping and dedoping can be known, for example, as follows. That is, SnO glass etc. by electrolytic polymerization
  • a conductive polymer film is formed on the conductive substrate 2 and the produced conductive substrate with the conductive polymer film is used together with a reference electrode (for example, RE5 reference electrode manufactured by BAS Co., Ltd.) and a counter electrode (for example, a platinum plate) as a dopant. Soaked in an electrolyte solution containing ions (for example, propylene carbonate solution of ImolZL tetrachloroammotetrafluoroborate). In this electrolyte solution, a conductive substrate with a conductive polymer film is formed. Doping of molecules Performs sufficient doping of the conductive polymer film by maintaining the potential at a potential for a certain period of time.
  • ions for example, propylene carbonate solution of ImolZL tetrachloroammotetrafluoroborate
  • the conductive substrate with the conductive polymer film is taken out of the solution, and the conductive polymer film is peeled off from the conductive substrate, washed with methanol, and dried.
  • the electrical conductivity of the obtained conductive polymer film in the doped state is measured by a general electrical conductivity measurement method such as the 4-terminal method.
  • the conductive polymer film is electrolytically polymerized in the same manner as above, and this is kept at a potential at which de-doping occurs in the electrolyte for a certain period of time, thereby producing a de-doped conductive polymer film.
  • the electrical conductivity of the conductive polymer film in the doped state is measured.
  • the conductive polymer used in the present invention has a high electrical conductivity, and the viewpoint power to lower the internal resistance of the capacitor is also preferable.
  • a conductive polymer exhibiting a conductivity of 0.01 S / cm or more (more preferably 1. OSZ cm or more) in a doped state V but for example, the polythiophene derivatives exemplified above are problematic. It can be used without.
  • the conductivity in the doped state can be measured using, for example, the method described above.
  • the bipolar conductive polymer dopant preferably used in the present invention includes the conductivity and thermal stability of the bipolar conductive polymer, the capacity of doping and dedoping, the stability, and the speed. Selected in consideration of the effect on
  • the dopants preferably used in the bipolar conductive polymer of the present invention include p-toluenesulfonate ion, benzenesulfonate, anthraquinone 2-sulphonate, triisopropinorenaphthalene sulphonate, Examples thereof include polyvinyl sulfonate ions, dodecyl benzene sulfonate ions, alkyl sulfonate ions, n-propyl phosphate ions, perchlorate ions, and tetrafluoroborate ions.
  • the smaller the dopant, the smaller the doping There is a tendency to have excellent performance, and p-toluenesulfonic acid,
  • the bipolar conductive polymer in the present invention can be easily prepared into a thin and uniform conductive polymer film, and the film thickness can be controlled. Therefore, the electropolymerization in the presence of an organic solvent is possible. It is preferable that it is obtained by.
  • a bipolar conductive polymer can be deposited on the anode by a method in which a monomer is dissolved in a solvent together with a supporting electrolyte and anodized to perform dehydrogenation polymerization.
  • the oxidation-reduction potential of a polymer is lower than that of a monomer, so that the acid of the polymer skeleton further progresses during the polymerization process, and as a result, the support electrolyte, ion, is incorporated into the polymer as a dopant. It is.
  • Electrolytic polymerization has the advantage that a conductive polymer can be obtained by such a mechanism without having to add a dopant later. Further, as will be described later, it is preferable to use a carbon electrode for electrolytic polymerization and to deposit a conductive polymer on the surface thereof, because such an electrode can be used as it is as a polarizing electrode for a redox capacitor or the like.
  • Examples of supporting electrolytes in which a cation component and a Z or cation component are incorporated into a polymer as a dopant include sodium alkylsulfonate, sodium p-toluenesulfonate, sodium dodecylbenzenesulfonate, triisopropylnaphthalene.
  • Examples include tetra n-butyl ammonium, boron tetrafluoride tetraethyl ammonium, and boron tetrafluoride tetra n-butyl ammonium.
  • ionic liquids and key components are common, such as sodium p-toluenesulfonate, tetraethylammonium tetrafluoride, tetra-n-butylammonium tetrafluoride. are preferred.
  • the bipolar conductive polymer in the present invention may be polymerized in an ionic liquid.
  • a bipolar conductive polymer (described later) containing an ionic liquid can be produced in advance.
  • the electrolyte used in the electrochemical device of the present invention includes an ionic liquid.
  • ionic liquid refers to a liquid that is liquid at room temperature even though only ionic forces are formed, and is composed of a combination of a cation such as imidazolium and an appropriate ion.
  • a cation such as imidazolium and an appropriate ion.
  • the electrolyte contains an ionic liquid, so that durability and safety are improved compared to the case of using an electrolyte composed of only an ordinary organic solvent. An excellent electrochemical device can be realized.
  • the ionic liquid is a liquid that only has ions and has a high ion concentration
  • an electrochemical element using an electrolyte containing the ionic liquid has an advantage of high doping and dedoping capacity and responsiveness.
  • the ionic liquid has a wide potential window (high withstand voltage)
  • Examples of the cation constituting the ionic liquid preferably used in the present invention include an imidazolium cation, a pyridinium cation, a pyrrolidinium cation, an ammonium cation, and a triazine derivative cation. Force V, not limited to these.
  • the imidazolium cation is preferably used from the viewpoint of ease of use.
  • the key components that make up the ionic liquid are Br-, A1C1-, PF-, NO-, R NO-
  • A represents a substituent containing an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, an ether group, an ester group, an acyl group or the like, and may contain fluorine.
  • R COO— —OOCR CO, which is a caron containing carboxylate (one COO)
  • the substituent which contains a formula hydrocarbon group, an aromatic hydrocarbon group, an ether group, an ester group, an acyl group, etc. is shown, and may contain fluorine. ) Is preferably used in the present invention.
  • R is an aliphatic hydrocarbon group, alicyclic hydrocarbon group, aromatic hydrocarbon group, ether
  • a substituent containing a group, an ester group, an acyl group or the like is shown, and may contain fluorine. ), Benzenesulfonic acid, toluenesulfonic acid and the like are preferably used in the present invention.
  • the ionic liquid in the present invention is excellent in the repeated stability of doping and undoping, and therefore, among the above, BF-on, PF-on or sulfonic acid-on is used.
  • U which is preferably an ionic liquid containing.
  • ionic liquids preferably used in the present invention include 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium tetrafluororeborate, 1-ethinoleo. At least selected from 3-methinoreimidoxalium hexaphleoleophosphate, 1-butyl-3-methylimidazole hexafluorophosphate, 1-ethyl-3-ethyl imidazolium tosylate, 1-butyl 3-methylimidazolium tosylate One is mentioned.
  • 1-ethyl-3-methylimidazole tetrafluoroborate and 1-butyl-3-methylimidazolium are used because of the large accumulated charge due to doping and undoping and excellent repeat stability of doping and undoping. It is preferable to use mutetrafluoroborate as the ionic liquid.
  • the ionic liquid is contained in a ratio of 1: 3 to 1: 10000 with respect to the bipolar conductive polymer.
  • the ratio of 1: 5 to 1: 100 is preferable. More preferably, it is contained. If the ionic liquid is less than 1: 10000 with respect to the bipolar conductive polymer, the proportion of the ionic liquid is too small to contribute to the improvement of the doping and dedoping performance. Moreover, if the ionic liquid exceeds 1: 3 with respect to the bipolar conductive polymer, there is a problem that the strength of the conductive polymer film is weakened.
  • the ionic liquid preferably used in the present invention can be synthesized by combining the above-mentioned ions and cations using a known method.
  • Specific examples of the synthesis method include a key exchange method, an acid ester method, and a neutralization method.
  • the electrolyte used in the present invention may be composed only of an ionic liquid as long as it contains an ionic liquid, and may be a mixture of an ionic liquid and an organic solvent. However, by using a mixture of an ionic liquid and an organic solvent as an electrolyte, a high ion concentration and a low viscosity can be realized with an appropriate balance. Doping capacity and response speed can be increased, which is preferable.
  • Examples of the organic solvent used in the mixture include acetonitrile, propylene power, and the like.
  • Organic solvents that have been widely used in the art, such as carbonate, ethylene carbonate, and ⁇ -butyllatatone, can be used without particular limitation. Above all, when it mixes with various ionic liquids at an arbitrary ratio and the viscosity of the liquid mixture decreases! For this reason, it is preferable to use acetonitrile.
  • the mixing ratio is not particularly limited, but as described above, among organic solvents such as acetonitrile, propylene carbonate, ethylene carbonate, and y-butyllatatone.
  • organic solvent: ionic liquid 1: 3 to 10: 1 (volume ratio) is preferred 1: 3 to 3: 1 is more preferred . If the volume ratio of the ionic liquid to the organic solvent is less than 1:10, the ion concentration tends to be low, which tends to be unfavorable for doping and dedoping, and the volume ratio of the ionic liquid to the organic solvent. If the ratio exceeds 3: 1, the viscosity of the mixed solution tends to increase and the electrical conductivity tends to decrease.
  • the electrochemical device of the present invention preferably further comprises a bipolar conductive polymer force S ionic liquid.
  • the bipolar conductive polymer containing the ionic liquid may be produced by impregnating the conductive polymer with the ionic liquid later, or polymerization of the conductive polymer. It may be produced by coexisting an ionic liquid from the process.
  • the ionic liquid contained in the bipolar conductive polymer those described above can be used without particular limitation.
  • the cationic component constituting the ionic liquid may be a component that can be a dopant for a bipolar conductive polymer or a component that cannot be a dopant for a conductive polymer. .
  • the cation component or the anion component constituting the ionic liquid is a component that can serve as a dopant for a bipolar conductive polymer. Even when a dedoping reaction of the bipolar conductive polymer occurs, It is realized that the ion component and the Z or cation component, which can be effective dopants for the conductive polymer, are always present in the vicinity of the conductive polymer. It becomes possible to show. Therefore, it is important to dope 'de-doping reaction in ionic liquid, and to make the ion component that constitutes the ionic liquid as a component that can be a dopant of a bipolar conductive polymer. This will have a significant effect on improving the repeated stability of the dedoping reaction.
  • the ionic component and the Z or cation component of the ionic liquid constituting the bipolar conductive polymer dopant and Part of the ionic liquid conductive polymer composite, which is a common component, is formed. That is, at the start of the doping and dedoping reaction, the bipolar conductive polymer dopant and the ionic component and the Z or cation component of the ionic liquid are not necessarily the same, but repeatedly.
  • an electropolymerized film containing an electroconductive polymer having a bipolar polarity electropolymerized in an organic solvent containing an ionic liquid, an electrode composite comprising the electrode, and an electrolyte containing the ionic liquid It is good also as an electrochemical element which combined.
  • the doping and dedoping reactions should be carried out, and at that time, the ionic component and the Z or force thione component constituting the ionic liquid should be set as components capable of becoming a bipolar conductive polymer dopant. This significantly improves the repeated stability of the doping and dedoping reactions.
  • electrochemical element in the present specification refers to all elements that repeatedly use conductive polymer doping and dedoping reactions, and includes capacitors such as redox capacitors, batteries, electrochromic elements, Includes sensors and the like.
  • the electrochemical device of the present invention is preferably realized by a redox capacitor (type III redox capacitor)!
  • the electrochemical device of the present invention includes, for example, two opposing electrodes and an electrolyte containing an ionic liquid sandwiched between the electrodes, and at least the surface of the electrode has a bipolar conductive property. It is preferable to realize the structure in which the conductive polymer exists so as to be in contact with the electrolyte.
  • FIG. 1 is a diagram schematically showing a configuration of a redox capacitor 1 which is a preferred example of the electrochemical device of the present invention.
  • the redox capacitor is a capacitor obtained by expanding the capacitance of the electric double layer capacitor by using a pseudo capacitance.
  • the redox capacitor of the present invention uses all or part of oxidation / reduction of an electrode material, charge / discharge in an electric double layer, and desorption of ions on the electrode surface for storage and release of electric energy. It is a type of electrochemical capacitor including metal oxide electrode systems, reversible redox solution systems, and underpotential chanore systems.
  • an electrochemical capacitor has been developed that has a capacity density of 120 WhZkg at the active material level, an output density of about 20 kwZkg or more, and can be charged and discharged at high speed within a few seconds.
  • the redox capacitor 1 of the example shown in FIG. 1 includes, for example, two plate-like electrodes 2 and 3 arranged with a separator 4 interposed therebetween, and each of the electrode elements 2 and 3 is an electrode element. It has a structure where 5 and 6 are in contact.
  • the laminated structure composed of the electrode 2, the separator 4, and the electrode 3 is fixed between the electrode elements 5 and 6 by the gasket 7 so that the electrode elements 5 and 6 do not contact each other.
  • the material for forming the electrodes 2 and 3 is not particularly limited as long as it can be used for a redox capacitor.
  • an electrode formed only of a bipolar conductive polymer, a composite electrode of a carbon material and a bipolar conductive polymer, a composite electrode of a metal material and a bipolar conductive polymer, a metal material And a composite material electrode of carbon material and a bipolar conductive polymer can be used.
  • the composite material electrode of the carbon material and the bipolar conductive polymer is formed by using, for example, an organic solvent such as ethanol ethanol and methyl pyrrolidone and the bipolar conductive polymer as the electrode material and the carbon material. Further, a binder can be added to form a dispersion, which can be applied to the surface of the metal current collector and then dried. As the binder, fluorine resin such as polytetrafluoroethylene and polyvinylidene fluoride is preferably used. The amount of binder used with respect to the electrode material is preferably about 5 to 20% by weight.
  • Metal current collector As the body, metals such as aluminum, nickel, stainless steel, titanium, and tantalum are preferably used, and these metals may be gold or platinum plated, or may be a polymer film formed with a metal layer. .
  • the metal current collector is more preferably used in the form of a rolled foil, a punching foil, an etched foil, an expanded metal foil or the like.
  • the polarizing electrode is not a current collector but in the form of a sheet, the conductive polymer Z-carbon composite material is mixed with the above binder, and a lubricant is added to form a paste, which is then extruded. These can be rolled with a rolling roll to form an electrode sheet.
  • carbon may be dispersed by dispersing a carbon material in a polymerization solution of a bipolar conductive polymer, followed by chemical polymerization, and coating the surface of the carbon material with a bipolar conductive polymer.
  • a composite electrode of a material and a bipolar conductive polymer can be produced. An electrode is produced in the same manner as described above using the carbon material coated with the bipolar conductive polymer thus produced.
  • the composite material electrode of the carbon material and the ambipolar conductive polymer can also be produced as follows. First, a carbon material and a binder are added to an organic solvent such as ethanol, methanol, or methylpyrrolidone to form a dispersion, which is applied to the surface of a metal current collector and then dried to produce a carbon electrode. Next, electrolytic polymerization is performed using this as an electrode to form a conductive polymer thin film on the surface of the carbon electrode, and the surface of the carbon material is coated with a thin conductive polymer. An electrode produced by this method is a useful method for reducing impedance because the conductive polymer layer can be made extremely thin.
  • an organic solvent such as ethanol, methanol, or methylpyrrolidone
  • the carbon material used for the composite material electrode of the carbon material and the bipolar conductive polymer is not particularly limited as long as it is a carbon material used for electrode formation in this field. It is preferable to contain activated carbon powder and / or graphite powder. This is because the addition of activated carbon powder or graphite powder can reduce electrode resistance and increase surface area. Accordingly, carbon blacks such as acetylene black and furnace black having a large surface area, activated carbon particles having a relatively large pore size, carbon fibers having a relatively small particle size, graphite fibers, and carbon nanotubes are particularly preferred as the carbon material. It is mentioned as a thing. Carbon materials have a specific surface area (analysis of nitrogen adsorption isotherm data at liquid nitrogen temperature). It is preferable to use a material having a BET specific surface area value of 20 m 2 Zg or more.
  • the laminated structure of the electrode 2, the separator 4, and the electrode 3 shown in FIG. 1 is impregnated with an electrolyte containing the ionic liquid described above (preferably a mixture of the ionic liquid and the organic solvent).
  • an electrolyte containing the ionic liquid described above preferably a mixture of the ionic liquid and the organic solvent.
  • the separator 4 those conventionally used for capacitors can be used without any particular limitation, and a porous one is preferably used.
  • the electrode elements 5 and 6 and the gasket 7 can be used without any particular limitation as long as they are conventionally used for capacitors.
  • As the gasket 7, an electrically insulating material is used.
  • the method of charging / discharging the electrochemical device of the present invention is the same as that of a normal electric double layer capacitor, and can be performed by applying a voltage between a pair of electrodes or passing a current.
  • the electrochemical device of the present invention is preferably realized as a redox capacitor used as a polar device that distinguishes between a positive electrode and a negative electrode, since the cycle life can be extended. In general, this is the direction of repeating only union or deionization of either a cation or a cation in a bipolar conductive polymer. This is because there is little deterioration of the dedoping property.
  • the electrochemical device of the present invention is preferably used in an appropriate voltage range so as not to be overcharged from the viewpoint of extending the cycle life. This is because when the dopant is excessively doped, the bipolar conductive polymer is strongly oxidized or reduced, so that the bipolar conductive polymer itself deteriorates and functions as an electrode that repeats doping and dedoping. This is because the performance decreases.
  • both polarities are formed on SnO glass by electrolytic polymerization.
  • the electropolymerization solution was 4-fluorophenylthiophene 0.1M as a monomer and boron tetrafluoride tetraethylammonium (Tetraethylammonium tetrafluoroborate HTEA'BF) as a supporting salt.
  • a propylene carbonate (PC) solution containing 1M was used. here
  • the TEA 'BF 1M propylene carbonate solution used was purchased from Sanwa Oil.
  • the SnO glass plate which is the working electrode, has a SnO coating on one side
  • BAS RE-5 reference electrode (AgZAg + reference electrode
  • the solution in the reference electrode is 0.1 M of tetrachloramine perchlorate (Bu N'CIO), silver nitrate.
  • the electrolytic polymerization solution is accommodated in a container, and these are electrolyzed in a state in which the working electrode is arranged with an interval of lcm between the reference electrode and the counter electrode. It was immersed in the polymerization solution. The working electrode was soaked only in the region of lcm from the end side in the electrolytic polymerization solution (that is, the area of the working electrode immersed in the electrolytic polymerization solution was 3 X lcm). In this state, the potential of the working electrode is maintained at +1.2 V for 120 seconds with respect to the reference electrode for 120 seconds.
  • a film of 3- (4 fluorophenyl) thiophene was formed.
  • the poly-3- (4-fluorophenol) thiophene film is P-doped (in this case, BF-ion doped)
  • the potential of the S ⁇ glass (working electrode) partially formed with a poly-3- (4 fluorophenyl) thiophene film was maintained at 0.0 V with respect to the RE-5 reference electrode for 240 seconds.
  • the reference electrode, working electrode and counter electrode were immersed in this solution in the same manner as described above (the working electrode was immersed only in the region where the edge force was 1 cm), and cyclic voltammetry (CV) measurement was performed.
  • CV cyclic voltammetry
  • a potential sweep was started from the natural potential of the dedope film of poly 3- (4 fluorophenyl) thiophene toward the positive side.
  • Figure 4 shows the obtained CV.
  • the width of the potential sweep was 2. lV to + 0.8V relative to the RE-5 reference electrode, and the potential sweep (sweep) speed was 25 mVZs.
  • the horizontal axis represents the potential of the working electrode with the reference electrode potential as the standard of OV
  • the horizontal axis OV in the graph represents + 490mV (+ 0. 4 9V).
  • the upward peak on the right side of Fig. 4 is P-doped (BF- dopin
  • the downward peak on the left (the peak of the current in the direction where the absolute value of the current increases in one direction in the region below the horizontal axis of 1.5 V) is N-doped (doping of tetraethylamine-mucation)
  • the left upward peak (current peak in the direction where the absolute value of the current increases in the + direction in the region of 0 V or more on the horizontal axis) is N-dedoped (dedoped with tetraethylammonium cation) Equivalent to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

Disclosed is an electrochemical device comprising a conductive bipolar polymer and an electrolyte containing an ionic liquid. The electrolyte is preferably obtained by mixing at least one substance selected from acetonitrile, propylene carbonate, ethylene carbonate and Ϝ-butyl lactone with an ionic liquid in a volume ratio of from 1:3 to 10:1. By having such a constitution, this novel electrochemical device is improved in repeat stability of doping/dedoping reactions.

Description

明 細 書  Specification
電気化学素子  Electrochemical element
技術分野  Technical field
[0001] 本発明は、電気化学素子に関し、特に、両極性の導電性高分子のドープ '脱ドー プ反応を用 Vヽたレドックスキャパシタに関する。  TECHNICAL FIELD [0001] The present invention relates to an electrochemical device, and more particularly to a redox capacitor using a bipolar conductive polymer doping / de-doping reaction.
背景技術  Background art
[0002] 電気化学素子は電気化学反応を利用した素子であり、電池、コンデンサ、燃料電 池などのエネルギー蓄積に用いられる素子を含む。このような素子において古くから 導電性高分子のドープ '脱ドープ反応を利用することが考えられてきた。しかしながら 、導電性高分子のドープ,脱ドープ反応は、繰り返し安定性に欠け、反応を繰り返し ているうちにドーピングが起きなくなるという問題があり、このような原理に基づく電気 化学素子は実用上大きな問題がある。  An electrochemical element is an element using an electrochemical reaction, and includes elements used for energy storage such as a battery, a capacitor, and a fuel cell. In such devices, it has long been considered to use a conductive polymer doping and dedoping reaction. However, doping and dedoping reactions of conductive polymers have a problem of lack of repeated stability and do not occur during repeated reactions. Electrochemical devices based on these principles are a major problem in practical use. There is.
[0003] 電気二重層キャパシタは、電圧を加えたときに電極と電解質との界面に生じる電気 二重層容量を利用した蓄電用電気化学素子である。この電気二重層容量による蓄 電のメカニズムは、電気化学反応を伴う二次電池に比較してより早い充放電が可能 で、繰り返し寿命特性にも優れているという特徴を有している。しかしながら、電気二 重層キャパシタは二次電池に比べてそのエネルギー密度がはるかに小さいという欠 点がある。電気二重層容量は電極の表面積に比例することから、表面積の大きな賦 活した活性炭が一般に電極として用いられている。しかしながら、このように表面積が 大きな活性炭電極を用いても、電気二重層キャパシタのエネルギー密度は 5WhZk g程度に留まっており、その容量密度は二次電池に比較して ΙΖΙΟ以下である。  [0003] An electric double layer capacitor is an electrochemical element for electrical storage that utilizes an electric double layer capacitance generated at the interface between an electrode and an electrolyte when a voltage is applied. The mechanism of storage by this electric double layer capacity is characterized by being able to charge / discharge faster than secondary batteries with electrochemical reaction and having excellent repeated life characteristics. However, the electric double layer capacitor has the disadvantage that its energy density is much lower than that of the secondary battery. Since the electric double layer capacity is proportional to the surface area of the electrode, activated carbon having a large surface area is generally used as the electrode. However, even when using an activated carbon electrode with such a large surface area, the energy density of an electric double layer capacitor remains at around 5 WhZkg, and its capacity density is less than that of a secondary battery.
[0004] そのような現状に鑑み、電気二重層キャパシタの容量密度を飛躍的に向上させる ために、導電性高分子による擬似容量を用いた蓄電器が提案されている。擬似容量 は、電気二重層容量とは異なり、電極界面での電子移動過程 (ファラデー過程)を伴 つて蓄えられる。また、擬似容量が発現する過程でも、界面で電気二重層が形成さ れるため、電気二重層容量と擬似容量とが並行して発現し、結果として大容量化〖こ つながる。このような擬似容量は導電性高分子を用いる場合には導電性高分子のレ ドックス反応、すなわちドープ '脱ドープ反応によって発現する。このレドックス反応に よって発現する擬似容量は、理論的には電気二重層容量の 106倍と見積もられ、した がって、擬似容量を利用したキャパシタ(レドックスキャパシタという)は、電気二重層 容量のみを利用する従来の電気二重層キャパシタに比べて、飛躍的に高容量なキヤ パシタとなる。一例として、たとえば特開平 6— 104141号公報 (特許文献 1)には、導 電性高分子膜によって構成されるキャパシタが開示されている。 In view of such a current situation, in order to dramatically improve the capacitance density of the electric double layer capacitor, a capacitor using a pseudo capacitance by a conductive polymer has been proposed. Unlike the electric double layer capacitance, the pseudocapacitance is stored with an electron transfer process (Faraday process) at the electrode interface. In addition, since the electric double layer is formed at the interface even in the process in which the pseudo capacity is developed, the electric double layer capacity and the pseudo capacity are developed in parallel, resulting in a large capacity. Such pseudocapacitance is reduced when the conductive polymer is used. It is manifested by a dox reaction, that is, a dope de-dope reaction. Pseudo capacitance thus expressed in this redox reaction is theoretically estimated to be 10 6 times the electric double layer capacitor, and Therefore, capacitors using pseudo capacitance (referred redox capacitor), the electric double layer capacity Compared to a conventional electric double layer capacitor that uses only the capacitor, the capacitor has a significantly higher capacity. As an example, for example, Japanese Patent Laid-Open No. 6-104141 (Patent Document 1) discloses a capacitor composed of a conductive polymer film.
[0005] 以上に述べたように、擬似容量を用いたキャパシタ(レドックスキャパシタ)は画期的 な特性を発現できる素子ではあるが、二つの大きな技術的な問題のために実用化に は至っていない。 [0005] As described above, a capacitor using a pseudo-capacitance (redox capacitor) is an element that can exhibit breakthrough characteristics, but has not been put into practical use due to two major technical problems. .
[0006] 第一には、導電性高分子が脱ドープ状態では絶縁体であるために電極として動作 しないという問題が挙げられる。この問題については、高比表面積を有する炭素材料 の表面が導電性高分子によって被覆された構造の炭素 Z導電性高分子複合体から なる蓄電素子用電極に関する提案がある(たとえば、特開 2003— 109875号公報( 特許文献 2)を参照。)。  [0006] Firstly, there is a problem that the conductive polymer does not operate as an electrode because it is an insulator in an undoped state. With regard to this problem, there is a proposal related to an electrode for a power storage element made of a carbon Z conductive polymer composite having a structure in which the surface of a carbon material having a high specific surface area is coated with a conductive polymer (for example, Japanese Patent Application Laid-Open No. 2003-2003). No. 109875 (see Patent Document 2).
[0007] また第二には、導電性高分子のドープ '脱ドープ反応の繰り返し安定性が悪いとい う問題がある。この第二の問題については、基本的な解決がなされていないのが実 情である。  [0007] Secondly, there is a problem that the repeated stability of conducting polymer doping and dedoping reactions is poor. The fact is that the second problem has not been fundamentally solved.
[0008] 以上のような電気化学素子に関連した技術とは別に、近年常温で液体状である溶 融塩が開発され注目されている。これらはイオン性液体と呼称され、イミダゾリゥムゃ ピリジゥムなどの四級塩カチオンと適当なァ-オン(Br―、 A1C1―、 BF―、 PF—など)と  [0008] In addition to the techniques related to electrochemical devices as described above, molten salts that are liquid at room temperature have recently been developed and attracting attention. These are referred to as ionic liquids and include quaternary salt cations such as imidazolium pyridinium and appropriate key ions (Br-, A1C1-, BF-, PF-, etc.)
4 4 6 の組み合わせで構成される。イオン性液体は、不揮発性、不燃性、化学的安定性、 高イオン伝導性などの特徴をもち、各種合成や触媒反応などの化学反応に用いられ 再利用可能なグリーンソルベントとして注目されている。イオン性液体は、電位窓が 大きぐ耐電圧性に優れており、イオン濃度も高い。また、難燃性で揮発しないため、 蒸発する心配が無ぐ安全性にも優れている。このため、イオン性液体は、電気二重 層キャパシタの電解液としての応用が検討されて 、る。  It is composed of 4 4 6 combinations. Ionic liquids have features such as non-volatility, nonflammability, chemical stability, and high ionic conductivity, and are attracting attention as reusable green solvents used in chemical reactions such as various syntheses and catalytic reactions. Ionic liquids have a large potential window, excellent voltage resistance, and high ion concentration. In addition, since it is flame retardant and does not volatilize, it has excellent safety without worrying about evaporation. For this reason, application of ionic liquids as electrolytes for electric double layer capacitors is being studied.
特許文献 1:特開平 6― 104141号公報  Patent Document 1: Japanese Patent Laid-Open No. 6-104141
特許文献 2 :特開 2003— 109875号公報 非特許文献 1: Andy Rudgeら、 Journal of Power Sources 47, 1994, 89-107 発明の開示 Patent Document 2: Japanese Patent Laid-Open No. 2003-109875 Non-Patent Document 1: Andy Rudge et al., Journal of Power Sources 47, 1994, 89-107 Disclosure of Invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 本発明は、上記課題を解決するためになされたものであって、その目的とするところ は、ドープ '脱ドープ反応の繰り返し安定性が改良された新規な電気化学素子を提 供することである。 [0009] The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a novel electrochemical device having improved repeated stability of doping and dedoping reactions. It is.
課題を解決するための手段  Means for solving the problem
[0010] 本発明の電気化学素子は、両極性の導電性高分子と、イオン性液体を含む電解 質とを有することを特徴とする。従来技術において、電解質中で繰り返しドープ、脱ド ープ反応を行っている間に次第にドーピング反応が起きなくなる原因は、脱ドープさ れたドーパントが電解質中に拡散して、ドーピング時に導電性高分子の近傍に有効 なドーパントが存在しなくなるためである。そこで我々は、まず、導電性高分子とィォ ン性液体との組み合わせにつ 、て検討した。イオン性液体を構成するァ-オン成分 および Zまたはカチオン成分として導電性高分子のドーパントともなり得る成分を選 択すれば、ドーパントを常に導電性高分子の近傍に存在させることができるはずであ る。このようなイオン性液体中ではドープ、脱ドープ反応を繰り返している間にイオン 性液体を構成するァ-オン成分および Zまたはカチオン成分が導電性高分子のド 一パントとして取り込まれ、イオン性液体を構成するァ-オン成分および Zまたは力 チオン成分と導電性高分子のドーパントの一部とが同一成分であるイオン性液体'導 電性高分子複合体を形成すると考えられ、このイオン性液体'導電性高分子複合体 は、優れたドープ '脱ドープ反応の繰り返し安定性の発現に寄与するものと考えられ る。本発明者らは、さら〖こ、導電性高分子の中でも両極性のものを用いることで、特に 高性能な電気化学素子を実現できることを見出し、本発明を完成するに至った。すな わち、本発明は以下のとおりである。 [0010] The electrochemical element of the present invention is characterized by having a bipolar conductive polymer and an electrolyte containing an ionic liquid. In the prior art, the reason why the doping reaction does not occur gradually during repeated doping and dedoping reactions in the electrolyte is that the dedoped dopant diffuses into the electrolyte, and the conductive polymer during doping This is because there is no effective dopant in the vicinity of. Therefore, we first examined the combination of conductive polymer and ion liquid. If the ion component and Z or cation component of the ionic liquid are selected as components that can also be conductive polymer dopants, the dopant should always be present in the vicinity of the conductive polymer. The In such an ionic liquid, the ion component and the Z or cation component constituting the ionic liquid are incorporated as a dopant of the conductive polymer while repeating the doping and dedoping reactions, and the ionic liquid The ionic liquid and the Z or force thione component constituting the ionic liquid and a part of the dopant of the conductive polymer are considered to form an ionic liquid 'conductive polymer composite. 'Conductive polymer composites are considered to contribute to the development of excellent doping stability of repeated undoping reactions. The present inventors have found that a particularly high performance electrochemical device can be realized by using a bipolar polymer among the conductive polymers, and have completed the present invention. That is, the present invention is as follows.
[0011] 本発明の電気化学素子は、両極性の導電性高分子と、イオン性液体を含む電解 質とを有することを特徴とする。 [0011] The electrochemical device of the present invention is characterized by having a bipolar conductive polymer and an electrolyte containing an ionic liquid.
[0012] ここにお 、て前記電解質はイオン性液体と有機溶媒との混合物であるのが好ましく [0012] Here, the electrolyte is preferably a mixture of an ionic liquid and an organic solvent.
、ァセトニトリノレ、プロピレンカーボネート、エチレンカーボネート、 yーブチノレラタトン の中力も選ばれる少なくともいずれ力 1つと、イオン性液体とを 1 : 3〜: L0 : 1の体積比 で混合したものであるのがより好まし 、。 Acetonitorinole, propylene carbonate, ethylene carbonate, y-butinorelatatatone It is more preferable to mix at least one force selected as the intermediate force and an ionic liquid at a volume ratio of 1: 3 to L0: 1.
[0013] 本発明の電気化学素子において、両極性の導電性高分子がさらにイオン性液体を 含むのが好ましい。 In the electrochemical device of the present invention, it is preferable that the bipolar conductive polymer further contains an ionic liquid.
[0014] 本発明に用いるイオン性液体は、 BF—ァ-オン、 PF—ァ-オンまたはスルホン酸ァ  [0014] The ionic liquid used in the present invention is BF-on, PF-on or sulfonic acid.
4 6  4 6
ユオンを含むイオン性液体であるのが好ましぐ 1ーェチルー 3—メチルイミダゾリゥム テトラフルォロボレート、 1ーブチルー 3—メチルイミダゾリゥムテトラフルォロボレート、 1ーェチルー 3—メチルイミダゾリゥムへキサフルォロホスフェート、 1ーブチルー 3— メチルイミダゾリゥムへキサフルォロホスフェート、 1ーェチルー 3—メチルイミダゾリウ ムトシレート、 1—ブチル 3—メチルイミダゾリゥムトシレートから選ばれる少なくとも 1 つであるのがより好ましい。  It is preferable to use ionic liquids containing Yuon 1-Ethyl 3-methyl imidazolium tetrafluoroborate, 1-Butyl 3-methyl imidazole tetrafluoroborate, 1-Ethyl 3-methyl imidazolium At least one selected from xafluorophosphate, 1-butyl-3-methylimidazole hexafluorophosphate, 1-ethyl-3-methylimidazolium mutosylate, 1-butyl 3-methylimidazolium tosylate More preferred.
[0015] 本発明に用いる両極性の導電性高分子は、ドープ状態と脱ドープ状態で電気伝導 度が 1000倍以上変化し、ドープ状態での導電率が 0. OlSZcm以上であるもので あることが好ましい。 [0015] The bipolar conductive polymer used in the present invention has an electric conductivity of 1000 times or more in the doped state and the undoped state, and the conductivity in the doped state is not less than 0. OlSZcm. Is preferred.
[0016] また本発明に用いる両極性の導電性高分子は、ポリチォフェン誘導体であるのが 好ましく、ポリ 3—(4 フルオロフェ -ル)チォフェン、ポリ 3—(4—tーブチルフ ェ -ル)チォフェン、ポリ 3—(4 トリフルォロメチルフエ-ル)チォフェン、ポリ 3 一(2, 4 ジフルオロフヱ-ル)チォフェン、ポリ 3—(2, 3, 4, 5, 6 ペンタフルォ 口フエ-ル)チォフェン、力も選ばれる少なくとも 1つであるのがより好ましい。  [0016] In addition, the bipolar conductive polymer used in the present invention is preferably a polythiophene derivative, such as poly 3- (4 fluorophenyl) thiophene, poly 3- (4-tert-butylphenol) thiophene, Poly 3— (4 trifluoromethyl phenol) thiophene, Poly 3 mono (2, 4 difluorophenol) thiophene, Poly 3— (2, 3, 4, 5, 6 Pentafluoro oral phenol) thiophene More preferably, it is at least one selected.
[0017] また本発明の電気化学素子は、対向する 2つの電極と、該電極間に挟まれたイオン 性液体を含む電解質とを備え、該電極の少なくとも表面には、両極性の導電性高分 子が前記電解質に接するように存在するものであることが好まし 、。  [0017] The electrochemical device of the present invention includes two electrodes facing each other and an electrolyte containing an ionic liquid sandwiched between the electrodes, and at least the surface of the electrode has a conductive high polarity. Preferably, the molecule is present so as to contact the electrolyte.
[0018] 本発明の電気化学素子は、極性デバイスとして使用されるレドックスキャパシタであ ることが好ましい。  [0018] The electrochemical element of the present invention is preferably a redox capacitor used as a polar device.
発明の効果  The invention's effect
[0019] 本発明によれば、両極性の導電性高分子と、イオン性液体を含む電解質とを有す ることにより、ドープ'脱ドープ反応の繰り返し安定性が改良された高性能な電気化学 素子を提供することができる。 図面の簡単な説明 [0019] According to the present invention, high-performance electrochemical having improved repeated stability of doping and dedoping reactions by having a bipolar conductive polymer and an electrolyte containing an ionic liquid. An element can be provided. Brief Description of Drawings
[0020] [図 1]本発明の電気化学素子の好ましい一例であるレドックスキャパシタ 1の構成を模 式的に示す図である。  FIG. 1 is a diagram schematically showing a configuration of a redox capacitor 1 which is a preferred example of an electrochemical element of the present invention.
[図 2]本発明に用いる両極性の導電性高分子を用いた系の充放電時の電圧 電流 変化を模式的に示す図である。  FIG. 2 is a diagram schematically showing changes in voltage and current during charging / discharging of a system using a bipolar conductive polymer used in the present invention.
[図 3]本発明の実施例、比較例で用いたセルを模式的に示す図である。  FIG. 3 is a diagram schematically showing cells used in Examples and Comparative Examples of the present invention.
[図 4]比較例 1で測定されたサイクリックボルタンメトリーを示すグラフである。  FIG. 4 is a graph showing cyclic voltammetry measured in Comparative Example 1.
符号の説明  Explanation of symbols
[0021] 1 レドックスキャパシタ、 2, 3 電極、 4 セパレータ、 5, 6 電極素子、 7 ガスケッ 発明を実施するための最良の形態  [0021] 1 redox capacitor, 2, 3 electrodes, 4 separators, 5, 6 electrode elements, 7 gaskets BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 本発明における両極性の導電性高分子とは、 Pドープ、 Nドープの両方が可能な導 電性高分子 (ァ-オン'カチオン両ドープ型の導電性高分子)である。図 2には、 2つ の電極に両極性の導電性高分子を用いた系の充放電の様子を、縦軸に電流、横軸 に電圧をとつて模式的に表してある。図 2の矢印は、放電の場合の電圧および電流 の変化の向きを表している。図 2に示すように、両極性の導電性高分子を各電極の 活物質としてそれぞれ用いた系では、充電の場合には、一方の導電性高分子は Pド ープされ (ァ-オンがドープされ)、他方の導電性高分子は Nドープ (力チオンがドー プ)される。その結果、充電後の系の電圧(2つの電極間の電圧)は Vとなる。放電の [0022] The bipolar conductive polymer in the present invention is a conductive polymer capable of both P-doping and N-doping (a-on-cation both-doping type conductive polymer). Fig. 2 schematically shows the state of charge and discharge in a system in which a bipolar conductive polymer is used for two electrodes, with current on the vertical axis and voltage on the horizontal axis. The arrows in Fig. 2 indicate the direction of change in voltage and current during discharge. As shown in Fig. 2, in a system using a bipolar conductive polymer as the active material of each electrode, one of the conductive polymers is P-doped (a- The other conductive polymer is N-doped (force thione doped). As a result, the voltage of the system after charging (the voltage between the two electrodes) is V. Discharge
1  1
場合には、充電の場合と逆に、一方の導電性高分子はァ-オンが脱ドープされ、他 方の導電性高分子はカチオンが脱ドープされ、ドーピング電荷 Qが放出される。そし  In some cases, contrary to charging, one conductive polymer is de-doped with ions, the other conductive polymer is de-doped with cations, and a doping charge Q is released. And
1  1
て、放電完了後には、両方の導電性高分子はァ-オンおよびカチオンがドープされ ていない状態に戻る。本発明においては、導電性高分子の中でも、このような両極性 のものを用いることによって、放電電圧、蓄積電荷、エネルギー密度などの特性にお いて特に高性能な電気化学素子を実現することができる。  Thus, after the discharge is completed, both conductive polymers return to the state where they are not doped with cation and cation. In the present invention, by using such a bipolar polymer among conductive polymers, it is possible to realize a particularly high-performance electrochemical element in characteristics such as discharge voltage, stored charge, and energy density. it can.
[0023] 両極性の導電性高分子としては、特に限定はなぐたとえば様々なポリチォフェン 誘導体を挙げることができる。  [0023] Examples of the bipolar conductive polymer include, but are not limited to, various polythiophene derivatives.
[0024] 本発明に用いる両極性の導電性高分子であるポリチォフェン誘導体として好適な 例としては、ポリ一 3— (4—フルオロフェ -ル)チォフェン、ポリ一 3— (4—トリフルォ ロメチルフエ-ル)チォフェン、ポリ 3— (2, 4ージフルオロフェ -ル)チォフェン、ポ リ一 3— (2, 3, 4, 5, 6 ペンタフルオロフヱ-ル)チォフェン、力 選ばれる少なくと も 1つを挙げることができる。中でも、モノマーユニットあたりのフッ素原子数が 1〜4個 のポリチォフェン誘導体は、 Nドープ状態のポリマーが適度に安定ィ匕されるため、好 ましい。すなわち、ポリ一 3— (4—フルオロフェ -ル)チォフェン、ポリ一 3— (4— t— ブチルフエ-ル)チォフェン、ポリ 3—(4 トリフルォロメチルフエ-ル)チォフェン、 ポリ 3— (2, 4ージフルオロフェ -ル)チォフェンから選ばれる少なくとも 1つを用い るのが好ましい。 [0024] Suitable as a polythiophene derivative that is a bipolar conductive polymer used in the present invention. Examples include poly-1- (4-fluorophenyl) thiophene, poly-3- (4-trifluoromethylphenol) thiophene, poly-3- (2,4-difluorophenyl) thiophene, poly-3- ( 2, 3, 4, 5, 6 Pentafluorophenyl) thiophene, at least one selected. Among these, polythiophene derivatives having 1 to 4 fluorine atoms per monomer unit are preferable because the N-doped polymer is moderately stabilized. That is, poly-1- (4-fluorophenyl) thiophene, poly-3- (4-t-butylphenol) thiophene, poly-3- (4 trifluoromethylphenol) thiophene, poly-3- (2 , 4-difluorophenyl) thiophene is preferably used.
本発明に使用する両極性の導電性高分子は、多くのドーパントをドープ.脱ドープ できるものが、電気化学素子の静電容量を大きくする観点力 好ましい。このために は、ドープ'脱ドープによる電気伝導度の変化が 1000倍以上である導電性高分子を 用いることが好ましいが、たとえば上記に例示したポリチォフェン誘導体は問題なく使 用することができる。なお、上記ドープ '脱ドープによる電気伝導度の変化は、たとえ ば、以下のようにして知ることができる。すなわち、電解重合法により SnOガラスなど  The bipolar conductive polymer used in the present invention can be doped and dedoped with a large amount of dopants, which is preferable from the viewpoint of increasing the capacitance of the electrochemical device. For this purpose, it is preferable to use a conductive polymer whose electrical conductivity change due to doping and dedoping is 1000 times or more. For example, the polythiophene derivatives exemplified above can be used without any problem. The change in electrical conductivity due to the above-described doping and dedoping can be known, for example, as follows. That is, SnO glass etc. by electrolytic polymerization
2 の導電性基板上に導電性高分子膜を形成し、作製した導電性高分子膜つきの導電 性基板を、参照電極 (たとえば BAS株式会社製 RE5参照極)および対極 (たとえば 白金板)とともにドーパントとなるイオンを含む電解液 (たとえば ImolZLのテトラェチ ルアンモ-ゥムテトラフルォロボレートのプロピレンカーボネート溶液)〖こ浸し、この電 解液中で導電性高分子膜つきの導電性基板を、導電性高分子のドーピングが起こる 電位に一定時間保つことにより導電性高分子膜に十分なドーピングを行う。次に導 電性高分子膜つき導電性基板を溶液から取り出して、導電性高分子膜を導電性基 板からはがし、メタノールなどで洗浄し乾燥させる。得られたドープ状態の導電性高 分子膜の電気伝導度は 4端子法などの一般的な電気伝導度測定方法によって測定 する。次に、上と同様にして導電性高分子膜を電解重合し、これを電解液中で脱ドー プが起こる電位に一定時間保つことにより脱ドープ状態の導電性高分子膜を作製し 、脱ドープ状態の導電性高分子膜の電気伝導度を測定する。これらの 2つの電気伝 導度測定によって導電性高分子のドープ状態と脱ドープ状態の電気伝導度の変化 が分かる。導電性高分子が化学重合などで粉末状サンプルとして得られる場合には 、導電性高分子粉末をプレスして固めてペレット状とし、このペレット状導電性高分子 を上記と同様にしてドーパントとなるイオンを含む電解液中で一定電位に一定時間 保つことによってドープ状態、および脱ドープ状態の導電性高分子ペレットを作製す る。 4端子法などによりこれらのペレットの電気伝導度を測定すれば、ドープ状態と脱 ドープ状態における導電性高分子の電気伝導度の変化が分かる。たとえば、 0. lm olZLのモノマーと ImolZLのテトラェチルアンモ-ゥムテトラフルォロボレートを含 むプロピレンカーボネート溶液中において SnOガラスを RE5参照極に対して + 1. 2 A conductive polymer film is formed on the conductive substrate 2 and the produced conductive substrate with the conductive polymer film is used together with a reference electrode (for example, RE5 reference electrode manufactured by BAS Co., Ltd.) and a counter electrode (for example, a platinum plate) as a dopant. Soaked in an electrolyte solution containing ions (for example, propylene carbonate solution of ImolZL tetrachloroammotetrafluoroborate). In this electrolyte solution, a conductive substrate with a conductive polymer film is formed. Doping of molecules Performs sufficient doping of the conductive polymer film by maintaining the potential at a potential for a certain period of time. Next, the conductive substrate with the conductive polymer film is taken out of the solution, and the conductive polymer film is peeled off from the conductive substrate, washed with methanol, and dried. The electrical conductivity of the obtained conductive polymer film in the doped state is measured by a general electrical conductivity measurement method such as the 4-terminal method. Next, the conductive polymer film is electrolytically polymerized in the same manner as above, and this is kept at a potential at which de-doping occurs in the electrolyte for a certain period of time, thereby producing a de-doped conductive polymer film. The electrical conductivity of the conductive polymer film in the doped state is measured. Changes in the electrical conductivity between the doped state and the undoped state of the conducting polymer by these two electrical conductivity measurements I understand. When the conductive polymer is obtained as a powder sample by chemical polymerization or the like, the conductive polymer powder is pressed and solidified into a pellet, and this pellet-like conductive polymer is used as a dopant in the same manner as described above. Conductive polymer pellets in a doped state and in a dedope state are prepared by maintaining a constant potential for a certain period of time in an electrolyte containing ions. If the electrical conductivity of these pellets is measured by the 4-terminal method, etc., the change in the electrical conductivity of the conductive polymer in the doped state and in the undoped state can be seen. For example, in a propylene carbonate solution containing 0.1 lmol ZL monomer and ImolZL tetraethylammonium tetrafluoroborate, SnO glass is +1.2 relative to the RE5 reference electrode.
2  2
Vに 120秒保つことにより電解重合したポリ 3—(4 フルオロフェ -ル)チォフェン は、 lmol/Lのテトラェチルアンモ-ゥムテトラフルォロボレートのプロピレンカーボ ネート溶液中で、 RE5参照極に対し電位を + 1. 0Vに 600秒間保てば、十分な Pド ープがされた状態となる。また、 RE5参照極に対して—1. 0Vに 600秒間保てば十 分な脱ドープ状態となり、 2. 0Vに 600秒間保てば十分な Nドープがされた状態に なる。  Poly 3- (4 fluorophenyl) thiophene electropolymerized by holding at V for 120 seconds was added to the RE5 reference electrode in a lmol / L tetraethylammonium tetrafluoroborate propylene carbonate solution. On the other hand, if the potential is kept at + 1.0V for 600 seconds, sufficient P-doping is achieved. In addition, if it is maintained at −1.0V for 600 seconds with respect to the RE5 reference electrode, it will be in a sufficiently undoped state, and if it is maintained at 2.0V for 600 seconds, it will be in a sufficiently N-doped state.
[0026] また、本発明に使用する導電性高分子は、電気伝導度の高いものが、キャパシタの 内部抵抗を低くする観点力も好ましい。このためにはドープ状態で 0. 01S/cm以上 (より好適には 1. OSZcm以上)の導電率を示す導電性高分子を用いることが好まし V、が、たとえば上記例示したポリチォフェン誘導体は問題なく使用することができる。 なお、上記ドープ状態での導電率は、たとえば、上述した方法を用いて測定すること ができる。  [0026] The conductive polymer used in the present invention has a high electrical conductivity, and the viewpoint power to lower the internal resistance of the capacitor is also preferable. For this purpose, it is preferable to use a conductive polymer exhibiting a conductivity of 0.01 S / cm or more (more preferably 1. OSZ cm or more) in a doped state V, but for example, the polythiophene derivatives exemplified above are problematic. It can be used without. The conductivity in the doped state can be measured using, for example, the method described above.
[0027] 本発明に好ましく用いられる両極性の導電性高分子のドーパントとしては、それが 両極性の導電性高分子の伝導度や熱安定性、ドープ,脱ドープの容量、安定性、速 度に与える影響を考慮して選択される。本発明の両極性の導電性高分子に好ましく 用いられるドーパントとしては、 p トルエンスルホン酸イオン、ベンゼンスルホン酸ィ 才ン、アントラキノン 2—スノレホン酸ィ才ン、トリイソプロピノレナフタレンスノレホン酸ィ オン、ポリビニルスルホン酸イオン、ドデシルベンゼンスルホン酸イオン、アルキルス ルホン酸イオン、 n—プロピルリン酸イオン、過塩素酸イオン、四フッ化ホウ酸イオンな どを例示することができる。ドーパントは、その大きさの小さい方がドープ '脱ドープの 性能に優れている傾向が見られ、中でも p—トルエンスルホン酸、ベンゼンスルホン 酸または四フッ化ホウ酸イオンが好ましい。 [0027] The bipolar conductive polymer dopant preferably used in the present invention includes the conductivity and thermal stability of the bipolar conductive polymer, the capacity of doping and dedoping, the stability, and the speed. Selected in consideration of the effect on The dopants preferably used in the bipolar conductive polymer of the present invention include p-toluenesulfonate ion, benzenesulfonate, anthraquinone 2-sulphonate, triisopropinorenaphthalene sulphonate, Examples thereof include polyvinyl sulfonate ions, dodecyl benzene sulfonate ions, alkyl sulfonate ions, n-propyl phosphate ions, perchlorate ions, and tetrafluoroborate ions. The smaller the dopant, the smaller the doping There is a tendency to have excellent performance, and p-toluenesulfonic acid, benzenesulfonic acid or tetrafluoroborate ion is particularly preferable.
[0028] 本発明における両極性の導電性高分子は、容易に薄く均一な導電性高分子膜が 作製でき、膜厚の制御も可能であるとの理由から、有機溶媒の存在下における電解 重合により得られることが好ましい。電解重合では、たとえば、モノマーを支持電解質 と共に溶媒に溶解し、陽極酸化することにより脱水素重合する方法で、陽極上に両 極性の導電性高分子を析出させることができる。一般的に、ポリマーの酸化還元電 位はモノマーに比べて低いため、重合過程でさらにポリマー骨格の酸ィ匕が進み、そ れに伴って支持電解質であるァ-オンがドーパントとしてポリマー中に取り込まれる。 電解重合においては、こうしたメカニズムにより、後でドーパントをカ卩えなくても、導電 性を有するポリマーが得られるという利点がある。また後述するように、電解重合に炭 素電極を用いその表面に導電性高分子を析出させることは、そのような電極をそのま まレドックスキャパシタなどの分極電極として使用できるので好ましい。  [0028] The bipolar conductive polymer in the present invention can be easily prepared into a thin and uniform conductive polymer film, and the film thickness can be controlled. Therefore, the electropolymerization in the presence of an organic solvent is possible. It is preferable that it is obtained by. In the electropolymerization, for example, a bipolar conductive polymer can be deposited on the anode by a method in which a monomer is dissolved in a solvent together with a supporting electrolyte and anodized to perform dehydrogenation polymerization. In general, the oxidation-reduction potential of a polymer is lower than that of a monomer, so that the acid of the polymer skeleton further progresses during the polymerization process, and as a result, the support electrolyte, ion, is incorporated into the polymer as a dopant. It is. Electrolytic polymerization has the advantage that a conductive polymer can be obtained by such a mechanism without having to add a dopant later. Further, as will be described later, it is preferable to use a carbon electrode for electrolytic polymerization and to deposit a conductive polymer on the surface thereof, because such an electrode can be used as it is as a polarizing electrode for a redox capacitor or the like.
[0029] ァ-オン成分および Zまたはカチオン成分がドーパントとしてポリマー中に取り込ま れる支持電解質としては、たとえば、アルキルスルホン酸ナトリウム、 p—トルエンスル ホン酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、トリイソプロピルナフタレンス ルホン酸ナトリウム、安息香酸ナトリウム、ドデシル硫酸ナトリウム、 n—プロピルリン酸 エステル、イソプロピルリン酸エステル、 n—ブチルリン酸エステル、 n キシルリン 酸エステル、ポリスチレンスルホン酸ナトリウム、ポリビュルスルホン酸ナトリウム、過塩 素酸テトラ n—ブチルアンモ-ゥム、四フッ化ホウ素テトラェチルアンモ-ゥム、四フッ 化ホウ素テトラー n—プチルアンモ -ゥムなどが挙げられる。中でも、容易に入手可能 なイオン性液体とァ-オン成分が共通である、 p—トルエンスルホン酸ナトリウム、四フ ッ化ホウ素テトラェチルアンモ-ゥム、四フッ化ホウ素テトラー n—ブチルアンモ -ゥム などが好ましい。  [0029] Examples of supporting electrolytes in which a cation component and a Z or cation component are incorporated into a polymer as a dopant include sodium alkylsulfonate, sodium p-toluenesulfonate, sodium dodecylbenzenesulfonate, triisopropylnaphthalene. Sodium sulfonate, sodium benzoate, sodium dodecyl sulfate, n-propyl phosphate ester, isopropyl phosphate ester, n-butyl phosphate ester, n xyl phosphate ester, sodium polystyrene sulfonate, sodium polybutyl sulfonate, perchloric acid Examples include tetra n-butyl ammonium, boron tetrafluoride tetraethyl ammonium, and boron tetrafluoride tetra n-butyl ammonium. Among these, readily available ionic liquids and key components are common, such as sodium p-toluenesulfonate, tetraethylammonium tetrafluoride, tetra-n-butylammonium tetrafluoride. Are preferred.
[0030] また、本発明における両極性の導電性高分子は、イオン性液体中で重合するように してもよい。これにより、予めイオン性液体を含む両極性の導電性高分子 (後述)を作 製することができる。  [0030] The bipolar conductive polymer in the present invention may be polymerized in an ionic liquid. As a result, a bipolar conductive polymer (described later) containing an ionic liquid can be produced in advance.
[0031] 本発明の電気化学素子に用いられる電解質は、イオン性液体を含むことを特徴と する。ここで、本明細書における「イオン性液体」とは、イオンのみ力も構成されている にもかかわらず常温で液体であるものを指し、イミダゾリゥムなどのカチオンと適当な ァ-オンの組み合わせで構成される。このようなイオン性液体は難燃性、不揮発性で あるため、電解質がイオン性液体を含むことで、通常の有機溶媒のみからなる電解質 を用いた場合と比較して、耐久性および安全性に優れた電気化学素子を実現するこ とができる。また、イオン性液体はイオンのみ力もなる液体であり、イオン濃度が高い ため、イオン性液体を含む電解質を用いた電気化学素子は、ドープ'脱ドープ容量、 応答性が高くなるという利点がある。さらに、イオン性液体は電位窓が広い (耐電圧性 が高い)ため、イオン性液体を含む電解質を用いることで、高耐電圧の電気化学素 子を作製することができるという利点もある。 [0031] The electrolyte used in the electrochemical device of the present invention includes an ionic liquid. To do. As used herein, the term “ionic liquid” refers to a liquid that is liquid at room temperature even though only ionic forces are formed, and is composed of a combination of a cation such as imidazolium and an appropriate ion. The Since such an ionic liquid is flame retardant and non-volatile, the electrolyte contains an ionic liquid, so that durability and safety are improved compared to the case of using an electrolyte composed of only an ordinary organic solvent. An excellent electrochemical device can be realized. In addition, since the ionic liquid is a liquid that only has ions and has a high ion concentration, an electrochemical element using an electrolyte containing the ionic liquid has an advantage of high doping and dedoping capacity and responsiveness. Furthermore, since the ionic liquid has a wide potential window (high withstand voltage), there is an advantage that an electrochemical element having a high withstand voltage can be produced by using an electrolyte containing the ionic liquid.
[0032] 本発明に好適に用いられるイオン性液体を構成するカチオンとしては、イミダゾリウ ムカチオン、ピリジニゥムカチオン、ピロリジゥムカチオン、アンモニゥムカチオン、トリ ァジン誘導体カチオンなどを例示することができる力 これらに限定されるものではな V、。中でもイミダゾリウムカチオンは使 、易さの観点力も好ましく用いられる。  [0032] Examples of the cation constituting the ionic liquid preferably used in the present invention include an imidazolium cation, a pyridinium cation, a pyrrolidinium cation, an ammonium cation, and a triazine derivative cation. Force V, not limited to these. Among them, the imidazolium cation is preferably used from the viewpoint of ease of use.
[0033] イオン性液体を構成するァ-オン成分としては、 Br―、 A1C1―、 PF―、 NO―、 R NO—  [0033] The key components that make up the ionic liquid are Br-, A1C1-, PF-, NO-, R NO-
4 6 3 A 3 4 6 3 A 3
、 NH CHR COO—、 (CF SO ) N―、 SO 2などを例示することができるが、これに限NH CHR COO—, (CF 2 SO 4) N—, SO 2 etc.
2 A 3 2 2 4 2 A 3 2 2 4
定されるものではない。ここで、 R  It is not specified. Where R
Aは脂肪族炭化水素基、脂環式炭化水素基、芳香 族炭化水素基、エーテル基、エステル基、ァシル基などを含む置換基を示し、フッ素 を含んでいてもよい。  A represents a substituent containing an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, an ether group, an ester group, an acyl group or the like, and may contain fluorine.
[0034] さらに、カルボキシラト(一COO )を含むァ-オンである、 R COO—、― OOCR CO  [0034] In addition, R COO—, —OOCR CO, which is a caron containing carboxylate (one COO)
B B B B
OH、 "OOCR CCOO—、 NH CHR COO— (ここで、 Rは脂肪族炭化水素基、脂環 OH, “OOCR CCOO—, NH CHR COO— (where R is an aliphatic hydrocarbon group, alicyclic
B 2 B B  B 2 B B
式炭化水素基、芳香族炭化水素基、エーテル基、エステル基、ァシル基などを含む 置換基を示し、フッ素を含んでいてもよい。)は、本発明に好ましく用いられる。  The substituent which contains a formula hydrocarbon group, an aromatic hydrocarbon group, an ether group, an ester group, an acyl group, etc. is shown, and may contain fluorine. ) Is preferably used in the present invention.
[0035] また、スルホン酸ァ-オン(一SO―)を含むァ-オンである、 R SO―、 R OSO—(こ  [0035] In addition, R SO-, R OSO-
3 C 3 C 3 こで、 Rは脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、エーテル 3 C 3 C 3 where R is an aliphatic hydrocarbon group, alicyclic hydrocarbon group, aromatic hydrocarbon group, ether
C C
基、エステル基、ァシル基などを含む置換基を示し、フッ素を含んでいてもよい。)、 ベンゼンスルホン酸、トルエンスルホン酸などは、本発明に好ましく用いられる。  A substituent containing a group, an ester group, an acyl group or the like is shown, and may contain fluorine. ), Benzenesulfonic acid, toluenesulfonic acid and the like are preferably used in the present invention.
[0036] また、さらに、 BF—を用いると、低粘度のイオン性液体が得られ、本発明に好ましく 用!/、ることができる。 [0036] Further, when BF- is used, an ionic liquid having a low viscosity is obtained, which is preferable in the present invention. You can!
[0037] 本発明におけるイオン性液体は、ドープ'脱ドープの繰り返し安定性に優れている 理由から、上述した中でも BF—ァ-オン、 PF—ァ-オンまたはスルホン酸ァ-オンを  [0037] The ionic liquid in the present invention is excellent in the repeated stability of doping and undoping, and therefore, among the above, BF-on, PF-on or sulfonic acid-on is used.
4 6  4 6
含むイオン性液体であるのが好ま U、。  U, which is preferably an ionic liquid containing.
[0038] 本発明に好ましく用いられるイオン性液体として、具体的には、 1ーェチルー 3—メ チルイミダゾリゥムテトラフルォロボレート、 1ーブチルー 3—メチルイミダゾリゥムテトラ フノレオロボレート、 1ーェチノレー 3—メチノレイミダゾリウムへキサフノレオ口ホスフェート、 1ーブチルー 3—メチルイミダゾリゥムへキサフルォロホスフェート、 1ーェチルー 3— メチルイミダゾリゥムトシレート、 1—ブチル 3—メチルイミダゾリゥムトシレートから選 ばれる少なくとも 1つが挙げられる。中でも、ドープ'脱ドープによる蓄積電荷が大きく 、ドープ '脱ドープの繰り返し安定性に優れている理由から、 1—ェチル—3—メチル イミダゾリゥムテトラフルォロボレートおよび 1ーブチルー 3—メチルイミダゾリゥムテトラ フルォロボレートをイオン性液体として用いるのが好まし 、。  [0038] Specific examples of ionic liquids preferably used in the present invention include 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium tetrafluororeborate, 1-ethinoleo. At least selected from 3-methinoreimidoxalium hexaphleoleophosphate, 1-butyl-3-methylimidazole hexafluorophosphate, 1-ethyl-3-ethyl imidazolium tosylate, 1-butyl 3-methylimidazolium tosylate One is mentioned. Among them, 1-ethyl-3-methylimidazole tetrafluoroborate and 1-butyl-3-methylimidazolium are used because of the large accumulated charge due to doping and undoping and excellent repeat stability of doping and undoping. It is preferable to use mutetrafluoroborate as the ionic liquid.
[0039] イオン性液体は、両極性の導電性高分子に対して、 1: 3〜1: 10000の比率となる ように含有されるのが好ましぐ 1 : 5〜1: 100の比率となるように含有されるのがより 好ましい。当該イオン性液体が両極性の導電性高分子に対して 1: 10000未満であ ると、イオン性液体の割合が少な過ぎてドープ'脱ドープ性能の向上に寄与できな 、 傾向にあるためであり、またイオン性液体が両極性の導電性高分子に対して 1: 3を 超えると、導電性高分子膜の強度が弱くなる問題があるためである。  [0039] It is preferable that the ionic liquid is contained in a ratio of 1: 3 to 1: 10000 with respect to the bipolar conductive polymer. The ratio of 1: 5 to 1: 100 is preferable. More preferably, it is contained. If the ionic liquid is less than 1: 10000 with respect to the bipolar conductive polymer, the proportion of the ionic liquid is too small to contribute to the improvement of the doping and dedoping performance. Moreover, if the ionic liquid exceeds 1: 3 with respect to the bipolar conductive polymer, there is a problem that the strength of the conductive polymer film is weakened.
[0040] 本発明に好ましく用いられるイオン性液体は、公知の方法を用いて、上記のァ-ォ ンとカチオンを組み合わせることで合成することができる。具体的な合成方法としては 、ァ-オン交換法、酸エステル法、中和法などを挙げることができる。  [0040] The ionic liquid preferably used in the present invention can be synthesized by combining the above-mentioned ions and cations using a known method. Specific examples of the synthesis method include a key exchange method, an acid ester method, and a neutralization method.
[0041] 本発明に用いられる電解質は、イオン性液体を含んで ヽるのであれば、イオン性液 体のみから構成されて 、てもよ 、し、イオン性液体と有機溶媒との混合物であっても よいが、イオン性液体と有機溶媒との混合物を電解質として用いることで、適度なバ ランスで高イオン濃度、低粘度を実現できるため、これを電解液として用いることで非 常にドープ'脱ドープ容量、応答速度を稼ぐことができ、好ましい。  [0041] The electrolyte used in the present invention may be composed only of an ionic liquid as long as it contains an ionic liquid, and may be a mixture of an ionic liquid and an organic solvent. However, by using a mixture of an ionic liquid and an organic solvent as an electrolyte, a high ion concentration and a low viscosity can be realized with an appropriate balance. Doping capacity and response speed can be increased, which is preferable.
[0042] 前記混合物に用いられる有機溶媒としては、たとえば、ァセトニトリル、プロピレン力 ーボネート、エチレンカーボネート、 γ ブチルラタトンなど、当分野において従来よ り広く用いられてきた有機溶媒を特に制限されることなく用いることができる。中でも、 様々のイオン性液体と任意の割合でよく混合し、混合液の粘度が低くなると!、う理由 から、ァセトニトリルを用いることが好ましい。 [0042] Examples of the organic solvent used in the mixture include acetonitrile, propylene power, and the like. Organic solvents that have been widely used in the art, such as carbonate, ethylene carbonate, and γ-butyllatatone, can be used without particular limitation. Above all, when it mixes with various ionic liquids at an arbitrary ratio and the viscosity of the liquid mixture decreases! For this reason, it is preferable to use acetonitrile.
[0043] 電解質をイオン性液体と有機溶媒の混合物とする場合、その混合比率は特に制限 されるものではないが、上述したように有機溶媒としてァセトニトリル、プロピレンカー ボネート、エチレンカーボネート、 y ブチルラタトンの中力 選ばれる少なくともいず れカを用いる場合、有機溶媒:イオン性液体 = 1: 3〜10: 1 (体積比)であるのが好ま しぐ 1 : 3〜3 : 1であるのがより好ましい。イオン性液体の有機溶媒に対する体積比 1 : 10未満であると、イオン濃度が薄くなり、ドープ'脱ドープに有利でなくなる傾向にあ るためであり、また、イオン性液体の有機溶媒に対する体積比が 3 : 1を超えると、混 合液の粘度が高くなり、電気伝導度が低くなつてしまう傾向にあるためである。  [0043] When the electrolyte is a mixture of an ionic liquid and an organic solvent, the mixing ratio is not particularly limited, but as described above, among organic solvents such as acetonitrile, propylene carbonate, ethylene carbonate, and y-butyllatatone. Force When using at least one selected, organic solvent: ionic liquid = 1: 3 to 10: 1 (volume ratio) is preferred 1: 3 to 3: 1 is more preferred . If the volume ratio of the ionic liquid to the organic solvent is less than 1:10, the ion concentration tends to be low, which tends to be unfavorable for doping and dedoping, and the volume ratio of the ionic liquid to the organic solvent. If the ratio exceeds 3: 1, the viscosity of the mixed solution tends to increase and the electrical conductivity tends to decrease.
[0044] 本発明の電気化学素子において、両極性の導電性高分子力 Sイオン性液体をさらに 含むのが好ましい。ここで、イオン性液体を含む両極性の導電性高分子は、当該導 電性高分子に後からイオン性液体を含浸させることによって作製されてもよいし、また 、当該導電性高分子の重合過程からイオン性液体を共存させることによって作製さ れてもよい。なお、両極性の導電性高分子に含まれるイオン性液体としては、上述し たものを特に制限なく用いることができる。このイオン性液体を構成するカチオン成分 ゃァ-オン成分は、両極性の導電性高分子のドーパントとなり得る成分であってもよ ぐまた導電性高分子のドーパントとなり得ない成分であってもよい。導電性高分子の ドーパントとならない場合であっても、導電性高分子の中に含まれる (導電性高分子 と共存する)ことは可能である。このように、イオン性液体をさらに含む両極性の導電 性高分子を用いることで、より一層電荷蓄積、放出能力の向上された電気化学素子 を実現することができる。  [0044] The electrochemical device of the present invention preferably further comprises a bipolar conductive polymer force S ionic liquid. Here, the bipolar conductive polymer containing the ionic liquid may be produced by impregnating the conductive polymer with the ionic liquid later, or polymerization of the conductive polymer. It may be produced by coexisting an ionic liquid from the process. As the ionic liquid contained in the bipolar conductive polymer, those described above can be used without particular limitation. The cationic component constituting the ionic liquid may be a component that can be a dopant for a bipolar conductive polymer or a component that cannot be a dopant for a conductive polymer. . Even if it is not a dopant for a conductive polymer, it can be contained in the conductive polymer (coexist with the conductive polymer). As described above, by using a bipolar conductive polymer further containing an ionic liquid, an electrochemical device having further improved charge storage and release capability can be realized.
[0045] イオン性液体を構成するカチオン成分ゃァニオン成分は、両極性の導電性高分子 のドーパントとなり得る成分である場合、両極性の導電性高分子の脱ドープ反応が起 きた場合でも、両極性の導電性高分子に対して有効にドーパントとなり得るァ-オン 成分および Zまたはカチオン成分が常に導電性高分子の近傍に存在する状態を実 現することが可能となる。したがって、イオン性液体中でドープ '脱ドープ反応を実施 し、さらにその際、イオン性液体を構成するァ-オン成分を両極性の導電性高分子 のドーパントとなり得る成分としておくことは、ドープ '脱ドープ反応の繰り返し安定性 の向上に著しい効果をもたらすものとなる。 [0045] The cation component or the anion component constituting the ionic liquid is a component that can serve as a dopant for a bipolar conductive polymer. Even when a dedoping reaction of the bipolar conductive polymer occurs, It is realized that the ion component and the Z or cation component, which can be effective dopants for the conductive polymer, are always present in the vicinity of the conductive polymer. It becomes possible to show. Therefore, it is important to dope 'de-doping reaction in ionic liquid, and to make the ion component that constitutes the ionic liquid as a component that can be a dopant of a bipolar conductive polymer. This will have a significant effect on improving the repeated stability of the dedoping reaction.
[0046] なお、本発明の電気化学素子でドープ'脱ドープ反応を繰り返した後では、両極性 の導電性高分子のドーパントとイオン性液体を構成するァ-オン成分および Zまた はカチオン成分の一部とが、共通成分であるイオン性液体 導電性高分子複合体 が形成される。すなわち、ドープ '脱ドープ反応の開始時点では、両極性の導電性高 分子のドーパントとイオン性液体を構成するァ-オン成分および Zまたはカチオン成 分とが必ずしも同一である必要はないが、繰り返しドープ '脱ドープ反応が進行した 後の時点では、少なくともイオン性液体を構成するァ-オン成分および Zまたはカチ オン成分の一部が両極性の導電性高分子のドーパントとして取り込まれ、イオン性液 体を構成するァ-オン成分、カチオン成分および導電性高分子のドーパントの少なく とも一部が同一の成分を有することになる。無論、たとえば四フッ化ホウ酸イオン (BF  [0046] After repeating the doping and dedoping reaction in the electrochemical device of the present invention, the ionic component and the Z or cation component of the ionic liquid constituting the bipolar conductive polymer dopant and Part of the ionic liquid conductive polymer composite, which is a common component, is formed. That is, at the start of the doping and dedoping reaction, the bipolar conductive polymer dopant and the ionic component and the Z or cation component of the ionic liquid are not necessarily the same, but repeatedly. At the time after the doping and de-doping reaction has proceeded, at least a part of the ionic component and the Z or cation component constituting the ionic liquid is incorporated as a dopant of the bipolar conductive polymer, and the ionic liquid At least a part of the ion component, the cation component, and the conductive polymer dopant constituting the body have the same component. Of course, for example, tetrafluoroborate ion (BF
4一)などを用いて最初力もァ-オン成分および/またはカチオン成分とドーパントを同 一の成分とすることがより好ま U 、。 4) It is more preferable to use the same force as the first component and / or the cation component and the dopant.
[0047] また本発明では、イオン性液体を含む有機溶媒中で電解重合した両極性の導電 性高分子を含む電解重合膜と、電極とからなる電極複合体と、イオン性液体を含む 電解質とを組み合わせた電気化学素子としてもよい。この場合、ドープ '脱ドープ反 応を実施し、さらにその際、イオン性液体を構成するァ-オン成分および Zまたは力 チオン成分を両極性の導電性高分子のドーパントになり得る成分としておくことは、ド ープ ·脱ドープ反応の繰り返し安定性の向上に著 U、効果をもたらすものとなる。  [0047] Further, in the present invention, an electropolymerized film containing an electroconductive polymer having a bipolar polarity electropolymerized in an organic solvent containing an ionic liquid, an electrode composite comprising the electrode, and an electrolyte containing the ionic liquid, It is good also as an electrochemical element which combined. In this case, the doping and dedoping reactions should be carried out, and at that time, the ionic component and the Z or force thione component constituting the ionic liquid should be set as components capable of becoming a bipolar conductive polymer dopant. This significantly improves the repeated stability of the doping and dedoping reactions.
[0048] 本明細書中でいう「電気化学素子」は、導電性高分子のドープ,脱ドープ反応を繰 り返し利用する素子全般を指し、レドックスキャパシタなどのキャパシタ、電池、エレク トロクロミック素子、センサーなどを包含する。中でも、本発明の電気化学素子は、レド ックスキャパシタ(タイプ IIIレドックスキャパシタ)で実現されるのが好まし!/、。  [0048] The term "electrochemical element" in the present specification refers to all elements that repeatedly use conductive polymer doping and dedoping reactions, and includes capacitors such as redox capacitors, batteries, electrochromic elements, Includes sensors and the like. In particular, the electrochemical device of the present invention is preferably realized by a redox capacitor (type III redox capacitor)!
[0049] 本発明の電気化学素子は、たとえば、対向する 2つの電極と、該電極間に挟まれた イオン性液体を含む電解質とを備え、該電極の少なくとも表面には、両極性の導電 性高分子が前記電解質に接するように存在するような構造にて実現されることが、好 ましい。 [0049] The electrochemical device of the present invention includes, for example, two opposing electrodes and an electrolyte containing an ionic liquid sandwiched between the electrodes, and at least the surface of the electrode has a bipolar conductive property. It is preferable to realize the structure in which the conductive polymer exists so as to be in contact with the electrolyte.
[0050] 図 1は、本発明の電気化学素子の好ましい一例であるレドックスキャパシタ 1の構成 を模式的に示す図である。ここで、レドックスキャパシタとは、擬似容量を利用して、電 気二重層キャパシタの容量拡大をしたキャパシタである。本発明のレドックスキャパシ タは、電気工ネルギの貯蔵と放出に、電極材料の酸化還元、電気二重層における充 放電、電極表面でのイオンの脱吸着の全てあるいは一部を利用するものであり、金 属酸化物電極系、可逆レドックス溶液系、アンダーポテンシャノレ系などを含めた電気 化学キャパシタの 1種である。一般的に、活物質レベルで容量密度 120WhZkg、出 力密度が 20kwZkg程度以上で、数秒以内に高速度充放電可能な電気化学キャパ シタが開発されている。  FIG. 1 is a diagram schematically showing a configuration of a redox capacitor 1 which is a preferred example of the electrochemical device of the present invention. Here, the redox capacitor is a capacitor obtained by expanding the capacitance of the electric double layer capacitor by using a pseudo capacitance. The redox capacitor of the present invention uses all or part of oxidation / reduction of an electrode material, charge / discharge in an electric double layer, and desorption of ions on the electrode surface for storage and release of electric energy. It is a type of electrochemical capacitor including metal oxide electrode systems, reversible redox solution systems, and underpotential chanore systems. In general, an electrochemical capacitor has been developed that has a capacity density of 120 WhZkg at the active material level, an output density of about 20 kwZkg or more, and can be charged and discharged at high speed within a few seconds.
[0051] 図 1に示す例のレドックスキャパシタ 1は、たとえば、 2枚の板状の電極 2, 3をセパレ ータ 4を間に介して配置してなり、電極 2, 3にのみそれぞれ電極素子 5, 6を当接させ た構造を備える。電極 2、セパレータ 4、電極 3で構成される積層構造体は、電極素子 5, 6が互いに接触しないようにガスケット 7で電極素子 5, 6間に固定される。  [0051] The redox capacitor 1 of the example shown in FIG. 1 includes, for example, two plate-like electrodes 2 and 3 arranged with a separator 4 interposed therebetween, and each of the electrode elements 2 and 3 is an electrode element. It has a structure where 5 and 6 are in contact. The laminated structure composed of the electrode 2, the separator 4, and the electrode 3 is fixed between the electrode elements 5 and 6 by the gasket 7 so that the electrode elements 5 and 6 do not contact each other.
[0052] 電極 2, 3を形成する材料としては、レドックスキャパシタ用として用いることができる 限りにおいては、特に素材を限定されるものではない。たとえば、両極性の導電性高 分子のみで形成された電極、炭素材料と両極性の導電性高分子との複合材料電極 、金属材料と両極性の導電性高分子との複合材料電極、金属材料と炭素材料およ び両極性の導電性高分子との複合材料電極などを用いることができる。このように、 本発明においては、電極の少なくとも表面に上述した両極性の導電性高分子力 電 解質に接するように存在してなるように実現されることが、好ま 、。  [0052] The material for forming the electrodes 2 and 3 is not particularly limited as long as it can be used for a redox capacitor. For example, an electrode formed only of a bipolar conductive polymer, a composite electrode of a carbon material and a bipolar conductive polymer, a composite electrode of a metal material and a bipolar conductive polymer, a metal material And a composite material electrode of carbon material and a bipolar conductive polymer can be used. Thus, in the present invention, it is preferable that at least the surface of the electrode be realized so as to be in contact with the above-described bipolar conductive polymer force electrolyte.
[0053] 炭素材料と両極性の導電性高分子との複合材料電極は、たとえば、エタノールゃメ タノール、メチルピロリドンなどの有機溶媒に、電極材料である両極性の導電性高分 子と炭素材料と、さらに結着剤を加えて分散液とし、これを金属集電体の表面に塗布 した後乾燥することにより作製することができる。結着剤としてはポリテトラフルォロェ チレン、ポリフッ化ビ-リデンなどのフッ素榭脂が好ましく用いられる。結着剤の前記 電極材料に対する使用量は 5〜20重量%程度であることが好ましい。前記金属集電 体としては、アルミニウム、ニッケル、ステンレス、チタン、タンタルなどの金属が好まし く用いられ、これらの金属に金や白金メッキを施したものでもよぐ高分子フィルムに 金属層を形成したものでもよい。また、前記金属集電体は圧延箔、パンチング箔、ェ ツチド箔、エキスパンドメタル箔などのかたちで用いられることがより好ましい。分極電 極を、集電体とせずシート状とする場合には、導電性高分子 Z炭素複合材料を上記 結着剤とともに混合し、さらに潤滑剤を加えてペースト状としてから、押出し成形して、 これを圧延ロールで圧延して電極シートとすることができる。 [0053] The composite material electrode of the carbon material and the bipolar conductive polymer is formed by using, for example, an organic solvent such as ethanol ethanol and methyl pyrrolidone and the bipolar conductive polymer as the electrode material and the carbon material. Further, a binder can be added to form a dispersion, which can be applied to the surface of the metal current collector and then dried. As the binder, fluorine resin such as polytetrafluoroethylene and polyvinylidene fluoride is preferably used. The amount of binder used with respect to the electrode material is preferably about 5 to 20% by weight. Metal current collector As the body, metals such as aluminum, nickel, stainless steel, titanium, and tantalum are preferably used, and these metals may be gold or platinum plated, or may be a polymer film formed with a metal layer. . The metal current collector is more preferably used in the form of a rolled foil, a punching foil, an etched foil, an expanded metal foil or the like. When the polarizing electrode is not a current collector but in the form of a sheet, the conductive polymer Z-carbon composite material is mixed with the above binder, and a lubricant is added to form a paste, which is then extruded. These can be rolled with a rolling roll to form an electrode sheet.
[0054] また、両極性の導電性高分子の重合液に炭素材料を分散させてぉ 、て化学重合 を行い、炭素材料の表面を両極性の導電性高分子によって被覆する方法によっても 、炭素材料と両極性の導電性高分子との複合材料電極を作製することができる。この ようにして作製した両極性の導電性高分子で被覆された炭素材料を用いて、上述と 同様に電極を作製する。  [0054] Further, carbon may be dispersed by dispersing a carbon material in a polymerization solution of a bipolar conductive polymer, followed by chemical polymerization, and coating the surface of the carbon material with a bipolar conductive polymer. A composite electrode of a material and a bipolar conductive polymer can be produced. An electrode is produced in the same manner as described above using the carbon material coated with the bipolar conductive polymer thus produced.
[0055] 炭素材料と両極性の導電性高分子との複合材料電極はまた、次のようにしても作 製することができる。まずエタノールやメタノール、メチルピロリドンなどの有機溶媒に 炭素材料および結着剤を加えて分散液とし、これを金属集電体の表面に塗布後乾 燥することにより炭素電極を作製する。次にこれを電極として用いて電解重合を行い 炭素電極の表面に導電性高分子の薄膜を形成し、炭素材料の表面に導電性高分 子が薄く被覆された構成とすることである。この方法で作製された電極は導電性高分 子の層を極めて薄くできるので、インピーダンスの低減には有益な方法である。  [0055] The composite material electrode of the carbon material and the ambipolar conductive polymer can also be produced as follows. First, a carbon material and a binder are added to an organic solvent such as ethanol, methanol, or methylpyrrolidone to form a dispersion, which is applied to the surface of a metal current collector and then dried to produce a carbon electrode. Next, electrolytic polymerization is performed using this as an electrode to form a conductive polymer thin film on the surface of the carbon electrode, and the surface of the carbon material is coated with a thin conductive polymer. An electrode produced by this method is a useful method for reducing impedance because the conductive polymer layer can be made extremely thin.
[0056] 上記炭素材料と両極性の導電性高分子との複合材料電極に用いられる炭素材料 としては、当分野において電極形成用に用いられる炭素材料であれば特に制限され るものではないが、活性炭粉末、および/またはグラフアイト粉末を含むものであるこ とが好ましい。活性炭粉末やグラフアイト粉末を添加することにより、電極抵抗の低減 と表面積の拡大とを図ることができるためである。したがって、炭素材料として、表面 積の大きなアセチレンブラックやファーネストブラックなどのカーボンブラック、細孔径 の比較的大きな活性炭粒子、粒径の比較的小さなカーボンファイバー、グラフアイト ファイバー、カーボンナノチューブなどが、特に好ましいものとして挙げられる。なお、 炭素材料は、比表面積 (液体窒素温度での窒素の吸着等温線のデータを解析して 求めた BET比表面積)の値が、 20m2Zg以上のものを用いるのが好ましい。 [0056] The carbon material used for the composite material electrode of the carbon material and the bipolar conductive polymer is not particularly limited as long as it is a carbon material used for electrode formation in this field. It is preferable to contain activated carbon powder and / or graphite powder. This is because the addition of activated carbon powder or graphite powder can reduce electrode resistance and increase surface area. Accordingly, carbon blacks such as acetylene black and furnace black having a large surface area, activated carbon particles having a relatively large pore size, carbon fibers having a relatively small particle size, graphite fibers, and carbon nanotubes are particularly preferred as the carbon material. It is mentioned as a thing. Carbon materials have a specific surface area (analysis of nitrogen adsorption isotherm data at liquid nitrogen temperature). It is preferable to use a material having a BET specific surface area value of 20 m 2 Zg or more.
[0057] 図 1に示す電極 2、セパレータ 4、電極 3の積層構造物には、上述したイオン性液体 を含む (好ましくは、イオン性液体と有機溶媒との混合物である)電解質が含浸される 。なお、セパレータ 4としては、キャパシタ用として従来より用いられてきたものを特に 制限されず用いることができ、多孔質のものを用いるのが好ましい。また、電極素子 5 , 6、ガスケット 7もキャパシタ用として従来より用いられてきたものを特に制限されず 用いることができる。ガスケット 7としては、電気絶縁性を有するものを用いる。 [0057] The laminated structure of the electrode 2, the separator 4, and the electrode 3 shown in FIG. 1 is impregnated with an electrolyte containing the ionic liquid described above (preferably a mixture of the ionic liquid and the organic solvent). . As the separator 4, those conventionally used for capacitors can be used without any particular limitation, and a porous one is preferably used. Further, the electrode elements 5 and 6 and the gasket 7 can be used without any particular limitation as long as they are conventionally used for capacitors. As the gasket 7, an electrically insulating material is used.
[0058] 本発明の電気化学素子の充放電方法は通常の電気二重層キャパシタと同様であ つて、一対の電極間に電圧を印加することや、電流を流すことにより行なうことが可能 であり、特に制限されるものではない。し力し、片側の電極は正極としてのみ、もう一 方の電極は負極としてのみ使用する方が、本発明の電気化学素子の寿命を大幅に 長くできる。このため、本発明の電気化学素子は、正極と負極を区別して使う極性デ バイスとして使用されるレドックスキャパシタとして実現されると、サイクル寿命を延ば すことができるため、好ましい。これは、一般的に両極性の導電性高分子においてァ ユオンまたはカチオンの一方のドープ'脱ドープのみを繰り返す方力 ァ-オンと力 チオンの両方のドープ ·脱ドープを繰り返すよりも、ドープ ·脱ドープ特性の劣化が少 ないためである。 [0058] The method of charging / discharging the electrochemical device of the present invention is the same as that of a normal electric double layer capacitor, and can be performed by applying a voltage between a pair of electrodes or passing a current. There is no particular limitation. However, if the electrode on one side is used only as a positive electrode and the other electrode is used only as a negative electrode, the lifetime of the electrochemical device of the present invention can be greatly prolonged. For this reason, the electrochemical device of the present invention is preferably realized as a redox capacitor used as a polar device that distinguishes between a positive electrode and a negative electrode, since the cycle life can be extended. In general, this is the direction of repeating only union or deionization of either a cation or a cation in a bipolar conductive polymer. This is because there is little deterioration of the dedoping property.
[0059] また、本発明の電気化学素子は、適正な電圧範囲で、過充電状態にならないよう にして使用することがサイクル寿命を延ばす観点から好ましい。これは、ドーパントを 過剰にドーピングすると、両極性の導電性高分子が強く酸ィ匕または還元されるため、 両極性の導電性高分子自体が劣化し、ドープ '脱ドープを繰り返す電極としての機 能が低下するからである。  [0059] The electrochemical device of the present invention is preferably used in an appropriate voltage range so as not to be overcharged from the viewpoint of extending the cycle life. This is because when the dopant is excessively doped, the bipolar conductive polymer is strongly oxidized or reduced, so that the bipolar conductive polymer itself deteriorates and functions as an electrode that repeats doping and dedoping. This is because the performance decreases.
[0060] 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定され るものではない。  [0060] Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
[0061] <比較例 1 >  [0061] <Comparative Example 1>
図 3に模式的に示すセルを用いて、電解重合によって、 SnOガラス上に両極性の  Using the cell schematically shown in Fig. 3, both polarities are formed on SnO glass by electrolytic polymerization.
2  2
導電性高分子であるポリ 3—(4 フルオロフェ -ル)チォフェンの膜を形成した。な お、図 3に示すセルを用いた操作は、大気中の水分、酸素の影響を排除するため、 すべて高純度アルゴンガスで置換したグローブボックス中で行った。 A film of poly-3- (4 fluorophenyl) thiophene, which is a conductive polymer, was formed. Note that the operation using the cell shown in Fig. 3 eliminates the influence of moisture and oxygen in the atmosphere. All were performed in a glove box replaced with high purity argon gas.
[0062] 電解重合溶液はモノマーとして 4 フルオロフェ-ルチオフェン 0. 1M、支持塩とし て四フッ化ホウ素テトラェチルアンモ -ゥム(テトラェチルアンモ-ゥムテトラフルォロ ボレー HTEA'BF ) ) 1Mを含むプロピレンカーボネート(PC)溶液を用いた。ここで  [0062] The electropolymerization solution was 4-fluorophenylthiophene 0.1M as a monomer and boron tetrafluoride tetraethylammonium (Tetraethylammonium tetrafluoroborate HTEA'BF) as a supporting salt. ) A propylene carbonate (PC) solution containing 1M was used. here
4  Four
使用した TEA 'BFの 1Mプロピレンカーボネート溶液は三和油化から購入したもの  The TEA 'BF 1M propylene carbonate solution used was purchased from Sanwa Oil.
4  Four
である。  It is.
[0063] 作用極としては、 3 3^11の3110ガラス板を用いた。また対極としては、 3 X 4cmの  [0063] As the working electrode, 3 3 ^ 11 3110 glass plate was used. As a counter electrode, 3 X 4cm
2  2
白金板を用いた。なお、作用極である SnOガラス板には、一面に SnOコーティング  A platinum plate was used. The SnO glass plate, which is the working electrode, has a SnO coating on one side
2 2  twenty two
を予め施してなるものを用い、この SnOコーティングした側が対極と対向するように  In order for the SnO coated side to face the counter electrode
2  2
配置した。また、参照極としては、 BAS社製 RE— 5参照電極 (AgZAg+参照極、参 照極内の溶液は過塩素酸テトラプチルアンモ -ゥム(Bu N'CIO )を 0. 1M、硝酸銀  Arranged. In addition, as a reference electrode, BAS RE-5 reference electrode (AgZAg + reference electrode, the solution in the reference electrode is 0.1 M of tetrachloramine perchlorate (Bu N'CIO), silver nitrate.
4 4  4 4
(AgNO )を 0. 01M含むァセトニトリル溶液)を用いた。この参照電極の電位は標準 (Acetonitrile solution containing 0.01M of (AgNO 3)) was used. The potential of this reference electrode is standard
3 Three
水素電極(NHE)に比べて +490mV( + 0. 49V)である。  Compared to hydrogen electrode (NHE), it is + 490mV (+ 0.49V).
[0064] 図 3に示すように、容器内に上記電解重合液を収容し、参照極と対極との間にそれ ぞれ lcmの間隔をあけて作用極を配置させた状態で、これらを電解重合液に浸漬さ せた。なお、作用極は、端辺から lcmの領域のみが電解重合液に浸漬するようにし た (すなわち、作用極の電解重合液に漬カつた面積は 3 X lcm)。この状態で、作用 極の電位を参照極に対して + 1. 2Vに 120秒間保持し、 SnOガラスの一部にポリ— [0064] As shown in FIG. 3, the electrolytic polymerization solution is accommodated in a container, and these are electrolyzed in a state in which the working electrode is arranged with an interval of lcm between the reference electrode and the counter electrode. It was immersed in the polymerization solution. The working electrode was soaked only in the region of lcm from the end side in the electrolytic polymerization solution (that is, the area of the working electrode immersed in the electrolytic polymerization solution was 3 X lcm). In this state, the potential of the working electrode is maintained at +1.2 V for 120 seconds with respect to the reference electrode for 120 seconds.
2  2
3—(4 フルオロフェ -ル)チォフェンの膜を形成した。この時点でポリ 3—(4ーフ ルォロフエ-ル)チォフェン膜は Pドープ(この場合 BFァ-オンがドープ)された状態  A film of 3- (4 fluorophenyl) thiophene was formed. At this point, the poly-3- (4-fluorophenol) thiophene film is P-doped (in this case, BF-ion doped)
4  Four
にある。次に、ポリ 3—(4 フルオロフェ -ル)チォフェンの膜が一部形成された S ηθガラス(作用極)の電位を RE— 5参照極に対して 0. 0Vに 240秒間保ち、ポリ 3 It is in. Next, the potential of the S ηθ glass (working electrode) partially formed with a poly-3- (4 fluorophenyl) thiophene film was maintained at 0.0 V with respect to the RE-5 reference electrode for 240 seconds.
2 2
一(4一フルオロフェ -ル)チォフェン膜の脱ドープを行った。  De-doping of one (4 monofluorophenyl) thiophene film was performed.
[0065] 上述のようにして形成したポリ 3—(4 フルオロフェ -ル)チォフェンの脱ドープ 膜を SnOガラス (作用極)に形成したままプロピレンカーボネートで軽く洗い流した後 [0065] After the dedope film of poly 3- (4 fluorophenyl) thiophene formed as described above was formed on SnO glass (working electrode), it was rinsed lightly with propylene carbonate.
2  2
、支持塩として TEA'BFを 1M含む PC溶液 (三和油化製)を収容した容器を用意し  Prepare a container containing a PC solution (manufactured by Sanwa Yuka) containing 1M TEA'BF as the supporting salt.
4  Four
、この溶液に上述と同様にして参照極、作用極および対極を浸漬し (作用極は端辺 力も lcmの領域のみが浸漬)、サイクリックボルタンメトリー(CV)測定を行った。 CV 測定は、ポリ 3—(4 フルオロフェ -ル)チォフェンの脱ドープ膜の自然電位から プラス側に向かって電位スイープを開始した。得られた CVを図 4に示す。図 4に示す ように、電位スイープの幅は RE— 5参照極に対して 2. lV〜 + 0. 8Vであり、電位 スイープ (掃引)速度は 25mVZsであった。 Then, the reference electrode, working electrode and counter electrode were immersed in this solution in the same manner as described above (the working electrode was immersed only in the region where the edge force was 1 cm), and cyclic voltammetry (CV) measurement was performed. CV In the measurement, a potential sweep was started from the natural potential of the dedope film of poly 3- (4 fluorophenyl) thiophene toward the positive side. Figure 4 shows the obtained CV. As shown in Fig. 4, the width of the potential sweep was 2. lV to + 0.8V relative to the RE-5 reference electrode, and the potential sweep (sweep) speed was 25 mVZs.
[0066] ここで、図 4に示す CVにおいて、横軸は、参照極の電位を OVの基準とした作用極 の電位を示し、当該グラフにおける横軸の OVは標準水素電極の +490mV( + 0. 4 9V)に相当する。また図 4における右側の上向きのピーク (横軸 OV以上の領域の、 +方向に電流の絶対値が増大する方向の電流のピーク)は Pドープ (BF—のドーピン [0066] Here, in the CV shown in Fig. 4, the horizontal axis represents the potential of the working electrode with the reference electrode potential as the standard of OV, and the horizontal axis OV in the graph represents + 490mV (+ 0. 4 9V). Also, the upward peak on the right side of Fig. 4 (the peak of the current in the direction where the absolute value of the current increases in the + direction in the region above the horizontal axis OV) is P-doped (BF- dopin
4 グ)に相当し、右側の下向きのピーク (横軸 OV以上の領域の、一方向に電流の絶対 値が増大する方向の電流のピーク)は P脱ドープ (BF—の脱ドープ)に相当する。また  4) and the downward peak on the right side (the peak of the current in the direction where the absolute value of the current increases in one direction in the region of OV or more on the horizontal axis) corresponds to P dedoping (BF− dedoping). To do. Also
4  Four
、図 4における左側の下向きのピーク(横軸 1. 5V以下の領域の、一方向に電流の 絶対値が増大する方向の電流のピーク)は Nドープ (テトラェチルアンモ -ゥムカチォ ンのドーピング)に相当し、左側の上向きのピーク (横軸 0V以上の領域の、 +方向に 電流の絶対値が増大する方向の電流のピーク)は N脱ドープ (テトラェチルアンモ- ゥムカチオンの脱ドープ)に相当する。  In Fig. 4, the downward peak on the left (the peak of the current in the direction where the absolute value of the current increases in one direction in the region below the horizontal axis of 1.5 V) is N-doped (doping of tetraethylamine-mucation) And the left upward peak (current peak in the direction where the absolute value of the current increases in the + direction in the region of 0 V or more on the horizontal axis) is N-dedoped (dedoped with tetraethylammonium cation) Equivalent to.
[0067] 図 4に示すグラフの電流値の時間積分によって算出された Pドープ.脱ドープおよ び Nドープ '脱ドープの容量は、それぞれ 0. 025Cおよび 0. 021Cであった。  [0067] The capacities of P-doped, dedope and N-doped 'undope' calculated by time integration of the current values in the graph shown in Fig. 4 were 0.025C and 0.021C, respectively.
[0068] <実施例 1 >  <Example 1>
上述と同様に SnOの一部にポリ 3—(4 フルオロフェ -ル)チォフェン膜を形成  Poly 3- (4 fluorophenyl) thiophene film formed on part of SnO as above
2  2
した。その後、 TEA'BFを 1M含む PC溶液に換えて、イオン性液体である 1—ェチ  did. After that, change to a PC solution containing 1M TEA'BF.
4  Four
ル一 3—メチルイミダゾリゥムテトラフルォロボレートとァセトニトリルを体積比 1: 1で混 合した混合液を用いた以外は、上述した比較例 1と同様にして CV測定を行い、同様 にして Pドープ ·脱ドープおよび Nドープ ·脱ドープの容量を求めたところ、それぞれ 0 . 029Cおよび 0. 024Cであった。実施例 1では、上述した比較例 1と比べて、繰り返 し安定性 (サイクル特性)が向上された。  CV measurement was performed in the same manner as in Comparative Example 1 except that a mixed solution in which 3-methylimidazole tetrafluoroborate and acetonitrile were mixed at a volume ratio of 1: 1 was used. The capacities of P-doped / dedoped and N-doped / dedope were 0.029C and 0.024C, respectively. In Example 1, repeated stability (cycle characteristics) was improved as compared with Comparative Example 1 described above.
[0069] <実施例 2> <Example 2>
上述と同様に SnOの一部にポリ 3—(4 フルオロフェ -ル)チォフェン膜を形成  Poly 3- (4 fluorophenyl) thiophene film formed on part of SnO as above
2  2
した。その後、 TEA'BFを 1M含む PC溶液に換えて、イオン性液体である 1—ェチ ルー 3—メチルイミダゾリゥムテトラフルォロボレートを用いた以外は、上述した比較例 1と同様にして CV測定を行 、、同様にして Pドープ ·脱ドープおよび Nドープ ·脱ドー プの容量を求めたところ、それぞれ 0. 003Cおよび 0. 002Cであった。実施例 2でも 、上述した比較例 1と比べて、繰り返し安定性 (サイクル特性)が向上された。 did. After that, change to a PC solution containing 1M TEA'BF. CV measurement was performed in the same manner as in Comparative Example 1 except that rho-3-methylimidazole tetrafluoroborate was used. Similarly, the capacitances of P-doped and N-doped and N-doped and dedoped were measured. Was found to be 0.003C and 0.002C, respectively. In Example 2 as well, repeatability (cycle characteristics) was improved as compared to Comparative Example 1 described above.
今回開示された実施の形態および実施例はすべての点で例示であって制限的な ものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求 の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が 含まれることが意図される。  It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

Claims

請求の範囲 The scope of the claims
[1] 両極性の導電性高分子と、イオン性液体を含む電解質とを有することを特徴とする 電気化学素子。  [1] An electrochemical element comprising a bipolar conductive polymer and an electrolyte containing an ionic liquid.
[2] 電解質がイオン性液体と有機溶媒との混合物である、請求の範囲第 1項に記載の 電気化学素子。  [2] The electrochemical element according to claim 1, wherein the electrolyte is a mixture of an ionic liquid and an organic solvent.
[3] 電解質がァセトニトリル、プロピレンカーボネート、エチレンカーボネート、 γーブチ ルラクトンの中力 選ばれる少なくともいずれ力 1つと、イオン性液体とを 1 : 3〜10: 1 の体積比で混合したものである、請求の範囲第 2項に記載の電気化学素子。  [3] The electrolyte is a mixture of at least one selected from among acetonitrile, propylene carbonate, ethylene carbonate, and γ-butyl lactone and an ionic liquid in a volume ratio of 1: 3 to 10: 1. The electrochemical element according to the second item of the range.
[4] 両極性の導電性高分子がさらにイオン性液体を含む、請求の範囲第 1項に記載の 電気化学素子。 [4] The electrochemical element according to claim 1, wherein the ambipolar conductive polymer further contains an ionic liquid.
[5] イオン性液体が BF—ァ-オン、 PF—ァ-オンまたはスルホン酸ァ-オンを含むィォ  [5] The ionic liquid contains BF—on, PF—on or sulfonic acid on.
4 6  4 6
ン性液体である、請求の範囲第 1項に記載の電気化学素子。  2. The electrochemical device according to claim 1, which is an ionic liquid.
[6] イオン性液体が 1—ェチル 3—メチルイミダゾリゥムテトラフルォロボレート、 1—ブ チルー 3—メチルイミダゾリゥムテトラフルォロボレート、 1ーェチルー 3—メチルイミダ ゾリゥムへキサフルォロホスフェート、 1ーブチルー 3—メチルイミダゾリゥムへキサフル ォロホスフェート、 1ーェチルー 3—メチルイミダゾリゥムトシレート、 1ーブチルー 3—メ チルイミダゾリゥムトシレートから選ばれる少なくとも 1つである、請求の範囲第 5項に 記載の電気化学素子。 [6] The ionic liquid is 1-ethyl 3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazole tetrafluoroborate, 1-ethyl 3-methylimidazolium hexafluorophosphate 1-butyl-3-methylimidazole hexaphosphate, 1-ethyl-3-methylimidazolium tosylate, 1-butyl-3-methylimidazolium tosylate The electrochemical element as described in.
[7] 両極性の導電性高分子が、ドープ状態と脱ドープ状態で電気伝導度が 1000倍以 上変化し、ドープ状態での導電率が 0. OlSZcm以上である、請求の範囲第 1項に 記載の電気化学素子。  [7] The electric conductivity of the ambipolar conductive polymer changes 1000 times or more in a doped state and an undoped state, and the conductivity in the doped state is not less than 0. OlSZcm. The electrochemical element as described in.
[8] 両極性の導電性高分子がポリチォフェン誘導体である、請求の範囲第 1項に記載 の電気化学素子。  8. The electrochemical element according to claim 1, wherein the bipolar conductive polymer is a polythiophene derivative.
[9] 両極性の導電性高分子力 ポリ— 3— (4—フルオロフェ -ル)チォフェン、ポリ— 3 一 (4一 t一ブチルフエ-ル)チォフェン、ポリー3—(4一トリフルォロメチルフエ-ル) チォフェン、ポリ一 3— (2, 4 ジフルオロフェ -ル)チォフェン、ポリ一 3— (2, 3, 4, 5, 6 ペンタフルォロフエ-ル)チォフェン、力も選ばれる少なくとも 1つである、請求 の範囲第 8項に記載の電気化学素子。 [9] Bipolar conductive polymer forces Poly-3 (4-fluorophenyl) thiophene, Poly-3 1 (4 tert-butylphenol) thiophene, Poly 3— (4 trifluoromethylphenol) -Le) thiophene, poly 3- (2,4 difluorophenol) thiophene, poly 3- (2, 3, 4, 5, 6 pentafluorophenol) thiophene, at least one of which force is also selected The electrochemical element according to claim 8, wherein
[10] 対向する 2つの電極と、該電極間に挟まれたイオン性液体を含む電解質とを備え、 該電極の少なくとも表面には、両極性の導電性高分子が前記電解質に接するよう に存在するものであることを特徴とする、請求の範囲第 1項に記載の電気化学素子。 [10] It includes two electrodes facing each other and an electrolyte containing an ionic liquid sandwiched between the electrodes, and at least a surface of the electrode has a bipolar conductive polymer in contact with the electrolyte The electrochemical device according to claim 1, wherein the electrochemical device is a device.
[11] 極性デバイスとして使用されるレドックスキャパシタである、請求の範囲第 10項に記 載の電気化学素子。 [11] The electrochemical element according to claim 10, which is a redox capacitor used as a polar device.
PCT/JP2006/304586 2005-03-17 2006-03-09 Electrochemical device WO2006098213A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007508091A JPWO2006098213A1 (en) 2005-03-17 2006-03-09 Electrochemical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005077441 2005-03-17
JP2005-077441 2005-03-17

Publications (1)

Publication Number Publication Date
WO2006098213A1 true WO2006098213A1 (en) 2006-09-21

Family

ID=36991560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304586 WO2006098213A1 (en) 2005-03-17 2006-03-09 Electrochemical device

Country Status (2)

Country Link
JP (1) JPWO2006098213A1 (en)
WO (1) WO2006098213A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016225412A (en) * 2015-05-28 2016-12-28 Jsr株式会社 Electricity storage device
US20210130198A1 (en) * 2016-12-28 2021-05-06 Lg Electronics Inc. Water treatment apparatus filter and water treatment apparatus including same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001338846A (en) * 2000-05-30 2001-12-07 Matsushita Electric Ind Co Ltd Electrochemical capacitor
JP2003243028A (en) * 2002-02-14 2003-08-29 Central Glass Co Ltd Electrochemical device
JP2004527902A (en) * 2000-12-23 2004-09-09 ルー,ウエン Long-lived conjugated polymer electrochemical device containing ionic liquid

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2215849A1 (en) * 1997-09-11 1999-03-11 Christophe Michot New solvent and electrolytic composition with high conductivity and wide stability range

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001338846A (en) * 2000-05-30 2001-12-07 Matsushita Electric Ind Co Ltd Electrochemical capacitor
JP2004527902A (en) * 2000-12-23 2004-09-09 ルー,ウエン Long-lived conjugated polymer electrochemical device containing ionic liquid
JP2003243028A (en) * 2002-02-14 2003-08-29 Central Glass Co Ltd Electrochemical device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016225412A (en) * 2015-05-28 2016-12-28 Jsr株式会社 Electricity storage device
US20210130198A1 (en) * 2016-12-28 2021-05-06 Lg Electronics Inc. Water treatment apparatus filter and water treatment apparatus including same

Also Published As

Publication number Publication date
JPWO2006098213A1 (en) 2008-08-21

Similar Documents

Publication Publication Date Title
Guan et al. Capacitive and non-capacitive faradaic charge storage
Ghenaatian et al. High performance hybrid supercapacitor based on two nanostructured conducting polymers: Self-doped polyaniline and polypyrrole nanofibers
Ryu et al. Symmetric redox supercapacitor with conducting polyaniline electrodes
Yang et al. Electrochemical capacitors with confined redox electrolytes and porous electrodes
Palaniappan et al. Nano fibre polyaniline containing long chain and small molecule dopants and carbon composites for supercapacitor
Wei et al. Application of novel room temperature ionic liquids in flexible supercapacitors
Cai et al. A novel polyaniline/mesoporous carbon nano-composite electrode for asymmetric supercapacitor
Väli et al. Characteristics of non-aqueous quaternary solvent mixture and Na-salts based supercapacitor electrolytes in a wide temperature range
WO2005036573A1 (en) Electrode composite body, electrolyte, and redox capacitor
US7911767B2 (en) Electric double-layer capacitor
Syahidah et al. Super-capacitive electro-chemical performance of polymer blend gel polymer electrolyte (GPE) in carbon-based electrical double-layer capacitors
Obeidat et al. Solid-state supercapacitors with ionic liquid gel polymer electrolyte and polypyrrole electrodes for electrical energy storage
CA2920365A1 (en) A multicomponent approach to enhance stability and capacitance in polymer-hybrid supercapacitors
CN103346021A (en) Mixed type electrochemical capacitor
JP5596908B2 (en) Energy storage device
Zhao et al. Binder‐free porous PEDOT electrodes for flexible supercapacitors
JP2009021449A (en) Novel energy storage device utilizing electrolytic solution for electric storage
Alguail et al. Battery type hybrid supercapacitor based on polypyrrole and lead-lead sulfate
WO2010055762A1 (en) Electrical double layer capacitor
CN101443857A (en) Highly electron conductive polymer and electrochemical energy storage device with high capacity and high power using the same
Lee et al. Electrochemical characterizations on MnO2 supercapacitors with potassium polyacrylate and potassium polyacrylate-co-polyacrylamide gel polymer electrolytes
Carbas et al. Poly (3, 4-ethylenedioxythiophene) electrode grown in the presence of ionic liquid and its symmetrical electrochemical supercapacitor application
US20090251849A1 (en) Energy Storage Device Having Novel Energy Storage Means
Łępicka et al. A redox conducting polymer of a meso-Ni (II)-SaldMe monomer and its application for a multi-composite supercapacitor
JP2007250994A (en) Conductive polymer redox type electrochemical element used as polar device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007508091

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06715457

Country of ref document: EP

Kind code of ref document: A1